1 /*- 2 * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice unmodified, this list of conditions, and the following 10 * disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/systm.h> 35 #include <sys/bus.h> 36 #include <sys/endian.h> 37 #include <sys/kernel.h> 38 #include <sys/malloc.h> 39 #include <sys/mbuf.h> 40 #include <sys/rman.h> 41 #include <sys/module.h> 42 #include <sys/queue.h> 43 #include <sys/socket.h> 44 #include <sys/sockio.h> 45 #include <sys/sysctl.h> 46 #include <sys/taskqueue.h> 47 48 #include <net/bpf.h> 49 #include <net/if.h> 50 #include <net/if_arp.h> 51 #include <net/ethernet.h> 52 #include <net/if_dl.h> 53 #include <net/if_media.h> 54 #include <net/if_types.h> 55 #include <net/if_vlan_var.h> 56 57 #include <netinet/in.h> 58 #include <netinet/in_systm.h> 59 #include <netinet/ip.h> 60 #include <netinet/tcp.h> 61 62 #include <dev/mii/mii.h> 63 #include <dev/mii/miivar.h> 64 65 #include <dev/pci/pcireg.h> 66 #include <dev/pci/pcivar.h> 67 68 #include <machine/bus.h> 69 #include <machine/in_cksum.h> 70 71 #include <dev/age/if_agereg.h> 72 #include <dev/age/if_agevar.h> 73 74 /* "device miibus" required. See GENERIC if you get errors here. */ 75 #include "miibus_if.h" 76 77 #define AGE_CSUM_FEATURES (CSUM_TCP | CSUM_UDP) 78 79 MODULE_DEPEND(age, pci, 1, 1, 1); 80 MODULE_DEPEND(age, ether, 1, 1, 1); 81 MODULE_DEPEND(age, miibus, 1, 1, 1); 82 83 /* Tunables. */ 84 static int msi_disable = 0; 85 static int msix_disable = 0; 86 TUNABLE_INT("hw.age.msi_disable", &msi_disable); 87 TUNABLE_INT("hw.age.msix_disable", &msix_disable); 88 89 /* 90 * Devices supported by this driver. 91 */ 92 static struct age_dev { 93 uint16_t age_vendorid; 94 uint16_t age_deviceid; 95 const char *age_name; 96 } age_devs[] = { 97 { VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L1, 98 "Attansic Technology Corp, L1 Gigabit Ethernet" }, 99 }; 100 101 static int age_miibus_readreg(device_t, int, int); 102 static int age_miibus_writereg(device_t, int, int, int); 103 static void age_miibus_statchg(device_t); 104 static void age_mediastatus(struct ifnet *, struct ifmediareq *); 105 static int age_mediachange(struct ifnet *); 106 static int age_probe(device_t); 107 static void age_get_macaddr(struct age_softc *); 108 static void age_phy_reset(struct age_softc *); 109 static int age_attach(device_t); 110 static int age_detach(device_t); 111 static void age_sysctl_node(struct age_softc *); 112 static void age_dmamap_cb(void *, bus_dma_segment_t *, int, int); 113 static int age_check_boundary(struct age_softc *); 114 static int age_dma_alloc(struct age_softc *); 115 static void age_dma_free(struct age_softc *); 116 static int age_shutdown(device_t); 117 static void age_setwol(struct age_softc *); 118 static int age_suspend(device_t); 119 static int age_resume(device_t); 120 static int age_encap(struct age_softc *, struct mbuf **); 121 static void age_start(struct ifnet *); 122 static void age_start_locked(struct ifnet *); 123 static void age_watchdog(struct age_softc *); 124 static int age_ioctl(struct ifnet *, u_long, caddr_t); 125 static void age_mac_config(struct age_softc *); 126 static void age_link_task(void *, int); 127 static void age_stats_update(struct age_softc *); 128 static int age_intr(void *); 129 static void age_int_task(void *, int); 130 static void age_txintr(struct age_softc *, int); 131 static void age_rxeof(struct age_softc *sc, struct rx_rdesc *); 132 static int age_rxintr(struct age_softc *, int, int); 133 static void age_tick(void *); 134 static void age_reset(struct age_softc *); 135 static void age_init(void *); 136 static void age_init_locked(struct age_softc *); 137 static void age_stop(struct age_softc *); 138 static void age_stop_txmac(struct age_softc *); 139 static void age_stop_rxmac(struct age_softc *); 140 static void age_init_tx_ring(struct age_softc *); 141 static int age_init_rx_ring(struct age_softc *); 142 static void age_init_rr_ring(struct age_softc *); 143 static void age_init_cmb_block(struct age_softc *); 144 static void age_init_smb_block(struct age_softc *); 145 static int age_newbuf(struct age_softc *, struct age_rxdesc *); 146 static void age_rxvlan(struct age_softc *); 147 static void age_rxfilter(struct age_softc *); 148 static int sysctl_age_stats(SYSCTL_HANDLER_ARGS); 149 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int); 150 static int sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS); 151 static int sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS); 152 153 154 static device_method_t age_methods[] = { 155 /* Device interface. */ 156 DEVMETHOD(device_probe, age_probe), 157 DEVMETHOD(device_attach, age_attach), 158 DEVMETHOD(device_detach, age_detach), 159 DEVMETHOD(device_shutdown, age_shutdown), 160 DEVMETHOD(device_suspend, age_suspend), 161 DEVMETHOD(device_resume, age_resume), 162 163 /* MII interface. */ 164 DEVMETHOD(miibus_readreg, age_miibus_readreg), 165 DEVMETHOD(miibus_writereg, age_miibus_writereg), 166 DEVMETHOD(miibus_statchg, age_miibus_statchg), 167 168 { NULL, NULL } 169 }; 170 171 static driver_t age_driver = { 172 "age", 173 age_methods, 174 sizeof(struct age_softc) 175 }; 176 177 static devclass_t age_devclass; 178 179 DRIVER_MODULE(age, pci, age_driver, age_devclass, 0, 0); 180 DRIVER_MODULE(miibus, age, miibus_driver, miibus_devclass, 0, 0); 181 182 static struct resource_spec age_res_spec_mem[] = { 183 { SYS_RES_MEMORY, PCIR_BAR(0), RF_ACTIVE }, 184 { -1, 0, 0 } 185 }; 186 187 static struct resource_spec age_irq_spec_legacy[] = { 188 { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE }, 189 { -1, 0, 0 } 190 }; 191 192 static struct resource_spec age_irq_spec_msi[] = { 193 { SYS_RES_IRQ, 1, RF_ACTIVE }, 194 { -1, 0, 0 } 195 }; 196 197 static struct resource_spec age_irq_spec_msix[] = { 198 { SYS_RES_IRQ, 1, RF_ACTIVE }, 199 { -1, 0, 0 } 200 }; 201 202 /* 203 * Read a PHY register on the MII of the L1. 204 */ 205 static int 206 age_miibus_readreg(device_t dev, int phy, int reg) 207 { 208 struct age_softc *sc; 209 uint32_t v; 210 int i; 211 212 sc = device_get_softc(dev); 213 214 CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ | 215 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg)); 216 for (i = AGE_PHY_TIMEOUT; i > 0; i--) { 217 DELAY(1); 218 v = CSR_READ_4(sc, AGE_MDIO); 219 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0) 220 break; 221 } 222 223 if (i == 0) { 224 device_printf(sc->age_dev, "phy read timeout : %d\n", reg); 225 return (0); 226 } 227 228 return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT); 229 } 230 231 /* 232 * Write a PHY register on the MII of the L1. 233 */ 234 static int 235 age_miibus_writereg(device_t dev, int phy, int reg, int val) 236 { 237 struct age_softc *sc; 238 uint32_t v; 239 int i; 240 241 sc = device_get_softc(dev); 242 243 CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE | 244 (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT | 245 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg)); 246 for (i = AGE_PHY_TIMEOUT; i > 0; i--) { 247 DELAY(1); 248 v = CSR_READ_4(sc, AGE_MDIO); 249 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0) 250 break; 251 } 252 253 if (i == 0) 254 device_printf(sc->age_dev, "phy write timeout : %d\n", reg); 255 256 return (0); 257 } 258 259 /* 260 * Callback from MII layer when media changes. 261 */ 262 static void 263 age_miibus_statchg(device_t dev) 264 { 265 struct age_softc *sc; 266 267 sc = device_get_softc(dev); 268 taskqueue_enqueue(taskqueue_swi, &sc->age_link_task); 269 } 270 271 /* 272 * Get the current interface media status. 273 */ 274 static void 275 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) 276 { 277 struct age_softc *sc; 278 struct mii_data *mii; 279 280 sc = ifp->if_softc; 281 AGE_LOCK(sc); 282 mii = device_get_softc(sc->age_miibus); 283 284 mii_pollstat(mii); 285 ifmr->ifm_status = mii->mii_media_status; 286 ifmr->ifm_active = mii->mii_media_active; 287 AGE_UNLOCK(sc); 288 } 289 290 /* 291 * Set hardware to newly-selected media. 292 */ 293 static int 294 age_mediachange(struct ifnet *ifp) 295 { 296 struct age_softc *sc; 297 struct mii_data *mii; 298 struct mii_softc *miisc; 299 int error; 300 301 sc = ifp->if_softc; 302 AGE_LOCK(sc); 303 mii = device_get_softc(sc->age_miibus); 304 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) 305 PHY_RESET(miisc); 306 error = mii_mediachg(mii); 307 AGE_UNLOCK(sc); 308 309 return (error); 310 } 311 312 static int 313 age_probe(device_t dev) 314 { 315 struct age_dev *sp; 316 int i; 317 uint16_t vendor, devid; 318 319 vendor = pci_get_vendor(dev); 320 devid = pci_get_device(dev); 321 sp = age_devs; 322 for (i = 0; i < sizeof(age_devs) / sizeof(age_devs[0]); 323 i++, sp++) { 324 if (vendor == sp->age_vendorid && 325 devid == sp->age_deviceid) { 326 device_set_desc(dev, sp->age_name); 327 return (BUS_PROBE_DEFAULT); 328 } 329 } 330 331 return (ENXIO); 332 } 333 334 static void 335 age_get_macaddr(struct age_softc *sc) 336 { 337 uint32_t ea[2], reg; 338 int i, vpdc; 339 340 reg = CSR_READ_4(sc, AGE_SPI_CTRL); 341 if ((reg & SPI_VPD_ENB) != 0) { 342 /* Get VPD stored in TWSI EEPROM. */ 343 reg &= ~SPI_VPD_ENB; 344 CSR_WRITE_4(sc, AGE_SPI_CTRL, reg); 345 } 346 347 if (pci_find_cap(sc->age_dev, PCIY_VPD, &vpdc) == 0) { 348 /* 349 * PCI VPD capability found, let TWSI reload EEPROM. 350 * This will set ethernet address of controller. 351 */ 352 CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) | 353 TWSI_CTRL_SW_LD_START); 354 for (i = 100; i > 0; i--) { 355 DELAY(1000); 356 reg = CSR_READ_4(sc, AGE_TWSI_CTRL); 357 if ((reg & TWSI_CTRL_SW_LD_START) == 0) 358 break; 359 } 360 if (i == 0) 361 device_printf(sc->age_dev, 362 "reloading EEPROM timeout!\n"); 363 } else { 364 if (bootverbose) 365 device_printf(sc->age_dev, 366 "PCI VPD capability not found!\n"); 367 } 368 369 ea[0] = CSR_READ_4(sc, AGE_PAR0); 370 ea[1] = CSR_READ_4(sc, AGE_PAR1); 371 sc->age_eaddr[0] = (ea[1] >> 8) & 0xFF; 372 sc->age_eaddr[1] = (ea[1] >> 0) & 0xFF; 373 sc->age_eaddr[2] = (ea[0] >> 24) & 0xFF; 374 sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF; 375 sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF; 376 sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF; 377 } 378 379 static void 380 age_phy_reset(struct age_softc *sc) 381 { 382 uint16_t reg, pn; 383 int i, linkup; 384 385 /* Reset PHY. */ 386 CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST); 387 DELAY(2000); 388 CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR); 389 DELAY(2000); 390 391 #define ATPHY_DBG_ADDR 0x1D 392 #define ATPHY_DBG_DATA 0x1E 393 #define ATPHY_CDTC 0x16 394 #define PHY_CDTC_ENB 0x0001 395 #define PHY_CDTC_POFF 8 396 #define ATPHY_CDTS 0x1C 397 #define PHY_CDTS_STAT_OK 0x0000 398 #define PHY_CDTS_STAT_SHORT 0x0100 399 #define PHY_CDTS_STAT_OPEN 0x0200 400 #define PHY_CDTS_STAT_INVAL 0x0300 401 #define PHY_CDTS_STAT_MASK 0x0300 402 403 /* Check power saving mode. Magic from Linux. */ 404 age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET); 405 for (linkup = 0, pn = 0; pn < 4; pn++) { 406 age_miibus_writereg(sc->age_dev, sc->age_phyaddr, ATPHY_CDTC, 407 (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB); 408 for (i = 200; i > 0; i--) { 409 DELAY(1000); 410 reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr, 411 ATPHY_CDTC); 412 if ((reg & PHY_CDTC_ENB) == 0) 413 break; 414 } 415 DELAY(1000); 416 reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr, 417 ATPHY_CDTS); 418 if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) { 419 linkup++; 420 break; 421 } 422 } 423 age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR, 424 BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG); 425 if (linkup == 0) { 426 age_miibus_writereg(sc->age_dev, sc->age_phyaddr, 427 ATPHY_DBG_ADDR, 0); 428 age_miibus_writereg(sc->age_dev, sc->age_phyaddr, 429 ATPHY_DBG_DATA, 0x124E); 430 age_miibus_writereg(sc->age_dev, sc->age_phyaddr, 431 ATPHY_DBG_ADDR, 1); 432 reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr, 433 ATPHY_DBG_DATA); 434 age_miibus_writereg(sc->age_dev, sc->age_phyaddr, 435 ATPHY_DBG_DATA, reg | 0x03); 436 /* XXX */ 437 DELAY(1500 * 1000); 438 age_miibus_writereg(sc->age_dev, sc->age_phyaddr, 439 ATPHY_DBG_ADDR, 0); 440 age_miibus_writereg(sc->age_dev, sc->age_phyaddr, 441 ATPHY_DBG_DATA, 0x024E); 442 } 443 444 #undef ATPHY_DBG_ADDR 445 #undef ATPHY_DBG_DATA 446 #undef ATPHY_CDTC 447 #undef PHY_CDTC_ENB 448 #undef PHY_CDTC_POFF 449 #undef ATPHY_CDTS 450 #undef PHY_CDTS_STAT_OK 451 #undef PHY_CDTS_STAT_SHORT 452 #undef PHY_CDTS_STAT_OPEN 453 #undef PHY_CDTS_STAT_INVAL 454 #undef PHY_CDTS_STAT_MASK 455 } 456 457 static int 458 age_attach(device_t dev) 459 { 460 struct age_softc *sc; 461 struct ifnet *ifp; 462 uint16_t burst; 463 int error, i, msic, msixc, pmc; 464 465 error = 0; 466 sc = device_get_softc(dev); 467 sc->age_dev = dev; 468 469 mtx_init(&sc->age_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 470 MTX_DEF); 471 callout_init_mtx(&sc->age_tick_ch, &sc->age_mtx, 0); 472 TASK_INIT(&sc->age_int_task, 0, age_int_task, sc); 473 TASK_INIT(&sc->age_link_task, 0, age_link_task, sc); 474 475 /* Map the device. */ 476 pci_enable_busmaster(dev); 477 sc->age_res_spec = age_res_spec_mem; 478 sc->age_irq_spec = age_irq_spec_legacy; 479 error = bus_alloc_resources(dev, sc->age_res_spec, sc->age_res); 480 if (error != 0) { 481 device_printf(dev, "cannot allocate memory resources.\n"); 482 goto fail; 483 } 484 485 /* Set PHY address. */ 486 sc->age_phyaddr = AGE_PHY_ADDR; 487 488 /* Reset PHY. */ 489 age_phy_reset(sc); 490 491 /* Reset the ethernet controller. */ 492 age_reset(sc); 493 494 /* Get PCI and chip id/revision. */ 495 sc->age_rev = pci_get_revid(dev); 496 sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >> 497 MASTER_CHIP_REV_SHIFT; 498 if (bootverbose) { 499 device_printf(dev, "PCI device revision : 0x%04x\n", 500 sc->age_rev); 501 device_printf(dev, "Chip id/revision : 0x%04x\n", 502 sc->age_chip_rev); 503 } 504 505 /* 506 * XXX 507 * Unintialized hardware returns an invalid chip id/revision 508 * as well as 0xFFFFFFFF for Tx/Rx fifo length. It seems that 509 * unplugged cable results in putting hardware into automatic 510 * power down mode which in turn returns invalld chip revision. 511 */ 512 if (sc->age_chip_rev == 0xFFFF) { 513 device_printf(dev,"invalid chip revision : 0x%04x -- " 514 "not initialized?\n", sc->age_chip_rev); 515 error = ENXIO; 516 goto fail; 517 } 518 519 device_printf(dev, "%d Tx FIFO, %d Rx FIFO\n", 520 CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN), 521 CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN)); 522 523 /* Allocate IRQ resources. */ 524 msixc = pci_msix_count(dev); 525 msic = pci_msi_count(dev); 526 if (bootverbose) { 527 device_printf(dev, "MSIX count : %d\n", msixc); 528 device_printf(dev, "MSI count : %d\n", msic); 529 } 530 531 /* Prefer MSIX over MSI. */ 532 if (msix_disable == 0 || msi_disable == 0) { 533 if (msix_disable == 0 && msixc == AGE_MSIX_MESSAGES && 534 pci_alloc_msix(dev, &msixc) == 0) { 535 if (msic == AGE_MSIX_MESSAGES) { 536 device_printf(dev, "Using %d MSIX messages.\n", 537 msixc); 538 sc->age_flags |= AGE_FLAG_MSIX; 539 sc->age_irq_spec = age_irq_spec_msix; 540 } else 541 pci_release_msi(dev); 542 } 543 if (msi_disable == 0 && (sc->age_flags & AGE_FLAG_MSIX) == 0 && 544 msic == AGE_MSI_MESSAGES && 545 pci_alloc_msi(dev, &msic) == 0) { 546 if (msic == AGE_MSI_MESSAGES) { 547 device_printf(dev, "Using %d MSI messages.\n", 548 msic); 549 sc->age_flags |= AGE_FLAG_MSI; 550 sc->age_irq_spec = age_irq_spec_msi; 551 } else 552 pci_release_msi(dev); 553 } 554 } 555 556 error = bus_alloc_resources(dev, sc->age_irq_spec, sc->age_irq); 557 if (error != 0) { 558 device_printf(dev, "cannot allocate IRQ resources.\n"); 559 goto fail; 560 } 561 562 563 /* Get DMA parameters from PCIe device control register. */ 564 if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) { 565 sc->age_flags |= AGE_FLAG_PCIE; 566 burst = pci_read_config(dev, i + 0x08, 2); 567 /* Max read request size. */ 568 sc->age_dma_rd_burst = ((burst >> 12) & 0x07) << 569 DMA_CFG_RD_BURST_SHIFT; 570 /* Max payload size. */ 571 sc->age_dma_wr_burst = ((burst >> 5) & 0x07) << 572 DMA_CFG_WR_BURST_SHIFT; 573 if (bootverbose) { 574 device_printf(dev, "Read request size : %d bytes.\n", 575 128 << ((burst >> 12) & 0x07)); 576 device_printf(dev, "TLP payload size : %d bytes.\n", 577 128 << ((burst >> 5) & 0x07)); 578 } 579 } else { 580 sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128; 581 sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128; 582 } 583 584 /* Create device sysctl node. */ 585 age_sysctl_node(sc); 586 587 if ((error = age_dma_alloc(sc) != 0)) 588 goto fail; 589 590 /* Load station address. */ 591 age_get_macaddr(sc); 592 593 ifp = sc->age_ifp = if_alloc(IFT_ETHER); 594 if (ifp == NULL) { 595 device_printf(dev, "cannot allocate ifnet structure.\n"); 596 error = ENXIO; 597 goto fail; 598 } 599 600 ifp->if_softc = sc; 601 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 602 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 603 ifp->if_ioctl = age_ioctl; 604 ifp->if_start = age_start; 605 ifp->if_init = age_init; 606 ifp->if_snd.ifq_drv_maxlen = AGE_TX_RING_CNT - 1; 607 IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen); 608 IFQ_SET_READY(&ifp->if_snd); 609 ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4; 610 ifp->if_hwassist = AGE_CSUM_FEATURES | CSUM_TSO; 611 if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) { 612 sc->age_flags |= AGE_FLAG_PMCAP; 613 ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST; 614 } 615 ifp->if_capenable = ifp->if_capabilities; 616 617 /* Set up MII bus. */ 618 error = mii_attach(dev, &sc->age_miibus, ifp, age_mediachange, 619 age_mediastatus, BMSR_DEFCAPMASK, sc->age_phyaddr, MII_OFFSET_ANY, 620 0); 621 if (error != 0) { 622 device_printf(dev, "attaching PHYs failed\n"); 623 goto fail; 624 } 625 626 ether_ifattach(ifp, sc->age_eaddr); 627 628 /* VLAN capability setup. */ 629 ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | 630 IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO; 631 ifp->if_capenable = ifp->if_capabilities; 632 633 /* Tell the upper layer(s) we support long frames. */ 634 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); 635 636 /* Create local taskq. */ 637 sc->age_tq = taskqueue_create_fast("age_taskq", M_WAITOK, 638 taskqueue_thread_enqueue, &sc->age_tq); 639 if (sc->age_tq == NULL) { 640 device_printf(dev, "could not create taskqueue.\n"); 641 ether_ifdetach(ifp); 642 error = ENXIO; 643 goto fail; 644 } 645 taskqueue_start_threads(&sc->age_tq, 1, PI_NET, "%s taskq", 646 device_get_nameunit(sc->age_dev)); 647 648 if ((sc->age_flags & AGE_FLAG_MSIX) != 0) 649 msic = AGE_MSIX_MESSAGES; 650 else if ((sc->age_flags & AGE_FLAG_MSI) != 0) 651 msic = AGE_MSI_MESSAGES; 652 else 653 msic = 1; 654 for (i = 0; i < msic; i++) { 655 error = bus_setup_intr(dev, sc->age_irq[i], 656 INTR_TYPE_NET | INTR_MPSAFE, age_intr, NULL, sc, 657 &sc->age_intrhand[i]); 658 if (error != 0) 659 break; 660 } 661 if (error != 0) { 662 device_printf(dev, "could not set up interrupt handler.\n"); 663 taskqueue_free(sc->age_tq); 664 sc->age_tq = NULL; 665 ether_ifdetach(ifp); 666 goto fail; 667 } 668 669 fail: 670 if (error != 0) 671 age_detach(dev); 672 673 return (error); 674 } 675 676 static int 677 age_detach(device_t dev) 678 { 679 struct age_softc *sc; 680 struct ifnet *ifp; 681 int i, msic; 682 683 sc = device_get_softc(dev); 684 685 ifp = sc->age_ifp; 686 if (device_is_attached(dev)) { 687 AGE_LOCK(sc); 688 sc->age_flags |= AGE_FLAG_DETACH; 689 age_stop(sc); 690 AGE_UNLOCK(sc); 691 callout_drain(&sc->age_tick_ch); 692 taskqueue_drain(sc->age_tq, &sc->age_int_task); 693 taskqueue_drain(taskqueue_swi, &sc->age_link_task); 694 ether_ifdetach(ifp); 695 } 696 697 if (sc->age_tq != NULL) { 698 taskqueue_drain(sc->age_tq, &sc->age_int_task); 699 taskqueue_free(sc->age_tq); 700 sc->age_tq = NULL; 701 } 702 703 if (sc->age_miibus != NULL) { 704 device_delete_child(dev, sc->age_miibus); 705 sc->age_miibus = NULL; 706 } 707 bus_generic_detach(dev); 708 age_dma_free(sc); 709 710 if (ifp != NULL) { 711 if_free(ifp); 712 sc->age_ifp = NULL; 713 } 714 715 if ((sc->age_flags & AGE_FLAG_MSIX) != 0) 716 msic = AGE_MSIX_MESSAGES; 717 else if ((sc->age_flags & AGE_FLAG_MSI) != 0) 718 msic = AGE_MSI_MESSAGES; 719 else 720 msic = 1; 721 for (i = 0; i < msic; i++) { 722 if (sc->age_intrhand[i] != NULL) { 723 bus_teardown_intr(dev, sc->age_irq[i], 724 sc->age_intrhand[i]); 725 sc->age_intrhand[i] = NULL; 726 } 727 } 728 729 bus_release_resources(dev, sc->age_irq_spec, sc->age_irq); 730 if ((sc->age_flags & (AGE_FLAG_MSI | AGE_FLAG_MSIX)) != 0) 731 pci_release_msi(dev); 732 bus_release_resources(dev, sc->age_res_spec, sc->age_res); 733 mtx_destroy(&sc->age_mtx); 734 735 return (0); 736 } 737 738 static void 739 age_sysctl_node(struct age_softc *sc) 740 { 741 int error; 742 743 SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev), 744 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO, 745 "stats", CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_age_stats, 746 "I", "Statistics"); 747 748 SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev), 749 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO, 750 "int_mod", CTLTYPE_INT | CTLFLAG_RW, &sc->age_int_mod, 0, 751 sysctl_hw_age_int_mod, "I", "age interrupt moderation"); 752 753 /* Pull in device tunables. */ 754 sc->age_int_mod = AGE_IM_TIMER_DEFAULT; 755 error = resource_int_value(device_get_name(sc->age_dev), 756 device_get_unit(sc->age_dev), "int_mod", &sc->age_int_mod); 757 if (error == 0) { 758 if (sc->age_int_mod < AGE_IM_TIMER_MIN || 759 sc->age_int_mod > AGE_IM_TIMER_MAX) { 760 device_printf(sc->age_dev, 761 "int_mod value out of range; using default: %d\n", 762 AGE_IM_TIMER_DEFAULT); 763 sc->age_int_mod = AGE_IM_TIMER_DEFAULT; 764 } 765 } 766 767 SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev), 768 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO, 769 "process_limit", CTLTYPE_INT | CTLFLAG_RW, &sc->age_process_limit, 770 0, sysctl_hw_age_proc_limit, "I", 771 "max number of Rx events to process"); 772 773 /* Pull in device tunables. */ 774 sc->age_process_limit = AGE_PROC_DEFAULT; 775 error = resource_int_value(device_get_name(sc->age_dev), 776 device_get_unit(sc->age_dev), "process_limit", 777 &sc->age_process_limit); 778 if (error == 0) { 779 if (sc->age_process_limit < AGE_PROC_MIN || 780 sc->age_process_limit > AGE_PROC_MAX) { 781 device_printf(sc->age_dev, 782 "process_limit value out of range; " 783 "using default: %d\n", AGE_PROC_DEFAULT); 784 sc->age_process_limit = AGE_PROC_DEFAULT; 785 } 786 } 787 } 788 789 struct age_dmamap_arg { 790 bus_addr_t age_busaddr; 791 }; 792 793 static void 794 age_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 795 { 796 struct age_dmamap_arg *ctx; 797 798 if (error != 0) 799 return; 800 801 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); 802 803 ctx = (struct age_dmamap_arg *)arg; 804 ctx->age_busaddr = segs[0].ds_addr; 805 } 806 807 /* 808 * Attansic L1 controller have single register to specify high 809 * address part of DMA blocks. So all descriptor structures and 810 * DMA memory blocks should have the same high address of given 811 * 4GB address space(i.e. crossing 4GB boundary is not allowed). 812 */ 813 static int 814 age_check_boundary(struct age_softc *sc) 815 { 816 bus_addr_t rx_ring_end, rr_ring_end, tx_ring_end; 817 bus_addr_t cmb_block_end, smb_block_end; 818 819 /* Tx/Rx descriptor queue should reside within 4GB boundary. */ 820 tx_ring_end = sc->age_rdata.age_tx_ring_paddr + AGE_TX_RING_SZ; 821 rx_ring_end = sc->age_rdata.age_rx_ring_paddr + AGE_RX_RING_SZ; 822 rr_ring_end = sc->age_rdata.age_rr_ring_paddr + AGE_RR_RING_SZ; 823 cmb_block_end = sc->age_rdata.age_cmb_block_paddr + AGE_CMB_BLOCK_SZ; 824 smb_block_end = sc->age_rdata.age_smb_block_paddr + AGE_SMB_BLOCK_SZ; 825 826 if ((AGE_ADDR_HI(tx_ring_end) != 827 AGE_ADDR_HI(sc->age_rdata.age_tx_ring_paddr)) || 828 (AGE_ADDR_HI(rx_ring_end) != 829 AGE_ADDR_HI(sc->age_rdata.age_rx_ring_paddr)) || 830 (AGE_ADDR_HI(rr_ring_end) != 831 AGE_ADDR_HI(sc->age_rdata.age_rr_ring_paddr)) || 832 (AGE_ADDR_HI(cmb_block_end) != 833 AGE_ADDR_HI(sc->age_rdata.age_cmb_block_paddr)) || 834 (AGE_ADDR_HI(smb_block_end) != 835 AGE_ADDR_HI(sc->age_rdata.age_smb_block_paddr))) 836 return (EFBIG); 837 838 if ((AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rx_ring_end)) || 839 (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rr_ring_end)) || 840 (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(cmb_block_end)) || 841 (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(smb_block_end))) 842 return (EFBIG); 843 844 return (0); 845 } 846 847 static int 848 age_dma_alloc(struct age_softc *sc) 849 { 850 struct age_txdesc *txd; 851 struct age_rxdesc *rxd; 852 bus_addr_t lowaddr; 853 struct age_dmamap_arg ctx; 854 int error, i; 855 856 lowaddr = BUS_SPACE_MAXADDR; 857 858 again: 859 /* Create parent ring/DMA block tag. */ 860 error = bus_dma_tag_create( 861 bus_get_dma_tag(sc->age_dev), /* parent */ 862 1, 0, /* alignment, boundary */ 863 lowaddr, /* lowaddr */ 864 BUS_SPACE_MAXADDR, /* highaddr */ 865 NULL, NULL, /* filter, filterarg */ 866 BUS_SPACE_MAXSIZE_32BIT, /* maxsize */ 867 0, /* nsegments */ 868 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 869 0, /* flags */ 870 NULL, NULL, /* lockfunc, lockarg */ 871 &sc->age_cdata.age_parent_tag); 872 if (error != 0) { 873 device_printf(sc->age_dev, 874 "could not create parent DMA tag.\n"); 875 goto fail; 876 } 877 878 /* Create tag for Tx ring. */ 879 error = bus_dma_tag_create( 880 sc->age_cdata.age_parent_tag, /* parent */ 881 AGE_TX_RING_ALIGN, 0, /* alignment, boundary */ 882 BUS_SPACE_MAXADDR, /* lowaddr */ 883 BUS_SPACE_MAXADDR, /* highaddr */ 884 NULL, NULL, /* filter, filterarg */ 885 AGE_TX_RING_SZ, /* maxsize */ 886 1, /* nsegments */ 887 AGE_TX_RING_SZ, /* maxsegsize */ 888 0, /* flags */ 889 NULL, NULL, /* lockfunc, lockarg */ 890 &sc->age_cdata.age_tx_ring_tag); 891 if (error != 0) { 892 device_printf(sc->age_dev, 893 "could not create Tx ring DMA tag.\n"); 894 goto fail; 895 } 896 897 /* Create tag for Rx ring. */ 898 error = bus_dma_tag_create( 899 sc->age_cdata.age_parent_tag, /* parent */ 900 AGE_RX_RING_ALIGN, 0, /* alignment, boundary */ 901 BUS_SPACE_MAXADDR, /* lowaddr */ 902 BUS_SPACE_MAXADDR, /* highaddr */ 903 NULL, NULL, /* filter, filterarg */ 904 AGE_RX_RING_SZ, /* maxsize */ 905 1, /* nsegments */ 906 AGE_RX_RING_SZ, /* maxsegsize */ 907 0, /* flags */ 908 NULL, NULL, /* lockfunc, lockarg */ 909 &sc->age_cdata.age_rx_ring_tag); 910 if (error != 0) { 911 device_printf(sc->age_dev, 912 "could not create Rx ring DMA tag.\n"); 913 goto fail; 914 } 915 916 /* Create tag for Rx return ring. */ 917 error = bus_dma_tag_create( 918 sc->age_cdata.age_parent_tag, /* parent */ 919 AGE_RR_RING_ALIGN, 0, /* alignment, boundary */ 920 BUS_SPACE_MAXADDR, /* lowaddr */ 921 BUS_SPACE_MAXADDR, /* highaddr */ 922 NULL, NULL, /* filter, filterarg */ 923 AGE_RR_RING_SZ, /* maxsize */ 924 1, /* nsegments */ 925 AGE_RR_RING_SZ, /* maxsegsize */ 926 0, /* flags */ 927 NULL, NULL, /* lockfunc, lockarg */ 928 &sc->age_cdata.age_rr_ring_tag); 929 if (error != 0) { 930 device_printf(sc->age_dev, 931 "could not create Rx return ring DMA tag.\n"); 932 goto fail; 933 } 934 935 /* Create tag for coalesing message block. */ 936 error = bus_dma_tag_create( 937 sc->age_cdata.age_parent_tag, /* parent */ 938 AGE_CMB_ALIGN, 0, /* alignment, boundary */ 939 BUS_SPACE_MAXADDR, /* lowaddr */ 940 BUS_SPACE_MAXADDR, /* highaddr */ 941 NULL, NULL, /* filter, filterarg */ 942 AGE_CMB_BLOCK_SZ, /* maxsize */ 943 1, /* nsegments */ 944 AGE_CMB_BLOCK_SZ, /* maxsegsize */ 945 0, /* flags */ 946 NULL, NULL, /* lockfunc, lockarg */ 947 &sc->age_cdata.age_cmb_block_tag); 948 if (error != 0) { 949 device_printf(sc->age_dev, 950 "could not create CMB DMA tag.\n"); 951 goto fail; 952 } 953 954 /* Create tag for statistics message block. */ 955 error = bus_dma_tag_create( 956 sc->age_cdata.age_parent_tag, /* parent */ 957 AGE_SMB_ALIGN, 0, /* alignment, boundary */ 958 BUS_SPACE_MAXADDR, /* lowaddr */ 959 BUS_SPACE_MAXADDR, /* highaddr */ 960 NULL, NULL, /* filter, filterarg */ 961 AGE_SMB_BLOCK_SZ, /* maxsize */ 962 1, /* nsegments */ 963 AGE_SMB_BLOCK_SZ, /* maxsegsize */ 964 0, /* flags */ 965 NULL, NULL, /* lockfunc, lockarg */ 966 &sc->age_cdata.age_smb_block_tag); 967 if (error != 0) { 968 device_printf(sc->age_dev, 969 "could not create SMB DMA tag.\n"); 970 goto fail; 971 } 972 973 /* Allocate DMA'able memory and load the DMA map. */ 974 error = bus_dmamem_alloc(sc->age_cdata.age_tx_ring_tag, 975 (void **)&sc->age_rdata.age_tx_ring, 976 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 977 &sc->age_cdata.age_tx_ring_map); 978 if (error != 0) { 979 device_printf(sc->age_dev, 980 "could not allocate DMA'able memory for Tx ring.\n"); 981 goto fail; 982 } 983 ctx.age_busaddr = 0; 984 error = bus_dmamap_load(sc->age_cdata.age_tx_ring_tag, 985 sc->age_cdata.age_tx_ring_map, sc->age_rdata.age_tx_ring, 986 AGE_TX_RING_SZ, age_dmamap_cb, &ctx, 0); 987 if (error != 0 || ctx.age_busaddr == 0) { 988 device_printf(sc->age_dev, 989 "could not load DMA'able memory for Tx ring.\n"); 990 goto fail; 991 } 992 sc->age_rdata.age_tx_ring_paddr = ctx.age_busaddr; 993 /* Rx ring */ 994 error = bus_dmamem_alloc(sc->age_cdata.age_rx_ring_tag, 995 (void **)&sc->age_rdata.age_rx_ring, 996 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 997 &sc->age_cdata.age_rx_ring_map); 998 if (error != 0) { 999 device_printf(sc->age_dev, 1000 "could not allocate DMA'able memory for Rx ring.\n"); 1001 goto fail; 1002 } 1003 ctx.age_busaddr = 0; 1004 error = bus_dmamap_load(sc->age_cdata.age_rx_ring_tag, 1005 sc->age_cdata.age_rx_ring_map, sc->age_rdata.age_rx_ring, 1006 AGE_RX_RING_SZ, age_dmamap_cb, &ctx, 0); 1007 if (error != 0 || ctx.age_busaddr == 0) { 1008 device_printf(sc->age_dev, 1009 "could not load DMA'able memory for Rx ring.\n"); 1010 goto fail; 1011 } 1012 sc->age_rdata.age_rx_ring_paddr = ctx.age_busaddr; 1013 /* Rx return ring */ 1014 error = bus_dmamem_alloc(sc->age_cdata.age_rr_ring_tag, 1015 (void **)&sc->age_rdata.age_rr_ring, 1016 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 1017 &sc->age_cdata.age_rr_ring_map); 1018 if (error != 0) { 1019 device_printf(sc->age_dev, 1020 "could not allocate DMA'able memory for Rx return ring.\n"); 1021 goto fail; 1022 } 1023 ctx.age_busaddr = 0; 1024 error = bus_dmamap_load(sc->age_cdata.age_rr_ring_tag, 1025 sc->age_cdata.age_rr_ring_map, sc->age_rdata.age_rr_ring, 1026 AGE_RR_RING_SZ, age_dmamap_cb, 1027 &ctx, 0); 1028 if (error != 0 || ctx.age_busaddr == 0) { 1029 device_printf(sc->age_dev, 1030 "could not load DMA'able memory for Rx return ring.\n"); 1031 goto fail; 1032 } 1033 sc->age_rdata.age_rr_ring_paddr = ctx.age_busaddr; 1034 /* CMB block */ 1035 error = bus_dmamem_alloc(sc->age_cdata.age_cmb_block_tag, 1036 (void **)&sc->age_rdata.age_cmb_block, 1037 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 1038 &sc->age_cdata.age_cmb_block_map); 1039 if (error != 0) { 1040 device_printf(sc->age_dev, 1041 "could not allocate DMA'able memory for CMB block.\n"); 1042 goto fail; 1043 } 1044 ctx.age_busaddr = 0; 1045 error = bus_dmamap_load(sc->age_cdata.age_cmb_block_tag, 1046 sc->age_cdata.age_cmb_block_map, sc->age_rdata.age_cmb_block, 1047 AGE_CMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0); 1048 if (error != 0 || ctx.age_busaddr == 0) { 1049 device_printf(sc->age_dev, 1050 "could not load DMA'able memory for CMB block.\n"); 1051 goto fail; 1052 } 1053 sc->age_rdata.age_cmb_block_paddr = ctx.age_busaddr; 1054 /* SMB block */ 1055 error = bus_dmamem_alloc(sc->age_cdata.age_smb_block_tag, 1056 (void **)&sc->age_rdata.age_smb_block, 1057 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 1058 &sc->age_cdata.age_smb_block_map); 1059 if (error != 0) { 1060 device_printf(sc->age_dev, 1061 "could not allocate DMA'able memory for SMB block.\n"); 1062 goto fail; 1063 } 1064 ctx.age_busaddr = 0; 1065 error = bus_dmamap_load(sc->age_cdata.age_smb_block_tag, 1066 sc->age_cdata.age_smb_block_map, sc->age_rdata.age_smb_block, 1067 AGE_SMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0); 1068 if (error != 0 || ctx.age_busaddr == 0) { 1069 device_printf(sc->age_dev, 1070 "could not load DMA'able memory for SMB block.\n"); 1071 goto fail; 1072 } 1073 sc->age_rdata.age_smb_block_paddr = ctx.age_busaddr; 1074 1075 /* 1076 * All ring buffer and DMA blocks should have the same 1077 * high address part of 64bit DMA address space. 1078 */ 1079 if (lowaddr != BUS_SPACE_MAXADDR_32BIT && 1080 (error = age_check_boundary(sc)) != 0) { 1081 device_printf(sc->age_dev, "4GB boundary crossed, " 1082 "switching to 32bit DMA addressing mode.\n"); 1083 age_dma_free(sc); 1084 /* Limit DMA address space to 32bit and try again. */ 1085 lowaddr = BUS_SPACE_MAXADDR_32BIT; 1086 goto again; 1087 } 1088 1089 /* 1090 * Create Tx/Rx buffer parent tag. 1091 * L1 supports full 64bit DMA addressing in Tx/Rx buffers 1092 * so it needs separate parent DMA tag. 1093 * XXX 1094 * It seems enabling 64bit DMA causes data corruption. Limit 1095 * DMA address space to 32bit. 1096 */ 1097 error = bus_dma_tag_create( 1098 bus_get_dma_tag(sc->age_dev), /* parent */ 1099 1, 0, /* alignment, boundary */ 1100 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 1101 BUS_SPACE_MAXADDR, /* highaddr */ 1102 NULL, NULL, /* filter, filterarg */ 1103 BUS_SPACE_MAXSIZE_32BIT, /* maxsize */ 1104 0, /* nsegments */ 1105 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 1106 0, /* flags */ 1107 NULL, NULL, /* lockfunc, lockarg */ 1108 &sc->age_cdata.age_buffer_tag); 1109 if (error != 0) { 1110 device_printf(sc->age_dev, 1111 "could not create parent buffer DMA tag.\n"); 1112 goto fail; 1113 } 1114 1115 /* Create tag for Tx buffers. */ 1116 error = bus_dma_tag_create( 1117 sc->age_cdata.age_buffer_tag, /* parent */ 1118 1, 0, /* alignment, boundary */ 1119 BUS_SPACE_MAXADDR, /* lowaddr */ 1120 BUS_SPACE_MAXADDR, /* highaddr */ 1121 NULL, NULL, /* filter, filterarg */ 1122 AGE_TSO_MAXSIZE, /* maxsize */ 1123 AGE_MAXTXSEGS, /* nsegments */ 1124 AGE_TSO_MAXSEGSIZE, /* maxsegsize */ 1125 0, /* flags */ 1126 NULL, NULL, /* lockfunc, lockarg */ 1127 &sc->age_cdata.age_tx_tag); 1128 if (error != 0) { 1129 device_printf(sc->age_dev, "could not create Tx DMA tag.\n"); 1130 goto fail; 1131 } 1132 1133 /* Create tag for Rx buffers. */ 1134 error = bus_dma_tag_create( 1135 sc->age_cdata.age_buffer_tag, /* parent */ 1136 1, 0, /* alignment, boundary */ 1137 BUS_SPACE_MAXADDR, /* lowaddr */ 1138 BUS_SPACE_MAXADDR, /* highaddr */ 1139 NULL, NULL, /* filter, filterarg */ 1140 MCLBYTES, /* maxsize */ 1141 1, /* nsegments */ 1142 MCLBYTES, /* maxsegsize */ 1143 0, /* flags */ 1144 NULL, NULL, /* lockfunc, lockarg */ 1145 &sc->age_cdata.age_rx_tag); 1146 if (error != 0) { 1147 device_printf(sc->age_dev, "could not create Rx DMA tag.\n"); 1148 goto fail; 1149 } 1150 1151 /* Create DMA maps for Tx buffers. */ 1152 for (i = 0; i < AGE_TX_RING_CNT; i++) { 1153 txd = &sc->age_cdata.age_txdesc[i]; 1154 txd->tx_m = NULL; 1155 txd->tx_dmamap = NULL; 1156 error = bus_dmamap_create(sc->age_cdata.age_tx_tag, 0, 1157 &txd->tx_dmamap); 1158 if (error != 0) { 1159 device_printf(sc->age_dev, 1160 "could not create Tx dmamap.\n"); 1161 goto fail; 1162 } 1163 } 1164 /* Create DMA maps for Rx buffers. */ 1165 if ((error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0, 1166 &sc->age_cdata.age_rx_sparemap)) != 0) { 1167 device_printf(sc->age_dev, 1168 "could not create spare Rx dmamap.\n"); 1169 goto fail; 1170 } 1171 for (i = 0; i < AGE_RX_RING_CNT; i++) { 1172 rxd = &sc->age_cdata.age_rxdesc[i]; 1173 rxd->rx_m = NULL; 1174 rxd->rx_dmamap = NULL; 1175 error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0, 1176 &rxd->rx_dmamap); 1177 if (error != 0) { 1178 device_printf(sc->age_dev, 1179 "could not create Rx dmamap.\n"); 1180 goto fail; 1181 } 1182 } 1183 1184 fail: 1185 return (error); 1186 } 1187 1188 static void 1189 age_dma_free(struct age_softc *sc) 1190 { 1191 struct age_txdesc *txd; 1192 struct age_rxdesc *rxd; 1193 int i; 1194 1195 /* Tx buffers */ 1196 if (sc->age_cdata.age_tx_tag != NULL) { 1197 for (i = 0; i < AGE_TX_RING_CNT; i++) { 1198 txd = &sc->age_cdata.age_txdesc[i]; 1199 if (txd->tx_dmamap != NULL) { 1200 bus_dmamap_destroy(sc->age_cdata.age_tx_tag, 1201 txd->tx_dmamap); 1202 txd->tx_dmamap = NULL; 1203 } 1204 } 1205 bus_dma_tag_destroy(sc->age_cdata.age_tx_tag); 1206 sc->age_cdata.age_tx_tag = NULL; 1207 } 1208 /* Rx buffers */ 1209 if (sc->age_cdata.age_rx_tag != NULL) { 1210 for (i = 0; i < AGE_RX_RING_CNT; i++) { 1211 rxd = &sc->age_cdata.age_rxdesc[i]; 1212 if (rxd->rx_dmamap != NULL) { 1213 bus_dmamap_destroy(sc->age_cdata.age_rx_tag, 1214 rxd->rx_dmamap); 1215 rxd->rx_dmamap = NULL; 1216 } 1217 } 1218 if (sc->age_cdata.age_rx_sparemap != NULL) { 1219 bus_dmamap_destroy(sc->age_cdata.age_rx_tag, 1220 sc->age_cdata.age_rx_sparemap); 1221 sc->age_cdata.age_rx_sparemap = NULL; 1222 } 1223 bus_dma_tag_destroy(sc->age_cdata.age_rx_tag); 1224 sc->age_cdata.age_rx_tag = NULL; 1225 } 1226 /* Tx ring. */ 1227 if (sc->age_cdata.age_tx_ring_tag != NULL) { 1228 if (sc->age_cdata.age_tx_ring_map != NULL) 1229 bus_dmamap_unload(sc->age_cdata.age_tx_ring_tag, 1230 sc->age_cdata.age_tx_ring_map); 1231 if (sc->age_cdata.age_tx_ring_map != NULL && 1232 sc->age_rdata.age_tx_ring != NULL) 1233 bus_dmamem_free(sc->age_cdata.age_tx_ring_tag, 1234 sc->age_rdata.age_tx_ring, 1235 sc->age_cdata.age_tx_ring_map); 1236 sc->age_rdata.age_tx_ring = NULL; 1237 sc->age_cdata.age_tx_ring_map = NULL; 1238 bus_dma_tag_destroy(sc->age_cdata.age_tx_ring_tag); 1239 sc->age_cdata.age_tx_ring_tag = NULL; 1240 } 1241 /* Rx ring. */ 1242 if (sc->age_cdata.age_rx_ring_tag != NULL) { 1243 if (sc->age_cdata.age_rx_ring_map != NULL) 1244 bus_dmamap_unload(sc->age_cdata.age_rx_ring_tag, 1245 sc->age_cdata.age_rx_ring_map); 1246 if (sc->age_cdata.age_rx_ring_map != NULL && 1247 sc->age_rdata.age_rx_ring != NULL) 1248 bus_dmamem_free(sc->age_cdata.age_rx_ring_tag, 1249 sc->age_rdata.age_rx_ring, 1250 sc->age_cdata.age_rx_ring_map); 1251 sc->age_rdata.age_rx_ring = NULL; 1252 sc->age_cdata.age_rx_ring_map = NULL; 1253 bus_dma_tag_destroy(sc->age_cdata.age_rx_ring_tag); 1254 sc->age_cdata.age_rx_ring_tag = NULL; 1255 } 1256 /* Rx return ring. */ 1257 if (sc->age_cdata.age_rr_ring_tag != NULL) { 1258 if (sc->age_cdata.age_rr_ring_map != NULL) 1259 bus_dmamap_unload(sc->age_cdata.age_rr_ring_tag, 1260 sc->age_cdata.age_rr_ring_map); 1261 if (sc->age_cdata.age_rr_ring_map != NULL && 1262 sc->age_rdata.age_rr_ring != NULL) 1263 bus_dmamem_free(sc->age_cdata.age_rr_ring_tag, 1264 sc->age_rdata.age_rr_ring, 1265 sc->age_cdata.age_rr_ring_map); 1266 sc->age_rdata.age_rr_ring = NULL; 1267 sc->age_cdata.age_rr_ring_map = NULL; 1268 bus_dma_tag_destroy(sc->age_cdata.age_rr_ring_tag); 1269 sc->age_cdata.age_rr_ring_tag = NULL; 1270 } 1271 /* CMB block */ 1272 if (sc->age_cdata.age_cmb_block_tag != NULL) { 1273 if (sc->age_cdata.age_cmb_block_map != NULL) 1274 bus_dmamap_unload(sc->age_cdata.age_cmb_block_tag, 1275 sc->age_cdata.age_cmb_block_map); 1276 if (sc->age_cdata.age_cmb_block_map != NULL && 1277 sc->age_rdata.age_cmb_block != NULL) 1278 bus_dmamem_free(sc->age_cdata.age_cmb_block_tag, 1279 sc->age_rdata.age_cmb_block, 1280 sc->age_cdata.age_cmb_block_map); 1281 sc->age_rdata.age_cmb_block = NULL; 1282 sc->age_cdata.age_cmb_block_map = NULL; 1283 bus_dma_tag_destroy(sc->age_cdata.age_cmb_block_tag); 1284 sc->age_cdata.age_cmb_block_tag = NULL; 1285 } 1286 /* SMB block */ 1287 if (sc->age_cdata.age_smb_block_tag != NULL) { 1288 if (sc->age_cdata.age_smb_block_map != NULL) 1289 bus_dmamap_unload(sc->age_cdata.age_smb_block_tag, 1290 sc->age_cdata.age_smb_block_map); 1291 if (sc->age_cdata.age_smb_block_map != NULL && 1292 sc->age_rdata.age_smb_block != NULL) 1293 bus_dmamem_free(sc->age_cdata.age_smb_block_tag, 1294 sc->age_rdata.age_smb_block, 1295 sc->age_cdata.age_smb_block_map); 1296 sc->age_rdata.age_smb_block = NULL; 1297 sc->age_cdata.age_smb_block_map = NULL; 1298 bus_dma_tag_destroy(sc->age_cdata.age_smb_block_tag); 1299 sc->age_cdata.age_smb_block_tag = NULL; 1300 } 1301 1302 if (sc->age_cdata.age_buffer_tag != NULL) { 1303 bus_dma_tag_destroy(sc->age_cdata.age_buffer_tag); 1304 sc->age_cdata.age_buffer_tag = NULL; 1305 } 1306 if (sc->age_cdata.age_parent_tag != NULL) { 1307 bus_dma_tag_destroy(sc->age_cdata.age_parent_tag); 1308 sc->age_cdata.age_parent_tag = NULL; 1309 } 1310 } 1311 1312 /* 1313 * Make sure the interface is stopped at reboot time. 1314 */ 1315 static int 1316 age_shutdown(device_t dev) 1317 { 1318 1319 return (age_suspend(dev)); 1320 } 1321 1322 static void 1323 age_setwol(struct age_softc *sc) 1324 { 1325 struct ifnet *ifp; 1326 struct mii_data *mii; 1327 uint32_t reg, pmcs; 1328 uint16_t pmstat; 1329 int aneg, i, pmc; 1330 1331 AGE_LOCK_ASSERT(sc); 1332 1333 if (pci_find_cap(sc->age_dev, PCIY_PMG, &pmc) != 0) { 1334 CSR_WRITE_4(sc, AGE_WOL_CFG, 0); 1335 /* 1336 * No PME capability, PHY power down. 1337 * XXX 1338 * Due to an unknown reason powering down PHY resulted 1339 * in unexpected results such as inaccessbility of 1340 * hardware of freshly rebooted system. Disable 1341 * powering down PHY until I got more information for 1342 * Attansic/Atheros PHY hardwares. 1343 */ 1344 #ifdef notyet 1345 age_miibus_writereg(sc->age_dev, sc->age_phyaddr, 1346 MII_BMCR, BMCR_PDOWN); 1347 #endif 1348 return; 1349 } 1350 1351 ifp = sc->age_ifp; 1352 if ((ifp->if_capenable & IFCAP_WOL) != 0) { 1353 /* 1354 * Note, this driver resets the link speed to 10/100Mbps with 1355 * auto-negotiation but we don't know whether that operation 1356 * would succeed or not as it have no control after powering 1357 * off. If the renegotiation fail WOL may not work. Running 1358 * at 1Gbps will draw more power than 375mA at 3.3V which is 1359 * specified in PCI specification and that would result in 1360 * complete shutdowning power to ethernet controller. 1361 * 1362 * TODO 1363 * Save current negotiated media speed/duplex/flow-control 1364 * to softc and restore the same link again after resuming. 1365 * PHY handling such as power down/resetting to 100Mbps 1366 * may be better handled in suspend method in phy driver. 1367 */ 1368 mii = device_get_softc(sc->age_miibus); 1369 mii_pollstat(mii); 1370 aneg = 0; 1371 if ((mii->mii_media_status & IFM_AVALID) != 0) { 1372 switch IFM_SUBTYPE(mii->mii_media_active) { 1373 case IFM_10_T: 1374 case IFM_100_TX: 1375 goto got_link; 1376 case IFM_1000_T: 1377 aneg++; 1378 default: 1379 break; 1380 } 1381 } 1382 age_miibus_writereg(sc->age_dev, sc->age_phyaddr, 1383 MII_100T2CR, 0); 1384 age_miibus_writereg(sc->age_dev, sc->age_phyaddr, 1385 MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | 1386 ANAR_10 | ANAR_CSMA); 1387 age_miibus_writereg(sc->age_dev, sc->age_phyaddr, 1388 MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG); 1389 DELAY(1000); 1390 if (aneg != 0) { 1391 /* Poll link state until age(4) get a 10/100 link. */ 1392 for (i = 0; i < MII_ANEGTICKS_GIGE; i++) { 1393 mii_pollstat(mii); 1394 if ((mii->mii_media_status & IFM_AVALID) != 0) { 1395 switch (IFM_SUBTYPE( 1396 mii->mii_media_active)) { 1397 case IFM_10_T: 1398 case IFM_100_TX: 1399 age_mac_config(sc); 1400 goto got_link; 1401 default: 1402 break; 1403 } 1404 } 1405 AGE_UNLOCK(sc); 1406 pause("agelnk", hz); 1407 AGE_LOCK(sc); 1408 } 1409 if (i == MII_ANEGTICKS_GIGE) 1410 device_printf(sc->age_dev, 1411 "establishing link failed, " 1412 "WOL may not work!"); 1413 } 1414 /* 1415 * No link, force MAC to have 100Mbps, full-duplex link. 1416 * This is the last resort and may/may not work. 1417 */ 1418 mii->mii_media_status = IFM_AVALID | IFM_ACTIVE; 1419 mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX; 1420 age_mac_config(sc); 1421 } 1422 1423 got_link: 1424 pmcs = 0; 1425 if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) 1426 pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB; 1427 CSR_WRITE_4(sc, AGE_WOL_CFG, pmcs); 1428 reg = CSR_READ_4(sc, AGE_MAC_CFG); 1429 reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC); 1430 reg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST); 1431 if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0) 1432 reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST; 1433 if ((ifp->if_capenable & IFCAP_WOL) != 0) { 1434 reg |= MAC_CFG_RX_ENB; 1435 CSR_WRITE_4(sc, AGE_MAC_CFG, reg); 1436 } 1437 1438 /* Request PME. */ 1439 pmstat = pci_read_config(sc->age_dev, pmc + PCIR_POWER_STATUS, 2); 1440 pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE); 1441 if ((ifp->if_capenable & IFCAP_WOL) != 0) 1442 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE; 1443 pci_write_config(sc->age_dev, pmc + PCIR_POWER_STATUS, pmstat, 2); 1444 #ifdef notyet 1445 /* See above for powering down PHY issues. */ 1446 if ((ifp->if_capenable & IFCAP_WOL) == 0) { 1447 /* No WOL, PHY power down. */ 1448 age_miibus_writereg(sc->age_dev, sc->age_phyaddr, 1449 MII_BMCR, BMCR_PDOWN); 1450 } 1451 #endif 1452 } 1453 1454 static int 1455 age_suspend(device_t dev) 1456 { 1457 struct age_softc *sc; 1458 1459 sc = device_get_softc(dev); 1460 1461 AGE_LOCK(sc); 1462 age_stop(sc); 1463 age_setwol(sc); 1464 AGE_UNLOCK(sc); 1465 1466 return (0); 1467 } 1468 1469 static int 1470 age_resume(device_t dev) 1471 { 1472 struct age_softc *sc; 1473 struct ifnet *ifp; 1474 1475 sc = device_get_softc(dev); 1476 1477 AGE_LOCK(sc); 1478 age_phy_reset(sc); 1479 ifp = sc->age_ifp; 1480 if ((ifp->if_flags & IFF_UP) != 0) 1481 age_init_locked(sc); 1482 1483 AGE_UNLOCK(sc); 1484 1485 return (0); 1486 } 1487 1488 static int 1489 age_encap(struct age_softc *sc, struct mbuf **m_head) 1490 { 1491 struct age_txdesc *txd, *txd_last; 1492 struct tx_desc *desc; 1493 struct mbuf *m; 1494 struct ip *ip; 1495 struct tcphdr *tcp; 1496 bus_dma_segment_t txsegs[AGE_MAXTXSEGS]; 1497 bus_dmamap_t map; 1498 uint32_t cflags, ip_off, poff, vtag; 1499 int error, i, nsegs, prod, si; 1500 1501 AGE_LOCK_ASSERT(sc); 1502 1503 M_ASSERTPKTHDR((*m_head)); 1504 1505 m = *m_head; 1506 ip = NULL; 1507 tcp = NULL; 1508 cflags = vtag = 0; 1509 ip_off = poff = 0; 1510 if ((m->m_pkthdr.csum_flags & (AGE_CSUM_FEATURES | CSUM_TSO)) != 0) { 1511 /* 1512 * L1 requires offset of TCP/UDP payload in its Tx 1513 * descriptor to perform hardware Tx checksum offload. 1514 * Additionally, TSO requires IP/TCP header size and 1515 * modification of IP/TCP header in order to make TSO 1516 * engine work. This kind of operation takes many CPU 1517 * cycles on FreeBSD so fast host CPU is needed to get 1518 * smooth TSO performance. 1519 */ 1520 struct ether_header *eh; 1521 1522 if (M_WRITABLE(m) == 0) { 1523 /* Get a writable copy. */ 1524 m = m_dup(*m_head, M_DONTWAIT); 1525 /* Release original mbufs. */ 1526 m_freem(*m_head); 1527 if (m == NULL) { 1528 *m_head = NULL; 1529 return (ENOBUFS); 1530 } 1531 *m_head = m; 1532 } 1533 ip_off = sizeof(struct ether_header); 1534 m = m_pullup(m, ip_off); 1535 if (m == NULL) { 1536 *m_head = NULL; 1537 return (ENOBUFS); 1538 } 1539 eh = mtod(m, struct ether_header *); 1540 /* 1541 * Check if hardware VLAN insertion is off. 1542 * Additional check for LLC/SNAP frame? 1543 */ 1544 if (eh->ether_type == htons(ETHERTYPE_VLAN)) { 1545 ip_off = sizeof(struct ether_vlan_header); 1546 m = m_pullup(m, ip_off); 1547 if (m == NULL) { 1548 *m_head = NULL; 1549 return (ENOBUFS); 1550 } 1551 } 1552 m = m_pullup(m, ip_off + sizeof(struct ip)); 1553 if (m == NULL) { 1554 *m_head = NULL; 1555 return (ENOBUFS); 1556 } 1557 ip = (struct ip *)(mtod(m, char *) + ip_off); 1558 poff = ip_off + (ip->ip_hl << 2); 1559 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 1560 m = m_pullup(m, poff + sizeof(struct tcphdr)); 1561 if (m == NULL) { 1562 *m_head = NULL; 1563 return (ENOBUFS); 1564 } 1565 ip = (struct ip *)(mtod(m, char *) + ip_off); 1566 tcp = (struct tcphdr *)(mtod(m, char *) + poff); 1567 /* 1568 * L1 requires IP/TCP header size and offset as 1569 * well as TCP pseudo checksum which complicates 1570 * TSO configuration. I guess this comes from the 1571 * adherence to Microsoft NDIS Large Send 1572 * specification which requires insertion of 1573 * pseudo checksum by upper stack. The pseudo 1574 * checksum that NDIS refers to doesn't include 1575 * TCP payload length so age(4) should recompute 1576 * the pseudo checksum here. Hopefully this wouldn't 1577 * be much burden on modern CPUs. 1578 * Reset IP checksum and recompute TCP pseudo 1579 * checksum as NDIS specification said. 1580 */ 1581 ip->ip_sum = 0; 1582 if (poff + (tcp->th_off << 2) == m->m_pkthdr.len) 1583 tcp->th_sum = in_pseudo(ip->ip_src.s_addr, 1584 ip->ip_dst.s_addr, 1585 htons((tcp->th_off << 2) + IPPROTO_TCP)); 1586 else 1587 tcp->th_sum = in_pseudo(ip->ip_src.s_addr, 1588 ip->ip_dst.s_addr, htons(IPPROTO_TCP)); 1589 } 1590 *m_head = m; 1591 } 1592 1593 si = prod = sc->age_cdata.age_tx_prod; 1594 txd = &sc->age_cdata.age_txdesc[prod]; 1595 txd_last = txd; 1596 map = txd->tx_dmamap; 1597 1598 error = bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map, 1599 *m_head, txsegs, &nsegs, 0); 1600 if (error == EFBIG) { 1601 m = m_collapse(*m_head, M_DONTWAIT, AGE_MAXTXSEGS); 1602 if (m == NULL) { 1603 m_freem(*m_head); 1604 *m_head = NULL; 1605 return (ENOMEM); 1606 } 1607 *m_head = m; 1608 error = bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map, 1609 *m_head, txsegs, &nsegs, 0); 1610 if (error != 0) { 1611 m_freem(*m_head); 1612 *m_head = NULL; 1613 return (error); 1614 } 1615 } else if (error != 0) 1616 return (error); 1617 if (nsegs == 0) { 1618 m_freem(*m_head); 1619 *m_head = NULL; 1620 return (EIO); 1621 } 1622 1623 /* Check descriptor overrun. */ 1624 if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) { 1625 bus_dmamap_unload(sc->age_cdata.age_tx_tag, map); 1626 return (ENOBUFS); 1627 } 1628 1629 m = *m_head; 1630 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 1631 /* Configure TSO. */ 1632 if (poff + (tcp->th_off << 2) == m->m_pkthdr.len) { 1633 /* Not TSO but IP/TCP checksum offload. */ 1634 cflags |= AGE_TD_IPCSUM | AGE_TD_TCPCSUM; 1635 /* Clear TSO in order not to set AGE_TD_TSO_HDR. */ 1636 m->m_pkthdr.csum_flags &= ~CSUM_TSO; 1637 } else { 1638 /* Request TSO and set MSS. */ 1639 cflags |= AGE_TD_TSO_IPV4; 1640 cflags |= AGE_TD_IPCSUM | AGE_TD_TCPCSUM; 1641 cflags |= ((uint32_t)m->m_pkthdr.tso_segsz << 1642 AGE_TD_TSO_MSS_SHIFT); 1643 } 1644 /* Set IP/TCP header size. */ 1645 cflags |= ip->ip_hl << AGE_TD_IPHDR_LEN_SHIFT; 1646 cflags |= tcp->th_off << AGE_TD_TSO_TCPHDR_LEN_SHIFT; 1647 } else if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) { 1648 /* Configure Tx IP/TCP/UDP checksum offload. */ 1649 cflags |= AGE_TD_CSUM; 1650 if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0) 1651 cflags |= AGE_TD_TCPCSUM; 1652 if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0) 1653 cflags |= AGE_TD_UDPCSUM; 1654 /* Set checksum start offset. */ 1655 cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT); 1656 /* Set checksum insertion position of TCP/UDP. */ 1657 cflags |= ((poff + m->m_pkthdr.csum_data) << 1658 AGE_TD_CSUM_XSUMOFFSET_SHIFT); 1659 } 1660 1661 /* Configure VLAN hardware tag insertion. */ 1662 if ((m->m_flags & M_VLANTAG) != 0) { 1663 vtag = AGE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag); 1664 vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK); 1665 cflags |= AGE_TD_INSERT_VLAN_TAG; 1666 } 1667 1668 desc = NULL; 1669 for (i = 0; i < nsegs; i++) { 1670 desc = &sc->age_rdata.age_tx_ring[prod]; 1671 desc->addr = htole64(txsegs[i].ds_addr); 1672 desc->len = htole32(AGE_TX_BYTES(txsegs[i].ds_len) | vtag); 1673 desc->flags = htole32(cflags); 1674 sc->age_cdata.age_tx_cnt++; 1675 AGE_DESC_INC(prod, AGE_TX_RING_CNT); 1676 } 1677 /* Update producer index. */ 1678 sc->age_cdata.age_tx_prod = prod; 1679 1680 /* Set EOP on the last descriptor. */ 1681 prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT; 1682 desc = &sc->age_rdata.age_tx_ring[prod]; 1683 desc->flags |= htole32(AGE_TD_EOP); 1684 1685 /* Lastly set TSO header and modify IP/TCP header for TSO operation. */ 1686 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 1687 desc = &sc->age_rdata.age_tx_ring[si]; 1688 desc->flags |= htole32(AGE_TD_TSO_HDR); 1689 } 1690 1691 /* Swap dmamap of the first and the last. */ 1692 txd = &sc->age_cdata.age_txdesc[prod]; 1693 map = txd_last->tx_dmamap; 1694 txd_last->tx_dmamap = txd->tx_dmamap; 1695 txd->tx_dmamap = map; 1696 txd->tx_m = m; 1697 1698 /* Sync descriptors. */ 1699 bus_dmamap_sync(sc->age_cdata.age_tx_tag, map, BUS_DMASYNC_PREWRITE); 1700 bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag, 1701 sc->age_cdata.age_tx_ring_map, 1702 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1703 1704 return (0); 1705 } 1706 1707 static void 1708 age_start(struct ifnet *ifp) 1709 { 1710 struct age_softc *sc; 1711 1712 sc = ifp->if_softc; 1713 AGE_LOCK(sc); 1714 age_start_locked(ifp); 1715 AGE_UNLOCK(sc); 1716 } 1717 1718 static void 1719 age_start_locked(struct ifnet *ifp) 1720 { 1721 struct age_softc *sc; 1722 struct mbuf *m_head; 1723 int enq; 1724 1725 sc = ifp->if_softc; 1726 1727 AGE_LOCK_ASSERT(sc); 1728 1729 if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 1730 IFF_DRV_RUNNING || (sc->age_flags & AGE_FLAG_LINK) == 0) 1731 return; 1732 1733 for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) { 1734 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); 1735 if (m_head == NULL) 1736 break; 1737 /* 1738 * Pack the data into the transmit ring. If we 1739 * don't have room, set the OACTIVE flag and wait 1740 * for the NIC to drain the ring. 1741 */ 1742 if (age_encap(sc, &m_head)) { 1743 if (m_head == NULL) 1744 break; 1745 IFQ_DRV_PREPEND(&ifp->if_snd, m_head); 1746 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1747 break; 1748 } 1749 1750 enq++; 1751 /* 1752 * If there's a BPF listener, bounce a copy of this frame 1753 * to him. 1754 */ 1755 ETHER_BPF_MTAP(ifp, m_head); 1756 } 1757 1758 if (enq > 0) { 1759 /* Update mbox. */ 1760 AGE_COMMIT_MBOX(sc); 1761 /* Set a timeout in case the chip goes out to lunch. */ 1762 sc->age_watchdog_timer = AGE_TX_TIMEOUT; 1763 } 1764 } 1765 1766 static void 1767 age_watchdog(struct age_softc *sc) 1768 { 1769 struct ifnet *ifp; 1770 1771 AGE_LOCK_ASSERT(sc); 1772 1773 if (sc->age_watchdog_timer == 0 || --sc->age_watchdog_timer) 1774 return; 1775 1776 ifp = sc->age_ifp; 1777 if ((sc->age_flags & AGE_FLAG_LINK) == 0) { 1778 if_printf(sc->age_ifp, "watchdog timeout (missed link)\n"); 1779 ifp->if_oerrors++; 1780 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1781 age_init_locked(sc); 1782 return; 1783 } 1784 if (sc->age_cdata.age_tx_cnt == 0) { 1785 if_printf(sc->age_ifp, 1786 "watchdog timeout (missed Tx interrupts) -- recovering\n"); 1787 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1788 age_start_locked(ifp); 1789 return; 1790 } 1791 if_printf(sc->age_ifp, "watchdog timeout\n"); 1792 ifp->if_oerrors++; 1793 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1794 age_init_locked(sc); 1795 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1796 age_start_locked(ifp); 1797 } 1798 1799 static int 1800 age_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1801 { 1802 struct age_softc *sc; 1803 struct ifreq *ifr; 1804 struct mii_data *mii; 1805 uint32_t reg; 1806 int error, mask; 1807 1808 sc = ifp->if_softc; 1809 ifr = (struct ifreq *)data; 1810 error = 0; 1811 switch (cmd) { 1812 case SIOCSIFMTU: 1813 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > AGE_JUMBO_MTU) 1814 error = EINVAL; 1815 else if (ifp->if_mtu != ifr->ifr_mtu) { 1816 AGE_LOCK(sc); 1817 ifp->if_mtu = ifr->ifr_mtu; 1818 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 1819 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1820 age_init_locked(sc); 1821 } 1822 AGE_UNLOCK(sc); 1823 } 1824 break; 1825 case SIOCSIFFLAGS: 1826 AGE_LOCK(sc); 1827 if ((ifp->if_flags & IFF_UP) != 0) { 1828 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 1829 if (((ifp->if_flags ^ sc->age_if_flags) 1830 & (IFF_PROMISC | IFF_ALLMULTI)) != 0) 1831 age_rxfilter(sc); 1832 } else { 1833 if ((sc->age_flags & AGE_FLAG_DETACH) == 0) 1834 age_init_locked(sc); 1835 } 1836 } else { 1837 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 1838 age_stop(sc); 1839 } 1840 sc->age_if_flags = ifp->if_flags; 1841 AGE_UNLOCK(sc); 1842 break; 1843 case SIOCADDMULTI: 1844 case SIOCDELMULTI: 1845 AGE_LOCK(sc); 1846 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 1847 age_rxfilter(sc); 1848 AGE_UNLOCK(sc); 1849 break; 1850 case SIOCSIFMEDIA: 1851 case SIOCGIFMEDIA: 1852 mii = device_get_softc(sc->age_miibus); 1853 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd); 1854 break; 1855 case SIOCSIFCAP: 1856 AGE_LOCK(sc); 1857 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 1858 if ((mask & IFCAP_TXCSUM) != 0 && 1859 (ifp->if_capabilities & IFCAP_TXCSUM) != 0) { 1860 ifp->if_capenable ^= IFCAP_TXCSUM; 1861 if ((ifp->if_capenable & IFCAP_TXCSUM) != 0) 1862 ifp->if_hwassist |= AGE_CSUM_FEATURES; 1863 else 1864 ifp->if_hwassist &= ~AGE_CSUM_FEATURES; 1865 } 1866 if ((mask & IFCAP_RXCSUM) != 0 && 1867 (ifp->if_capabilities & IFCAP_RXCSUM) != 0) { 1868 ifp->if_capenable ^= IFCAP_RXCSUM; 1869 reg = CSR_READ_4(sc, AGE_MAC_CFG); 1870 reg &= ~MAC_CFG_RXCSUM_ENB; 1871 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) 1872 reg |= MAC_CFG_RXCSUM_ENB; 1873 CSR_WRITE_4(sc, AGE_MAC_CFG, reg); 1874 } 1875 if ((mask & IFCAP_TSO4) != 0 && 1876 (ifp->if_capabilities & IFCAP_TSO4) != 0) { 1877 ifp->if_capenable ^= IFCAP_TSO4; 1878 if ((ifp->if_capenable & IFCAP_TSO4) != 0) 1879 ifp->if_hwassist |= CSUM_TSO; 1880 else 1881 ifp->if_hwassist &= ~CSUM_TSO; 1882 } 1883 1884 if ((mask & IFCAP_WOL_MCAST) != 0 && 1885 (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0) 1886 ifp->if_capenable ^= IFCAP_WOL_MCAST; 1887 if ((mask & IFCAP_WOL_MAGIC) != 0 && 1888 (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0) 1889 ifp->if_capenable ^= IFCAP_WOL_MAGIC; 1890 if ((mask & IFCAP_VLAN_HWCSUM) != 0 && 1891 (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0) 1892 ifp->if_capenable ^= IFCAP_VLAN_HWCSUM; 1893 if ((mask & IFCAP_VLAN_HWTSO) != 0 && 1894 (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0) 1895 ifp->if_capenable ^= IFCAP_VLAN_HWTSO; 1896 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 && 1897 (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) { 1898 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; 1899 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0) 1900 ifp->if_capenable &= ~IFCAP_VLAN_HWTSO; 1901 age_rxvlan(sc); 1902 } 1903 AGE_UNLOCK(sc); 1904 VLAN_CAPABILITIES(ifp); 1905 break; 1906 default: 1907 error = ether_ioctl(ifp, cmd, data); 1908 break; 1909 } 1910 1911 return (error); 1912 } 1913 1914 static void 1915 age_mac_config(struct age_softc *sc) 1916 { 1917 struct mii_data *mii; 1918 uint32_t reg; 1919 1920 AGE_LOCK_ASSERT(sc); 1921 1922 mii = device_get_softc(sc->age_miibus); 1923 reg = CSR_READ_4(sc, AGE_MAC_CFG); 1924 reg &= ~MAC_CFG_FULL_DUPLEX; 1925 reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC); 1926 reg &= ~MAC_CFG_SPEED_MASK; 1927 /* Reprogram MAC with resolved speed/duplex. */ 1928 switch (IFM_SUBTYPE(mii->mii_media_active)) { 1929 case IFM_10_T: 1930 case IFM_100_TX: 1931 reg |= MAC_CFG_SPEED_10_100; 1932 break; 1933 case IFM_1000_T: 1934 reg |= MAC_CFG_SPEED_1000; 1935 break; 1936 } 1937 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) { 1938 reg |= MAC_CFG_FULL_DUPLEX; 1939 #ifdef notyet 1940 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0) 1941 reg |= MAC_CFG_TX_FC; 1942 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0) 1943 reg |= MAC_CFG_RX_FC; 1944 #endif 1945 } 1946 1947 CSR_WRITE_4(sc, AGE_MAC_CFG, reg); 1948 } 1949 1950 static void 1951 age_link_task(void *arg, int pending) 1952 { 1953 struct age_softc *sc; 1954 struct mii_data *mii; 1955 struct ifnet *ifp; 1956 uint32_t reg; 1957 1958 sc = (struct age_softc *)arg; 1959 1960 AGE_LOCK(sc); 1961 mii = device_get_softc(sc->age_miibus); 1962 ifp = sc->age_ifp; 1963 if (mii == NULL || ifp == NULL || 1964 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1965 AGE_UNLOCK(sc); 1966 return; 1967 } 1968 1969 sc->age_flags &= ~AGE_FLAG_LINK; 1970 if ((mii->mii_media_status & IFM_AVALID) != 0) { 1971 switch (IFM_SUBTYPE(mii->mii_media_active)) { 1972 case IFM_10_T: 1973 case IFM_100_TX: 1974 case IFM_1000_T: 1975 sc->age_flags |= AGE_FLAG_LINK; 1976 break; 1977 default: 1978 break; 1979 } 1980 } 1981 1982 /* Stop Rx/Tx MACs. */ 1983 age_stop_rxmac(sc); 1984 age_stop_txmac(sc); 1985 1986 /* Program MACs with resolved speed/duplex/flow-control. */ 1987 if ((sc->age_flags & AGE_FLAG_LINK) != 0) { 1988 age_mac_config(sc); 1989 reg = CSR_READ_4(sc, AGE_MAC_CFG); 1990 /* Restart DMA engine and Tx/Rx MAC. */ 1991 CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) | 1992 DMA_CFG_RD_ENB | DMA_CFG_WR_ENB); 1993 reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB; 1994 CSR_WRITE_4(sc, AGE_MAC_CFG, reg); 1995 } 1996 1997 AGE_UNLOCK(sc); 1998 } 1999 2000 static void 2001 age_stats_update(struct age_softc *sc) 2002 { 2003 struct age_stats *stat; 2004 struct smb *smb; 2005 struct ifnet *ifp; 2006 2007 AGE_LOCK_ASSERT(sc); 2008 2009 stat = &sc->age_stat; 2010 2011 bus_dmamap_sync(sc->age_cdata.age_smb_block_tag, 2012 sc->age_cdata.age_smb_block_map, 2013 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2014 2015 smb = sc->age_rdata.age_smb_block; 2016 if (smb->updated == 0) 2017 return; 2018 2019 ifp = sc->age_ifp; 2020 /* Rx stats. */ 2021 stat->rx_frames += smb->rx_frames; 2022 stat->rx_bcast_frames += smb->rx_bcast_frames; 2023 stat->rx_mcast_frames += smb->rx_mcast_frames; 2024 stat->rx_pause_frames += smb->rx_pause_frames; 2025 stat->rx_control_frames += smb->rx_control_frames; 2026 stat->rx_crcerrs += smb->rx_crcerrs; 2027 stat->rx_lenerrs += smb->rx_lenerrs; 2028 stat->rx_bytes += smb->rx_bytes; 2029 stat->rx_runts += smb->rx_runts; 2030 stat->rx_fragments += smb->rx_fragments; 2031 stat->rx_pkts_64 += smb->rx_pkts_64; 2032 stat->rx_pkts_65_127 += smb->rx_pkts_65_127; 2033 stat->rx_pkts_128_255 += smb->rx_pkts_128_255; 2034 stat->rx_pkts_256_511 += smb->rx_pkts_256_511; 2035 stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023; 2036 stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518; 2037 stat->rx_pkts_1519_max += smb->rx_pkts_1519_max; 2038 stat->rx_pkts_truncated += smb->rx_pkts_truncated; 2039 stat->rx_fifo_oflows += smb->rx_fifo_oflows; 2040 stat->rx_desc_oflows += smb->rx_desc_oflows; 2041 stat->rx_alignerrs += smb->rx_alignerrs; 2042 stat->rx_bcast_bytes += smb->rx_bcast_bytes; 2043 stat->rx_mcast_bytes += smb->rx_mcast_bytes; 2044 stat->rx_pkts_filtered += smb->rx_pkts_filtered; 2045 2046 /* Tx stats. */ 2047 stat->tx_frames += smb->tx_frames; 2048 stat->tx_bcast_frames += smb->tx_bcast_frames; 2049 stat->tx_mcast_frames += smb->tx_mcast_frames; 2050 stat->tx_pause_frames += smb->tx_pause_frames; 2051 stat->tx_excess_defer += smb->tx_excess_defer; 2052 stat->tx_control_frames += smb->tx_control_frames; 2053 stat->tx_deferred += smb->tx_deferred; 2054 stat->tx_bytes += smb->tx_bytes; 2055 stat->tx_pkts_64 += smb->tx_pkts_64; 2056 stat->tx_pkts_65_127 += smb->tx_pkts_65_127; 2057 stat->tx_pkts_128_255 += smb->tx_pkts_128_255; 2058 stat->tx_pkts_256_511 += smb->tx_pkts_256_511; 2059 stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023; 2060 stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518; 2061 stat->tx_pkts_1519_max += smb->tx_pkts_1519_max; 2062 stat->tx_single_colls += smb->tx_single_colls; 2063 stat->tx_multi_colls += smb->tx_multi_colls; 2064 stat->tx_late_colls += smb->tx_late_colls; 2065 stat->tx_excess_colls += smb->tx_excess_colls; 2066 stat->tx_underrun += smb->tx_underrun; 2067 stat->tx_desc_underrun += smb->tx_desc_underrun; 2068 stat->tx_lenerrs += smb->tx_lenerrs; 2069 stat->tx_pkts_truncated += smb->tx_pkts_truncated; 2070 stat->tx_bcast_bytes += smb->tx_bcast_bytes; 2071 stat->tx_mcast_bytes += smb->tx_mcast_bytes; 2072 2073 /* Update counters in ifnet. */ 2074 ifp->if_opackets += smb->tx_frames; 2075 2076 ifp->if_collisions += smb->tx_single_colls + 2077 smb->tx_multi_colls + smb->tx_late_colls + 2078 smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT; 2079 2080 ifp->if_oerrors += smb->tx_excess_colls + 2081 smb->tx_late_colls + smb->tx_underrun + 2082 smb->tx_pkts_truncated; 2083 2084 ifp->if_ipackets += smb->rx_frames; 2085 2086 ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs + 2087 smb->rx_runts + smb->rx_pkts_truncated + 2088 smb->rx_fifo_oflows + smb->rx_desc_oflows + 2089 smb->rx_alignerrs; 2090 2091 /* Update done, clear. */ 2092 smb->updated = 0; 2093 2094 bus_dmamap_sync(sc->age_cdata.age_smb_block_tag, 2095 sc->age_cdata.age_smb_block_map, 2096 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2097 } 2098 2099 static int 2100 age_intr(void *arg) 2101 { 2102 struct age_softc *sc; 2103 uint32_t status; 2104 2105 sc = (struct age_softc *)arg; 2106 2107 status = CSR_READ_4(sc, AGE_INTR_STATUS); 2108 if (status == 0 || (status & AGE_INTRS) == 0) 2109 return (FILTER_STRAY); 2110 /* Disable interrupts. */ 2111 CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT); 2112 taskqueue_enqueue(sc->age_tq, &sc->age_int_task); 2113 2114 return (FILTER_HANDLED); 2115 } 2116 2117 static void 2118 age_int_task(void *arg, int pending) 2119 { 2120 struct age_softc *sc; 2121 struct ifnet *ifp; 2122 struct cmb *cmb; 2123 uint32_t status; 2124 2125 sc = (struct age_softc *)arg; 2126 2127 AGE_LOCK(sc); 2128 2129 bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag, 2130 sc->age_cdata.age_cmb_block_map, 2131 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2132 cmb = sc->age_rdata.age_cmb_block; 2133 status = le32toh(cmb->intr_status); 2134 if (sc->age_morework != 0) 2135 status |= INTR_CMB_RX; 2136 if ((status & AGE_INTRS) == 0) 2137 goto done; 2138 2139 sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >> 2140 TPD_CONS_SHIFT; 2141 sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >> 2142 RRD_PROD_SHIFT; 2143 /* Let hardware know CMB was served. */ 2144 cmb->intr_status = 0; 2145 bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag, 2146 sc->age_cdata.age_cmb_block_map, 2147 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2148 2149 #if 0 2150 printf("INTR: 0x%08x\n", status); 2151 status &= ~INTR_DIS_DMA; 2152 CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT); 2153 #endif 2154 ifp = sc->age_ifp; 2155 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 2156 if ((status & INTR_CMB_RX) != 0) 2157 sc->age_morework = age_rxintr(sc, sc->age_rr_prod, 2158 sc->age_process_limit); 2159 if ((status & INTR_CMB_TX) != 0) 2160 age_txintr(sc, sc->age_tpd_cons); 2161 if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) { 2162 if ((status & INTR_DMA_RD_TO_RST) != 0) 2163 device_printf(sc->age_dev, 2164 "DMA read error! -- resetting\n"); 2165 if ((status & INTR_DMA_WR_TO_RST) != 0) 2166 device_printf(sc->age_dev, 2167 "DMA write error! -- resetting\n"); 2168 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2169 age_init_locked(sc); 2170 } 2171 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 2172 age_start_locked(ifp); 2173 if ((status & INTR_SMB) != 0) 2174 age_stats_update(sc); 2175 } 2176 2177 /* Check whether CMB was updated while serving Tx/Rx/SMB handler. */ 2178 bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag, 2179 sc->age_cdata.age_cmb_block_map, 2180 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2181 status = le32toh(cmb->intr_status); 2182 if (sc->age_morework != 0 || (status & AGE_INTRS) != 0) { 2183 taskqueue_enqueue(sc->age_tq, &sc->age_int_task); 2184 AGE_UNLOCK(sc); 2185 return; 2186 } 2187 2188 done: 2189 /* Re-enable interrupts. */ 2190 CSR_WRITE_4(sc, AGE_INTR_STATUS, 0); 2191 AGE_UNLOCK(sc); 2192 } 2193 2194 static void 2195 age_txintr(struct age_softc *sc, int tpd_cons) 2196 { 2197 struct ifnet *ifp; 2198 struct age_txdesc *txd; 2199 int cons, prog; 2200 2201 AGE_LOCK_ASSERT(sc); 2202 2203 ifp = sc->age_ifp; 2204 2205 bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag, 2206 sc->age_cdata.age_tx_ring_map, 2207 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2208 2209 /* 2210 * Go through our Tx list and free mbufs for those 2211 * frames which have been transmitted. 2212 */ 2213 cons = sc->age_cdata.age_tx_cons; 2214 for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) { 2215 if (sc->age_cdata.age_tx_cnt <= 0) 2216 break; 2217 prog++; 2218 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2219 sc->age_cdata.age_tx_cnt--; 2220 txd = &sc->age_cdata.age_txdesc[cons]; 2221 /* 2222 * Clear Tx descriptors, it's not required but would 2223 * help debugging in case of Tx issues. 2224 */ 2225 txd->tx_desc->addr = 0; 2226 txd->tx_desc->len = 0; 2227 txd->tx_desc->flags = 0; 2228 2229 if (txd->tx_m == NULL) 2230 continue; 2231 /* Reclaim transmitted mbufs. */ 2232 bus_dmamap_sync(sc->age_cdata.age_tx_tag, txd->tx_dmamap, 2233 BUS_DMASYNC_POSTWRITE); 2234 bus_dmamap_unload(sc->age_cdata.age_tx_tag, txd->tx_dmamap); 2235 m_freem(txd->tx_m); 2236 txd->tx_m = NULL; 2237 } 2238 2239 if (prog > 0) { 2240 sc->age_cdata.age_tx_cons = cons; 2241 2242 /* 2243 * Unarm watchdog timer only when there are no pending 2244 * Tx descriptors in queue. 2245 */ 2246 if (sc->age_cdata.age_tx_cnt == 0) 2247 sc->age_watchdog_timer = 0; 2248 bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag, 2249 sc->age_cdata.age_tx_ring_map, 2250 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2251 } 2252 } 2253 2254 /* Receive a frame. */ 2255 static void 2256 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd) 2257 { 2258 struct age_rxdesc *rxd; 2259 struct rx_desc *desc; 2260 struct ifnet *ifp; 2261 struct mbuf *mp, *m; 2262 uint32_t status, index, vtag; 2263 int count, nsegs, pktlen; 2264 int rx_cons; 2265 2266 AGE_LOCK_ASSERT(sc); 2267 2268 ifp = sc->age_ifp; 2269 status = le32toh(rxrd->flags); 2270 index = le32toh(rxrd->index); 2271 rx_cons = AGE_RX_CONS(index); 2272 nsegs = AGE_RX_NSEGS(index); 2273 2274 sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len)); 2275 if ((status & AGE_RRD_ERROR) != 0 && 2276 (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE | 2277 AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) { 2278 /* 2279 * We want to pass the following frames to upper 2280 * layer regardless of error status of Rx return 2281 * ring. 2282 * 2283 * o IP/TCP/UDP checksum is bad. 2284 * o frame length and protocol specific length 2285 * does not match. 2286 */ 2287 sc->age_cdata.age_rx_cons += nsegs; 2288 sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT; 2289 return; 2290 } 2291 2292 pktlen = 0; 2293 for (count = 0; count < nsegs; count++, 2294 AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) { 2295 rxd = &sc->age_cdata.age_rxdesc[rx_cons]; 2296 mp = rxd->rx_m; 2297 desc = rxd->rx_desc; 2298 /* Add a new receive buffer to the ring. */ 2299 if (age_newbuf(sc, rxd) != 0) { 2300 ifp->if_iqdrops++; 2301 /* Reuse Rx buffers. */ 2302 if (sc->age_cdata.age_rxhead != NULL) { 2303 m_freem(sc->age_cdata.age_rxhead); 2304 AGE_RXCHAIN_RESET(sc); 2305 } 2306 break; 2307 } 2308 2309 /* The length of the first mbuf is computed last. */ 2310 if (count != 0) { 2311 mp->m_len = AGE_RX_BYTES(le32toh(desc->len)); 2312 pktlen += mp->m_len; 2313 } 2314 2315 /* Chain received mbufs. */ 2316 if (sc->age_cdata.age_rxhead == NULL) { 2317 sc->age_cdata.age_rxhead = mp; 2318 sc->age_cdata.age_rxtail = mp; 2319 } else { 2320 mp->m_flags &= ~M_PKTHDR; 2321 sc->age_cdata.age_rxprev_tail = 2322 sc->age_cdata.age_rxtail; 2323 sc->age_cdata.age_rxtail->m_next = mp; 2324 sc->age_cdata.age_rxtail = mp; 2325 } 2326 2327 if (count == nsegs - 1) { 2328 /* 2329 * It seems that L1 controller has no way 2330 * to tell hardware to strip CRC bytes. 2331 */ 2332 sc->age_cdata.age_rxlen -= ETHER_CRC_LEN; 2333 if (nsegs > 1) { 2334 /* Remove the CRC bytes in chained mbufs. */ 2335 pktlen -= ETHER_CRC_LEN; 2336 if (mp->m_len <= ETHER_CRC_LEN) { 2337 sc->age_cdata.age_rxtail = 2338 sc->age_cdata.age_rxprev_tail; 2339 sc->age_cdata.age_rxtail->m_len -= 2340 (ETHER_CRC_LEN - mp->m_len); 2341 sc->age_cdata.age_rxtail->m_next = NULL; 2342 m_freem(mp); 2343 } else { 2344 mp->m_len -= ETHER_CRC_LEN; 2345 } 2346 } 2347 2348 m = sc->age_cdata.age_rxhead; 2349 m->m_flags |= M_PKTHDR; 2350 m->m_pkthdr.rcvif = ifp; 2351 m->m_pkthdr.len = sc->age_cdata.age_rxlen; 2352 /* Set the first mbuf length. */ 2353 m->m_len = sc->age_cdata.age_rxlen - pktlen; 2354 2355 /* 2356 * Set checksum information. 2357 * It seems that L1 controller can compute partial 2358 * checksum. The partial checksum value can be used 2359 * to accelerate checksum computation for fragmented 2360 * TCP/UDP packets. Upper network stack already 2361 * takes advantage of the partial checksum value in 2362 * IP reassembly stage. But I'm not sure the 2363 * correctness of the partial hardware checksum 2364 * assistance due to lack of data sheet. If it is 2365 * proven to work on L1 I'll enable it. 2366 */ 2367 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 && 2368 (status & AGE_RRD_IPV4) != 0) { 2369 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 2370 if ((status & AGE_RRD_IPCSUM_NOK) == 0) 2371 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 2372 if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) && 2373 (status & AGE_RRD_TCP_UDPCSUM_NOK) == 0) { 2374 m->m_pkthdr.csum_flags |= 2375 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 2376 m->m_pkthdr.csum_data = 0xffff; 2377 } 2378 /* 2379 * Don't mark bad checksum for TCP/UDP frames 2380 * as fragmented frames may always have set 2381 * bad checksummed bit of descriptor status. 2382 */ 2383 } 2384 2385 /* Check for VLAN tagged frames. */ 2386 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 && 2387 (status & AGE_RRD_VLAN) != 0) { 2388 vtag = AGE_RX_VLAN(le32toh(rxrd->vtags)); 2389 m->m_pkthdr.ether_vtag = AGE_RX_VLAN_TAG(vtag); 2390 m->m_flags |= M_VLANTAG; 2391 } 2392 2393 /* Pass it on. */ 2394 AGE_UNLOCK(sc); 2395 (*ifp->if_input)(ifp, m); 2396 AGE_LOCK(sc); 2397 2398 /* Reset mbuf chains. */ 2399 AGE_RXCHAIN_RESET(sc); 2400 } 2401 } 2402 2403 if (count != nsegs) { 2404 sc->age_cdata.age_rx_cons += nsegs; 2405 sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT; 2406 } else 2407 sc->age_cdata.age_rx_cons = rx_cons; 2408 } 2409 2410 static int 2411 age_rxintr(struct age_softc *sc, int rr_prod, int count) 2412 { 2413 struct rx_rdesc *rxrd; 2414 int rr_cons, nsegs, pktlen, prog; 2415 2416 AGE_LOCK_ASSERT(sc); 2417 2418 rr_cons = sc->age_cdata.age_rr_cons; 2419 if (rr_cons == rr_prod) 2420 return (0); 2421 2422 bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag, 2423 sc->age_cdata.age_rr_ring_map, 2424 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2425 bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag, 2426 sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_POSTWRITE); 2427 2428 for (prog = 0; rr_cons != rr_prod; prog++) { 2429 if (count <= 0) 2430 break; 2431 rxrd = &sc->age_rdata.age_rr_ring[rr_cons]; 2432 nsegs = AGE_RX_NSEGS(le32toh(rxrd->index)); 2433 if (nsegs == 0) 2434 break; 2435 /* 2436 * Check number of segments against received bytes. 2437 * Non-matching value would indicate that hardware 2438 * is still trying to update Rx return descriptors. 2439 * I'm not sure whether this check is really needed. 2440 */ 2441 pktlen = AGE_RX_BYTES(le32toh(rxrd->len)); 2442 if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) / 2443 (MCLBYTES - ETHER_ALIGN))) 2444 break; 2445 2446 prog++; 2447 /* Received a frame. */ 2448 age_rxeof(sc, rxrd); 2449 /* Clear return ring. */ 2450 rxrd->index = 0; 2451 AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT); 2452 } 2453 2454 if (prog > 0) { 2455 /* Update the consumer index. */ 2456 sc->age_cdata.age_rr_cons = rr_cons; 2457 2458 bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag, 2459 sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREWRITE); 2460 /* Sync descriptors. */ 2461 bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag, 2462 sc->age_cdata.age_rr_ring_map, 2463 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2464 2465 /* Notify hardware availability of new Rx buffers. */ 2466 AGE_COMMIT_MBOX(sc); 2467 } 2468 2469 return (count > 0 ? 0 : EAGAIN); 2470 } 2471 2472 static void 2473 age_tick(void *arg) 2474 { 2475 struct age_softc *sc; 2476 struct mii_data *mii; 2477 2478 sc = (struct age_softc *)arg; 2479 2480 AGE_LOCK_ASSERT(sc); 2481 2482 mii = device_get_softc(sc->age_miibus); 2483 mii_tick(mii); 2484 age_watchdog(sc); 2485 callout_reset(&sc->age_tick_ch, hz, age_tick, sc); 2486 } 2487 2488 static void 2489 age_reset(struct age_softc *sc) 2490 { 2491 uint32_t reg; 2492 int i; 2493 2494 CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET); 2495 CSR_READ_4(sc, AGE_MASTER_CFG); 2496 DELAY(1000); 2497 for (i = AGE_RESET_TIMEOUT; i > 0; i--) { 2498 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0) 2499 break; 2500 DELAY(10); 2501 } 2502 2503 if (i == 0) 2504 device_printf(sc->age_dev, "reset timeout(0x%08x)!\n", reg); 2505 /* Initialize PCIe module. From Linux. */ 2506 CSR_WRITE_4(sc, 0x12FC, 0x6500); 2507 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000); 2508 } 2509 2510 static void 2511 age_init(void *xsc) 2512 { 2513 struct age_softc *sc; 2514 2515 sc = (struct age_softc *)xsc; 2516 AGE_LOCK(sc); 2517 age_init_locked(sc); 2518 AGE_UNLOCK(sc); 2519 } 2520 2521 static void 2522 age_init_locked(struct age_softc *sc) 2523 { 2524 struct ifnet *ifp; 2525 struct mii_data *mii; 2526 uint8_t eaddr[ETHER_ADDR_LEN]; 2527 bus_addr_t paddr; 2528 uint32_t reg, fsize; 2529 uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo; 2530 int error; 2531 2532 AGE_LOCK_ASSERT(sc); 2533 2534 ifp = sc->age_ifp; 2535 mii = device_get_softc(sc->age_miibus); 2536 2537 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 2538 return; 2539 2540 /* 2541 * Cancel any pending I/O. 2542 */ 2543 age_stop(sc); 2544 2545 /* 2546 * Reset the chip to a known state. 2547 */ 2548 age_reset(sc); 2549 2550 /* Initialize descriptors. */ 2551 error = age_init_rx_ring(sc); 2552 if (error != 0) { 2553 device_printf(sc->age_dev, "no memory for Rx buffers.\n"); 2554 age_stop(sc); 2555 return; 2556 } 2557 age_init_rr_ring(sc); 2558 age_init_tx_ring(sc); 2559 age_init_cmb_block(sc); 2560 age_init_smb_block(sc); 2561 2562 /* Reprogram the station address. */ 2563 bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN); 2564 CSR_WRITE_4(sc, AGE_PAR0, 2565 eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]); 2566 CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]); 2567 2568 /* Set descriptor base addresses. */ 2569 paddr = sc->age_rdata.age_tx_ring_paddr; 2570 CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr)); 2571 paddr = sc->age_rdata.age_rx_ring_paddr; 2572 CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr)); 2573 paddr = sc->age_rdata.age_rr_ring_paddr; 2574 CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr)); 2575 paddr = sc->age_rdata.age_tx_ring_paddr; 2576 CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr)); 2577 paddr = sc->age_rdata.age_cmb_block_paddr; 2578 CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr)); 2579 paddr = sc->age_rdata.age_smb_block_paddr; 2580 CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr)); 2581 /* Set Rx/Rx return descriptor counter. */ 2582 CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT, 2583 ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) & 2584 DESC_RRD_CNT_MASK) | 2585 ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK)); 2586 /* Set Tx descriptor counter. */ 2587 CSR_WRITE_4(sc, AGE_DESC_TPD_CNT, 2588 (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK); 2589 2590 /* Tell hardware that we're ready to load descriptors. */ 2591 CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD); 2592 2593 /* 2594 * Initialize mailbox register. 2595 * Updated producer/consumer index information is exchanged 2596 * through this mailbox register. However Tx producer and 2597 * Rx return consumer/Rx producer are all shared such that 2598 * it's hard to separate code path between Tx and Rx without 2599 * locking. If L1 hardware have a separate mail box register 2600 * for Tx and Rx consumer/producer management we could have 2601 * indepent Tx/Rx handler which in turn Rx handler could have 2602 * been run without any locking. 2603 */ 2604 AGE_COMMIT_MBOX(sc); 2605 2606 /* Configure IPG/IFG parameters. */ 2607 CSR_WRITE_4(sc, AGE_IPG_IFG_CFG, 2608 ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) | 2609 ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) | 2610 ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) | 2611 ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK)); 2612 2613 /* Set parameters for half-duplex media. */ 2614 CSR_WRITE_4(sc, AGE_HDPX_CFG, 2615 ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) & 2616 HDPX_CFG_LCOL_MASK) | 2617 ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) & 2618 HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN | 2619 ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) & 2620 HDPX_CFG_ABEBT_MASK) | 2621 ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) & 2622 HDPX_CFG_JAMIPG_MASK)); 2623 2624 /* Configure interrupt moderation timer. */ 2625 CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod)); 2626 reg = CSR_READ_4(sc, AGE_MASTER_CFG); 2627 reg &= ~MASTER_MTIMER_ENB; 2628 if (AGE_USECS(sc->age_int_mod) == 0) 2629 reg &= ~MASTER_ITIMER_ENB; 2630 else 2631 reg |= MASTER_ITIMER_ENB; 2632 CSR_WRITE_4(sc, AGE_MASTER_CFG, reg); 2633 if (bootverbose) 2634 device_printf(sc->age_dev, "interrupt moderation is %d us.\n", 2635 sc->age_int_mod); 2636 CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000)); 2637 2638 /* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */ 2639 if (ifp->if_mtu < ETHERMTU) 2640 sc->age_max_frame_size = ETHERMTU; 2641 else 2642 sc->age_max_frame_size = ifp->if_mtu; 2643 sc->age_max_frame_size += ETHER_HDR_LEN + 2644 sizeof(struct ether_vlan_header) + ETHER_CRC_LEN; 2645 CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size); 2646 /* Configure jumbo frame. */ 2647 fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t)); 2648 CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG, 2649 (((fsize / sizeof(uint64_t)) << 2650 RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) | 2651 ((RXQ_JUMBO_CFG_LKAH_DEFAULT << 2652 RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) | 2653 ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) & 2654 RXQ_JUMBO_CFG_RRD_TIMER_MASK)); 2655 2656 /* Configure flow-control parameters. From Linux. */ 2657 if ((sc->age_flags & AGE_FLAG_PCIE) != 0) { 2658 /* 2659 * Magic workaround for old-L1. 2660 * Don't know which hw revision requires this magic. 2661 */ 2662 CSR_WRITE_4(sc, 0x12FC, 0x6500); 2663 /* 2664 * Another magic workaround for flow-control mode 2665 * change. From Linux. 2666 */ 2667 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000); 2668 } 2669 /* 2670 * TODO 2671 * Should understand pause parameter relationships between FIFO 2672 * size and number of Rx descriptors and Rx return descriptors. 2673 * 2674 * Magic parameters came from Linux. 2675 */ 2676 switch (sc->age_chip_rev) { 2677 case 0x8001: 2678 case 0x9001: 2679 case 0x9002: 2680 case 0x9003: 2681 rxf_hi = AGE_RX_RING_CNT / 16; 2682 rxf_lo = (AGE_RX_RING_CNT * 7) / 8; 2683 rrd_hi = (AGE_RR_RING_CNT * 7) / 8; 2684 rrd_lo = AGE_RR_RING_CNT / 16; 2685 break; 2686 default: 2687 reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN); 2688 rxf_lo = reg / 16; 2689 if (rxf_lo < 192) 2690 rxf_lo = 192; 2691 rxf_hi = (reg * 7) / 8; 2692 if (rxf_hi < rxf_lo) 2693 rxf_hi = rxf_lo + 16; 2694 reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN); 2695 rrd_lo = reg / 8; 2696 rrd_hi = (reg * 7) / 8; 2697 if (rrd_lo < 2) 2698 rrd_lo = 2; 2699 if (rrd_hi < rrd_lo) 2700 rrd_hi = rrd_lo + 3; 2701 break; 2702 } 2703 CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH, 2704 ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) & 2705 RXQ_FIFO_PAUSE_THRESH_LO_MASK) | 2706 ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) & 2707 RXQ_FIFO_PAUSE_THRESH_HI_MASK)); 2708 CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH, 2709 ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) & 2710 RXQ_RRD_PAUSE_THRESH_LO_MASK) | 2711 ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) & 2712 RXQ_RRD_PAUSE_THRESH_HI_MASK)); 2713 2714 /* Configure RxQ. */ 2715 CSR_WRITE_4(sc, AGE_RXQ_CFG, 2716 ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) & 2717 RXQ_CFG_RD_BURST_MASK) | 2718 ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT << 2719 RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) | 2720 ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT << 2721 RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) | 2722 RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB); 2723 2724 /* Configure TxQ. */ 2725 CSR_WRITE_4(sc, AGE_TXQ_CFG, 2726 ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) & 2727 TXQ_CFG_TPD_BURST_MASK) | 2728 ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) & 2729 TXQ_CFG_TX_FIFO_BURST_MASK) | 2730 ((TXQ_CFG_TPD_FETCH_DEFAULT << 2731 TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) | 2732 TXQ_CFG_ENB); 2733 2734 CSR_WRITE_4(sc, AGE_TX_JUMBO_TPD_TH_IPG, 2735 (((fsize / sizeof(uint64_t) << TX_JUMBO_TPD_TH_SHIFT)) & 2736 TX_JUMBO_TPD_TH_MASK) | 2737 ((TX_JUMBO_TPD_IPG_DEFAULT << TX_JUMBO_TPD_IPG_SHIFT) & 2738 TX_JUMBO_TPD_IPG_MASK)); 2739 /* Configure DMA parameters. */ 2740 CSR_WRITE_4(sc, AGE_DMA_CFG, 2741 DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 | 2742 sc->age_dma_rd_burst | DMA_CFG_RD_ENB | 2743 sc->age_dma_wr_burst | DMA_CFG_WR_ENB); 2744 2745 /* Configure CMB DMA write threshold. */ 2746 CSR_WRITE_4(sc, AGE_CMB_WR_THRESH, 2747 ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) & 2748 CMB_WR_THRESH_RRD_MASK) | 2749 ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) & 2750 CMB_WR_THRESH_TPD_MASK)); 2751 2752 /* Set CMB/SMB timer and enable them. */ 2753 CSR_WRITE_4(sc, AGE_CMB_WR_TIMER, 2754 ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) | 2755 ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK)); 2756 /* Request SMB updates for every seconds. */ 2757 CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000)); 2758 CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB); 2759 2760 /* 2761 * Disable all WOL bits as WOL can interfere normal Rx 2762 * operation. 2763 */ 2764 CSR_WRITE_4(sc, AGE_WOL_CFG, 0); 2765 2766 /* 2767 * Configure Tx/Rx MACs. 2768 * - Auto-padding for short frames. 2769 * - Enable CRC generation. 2770 * Start with full-duplex/1000Mbps media. Actual reconfiguration 2771 * of MAC is followed after link establishment. 2772 */ 2773 CSR_WRITE_4(sc, AGE_MAC_CFG, 2774 MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | 2775 MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 | 2776 ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) & 2777 MAC_CFG_PREAMBLE_MASK)); 2778 /* Set up the receive filter. */ 2779 age_rxfilter(sc); 2780 age_rxvlan(sc); 2781 2782 reg = CSR_READ_4(sc, AGE_MAC_CFG); 2783 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) 2784 reg |= MAC_CFG_RXCSUM_ENB; 2785 2786 /* Ack all pending interrupts and clear it. */ 2787 CSR_WRITE_4(sc, AGE_INTR_STATUS, 0); 2788 CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS); 2789 2790 /* Finally enable Tx/Rx MAC. */ 2791 CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB); 2792 2793 sc->age_flags &= ~AGE_FLAG_LINK; 2794 /* Switch to the current media. */ 2795 mii_mediachg(mii); 2796 2797 callout_reset(&sc->age_tick_ch, hz, age_tick, sc); 2798 2799 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2800 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2801 } 2802 2803 static void 2804 age_stop(struct age_softc *sc) 2805 { 2806 struct ifnet *ifp; 2807 struct age_txdesc *txd; 2808 struct age_rxdesc *rxd; 2809 uint32_t reg; 2810 int i; 2811 2812 AGE_LOCK_ASSERT(sc); 2813 /* 2814 * Mark the interface down and cancel the watchdog timer. 2815 */ 2816 ifp = sc->age_ifp; 2817 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 2818 sc->age_flags &= ~AGE_FLAG_LINK; 2819 callout_stop(&sc->age_tick_ch); 2820 sc->age_watchdog_timer = 0; 2821 2822 /* 2823 * Disable interrupts. 2824 */ 2825 CSR_WRITE_4(sc, AGE_INTR_MASK, 0); 2826 CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF); 2827 /* Stop CMB/SMB updates. */ 2828 CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0); 2829 /* Stop Rx/Tx MAC. */ 2830 age_stop_rxmac(sc); 2831 age_stop_txmac(sc); 2832 /* Stop DMA. */ 2833 CSR_WRITE_4(sc, AGE_DMA_CFG, 2834 CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB)); 2835 /* Stop TxQ/RxQ. */ 2836 CSR_WRITE_4(sc, AGE_TXQ_CFG, 2837 CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB); 2838 CSR_WRITE_4(sc, AGE_RXQ_CFG, 2839 CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB); 2840 for (i = AGE_RESET_TIMEOUT; i > 0; i--) { 2841 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0) 2842 break; 2843 DELAY(10); 2844 } 2845 if (i == 0) 2846 device_printf(sc->age_dev, 2847 "stopping Rx/Tx MACs timed out(0x%08x)!\n", reg); 2848 2849 /* Reclaim Rx buffers that have been processed. */ 2850 if (sc->age_cdata.age_rxhead != NULL) 2851 m_freem(sc->age_cdata.age_rxhead); 2852 AGE_RXCHAIN_RESET(sc); 2853 /* 2854 * Free RX and TX mbufs still in the queues. 2855 */ 2856 for (i = 0; i < AGE_RX_RING_CNT; i++) { 2857 rxd = &sc->age_cdata.age_rxdesc[i]; 2858 if (rxd->rx_m != NULL) { 2859 bus_dmamap_sync(sc->age_cdata.age_rx_tag, 2860 rxd->rx_dmamap, BUS_DMASYNC_POSTREAD); 2861 bus_dmamap_unload(sc->age_cdata.age_rx_tag, 2862 rxd->rx_dmamap); 2863 m_freem(rxd->rx_m); 2864 rxd->rx_m = NULL; 2865 } 2866 } 2867 for (i = 0; i < AGE_TX_RING_CNT; i++) { 2868 txd = &sc->age_cdata.age_txdesc[i]; 2869 if (txd->tx_m != NULL) { 2870 bus_dmamap_sync(sc->age_cdata.age_tx_tag, 2871 txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); 2872 bus_dmamap_unload(sc->age_cdata.age_tx_tag, 2873 txd->tx_dmamap); 2874 m_freem(txd->tx_m); 2875 txd->tx_m = NULL; 2876 } 2877 } 2878 } 2879 2880 static void 2881 age_stop_txmac(struct age_softc *sc) 2882 { 2883 uint32_t reg; 2884 int i; 2885 2886 AGE_LOCK_ASSERT(sc); 2887 2888 reg = CSR_READ_4(sc, AGE_MAC_CFG); 2889 if ((reg & MAC_CFG_TX_ENB) != 0) { 2890 reg &= ~MAC_CFG_TX_ENB; 2891 CSR_WRITE_4(sc, AGE_MAC_CFG, reg); 2892 } 2893 /* Stop Tx DMA engine. */ 2894 reg = CSR_READ_4(sc, AGE_DMA_CFG); 2895 if ((reg & DMA_CFG_RD_ENB) != 0) { 2896 reg &= ~DMA_CFG_RD_ENB; 2897 CSR_WRITE_4(sc, AGE_DMA_CFG, reg); 2898 } 2899 for (i = AGE_RESET_TIMEOUT; i > 0; i--) { 2900 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) & 2901 (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0) 2902 break; 2903 DELAY(10); 2904 } 2905 if (i == 0) 2906 device_printf(sc->age_dev, "stopping TxMAC timeout!\n"); 2907 } 2908 2909 static void 2910 age_stop_rxmac(struct age_softc *sc) 2911 { 2912 uint32_t reg; 2913 int i; 2914 2915 AGE_LOCK_ASSERT(sc); 2916 2917 reg = CSR_READ_4(sc, AGE_MAC_CFG); 2918 if ((reg & MAC_CFG_RX_ENB) != 0) { 2919 reg &= ~MAC_CFG_RX_ENB; 2920 CSR_WRITE_4(sc, AGE_MAC_CFG, reg); 2921 } 2922 /* Stop Rx DMA engine. */ 2923 reg = CSR_READ_4(sc, AGE_DMA_CFG); 2924 if ((reg & DMA_CFG_WR_ENB) != 0) { 2925 reg &= ~DMA_CFG_WR_ENB; 2926 CSR_WRITE_4(sc, AGE_DMA_CFG, reg); 2927 } 2928 for (i = AGE_RESET_TIMEOUT; i > 0; i--) { 2929 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) & 2930 (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0) 2931 break; 2932 DELAY(10); 2933 } 2934 if (i == 0) 2935 device_printf(sc->age_dev, "stopping RxMAC timeout!\n"); 2936 } 2937 2938 static void 2939 age_init_tx_ring(struct age_softc *sc) 2940 { 2941 struct age_ring_data *rd; 2942 struct age_txdesc *txd; 2943 int i; 2944 2945 AGE_LOCK_ASSERT(sc); 2946 2947 sc->age_cdata.age_tx_prod = 0; 2948 sc->age_cdata.age_tx_cons = 0; 2949 sc->age_cdata.age_tx_cnt = 0; 2950 2951 rd = &sc->age_rdata; 2952 bzero(rd->age_tx_ring, AGE_TX_RING_SZ); 2953 for (i = 0; i < AGE_TX_RING_CNT; i++) { 2954 txd = &sc->age_cdata.age_txdesc[i]; 2955 txd->tx_desc = &rd->age_tx_ring[i]; 2956 txd->tx_m = NULL; 2957 } 2958 2959 bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag, 2960 sc->age_cdata.age_tx_ring_map, 2961 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2962 } 2963 2964 static int 2965 age_init_rx_ring(struct age_softc *sc) 2966 { 2967 struct age_ring_data *rd; 2968 struct age_rxdesc *rxd; 2969 int i; 2970 2971 AGE_LOCK_ASSERT(sc); 2972 2973 sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1; 2974 sc->age_morework = 0; 2975 rd = &sc->age_rdata; 2976 bzero(rd->age_rx_ring, AGE_RX_RING_SZ); 2977 for (i = 0; i < AGE_RX_RING_CNT; i++) { 2978 rxd = &sc->age_cdata.age_rxdesc[i]; 2979 rxd->rx_m = NULL; 2980 rxd->rx_desc = &rd->age_rx_ring[i]; 2981 if (age_newbuf(sc, rxd) != 0) 2982 return (ENOBUFS); 2983 } 2984 2985 bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag, 2986 sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREWRITE); 2987 2988 return (0); 2989 } 2990 2991 static void 2992 age_init_rr_ring(struct age_softc *sc) 2993 { 2994 struct age_ring_data *rd; 2995 2996 AGE_LOCK_ASSERT(sc); 2997 2998 sc->age_cdata.age_rr_cons = 0; 2999 AGE_RXCHAIN_RESET(sc); 3000 3001 rd = &sc->age_rdata; 3002 bzero(rd->age_rr_ring, AGE_RR_RING_SZ); 3003 bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag, 3004 sc->age_cdata.age_rr_ring_map, 3005 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 3006 } 3007 3008 static void 3009 age_init_cmb_block(struct age_softc *sc) 3010 { 3011 struct age_ring_data *rd; 3012 3013 AGE_LOCK_ASSERT(sc); 3014 3015 rd = &sc->age_rdata; 3016 bzero(rd->age_cmb_block, AGE_CMB_BLOCK_SZ); 3017 bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag, 3018 sc->age_cdata.age_cmb_block_map, 3019 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 3020 } 3021 3022 static void 3023 age_init_smb_block(struct age_softc *sc) 3024 { 3025 struct age_ring_data *rd; 3026 3027 AGE_LOCK_ASSERT(sc); 3028 3029 rd = &sc->age_rdata; 3030 bzero(rd->age_smb_block, AGE_SMB_BLOCK_SZ); 3031 bus_dmamap_sync(sc->age_cdata.age_smb_block_tag, 3032 sc->age_cdata.age_smb_block_map, 3033 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 3034 } 3035 3036 static int 3037 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd) 3038 { 3039 struct rx_desc *desc; 3040 struct mbuf *m; 3041 bus_dma_segment_t segs[1]; 3042 bus_dmamap_t map; 3043 int nsegs; 3044 3045 AGE_LOCK_ASSERT(sc); 3046 3047 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 3048 if (m == NULL) 3049 return (ENOBUFS); 3050 m->m_len = m->m_pkthdr.len = MCLBYTES; 3051 m_adj(m, ETHER_ALIGN); 3052 3053 if (bus_dmamap_load_mbuf_sg(sc->age_cdata.age_rx_tag, 3054 sc->age_cdata.age_rx_sparemap, m, segs, &nsegs, 0) != 0) { 3055 m_freem(m); 3056 return (ENOBUFS); 3057 } 3058 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); 3059 3060 if (rxd->rx_m != NULL) { 3061 bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap, 3062 BUS_DMASYNC_POSTREAD); 3063 bus_dmamap_unload(sc->age_cdata.age_rx_tag, rxd->rx_dmamap); 3064 } 3065 map = rxd->rx_dmamap; 3066 rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap; 3067 sc->age_cdata.age_rx_sparemap = map; 3068 bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap, 3069 BUS_DMASYNC_PREREAD); 3070 rxd->rx_m = m; 3071 3072 desc = rxd->rx_desc; 3073 desc->addr = htole64(segs[0].ds_addr); 3074 desc->len = htole32((segs[0].ds_len & AGE_RD_LEN_MASK) << 3075 AGE_RD_LEN_SHIFT); 3076 return (0); 3077 } 3078 3079 static void 3080 age_rxvlan(struct age_softc *sc) 3081 { 3082 struct ifnet *ifp; 3083 uint32_t reg; 3084 3085 AGE_LOCK_ASSERT(sc); 3086 3087 ifp = sc->age_ifp; 3088 reg = CSR_READ_4(sc, AGE_MAC_CFG); 3089 reg &= ~MAC_CFG_VLAN_TAG_STRIP; 3090 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) 3091 reg |= MAC_CFG_VLAN_TAG_STRIP; 3092 CSR_WRITE_4(sc, AGE_MAC_CFG, reg); 3093 } 3094 3095 static void 3096 age_rxfilter(struct age_softc *sc) 3097 { 3098 struct ifnet *ifp; 3099 struct ifmultiaddr *ifma; 3100 uint32_t crc; 3101 uint32_t mchash[2]; 3102 uint32_t rxcfg; 3103 3104 AGE_LOCK_ASSERT(sc); 3105 3106 ifp = sc->age_ifp; 3107 3108 rxcfg = CSR_READ_4(sc, AGE_MAC_CFG); 3109 rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC); 3110 if ((ifp->if_flags & IFF_BROADCAST) != 0) 3111 rxcfg |= MAC_CFG_BCAST; 3112 if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) { 3113 if ((ifp->if_flags & IFF_PROMISC) != 0) 3114 rxcfg |= MAC_CFG_PROMISC; 3115 if ((ifp->if_flags & IFF_ALLMULTI) != 0) 3116 rxcfg |= MAC_CFG_ALLMULTI; 3117 CSR_WRITE_4(sc, AGE_MAR0, 0xFFFFFFFF); 3118 CSR_WRITE_4(sc, AGE_MAR1, 0xFFFFFFFF); 3119 CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg); 3120 return; 3121 } 3122 3123 /* Program new filter. */ 3124 bzero(mchash, sizeof(mchash)); 3125 3126 if_maddr_rlock(ifp); 3127 TAILQ_FOREACH(ifma, &sc->age_ifp->if_multiaddrs, ifma_link) { 3128 if (ifma->ifma_addr->sa_family != AF_LINK) 3129 continue; 3130 crc = ether_crc32_be(LLADDR((struct sockaddr_dl *) 3131 ifma->ifma_addr), ETHER_ADDR_LEN); 3132 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f); 3133 } 3134 if_maddr_runlock(ifp); 3135 3136 CSR_WRITE_4(sc, AGE_MAR0, mchash[0]); 3137 CSR_WRITE_4(sc, AGE_MAR1, mchash[1]); 3138 CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg); 3139 } 3140 3141 static int 3142 sysctl_age_stats(SYSCTL_HANDLER_ARGS) 3143 { 3144 struct age_softc *sc; 3145 struct age_stats *stats; 3146 int error, result; 3147 3148 result = -1; 3149 error = sysctl_handle_int(oidp, &result, 0, req); 3150 3151 if (error != 0 || req->newptr == NULL) 3152 return (error); 3153 3154 if (result != 1) 3155 return (error); 3156 3157 sc = (struct age_softc *)arg1; 3158 stats = &sc->age_stat; 3159 printf("%s statistics:\n", device_get_nameunit(sc->age_dev)); 3160 printf("Transmit good frames : %ju\n", 3161 (uintmax_t)stats->tx_frames); 3162 printf("Transmit good broadcast frames : %ju\n", 3163 (uintmax_t)stats->tx_bcast_frames); 3164 printf("Transmit good multicast frames : %ju\n", 3165 (uintmax_t)stats->tx_mcast_frames); 3166 printf("Transmit pause control frames : %u\n", 3167 stats->tx_pause_frames); 3168 printf("Transmit control frames : %u\n", 3169 stats->tx_control_frames); 3170 printf("Transmit frames with excessive deferrals : %u\n", 3171 stats->tx_excess_defer); 3172 printf("Transmit deferrals : %u\n", 3173 stats->tx_deferred); 3174 printf("Transmit good octets : %ju\n", 3175 (uintmax_t)stats->tx_bytes); 3176 printf("Transmit good broadcast octets : %ju\n", 3177 (uintmax_t)stats->tx_bcast_bytes); 3178 printf("Transmit good multicast octets : %ju\n", 3179 (uintmax_t)stats->tx_mcast_bytes); 3180 printf("Transmit frames 64 bytes : %ju\n", 3181 (uintmax_t)stats->tx_pkts_64); 3182 printf("Transmit frames 65 to 127 bytes : %ju\n", 3183 (uintmax_t)stats->tx_pkts_65_127); 3184 printf("Transmit frames 128 to 255 bytes : %ju\n", 3185 (uintmax_t)stats->tx_pkts_128_255); 3186 printf("Transmit frames 256 to 511 bytes : %ju\n", 3187 (uintmax_t)stats->tx_pkts_256_511); 3188 printf("Transmit frames 512 to 1024 bytes : %ju\n", 3189 (uintmax_t)stats->tx_pkts_512_1023); 3190 printf("Transmit frames 1024 to 1518 bytes : %ju\n", 3191 (uintmax_t)stats->tx_pkts_1024_1518); 3192 printf("Transmit frames 1519 to MTU bytes : %ju\n", 3193 (uintmax_t)stats->tx_pkts_1519_max); 3194 printf("Transmit single collisions : %u\n", 3195 stats->tx_single_colls); 3196 printf("Transmit multiple collisions : %u\n", 3197 stats->tx_multi_colls); 3198 printf("Transmit late collisions : %u\n", 3199 stats->tx_late_colls); 3200 printf("Transmit abort due to excessive collisions : %u\n", 3201 stats->tx_excess_colls); 3202 printf("Transmit underruns due to FIFO underruns : %u\n", 3203 stats->tx_underrun); 3204 printf("Transmit descriptor write-back errors : %u\n", 3205 stats->tx_desc_underrun); 3206 printf("Transmit frames with length mismatched frame size : %u\n", 3207 stats->tx_lenerrs); 3208 printf("Transmit frames with truncated due to MTU size : %u\n", 3209 stats->tx_lenerrs); 3210 3211 printf("Receive good frames : %ju\n", 3212 (uintmax_t)stats->rx_frames); 3213 printf("Receive good broadcast frames : %ju\n", 3214 (uintmax_t)stats->rx_bcast_frames); 3215 printf("Receive good multicast frames : %ju\n", 3216 (uintmax_t)stats->rx_mcast_frames); 3217 printf("Receive pause control frames : %u\n", 3218 stats->rx_pause_frames); 3219 printf("Receive control frames : %u\n", 3220 stats->rx_control_frames); 3221 printf("Receive CRC errors : %u\n", 3222 stats->rx_crcerrs); 3223 printf("Receive frames with length errors : %u\n", 3224 stats->rx_lenerrs); 3225 printf("Receive good octets : %ju\n", 3226 (uintmax_t)stats->rx_bytes); 3227 printf("Receive good broadcast octets : %ju\n", 3228 (uintmax_t)stats->rx_bcast_bytes); 3229 printf("Receive good multicast octets : %ju\n", 3230 (uintmax_t)stats->rx_mcast_bytes); 3231 printf("Receive frames too short : %u\n", 3232 stats->rx_runts); 3233 printf("Receive fragmented frames : %ju\n", 3234 (uintmax_t)stats->rx_fragments); 3235 printf("Receive frames 64 bytes : %ju\n", 3236 (uintmax_t)stats->rx_pkts_64); 3237 printf("Receive frames 65 to 127 bytes : %ju\n", 3238 (uintmax_t)stats->rx_pkts_65_127); 3239 printf("Receive frames 128 to 255 bytes : %ju\n", 3240 (uintmax_t)stats->rx_pkts_128_255); 3241 printf("Receive frames 256 to 511 bytes : %ju\n", 3242 (uintmax_t)stats->rx_pkts_256_511); 3243 printf("Receive frames 512 to 1024 bytes : %ju\n", 3244 (uintmax_t)stats->rx_pkts_512_1023); 3245 printf("Receive frames 1024 to 1518 bytes : %ju\n", 3246 (uintmax_t)stats->rx_pkts_1024_1518); 3247 printf("Receive frames 1519 to MTU bytes : %ju\n", 3248 (uintmax_t)stats->rx_pkts_1519_max); 3249 printf("Receive frames too long : %ju\n", 3250 (uint64_t)stats->rx_pkts_truncated); 3251 printf("Receive frames with FIFO overflow : %u\n", 3252 stats->rx_fifo_oflows); 3253 printf("Receive frames with return descriptor overflow : %u\n", 3254 stats->rx_desc_oflows); 3255 printf("Receive frames with alignment errors : %u\n", 3256 stats->rx_alignerrs); 3257 printf("Receive frames dropped due to address filtering : %ju\n", 3258 (uint64_t)stats->rx_pkts_filtered); 3259 3260 return (error); 3261 } 3262 3263 static int 3264 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high) 3265 { 3266 int error, value; 3267 3268 if (arg1 == NULL) 3269 return (EINVAL); 3270 value = *(int *)arg1; 3271 error = sysctl_handle_int(oidp, &value, 0, req); 3272 if (error || req->newptr == NULL) 3273 return (error); 3274 if (value < low || value > high) 3275 return (EINVAL); 3276 *(int *)arg1 = value; 3277 3278 return (0); 3279 } 3280 3281 static int 3282 sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS) 3283 { 3284 return (sysctl_int_range(oidp, arg1, arg2, req, 3285 AGE_PROC_MIN, AGE_PROC_MAX)); 3286 } 3287 3288 static int 3289 sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS) 3290 { 3291 3292 return (sysctl_int_range(oidp, arg1, arg2, req, AGE_IM_TIMER_MIN, 3293 AGE_IM_TIMER_MAX)); 3294 } 3295