xref: /freebsd/sys/dev/age/if_age.c (revision 55a2a91c5e1bb39dd625ba56597608883fbcb318)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/bus.h>
35 #include <sys/endian.h>
36 #include <sys/kernel.h>
37 #include <sys/malloc.h>
38 #include <sys/mbuf.h>
39 #include <sys/rman.h>
40 #include <sys/module.h>
41 #include <sys/queue.h>
42 #include <sys/socket.h>
43 #include <sys/sockio.h>
44 #include <sys/sysctl.h>
45 #include <sys/taskqueue.h>
46 
47 #include <net/bpf.h>
48 #include <net/if.h>
49 #include <net/if_var.h>
50 #include <net/if_arp.h>
51 #include <net/ethernet.h>
52 #include <net/if_dl.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55 #include <net/if_vlan_var.h>
56 
57 #include <netinet/in.h>
58 #include <netinet/in_systm.h>
59 #include <netinet/ip.h>
60 #include <netinet/tcp.h>
61 
62 #include <dev/mii/mii.h>
63 #include <dev/mii/miivar.h>
64 
65 #include <dev/pci/pcireg.h>
66 #include <dev/pci/pcivar.h>
67 
68 #include <machine/bus.h>
69 #include <machine/in_cksum.h>
70 
71 #include <dev/age/if_agereg.h>
72 #include <dev/age/if_agevar.h>
73 
74 /* "device miibus" required.  See GENERIC if you get errors here. */
75 #include "miibus_if.h"
76 
77 #define	AGE_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
78 
79 MODULE_DEPEND(age, pci, 1, 1, 1);
80 MODULE_DEPEND(age, ether, 1, 1, 1);
81 MODULE_DEPEND(age, miibus, 1, 1, 1);
82 
83 /* Tunables. */
84 static int msi_disable = 0;
85 static int msix_disable = 0;
86 TUNABLE_INT("hw.age.msi_disable", &msi_disable);
87 TUNABLE_INT("hw.age.msix_disable", &msix_disable);
88 
89 /*
90  * Devices supported by this driver.
91  */
92 static struct age_dev {
93 	uint16_t	age_vendorid;
94 	uint16_t	age_deviceid;
95 	const char	*age_name;
96 } age_devs[] = {
97 	{ VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L1,
98 	    "Attansic Technology Corp, L1 Gigabit Ethernet" },
99 };
100 
101 static int age_miibus_readreg(device_t, int, int);
102 static int age_miibus_writereg(device_t, int, int, int);
103 static void age_miibus_statchg(device_t);
104 static void age_mediastatus(if_t, struct ifmediareq *);
105 static int age_mediachange(if_t);
106 static int age_probe(device_t);
107 static void age_get_macaddr(struct age_softc *);
108 static void age_phy_reset(struct age_softc *);
109 static int age_attach(device_t);
110 static int age_detach(device_t);
111 static void age_sysctl_node(struct age_softc *);
112 static void age_dmamap_cb(void *, bus_dma_segment_t *, int, int);
113 static int age_check_boundary(struct age_softc *);
114 static int age_dma_alloc(struct age_softc *);
115 static void age_dma_free(struct age_softc *);
116 static int age_shutdown(device_t);
117 static void age_setwol(struct age_softc *);
118 static int age_suspend(device_t);
119 static int age_resume(device_t);
120 static int age_encap(struct age_softc *, struct mbuf **);
121 static void age_start(if_t);
122 static void age_start_locked(if_t);
123 static void age_watchdog(struct age_softc *);
124 static int age_ioctl(if_t, u_long, caddr_t);
125 static void age_mac_config(struct age_softc *);
126 static void age_link_task(void *, int);
127 static void age_stats_update(struct age_softc *);
128 static int age_intr(void *);
129 static void age_int_task(void *, int);
130 static void age_txintr(struct age_softc *, int);
131 static void age_rxeof(struct age_softc *sc, struct rx_rdesc *);
132 static int age_rxintr(struct age_softc *, int, int);
133 static void age_tick(void *);
134 static void age_reset(struct age_softc *);
135 static void age_init(void *);
136 static void age_init_locked(struct age_softc *);
137 static void age_stop(struct age_softc *);
138 static void age_stop_txmac(struct age_softc *);
139 static void age_stop_rxmac(struct age_softc *);
140 static void age_init_tx_ring(struct age_softc *);
141 static int age_init_rx_ring(struct age_softc *);
142 static void age_init_rr_ring(struct age_softc *);
143 static void age_init_cmb_block(struct age_softc *);
144 static void age_init_smb_block(struct age_softc *);
145 #ifndef __NO_STRICT_ALIGNMENT
146 static struct mbuf *age_fixup_rx(if_t, struct mbuf *);
147 #endif
148 static int age_newbuf(struct age_softc *, struct age_rxdesc *);
149 static void age_rxvlan(struct age_softc *);
150 static void age_rxfilter(struct age_softc *);
151 static int sysctl_age_stats(SYSCTL_HANDLER_ARGS);
152 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
153 static int sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS);
154 static int sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS);
155 
156 static device_method_t age_methods[] = {
157 	/* Device interface. */
158 	DEVMETHOD(device_probe,		age_probe),
159 	DEVMETHOD(device_attach,	age_attach),
160 	DEVMETHOD(device_detach,	age_detach),
161 	DEVMETHOD(device_shutdown,	age_shutdown),
162 	DEVMETHOD(device_suspend,	age_suspend),
163 	DEVMETHOD(device_resume,	age_resume),
164 
165 	/* MII interface. */
166 	DEVMETHOD(miibus_readreg,	age_miibus_readreg),
167 	DEVMETHOD(miibus_writereg,	age_miibus_writereg),
168 	DEVMETHOD(miibus_statchg,	age_miibus_statchg),
169 	{ NULL, NULL }
170 };
171 
172 static driver_t age_driver = {
173 	"age",
174 	age_methods,
175 	sizeof(struct age_softc)
176 };
177 
178 DRIVER_MODULE(age, pci, age_driver, 0, 0);
179 MODULE_PNP_INFO("U16:vendor;U16:device;D:#", pci, age, age_devs,
180     nitems(age_devs));
181 DRIVER_MODULE(miibus, age, miibus_driver, 0, 0);
182 
183 static struct resource_spec age_res_spec_mem[] = {
184 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
185 	{ -1,			0,		0 }
186 };
187 
188 static struct resource_spec age_irq_spec_legacy[] = {
189 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
190 	{ -1,			0,		0 }
191 };
192 
193 static struct resource_spec age_irq_spec_msi[] = {
194 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
195 	{ -1,			0,		0 }
196 };
197 
198 static struct resource_spec age_irq_spec_msix[] = {
199 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
200 	{ -1,			0,		0 }
201 };
202 
203 /*
204  *	Read a PHY register on the MII of the L1.
205  */
206 static int
207 age_miibus_readreg(device_t dev, int phy, int reg)
208 {
209 	struct age_softc *sc;
210 	uint32_t v;
211 	int i;
212 
213 	sc = device_get_softc(dev);
214 
215 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
216 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
217 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
218 		DELAY(1);
219 		v = CSR_READ_4(sc, AGE_MDIO);
220 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
221 			break;
222 	}
223 
224 	if (i == 0) {
225 		device_printf(sc->age_dev, "phy read timeout : %d\n", reg);
226 		return (0);
227 	}
228 
229 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
230 }
231 
232 /*
233  *	Write a PHY register on the MII of the L1.
234  */
235 static int
236 age_miibus_writereg(device_t dev, int phy, int reg, int val)
237 {
238 	struct age_softc *sc;
239 	uint32_t v;
240 	int i;
241 
242 	sc = device_get_softc(dev);
243 
244 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
245 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
246 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
247 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
248 		DELAY(1);
249 		v = CSR_READ_4(sc, AGE_MDIO);
250 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
251 			break;
252 	}
253 
254 	if (i == 0)
255 		device_printf(sc->age_dev, "phy write timeout : %d\n", reg);
256 
257 	return (0);
258 }
259 
260 /*
261  *	Callback from MII layer when media changes.
262  */
263 static void
264 age_miibus_statchg(device_t dev)
265 {
266 	struct age_softc *sc;
267 
268 	sc = device_get_softc(dev);
269 	taskqueue_enqueue(taskqueue_swi, &sc->age_link_task);
270 }
271 
272 /*
273  *	Get the current interface media status.
274  */
275 static void
276 age_mediastatus(if_t ifp, struct ifmediareq *ifmr)
277 {
278 	struct age_softc *sc;
279 	struct mii_data *mii;
280 
281 	sc = if_getsoftc(ifp);
282 	AGE_LOCK(sc);
283 	mii = device_get_softc(sc->age_miibus);
284 
285 	mii_pollstat(mii);
286 	ifmr->ifm_status = mii->mii_media_status;
287 	ifmr->ifm_active = mii->mii_media_active;
288 	AGE_UNLOCK(sc);
289 }
290 
291 /*
292  *	Set hardware to newly-selected media.
293  */
294 static int
295 age_mediachange(if_t ifp)
296 {
297 	struct age_softc *sc;
298 	struct mii_data *mii;
299 	struct mii_softc *miisc;
300 	int error;
301 
302 	sc = if_getsoftc(ifp);
303 	AGE_LOCK(sc);
304 	mii = device_get_softc(sc->age_miibus);
305 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
306 		PHY_RESET(miisc);
307 	error = mii_mediachg(mii);
308 	AGE_UNLOCK(sc);
309 
310 	return (error);
311 }
312 
313 static int
314 age_probe(device_t dev)
315 {
316 	struct age_dev *sp;
317 	int i;
318 	uint16_t vendor, devid;
319 
320 	vendor = pci_get_vendor(dev);
321 	devid = pci_get_device(dev);
322 	sp = age_devs;
323 	for (i = 0; i < nitems(age_devs); i++, sp++) {
324 		if (vendor == sp->age_vendorid &&
325 		    devid == sp->age_deviceid) {
326 			device_set_desc(dev, sp->age_name);
327 			return (BUS_PROBE_DEFAULT);
328 		}
329 	}
330 
331 	return (ENXIO);
332 }
333 
334 static void
335 age_get_macaddr(struct age_softc *sc)
336 {
337 	uint32_t ea[2], reg;
338 	int i, vpdc;
339 
340 	reg = CSR_READ_4(sc, AGE_SPI_CTRL);
341 	if ((reg & SPI_VPD_ENB) != 0) {
342 		/* Get VPD stored in TWSI EEPROM. */
343 		reg &= ~SPI_VPD_ENB;
344 		CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
345 	}
346 
347 	if (pci_find_cap(sc->age_dev, PCIY_VPD, &vpdc) == 0) {
348 		/*
349 		 * PCI VPD capability found, let TWSI reload EEPROM.
350 		 * This will set ethernet address of controller.
351 		 */
352 		CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
353 		    TWSI_CTRL_SW_LD_START);
354 		for (i = 100; i > 0; i--) {
355 			DELAY(1000);
356 			reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
357 			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
358 				break;
359 		}
360 		if (i == 0)
361 			device_printf(sc->age_dev,
362 			    "reloading EEPROM timeout!\n");
363 	} else {
364 		if (bootverbose)
365 			device_printf(sc->age_dev,
366 			    "PCI VPD capability not found!\n");
367 	}
368 
369 	ea[0] = CSR_READ_4(sc, AGE_PAR0);
370 	ea[1] = CSR_READ_4(sc, AGE_PAR1);
371 	sc->age_eaddr[0] = (ea[1] >> 8) & 0xFF;
372 	sc->age_eaddr[1] = (ea[1] >> 0) & 0xFF;
373 	sc->age_eaddr[2] = (ea[0] >> 24) & 0xFF;
374 	sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF;
375 	sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF;
376 	sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF;
377 }
378 
379 static void
380 age_phy_reset(struct age_softc *sc)
381 {
382 	uint16_t reg, pn;
383 	int i, linkup;
384 
385 	/* Reset PHY. */
386 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
387 	DELAY(2000);
388 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
389 	DELAY(2000);
390 
391 #define	ATPHY_DBG_ADDR		0x1D
392 #define	ATPHY_DBG_DATA		0x1E
393 #define	ATPHY_CDTC		0x16
394 #define	PHY_CDTC_ENB		0x0001
395 #define	PHY_CDTC_POFF		8
396 #define	ATPHY_CDTS		0x1C
397 #define	PHY_CDTS_STAT_OK	0x0000
398 #define	PHY_CDTS_STAT_SHORT	0x0100
399 #define	PHY_CDTS_STAT_OPEN	0x0200
400 #define	PHY_CDTS_STAT_INVAL	0x0300
401 #define	PHY_CDTS_STAT_MASK	0x0300
402 
403 	/* Check power saving mode. Magic from Linux. */
404 	age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
405 	for (linkup = 0, pn = 0; pn < 4; pn++) {
406 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr, ATPHY_CDTC,
407 		    (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
408 		for (i = 200; i > 0; i--) {
409 			DELAY(1000);
410 			reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
411 			    ATPHY_CDTC);
412 			if ((reg & PHY_CDTC_ENB) == 0)
413 				break;
414 		}
415 		DELAY(1000);
416 		reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
417 		    ATPHY_CDTS);
418 		if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
419 			linkup++;
420 			break;
421 		}
422 	}
423 	age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR,
424 	    BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
425 	if (linkup == 0) {
426 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
427 		    ATPHY_DBG_ADDR, 0);
428 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
429 		    ATPHY_DBG_DATA, 0x124E);
430 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
431 		    ATPHY_DBG_ADDR, 1);
432 		reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
433 		    ATPHY_DBG_DATA);
434 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
435 		    ATPHY_DBG_DATA, reg | 0x03);
436 		/* XXX */
437 		DELAY(1500 * 1000);
438 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
439 		    ATPHY_DBG_ADDR, 0);
440 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
441 		    ATPHY_DBG_DATA, 0x024E);
442     }
443 
444 #undef	ATPHY_DBG_ADDR
445 #undef	ATPHY_DBG_DATA
446 #undef	ATPHY_CDTC
447 #undef	PHY_CDTC_ENB
448 #undef	PHY_CDTC_POFF
449 #undef	ATPHY_CDTS
450 #undef	PHY_CDTS_STAT_OK
451 #undef	PHY_CDTS_STAT_SHORT
452 #undef	PHY_CDTS_STAT_OPEN
453 #undef	PHY_CDTS_STAT_INVAL
454 #undef	PHY_CDTS_STAT_MASK
455 }
456 
457 static int
458 age_attach(device_t dev)
459 {
460 	struct age_softc *sc;
461 	if_t ifp;
462 	uint16_t burst;
463 	int error, i, msic, msixc, pmc;
464 
465 	error = 0;
466 	sc = device_get_softc(dev);
467 	sc->age_dev = dev;
468 
469 	mtx_init(&sc->age_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
470 	    MTX_DEF);
471 	callout_init_mtx(&sc->age_tick_ch, &sc->age_mtx, 0);
472 	TASK_INIT(&sc->age_int_task, 0, age_int_task, sc);
473 	TASK_INIT(&sc->age_link_task, 0, age_link_task, sc);
474 
475 	/* Map the device. */
476 	pci_enable_busmaster(dev);
477 	sc->age_res_spec = age_res_spec_mem;
478 	sc->age_irq_spec = age_irq_spec_legacy;
479 	error = bus_alloc_resources(dev, sc->age_res_spec, sc->age_res);
480 	if (error != 0) {
481 		device_printf(dev, "cannot allocate memory resources.\n");
482 		goto fail;
483 	}
484 
485 	/* Set PHY address. */
486 	sc->age_phyaddr = AGE_PHY_ADDR;
487 
488 	/* Reset PHY. */
489 	age_phy_reset(sc);
490 
491 	/* Reset the ethernet controller. */
492 	age_reset(sc);
493 
494 	/* Get PCI and chip id/revision. */
495 	sc->age_rev = pci_get_revid(dev);
496 	sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
497 	    MASTER_CHIP_REV_SHIFT;
498 	if (bootverbose) {
499 		device_printf(dev, "PCI device revision : 0x%04x\n",
500 		    sc->age_rev);
501 		device_printf(dev, "Chip id/revision : 0x%04x\n",
502 		    sc->age_chip_rev);
503 	}
504 
505 	/*
506 	 * XXX
507 	 * Unintialized hardware returns an invalid chip id/revision
508 	 * as well as 0xFFFFFFFF for Tx/Rx fifo length. It seems that
509 	 * unplugged cable results in putting hardware into automatic
510 	 * power down mode which in turn returns invalld chip revision.
511 	 */
512 	if (sc->age_chip_rev == 0xFFFF) {
513 		device_printf(dev,"invalid chip revision : 0x%04x -- "
514 		    "not initialized?\n", sc->age_chip_rev);
515 		error = ENXIO;
516 		goto fail;
517 	}
518 
519 	device_printf(dev, "%d Tx FIFO, %d Rx FIFO\n",
520 	    CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
521 	    CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
522 
523 	/* Allocate IRQ resources. */
524 	msixc = pci_msix_count(dev);
525 	msic = pci_msi_count(dev);
526 	if (bootverbose) {
527 		device_printf(dev, "MSIX count : %d\n", msixc);
528 		device_printf(dev, "MSI count : %d\n", msic);
529 	}
530 
531 	/* Prefer MSIX over MSI. */
532 	if (msix_disable == 0 || msi_disable == 0) {
533 		if (msix_disable == 0 && msixc == AGE_MSIX_MESSAGES &&
534 		    pci_alloc_msix(dev, &msixc) == 0) {
535 			if (msic == AGE_MSIX_MESSAGES) {
536 				device_printf(dev, "Using %d MSIX messages.\n",
537 				    msixc);
538 				sc->age_flags |= AGE_FLAG_MSIX;
539 				sc->age_irq_spec = age_irq_spec_msix;
540 			} else
541 				pci_release_msi(dev);
542 		}
543 		if (msi_disable == 0 && (sc->age_flags & AGE_FLAG_MSIX) == 0 &&
544 		    msic == AGE_MSI_MESSAGES &&
545 		    pci_alloc_msi(dev, &msic) == 0) {
546 			if (msic == AGE_MSI_MESSAGES) {
547 				device_printf(dev, "Using %d MSI messages.\n",
548 				    msic);
549 				sc->age_flags |= AGE_FLAG_MSI;
550 				sc->age_irq_spec = age_irq_spec_msi;
551 			} else
552 				pci_release_msi(dev);
553 		}
554 	}
555 
556 	error = bus_alloc_resources(dev, sc->age_irq_spec, sc->age_irq);
557 	if (error != 0) {
558 		device_printf(dev, "cannot allocate IRQ resources.\n");
559 		goto fail;
560 	}
561 
562 	/* Get DMA parameters from PCIe device control register. */
563 	if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
564 		sc->age_flags |= AGE_FLAG_PCIE;
565 		burst = pci_read_config(dev, i + 0x08, 2);
566 		/* Max read request size. */
567 		sc->age_dma_rd_burst = ((burst >> 12) & 0x07) <<
568 		    DMA_CFG_RD_BURST_SHIFT;
569 		/* Max payload size. */
570 		sc->age_dma_wr_burst = ((burst >> 5) & 0x07) <<
571 		    DMA_CFG_WR_BURST_SHIFT;
572 		if (bootverbose) {
573 			device_printf(dev, "Read request size : %d bytes.\n",
574 			    128 << ((burst >> 12) & 0x07));
575 			device_printf(dev, "TLP payload size : %d bytes.\n",
576 			    128 << ((burst >> 5) & 0x07));
577 		}
578 	} else {
579 		sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
580 		sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
581 	}
582 
583 	/* Create device sysctl node. */
584 	age_sysctl_node(sc);
585 
586 	if ((error = age_dma_alloc(sc)) != 0)
587 		goto fail;
588 
589 	/* Load station address. */
590 	age_get_macaddr(sc);
591 
592 	ifp = sc->age_ifp = if_alloc(IFT_ETHER);
593 	if_setsoftc(ifp, sc);
594 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
595 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
596 	if_setioctlfn(ifp, age_ioctl);
597 	if_setstartfn(ifp, age_start);
598 	if_setinitfn(ifp, age_init);
599 	if_setsendqlen(ifp, AGE_TX_RING_CNT - 1);
600 	if_setsendqready(ifp);
601 	if_setcapabilities(ifp, IFCAP_HWCSUM | IFCAP_TSO4);
602 	if_sethwassist(ifp, AGE_CSUM_FEATURES | CSUM_TSO);
603 	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) {
604 		sc->age_flags |= AGE_FLAG_PMCAP;
605 		if_setcapabilitiesbit(ifp, IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST, 0);
606 	}
607 	if_setcapenable(ifp, if_getcapabilities(ifp));
608 
609 	/* Set up MII bus. */
610 	error = mii_attach(dev, &sc->age_miibus, ifp, age_mediachange,
611 	    age_mediastatus, BMSR_DEFCAPMASK, sc->age_phyaddr, MII_OFFSET_ANY,
612 	    0);
613 	if (error != 0) {
614 		device_printf(dev, "attaching PHYs failed\n");
615 		goto fail;
616 	}
617 
618 	ether_ifattach(ifp, sc->age_eaddr);
619 
620 	/* VLAN capability setup. */
621 	if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
622 	    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO, 0);
623 	if_setcapenable(ifp, if_getcapabilities(ifp));
624 
625 	/* Tell the upper layer(s) we support long frames. */
626 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
627 
628 	/* Create local taskq. */
629 	sc->age_tq = taskqueue_create_fast("age_taskq", M_WAITOK,
630 	    taskqueue_thread_enqueue, &sc->age_tq);
631 	if (sc->age_tq == NULL) {
632 		device_printf(dev, "could not create taskqueue.\n");
633 		ether_ifdetach(ifp);
634 		error = ENXIO;
635 		goto fail;
636 	}
637 	taskqueue_start_threads(&sc->age_tq, 1, PI_NET, "%s taskq",
638 	    device_get_nameunit(sc->age_dev));
639 
640 	if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
641 		msic = AGE_MSIX_MESSAGES;
642 	else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
643 		msic = AGE_MSI_MESSAGES;
644 	else
645 		msic = 1;
646 	for (i = 0; i < msic; i++) {
647 		error = bus_setup_intr(dev, sc->age_irq[i],
648 		    INTR_TYPE_NET | INTR_MPSAFE, age_intr, NULL, sc,
649 		    &sc->age_intrhand[i]);
650 		if (error != 0)
651 			break;
652 	}
653 	if (error != 0) {
654 		device_printf(dev, "could not set up interrupt handler.\n");
655 		taskqueue_free(sc->age_tq);
656 		sc->age_tq = NULL;
657 		ether_ifdetach(ifp);
658 		goto fail;
659 	}
660 
661 fail:
662 	if (error != 0)
663 		age_detach(dev);
664 
665 	return (error);
666 }
667 
668 static int
669 age_detach(device_t dev)
670 {
671 	struct age_softc *sc;
672 	if_t ifp;
673 	int i, msic;
674 
675 	sc = device_get_softc(dev);
676 
677 	ifp = sc->age_ifp;
678 	if (device_is_attached(dev)) {
679 		AGE_LOCK(sc);
680 		sc->age_flags |= AGE_FLAG_DETACH;
681 		age_stop(sc);
682 		AGE_UNLOCK(sc);
683 		callout_drain(&sc->age_tick_ch);
684 		taskqueue_drain(sc->age_tq, &sc->age_int_task);
685 		taskqueue_drain(taskqueue_swi, &sc->age_link_task);
686 		ether_ifdetach(ifp);
687 	}
688 
689 	if (sc->age_tq != NULL) {
690 		taskqueue_drain(sc->age_tq, &sc->age_int_task);
691 		taskqueue_free(sc->age_tq);
692 		sc->age_tq = NULL;
693 	}
694 
695 	if (sc->age_miibus != NULL) {
696 		device_delete_child(dev, sc->age_miibus);
697 		sc->age_miibus = NULL;
698 	}
699 	bus_generic_detach(dev);
700 	age_dma_free(sc);
701 
702 	if (ifp != NULL) {
703 		if_free(ifp);
704 		sc->age_ifp = NULL;
705 	}
706 
707 	if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
708 		msic = AGE_MSIX_MESSAGES;
709 	else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
710 		msic = AGE_MSI_MESSAGES;
711 	else
712 		msic = 1;
713 	for (i = 0; i < msic; i++) {
714 		if (sc->age_intrhand[i] != NULL) {
715 			bus_teardown_intr(dev, sc->age_irq[i],
716 			    sc->age_intrhand[i]);
717 			sc->age_intrhand[i] = NULL;
718 		}
719 	}
720 
721 	bus_release_resources(dev, sc->age_irq_spec, sc->age_irq);
722 	if ((sc->age_flags & (AGE_FLAG_MSI | AGE_FLAG_MSIX)) != 0)
723 		pci_release_msi(dev);
724 	bus_release_resources(dev, sc->age_res_spec, sc->age_res);
725 	mtx_destroy(&sc->age_mtx);
726 
727 	return (0);
728 }
729 
730 static void
731 age_sysctl_node(struct age_softc *sc)
732 {
733 	int error;
734 
735 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
736 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
737 	    "stats", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
738 	    sc, 0, sysctl_age_stats, "I", "Statistics");
739 
740 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
741 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
742 	    "int_mod", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
743 	    &sc->age_int_mod, 0, sysctl_hw_age_int_mod, "I",
744 	    "age interrupt moderation");
745 
746 	/* Pull in device tunables. */
747 	sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
748 	error = resource_int_value(device_get_name(sc->age_dev),
749 	    device_get_unit(sc->age_dev), "int_mod", &sc->age_int_mod);
750 	if (error == 0) {
751 		if (sc->age_int_mod < AGE_IM_TIMER_MIN ||
752 		    sc->age_int_mod > AGE_IM_TIMER_MAX) {
753 			device_printf(sc->age_dev,
754 			    "int_mod value out of range; using default: %d\n",
755 			    AGE_IM_TIMER_DEFAULT);
756 			sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
757 		}
758 	}
759 
760 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
761 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
762 	    "process_limit", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
763 	    &sc->age_process_limit, 0, sysctl_hw_age_proc_limit, "I",
764 	    "max number of Rx events to process");
765 
766 	/* Pull in device tunables. */
767 	sc->age_process_limit = AGE_PROC_DEFAULT;
768 	error = resource_int_value(device_get_name(sc->age_dev),
769 	    device_get_unit(sc->age_dev), "process_limit",
770 	    &sc->age_process_limit);
771 	if (error == 0) {
772 		if (sc->age_process_limit < AGE_PROC_MIN ||
773 		    sc->age_process_limit > AGE_PROC_MAX) {
774 			device_printf(sc->age_dev,
775 			    "process_limit value out of range; "
776 			    "using default: %d\n", AGE_PROC_DEFAULT);
777 			sc->age_process_limit = AGE_PROC_DEFAULT;
778 		}
779 	}
780 }
781 
782 struct age_dmamap_arg {
783 	bus_addr_t	age_busaddr;
784 };
785 
786 static void
787 age_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
788 {
789 	struct age_dmamap_arg *ctx;
790 
791 	if (error != 0)
792 		return;
793 
794 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
795 
796 	ctx = (struct age_dmamap_arg *)arg;
797 	ctx->age_busaddr = segs[0].ds_addr;
798 }
799 
800 /*
801  * Attansic L1 controller have single register to specify high
802  * address part of DMA blocks. So all descriptor structures and
803  * DMA memory blocks should have the same high address of given
804  * 4GB address space(i.e. crossing 4GB boundary is not allowed).
805  */
806 static int
807 age_check_boundary(struct age_softc *sc)
808 {
809 	bus_addr_t rx_ring_end, rr_ring_end, tx_ring_end;
810 	bus_addr_t cmb_block_end, smb_block_end;
811 
812 	/* Tx/Rx descriptor queue should reside within 4GB boundary. */
813 	tx_ring_end = sc->age_rdata.age_tx_ring_paddr + AGE_TX_RING_SZ;
814 	rx_ring_end = sc->age_rdata.age_rx_ring_paddr + AGE_RX_RING_SZ;
815 	rr_ring_end = sc->age_rdata.age_rr_ring_paddr + AGE_RR_RING_SZ;
816 	cmb_block_end = sc->age_rdata.age_cmb_block_paddr + AGE_CMB_BLOCK_SZ;
817 	smb_block_end = sc->age_rdata.age_smb_block_paddr + AGE_SMB_BLOCK_SZ;
818 
819 	if ((AGE_ADDR_HI(tx_ring_end) !=
820 	    AGE_ADDR_HI(sc->age_rdata.age_tx_ring_paddr)) ||
821 	    (AGE_ADDR_HI(rx_ring_end) !=
822 	    AGE_ADDR_HI(sc->age_rdata.age_rx_ring_paddr)) ||
823 	    (AGE_ADDR_HI(rr_ring_end) !=
824 	    AGE_ADDR_HI(sc->age_rdata.age_rr_ring_paddr)) ||
825 	    (AGE_ADDR_HI(cmb_block_end) !=
826 	    AGE_ADDR_HI(sc->age_rdata.age_cmb_block_paddr)) ||
827 	    (AGE_ADDR_HI(smb_block_end) !=
828 	    AGE_ADDR_HI(sc->age_rdata.age_smb_block_paddr)))
829 		return (EFBIG);
830 
831 	if ((AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rx_ring_end)) ||
832 	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rr_ring_end)) ||
833 	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(cmb_block_end)) ||
834 	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(smb_block_end)))
835 		return (EFBIG);
836 
837 	return (0);
838 }
839 
840 static int
841 age_dma_alloc(struct age_softc *sc)
842 {
843 	struct age_txdesc *txd;
844 	struct age_rxdesc *rxd;
845 	bus_addr_t lowaddr;
846 	struct age_dmamap_arg ctx;
847 	int error, i;
848 
849 	lowaddr = BUS_SPACE_MAXADDR;
850 
851 again:
852 	/* Create parent ring/DMA block tag. */
853 	error = bus_dma_tag_create(
854 	    bus_get_dma_tag(sc->age_dev), /* parent */
855 	    1, 0,			/* alignment, boundary */
856 	    lowaddr,			/* lowaddr */
857 	    BUS_SPACE_MAXADDR,		/* highaddr */
858 	    NULL, NULL,			/* filter, filterarg */
859 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
860 	    0,				/* nsegments */
861 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
862 	    0,				/* flags */
863 	    NULL, NULL,			/* lockfunc, lockarg */
864 	    &sc->age_cdata.age_parent_tag);
865 	if (error != 0) {
866 		device_printf(sc->age_dev,
867 		    "could not create parent DMA tag.\n");
868 		goto fail;
869 	}
870 
871 	/* Create tag for Tx ring. */
872 	error = bus_dma_tag_create(
873 	    sc->age_cdata.age_parent_tag, /* parent */
874 	    AGE_TX_RING_ALIGN, 0,	/* alignment, boundary */
875 	    BUS_SPACE_MAXADDR,		/* lowaddr */
876 	    BUS_SPACE_MAXADDR,		/* highaddr */
877 	    NULL, NULL,			/* filter, filterarg */
878 	    AGE_TX_RING_SZ,		/* maxsize */
879 	    1,				/* nsegments */
880 	    AGE_TX_RING_SZ,		/* maxsegsize */
881 	    0,				/* flags */
882 	    NULL, NULL,			/* lockfunc, lockarg */
883 	    &sc->age_cdata.age_tx_ring_tag);
884 	if (error != 0) {
885 		device_printf(sc->age_dev,
886 		    "could not create Tx ring DMA tag.\n");
887 		goto fail;
888 	}
889 
890 	/* Create tag for Rx ring. */
891 	error = bus_dma_tag_create(
892 	    sc->age_cdata.age_parent_tag, /* parent */
893 	    AGE_RX_RING_ALIGN, 0,	/* alignment, boundary */
894 	    BUS_SPACE_MAXADDR,		/* lowaddr */
895 	    BUS_SPACE_MAXADDR,		/* highaddr */
896 	    NULL, NULL,			/* filter, filterarg */
897 	    AGE_RX_RING_SZ,		/* maxsize */
898 	    1,				/* nsegments */
899 	    AGE_RX_RING_SZ,		/* maxsegsize */
900 	    0,				/* flags */
901 	    NULL, NULL,			/* lockfunc, lockarg */
902 	    &sc->age_cdata.age_rx_ring_tag);
903 	if (error != 0) {
904 		device_printf(sc->age_dev,
905 		    "could not create Rx ring DMA tag.\n");
906 		goto fail;
907 	}
908 
909 	/* Create tag for Rx return ring. */
910 	error = bus_dma_tag_create(
911 	    sc->age_cdata.age_parent_tag, /* parent */
912 	    AGE_RR_RING_ALIGN, 0,	/* alignment, boundary */
913 	    BUS_SPACE_MAXADDR,		/* lowaddr */
914 	    BUS_SPACE_MAXADDR,		/* highaddr */
915 	    NULL, NULL,			/* filter, filterarg */
916 	    AGE_RR_RING_SZ,		/* maxsize */
917 	    1,				/* nsegments */
918 	    AGE_RR_RING_SZ,		/* maxsegsize */
919 	    0,				/* flags */
920 	    NULL, NULL,			/* lockfunc, lockarg */
921 	    &sc->age_cdata.age_rr_ring_tag);
922 	if (error != 0) {
923 		device_printf(sc->age_dev,
924 		    "could not create Rx return ring DMA tag.\n");
925 		goto fail;
926 	}
927 
928 	/* Create tag for coalesing message block. */
929 	error = bus_dma_tag_create(
930 	    sc->age_cdata.age_parent_tag, /* parent */
931 	    AGE_CMB_ALIGN, 0,		/* alignment, boundary */
932 	    BUS_SPACE_MAXADDR,		/* lowaddr */
933 	    BUS_SPACE_MAXADDR,		/* highaddr */
934 	    NULL, NULL,			/* filter, filterarg */
935 	    AGE_CMB_BLOCK_SZ,		/* maxsize */
936 	    1,				/* nsegments */
937 	    AGE_CMB_BLOCK_SZ,		/* maxsegsize */
938 	    0,				/* flags */
939 	    NULL, NULL,			/* lockfunc, lockarg */
940 	    &sc->age_cdata.age_cmb_block_tag);
941 	if (error != 0) {
942 		device_printf(sc->age_dev,
943 		    "could not create CMB DMA tag.\n");
944 		goto fail;
945 	}
946 
947 	/* Create tag for statistics message block. */
948 	error = bus_dma_tag_create(
949 	    sc->age_cdata.age_parent_tag, /* parent */
950 	    AGE_SMB_ALIGN, 0,		/* alignment, boundary */
951 	    BUS_SPACE_MAXADDR,		/* lowaddr */
952 	    BUS_SPACE_MAXADDR,		/* highaddr */
953 	    NULL, NULL,			/* filter, filterarg */
954 	    AGE_SMB_BLOCK_SZ,		/* maxsize */
955 	    1,				/* nsegments */
956 	    AGE_SMB_BLOCK_SZ,		/* maxsegsize */
957 	    0,				/* flags */
958 	    NULL, NULL,			/* lockfunc, lockarg */
959 	    &sc->age_cdata.age_smb_block_tag);
960 	if (error != 0) {
961 		device_printf(sc->age_dev,
962 		    "could not create SMB DMA tag.\n");
963 		goto fail;
964 	}
965 
966 	/* Allocate DMA'able memory and load the DMA map. */
967 	error = bus_dmamem_alloc(sc->age_cdata.age_tx_ring_tag,
968 	    (void **)&sc->age_rdata.age_tx_ring,
969 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
970 	    &sc->age_cdata.age_tx_ring_map);
971 	if (error != 0) {
972 		device_printf(sc->age_dev,
973 		    "could not allocate DMA'able memory for Tx ring.\n");
974 		goto fail;
975 	}
976 	ctx.age_busaddr = 0;
977 	error = bus_dmamap_load(sc->age_cdata.age_tx_ring_tag,
978 	    sc->age_cdata.age_tx_ring_map, sc->age_rdata.age_tx_ring,
979 	    AGE_TX_RING_SZ, age_dmamap_cb, &ctx, 0);
980 	if (error != 0 || ctx.age_busaddr == 0) {
981 		device_printf(sc->age_dev,
982 		    "could not load DMA'able memory for Tx ring.\n");
983 		goto fail;
984 	}
985 	sc->age_rdata.age_tx_ring_paddr = ctx.age_busaddr;
986 	/* Rx ring */
987 	error = bus_dmamem_alloc(sc->age_cdata.age_rx_ring_tag,
988 	    (void **)&sc->age_rdata.age_rx_ring,
989 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
990 	    &sc->age_cdata.age_rx_ring_map);
991 	if (error != 0) {
992 		device_printf(sc->age_dev,
993 		    "could not allocate DMA'able memory for Rx ring.\n");
994 		goto fail;
995 	}
996 	ctx.age_busaddr = 0;
997 	error = bus_dmamap_load(sc->age_cdata.age_rx_ring_tag,
998 	    sc->age_cdata.age_rx_ring_map, sc->age_rdata.age_rx_ring,
999 	    AGE_RX_RING_SZ, age_dmamap_cb, &ctx, 0);
1000 	if (error != 0 || ctx.age_busaddr == 0) {
1001 		device_printf(sc->age_dev,
1002 		    "could not load DMA'able memory for Rx ring.\n");
1003 		goto fail;
1004 	}
1005 	sc->age_rdata.age_rx_ring_paddr = ctx.age_busaddr;
1006 	/* Rx return ring */
1007 	error = bus_dmamem_alloc(sc->age_cdata.age_rr_ring_tag,
1008 	    (void **)&sc->age_rdata.age_rr_ring,
1009 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1010 	    &sc->age_cdata.age_rr_ring_map);
1011 	if (error != 0) {
1012 		device_printf(sc->age_dev,
1013 		    "could not allocate DMA'able memory for Rx return ring.\n");
1014 		goto fail;
1015 	}
1016 	ctx.age_busaddr = 0;
1017 	error = bus_dmamap_load(sc->age_cdata.age_rr_ring_tag,
1018 	    sc->age_cdata.age_rr_ring_map, sc->age_rdata.age_rr_ring,
1019 	    AGE_RR_RING_SZ, age_dmamap_cb,
1020 	    &ctx, 0);
1021 	if (error != 0 || ctx.age_busaddr == 0) {
1022 		device_printf(sc->age_dev,
1023 		    "could not load DMA'able memory for Rx return ring.\n");
1024 		goto fail;
1025 	}
1026 	sc->age_rdata.age_rr_ring_paddr = ctx.age_busaddr;
1027 	/* CMB block */
1028 	error = bus_dmamem_alloc(sc->age_cdata.age_cmb_block_tag,
1029 	    (void **)&sc->age_rdata.age_cmb_block,
1030 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1031 	    &sc->age_cdata.age_cmb_block_map);
1032 	if (error != 0) {
1033 		device_printf(sc->age_dev,
1034 		    "could not allocate DMA'able memory for CMB block.\n");
1035 		goto fail;
1036 	}
1037 	ctx.age_busaddr = 0;
1038 	error = bus_dmamap_load(sc->age_cdata.age_cmb_block_tag,
1039 	    sc->age_cdata.age_cmb_block_map, sc->age_rdata.age_cmb_block,
1040 	    AGE_CMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1041 	if (error != 0 || ctx.age_busaddr == 0) {
1042 		device_printf(sc->age_dev,
1043 		    "could not load DMA'able memory for CMB block.\n");
1044 		goto fail;
1045 	}
1046 	sc->age_rdata.age_cmb_block_paddr = ctx.age_busaddr;
1047 	/* SMB block */
1048 	error = bus_dmamem_alloc(sc->age_cdata.age_smb_block_tag,
1049 	    (void **)&sc->age_rdata.age_smb_block,
1050 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1051 	    &sc->age_cdata.age_smb_block_map);
1052 	if (error != 0) {
1053 		device_printf(sc->age_dev,
1054 		    "could not allocate DMA'able memory for SMB block.\n");
1055 		goto fail;
1056 	}
1057 	ctx.age_busaddr = 0;
1058 	error = bus_dmamap_load(sc->age_cdata.age_smb_block_tag,
1059 	    sc->age_cdata.age_smb_block_map, sc->age_rdata.age_smb_block,
1060 	    AGE_SMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1061 	if (error != 0 || ctx.age_busaddr == 0) {
1062 		device_printf(sc->age_dev,
1063 		    "could not load DMA'able memory for SMB block.\n");
1064 		goto fail;
1065 	}
1066 	sc->age_rdata.age_smb_block_paddr = ctx.age_busaddr;
1067 
1068 	/*
1069 	 * All ring buffer and DMA blocks should have the same
1070 	 * high address part of 64bit DMA address space.
1071 	 */
1072 	if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1073 	    (error = age_check_boundary(sc)) != 0) {
1074 		device_printf(sc->age_dev, "4GB boundary crossed, "
1075 		    "switching to 32bit DMA addressing mode.\n");
1076 		age_dma_free(sc);
1077 		/* Limit DMA address space to 32bit and try again. */
1078 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1079 		goto again;
1080 	}
1081 
1082 	/*
1083 	 * Create Tx/Rx buffer parent tag.
1084 	 * L1 supports full 64bit DMA addressing in Tx/Rx buffers
1085 	 * so it needs separate parent DMA tag.
1086 	 * XXX
1087 	 * It seems enabling 64bit DMA causes data corruption. Limit
1088 	 * DMA address space to 32bit.
1089 	 */
1090 	error = bus_dma_tag_create(
1091 	    bus_get_dma_tag(sc->age_dev), /* parent */
1092 	    1, 0,			/* alignment, boundary */
1093 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1094 	    BUS_SPACE_MAXADDR,		/* highaddr */
1095 	    NULL, NULL,			/* filter, filterarg */
1096 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1097 	    0,				/* nsegments */
1098 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1099 	    0,				/* flags */
1100 	    NULL, NULL,			/* lockfunc, lockarg */
1101 	    &sc->age_cdata.age_buffer_tag);
1102 	if (error != 0) {
1103 		device_printf(sc->age_dev,
1104 		    "could not create parent buffer DMA tag.\n");
1105 		goto fail;
1106 	}
1107 
1108 	/* Create tag for Tx buffers. */
1109 	error = bus_dma_tag_create(
1110 	    sc->age_cdata.age_buffer_tag, /* parent */
1111 	    1, 0,			/* alignment, boundary */
1112 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1113 	    BUS_SPACE_MAXADDR,		/* highaddr */
1114 	    NULL, NULL,			/* filter, filterarg */
1115 	    AGE_TSO_MAXSIZE,		/* maxsize */
1116 	    AGE_MAXTXSEGS,		/* nsegments */
1117 	    AGE_TSO_MAXSEGSIZE,		/* maxsegsize */
1118 	    0,				/* flags */
1119 	    NULL, NULL,			/* lockfunc, lockarg */
1120 	    &sc->age_cdata.age_tx_tag);
1121 	if (error != 0) {
1122 		device_printf(sc->age_dev, "could not create Tx DMA tag.\n");
1123 		goto fail;
1124 	}
1125 
1126 	/* Create tag for Rx buffers. */
1127 	error = bus_dma_tag_create(
1128 	    sc->age_cdata.age_buffer_tag, /* parent */
1129 	    AGE_RX_BUF_ALIGN, 0,	/* alignment, boundary */
1130 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1131 	    BUS_SPACE_MAXADDR,		/* highaddr */
1132 	    NULL, NULL,			/* filter, filterarg */
1133 	    MCLBYTES,			/* maxsize */
1134 	    1,				/* nsegments */
1135 	    MCLBYTES,			/* maxsegsize */
1136 	    0,				/* flags */
1137 	    NULL, NULL,			/* lockfunc, lockarg */
1138 	    &sc->age_cdata.age_rx_tag);
1139 	if (error != 0) {
1140 		device_printf(sc->age_dev, "could not create Rx DMA tag.\n");
1141 		goto fail;
1142 	}
1143 
1144 	/* Create DMA maps for Tx buffers. */
1145 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
1146 		txd = &sc->age_cdata.age_txdesc[i];
1147 		txd->tx_m = NULL;
1148 		txd->tx_dmamap = NULL;
1149 		error = bus_dmamap_create(sc->age_cdata.age_tx_tag, 0,
1150 		    &txd->tx_dmamap);
1151 		if (error != 0) {
1152 			device_printf(sc->age_dev,
1153 			    "could not create Tx dmamap.\n");
1154 			goto fail;
1155 		}
1156 	}
1157 	/* Create DMA maps for Rx buffers. */
1158 	if ((error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1159 	    &sc->age_cdata.age_rx_sparemap)) != 0) {
1160 		device_printf(sc->age_dev,
1161 		    "could not create spare Rx dmamap.\n");
1162 		goto fail;
1163 	}
1164 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
1165 		rxd = &sc->age_cdata.age_rxdesc[i];
1166 		rxd->rx_m = NULL;
1167 		rxd->rx_dmamap = NULL;
1168 		error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1169 		    &rxd->rx_dmamap);
1170 		if (error != 0) {
1171 			device_printf(sc->age_dev,
1172 			    "could not create Rx dmamap.\n");
1173 			goto fail;
1174 		}
1175 	}
1176 
1177 fail:
1178 	return (error);
1179 }
1180 
1181 static void
1182 age_dma_free(struct age_softc *sc)
1183 {
1184 	struct age_txdesc *txd;
1185 	struct age_rxdesc *rxd;
1186 	int i;
1187 
1188 	/* Tx buffers */
1189 	if (sc->age_cdata.age_tx_tag != NULL) {
1190 		for (i = 0; i < AGE_TX_RING_CNT; i++) {
1191 			txd = &sc->age_cdata.age_txdesc[i];
1192 			if (txd->tx_dmamap != NULL) {
1193 				bus_dmamap_destroy(sc->age_cdata.age_tx_tag,
1194 				    txd->tx_dmamap);
1195 				txd->tx_dmamap = NULL;
1196 			}
1197 		}
1198 		bus_dma_tag_destroy(sc->age_cdata.age_tx_tag);
1199 		sc->age_cdata.age_tx_tag = NULL;
1200 	}
1201 	/* Rx buffers */
1202 	if (sc->age_cdata.age_rx_tag != NULL) {
1203 		for (i = 0; i < AGE_RX_RING_CNT; i++) {
1204 			rxd = &sc->age_cdata.age_rxdesc[i];
1205 			if (rxd->rx_dmamap != NULL) {
1206 				bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1207 				    rxd->rx_dmamap);
1208 				rxd->rx_dmamap = NULL;
1209 			}
1210 		}
1211 		if (sc->age_cdata.age_rx_sparemap != NULL) {
1212 			bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1213 			    sc->age_cdata.age_rx_sparemap);
1214 			sc->age_cdata.age_rx_sparemap = NULL;
1215 		}
1216 		bus_dma_tag_destroy(sc->age_cdata.age_rx_tag);
1217 		sc->age_cdata.age_rx_tag = NULL;
1218 	}
1219 	/* Tx ring. */
1220 	if (sc->age_cdata.age_tx_ring_tag != NULL) {
1221 		if (sc->age_rdata.age_tx_ring_paddr != 0)
1222 			bus_dmamap_unload(sc->age_cdata.age_tx_ring_tag,
1223 			    sc->age_cdata.age_tx_ring_map);
1224 		if (sc->age_rdata.age_tx_ring != NULL)
1225 			bus_dmamem_free(sc->age_cdata.age_tx_ring_tag,
1226 			    sc->age_rdata.age_tx_ring,
1227 			    sc->age_cdata.age_tx_ring_map);
1228 		sc->age_rdata.age_tx_ring_paddr = 0;
1229 		sc->age_rdata.age_tx_ring = NULL;
1230 		bus_dma_tag_destroy(sc->age_cdata.age_tx_ring_tag);
1231 		sc->age_cdata.age_tx_ring_tag = NULL;
1232 	}
1233 	/* Rx ring. */
1234 	if (sc->age_cdata.age_rx_ring_tag != NULL) {
1235 		if (sc->age_rdata.age_rx_ring_paddr != 0)
1236 			bus_dmamap_unload(sc->age_cdata.age_rx_ring_tag,
1237 			    sc->age_cdata.age_rx_ring_map);
1238 		if (sc->age_rdata.age_rx_ring != NULL)
1239 			bus_dmamem_free(sc->age_cdata.age_rx_ring_tag,
1240 			    sc->age_rdata.age_rx_ring,
1241 			    sc->age_cdata.age_rx_ring_map);
1242 		sc->age_rdata.age_rx_ring_paddr = 0;
1243 		sc->age_rdata.age_rx_ring = NULL;
1244 		bus_dma_tag_destroy(sc->age_cdata.age_rx_ring_tag);
1245 		sc->age_cdata.age_rx_ring_tag = NULL;
1246 	}
1247 	/* Rx return ring. */
1248 	if (sc->age_cdata.age_rr_ring_tag != NULL) {
1249 		if (sc->age_rdata.age_rr_ring_paddr != 0)
1250 			bus_dmamap_unload(sc->age_cdata.age_rr_ring_tag,
1251 			    sc->age_cdata.age_rr_ring_map);
1252 		if (sc->age_rdata.age_rr_ring != NULL)
1253 			bus_dmamem_free(sc->age_cdata.age_rr_ring_tag,
1254 			    sc->age_rdata.age_rr_ring,
1255 			    sc->age_cdata.age_rr_ring_map);
1256 		sc->age_rdata.age_rr_ring_paddr = 0;
1257 		sc->age_rdata.age_rr_ring = NULL;
1258 		bus_dma_tag_destroy(sc->age_cdata.age_rr_ring_tag);
1259 		sc->age_cdata.age_rr_ring_tag = NULL;
1260 	}
1261 	/* CMB block */
1262 	if (sc->age_cdata.age_cmb_block_tag != NULL) {
1263 		if (sc->age_rdata.age_cmb_block_paddr != 0)
1264 			bus_dmamap_unload(sc->age_cdata.age_cmb_block_tag,
1265 			    sc->age_cdata.age_cmb_block_map);
1266 		if (sc->age_rdata.age_cmb_block != NULL)
1267 			bus_dmamem_free(sc->age_cdata.age_cmb_block_tag,
1268 			    sc->age_rdata.age_cmb_block,
1269 			    sc->age_cdata.age_cmb_block_map);
1270 		sc->age_rdata.age_cmb_block_paddr = 0;
1271 		sc->age_rdata.age_cmb_block = NULL;
1272 		bus_dma_tag_destroy(sc->age_cdata.age_cmb_block_tag);
1273 		sc->age_cdata.age_cmb_block_tag = NULL;
1274 	}
1275 	/* SMB block */
1276 	if (sc->age_cdata.age_smb_block_tag != NULL) {
1277 		if (sc->age_rdata.age_smb_block_paddr != 0)
1278 			bus_dmamap_unload(sc->age_cdata.age_smb_block_tag,
1279 			    sc->age_cdata.age_smb_block_map);
1280 		if (sc->age_rdata.age_smb_block != NULL)
1281 			bus_dmamem_free(sc->age_cdata.age_smb_block_tag,
1282 			    sc->age_rdata.age_smb_block,
1283 			    sc->age_cdata.age_smb_block_map);
1284 		sc->age_rdata.age_smb_block_paddr = 0;
1285 		sc->age_rdata.age_smb_block = NULL;
1286 		bus_dma_tag_destroy(sc->age_cdata.age_smb_block_tag);
1287 		sc->age_cdata.age_smb_block_tag = NULL;
1288 	}
1289 
1290 	if (sc->age_cdata.age_buffer_tag != NULL) {
1291 		bus_dma_tag_destroy(sc->age_cdata.age_buffer_tag);
1292 		sc->age_cdata.age_buffer_tag = NULL;
1293 	}
1294 	if (sc->age_cdata.age_parent_tag != NULL) {
1295 		bus_dma_tag_destroy(sc->age_cdata.age_parent_tag);
1296 		sc->age_cdata.age_parent_tag = NULL;
1297 	}
1298 }
1299 
1300 /*
1301  *	Make sure the interface is stopped at reboot time.
1302  */
1303 static int
1304 age_shutdown(device_t dev)
1305 {
1306 
1307 	return (age_suspend(dev));
1308 }
1309 
1310 static void
1311 age_setwol(struct age_softc *sc)
1312 {
1313 	if_t ifp;
1314 	struct mii_data *mii;
1315 	uint32_t reg, pmcs;
1316 	uint16_t pmstat;
1317 	int aneg, i, pmc;
1318 
1319 	AGE_LOCK_ASSERT(sc);
1320 
1321 	if (pci_find_cap(sc->age_dev, PCIY_PMG, &pmc) != 0) {
1322 		CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1323 		/*
1324 		 * No PME capability, PHY power down.
1325 		 * XXX
1326 		 * Due to an unknown reason powering down PHY resulted
1327 		 * in unexpected results such as inaccessbility of
1328 		 * hardware of freshly rebooted system. Disable
1329 		 * powering down PHY until I got more information for
1330 		 * Attansic/Atheros PHY hardwares.
1331 		 */
1332 #ifdef notyet
1333 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1334 		    MII_BMCR, BMCR_PDOWN);
1335 #endif
1336 		return;
1337 	}
1338 
1339 	ifp = sc->age_ifp;
1340 	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0) {
1341 		/*
1342 		 * Note, this driver resets the link speed to 10/100Mbps with
1343 		 * auto-negotiation but we don't know whether that operation
1344 		 * would succeed or not as it have no control after powering
1345 		 * off. If the renegotiation fail WOL may not work. Running
1346 		 * at 1Gbps will draw more power than 375mA at 3.3V which is
1347 		 * specified in PCI specification and that would result in
1348 		 * complete shutdowning power to ethernet controller.
1349 		 *
1350 		 * TODO
1351 		 *  Save current negotiated media speed/duplex/flow-control
1352 		 *  to softc and restore the same link again after resuming.
1353 		 *  PHY handling such as power down/resetting to 100Mbps
1354 		 *  may be better handled in suspend method in phy driver.
1355 		 */
1356 		mii = device_get_softc(sc->age_miibus);
1357 		mii_pollstat(mii);
1358 		aneg = 0;
1359 		if ((mii->mii_media_status & IFM_AVALID) != 0) {
1360 			switch IFM_SUBTYPE(mii->mii_media_active) {
1361 			case IFM_10_T:
1362 			case IFM_100_TX:
1363 				goto got_link;
1364 			case IFM_1000_T:
1365 				aneg++;
1366 			default:
1367 				break;
1368 			}
1369 		}
1370 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1371 		    MII_100T2CR, 0);
1372 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1373 		    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD |
1374 		    ANAR_10 | ANAR_CSMA);
1375 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1376 		    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1377 		DELAY(1000);
1378 		if (aneg != 0) {
1379 			/* Poll link state until age(4) get a 10/100 link. */
1380 			for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1381 				mii_pollstat(mii);
1382 				if ((mii->mii_media_status & IFM_AVALID) != 0) {
1383 					switch (IFM_SUBTYPE(
1384 					    mii->mii_media_active)) {
1385 					case IFM_10_T:
1386 					case IFM_100_TX:
1387 						age_mac_config(sc);
1388 						goto got_link;
1389 					default:
1390 						break;
1391 					}
1392 				}
1393 				AGE_UNLOCK(sc);
1394 				pause("agelnk", hz);
1395 				AGE_LOCK(sc);
1396 			}
1397 			if (i == MII_ANEGTICKS_GIGE)
1398 				device_printf(sc->age_dev,
1399 				    "establishing link failed, "
1400 				    "WOL may not work!");
1401 		}
1402 		/*
1403 		 * No link, force MAC to have 100Mbps, full-duplex link.
1404 		 * This is the last resort and may/may not work.
1405 		 */
1406 		mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1407 		mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1408 		age_mac_config(sc);
1409 	}
1410 
1411 got_link:
1412 	pmcs = 0;
1413 	if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0)
1414 		pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1415 	CSR_WRITE_4(sc, AGE_WOL_CFG, pmcs);
1416 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1417 	reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC);
1418 	reg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST);
1419 	if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) != 0)
1420 		reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1421 	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0) {
1422 		reg |= MAC_CFG_RX_ENB;
1423 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1424 	}
1425 
1426 	/* Request PME. */
1427 	pmstat = pci_read_config(sc->age_dev, pmc + PCIR_POWER_STATUS, 2);
1428 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1429 	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0)
1430 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1431 	pci_write_config(sc->age_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1432 #ifdef notyet
1433 	/* See above for powering down PHY issues. */
1434 	if ((if_getcapenable(ifp) & IFCAP_WOL) == 0) {
1435 		/* No WOL, PHY power down. */
1436 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1437 		    MII_BMCR, BMCR_PDOWN);
1438 	}
1439 #endif
1440 }
1441 
1442 static int
1443 age_suspend(device_t dev)
1444 {
1445 	struct age_softc *sc;
1446 
1447 	sc = device_get_softc(dev);
1448 
1449 	AGE_LOCK(sc);
1450 	age_stop(sc);
1451 	age_setwol(sc);
1452 	AGE_UNLOCK(sc);
1453 
1454 	return (0);
1455 }
1456 
1457 static int
1458 age_resume(device_t dev)
1459 {
1460 	struct age_softc *sc;
1461 	if_t ifp;
1462 
1463 	sc = device_get_softc(dev);
1464 
1465 	AGE_LOCK(sc);
1466 	age_phy_reset(sc);
1467 	ifp = sc->age_ifp;
1468 	if ((if_getflags(ifp) & IFF_UP) != 0)
1469 		age_init_locked(sc);
1470 
1471 	AGE_UNLOCK(sc);
1472 
1473 	return (0);
1474 }
1475 
1476 static int
1477 age_encap(struct age_softc *sc, struct mbuf **m_head)
1478 {
1479 	struct age_txdesc *txd, *txd_last;
1480 	struct tx_desc *desc;
1481 	struct mbuf *m;
1482 	struct ip *ip;
1483 	struct tcphdr *tcp;
1484 	bus_dma_segment_t txsegs[AGE_MAXTXSEGS];
1485 	bus_dmamap_t map;
1486 	uint32_t cflags, hdrlen, ip_off, poff, vtag;
1487 	int error, i, nsegs, prod, si;
1488 
1489 	AGE_LOCK_ASSERT(sc);
1490 
1491 	M_ASSERTPKTHDR((*m_head));
1492 
1493 	m = *m_head;
1494 	ip = NULL;
1495 	tcp = NULL;
1496 	cflags = vtag = 0;
1497 	ip_off = poff = 0;
1498 	if ((m->m_pkthdr.csum_flags & (AGE_CSUM_FEATURES | CSUM_TSO)) != 0) {
1499 		/*
1500 		 * L1 requires offset of TCP/UDP payload in its Tx
1501 		 * descriptor to perform hardware Tx checksum offload.
1502 		 * Additionally, TSO requires IP/TCP header size and
1503 		 * modification of IP/TCP header in order to make TSO
1504 		 * engine work. This kind of operation takes many CPU
1505 		 * cycles on FreeBSD so fast host CPU is needed to get
1506 		 * smooth TSO performance.
1507 		 */
1508 		struct ether_header *eh;
1509 
1510 		if (M_WRITABLE(m) == 0) {
1511 			/* Get a writable copy. */
1512 			m = m_dup(*m_head, M_NOWAIT);
1513 			/* Release original mbufs. */
1514 			m_freem(*m_head);
1515 			if (m == NULL) {
1516 				*m_head = NULL;
1517 				return (ENOBUFS);
1518 			}
1519 			*m_head = m;
1520 		}
1521 		ip_off = sizeof(struct ether_header);
1522 		m = m_pullup(m, ip_off);
1523 		if (m == NULL) {
1524 			*m_head = NULL;
1525 			return (ENOBUFS);
1526 		}
1527 		eh = mtod(m, struct ether_header *);
1528 		/*
1529 		 * Check if hardware VLAN insertion is off.
1530 		 * Additional check for LLC/SNAP frame?
1531 		 */
1532 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1533 			ip_off = sizeof(struct ether_vlan_header);
1534 			m = m_pullup(m, ip_off);
1535 			if (m == NULL) {
1536 				*m_head = NULL;
1537 				return (ENOBUFS);
1538 			}
1539 		}
1540 		m = m_pullup(m, ip_off + sizeof(struct ip));
1541 		if (m == NULL) {
1542 			*m_head = NULL;
1543 			return (ENOBUFS);
1544 		}
1545 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1546 		poff = ip_off + (ip->ip_hl << 2);
1547 		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1548 			m = m_pullup(m, poff + sizeof(struct tcphdr));
1549 			if (m == NULL) {
1550 				*m_head = NULL;
1551 				return (ENOBUFS);
1552 			}
1553 			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1554 			m = m_pullup(m, poff + (tcp->th_off << 2));
1555 			if (m == NULL) {
1556 				*m_head = NULL;
1557 				return (ENOBUFS);
1558 			}
1559 			/*
1560 			 * L1 requires IP/TCP header size and offset as
1561 			 * well as TCP pseudo checksum which complicates
1562 			 * TSO configuration. I guess this comes from the
1563 			 * adherence to Microsoft NDIS Large Send
1564 			 * specification which requires insertion of
1565 			 * pseudo checksum by upper stack. The pseudo
1566 			 * checksum that NDIS refers to doesn't include
1567 			 * TCP payload length so age(4) should recompute
1568 			 * the pseudo checksum here. Hopefully this wouldn't
1569 			 * be much burden on modern CPUs.
1570 			 * Reset IP checksum and recompute TCP pseudo
1571 			 * checksum as NDIS specification said.
1572 			 */
1573 			ip = (struct ip *)(mtod(m, char *) + ip_off);
1574 			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1575 			ip->ip_sum = 0;
1576 			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1577 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1578 		}
1579 		*m_head = m;
1580 	}
1581 
1582 	si = prod = sc->age_cdata.age_tx_prod;
1583 	txd = &sc->age_cdata.age_txdesc[prod];
1584 	txd_last = txd;
1585 	map = txd->tx_dmamap;
1586 
1587 	error =  bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1588 	    *m_head, txsegs, &nsegs, 0);
1589 	if (error == EFBIG) {
1590 		m = m_collapse(*m_head, M_NOWAIT, AGE_MAXTXSEGS);
1591 		if (m == NULL) {
1592 			m_freem(*m_head);
1593 			*m_head = NULL;
1594 			return (ENOMEM);
1595 		}
1596 		*m_head = m;
1597 		error = bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1598 		    *m_head, txsegs, &nsegs, 0);
1599 		if (error != 0) {
1600 			m_freem(*m_head);
1601 			*m_head = NULL;
1602 			return (error);
1603 		}
1604 	} else if (error != 0)
1605 		return (error);
1606 	if (nsegs == 0) {
1607 		m_freem(*m_head);
1608 		*m_head = NULL;
1609 		return (EIO);
1610 	}
1611 
1612 	/* Check descriptor overrun. */
1613 	if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1614 		bus_dmamap_unload(sc->age_cdata.age_tx_tag, map);
1615 		return (ENOBUFS);
1616 	}
1617 
1618 	m = *m_head;
1619 	/* Configure VLAN hardware tag insertion. */
1620 	if ((m->m_flags & M_VLANTAG) != 0) {
1621 		vtag = AGE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
1622 		vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1623 		cflags |= AGE_TD_INSERT_VLAN_TAG;
1624 	}
1625 
1626 	desc = NULL;
1627 	i = 0;
1628 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1629 		/* Request TSO and set MSS. */
1630 		cflags |= AGE_TD_TSO_IPV4;
1631 		cflags |= AGE_TD_IPCSUM | AGE_TD_TCPCSUM;
1632 		cflags |= ((uint32_t)m->m_pkthdr.tso_segsz <<
1633 		    AGE_TD_TSO_MSS_SHIFT);
1634 		/* Set IP/TCP header size. */
1635 		cflags |= ip->ip_hl << AGE_TD_IPHDR_LEN_SHIFT;
1636 		cflags |= tcp->th_off << AGE_TD_TSO_TCPHDR_LEN_SHIFT;
1637 		/*
1638 		 * L1 requires the first buffer should only hold IP/TCP
1639 		 * header data. TCP payload should be handled in other
1640 		 * descriptors.
1641 		 */
1642 		hdrlen = poff + (tcp->th_off << 2);
1643 		desc = &sc->age_rdata.age_tx_ring[prod];
1644 		desc->addr = htole64(txsegs[0].ds_addr);
1645 		desc->len = htole32(AGE_TX_BYTES(hdrlen) | vtag);
1646 		desc->flags = htole32(cflags);
1647 		sc->age_cdata.age_tx_cnt++;
1648 		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1649 		if (m->m_len - hdrlen > 0) {
1650 			/* Handle remaining payload of the 1st fragment. */
1651 			desc = &sc->age_rdata.age_tx_ring[prod];
1652 			desc->addr = htole64(txsegs[0].ds_addr + hdrlen);
1653 			desc->len = htole32(AGE_TX_BYTES(m->m_len - hdrlen) |
1654 			    vtag);
1655 			desc->flags = htole32(cflags);
1656 			sc->age_cdata.age_tx_cnt++;
1657 			AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1658 		}
1659 		/* Handle remaining fragments. */
1660 		i = 1;
1661 	} else if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1662 		/* Configure Tx IP/TCP/UDP checksum offload. */
1663 		cflags |= AGE_TD_CSUM;
1664 		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1665 			cflags |= AGE_TD_TCPCSUM;
1666 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1667 			cflags |= AGE_TD_UDPCSUM;
1668 		/* Set checksum start offset. */
1669 		cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1670 		/* Set checksum insertion position of TCP/UDP. */
1671 		cflags |= ((poff + m->m_pkthdr.csum_data) <<
1672 		    AGE_TD_CSUM_XSUMOFFSET_SHIFT);
1673 	}
1674 	for (; i < nsegs; i++) {
1675 		desc = &sc->age_rdata.age_tx_ring[prod];
1676 		desc->addr = htole64(txsegs[i].ds_addr);
1677 		desc->len = htole32(AGE_TX_BYTES(txsegs[i].ds_len) | vtag);
1678 		desc->flags = htole32(cflags);
1679 		sc->age_cdata.age_tx_cnt++;
1680 		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1681 	}
1682 	/* Update producer index. */
1683 	sc->age_cdata.age_tx_prod = prod;
1684 
1685 	/* Set EOP on the last descriptor. */
1686 	prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1687 	desc = &sc->age_rdata.age_tx_ring[prod];
1688 	desc->flags |= htole32(AGE_TD_EOP);
1689 
1690 	/* Lastly set TSO header and modify IP/TCP header for TSO operation. */
1691 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1692 		desc = &sc->age_rdata.age_tx_ring[si];
1693 		desc->flags |= htole32(AGE_TD_TSO_HDR);
1694 	}
1695 
1696 	/* Swap dmamap of the first and the last. */
1697 	txd = &sc->age_cdata.age_txdesc[prod];
1698 	map = txd_last->tx_dmamap;
1699 	txd_last->tx_dmamap = txd->tx_dmamap;
1700 	txd->tx_dmamap = map;
1701 	txd->tx_m = m;
1702 
1703 	/* Sync descriptors. */
1704 	bus_dmamap_sync(sc->age_cdata.age_tx_tag, map, BUS_DMASYNC_PREWRITE);
1705 	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
1706 	    sc->age_cdata.age_tx_ring_map,
1707 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1708 
1709 	return (0);
1710 }
1711 
1712 static void
1713 age_start(if_t ifp)
1714 {
1715         struct age_softc *sc;
1716 
1717 	sc = if_getsoftc(ifp);
1718 	AGE_LOCK(sc);
1719 	age_start_locked(ifp);
1720 	AGE_UNLOCK(sc);
1721 }
1722 
1723 static void
1724 age_start_locked(if_t ifp)
1725 {
1726         struct age_softc *sc;
1727         struct mbuf *m_head;
1728 	int enq;
1729 
1730 	sc = if_getsoftc(ifp);
1731 
1732 	AGE_LOCK_ASSERT(sc);
1733 
1734 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1735 	    IFF_DRV_RUNNING || (sc->age_flags & AGE_FLAG_LINK) == 0)
1736 		return;
1737 
1738 	for (enq = 0; !if_sendq_empty(ifp); ) {
1739 		m_head = if_dequeue(ifp);
1740 		if (m_head == NULL)
1741 			break;
1742 		/*
1743 		 * Pack the data into the transmit ring. If we
1744 		 * don't have room, set the OACTIVE flag and wait
1745 		 * for the NIC to drain the ring.
1746 		 */
1747 		if (age_encap(sc, &m_head)) {
1748 			if (m_head == NULL)
1749 				break;
1750 			if_sendq_prepend(ifp, m_head);
1751 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1752 			break;
1753 		}
1754 
1755 		enq++;
1756 		/*
1757 		 * If there's a BPF listener, bounce a copy of this frame
1758 		 * to him.
1759 		 */
1760 		ETHER_BPF_MTAP(ifp, m_head);
1761 	}
1762 
1763 	if (enq > 0) {
1764 		/* Update mbox. */
1765 		AGE_COMMIT_MBOX(sc);
1766 		/* Set a timeout in case the chip goes out to lunch. */
1767 		sc->age_watchdog_timer = AGE_TX_TIMEOUT;
1768 	}
1769 }
1770 
1771 static void
1772 age_watchdog(struct age_softc *sc)
1773 {
1774 	if_t ifp;
1775 
1776 	AGE_LOCK_ASSERT(sc);
1777 
1778 	if (sc->age_watchdog_timer == 0 || --sc->age_watchdog_timer)
1779 		return;
1780 
1781 	ifp = sc->age_ifp;
1782 	if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1783 		if_printf(sc->age_ifp, "watchdog timeout (missed link)\n");
1784 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1785 		if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1786 		age_init_locked(sc);
1787 		return;
1788 	}
1789 	if (sc->age_cdata.age_tx_cnt == 0) {
1790 		if_printf(sc->age_ifp,
1791 		    "watchdog timeout (missed Tx interrupts) -- recovering\n");
1792 		if (!if_sendq_empty(ifp))
1793 			age_start_locked(ifp);
1794 		return;
1795 	}
1796 	if_printf(sc->age_ifp, "watchdog timeout\n");
1797 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1798 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1799 	age_init_locked(sc);
1800 	if (!if_sendq_empty(ifp))
1801 		age_start_locked(ifp);
1802 }
1803 
1804 static int
1805 age_ioctl(if_t ifp, u_long cmd, caddr_t data)
1806 {
1807 	struct age_softc *sc;
1808 	struct ifreq *ifr;
1809 	struct mii_data *mii;
1810 	uint32_t reg;
1811 	int error, mask;
1812 
1813 	sc = if_getsoftc(ifp);
1814 	ifr = (struct ifreq *)data;
1815 	error = 0;
1816 	switch (cmd) {
1817 	case SIOCSIFMTU:
1818 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > AGE_JUMBO_MTU)
1819 			error = EINVAL;
1820 		else if (if_getmtu(ifp) != ifr->ifr_mtu) {
1821 			AGE_LOCK(sc);
1822 			if_setmtu(ifp, ifr->ifr_mtu);
1823 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1824 				if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1825 				age_init_locked(sc);
1826 			}
1827 			AGE_UNLOCK(sc);
1828 		}
1829 		break;
1830 	case SIOCSIFFLAGS:
1831 		AGE_LOCK(sc);
1832 		if ((if_getflags(ifp) & IFF_UP) != 0) {
1833 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1834 				if (((if_getflags(ifp) ^ sc->age_if_flags)
1835 				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1836 					age_rxfilter(sc);
1837 			} else {
1838 				if ((sc->age_flags & AGE_FLAG_DETACH) == 0)
1839 					age_init_locked(sc);
1840 			}
1841 		} else {
1842 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1843 				age_stop(sc);
1844 		}
1845 		sc->age_if_flags = if_getflags(ifp);
1846 		AGE_UNLOCK(sc);
1847 		break;
1848 	case SIOCADDMULTI:
1849 	case SIOCDELMULTI:
1850 		AGE_LOCK(sc);
1851 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1852 			age_rxfilter(sc);
1853 		AGE_UNLOCK(sc);
1854 		break;
1855 	case SIOCSIFMEDIA:
1856 	case SIOCGIFMEDIA:
1857 		mii = device_get_softc(sc->age_miibus);
1858 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1859 		break;
1860 	case SIOCSIFCAP:
1861 		AGE_LOCK(sc);
1862 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
1863 		if ((mask & IFCAP_TXCSUM) != 0 &&
1864 		    (if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) {
1865 			if_togglecapenable(ifp, IFCAP_TXCSUM);
1866 			if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
1867 				if_sethwassistbits(ifp, AGE_CSUM_FEATURES, 0);
1868 			else
1869 				if_sethwassistbits(ifp, 0, AGE_CSUM_FEATURES);
1870 		}
1871 		if ((mask & IFCAP_RXCSUM) != 0 &&
1872 		    (if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0) {
1873 			if_togglecapenable(ifp, IFCAP_RXCSUM);
1874 			reg = CSR_READ_4(sc, AGE_MAC_CFG);
1875 			reg &= ~MAC_CFG_RXCSUM_ENB;
1876 			if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
1877 				reg |= MAC_CFG_RXCSUM_ENB;
1878 			CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1879 		}
1880 		if ((mask & IFCAP_TSO4) != 0 &&
1881 		    (if_getcapabilities(ifp) & IFCAP_TSO4) != 0) {
1882 			if_togglecapenable(ifp, IFCAP_TSO4);
1883 			if ((if_getcapenable(ifp) & IFCAP_TSO4) != 0)
1884 				if_sethwassistbits(ifp, CSUM_TSO, 0);
1885 			else
1886 				if_sethwassistbits(ifp, 0, CSUM_TSO);
1887 		}
1888 
1889 		if ((mask & IFCAP_WOL_MCAST) != 0 &&
1890 		    (if_getcapabilities(ifp) & IFCAP_WOL_MCAST) != 0)
1891 			if_togglecapenable(ifp, IFCAP_WOL_MCAST);
1892 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
1893 		    (if_getcapabilities(ifp) & IFCAP_WOL_MAGIC) != 0)
1894 			if_togglecapenable(ifp, IFCAP_WOL_MAGIC);
1895 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
1896 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWCSUM) != 0)
1897 			if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM);
1898 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1899 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0)
1900 			if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
1901 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1902 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
1903 			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
1904 			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0)
1905 				if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWTSO);
1906 			age_rxvlan(sc);
1907 		}
1908 		AGE_UNLOCK(sc);
1909 		VLAN_CAPABILITIES(ifp);
1910 		break;
1911 	default:
1912 		error = ether_ioctl(ifp, cmd, data);
1913 		break;
1914 	}
1915 
1916 	return (error);
1917 }
1918 
1919 static void
1920 age_mac_config(struct age_softc *sc)
1921 {
1922 	struct mii_data *mii;
1923 	uint32_t reg;
1924 
1925 	AGE_LOCK_ASSERT(sc);
1926 
1927 	mii = device_get_softc(sc->age_miibus);
1928 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1929 	reg &= ~MAC_CFG_FULL_DUPLEX;
1930 	reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1931 	reg &= ~MAC_CFG_SPEED_MASK;
1932 	/* Reprogram MAC with resolved speed/duplex. */
1933 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1934 	case IFM_10_T:
1935 	case IFM_100_TX:
1936 		reg |= MAC_CFG_SPEED_10_100;
1937 		break;
1938 	case IFM_1000_T:
1939 		reg |= MAC_CFG_SPEED_1000;
1940 		break;
1941 	}
1942 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1943 		reg |= MAC_CFG_FULL_DUPLEX;
1944 #ifdef notyet
1945 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1946 			reg |= MAC_CFG_TX_FC;
1947 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1948 			reg |= MAC_CFG_RX_FC;
1949 #endif
1950 	}
1951 
1952 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1953 }
1954 
1955 static void
1956 age_link_task(void *arg, int pending)
1957 {
1958 	struct age_softc *sc;
1959 	struct mii_data *mii;
1960 	if_t ifp;
1961 	uint32_t reg;
1962 
1963 	sc = (struct age_softc *)arg;
1964 
1965 	AGE_LOCK(sc);
1966 	mii = device_get_softc(sc->age_miibus);
1967 	ifp = sc->age_ifp;
1968 	if (mii == NULL || ifp == NULL ||
1969 	    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
1970 		AGE_UNLOCK(sc);
1971 		return;
1972 	}
1973 
1974 	sc->age_flags &= ~AGE_FLAG_LINK;
1975 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
1976 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
1977 		case IFM_10_T:
1978 		case IFM_100_TX:
1979 		case IFM_1000_T:
1980 			sc->age_flags |= AGE_FLAG_LINK;
1981 			break;
1982 		default:
1983 			break;
1984 		}
1985 	}
1986 
1987 	/* Stop Rx/Tx MACs. */
1988 	age_stop_rxmac(sc);
1989 	age_stop_txmac(sc);
1990 
1991 	/* Program MACs with resolved speed/duplex/flow-control. */
1992 	if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
1993 		age_mac_config(sc);
1994 		reg = CSR_READ_4(sc, AGE_MAC_CFG);
1995 		/* Restart DMA engine and Tx/Rx MAC. */
1996 		CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
1997 		    DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
1998 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
1999 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2000 	}
2001 
2002 	AGE_UNLOCK(sc);
2003 }
2004 
2005 static void
2006 age_stats_update(struct age_softc *sc)
2007 {
2008 	struct age_stats *stat;
2009 	struct smb *smb;
2010 	if_t ifp;
2011 
2012 	AGE_LOCK_ASSERT(sc);
2013 
2014 	stat = &sc->age_stat;
2015 
2016 	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2017 	    sc->age_cdata.age_smb_block_map,
2018 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2019 
2020 	smb = sc->age_rdata.age_smb_block;
2021 	if (smb->updated == 0)
2022 		return;
2023 
2024 	ifp = sc->age_ifp;
2025 	/* Rx stats. */
2026 	stat->rx_frames += smb->rx_frames;
2027 	stat->rx_bcast_frames += smb->rx_bcast_frames;
2028 	stat->rx_mcast_frames += smb->rx_mcast_frames;
2029 	stat->rx_pause_frames += smb->rx_pause_frames;
2030 	stat->rx_control_frames += smb->rx_control_frames;
2031 	stat->rx_crcerrs += smb->rx_crcerrs;
2032 	stat->rx_lenerrs += smb->rx_lenerrs;
2033 	stat->rx_bytes += smb->rx_bytes;
2034 	stat->rx_runts += smb->rx_runts;
2035 	stat->rx_fragments += smb->rx_fragments;
2036 	stat->rx_pkts_64 += smb->rx_pkts_64;
2037 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2038 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2039 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2040 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2041 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2042 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2043 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2044 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2045 	stat->rx_desc_oflows += smb->rx_desc_oflows;
2046 	stat->rx_alignerrs += smb->rx_alignerrs;
2047 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2048 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2049 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2050 
2051 	/* Tx stats. */
2052 	stat->tx_frames += smb->tx_frames;
2053 	stat->tx_bcast_frames += smb->tx_bcast_frames;
2054 	stat->tx_mcast_frames += smb->tx_mcast_frames;
2055 	stat->tx_pause_frames += smb->tx_pause_frames;
2056 	stat->tx_excess_defer += smb->tx_excess_defer;
2057 	stat->tx_control_frames += smb->tx_control_frames;
2058 	stat->tx_deferred += smb->tx_deferred;
2059 	stat->tx_bytes += smb->tx_bytes;
2060 	stat->tx_pkts_64 += smb->tx_pkts_64;
2061 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2062 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2063 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2064 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2065 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2066 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2067 	stat->tx_single_colls += smb->tx_single_colls;
2068 	stat->tx_multi_colls += smb->tx_multi_colls;
2069 	stat->tx_late_colls += smb->tx_late_colls;
2070 	stat->tx_excess_colls += smb->tx_excess_colls;
2071 	stat->tx_underrun += smb->tx_underrun;
2072 	stat->tx_desc_underrun += smb->tx_desc_underrun;
2073 	stat->tx_lenerrs += smb->tx_lenerrs;
2074 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2075 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2076 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2077 
2078 	/* Update counters in ifnet. */
2079 	if_inc_counter(ifp, IFCOUNTER_OPACKETS, smb->tx_frames);
2080 
2081 	if_inc_counter(ifp, IFCOUNTER_COLLISIONS, smb->tx_single_colls +
2082 	    smb->tx_multi_colls + smb->tx_late_colls +
2083 	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT);
2084 
2085 	if_inc_counter(ifp, IFCOUNTER_OERRORS, smb->tx_excess_colls +
2086 	    smb->tx_late_colls + smb->tx_underrun +
2087 	    smb->tx_pkts_truncated);
2088 
2089 	if_inc_counter(ifp, IFCOUNTER_IPACKETS, smb->rx_frames);
2090 
2091 	if_inc_counter(ifp, IFCOUNTER_IERRORS, smb->rx_crcerrs +
2092 	    smb->rx_lenerrs + smb->rx_runts + smb->rx_pkts_truncated +
2093 	    smb->rx_fifo_oflows + smb->rx_desc_oflows +
2094 	    smb->rx_alignerrs);
2095 
2096 	/* Update done, clear. */
2097 	smb->updated = 0;
2098 
2099 	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2100 	    sc->age_cdata.age_smb_block_map,
2101 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2102 }
2103 
2104 static int
2105 age_intr(void *arg)
2106 {
2107 	struct age_softc *sc;
2108 	uint32_t status;
2109 
2110 	sc = (struct age_softc *)arg;
2111 
2112 	status = CSR_READ_4(sc, AGE_INTR_STATUS);
2113 	if (status == 0 || (status & AGE_INTRS) == 0)
2114 		return (FILTER_STRAY);
2115 	/* Disable interrupts. */
2116 	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
2117 	taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2118 
2119 	return (FILTER_HANDLED);
2120 }
2121 
2122 static void
2123 age_int_task(void *arg, int pending)
2124 {
2125 	struct age_softc *sc;
2126 	if_t ifp;
2127 	struct cmb *cmb;
2128 	uint32_t status;
2129 
2130 	sc = (struct age_softc *)arg;
2131 
2132 	AGE_LOCK(sc);
2133 
2134 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2135 	    sc->age_cdata.age_cmb_block_map,
2136 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2137 	cmb = sc->age_rdata.age_cmb_block;
2138 	status = le32toh(cmb->intr_status);
2139 	if (sc->age_morework != 0)
2140 		status |= INTR_CMB_RX;
2141 	if ((status & AGE_INTRS) == 0)
2142 		goto done;
2143 
2144 	sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
2145 	    TPD_CONS_SHIFT;
2146 	sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
2147 	    RRD_PROD_SHIFT;
2148 	/* Let hardware know CMB was served. */
2149 	cmb->intr_status = 0;
2150 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2151 	    sc->age_cdata.age_cmb_block_map,
2152 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2153 
2154 	ifp = sc->age_ifp;
2155 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2156 		if ((status & INTR_CMB_RX) != 0)
2157 			sc->age_morework = age_rxintr(sc, sc->age_rr_prod,
2158 			    sc->age_process_limit);
2159 		if ((status & INTR_CMB_TX) != 0)
2160 			age_txintr(sc, sc->age_tpd_cons);
2161 		if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
2162 			if ((status & INTR_DMA_RD_TO_RST) != 0)
2163 				device_printf(sc->age_dev,
2164 				    "DMA read error! -- resetting\n");
2165 			if ((status & INTR_DMA_WR_TO_RST) != 0)
2166 				device_printf(sc->age_dev,
2167 				    "DMA write error! -- resetting\n");
2168 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2169 			age_init_locked(sc);
2170 		}
2171 		if (!if_sendq_empty(ifp))
2172 			age_start_locked(ifp);
2173 		if ((status & INTR_SMB) != 0)
2174 			age_stats_update(sc);
2175 	}
2176 
2177 	/* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
2178 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2179 	    sc->age_cdata.age_cmb_block_map,
2180 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2181 	status = le32toh(cmb->intr_status);
2182 	if (sc->age_morework != 0 || (status & AGE_INTRS) != 0) {
2183 		taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2184 		AGE_UNLOCK(sc);
2185 		return;
2186 	}
2187 
2188 done:
2189 	/* Re-enable interrupts. */
2190 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2191 	AGE_UNLOCK(sc);
2192 }
2193 
2194 static void
2195 age_txintr(struct age_softc *sc, int tpd_cons)
2196 {
2197 	if_t ifp;
2198 	struct age_txdesc *txd;
2199 	int cons, prog;
2200 
2201 	AGE_LOCK_ASSERT(sc);
2202 
2203 	ifp = sc->age_ifp;
2204 
2205 	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2206 	    sc->age_cdata.age_tx_ring_map,
2207 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2208 
2209 	/*
2210 	 * Go through our Tx list and free mbufs for those
2211 	 * frames which have been transmitted.
2212 	 */
2213 	cons = sc->age_cdata.age_tx_cons;
2214 	for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
2215 		if (sc->age_cdata.age_tx_cnt <= 0)
2216 			break;
2217 		prog++;
2218 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2219 		sc->age_cdata.age_tx_cnt--;
2220 		txd = &sc->age_cdata.age_txdesc[cons];
2221 		/*
2222 		 * Clear Tx descriptors, it's not required but would
2223 		 * help debugging in case of Tx issues.
2224 		 */
2225 		txd->tx_desc->addr = 0;
2226 		txd->tx_desc->len = 0;
2227 		txd->tx_desc->flags = 0;
2228 
2229 		if (txd->tx_m == NULL)
2230 			continue;
2231 		/* Reclaim transmitted mbufs. */
2232 		bus_dmamap_sync(sc->age_cdata.age_tx_tag, txd->tx_dmamap,
2233 		    BUS_DMASYNC_POSTWRITE);
2234 		bus_dmamap_unload(sc->age_cdata.age_tx_tag, txd->tx_dmamap);
2235 		m_freem(txd->tx_m);
2236 		txd->tx_m = NULL;
2237 	}
2238 
2239 	if (prog > 0) {
2240 		sc->age_cdata.age_tx_cons = cons;
2241 
2242 		/*
2243 		 * Unarm watchdog timer only when there are no pending
2244 		 * Tx descriptors in queue.
2245 		 */
2246 		if (sc->age_cdata.age_tx_cnt == 0)
2247 			sc->age_watchdog_timer = 0;
2248 		bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2249 		    sc->age_cdata.age_tx_ring_map,
2250 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2251 	}
2252 }
2253 
2254 #ifndef __NO_STRICT_ALIGNMENT
2255 static struct mbuf *
2256 age_fixup_rx(if_t ifp, struct mbuf *m)
2257 {
2258 	struct mbuf *n;
2259         int i;
2260         uint16_t *src, *dst;
2261 
2262 	src = mtod(m, uint16_t *);
2263 	dst = src - 3;
2264 
2265 	if (m->m_next == NULL) {
2266 		for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
2267 			*dst++ = *src++;
2268 		m->m_data -= 6;
2269 		return (m);
2270 	}
2271 	/*
2272 	 * Append a new mbuf to received mbuf chain and copy ethernet
2273 	 * header from the mbuf chain. This can save lots of CPU
2274 	 * cycles for jumbo frame.
2275 	 */
2276 	MGETHDR(n, M_NOWAIT, MT_DATA);
2277 	if (n == NULL) {
2278 		if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2279 		m_freem(m);
2280 		return (NULL);
2281 	}
2282 	bcopy(m->m_data, n->m_data, ETHER_HDR_LEN);
2283 	m->m_data += ETHER_HDR_LEN;
2284 	m->m_len -= ETHER_HDR_LEN;
2285 	n->m_len = ETHER_HDR_LEN;
2286 	M_MOVE_PKTHDR(n, m);
2287 	n->m_next = m;
2288 	return (n);
2289 }
2290 #endif
2291 
2292 /* Receive a frame. */
2293 static void
2294 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
2295 {
2296 	struct age_rxdesc *rxd;
2297 	if_t ifp;
2298 	struct mbuf *mp, *m;
2299 	uint32_t status, index, vtag;
2300 	int count, nsegs;
2301 	int rx_cons;
2302 
2303 	AGE_LOCK_ASSERT(sc);
2304 
2305 	ifp = sc->age_ifp;
2306 	status = le32toh(rxrd->flags);
2307 	index = le32toh(rxrd->index);
2308 	rx_cons = AGE_RX_CONS(index);
2309 	nsegs = AGE_RX_NSEGS(index);
2310 
2311 	sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
2312 	if ((status & (AGE_RRD_ERROR | AGE_RRD_LENGTH_NOK)) != 0) {
2313 		/*
2314 		 * We want to pass the following frames to upper
2315 		 * layer regardless of error status of Rx return
2316 		 * ring.
2317 		 *
2318 		 *  o IP/TCP/UDP checksum is bad.
2319 		 *  o frame length and protocol specific length
2320 		 *     does not match.
2321 		 */
2322 		status |= AGE_RRD_IPCSUM_NOK | AGE_RRD_TCP_UDPCSUM_NOK;
2323 		if ((status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
2324 		    AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0)
2325 			return;
2326 	}
2327 
2328 	for (count = 0; count < nsegs; count++,
2329 	    AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
2330 		rxd = &sc->age_cdata.age_rxdesc[rx_cons];
2331 		mp = rxd->rx_m;
2332 		/* Add a new receive buffer to the ring. */
2333 		if (age_newbuf(sc, rxd) != 0) {
2334 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2335 			/* Reuse Rx buffers. */
2336 			if (sc->age_cdata.age_rxhead != NULL)
2337 				m_freem(sc->age_cdata.age_rxhead);
2338 			break;
2339 		}
2340 
2341 		/*
2342 		 * Assume we've received a full sized frame.
2343 		 * Actual size is fixed when we encounter the end of
2344 		 * multi-segmented frame.
2345 		 */
2346 		mp->m_len = AGE_RX_BUF_SIZE;
2347 
2348 		/* Chain received mbufs. */
2349 		if (sc->age_cdata.age_rxhead == NULL) {
2350 			sc->age_cdata.age_rxhead = mp;
2351 			sc->age_cdata.age_rxtail = mp;
2352 		} else {
2353 			mp->m_flags &= ~M_PKTHDR;
2354 			sc->age_cdata.age_rxprev_tail =
2355 			    sc->age_cdata.age_rxtail;
2356 			sc->age_cdata.age_rxtail->m_next = mp;
2357 			sc->age_cdata.age_rxtail = mp;
2358 		}
2359 
2360 		if (count == nsegs - 1) {
2361 			/* Last desc. for this frame. */
2362 			m = sc->age_cdata.age_rxhead;
2363 			m->m_flags |= M_PKTHDR;
2364 			/*
2365 			 * It seems that L1 controller has no way
2366 			 * to tell hardware to strip CRC bytes.
2367 			 */
2368 			m->m_pkthdr.len = sc->age_cdata.age_rxlen -
2369 			    ETHER_CRC_LEN;
2370 			if (nsegs > 1) {
2371 				/* Set last mbuf size. */
2372 				mp->m_len = sc->age_cdata.age_rxlen -
2373 				    ((nsegs - 1) * AGE_RX_BUF_SIZE);
2374 				/* Remove the CRC bytes in chained mbufs. */
2375 				if (mp->m_len <= ETHER_CRC_LEN) {
2376 					sc->age_cdata.age_rxtail =
2377 					    sc->age_cdata.age_rxprev_tail;
2378 					sc->age_cdata.age_rxtail->m_len -=
2379 					    (ETHER_CRC_LEN - mp->m_len);
2380 					sc->age_cdata.age_rxtail->m_next = NULL;
2381 					m_freem(mp);
2382 				} else {
2383 					mp->m_len -= ETHER_CRC_LEN;
2384 				}
2385 			} else
2386 				m->m_len = m->m_pkthdr.len;
2387 			m->m_pkthdr.rcvif = ifp;
2388 			/*
2389 			 * Set checksum information.
2390 			 * It seems that L1 controller can compute partial
2391 			 * checksum. The partial checksum value can be used
2392 			 * to accelerate checksum computation for fragmented
2393 			 * TCP/UDP packets. Upper network stack already
2394 			 * takes advantage of the partial checksum value in
2395 			 * IP reassembly stage. But I'm not sure the
2396 			 * correctness of the partial hardware checksum
2397 			 * assistance due to lack of data sheet. If it is
2398 			 * proven to work on L1 I'll enable it.
2399 			 */
2400 			if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0 &&
2401 			    (status & AGE_RRD_IPV4) != 0) {
2402 				if ((status & AGE_RRD_IPCSUM_NOK) == 0)
2403 					m->m_pkthdr.csum_flags |=
2404 					    CSUM_IP_CHECKED | CSUM_IP_VALID;
2405 				if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
2406 				    (status & AGE_RRD_TCP_UDPCSUM_NOK) == 0) {
2407 					m->m_pkthdr.csum_flags |=
2408 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2409 					m->m_pkthdr.csum_data = 0xffff;
2410 				}
2411 				/*
2412 				 * Don't mark bad checksum for TCP/UDP frames
2413 				 * as fragmented frames may always have set
2414 				 * bad checksummed bit of descriptor status.
2415 				 */
2416 			}
2417 
2418 			/* Check for VLAN tagged frames. */
2419 			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0 &&
2420 			    (status & AGE_RRD_VLAN) != 0) {
2421 				vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
2422 				m->m_pkthdr.ether_vtag = AGE_RX_VLAN_TAG(vtag);
2423 				m->m_flags |= M_VLANTAG;
2424 			}
2425 #ifndef __NO_STRICT_ALIGNMENT
2426 			m = age_fixup_rx(ifp, m);
2427 			if (m != NULL)
2428 #endif
2429 			{
2430 			/* Pass it on. */
2431 			AGE_UNLOCK(sc);
2432 			if_input(ifp, m);
2433 			AGE_LOCK(sc);
2434 			}
2435 		}
2436 	}
2437 
2438 	/* Reset mbuf chains. */
2439 	AGE_RXCHAIN_RESET(sc);
2440 }
2441 
2442 static int
2443 age_rxintr(struct age_softc *sc, int rr_prod, int count)
2444 {
2445 	struct rx_rdesc *rxrd;
2446 	int rr_cons, nsegs, pktlen, prog;
2447 
2448 	AGE_LOCK_ASSERT(sc);
2449 
2450 	rr_cons = sc->age_cdata.age_rr_cons;
2451 	if (rr_cons == rr_prod)
2452 		return (0);
2453 
2454 	bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2455 	    sc->age_cdata.age_rr_ring_map,
2456 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2457 	bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2458 	    sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_POSTWRITE);
2459 
2460 	for (prog = 0; rr_cons != rr_prod; prog++) {
2461 		if (count-- <= 0)
2462 			break;
2463 		rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
2464 		nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
2465 		if (nsegs == 0)
2466 			break;
2467 		/*
2468 		 * Check number of segments against received bytes.
2469 		 * Non-matching value would indicate that hardware
2470 		 * is still trying to update Rx return descriptors.
2471 		 * I'm not sure whether this check is really needed.
2472 		 */
2473 		pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
2474 		if (nsegs != howmany(pktlen, AGE_RX_BUF_SIZE))
2475 			break;
2476 
2477 		/* Received a frame. */
2478 		age_rxeof(sc, rxrd);
2479 		/* Clear return ring. */
2480 		rxrd->index = 0;
2481 		AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
2482 		sc->age_cdata.age_rx_cons += nsegs;
2483 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
2484 	}
2485 
2486 	if (prog > 0) {
2487 		/* Update the consumer index. */
2488 		sc->age_cdata.age_rr_cons = rr_cons;
2489 
2490 		bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2491 		    sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREWRITE);
2492 		/* Sync descriptors. */
2493 		bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2494 		    sc->age_cdata.age_rr_ring_map,
2495 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2496 
2497 		/* Notify hardware availability of new Rx buffers. */
2498 		AGE_COMMIT_MBOX(sc);
2499 	}
2500 
2501 	return (count > 0 ? 0 : EAGAIN);
2502 }
2503 
2504 static void
2505 age_tick(void *arg)
2506 {
2507 	struct age_softc *sc;
2508 	struct mii_data *mii;
2509 
2510 	sc = (struct age_softc *)arg;
2511 
2512 	AGE_LOCK_ASSERT(sc);
2513 
2514 	mii = device_get_softc(sc->age_miibus);
2515 	mii_tick(mii);
2516 	age_watchdog(sc);
2517 	callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2518 }
2519 
2520 static void
2521 age_reset(struct age_softc *sc)
2522 {
2523 	uint32_t reg;
2524 	int i;
2525 
2526 	CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
2527 	CSR_READ_4(sc, AGE_MASTER_CFG);
2528 	DELAY(1000);
2529 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2530 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2531 			break;
2532 		DELAY(10);
2533 	}
2534 
2535 	if (i == 0)
2536 		device_printf(sc->age_dev, "reset timeout(0x%08x)!\n", reg);
2537 	/* Initialize PCIe module. From Linux. */
2538 	CSR_WRITE_4(sc, 0x12FC, 0x6500);
2539 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2540 }
2541 
2542 static void
2543 age_init(void *xsc)
2544 {
2545 	struct age_softc *sc;
2546 
2547 	sc = (struct age_softc *)xsc;
2548 	AGE_LOCK(sc);
2549 	age_init_locked(sc);
2550 	AGE_UNLOCK(sc);
2551 }
2552 
2553 static void
2554 age_init_locked(struct age_softc *sc)
2555 {
2556 	if_t ifp;
2557 	struct mii_data *mii;
2558 	uint8_t eaddr[ETHER_ADDR_LEN];
2559 	bus_addr_t paddr;
2560 	uint32_t reg, fsize;
2561 	uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
2562 	int error;
2563 
2564 	AGE_LOCK_ASSERT(sc);
2565 
2566 	ifp = sc->age_ifp;
2567 	mii = device_get_softc(sc->age_miibus);
2568 
2569 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2570 		return;
2571 
2572 	/*
2573 	 * Cancel any pending I/O.
2574 	 */
2575 	age_stop(sc);
2576 
2577 	/*
2578 	 * Reset the chip to a known state.
2579 	 */
2580 	age_reset(sc);
2581 
2582 	/* Initialize descriptors. */
2583 	error = age_init_rx_ring(sc);
2584         if (error != 0) {
2585                 device_printf(sc->age_dev, "no memory for Rx buffers.\n");
2586                 age_stop(sc);
2587 		return;
2588         }
2589 	age_init_rr_ring(sc);
2590 	age_init_tx_ring(sc);
2591 	age_init_cmb_block(sc);
2592 	age_init_smb_block(sc);
2593 
2594 	/* Reprogram the station address. */
2595 	bcopy(if_getlladdr(ifp), eaddr, ETHER_ADDR_LEN);
2596 	CSR_WRITE_4(sc, AGE_PAR0,
2597 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2598 	CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
2599 
2600 	/* Set descriptor base addresses. */
2601 	paddr = sc->age_rdata.age_tx_ring_paddr;
2602 	CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
2603 	paddr = sc->age_rdata.age_rx_ring_paddr;
2604 	CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
2605 	paddr = sc->age_rdata.age_rr_ring_paddr;
2606 	CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
2607 	paddr = sc->age_rdata.age_tx_ring_paddr;
2608 	CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
2609 	paddr = sc->age_rdata.age_cmb_block_paddr;
2610 	CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
2611 	paddr = sc->age_rdata.age_smb_block_paddr;
2612 	CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
2613 	/* Set Rx/Rx return descriptor counter. */
2614 	CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
2615 	    ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
2616 	    DESC_RRD_CNT_MASK) |
2617 	    ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
2618 	/* Set Tx descriptor counter. */
2619 	CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
2620 	    (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
2621 
2622 	/* Tell hardware that we're ready to load descriptors. */
2623 	CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
2624 
2625 	/*
2626 	 * Initialize mailbox register.
2627 	 * Updated producer/consumer index information is exchanged
2628 	 * through this mailbox register. However Tx producer and
2629 	 * Rx return consumer/Rx producer are all shared such that
2630 	 * it's hard to separate code path between Tx and Rx without
2631 	 * locking. If L1 hardware have a separate mail box register
2632 	 * for Tx and Rx consumer/producer management we could have
2633 	 * independent Tx/Rx handler which in turn Rx handler could have
2634 	 * been run without any locking.
2635 	 */
2636 	AGE_COMMIT_MBOX(sc);
2637 
2638 	/* Configure IPG/IFG parameters. */
2639 	CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
2640 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
2641 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2642 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2643 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
2644 
2645 	/* Set parameters for half-duplex media. */
2646 	CSR_WRITE_4(sc, AGE_HDPX_CFG,
2647 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2648 	    HDPX_CFG_LCOL_MASK) |
2649 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2650 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2651 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2652 	    HDPX_CFG_ABEBT_MASK) |
2653 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2654 	    HDPX_CFG_JAMIPG_MASK));
2655 
2656 	/* Configure interrupt moderation timer. */
2657 	CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
2658 	reg = CSR_READ_4(sc, AGE_MASTER_CFG);
2659 	reg &= ~MASTER_MTIMER_ENB;
2660 	if (AGE_USECS(sc->age_int_mod) == 0)
2661 		reg &= ~MASTER_ITIMER_ENB;
2662 	else
2663 		reg |= MASTER_ITIMER_ENB;
2664 	CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
2665 	if (bootverbose)
2666 		device_printf(sc->age_dev, "interrupt moderation is %d us.\n",
2667 		    sc->age_int_mod);
2668 	CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
2669 
2670 	/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
2671 	if (if_getmtu(ifp) < ETHERMTU)
2672 		sc->age_max_frame_size = ETHERMTU;
2673 	else
2674 		sc->age_max_frame_size = if_getmtu(ifp);
2675 	sc->age_max_frame_size += ETHER_HDR_LEN +
2676 	    sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
2677 	CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
2678 	/* Configure jumbo frame. */
2679 	fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
2680 	CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
2681 	    (((fsize / sizeof(uint64_t)) <<
2682 	    RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
2683 	    ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
2684 	    RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
2685 	    ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
2686 	    RXQ_JUMBO_CFG_RRD_TIMER_MASK));
2687 
2688 	/* Configure flow-control parameters. From Linux. */
2689 	if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
2690 		/*
2691 		 * Magic workaround for old-L1.
2692 		 * Don't know which hw revision requires this magic.
2693 		 */
2694 		CSR_WRITE_4(sc, 0x12FC, 0x6500);
2695 		/*
2696 		 * Another magic workaround for flow-control mode
2697 		 * change. From Linux.
2698 		 */
2699 		CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2700 	}
2701 	/*
2702 	 * TODO
2703 	 *  Should understand pause parameter relationships between FIFO
2704 	 *  size and number of Rx descriptors and Rx return descriptors.
2705 	 *
2706 	 *  Magic parameters came from Linux.
2707 	 */
2708 	switch (sc->age_chip_rev) {
2709 	case 0x8001:
2710 	case 0x9001:
2711 	case 0x9002:
2712 	case 0x9003:
2713 		rxf_hi = AGE_RX_RING_CNT / 16;
2714 		rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
2715 		rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
2716 		rrd_lo = AGE_RR_RING_CNT / 16;
2717 		break;
2718 	default:
2719 		reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
2720 		rxf_lo = reg / 16;
2721 		if (rxf_lo < 192)
2722 			rxf_lo = 192;
2723 		rxf_hi = (reg * 7) / 8;
2724 		if (rxf_hi < rxf_lo)
2725 			rxf_hi = rxf_lo + 16;
2726 		reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
2727 		rrd_lo = reg / 8;
2728 		rrd_hi = (reg * 7) / 8;
2729 		if (rrd_lo < 2)
2730 			rrd_lo = 2;
2731 		if (rrd_hi < rrd_lo)
2732 			rrd_hi = rrd_lo + 3;
2733 		break;
2734 	}
2735 	CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
2736 	    ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
2737 	    RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
2738 	    ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
2739 	    RXQ_FIFO_PAUSE_THRESH_HI_MASK));
2740 	CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
2741 	    ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
2742 	    RXQ_RRD_PAUSE_THRESH_LO_MASK) |
2743 	    ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
2744 	    RXQ_RRD_PAUSE_THRESH_HI_MASK));
2745 
2746 	/* Configure RxQ. */
2747 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
2748 	    ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
2749 	    RXQ_CFG_RD_BURST_MASK) |
2750 	    ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
2751 	    RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
2752 	    ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
2753 	    RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
2754 	    RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
2755 
2756 	/* Configure TxQ. */
2757 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
2758 	    ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
2759 	    TXQ_CFG_TPD_BURST_MASK) |
2760 	    ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
2761 	    TXQ_CFG_TX_FIFO_BURST_MASK) |
2762 	    ((TXQ_CFG_TPD_FETCH_DEFAULT <<
2763 	    TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
2764 	    TXQ_CFG_ENB);
2765 
2766 	CSR_WRITE_4(sc, AGE_TX_JUMBO_TPD_TH_IPG,
2767 	    (((fsize / sizeof(uint64_t) << TX_JUMBO_TPD_TH_SHIFT)) &
2768 	    TX_JUMBO_TPD_TH_MASK) |
2769 	    ((TX_JUMBO_TPD_IPG_DEFAULT << TX_JUMBO_TPD_IPG_SHIFT) &
2770 	    TX_JUMBO_TPD_IPG_MASK));
2771 	/* Configure DMA parameters. */
2772 	CSR_WRITE_4(sc, AGE_DMA_CFG,
2773 	    DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
2774 	    sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
2775 	    sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
2776 
2777 	/* Configure CMB DMA write threshold. */
2778 	CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
2779 	    ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
2780 	    CMB_WR_THRESH_RRD_MASK) |
2781 	    ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
2782 	    CMB_WR_THRESH_TPD_MASK));
2783 
2784 	/* Set CMB/SMB timer and enable them. */
2785 	CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
2786 	    ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
2787 	    ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
2788 	/* Request SMB updates for every seconds. */
2789 	CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
2790 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
2791 
2792 	/*
2793 	 * Disable all WOL bits as WOL can interfere normal Rx
2794 	 * operation.
2795 	 */
2796 	CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
2797 
2798 	/*
2799 	 * Configure Tx/Rx MACs.
2800 	 *  - Auto-padding for short frames.
2801 	 *  - Enable CRC generation.
2802 	 *  Start with full-duplex/1000Mbps media. Actual reconfiguration
2803 	 *  of MAC is followed after link establishment.
2804 	 */
2805 	CSR_WRITE_4(sc, AGE_MAC_CFG,
2806 	    MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
2807 	    MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
2808 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2809 	    MAC_CFG_PREAMBLE_MASK));
2810 	/* Set up the receive filter. */
2811 	age_rxfilter(sc);
2812 	age_rxvlan(sc);
2813 
2814 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2815 	if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
2816 		reg |= MAC_CFG_RXCSUM_ENB;
2817 
2818 	/* Ack all pending interrupts and clear it. */
2819 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2820 	CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
2821 
2822 	/* Finally enable Tx/Rx MAC. */
2823 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
2824 
2825 	sc->age_flags &= ~AGE_FLAG_LINK;
2826 	/* Switch to the current media. */
2827 	mii_mediachg(mii);
2828 
2829 	callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2830 
2831 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
2832 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2833 }
2834 
2835 static void
2836 age_stop(struct age_softc *sc)
2837 {
2838 	if_t ifp;
2839 	struct age_txdesc *txd;
2840 	struct age_rxdesc *rxd;
2841 	uint32_t reg;
2842 	int i;
2843 
2844 	AGE_LOCK_ASSERT(sc);
2845 	/*
2846 	 * Mark the interface down and cancel the watchdog timer.
2847 	 */
2848 	ifp = sc->age_ifp;
2849 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
2850 	sc->age_flags &= ~AGE_FLAG_LINK;
2851 	callout_stop(&sc->age_tick_ch);
2852 	sc->age_watchdog_timer = 0;
2853 
2854 	/*
2855 	 * Disable interrupts.
2856 	 */
2857 	CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
2858 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
2859 	/* Stop CMB/SMB updates. */
2860 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
2861 	/* Stop Rx/Tx MAC. */
2862 	age_stop_rxmac(sc);
2863 	age_stop_txmac(sc);
2864 	/* Stop DMA. */
2865 	CSR_WRITE_4(sc, AGE_DMA_CFG,
2866 	    CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
2867 	/* Stop TxQ/RxQ. */
2868 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
2869 	    CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
2870 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
2871 	    CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
2872 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2873 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2874 			break;
2875 		DELAY(10);
2876 	}
2877 	if (i == 0)
2878 		device_printf(sc->age_dev,
2879 		    "stopping Rx/Tx MACs timed out(0x%08x)!\n", reg);
2880 
2881 	 /* Reclaim Rx buffers that have been processed. */
2882 	if (sc->age_cdata.age_rxhead != NULL)
2883 		m_freem(sc->age_cdata.age_rxhead);
2884 	AGE_RXCHAIN_RESET(sc);
2885 	/*
2886 	 * Free RX and TX mbufs still in the queues.
2887 	 */
2888 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
2889 		rxd = &sc->age_cdata.age_rxdesc[i];
2890 		if (rxd->rx_m != NULL) {
2891 			bus_dmamap_sync(sc->age_cdata.age_rx_tag,
2892 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2893 			bus_dmamap_unload(sc->age_cdata.age_rx_tag,
2894 			    rxd->rx_dmamap);
2895 			m_freem(rxd->rx_m);
2896 			rxd->rx_m = NULL;
2897 		}
2898         }
2899 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2900 		txd = &sc->age_cdata.age_txdesc[i];
2901 		if (txd->tx_m != NULL) {
2902 			bus_dmamap_sync(sc->age_cdata.age_tx_tag,
2903 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2904 			bus_dmamap_unload(sc->age_cdata.age_tx_tag,
2905 			    txd->tx_dmamap);
2906 			m_freem(txd->tx_m);
2907 			txd->tx_m = NULL;
2908 		}
2909         }
2910 }
2911 
2912 static void
2913 age_stop_txmac(struct age_softc *sc)
2914 {
2915 	uint32_t reg;
2916 	int i;
2917 
2918 	AGE_LOCK_ASSERT(sc);
2919 
2920 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2921 	if ((reg & MAC_CFG_TX_ENB) != 0) {
2922 		reg &= ~MAC_CFG_TX_ENB;
2923 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2924 	}
2925 	/* Stop Tx DMA engine. */
2926 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2927 	if ((reg & DMA_CFG_RD_ENB) != 0) {
2928 		reg &= ~DMA_CFG_RD_ENB;
2929 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2930 	}
2931 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2932 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2933 		    (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2934 			break;
2935 		DELAY(10);
2936 	}
2937 	if (i == 0)
2938 		device_printf(sc->age_dev, "stopping TxMAC timeout!\n");
2939 }
2940 
2941 static void
2942 age_stop_rxmac(struct age_softc *sc)
2943 {
2944 	uint32_t reg;
2945 	int i;
2946 
2947 	AGE_LOCK_ASSERT(sc);
2948 
2949 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2950 	if ((reg & MAC_CFG_RX_ENB) != 0) {
2951 		reg &= ~MAC_CFG_RX_ENB;
2952 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2953 	}
2954 	/* Stop Rx DMA engine. */
2955 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2956 	if ((reg & DMA_CFG_WR_ENB) != 0) {
2957 		reg &= ~DMA_CFG_WR_ENB;
2958 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2959 	}
2960 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2961 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2962 		    (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2963 			break;
2964 		DELAY(10);
2965 	}
2966 	if (i == 0)
2967 		device_printf(sc->age_dev, "stopping RxMAC timeout!\n");
2968 }
2969 
2970 static void
2971 age_init_tx_ring(struct age_softc *sc)
2972 {
2973 	struct age_ring_data *rd;
2974 	struct age_txdesc *txd;
2975 	int i;
2976 
2977 	AGE_LOCK_ASSERT(sc);
2978 
2979 	sc->age_cdata.age_tx_prod = 0;
2980 	sc->age_cdata.age_tx_cons = 0;
2981 	sc->age_cdata.age_tx_cnt = 0;
2982 
2983 	rd = &sc->age_rdata;
2984 	bzero(rd->age_tx_ring, AGE_TX_RING_SZ);
2985 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2986 		txd = &sc->age_cdata.age_txdesc[i];
2987 		txd->tx_desc = &rd->age_tx_ring[i];
2988 		txd->tx_m = NULL;
2989 	}
2990 
2991 	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2992 	    sc->age_cdata.age_tx_ring_map,
2993 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2994 }
2995 
2996 static int
2997 age_init_rx_ring(struct age_softc *sc)
2998 {
2999 	struct age_ring_data *rd;
3000 	struct age_rxdesc *rxd;
3001 	int i;
3002 
3003 	AGE_LOCK_ASSERT(sc);
3004 
3005 	sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
3006 	sc->age_morework = 0;
3007 	rd = &sc->age_rdata;
3008 	bzero(rd->age_rx_ring, AGE_RX_RING_SZ);
3009 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
3010 		rxd = &sc->age_cdata.age_rxdesc[i];
3011 		rxd->rx_m = NULL;
3012 		rxd->rx_desc = &rd->age_rx_ring[i];
3013 		if (age_newbuf(sc, rxd) != 0)
3014 			return (ENOBUFS);
3015 	}
3016 
3017 	bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
3018 	    sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREWRITE);
3019 
3020 	return (0);
3021 }
3022 
3023 static void
3024 age_init_rr_ring(struct age_softc *sc)
3025 {
3026 	struct age_ring_data *rd;
3027 
3028 	AGE_LOCK_ASSERT(sc);
3029 
3030 	sc->age_cdata.age_rr_cons = 0;
3031 	AGE_RXCHAIN_RESET(sc);
3032 
3033 	rd = &sc->age_rdata;
3034 	bzero(rd->age_rr_ring, AGE_RR_RING_SZ);
3035 	bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
3036 	    sc->age_cdata.age_rr_ring_map,
3037 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3038 }
3039 
3040 static void
3041 age_init_cmb_block(struct age_softc *sc)
3042 {
3043 	struct age_ring_data *rd;
3044 
3045 	AGE_LOCK_ASSERT(sc);
3046 
3047 	rd = &sc->age_rdata;
3048 	bzero(rd->age_cmb_block, AGE_CMB_BLOCK_SZ);
3049 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
3050 	    sc->age_cdata.age_cmb_block_map,
3051 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3052 }
3053 
3054 static void
3055 age_init_smb_block(struct age_softc *sc)
3056 {
3057 	struct age_ring_data *rd;
3058 
3059 	AGE_LOCK_ASSERT(sc);
3060 
3061 	rd = &sc->age_rdata;
3062 	bzero(rd->age_smb_block, AGE_SMB_BLOCK_SZ);
3063 	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
3064 	    sc->age_cdata.age_smb_block_map,
3065 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3066 }
3067 
3068 static int
3069 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd)
3070 {
3071 	struct rx_desc *desc;
3072 	struct mbuf *m;
3073 	bus_dma_segment_t segs[1];
3074 	bus_dmamap_t map;
3075 	int nsegs;
3076 
3077 	AGE_LOCK_ASSERT(sc);
3078 
3079 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
3080 	if (m == NULL)
3081 		return (ENOBUFS);
3082 	m->m_len = m->m_pkthdr.len = MCLBYTES;
3083 #ifndef __NO_STRICT_ALIGNMENT
3084 	m_adj(m, AGE_RX_BUF_ALIGN);
3085 #endif
3086 
3087 	if (bus_dmamap_load_mbuf_sg(sc->age_cdata.age_rx_tag,
3088 	    sc->age_cdata.age_rx_sparemap, m, segs, &nsegs, 0) != 0) {
3089 		m_freem(m);
3090 		return (ENOBUFS);
3091 	}
3092 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
3093 
3094 	if (rxd->rx_m != NULL) {
3095 		bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3096 		    BUS_DMASYNC_POSTREAD);
3097 		bus_dmamap_unload(sc->age_cdata.age_rx_tag, rxd->rx_dmamap);
3098 	}
3099 	map = rxd->rx_dmamap;
3100 	rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
3101 	sc->age_cdata.age_rx_sparemap = map;
3102 	bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3103 	    BUS_DMASYNC_PREREAD);
3104 	rxd->rx_m = m;
3105 
3106 	desc = rxd->rx_desc;
3107 	desc->addr = htole64(segs[0].ds_addr);
3108 	desc->len = htole32((segs[0].ds_len & AGE_RD_LEN_MASK) <<
3109 	    AGE_RD_LEN_SHIFT);
3110 	return (0);
3111 }
3112 
3113 static void
3114 age_rxvlan(struct age_softc *sc)
3115 {
3116 	if_t ifp;
3117 	uint32_t reg;
3118 
3119 	AGE_LOCK_ASSERT(sc);
3120 
3121 	ifp = sc->age_ifp;
3122 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
3123 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3124 	if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0)
3125 		reg |= MAC_CFG_VLAN_TAG_STRIP;
3126 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
3127 }
3128 
3129 static u_int
3130 age_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
3131 {
3132 	uint32_t *mchash = arg;
3133 	uint32_t crc;
3134 
3135 	crc = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN);
3136 	mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3137 
3138 	return (1);
3139 }
3140 
3141 static void
3142 age_rxfilter(struct age_softc *sc)
3143 {
3144 	if_t ifp;
3145 	uint32_t mchash[2];
3146 	uint32_t rxcfg;
3147 
3148 	AGE_LOCK_ASSERT(sc);
3149 
3150 	ifp = sc->age_ifp;
3151 
3152 	rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
3153 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3154 	if ((if_getflags(ifp) & IFF_BROADCAST) != 0)
3155 		rxcfg |= MAC_CFG_BCAST;
3156 	if ((if_getflags(ifp) & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3157 		if ((if_getflags(ifp) & IFF_PROMISC) != 0)
3158 			rxcfg |= MAC_CFG_PROMISC;
3159 		if ((if_getflags(ifp) & IFF_ALLMULTI) != 0)
3160 			rxcfg |= MAC_CFG_ALLMULTI;
3161 		CSR_WRITE_4(sc, AGE_MAR0, 0xFFFFFFFF);
3162 		CSR_WRITE_4(sc, AGE_MAR1, 0xFFFFFFFF);
3163 		CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3164 		return;
3165 	}
3166 
3167 	/* Program new filter. */
3168 	bzero(mchash, sizeof(mchash));
3169 	if_foreach_llmaddr(ifp, age_hash_maddr, mchash);
3170 
3171 	CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
3172 	CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
3173 	CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3174 }
3175 
3176 static int
3177 sysctl_age_stats(SYSCTL_HANDLER_ARGS)
3178 {
3179 	struct age_softc *sc;
3180 	struct age_stats *stats;
3181 	int error, result;
3182 
3183 	result = -1;
3184 	error = sysctl_handle_int(oidp, &result, 0, req);
3185 
3186 	if (error != 0 || req->newptr == NULL)
3187 		return (error);
3188 
3189 	if (result != 1)
3190 		return (error);
3191 
3192 	sc = (struct age_softc *)arg1;
3193 	stats = &sc->age_stat;
3194 	printf("%s statistics:\n", device_get_nameunit(sc->age_dev));
3195 	printf("Transmit good frames : %ju\n",
3196 	    (uintmax_t)stats->tx_frames);
3197 	printf("Transmit good broadcast frames : %ju\n",
3198 	    (uintmax_t)stats->tx_bcast_frames);
3199 	printf("Transmit good multicast frames : %ju\n",
3200 	    (uintmax_t)stats->tx_mcast_frames);
3201 	printf("Transmit pause control frames : %u\n",
3202 	    stats->tx_pause_frames);
3203 	printf("Transmit control frames : %u\n",
3204 	    stats->tx_control_frames);
3205 	printf("Transmit frames with excessive deferrals : %u\n",
3206 	    stats->tx_excess_defer);
3207 	printf("Transmit deferrals : %u\n",
3208 	    stats->tx_deferred);
3209 	printf("Transmit good octets : %ju\n",
3210 	    (uintmax_t)stats->tx_bytes);
3211 	printf("Transmit good broadcast octets : %ju\n",
3212 	    (uintmax_t)stats->tx_bcast_bytes);
3213 	printf("Transmit good multicast octets : %ju\n",
3214 	    (uintmax_t)stats->tx_mcast_bytes);
3215 	printf("Transmit frames 64 bytes : %ju\n",
3216 	    (uintmax_t)stats->tx_pkts_64);
3217 	printf("Transmit frames 65 to 127 bytes : %ju\n",
3218 	    (uintmax_t)stats->tx_pkts_65_127);
3219 	printf("Transmit frames 128 to 255 bytes : %ju\n",
3220 	    (uintmax_t)stats->tx_pkts_128_255);
3221 	printf("Transmit frames 256 to 511 bytes : %ju\n",
3222 	    (uintmax_t)stats->tx_pkts_256_511);
3223 	printf("Transmit frames 512 to 1024 bytes : %ju\n",
3224 	    (uintmax_t)stats->tx_pkts_512_1023);
3225 	printf("Transmit frames 1024 to 1518 bytes : %ju\n",
3226 	    (uintmax_t)stats->tx_pkts_1024_1518);
3227 	printf("Transmit frames 1519 to MTU bytes : %ju\n",
3228 	    (uintmax_t)stats->tx_pkts_1519_max);
3229 	printf("Transmit single collisions : %u\n",
3230 	    stats->tx_single_colls);
3231 	printf("Transmit multiple collisions : %u\n",
3232 	    stats->tx_multi_colls);
3233 	printf("Transmit late collisions : %u\n",
3234 	    stats->tx_late_colls);
3235 	printf("Transmit abort due to excessive collisions : %u\n",
3236 	    stats->tx_excess_colls);
3237 	printf("Transmit underruns due to FIFO underruns : %u\n",
3238 	    stats->tx_underrun);
3239 	printf("Transmit descriptor write-back errors : %u\n",
3240 	    stats->tx_desc_underrun);
3241 	printf("Transmit frames with length mismatched frame size : %u\n",
3242 	    stats->tx_lenerrs);
3243 	printf("Transmit frames with truncated due to MTU size : %u\n",
3244 	    stats->tx_lenerrs);
3245 
3246 	printf("Receive good frames : %ju\n",
3247 	    (uintmax_t)stats->rx_frames);
3248 	printf("Receive good broadcast frames : %ju\n",
3249 	    (uintmax_t)stats->rx_bcast_frames);
3250 	printf("Receive good multicast frames : %ju\n",
3251 	    (uintmax_t)stats->rx_mcast_frames);
3252 	printf("Receive pause control frames : %u\n",
3253 	    stats->rx_pause_frames);
3254 	printf("Receive control frames : %u\n",
3255 	    stats->rx_control_frames);
3256 	printf("Receive CRC errors : %u\n",
3257 	    stats->rx_crcerrs);
3258 	printf("Receive frames with length errors : %u\n",
3259 	    stats->rx_lenerrs);
3260 	printf("Receive good octets : %ju\n",
3261 	    (uintmax_t)stats->rx_bytes);
3262 	printf("Receive good broadcast octets : %ju\n",
3263 	    (uintmax_t)stats->rx_bcast_bytes);
3264 	printf("Receive good multicast octets : %ju\n",
3265 	    (uintmax_t)stats->rx_mcast_bytes);
3266 	printf("Receive frames too short : %u\n",
3267 	    stats->rx_runts);
3268 	printf("Receive fragmented frames : %ju\n",
3269 	    (uintmax_t)stats->rx_fragments);
3270 	printf("Receive frames 64 bytes : %ju\n",
3271 	    (uintmax_t)stats->rx_pkts_64);
3272 	printf("Receive frames 65 to 127 bytes : %ju\n",
3273 	    (uintmax_t)stats->rx_pkts_65_127);
3274 	printf("Receive frames 128 to 255 bytes : %ju\n",
3275 	    (uintmax_t)stats->rx_pkts_128_255);
3276 	printf("Receive frames 256 to 511 bytes : %ju\n",
3277 	    (uintmax_t)stats->rx_pkts_256_511);
3278 	printf("Receive frames 512 to 1024 bytes : %ju\n",
3279 	    (uintmax_t)stats->rx_pkts_512_1023);
3280 	printf("Receive frames 1024 to 1518 bytes : %ju\n",
3281 	    (uintmax_t)stats->rx_pkts_1024_1518);
3282 	printf("Receive frames 1519 to MTU bytes : %ju\n",
3283 	    (uintmax_t)stats->rx_pkts_1519_max);
3284 	printf("Receive frames too long : %ju\n",
3285 	    (uint64_t)stats->rx_pkts_truncated);
3286 	printf("Receive frames with FIFO overflow : %u\n",
3287 	    stats->rx_fifo_oflows);
3288 	printf("Receive frames with return descriptor overflow : %u\n",
3289 	    stats->rx_desc_oflows);
3290 	printf("Receive frames with alignment errors : %u\n",
3291 	    stats->rx_alignerrs);
3292 	printf("Receive frames dropped due to address filtering : %ju\n",
3293 	    (uint64_t)stats->rx_pkts_filtered);
3294 
3295 	return (error);
3296 }
3297 
3298 static int
3299 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3300 {
3301 	int error, value;
3302 
3303 	if (arg1 == NULL)
3304 		return (EINVAL);
3305 	value = *(int *)arg1;
3306 	error = sysctl_handle_int(oidp, &value, 0, req);
3307 	if (error || req->newptr == NULL)
3308 		return (error);
3309 	if (value < low || value > high)
3310 		return (EINVAL);
3311         *(int *)arg1 = value;
3312 
3313         return (0);
3314 }
3315 
3316 static int
3317 sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS)
3318 {
3319 	return (sysctl_int_range(oidp, arg1, arg2, req,
3320 	    AGE_PROC_MIN, AGE_PROC_MAX));
3321 }
3322 
3323 static int
3324 sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS)
3325 {
3326 
3327 	return (sysctl_int_range(oidp, arg1, arg2, req, AGE_IM_TIMER_MIN,
3328 	    AGE_IM_TIMER_MAX));
3329 }
3330