xref: /freebsd/sys/dev/age/if_age.c (revision 43faedc1339a9624c7acedb7f3e5624e64da5b99)
1 /*-
2  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/bus.h>
36 #include <sys/endian.h>
37 #include <sys/kernel.h>
38 #include <sys/malloc.h>
39 #include <sys/mbuf.h>
40 #include <sys/rman.h>
41 #include <sys/module.h>
42 #include <sys/queue.h>
43 #include <sys/socket.h>
44 #include <sys/sockio.h>
45 #include <sys/sysctl.h>
46 #include <sys/taskqueue.h>
47 
48 #include <net/bpf.h>
49 #include <net/if.h>
50 #include <net/if_var.h>
51 #include <net/if_arp.h>
52 #include <net/ethernet.h>
53 #include <net/if_dl.h>
54 #include <net/if_media.h>
55 #include <net/if_types.h>
56 #include <net/if_vlan_var.h>
57 
58 #include <netinet/in.h>
59 #include <netinet/in_systm.h>
60 #include <netinet/ip.h>
61 #include <netinet/tcp.h>
62 
63 #include <dev/mii/mii.h>
64 #include <dev/mii/miivar.h>
65 
66 #include <dev/pci/pcireg.h>
67 #include <dev/pci/pcivar.h>
68 
69 #include <machine/bus.h>
70 #include <machine/in_cksum.h>
71 
72 #include <dev/age/if_agereg.h>
73 #include <dev/age/if_agevar.h>
74 
75 /* "device miibus" required.  See GENERIC if you get errors here. */
76 #include "miibus_if.h"
77 
78 #define	AGE_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
79 
80 MODULE_DEPEND(age, pci, 1, 1, 1);
81 MODULE_DEPEND(age, ether, 1, 1, 1);
82 MODULE_DEPEND(age, miibus, 1, 1, 1);
83 
84 /* Tunables. */
85 static int msi_disable = 0;
86 static int msix_disable = 0;
87 TUNABLE_INT("hw.age.msi_disable", &msi_disable);
88 TUNABLE_INT("hw.age.msix_disable", &msix_disable);
89 
90 /*
91  * Devices supported by this driver.
92  */
93 static struct age_dev {
94 	uint16_t	age_vendorid;
95 	uint16_t	age_deviceid;
96 	const char	*age_name;
97 } age_devs[] = {
98 	{ VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L1,
99 	    "Attansic Technology Corp, L1 Gigabit Ethernet" },
100 };
101 
102 static int age_miibus_readreg(device_t, int, int);
103 static int age_miibus_writereg(device_t, int, int, int);
104 static void age_miibus_statchg(device_t);
105 static void age_mediastatus(struct ifnet *, struct ifmediareq *);
106 static int age_mediachange(struct ifnet *);
107 static int age_probe(device_t);
108 static void age_get_macaddr(struct age_softc *);
109 static void age_phy_reset(struct age_softc *);
110 static int age_attach(device_t);
111 static int age_detach(device_t);
112 static void age_sysctl_node(struct age_softc *);
113 static void age_dmamap_cb(void *, bus_dma_segment_t *, int, int);
114 static int age_check_boundary(struct age_softc *);
115 static int age_dma_alloc(struct age_softc *);
116 static void age_dma_free(struct age_softc *);
117 static int age_shutdown(device_t);
118 static void age_setwol(struct age_softc *);
119 static int age_suspend(device_t);
120 static int age_resume(device_t);
121 static int age_encap(struct age_softc *, struct mbuf **);
122 static void age_start(struct ifnet *);
123 static void age_start_locked(struct ifnet *);
124 static void age_watchdog(struct age_softc *);
125 static int age_ioctl(struct ifnet *, u_long, caddr_t);
126 static void age_mac_config(struct age_softc *);
127 static void age_link_task(void *, int);
128 static void age_stats_update(struct age_softc *);
129 static int age_intr(void *);
130 static void age_int_task(void *, int);
131 static void age_txintr(struct age_softc *, int);
132 static void age_rxeof(struct age_softc *sc, struct rx_rdesc *);
133 static int age_rxintr(struct age_softc *, int, int);
134 static void age_tick(void *);
135 static void age_reset(struct age_softc *);
136 static void age_init(void *);
137 static void age_init_locked(struct age_softc *);
138 static void age_stop(struct age_softc *);
139 static void age_stop_txmac(struct age_softc *);
140 static void age_stop_rxmac(struct age_softc *);
141 static void age_init_tx_ring(struct age_softc *);
142 static int age_init_rx_ring(struct age_softc *);
143 static void age_init_rr_ring(struct age_softc *);
144 static void age_init_cmb_block(struct age_softc *);
145 static void age_init_smb_block(struct age_softc *);
146 #ifndef __NO_STRICT_ALIGNMENT
147 static struct mbuf *age_fixup_rx(struct ifnet *, struct mbuf *);
148 #endif
149 static int age_newbuf(struct age_softc *, struct age_rxdesc *);
150 static void age_rxvlan(struct age_softc *);
151 static void age_rxfilter(struct age_softc *);
152 static int sysctl_age_stats(SYSCTL_HANDLER_ARGS);
153 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
154 static int sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS);
155 static int sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS);
156 
157 
158 static device_method_t age_methods[] = {
159 	/* Device interface. */
160 	DEVMETHOD(device_probe,		age_probe),
161 	DEVMETHOD(device_attach,	age_attach),
162 	DEVMETHOD(device_detach,	age_detach),
163 	DEVMETHOD(device_shutdown,	age_shutdown),
164 	DEVMETHOD(device_suspend,	age_suspend),
165 	DEVMETHOD(device_resume,	age_resume),
166 
167 	/* MII interface. */
168 	DEVMETHOD(miibus_readreg,	age_miibus_readreg),
169 	DEVMETHOD(miibus_writereg,	age_miibus_writereg),
170 	DEVMETHOD(miibus_statchg,	age_miibus_statchg),
171 
172 	{ NULL, NULL }
173 };
174 
175 static driver_t age_driver = {
176 	"age",
177 	age_methods,
178 	sizeof(struct age_softc)
179 };
180 
181 static devclass_t age_devclass;
182 
183 DRIVER_MODULE(age, pci, age_driver, age_devclass, 0, 0);
184 DRIVER_MODULE(miibus, age, miibus_driver, miibus_devclass, 0, 0);
185 
186 static struct resource_spec age_res_spec_mem[] = {
187 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
188 	{ -1,			0,		0 }
189 };
190 
191 static struct resource_spec age_irq_spec_legacy[] = {
192 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
193 	{ -1,			0,		0 }
194 };
195 
196 static struct resource_spec age_irq_spec_msi[] = {
197 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
198 	{ -1,			0,		0 }
199 };
200 
201 static struct resource_spec age_irq_spec_msix[] = {
202 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
203 	{ -1,			0,		0 }
204 };
205 
206 /*
207  *	Read a PHY register on the MII of the L1.
208  */
209 static int
210 age_miibus_readreg(device_t dev, int phy, int reg)
211 {
212 	struct age_softc *sc;
213 	uint32_t v;
214 	int i;
215 
216 	sc = device_get_softc(dev);
217 
218 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
219 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
220 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
221 		DELAY(1);
222 		v = CSR_READ_4(sc, AGE_MDIO);
223 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
224 			break;
225 	}
226 
227 	if (i == 0) {
228 		device_printf(sc->age_dev, "phy read timeout : %d\n", reg);
229 		return (0);
230 	}
231 
232 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
233 }
234 
235 /*
236  *	Write a PHY register on the MII of the L1.
237  */
238 static int
239 age_miibus_writereg(device_t dev, int phy, int reg, int val)
240 {
241 	struct age_softc *sc;
242 	uint32_t v;
243 	int i;
244 
245 	sc = device_get_softc(dev);
246 
247 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
248 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
249 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
250 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
251 		DELAY(1);
252 		v = CSR_READ_4(sc, AGE_MDIO);
253 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
254 			break;
255 	}
256 
257 	if (i == 0)
258 		device_printf(sc->age_dev, "phy write timeout : %d\n", reg);
259 
260 	return (0);
261 }
262 
263 /*
264  *	Callback from MII layer when media changes.
265  */
266 static void
267 age_miibus_statchg(device_t dev)
268 {
269 	struct age_softc *sc;
270 
271 	sc = device_get_softc(dev);
272 	taskqueue_enqueue(taskqueue_swi, &sc->age_link_task);
273 }
274 
275 /*
276  *	Get the current interface media status.
277  */
278 static void
279 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
280 {
281 	struct age_softc *sc;
282 	struct mii_data *mii;
283 
284 	sc = ifp->if_softc;
285 	AGE_LOCK(sc);
286 	mii = device_get_softc(sc->age_miibus);
287 
288 	mii_pollstat(mii);
289 	ifmr->ifm_status = mii->mii_media_status;
290 	ifmr->ifm_active = mii->mii_media_active;
291 	AGE_UNLOCK(sc);
292 }
293 
294 /*
295  *	Set hardware to newly-selected media.
296  */
297 static int
298 age_mediachange(struct ifnet *ifp)
299 {
300 	struct age_softc *sc;
301 	struct mii_data *mii;
302 	struct mii_softc *miisc;
303 	int error;
304 
305 	sc = ifp->if_softc;
306 	AGE_LOCK(sc);
307 	mii = device_get_softc(sc->age_miibus);
308 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
309 		PHY_RESET(miisc);
310 	error = mii_mediachg(mii);
311 	AGE_UNLOCK(sc);
312 
313 	return (error);
314 }
315 
316 static int
317 age_probe(device_t dev)
318 {
319 	struct age_dev *sp;
320 	int i;
321 	uint16_t vendor, devid;
322 
323 	vendor = pci_get_vendor(dev);
324 	devid = pci_get_device(dev);
325 	sp = age_devs;
326 	for (i = 0; i < sizeof(age_devs) / sizeof(age_devs[0]);
327 	    i++, sp++) {
328 		if (vendor == sp->age_vendorid &&
329 		    devid == sp->age_deviceid) {
330 			device_set_desc(dev, sp->age_name);
331 			return (BUS_PROBE_DEFAULT);
332 		}
333 	}
334 
335 	return (ENXIO);
336 }
337 
338 static void
339 age_get_macaddr(struct age_softc *sc)
340 {
341 	uint32_t ea[2], reg;
342 	int i, vpdc;
343 
344 	reg = CSR_READ_4(sc, AGE_SPI_CTRL);
345 	if ((reg & SPI_VPD_ENB) != 0) {
346 		/* Get VPD stored in TWSI EEPROM. */
347 		reg &= ~SPI_VPD_ENB;
348 		CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
349 	}
350 
351 	if (pci_find_cap(sc->age_dev, PCIY_VPD, &vpdc) == 0) {
352 		/*
353 		 * PCI VPD capability found, let TWSI reload EEPROM.
354 		 * This will set ethernet address of controller.
355 		 */
356 		CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
357 		    TWSI_CTRL_SW_LD_START);
358 		for (i = 100; i > 0; i--) {
359 			DELAY(1000);
360 			reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
361 			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
362 				break;
363 		}
364 		if (i == 0)
365 			device_printf(sc->age_dev,
366 			    "reloading EEPROM timeout!\n");
367 	} else {
368 		if (bootverbose)
369 			device_printf(sc->age_dev,
370 			    "PCI VPD capability not found!\n");
371 	}
372 
373 	ea[0] = CSR_READ_4(sc, AGE_PAR0);
374 	ea[1] = CSR_READ_4(sc, AGE_PAR1);
375 	sc->age_eaddr[0] = (ea[1] >> 8) & 0xFF;
376 	sc->age_eaddr[1] = (ea[1] >> 0) & 0xFF;
377 	sc->age_eaddr[2] = (ea[0] >> 24) & 0xFF;
378 	sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF;
379 	sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF;
380 	sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF;
381 }
382 
383 static void
384 age_phy_reset(struct age_softc *sc)
385 {
386 	uint16_t reg, pn;
387 	int i, linkup;
388 
389 	/* Reset PHY. */
390 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
391 	DELAY(2000);
392 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
393 	DELAY(2000);
394 
395 #define	ATPHY_DBG_ADDR		0x1D
396 #define	ATPHY_DBG_DATA		0x1E
397 #define	ATPHY_CDTC		0x16
398 #define	PHY_CDTC_ENB		0x0001
399 #define	PHY_CDTC_POFF		8
400 #define	ATPHY_CDTS		0x1C
401 #define	PHY_CDTS_STAT_OK	0x0000
402 #define	PHY_CDTS_STAT_SHORT	0x0100
403 #define	PHY_CDTS_STAT_OPEN	0x0200
404 #define	PHY_CDTS_STAT_INVAL	0x0300
405 #define	PHY_CDTS_STAT_MASK	0x0300
406 
407 	/* Check power saving mode. Magic from Linux. */
408 	age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
409 	for (linkup = 0, pn = 0; pn < 4; pn++) {
410 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr, ATPHY_CDTC,
411 		    (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
412 		for (i = 200; i > 0; i--) {
413 			DELAY(1000);
414 			reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
415 			    ATPHY_CDTC);
416 			if ((reg & PHY_CDTC_ENB) == 0)
417 				break;
418 		}
419 		DELAY(1000);
420 		reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
421 		    ATPHY_CDTS);
422 		if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
423 			linkup++;
424 			break;
425 		}
426 	}
427 	age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR,
428 	    BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
429 	if (linkup == 0) {
430 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
431 		    ATPHY_DBG_ADDR, 0);
432 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
433 		    ATPHY_DBG_DATA, 0x124E);
434 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
435 		    ATPHY_DBG_ADDR, 1);
436 		reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
437 		    ATPHY_DBG_DATA);
438 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
439 		    ATPHY_DBG_DATA, reg | 0x03);
440 		/* XXX */
441 		DELAY(1500 * 1000);
442 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
443 		    ATPHY_DBG_ADDR, 0);
444 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
445 		    ATPHY_DBG_DATA, 0x024E);
446     }
447 
448 #undef	ATPHY_DBG_ADDR
449 #undef	ATPHY_DBG_DATA
450 #undef	ATPHY_CDTC
451 #undef	PHY_CDTC_ENB
452 #undef	PHY_CDTC_POFF
453 #undef	ATPHY_CDTS
454 #undef	PHY_CDTS_STAT_OK
455 #undef	PHY_CDTS_STAT_SHORT
456 #undef	PHY_CDTS_STAT_OPEN
457 #undef	PHY_CDTS_STAT_INVAL
458 #undef	PHY_CDTS_STAT_MASK
459 }
460 
461 static int
462 age_attach(device_t dev)
463 {
464 	struct age_softc *sc;
465 	struct ifnet *ifp;
466 	uint16_t burst;
467 	int error, i, msic, msixc, pmc;
468 
469 	error = 0;
470 	sc = device_get_softc(dev);
471 	sc->age_dev = dev;
472 
473 	mtx_init(&sc->age_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
474 	    MTX_DEF);
475 	callout_init_mtx(&sc->age_tick_ch, &sc->age_mtx, 0);
476 	TASK_INIT(&sc->age_int_task, 0, age_int_task, sc);
477 	TASK_INIT(&sc->age_link_task, 0, age_link_task, sc);
478 
479 	/* Map the device. */
480 	pci_enable_busmaster(dev);
481 	sc->age_res_spec = age_res_spec_mem;
482 	sc->age_irq_spec = age_irq_spec_legacy;
483 	error = bus_alloc_resources(dev, sc->age_res_spec, sc->age_res);
484 	if (error != 0) {
485 		device_printf(dev, "cannot allocate memory resources.\n");
486 		goto fail;
487 	}
488 
489 	/* Set PHY address. */
490 	sc->age_phyaddr = AGE_PHY_ADDR;
491 
492 	/* Reset PHY. */
493 	age_phy_reset(sc);
494 
495 	/* Reset the ethernet controller. */
496 	age_reset(sc);
497 
498 	/* Get PCI and chip id/revision. */
499 	sc->age_rev = pci_get_revid(dev);
500 	sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
501 	    MASTER_CHIP_REV_SHIFT;
502 	if (bootverbose) {
503 		device_printf(dev, "PCI device revision : 0x%04x\n",
504 		    sc->age_rev);
505 		device_printf(dev, "Chip id/revision : 0x%04x\n",
506 		    sc->age_chip_rev);
507 	}
508 
509 	/*
510 	 * XXX
511 	 * Unintialized hardware returns an invalid chip id/revision
512 	 * as well as 0xFFFFFFFF for Tx/Rx fifo length. It seems that
513 	 * unplugged cable results in putting hardware into automatic
514 	 * power down mode which in turn returns invalld chip revision.
515 	 */
516 	if (sc->age_chip_rev == 0xFFFF) {
517 		device_printf(dev,"invalid chip revision : 0x%04x -- "
518 		    "not initialized?\n", sc->age_chip_rev);
519 		error = ENXIO;
520 		goto fail;
521 	}
522 
523 	device_printf(dev, "%d Tx FIFO, %d Rx FIFO\n",
524 	    CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
525 	    CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
526 
527 	/* Allocate IRQ resources. */
528 	msixc = pci_msix_count(dev);
529 	msic = pci_msi_count(dev);
530 	if (bootverbose) {
531 		device_printf(dev, "MSIX count : %d\n", msixc);
532 		device_printf(dev, "MSI count : %d\n", msic);
533 	}
534 
535 	/* Prefer MSIX over MSI. */
536 	if (msix_disable == 0 || msi_disable == 0) {
537 		if (msix_disable == 0 && msixc == AGE_MSIX_MESSAGES &&
538 		    pci_alloc_msix(dev, &msixc) == 0) {
539 			if (msic == AGE_MSIX_MESSAGES) {
540 				device_printf(dev, "Using %d MSIX messages.\n",
541 				    msixc);
542 				sc->age_flags |= AGE_FLAG_MSIX;
543 				sc->age_irq_spec = age_irq_spec_msix;
544 			} else
545 				pci_release_msi(dev);
546 		}
547 		if (msi_disable == 0 && (sc->age_flags & AGE_FLAG_MSIX) == 0 &&
548 		    msic == AGE_MSI_MESSAGES &&
549 		    pci_alloc_msi(dev, &msic) == 0) {
550 			if (msic == AGE_MSI_MESSAGES) {
551 				device_printf(dev, "Using %d MSI messages.\n",
552 				    msic);
553 				sc->age_flags |= AGE_FLAG_MSI;
554 				sc->age_irq_spec = age_irq_spec_msi;
555 			} else
556 				pci_release_msi(dev);
557 		}
558 	}
559 
560 	error = bus_alloc_resources(dev, sc->age_irq_spec, sc->age_irq);
561 	if (error != 0) {
562 		device_printf(dev, "cannot allocate IRQ resources.\n");
563 		goto fail;
564 	}
565 
566 
567 	/* Get DMA parameters from PCIe device control register. */
568 	if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
569 		sc->age_flags |= AGE_FLAG_PCIE;
570 		burst = pci_read_config(dev, i + 0x08, 2);
571 		/* Max read request size. */
572 		sc->age_dma_rd_burst = ((burst >> 12) & 0x07) <<
573 		    DMA_CFG_RD_BURST_SHIFT;
574 		/* Max payload size. */
575 		sc->age_dma_wr_burst = ((burst >> 5) & 0x07) <<
576 		    DMA_CFG_WR_BURST_SHIFT;
577 		if (bootverbose) {
578 			device_printf(dev, "Read request size : %d bytes.\n",
579 			    128 << ((burst >> 12) & 0x07));
580 			device_printf(dev, "TLP payload size : %d bytes.\n",
581 			    128 << ((burst >> 5) & 0x07));
582 		}
583 	} else {
584 		sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
585 		sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
586 	}
587 
588 	/* Create device sysctl node. */
589 	age_sysctl_node(sc);
590 
591 	if ((error = age_dma_alloc(sc) != 0))
592 		goto fail;
593 
594 	/* Load station address. */
595 	age_get_macaddr(sc);
596 
597 	ifp = sc->age_ifp = if_alloc(IFT_ETHER);
598 	if (ifp == NULL) {
599 		device_printf(dev, "cannot allocate ifnet structure.\n");
600 		error = ENXIO;
601 		goto fail;
602 	}
603 
604 	ifp->if_softc = sc;
605 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
606 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
607 	ifp->if_ioctl = age_ioctl;
608 	ifp->if_start = age_start;
609 	ifp->if_init = age_init;
610 	ifp->if_snd.ifq_drv_maxlen = AGE_TX_RING_CNT - 1;
611 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
612 	IFQ_SET_READY(&ifp->if_snd);
613 	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
614 	ifp->if_hwassist = AGE_CSUM_FEATURES | CSUM_TSO;
615 	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) {
616 		sc->age_flags |= AGE_FLAG_PMCAP;
617 		ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST;
618 	}
619 	ifp->if_capenable = ifp->if_capabilities;
620 
621 	/* Set up MII bus. */
622 	error = mii_attach(dev, &sc->age_miibus, ifp, age_mediachange,
623 	    age_mediastatus, BMSR_DEFCAPMASK, sc->age_phyaddr, MII_OFFSET_ANY,
624 	    0);
625 	if (error != 0) {
626 		device_printf(dev, "attaching PHYs failed\n");
627 		goto fail;
628 	}
629 
630 	ether_ifattach(ifp, sc->age_eaddr);
631 
632 	/* VLAN capability setup. */
633 	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
634 	    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
635 	ifp->if_capenable = ifp->if_capabilities;
636 
637 	/* Tell the upper layer(s) we support long frames. */
638 	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
639 
640 	/* Create local taskq. */
641 	sc->age_tq = taskqueue_create_fast("age_taskq", M_WAITOK,
642 	    taskqueue_thread_enqueue, &sc->age_tq);
643 	if (sc->age_tq == NULL) {
644 		device_printf(dev, "could not create taskqueue.\n");
645 		ether_ifdetach(ifp);
646 		error = ENXIO;
647 		goto fail;
648 	}
649 	taskqueue_start_threads(&sc->age_tq, 1, PI_NET, "%s taskq",
650 	    device_get_nameunit(sc->age_dev));
651 
652 	if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
653 		msic = AGE_MSIX_MESSAGES;
654 	else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
655 		msic = AGE_MSI_MESSAGES;
656 	else
657 		msic = 1;
658 	for (i = 0; i < msic; i++) {
659 		error = bus_setup_intr(dev, sc->age_irq[i],
660 		    INTR_TYPE_NET | INTR_MPSAFE, age_intr, NULL, sc,
661 		    &sc->age_intrhand[i]);
662 		if (error != 0)
663 			break;
664 	}
665 	if (error != 0) {
666 		device_printf(dev, "could not set up interrupt handler.\n");
667 		taskqueue_free(sc->age_tq);
668 		sc->age_tq = NULL;
669 		ether_ifdetach(ifp);
670 		goto fail;
671 	}
672 
673 fail:
674 	if (error != 0)
675 		age_detach(dev);
676 
677 	return (error);
678 }
679 
680 static int
681 age_detach(device_t dev)
682 {
683 	struct age_softc *sc;
684 	struct ifnet *ifp;
685 	int i, msic;
686 
687 	sc = device_get_softc(dev);
688 
689 	ifp = sc->age_ifp;
690 	if (device_is_attached(dev)) {
691 		AGE_LOCK(sc);
692 		sc->age_flags |= AGE_FLAG_DETACH;
693 		age_stop(sc);
694 		AGE_UNLOCK(sc);
695 		callout_drain(&sc->age_tick_ch);
696 		taskqueue_drain(sc->age_tq, &sc->age_int_task);
697 		taskqueue_drain(taskqueue_swi, &sc->age_link_task);
698 		ether_ifdetach(ifp);
699 	}
700 
701 	if (sc->age_tq != NULL) {
702 		taskqueue_drain(sc->age_tq, &sc->age_int_task);
703 		taskqueue_free(sc->age_tq);
704 		sc->age_tq = NULL;
705 	}
706 
707 	if (sc->age_miibus != NULL) {
708 		device_delete_child(dev, sc->age_miibus);
709 		sc->age_miibus = NULL;
710 	}
711 	bus_generic_detach(dev);
712 	age_dma_free(sc);
713 
714 	if (ifp != NULL) {
715 		if_free(ifp);
716 		sc->age_ifp = NULL;
717 	}
718 
719 	if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
720 		msic = AGE_MSIX_MESSAGES;
721 	else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
722 		msic = AGE_MSI_MESSAGES;
723 	else
724 		msic = 1;
725 	for (i = 0; i < msic; i++) {
726 		if (sc->age_intrhand[i] != NULL) {
727 			bus_teardown_intr(dev, sc->age_irq[i],
728 			    sc->age_intrhand[i]);
729 			sc->age_intrhand[i] = NULL;
730 		}
731 	}
732 
733 	bus_release_resources(dev, sc->age_irq_spec, sc->age_irq);
734 	if ((sc->age_flags & (AGE_FLAG_MSI | AGE_FLAG_MSIX)) != 0)
735 		pci_release_msi(dev);
736 	bus_release_resources(dev, sc->age_res_spec, sc->age_res);
737 	mtx_destroy(&sc->age_mtx);
738 
739 	return (0);
740 }
741 
742 static void
743 age_sysctl_node(struct age_softc *sc)
744 {
745 	int error;
746 
747 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
748 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
749 	    "stats", CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_age_stats,
750 	    "I", "Statistics");
751 
752 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
753 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
754 	    "int_mod", CTLTYPE_INT | CTLFLAG_RW, &sc->age_int_mod, 0,
755 	    sysctl_hw_age_int_mod, "I", "age interrupt moderation");
756 
757 	/* Pull in device tunables. */
758 	sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
759 	error = resource_int_value(device_get_name(sc->age_dev),
760 	    device_get_unit(sc->age_dev), "int_mod", &sc->age_int_mod);
761 	if (error == 0) {
762 		if (sc->age_int_mod < AGE_IM_TIMER_MIN ||
763 		    sc->age_int_mod > AGE_IM_TIMER_MAX) {
764 			device_printf(sc->age_dev,
765 			    "int_mod value out of range; using default: %d\n",
766 			    AGE_IM_TIMER_DEFAULT);
767 			sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
768 		}
769 	}
770 
771 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
772 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
773 	    "process_limit", CTLTYPE_INT | CTLFLAG_RW, &sc->age_process_limit,
774 	    0, sysctl_hw_age_proc_limit, "I",
775 	    "max number of Rx events to process");
776 
777 	/* Pull in device tunables. */
778 	sc->age_process_limit = AGE_PROC_DEFAULT;
779 	error = resource_int_value(device_get_name(sc->age_dev),
780 	    device_get_unit(sc->age_dev), "process_limit",
781 	    &sc->age_process_limit);
782 	if (error == 0) {
783 		if (sc->age_process_limit < AGE_PROC_MIN ||
784 		    sc->age_process_limit > AGE_PROC_MAX) {
785 			device_printf(sc->age_dev,
786 			    "process_limit value out of range; "
787 			    "using default: %d\n", AGE_PROC_DEFAULT);
788 			sc->age_process_limit = AGE_PROC_DEFAULT;
789 		}
790 	}
791 }
792 
793 struct age_dmamap_arg {
794 	bus_addr_t	age_busaddr;
795 };
796 
797 static void
798 age_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
799 {
800 	struct age_dmamap_arg *ctx;
801 
802 	if (error != 0)
803 		return;
804 
805 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
806 
807 	ctx = (struct age_dmamap_arg *)arg;
808 	ctx->age_busaddr = segs[0].ds_addr;
809 }
810 
811 /*
812  * Attansic L1 controller have single register to specify high
813  * address part of DMA blocks. So all descriptor structures and
814  * DMA memory blocks should have the same high address of given
815  * 4GB address space(i.e. crossing 4GB boundary is not allowed).
816  */
817 static int
818 age_check_boundary(struct age_softc *sc)
819 {
820 	bus_addr_t rx_ring_end, rr_ring_end, tx_ring_end;
821 	bus_addr_t cmb_block_end, smb_block_end;
822 
823 	/* Tx/Rx descriptor queue should reside within 4GB boundary. */
824 	tx_ring_end = sc->age_rdata.age_tx_ring_paddr + AGE_TX_RING_SZ;
825 	rx_ring_end = sc->age_rdata.age_rx_ring_paddr + AGE_RX_RING_SZ;
826 	rr_ring_end = sc->age_rdata.age_rr_ring_paddr + AGE_RR_RING_SZ;
827 	cmb_block_end = sc->age_rdata.age_cmb_block_paddr + AGE_CMB_BLOCK_SZ;
828 	smb_block_end = sc->age_rdata.age_smb_block_paddr + AGE_SMB_BLOCK_SZ;
829 
830 	if ((AGE_ADDR_HI(tx_ring_end) !=
831 	    AGE_ADDR_HI(sc->age_rdata.age_tx_ring_paddr)) ||
832 	    (AGE_ADDR_HI(rx_ring_end) !=
833 	    AGE_ADDR_HI(sc->age_rdata.age_rx_ring_paddr)) ||
834 	    (AGE_ADDR_HI(rr_ring_end) !=
835 	    AGE_ADDR_HI(sc->age_rdata.age_rr_ring_paddr)) ||
836 	    (AGE_ADDR_HI(cmb_block_end) !=
837 	    AGE_ADDR_HI(sc->age_rdata.age_cmb_block_paddr)) ||
838 	    (AGE_ADDR_HI(smb_block_end) !=
839 	    AGE_ADDR_HI(sc->age_rdata.age_smb_block_paddr)))
840 		return (EFBIG);
841 
842 	if ((AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rx_ring_end)) ||
843 	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rr_ring_end)) ||
844 	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(cmb_block_end)) ||
845 	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(smb_block_end)))
846 		return (EFBIG);
847 
848 	return (0);
849 }
850 
851 static int
852 age_dma_alloc(struct age_softc *sc)
853 {
854 	struct age_txdesc *txd;
855 	struct age_rxdesc *rxd;
856 	bus_addr_t lowaddr;
857 	struct age_dmamap_arg ctx;
858 	int error, i;
859 
860 	lowaddr = BUS_SPACE_MAXADDR;
861 
862 again:
863 	/* Create parent ring/DMA block tag. */
864 	error = bus_dma_tag_create(
865 	    bus_get_dma_tag(sc->age_dev), /* parent */
866 	    1, 0,			/* alignment, boundary */
867 	    lowaddr,			/* lowaddr */
868 	    BUS_SPACE_MAXADDR,		/* highaddr */
869 	    NULL, NULL,			/* filter, filterarg */
870 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
871 	    0,				/* nsegments */
872 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
873 	    0,				/* flags */
874 	    NULL, NULL,			/* lockfunc, lockarg */
875 	    &sc->age_cdata.age_parent_tag);
876 	if (error != 0) {
877 		device_printf(sc->age_dev,
878 		    "could not create parent DMA tag.\n");
879 		goto fail;
880 	}
881 
882 	/* Create tag for Tx ring. */
883 	error = bus_dma_tag_create(
884 	    sc->age_cdata.age_parent_tag, /* parent */
885 	    AGE_TX_RING_ALIGN, 0,	/* alignment, boundary */
886 	    BUS_SPACE_MAXADDR,		/* lowaddr */
887 	    BUS_SPACE_MAXADDR,		/* highaddr */
888 	    NULL, NULL,			/* filter, filterarg */
889 	    AGE_TX_RING_SZ,		/* maxsize */
890 	    1,				/* nsegments */
891 	    AGE_TX_RING_SZ,		/* maxsegsize */
892 	    0,				/* flags */
893 	    NULL, NULL,			/* lockfunc, lockarg */
894 	    &sc->age_cdata.age_tx_ring_tag);
895 	if (error != 0) {
896 		device_printf(sc->age_dev,
897 		    "could not create Tx ring DMA tag.\n");
898 		goto fail;
899 	}
900 
901 	/* Create tag for Rx ring. */
902 	error = bus_dma_tag_create(
903 	    sc->age_cdata.age_parent_tag, /* parent */
904 	    AGE_RX_RING_ALIGN, 0,	/* alignment, boundary */
905 	    BUS_SPACE_MAXADDR,		/* lowaddr */
906 	    BUS_SPACE_MAXADDR,		/* highaddr */
907 	    NULL, NULL,			/* filter, filterarg */
908 	    AGE_RX_RING_SZ,		/* maxsize */
909 	    1,				/* nsegments */
910 	    AGE_RX_RING_SZ,		/* maxsegsize */
911 	    0,				/* flags */
912 	    NULL, NULL,			/* lockfunc, lockarg */
913 	    &sc->age_cdata.age_rx_ring_tag);
914 	if (error != 0) {
915 		device_printf(sc->age_dev,
916 		    "could not create Rx ring DMA tag.\n");
917 		goto fail;
918 	}
919 
920 	/* Create tag for Rx return ring. */
921 	error = bus_dma_tag_create(
922 	    sc->age_cdata.age_parent_tag, /* parent */
923 	    AGE_RR_RING_ALIGN, 0,	/* alignment, boundary */
924 	    BUS_SPACE_MAXADDR,		/* lowaddr */
925 	    BUS_SPACE_MAXADDR,		/* highaddr */
926 	    NULL, NULL,			/* filter, filterarg */
927 	    AGE_RR_RING_SZ,		/* maxsize */
928 	    1,				/* nsegments */
929 	    AGE_RR_RING_SZ,		/* maxsegsize */
930 	    0,				/* flags */
931 	    NULL, NULL,			/* lockfunc, lockarg */
932 	    &sc->age_cdata.age_rr_ring_tag);
933 	if (error != 0) {
934 		device_printf(sc->age_dev,
935 		    "could not create Rx return ring DMA tag.\n");
936 		goto fail;
937 	}
938 
939 	/* Create tag for coalesing message block. */
940 	error = bus_dma_tag_create(
941 	    sc->age_cdata.age_parent_tag, /* parent */
942 	    AGE_CMB_ALIGN, 0,		/* alignment, boundary */
943 	    BUS_SPACE_MAXADDR,		/* lowaddr */
944 	    BUS_SPACE_MAXADDR,		/* highaddr */
945 	    NULL, NULL,			/* filter, filterarg */
946 	    AGE_CMB_BLOCK_SZ,		/* maxsize */
947 	    1,				/* nsegments */
948 	    AGE_CMB_BLOCK_SZ,		/* maxsegsize */
949 	    0,				/* flags */
950 	    NULL, NULL,			/* lockfunc, lockarg */
951 	    &sc->age_cdata.age_cmb_block_tag);
952 	if (error != 0) {
953 		device_printf(sc->age_dev,
954 		    "could not create CMB DMA tag.\n");
955 		goto fail;
956 	}
957 
958 	/* Create tag for statistics message block. */
959 	error = bus_dma_tag_create(
960 	    sc->age_cdata.age_parent_tag, /* parent */
961 	    AGE_SMB_ALIGN, 0,		/* alignment, boundary */
962 	    BUS_SPACE_MAXADDR,		/* lowaddr */
963 	    BUS_SPACE_MAXADDR,		/* highaddr */
964 	    NULL, NULL,			/* filter, filterarg */
965 	    AGE_SMB_BLOCK_SZ,		/* maxsize */
966 	    1,				/* nsegments */
967 	    AGE_SMB_BLOCK_SZ,		/* maxsegsize */
968 	    0,				/* flags */
969 	    NULL, NULL,			/* lockfunc, lockarg */
970 	    &sc->age_cdata.age_smb_block_tag);
971 	if (error != 0) {
972 		device_printf(sc->age_dev,
973 		    "could not create SMB DMA tag.\n");
974 		goto fail;
975 	}
976 
977 	/* Allocate DMA'able memory and load the DMA map. */
978 	error = bus_dmamem_alloc(sc->age_cdata.age_tx_ring_tag,
979 	    (void **)&sc->age_rdata.age_tx_ring,
980 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
981 	    &sc->age_cdata.age_tx_ring_map);
982 	if (error != 0) {
983 		device_printf(sc->age_dev,
984 		    "could not allocate DMA'able memory for Tx ring.\n");
985 		goto fail;
986 	}
987 	ctx.age_busaddr = 0;
988 	error = bus_dmamap_load(sc->age_cdata.age_tx_ring_tag,
989 	    sc->age_cdata.age_tx_ring_map, sc->age_rdata.age_tx_ring,
990 	    AGE_TX_RING_SZ, age_dmamap_cb, &ctx, 0);
991 	if (error != 0 || ctx.age_busaddr == 0) {
992 		device_printf(sc->age_dev,
993 		    "could not load DMA'able memory for Tx ring.\n");
994 		goto fail;
995 	}
996 	sc->age_rdata.age_tx_ring_paddr = ctx.age_busaddr;
997 	/* Rx ring */
998 	error = bus_dmamem_alloc(sc->age_cdata.age_rx_ring_tag,
999 	    (void **)&sc->age_rdata.age_rx_ring,
1000 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1001 	    &sc->age_cdata.age_rx_ring_map);
1002 	if (error != 0) {
1003 		device_printf(sc->age_dev,
1004 		    "could not allocate DMA'able memory for Rx ring.\n");
1005 		goto fail;
1006 	}
1007 	ctx.age_busaddr = 0;
1008 	error = bus_dmamap_load(sc->age_cdata.age_rx_ring_tag,
1009 	    sc->age_cdata.age_rx_ring_map, sc->age_rdata.age_rx_ring,
1010 	    AGE_RX_RING_SZ, age_dmamap_cb, &ctx, 0);
1011 	if (error != 0 || ctx.age_busaddr == 0) {
1012 		device_printf(sc->age_dev,
1013 		    "could not load DMA'able memory for Rx ring.\n");
1014 		goto fail;
1015 	}
1016 	sc->age_rdata.age_rx_ring_paddr = ctx.age_busaddr;
1017 	/* Rx return ring */
1018 	error = bus_dmamem_alloc(sc->age_cdata.age_rr_ring_tag,
1019 	    (void **)&sc->age_rdata.age_rr_ring,
1020 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1021 	    &sc->age_cdata.age_rr_ring_map);
1022 	if (error != 0) {
1023 		device_printf(sc->age_dev,
1024 		    "could not allocate DMA'able memory for Rx return ring.\n");
1025 		goto fail;
1026 	}
1027 	ctx.age_busaddr = 0;
1028 	error = bus_dmamap_load(sc->age_cdata.age_rr_ring_tag,
1029 	    sc->age_cdata.age_rr_ring_map, sc->age_rdata.age_rr_ring,
1030 	    AGE_RR_RING_SZ, age_dmamap_cb,
1031 	    &ctx, 0);
1032 	if (error != 0 || ctx.age_busaddr == 0) {
1033 		device_printf(sc->age_dev,
1034 		    "could not load DMA'able memory for Rx return ring.\n");
1035 		goto fail;
1036 	}
1037 	sc->age_rdata.age_rr_ring_paddr = ctx.age_busaddr;
1038 	/* CMB block */
1039 	error = bus_dmamem_alloc(sc->age_cdata.age_cmb_block_tag,
1040 	    (void **)&sc->age_rdata.age_cmb_block,
1041 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1042 	    &sc->age_cdata.age_cmb_block_map);
1043 	if (error != 0) {
1044 		device_printf(sc->age_dev,
1045 		    "could not allocate DMA'able memory for CMB block.\n");
1046 		goto fail;
1047 	}
1048 	ctx.age_busaddr = 0;
1049 	error = bus_dmamap_load(sc->age_cdata.age_cmb_block_tag,
1050 	    sc->age_cdata.age_cmb_block_map, sc->age_rdata.age_cmb_block,
1051 	    AGE_CMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1052 	if (error != 0 || ctx.age_busaddr == 0) {
1053 		device_printf(sc->age_dev,
1054 		    "could not load DMA'able memory for CMB block.\n");
1055 		goto fail;
1056 	}
1057 	sc->age_rdata.age_cmb_block_paddr = ctx.age_busaddr;
1058 	/* SMB block */
1059 	error = bus_dmamem_alloc(sc->age_cdata.age_smb_block_tag,
1060 	    (void **)&sc->age_rdata.age_smb_block,
1061 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1062 	    &sc->age_cdata.age_smb_block_map);
1063 	if (error != 0) {
1064 		device_printf(sc->age_dev,
1065 		    "could not allocate DMA'able memory for SMB block.\n");
1066 		goto fail;
1067 	}
1068 	ctx.age_busaddr = 0;
1069 	error = bus_dmamap_load(sc->age_cdata.age_smb_block_tag,
1070 	    sc->age_cdata.age_smb_block_map, sc->age_rdata.age_smb_block,
1071 	    AGE_SMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1072 	if (error != 0 || ctx.age_busaddr == 0) {
1073 		device_printf(sc->age_dev,
1074 		    "could not load DMA'able memory for SMB block.\n");
1075 		goto fail;
1076 	}
1077 	sc->age_rdata.age_smb_block_paddr = ctx.age_busaddr;
1078 
1079 	/*
1080 	 * All ring buffer and DMA blocks should have the same
1081 	 * high address part of 64bit DMA address space.
1082 	 */
1083 	if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1084 	    (error = age_check_boundary(sc)) != 0) {
1085 		device_printf(sc->age_dev, "4GB boundary crossed, "
1086 		    "switching to 32bit DMA addressing mode.\n");
1087 		age_dma_free(sc);
1088 		/* Limit DMA address space to 32bit and try again. */
1089 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1090 		goto again;
1091 	}
1092 
1093 	/*
1094 	 * Create Tx/Rx buffer parent tag.
1095 	 * L1 supports full 64bit DMA addressing in Tx/Rx buffers
1096 	 * so it needs separate parent DMA tag.
1097 	 * XXX
1098 	 * It seems enabling 64bit DMA causes data corruption. Limit
1099 	 * DMA address space to 32bit.
1100 	 */
1101 	error = bus_dma_tag_create(
1102 	    bus_get_dma_tag(sc->age_dev), /* parent */
1103 	    1, 0,			/* alignment, boundary */
1104 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1105 	    BUS_SPACE_MAXADDR,		/* highaddr */
1106 	    NULL, NULL,			/* filter, filterarg */
1107 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1108 	    0,				/* nsegments */
1109 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1110 	    0,				/* flags */
1111 	    NULL, NULL,			/* lockfunc, lockarg */
1112 	    &sc->age_cdata.age_buffer_tag);
1113 	if (error != 0) {
1114 		device_printf(sc->age_dev,
1115 		    "could not create parent buffer DMA tag.\n");
1116 		goto fail;
1117 	}
1118 
1119 	/* Create tag for Tx buffers. */
1120 	error = bus_dma_tag_create(
1121 	    sc->age_cdata.age_buffer_tag, /* parent */
1122 	    1, 0,			/* alignment, boundary */
1123 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1124 	    BUS_SPACE_MAXADDR,		/* highaddr */
1125 	    NULL, NULL,			/* filter, filterarg */
1126 	    AGE_TSO_MAXSIZE,		/* maxsize */
1127 	    AGE_MAXTXSEGS,		/* nsegments */
1128 	    AGE_TSO_MAXSEGSIZE,		/* maxsegsize */
1129 	    0,				/* flags */
1130 	    NULL, NULL,			/* lockfunc, lockarg */
1131 	    &sc->age_cdata.age_tx_tag);
1132 	if (error != 0) {
1133 		device_printf(sc->age_dev, "could not create Tx DMA tag.\n");
1134 		goto fail;
1135 	}
1136 
1137 	/* Create tag for Rx buffers. */
1138 	error = bus_dma_tag_create(
1139 	    sc->age_cdata.age_buffer_tag, /* parent */
1140 	    AGE_RX_BUF_ALIGN, 0,	/* alignment, boundary */
1141 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1142 	    BUS_SPACE_MAXADDR,		/* highaddr */
1143 	    NULL, NULL,			/* filter, filterarg */
1144 	    MCLBYTES,			/* maxsize */
1145 	    1,				/* nsegments */
1146 	    MCLBYTES,			/* maxsegsize */
1147 	    0,				/* flags */
1148 	    NULL, NULL,			/* lockfunc, lockarg */
1149 	    &sc->age_cdata.age_rx_tag);
1150 	if (error != 0) {
1151 		device_printf(sc->age_dev, "could not create Rx DMA tag.\n");
1152 		goto fail;
1153 	}
1154 
1155 	/* Create DMA maps for Tx buffers. */
1156 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
1157 		txd = &sc->age_cdata.age_txdesc[i];
1158 		txd->tx_m = NULL;
1159 		txd->tx_dmamap = NULL;
1160 		error = bus_dmamap_create(sc->age_cdata.age_tx_tag, 0,
1161 		    &txd->tx_dmamap);
1162 		if (error != 0) {
1163 			device_printf(sc->age_dev,
1164 			    "could not create Tx dmamap.\n");
1165 			goto fail;
1166 		}
1167 	}
1168 	/* Create DMA maps for Rx buffers. */
1169 	if ((error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1170 	    &sc->age_cdata.age_rx_sparemap)) != 0) {
1171 		device_printf(sc->age_dev,
1172 		    "could not create spare Rx dmamap.\n");
1173 		goto fail;
1174 	}
1175 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
1176 		rxd = &sc->age_cdata.age_rxdesc[i];
1177 		rxd->rx_m = NULL;
1178 		rxd->rx_dmamap = NULL;
1179 		error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1180 		    &rxd->rx_dmamap);
1181 		if (error != 0) {
1182 			device_printf(sc->age_dev,
1183 			    "could not create Rx dmamap.\n");
1184 			goto fail;
1185 		}
1186 	}
1187 
1188 fail:
1189 	return (error);
1190 }
1191 
1192 static void
1193 age_dma_free(struct age_softc *sc)
1194 {
1195 	struct age_txdesc *txd;
1196 	struct age_rxdesc *rxd;
1197 	int i;
1198 
1199 	/* Tx buffers */
1200 	if (sc->age_cdata.age_tx_tag != NULL) {
1201 		for (i = 0; i < AGE_TX_RING_CNT; i++) {
1202 			txd = &sc->age_cdata.age_txdesc[i];
1203 			if (txd->tx_dmamap != NULL) {
1204 				bus_dmamap_destroy(sc->age_cdata.age_tx_tag,
1205 				    txd->tx_dmamap);
1206 				txd->tx_dmamap = NULL;
1207 			}
1208 		}
1209 		bus_dma_tag_destroy(sc->age_cdata.age_tx_tag);
1210 		sc->age_cdata.age_tx_tag = NULL;
1211 	}
1212 	/* Rx buffers */
1213 	if (sc->age_cdata.age_rx_tag != NULL) {
1214 		for (i = 0; i < AGE_RX_RING_CNT; i++) {
1215 			rxd = &sc->age_cdata.age_rxdesc[i];
1216 			if (rxd->rx_dmamap != NULL) {
1217 				bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1218 				    rxd->rx_dmamap);
1219 				rxd->rx_dmamap = NULL;
1220 			}
1221 		}
1222 		if (sc->age_cdata.age_rx_sparemap != NULL) {
1223 			bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1224 			    sc->age_cdata.age_rx_sparemap);
1225 			sc->age_cdata.age_rx_sparemap = NULL;
1226 		}
1227 		bus_dma_tag_destroy(sc->age_cdata.age_rx_tag);
1228 		sc->age_cdata.age_rx_tag = NULL;
1229 	}
1230 	/* Tx ring. */
1231 	if (sc->age_cdata.age_tx_ring_tag != NULL) {
1232 		if (sc->age_rdata.age_tx_ring_paddr != 0)
1233 			bus_dmamap_unload(sc->age_cdata.age_tx_ring_tag,
1234 			    sc->age_cdata.age_tx_ring_map);
1235 		if (sc->age_rdata.age_tx_ring != NULL)
1236 			bus_dmamem_free(sc->age_cdata.age_tx_ring_tag,
1237 			    sc->age_rdata.age_tx_ring,
1238 			    sc->age_cdata.age_tx_ring_map);
1239 		sc->age_rdata.age_tx_ring_paddr = 0;
1240 		sc->age_rdata.age_tx_ring = NULL;
1241 		bus_dma_tag_destroy(sc->age_cdata.age_tx_ring_tag);
1242 		sc->age_cdata.age_tx_ring_tag = NULL;
1243 	}
1244 	/* Rx ring. */
1245 	if (sc->age_cdata.age_rx_ring_tag != NULL) {
1246 		if (sc->age_rdata.age_rx_ring_paddr != 0)
1247 			bus_dmamap_unload(sc->age_cdata.age_rx_ring_tag,
1248 			    sc->age_cdata.age_rx_ring_map);
1249 		if (sc->age_rdata.age_rx_ring != NULL)
1250 			bus_dmamem_free(sc->age_cdata.age_rx_ring_tag,
1251 			    sc->age_rdata.age_rx_ring,
1252 			    sc->age_cdata.age_rx_ring_map);
1253 		sc->age_rdata.age_rx_ring_paddr = 0;
1254 		sc->age_rdata.age_rx_ring = NULL;
1255 		bus_dma_tag_destroy(sc->age_cdata.age_rx_ring_tag);
1256 		sc->age_cdata.age_rx_ring_tag = NULL;
1257 	}
1258 	/* Rx return ring. */
1259 	if (sc->age_cdata.age_rr_ring_tag != NULL) {
1260 		if (sc->age_rdata.age_rr_ring_paddr != 0)
1261 			bus_dmamap_unload(sc->age_cdata.age_rr_ring_tag,
1262 			    sc->age_cdata.age_rr_ring_map);
1263 		if (sc->age_rdata.age_rr_ring != NULL)
1264 			bus_dmamem_free(sc->age_cdata.age_rr_ring_tag,
1265 			    sc->age_rdata.age_rr_ring,
1266 			    sc->age_cdata.age_rr_ring_map);
1267 		sc->age_rdata.age_rr_ring_paddr = 0;
1268 		sc->age_rdata.age_rr_ring = NULL;
1269 		bus_dma_tag_destroy(sc->age_cdata.age_rr_ring_tag);
1270 		sc->age_cdata.age_rr_ring_tag = NULL;
1271 	}
1272 	/* CMB block */
1273 	if (sc->age_cdata.age_cmb_block_tag != NULL) {
1274 		if (sc->age_rdata.age_cmb_block_paddr != 0)
1275 			bus_dmamap_unload(sc->age_cdata.age_cmb_block_tag,
1276 			    sc->age_cdata.age_cmb_block_map);
1277 		if (sc->age_rdata.age_cmb_block != NULL)
1278 			bus_dmamem_free(sc->age_cdata.age_cmb_block_tag,
1279 			    sc->age_rdata.age_cmb_block,
1280 			    sc->age_cdata.age_cmb_block_map);
1281 		sc->age_rdata.age_cmb_block_paddr = 0;
1282 		sc->age_rdata.age_cmb_block = NULL;
1283 		bus_dma_tag_destroy(sc->age_cdata.age_cmb_block_tag);
1284 		sc->age_cdata.age_cmb_block_tag = NULL;
1285 	}
1286 	/* SMB block */
1287 	if (sc->age_cdata.age_smb_block_tag != NULL) {
1288 		if (sc->age_rdata.age_smb_block_paddr != 0)
1289 			bus_dmamap_unload(sc->age_cdata.age_smb_block_tag,
1290 			    sc->age_cdata.age_smb_block_map);
1291 		if (sc->age_rdata.age_smb_block != NULL)
1292 			bus_dmamem_free(sc->age_cdata.age_smb_block_tag,
1293 			    sc->age_rdata.age_smb_block,
1294 			    sc->age_cdata.age_smb_block_map);
1295 		sc->age_rdata.age_smb_block_paddr = 0;
1296 		sc->age_rdata.age_smb_block = NULL;
1297 		bus_dma_tag_destroy(sc->age_cdata.age_smb_block_tag);
1298 		sc->age_cdata.age_smb_block_tag = NULL;
1299 	}
1300 
1301 	if (sc->age_cdata.age_buffer_tag != NULL) {
1302 		bus_dma_tag_destroy(sc->age_cdata.age_buffer_tag);
1303 		sc->age_cdata.age_buffer_tag = NULL;
1304 	}
1305 	if (sc->age_cdata.age_parent_tag != NULL) {
1306 		bus_dma_tag_destroy(sc->age_cdata.age_parent_tag);
1307 		sc->age_cdata.age_parent_tag = NULL;
1308 	}
1309 }
1310 
1311 /*
1312  *	Make sure the interface is stopped at reboot time.
1313  */
1314 static int
1315 age_shutdown(device_t dev)
1316 {
1317 
1318 	return (age_suspend(dev));
1319 }
1320 
1321 static void
1322 age_setwol(struct age_softc *sc)
1323 {
1324 	struct ifnet *ifp;
1325 	struct mii_data *mii;
1326 	uint32_t reg, pmcs;
1327 	uint16_t pmstat;
1328 	int aneg, i, pmc;
1329 
1330 	AGE_LOCK_ASSERT(sc);
1331 
1332 	if (pci_find_cap(sc->age_dev, PCIY_PMG, &pmc) != 0) {
1333 		CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1334 		/*
1335 		 * No PME capability, PHY power down.
1336 		 * XXX
1337 		 * Due to an unknown reason powering down PHY resulted
1338 		 * in unexpected results such as inaccessbility of
1339 		 * hardware of freshly rebooted system. Disable
1340 		 * powering down PHY until I got more information for
1341 		 * Attansic/Atheros PHY hardwares.
1342 		 */
1343 #ifdef notyet
1344 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1345 		    MII_BMCR, BMCR_PDOWN);
1346 #endif
1347 		return;
1348 	}
1349 
1350 	ifp = sc->age_ifp;
1351 	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1352 		/*
1353 		 * Note, this driver resets the link speed to 10/100Mbps with
1354 		 * auto-negotiation but we don't know whether that operation
1355 		 * would succeed or not as it have no control after powering
1356 		 * off. If the renegotiation fail WOL may not work. Running
1357 		 * at 1Gbps will draw more power than 375mA at 3.3V which is
1358 		 * specified in PCI specification and that would result in
1359 		 * complete shutdowning power to ethernet controller.
1360 		 *
1361 		 * TODO
1362 		 *  Save current negotiated media speed/duplex/flow-control
1363 		 *  to softc and restore the same link again after resuming.
1364 		 *  PHY handling such as power down/resetting to 100Mbps
1365 		 *  may be better handled in suspend method in phy driver.
1366 		 */
1367 		mii = device_get_softc(sc->age_miibus);
1368 		mii_pollstat(mii);
1369 		aneg = 0;
1370 		if ((mii->mii_media_status & IFM_AVALID) != 0) {
1371 			switch IFM_SUBTYPE(mii->mii_media_active) {
1372 			case IFM_10_T:
1373 			case IFM_100_TX:
1374 				goto got_link;
1375 			case IFM_1000_T:
1376 				aneg++;
1377 			default:
1378 				break;
1379 			}
1380 		}
1381 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1382 		    MII_100T2CR, 0);
1383 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1384 		    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD |
1385 		    ANAR_10 | ANAR_CSMA);
1386 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1387 		    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1388 		DELAY(1000);
1389 		if (aneg != 0) {
1390 			/* Poll link state until age(4) get a 10/100 link. */
1391 			for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1392 				mii_pollstat(mii);
1393 				if ((mii->mii_media_status & IFM_AVALID) != 0) {
1394 					switch (IFM_SUBTYPE(
1395 					    mii->mii_media_active)) {
1396 					case IFM_10_T:
1397 					case IFM_100_TX:
1398 						age_mac_config(sc);
1399 						goto got_link;
1400 					default:
1401 						break;
1402 					}
1403 				}
1404 				AGE_UNLOCK(sc);
1405 				pause("agelnk", hz);
1406 				AGE_LOCK(sc);
1407 			}
1408 			if (i == MII_ANEGTICKS_GIGE)
1409 				device_printf(sc->age_dev,
1410 				    "establishing link failed, "
1411 				    "WOL may not work!");
1412 		}
1413 		/*
1414 		 * No link, force MAC to have 100Mbps, full-duplex link.
1415 		 * This is the last resort and may/may not work.
1416 		 */
1417 		mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1418 		mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1419 		age_mac_config(sc);
1420 	}
1421 
1422 got_link:
1423 	pmcs = 0;
1424 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1425 		pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1426 	CSR_WRITE_4(sc, AGE_WOL_CFG, pmcs);
1427 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1428 	reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC);
1429 	reg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST);
1430 	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
1431 		reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1432 	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1433 		reg |= MAC_CFG_RX_ENB;
1434 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1435 	}
1436 
1437 	/* Request PME. */
1438 	pmstat = pci_read_config(sc->age_dev, pmc + PCIR_POWER_STATUS, 2);
1439 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1440 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1441 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1442 	pci_write_config(sc->age_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1443 #ifdef notyet
1444 	/* See above for powering down PHY issues. */
1445 	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1446 		/* No WOL, PHY power down. */
1447 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1448 		    MII_BMCR, BMCR_PDOWN);
1449 	}
1450 #endif
1451 }
1452 
1453 static int
1454 age_suspend(device_t dev)
1455 {
1456 	struct age_softc *sc;
1457 
1458 	sc = device_get_softc(dev);
1459 
1460 	AGE_LOCK(sc);
1461 	age_stop(sc);
1462 	age_setwol(sc);
1463 	AGE_UNLOCK(sc);
1464 
1465 	return (0);
1466 }
1467 
1468 static int
1469 age_resume(device_t dev)
1470 {
1471 	struct age_softc *sc;
1472 	struct ifnet *ifp;
1473 
1474 	sc = device_get_softc(dev);
1475 
1476 	AGE_LOCK(sc);
1477 	age_phy_reset(sc);
1478 	ifp = sc->age_ifp;
1479 	if ((ifp->if_flags & IFF_UP) != 0)
1480 		age_init_locked(sc);
1481 
1482 	AGE_UNLOCK(sc);
1483 
1484 	return (0);
1485 }
1486 
1487 static int
1488 age_encap(struct age_softc *sc, struct mbuf **m_head)
1489 {
1490 	struct age_txdesc *txd, *txd_last;
1491 	struct tx_desc *desc;
1492 	struct mbuf *m;
1493 	struct ip *ip;
1494 	struct tcphdr *tcp;
1495 	bus_dma_segment_t txsegs[AGE_MAXTXSEGS];
1496 	bus_dmamap_t map;
1497 	uint32_t cflags, hdrlen, ip_off, poff, vtag;
1498 	int error, i, nsegs, prod, si;
1499 
1500 	AGE_LOCK_ASSERT(sc);
1501 
1502 	M_ASSERTPKTHDR((*m_head));
1503 
1504 	m = *m_head;
1505 	ip = NULL;
1506 	tcp = NULL;
1507 	cflags = vtag = 0;
1508 	ip_off = poff = 0;
1509 	if ((m->m_pkthdr.csum_flags & (AGE_CSUM_FEATURES | CSUM_TSO)) != 0) {
1510 		/*
1511 		 * L1 requires offset of TCP/UDP payload in its Tx
1512 		 * descriptor to perform hardware Tx checksum offload.
1513 		 * Additionally, TSO requires IP/TCP header size and
1514 		 * modification of IP/TCP header in order to make TSO
1515 		 * engine work. This kind of operation takes many CPU
1516 		 * cycles on FreeBSD so fast host CPU is needed to get
1517 		 * smooth TSO performance.
1518 		 */
1519 		struct ether_header *eh;
1520 
1521 		if (M_WRITABLE(m) == 0) {
1522 			/* Get a writable copy. */
1523 			m = m_dup(*m_head, M_NOWAIT);
1524 			/* Release original mbufs. */
1525 			m_freem(*m_head);
1526 			if (m == NULL) {
1527 				*m_head = NULL;
1528 				return (ENOBUFS);
1529 			}
1530 			*m_head = m;
1531 		}
1532 		ip_off = sizeof(struct ether_header);
1533 		m = m_pullup(m, ip_off);
1534 		if (m == NULL) {
1535 			*m_head = NULL;
1536 			return (ENOBUFS);
1537 		}
1538 		eh = mtod(m, struct ether_header *);
1539 		/*
1540 		 * Check if hardware VLAN insertion is off.
1541 		 * Additional check for LLC/SNAP frame?
1542 		 */
1543 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1544 			ip_off = sizeof(struct ether_vlan_header);
1545 			m = m_pullup(m, ip_off);
1546 			if (m == NULL) {
1547 				*m_head = NULL;
1548 				return (ENOBUFS);
1549 			}
1550 		}
1551 		m = m_pullup(m, ip_off + sizeof(struct ip));
1552 		if (m == NULL) {
1553 			*m_head = NULL;
1554 			return (ENOBUFS);
1555 		}
1556 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1557 		poff = ip_off + (ip->ip_hl << 2);
1558 		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1559 			m = m_pullup(m, poff + sizeof(struct tcphdr));
1560 			if (m == NULL) {
1561 				*m_head = NULL;
1562 				return (ENOBUFS);
1563 			}
1564 			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1565 			m = m_pullup(m, poff + (tcp->th_off << 2));
1566 			if (m == NULL) {
1567 				*m_head = NULL;
1568 				return (ENOBUFS);
1569 			}
1570 			/*
1571 			 * L1 requires IP/TCP header size and offset as
1572 			 * well as TCP pseudo checksum which complicates
1573 			 * TSO configuration. I guess this comes from the
1574 			 * adherence to Microsoft NDIS Large Send
1575 			 * specification which requires insertion of
1576 			 * pseudo checksum by upper stack. The pseudo
1577 			 * checksum that NDIS refers to doesn't include
1578 			 * TCP payload length so age(4) should recompute
1579 			 * the pseudo checksum here. Hopefully this wouldn't
1580 			 * be much burden on modern CPUs.
1581 			 * Reset IP checksum and recompute TCP pseudo
1582 			 * checksum as NDIS specification said.
1583 			 */
1584 			ip = (struct ip *)(mtod(m, char *) + ip_off);
1585 			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1586 			ip->ip_sum = 0;
1587 			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1588 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1589 		}
1590 		*m_head = m;
1591 	}
1592 
1593 	si = prod = sc->age_cdata.age_tx_prod;
1594 	txd = &sc->age_cdata.age_txdesc[prod];
1595 	txd_last = txd;
1596 	map = txd->tx_dmamap;
1597 
1598 	error =  bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1599 	    *m_head, txsegs, &nsegs, 0);
1600 	if (error == EFBIG) {
1601 		m = m_collapse(*m_head, M_NOWAIT, AGE_MAXTXSEGS);
1602 		if (m == NULL) {
1603 			m_freem(*m_head);
1604 			*m_head = NULL;
1605 			return (ENOMEM);
1606 		}
1607 		*m_head = m;
1608 		error = bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1609 		    *m_head, txsegs, &nsegs, 0);
1610 		if (error != 0) {
1611 			m_freem(*m_head);
1612 			*m_head = NULL;
1613 			return (error);
1614 		}
1615 	} else if (error != 0)
1616 		return (error);
1617 	if (nsegs == 0) {
1618 		m_freem(*m_head);
1619 		*m_head = NULL;
1620 		return (EIO);
1621 	}
1622 
1623 	/* Check descriptor overrun. */
1624 	if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1625 		bus_dmamap_unload(sc->age_cdata.age_tx_tag, map);
1626 		return (ENOBUFS);
1627 	}
1628 
1629 	m = *m_head;
1630 	/* Configure VLAN hardware tag insertion. */
1631 	if ((m->m_flags & M_VLANTAG) != 0) {
1632 		vtag = AGE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
1633 		vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1634 		cflags |= AGE_TD_INSERT_VLAN_TAG;
1635 	}
1636 
1637 	desc = NULL;
1638 	i = 0;
1639 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1640 		/* Request TSO and set MSS. */
1641 		cflags |= AGE_TD_TSO_IPV4;
1642 		cflags |= AGE_TD_IPCSUM | AGE_TD_TCPCSUM;
1643 		cflags |= ((uint32_t)m->m_pkthdr.tso_segsz <<
1644 		    AGE_TD_TSO_MSS_SHIFT);
1645 		/* Set IP/TCP header size. */
1646 		cflags |= ip->ip_hl << AGE_TD_IPHDR_LEN_SHIFT;
1647 		cflags |= tcp->th_off << AGE_TD_TSO_TCPHDR_LEN_SHIFT;
1648 		/*
1649 		 * L1 requires the first buffer should only hold IP/TCP
1650 		 * header data. TCP payload should be handled in other
1651 		 * descriptors.
1652 		 */
1653 		hdrlen = poff + (tcp->th_off << 2);
1654 		desc = &sc->age_rdata.age_tx_ring[prod];
1655 		desc->addr = htole64(txsegs[0].ds_addr);
1656 		desc->len = htole32(AGE_TX_BYTES(hdrlen) | vtag);
1657 		desc->flags = htole32(cflags);
1658 		sc->age_cdata.age_tx_cnt++;
1659 		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1660 		if (m->m_len - hdrlen > 0) {
1661 			/* Handle remaining payload of the 1st fragment. */
1662 			desc = &sc->age_rdata.age_tx_ring[prod];
1663 			desc->addr = htole64(txsegs[0].ds_addr + hdrlen);
1664 			desc->len = htole32(AGE_TX_BYTES(m->m_len - hdrlen) |
1665 			    vtag);
1666 			desc->flags = htole32(cflags);
1667 			sc->age_cdata.age_tx_cnt++;
1668 			AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1669 		}
1670 		/* Handle remaining fragments. */
1671 		i = 1;
1672 	} else if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1673 		/* Configure Tx IP/TCP/UDP checksum offload. */
1674 		cflags |= AGE_TD_CSUM;
1675 		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1676 			cflags |= AGE_TD_TCPCSUM;
1677 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1678 			cflags |= AGE_TD_UDPCSUM;
1679 		/* Set checksum start offset. */
1680 		cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1681 		/* Set checksum insertion position of TCP/UDP. */
1682 		cflags |= ((poff + m->m_pkthdr.csum_data) <<
1683 		    AGE_TD_CSUM_XSUMOFFSET_SHIFT);
1684 	}
1685 	for (; i < nsegs; i++) {
1686 		desc = &sc->age_rdata.age_tx_ring[prod];
1687 		desc->addr = htole64(txsegs[i].ds_addr);
1688 		desc->len = htole32(AGE_TX_BYTES(txsegs[i].ds_len) | vtag);
1689 		desc->flags = htole32(cflags);
1690 		sc->age_cdata.age_tx_cnt++;
1691 		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1692 	}
1693 	/* Update producer index. */
1694 	sc->age_cdata.age_tx_prod = prod;
1695 
1696 	/* Set EOP on the last descriptor. */
1697 	prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1698 	desc = &sc->age_rdata.age_tx_ring[prod];
1699 	desc->flags |= htole32(AGE_TD_EOP);
1700 
1701 	/* Lastly set TSO header and modify IP/TCP header for TSO operation. */
1702 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1703 		desc = &sc->age_rdata.age_tx_ring[si];
1704 		desc->flags |= htole32(AGE_TD_TSO_HDR);
1705 	}
1706 
1707 	/* Swap dmamap of the first and the last. */
1708 	txd = &sc->age_cdata.age_txdesc[prod];
1709 	map = txd_last->tx_dmamap;
1710 	txd_last->tx_dmamap = txd->tx_dmamap;
1711 	txd->tx_dmamap = map;
1712 	txd->tx_m = m;
1713 
1714 	/* Sync descriptors. */
1715 	bus_dmamap_sync(sc->age_cdata.age_tx_tag, map, BUS_DMASYNC_PREWRITE);
1716 	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
1717 	    sc->age_cdata.age_tx_ring_map,
1718 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1719 
1720 	return (0);
1721 }
1722 
1723 static void
1724 age_start(struct ifnet *ifp)
1725 {
1726         struct age_softc *sc;
1727 
1728 	sc = ifp->if_softc;
1729 	AGE_LOCK(sc);
1730 	age_start_locked(ifp);
1731 	AGE_UNLOCK(sc);
1732 }
1733 
1734 static void
1735 age_start_locked(struct ifnet *ifp)
1736 {
1737         struct age_softc *sc;
1738         struct mbuf *m_head;
1739 	int enq;
1740 
1741 	sc = ifp->if_softc;
1742 
1743 	AGE_LOCK_ASSERT(sc);
1744 
1745 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1746 	    IFF_DRV_RUNNING || (sc->age_flags & AGE_FLAG_LINK) == 0)
1747 		return;
1748 
1749 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1750 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1751 		if (m_head == NULL)
1752 			break;
1753 		/*
1754 		 * Pack the data into the transmit ring. If we
1755 		 * don't have room, set the OACTIVE flag and wait
1756 		 * for the NIC to drain the ring.
1757 		 */
1758 		if (age_encap(sc, &m_head)) {
1759 			if (m_head == NULL)
1760 				break;
1761 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1762 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1763 			break;
1764 		}
1765 
1766 		enq++;
1767 		/*
1768 		 * If there's a BPF listener, bounce a copy of this frame
1769 		 * to him.
1770 		 */
1771 		ETHER_BPF_MTAP(ifp, m_head);
1772 	}
1773 
1774 	if (enq > 0) {
1775 		/* Update mbox. */
1776 		AGE_COMMIT_MBOX(sc);
1777 		/* Set a timeout in case the chip goes out to lunch. */
1778 		sc->age_watchdog_timer = AGE_TX_TIMEOUT;
1779 	}
1780 }
1781 
1782 static void
1783 age_watchdog(struct age_softc *sc)
1784 {
1785 	struct ifnet *ifp;
1786 
1787 	AGE_LOCK_ASSERT(sc);
1788 
1789 	if (sc->age_watchdog_timer == 0 || --sc->age_watchdog_timer)
1790 		return;
1791 
1792 	ifp = sc->age_ifp;
1793 	if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1794 		if_printf(sc->age_ifp, "watchdog timeout (missed link)\n");
1795 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1796 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1797 		age_init_locked(sc);
1798 		return;
1799 	}
1800 	if (sc->age_cdata.age_tx_cnt == 0) {
1801 		if_printf(sc->age_ifp,
1802 		    "watchdog timeout (missed Tx interrupts) -- recovering\n");
1803 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1804 			age_start_locked(ifp);
1805 		return;
1806 	}
1807 	if_printf(sc->age_ifp, "watchdog timeout\n");
1808 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1809 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1810 	age_init_locked(sc);
1811 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1812 		age_start_locked(ifp);
1813 }
1814 
1815 static int
1816 age_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1817 {
1818 	struct age_softc *sc;
1819 	struct ifreq *ifr;
1820 	struct mii_data *mii;
1821 	uint32_t reg;
1822 	int error, mask;
1823 
1824 	sc = ifp->if_softc;
1825 	ifr = (struct ifreq *)data;
1826 	error = 0;
1827 	switch (cmd) {
1828 	case SIOCSIFMTU:
1829 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > AGE_JUMBO_MTU)
1830 			error = EINVAL;
1831 		else if (ifp->if_mtu != ifr->ifr_mtu) {
1832 			AGE_LOCK(sc);
1833 			ifp->if_mtu = ifr->ifr_mtu;
1834 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1835 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1836 				age_init_locked(sc);
1837 			}
1838 			AGE_UNLOCK(sc);
1839 		}
1840 		break;
1841 	case SIOCSIFFLAGS:
1842 		AGE_LOCK(sc);
1843 		if ((ifp->if_flags & IFF_UP) != 0) {
1844 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1845 				if (((ifp->if_flags ^ sc->age_if_flags)
1846 				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1847 					age_rxfilter(sc);
1848 			} else {
1849 				if ((sc->age_flags & AGE_FLAG_DETACH) == 0)
1850 					age_init_locked(sc);
1851 			}
1852 		} else {
1853 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1854 				age_stop(sc);
1855 		}
1856 		sc->age_if_flags = ifp->if_flags;
1857 		AGE_UNLOCK(sc);
1858 		break;
1859 	case SIOCADDMULTI:
1860 	case SIOCDELMULTI:
1861 		AGE_LOCK(sc);
1862 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1863 			age_rxfilter(sc);
1864 		AGE_UNLOCK(sc);
1865 		break;
1866 	case SIOCSIFMEDIA:
1867 	case SIOCGIFMEDIA:
1868 		mii = device_get_softc(sc->age_miibus);
1869 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1870 		break;
1871 	case SIOCSIFCAP:
1872 		AGE_LOCK(sc);
1873 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1874 		if ((mask & IFCAP_TXCSUM) != 0 &&
1875 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
1876 			ifp->if_capenable ^= IFCAP_TXCSUM;
1877 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1878 				ifp->if_hwassist |= AGE_CSUM_FEATURES;
1879 			else
1880 				ifp->if_hwassist &= ~AGE_CSUM_FEATURES;
1881 		}
1882 		if ((mask & IFCAP_RXCSUM) != 0 &&
1883 		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
1884 			ifp->if_capenable ^= IFCAP_RXCSUM;
1885 			reg = CSR_READ_4(sc, AGE_MAC_CFG);
1886 			reg &= ~MAC_CFG_RXCSUM_ENB;
1887 			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
1888 				reg |= MAC_CFG_RXCSUM_ENB;
1889 			CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1890 		}
1891 		if ((mask & IFCAP_TSO4) != 0 &&
1892 		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
1893 			ifp->if_capenable ^= IFCAP_TSO4;
1894 			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
1895 				ifp->if_hwassist |= CSUM_TSO;
1896 			else
1897 				ifp->if_hwassist &= ~CSUM_TSO;
1898 		}
1899 
1900 		if ((mask & IFCAP_WOL_MCAST) != 0 &&
1901 		    (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
1902 			ifp->if_capenable ^= IFCAP_WOL_MCAST;
1903 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
1904 		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
1905 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1906 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
1907 		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
1908 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
1909 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1910 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
1911 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1912 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1913 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
1914 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1915 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
1916 				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
1917 			age_rxvlan(sc);
1918 		}
1919 		AGE_UNLOCK(sc);
1920 		VLAN_CAPABILITIES(ifp);
1921 		break;
1922 	default:
1923 		error = ether_ioctl(ifp, cmd, data);
1924 		break;
1925 	}
1926 
1927 	return (error);
1928 }
1929 
1930 static void
1931 age_mac_config(struct age_softc *sc)
1932 {
1933 	struct mii_data *mii;
1934 	uint32_t reg;
1935 
1936 	AGE_LOCK_ASSERT(sc);
1937 
1938 	mii = device_get_softc(sc->age_miibus);
1939 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1940 	reg &= ~MAC_CFG_FULL_DUPLEX;
1941 	reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1942 	reg &= ~MAC_CFG_SPEED_MASK;
1943 	/* Reprogram MAC with resolved speed/duplex. */
1944 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1945 	case IFM_10_T:
1946 	case IFM_100_TX:
1947 		reg |= MAC_CFG_SPEED_10_100;
1948 		break;
1949 	case IFM_1000_T:
1950 		reg |= MAC_CFG_SPEED_1000;
1951 		break;
1952 	}
1953 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1954 		reg |= MAC_CFG_FULL_DUPLEX;
1955 #ifdef notyet
1956 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1957 			reg |= MAC_CFG_TX_FC;
1958 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1959 			reg |= MAC_CFG_RX_FC;
1960 #endif
1961 	}
1962 
1963 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1964 }
1965 
1966 static void
1967 age_link_task(void *arg, int pending)
1968 {
1969 	struct age_softc *sc;
1970 	struct mii_data *mii;
1971 	struct ifnet *ifp;
1972 	uint32_t reg;
1973 
1974 	sc = (struct age_softc *)arg;
1975 
1976 	AGE_LOCK(sc);
1977 	mii = device_get_softc(sc->age_miibus);
1978 	ifp = sc->age_ifp;
1979 	if (mii == NULL || ifp == NULL ||
1980 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1981 		AGE_UNLOCK(sc);
1982 		return;
1983 	}
1984 
1985 	sc->age_flags &= ~AGE_FLAG_LINK;
1986 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
1987 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
1988 		case IFM_10_T:
1989 		case IFM_100_TX:
1990 		case IFM_1000_T:
1991 			sc->age_flags |= AGE_FLAG_LINK;
1992 			break;
1993 		default:
1994 			break;
1995 		}
1996 	}
1997 
1998 	/* Stop Rx/Tx MACs. */
1999 	age_stop_rxmac(sc);
2000 	age_stop_txmac(sc);
2001 
2002 	/* Program MACs with resolved speed/duplex/flow-control. */
2003 	if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
2004 		age_mac_config(sc);
2005 		reg = CSR_READ_4(sc, AGE_MAC_CFG);
2006 		/* Restart DMA engine and Tx/Rx MAC. */
2007 		CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
2008 		    DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
2009 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
2010 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2011 	}
2012 
2013 	AGE_UNLOCK(sc);
2014 }
2015 
2016 static void
2017 age_stats_update(struct age_softc *sc)
2018 {
2019 	struct age_stats *stat;
2020 	struct smb *smb;
2021 	struct ifnet *ifp;
2022 
2023 	AGE_LOCK_ASSERT(sc);
2024 
2025 	stat = &sc->age_stat;
2026 
2027 	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2028 	    sc->age_cdata.age_smb_block_map,
2029 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2030 
2031 	smb = sc->age_rdata.age_smb_block;
2032 	if (smb->updated == 0)
2033 		return;
2034 
2035 	ifp = sc->age_ifp;
2036 	/* Rx stats. */
2037 	stat->rx_frames += smb->rx_frames;
2038 	stat->rx_bcast_frames += smb->rx_bcast_frames;
2039 	stat->rx_mcast_frames += smb->rx_mcast_frames;
2040 	stat->rx_pause_frames += smb->rx_pause_frames;
2041 	stat->rx_control_frames += smb->rx_control_frames;
2042 	stat->rx_crcerrs += smb->rx_crcerrs;
2043 	stat->rx_lenerrs += smb->rx_lenerrs;
2044 	stat->rx_bytes += smb->rx_bytes;
2045 	stat->rx_runts += smb->rx_runts;
2046 	stat->rx_fragments += smb->rx_fragments;
2047 	stat->rx_pkts_64 += smb->rx_pkts_64;
2048 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2049 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2050 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2051 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2052 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2053 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2054 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2055 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2056 	stat->rx_desc_oflows += smb->rx_desc_oflows;
2057 	stat->rx_alignerrs += smb->rx_alignerrs;
2058 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2059 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2060 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2061 
2062 	/* Tx stats. */
2063 	stat->tx_frames += smb->tx_frames;
2064 	stat->tx_bcast_frames += smb->tx_bcast_frames;
2065 	stat->tx_mcast_frames += smb->tx_mcast_frames;
2066 	stat->tx_pause_frames += smb->tx_pause_frames;
2067 	stat->tx_excess_defer += smb->tx_excess_defer;
2068 	stat->tx_control_frames += smb->tx_control_frames;
2069 	stat->tx_deferred += smb->tx_deferred;
2070 	stat->tx_bytes += smb->tx_bytes;
2071 	stat->tx_pkts_64 += smb->tx_pkts_64;
2072 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2073 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2074 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2075 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2076 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2077 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2078 	stat->tx_single_colls += smb->tx_single_colls;
2079 	stat->tx_multi_colls += smb->tx_multi_colls;
2080 	stat->tx_late_colls += smb->tx_late_colls;
2081 	stat->tx_excess_colls += smb->tx_excess_colls;
2082 	stat->tx_underrun += smb->tx_underrun;
2083 	stat->tx_desc_underrun += smb->tx_desc_underrun;
2084 	stat->tx_lenerrs += smb->tx_lenerrs;
2085 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2086 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2087 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2088 
2089 	/* Update counters in ifnet. */
2090 	if_inc_counter(ifp, IFCOUNTER_OPACKETS, smb->tx_frames);
2091 
2092 	if_inc_counter(ifp, IFCOUNTER_COLLISIONS, smb->tx_single_colls +
2093 	    smb->tx_multi_colls + smb->tx_late_colls +
2094 	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT);
2095 
2096 	if_inc_counter(ifp, IFCOUNTER_OERRORS, smb->tx_excess_colls +
2097 	    smb->tx_late_colls + smb->tx_underrun +
2098 	    smb->tx_pkts_truncated);
2099 
2100 	if_inc_counter(ifp, IFCOUNTER_IPACKETS, smb->rx_frames);
2101 
2102 	if_inc_counter(ifp, IFCOUNTER_IERRORS, smb->rx_crcerrs +
2103 	    smb->rx_lenerrs + smb->rx_runts + smb->rx_pkts_truncated +
2104 	    smb->rx_fifo_oflows + smb->rx_desc_oflows +
2105 	    smb->rx_alignerrs);
2106 
2107 	/* Update done, clear. */
2108 	smb->updated = 0;
2109 
2110 	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2111 	    sc->age_cdata.age_smb_block_map,
2112 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2113 }
2114 
2115 static int
2116 age_intr(void *arg)
2117 {
2118 	struct age_softc *sc;
2119 	uint32_t status;
2120 
2121 	sc = (struct age_softc *)arg;
2122 
2123 	status = CSR_READ_4(sc, AGE_INTR_STATUS);
2124 	if (status == 0 || (status & AGE_INTRS) == 0)
2125 		return (FILTER_STRAY);
2126 	/* Disable interrupts. */
2127 	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
2128 	taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2129 
2130 	return (FILTER_HANDLED);
2131 }
2132 
2133 static void
2134 age_int_task(void *arg, int pending)
2135 {
2136 	struct age_softc *sc;
2137 	struct ifnet *ifp;
2138 	struct cmb *cmb;
2139 	uint32_t status;
2140 
2141 	sc = (struct age_softc *)arg;
2142 
2143 	AGE_LOCK(sc);
2144 
2145 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2146 	    sc->age_cdata.age_cmb_block_map,
2147 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2148 	cmb = sc->age_rdata.age_cmb_block;
2149 	status = le32toh(cmb->intr_status);
2150 	if (sc->age_morework != 0)
2151 		status |= INTR_CMB_RX;
2152 	if ((status & AGE_INTRS) == 0)
2153 		goto done;
2154 
2155 	sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
2156 	    TPD_CONS_SHIFT;
2157 	sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
2158 	    RRD_PROD_SHIFT;
2159 	/* Let hardware know CMB was served. */
2160 	cmb->intr_status = 0;
2161 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2162 	    sc->age_cdata.age_cmb_block_map,
2163 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2164 
2165 #if 0
2166 	printf("INTR: 0x%08x\n", status);
2167 	status &= ~INTR_DIS_DMA;
2168 	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
2169 #endif
2170 	ifp = sc->age_ifp;
2171 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2172 		if ((status & INTR_CMB_RX) != 0)
2173 			sc->age_morework = age_rxintr(sc, sc->age_rr_prod,
2174 			    sc->age_process_limit);
2175 		if ((status & INTR_CMB_TX) != 0)
2176 			age_txintr(sc, sc->age_tpd_cons);
2177 		if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
2178 			if ((status & INTR_DMA_RD_TO_RST) != 0)
2179 				device_printf(sc->age_dev,
2180 				    "DMA read error! -- resetting\n");
2181 			if ((status & INTR_DMA_WR_TO_RST) != 0)
2182 				device_printf(sc->age_dev,
2183 				    "DMA write error! -- resetting\n");
2184 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2185 			age_init_locked(sc);
2186 		}
2187 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2188 			age_start_locked(ifp);
2189 		if ((status & INTR_SMB) != 0)
2190 			age_stats_update(sc);
2191 	}
2192 
2193 	/* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
2194 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2195 	    sc->age_cdata.age_cmb_block_map,
2196 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2197 	status = le32toh(cmb->intr_status);
2198 	if (sc->age_morework != 0 || (status & AGE_INTRS) != 0) {
2199 		taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2200 		AGE_UNLOCK(sc);
2201 		return;
2202 	}
2203 
2204 done:
2205 	/* Re-enable interrupts. */
2206 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2207 	AGE_UNLOCK(sc);
2208 }
2209 
2210 static void
2211 age_txintr(struct age_softc *sc, int tpd_cons)
2212 {
2213 	struct ifnet *ifp;
2214 	struct age_txdesc *txd;
2215 	int cons, prog;
2216 
2217 	AGE_LOCK_ASSERT(sc);
2218 
2219 	ifp = sc->age_ifp;
2220 
2221 	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2222 	    sc->age_cdata.age_tx_ring_map,
2223 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2224 
2225 	/*
2226 	 * Go through our Tx list and free mbufs for those
2227 	 * frames which have been transmitted.
2228 	 */
2229 	cons = sc->age_cdata.age_tx_cons;
2230 	for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
2231 		if (sc->age_cdata.age_tx_cnt <= 0)
2232 			break;
2233 		prog++;
2234 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2235 		sc->age_cdata.age_tx_cnt--;
2236 		txd = &sc->age_cdata.age_txdesc[cons];
2237 		/*
2238 		 * Clear Tx descriptors, it's not required but would
2239 		 * help debugging in case of Tx issues.
2240 		 */
2241 		txd->tx_desc->addr = 0;
2242 		txd->tx_desc->len = 0;
2243 		txd->tx_desc->flags = 0;
2244 
2245 		if (txd->tx_m == NULL)
2246 			continue;
2247 		/* Reclaim transmitted mbufs. */
2248 		bus_dmamap_sync(sc->age_cdata.age_tx_tag, txd->tx_dmamap,
2249 		    BUS_DMASYNC_POSTWRITE);
2250 		bus_dmamap_unload(sc->age_cdata.age_tx_tag, txd->tx_dmamap);
2251 		m_freem(txd->tx_m);
2252 		txd->tx_m = NULL;
2253 	}
2254 
2255 	if (prog > 0) {
2256 		sc->age_cdata.age_tx_cons = cons;
2257 
2258 		/*
2259 		 * Unarm watchdog timer only when there are no pending
2260 		 * Tx descriptors in queue.
2261 		 */
2262 		if (sc->age_cdata.age_tx_cnt == 0)
2263 			sc->age_watchdog_timer = 0;
2264 		bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2265 		    sc->age_cdata.age_tx_ring_map,
2266 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2267 	}
2268 }
2269 
2270 #ifndef __NO_STRICT_ALIGNMENT
2271 static struct mbuf *
2272 age_fixup_rx(struct ifnet *ifp, struct mbuf *m)
2273 {
2274 	struct mbuf *n;
2275         int i;
2276         uint16_t *src, *dst;
2277 
2278 	src = mtod(m, uint16_t *);
2279 	dst = src - 3;
2280 
2281 	if (m->m_next == NULL) {
2282 		for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
2283 			*dst++ = *src++;
2284 		m->m_data -= 6;
2285 		return (m);
2286 	}
2287 	/*
2288 	 * Append a new mbuf to received mbuf chain and copy ethernet
2289 	 * header from the mbuf chain. This can save lots of CPU
2290 	 * cycles for jumbo frame.
2291 	 */
2292 	MGETHDR(n, M_NOWAIT, MT_DATA);
2293 	if (n == NULL) {
2294 		if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2295 		m_freem(m);
2296 		return (NULL);
2297 	}
2298 	bcopy(m->m_data, n->m_data, ETHER_HDR_LEN);
2299 	m->m_data += ETHER_HDR_LEN;
2300 	m->m_len -= ETHER_HDR_LEN;
2301 	n->m_len = ETHER_HDR_LEN;
2302 	M_MOVE_PKTHDR(n, m);
2303 	n->m_next = m;
2304 	return (n);
2305 }
2306 #endif
2307 
2308 /* Receive a frame. */
2309 static void
2310 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
2311 {
2312 	struct age_rxdesc *rxd;
2313 	struct ifnet *ifp;
2314 	struct mbuf *mp, *m;
2315 	uint32_t status, index, vtag;
2316 	int count, nsegs;
2317 	int rx_cons;
2318 
2319 	AGE_LOCK_ASSERT(sc);
2320 
2321 	ifp = sc->age_ifp;
2322 	status = le32toh(rxrd->flags);
2323 	index = le32toh(rxrd->index);
2324 	rx_cons = AGE_RX_CONS(index);
2325 	nsegs = AGE_RX_NSEGS(index);
2326 
2327 	sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
2328 	if ((status & (AGE_RRD_ERROR | AGE_RRD_LENGTH_NOK)) != 0) {
2329 		/*
2330 		 * We want to pass the following frames to upper
2331 		 * layer regardless of error status of Rx return
2332 		 * ring.
2333 		 *
2334 		 *  o IP/TCP/UDP checksum is bad.
2335 		 *  o frame length and protocol specific length
2336 		 *     does not match.
2337 		 */
2338 		status |= AGE_RRD_IPCSUM_NOK | AGE_RRD_TCP_UDPCSUM_NOK;
2339 		if ((status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
2340 		    AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0)
2341 			return;
2342 	}
2343 
2344 	for (count = 0; count < nsegs; count++,
2345 	    AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
2346 		rxd = &sc->age_cdata.age_rxdesc[rx_cons];
2347 		mp = rxd->rx_m;
2348 		/* Add a new receive buffer to the ring. */
2349 		if (age_newbuf(sc, rxd) != 0) {
2350 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2351 			/* Reuse Rx buffers. */
2352 			if (sc->age_cdata.age_rxhead != NULL)
2353 				m_freem(sc->age_cdata.age_rxhead);
2354 			break;
2355 		}
2356 
2357 		/*
2358 		 * Assume we've received a full sized frame.
2359 		 * Actual size is fixed when we encounter the end of
2360 		 * multi-segmented frame.
2361 		 */
2362 		mp->m_len = AGE_RX_BUF_SIZE;
2363 
2364 		/* Chain received mbufs. */
2365 		if (sc->age_cdata.age_rxhead == NULL) {
2366 			sc->age_cdata.age_rxhead = mp;
2367 			sc->age_cdata.age_rxtail = mp;
2368 		} else {
2369 			mp->m_flags &= ~M_PKTHDR;
2370 			sc->age_cdata.age_rxprev_tail =
2371 			    sc->age_cdata.age_rxtail;
2372 			sc->age_cdata.age_rxtail->m_next = mp;
2373 			sc->age_cdata.age_rxtail = mp;
2374 		}
2375 
2376 		if (count == nsegs - 1) {
2377 			/* Last desc. for this frame. */
2378 			m = sc->age_cdata.age_rxhead;
2379 			m->m_flags |= M_PKTHDR;
2380 			/*
2381 			 * It seems that L1 controller has no way
2382 			 * to tell hardware to strip CRC bytes.
2383 			 */
2384 			m->m_pkthdr.len = sc->age_cdata.age_rxlen -
2385 			    ETHER_CRC_LEN;
2386 			if (nsegs > 1) {
2387 				/* Set last mbuf size. */
2388 				mp->m_len = sc->age_cdata.age_rxlen -
2389 				    ((nsegs - 1) * AGE_RX_BUF_SIZE);
2390 				/* Remove the CRC bytes in chained mbufs. */
2391 				if (mp->m_len <= ETHER_CRC_LEN) {
2392 					sc->age_cdata.age_rxtail =
2393 					    sc->age_cdata.age_rxprev_tail;
2394 					sc->age_cdata.age_rxtail->m_len -=
2395 					    (ETHER_CRC_LEN - mp->m_len);
2396 					sc->age_cdata.age_rxtail->m_next = NULL;
2397 					m_freem(mp);
2398 				} else {
2399 					mp->m_len -= ETHER_CRC_LEN;
2400 				}
2401 			} else
2402 				m->m_len = m->m_pkthdr.len;
2403 			m->m_pkthdr.rcvif = ifp;
2404 			/*
2405 			 * Set checksum information.
2406 			 * It seems that L1 controller can compute partial
2407 			 * checksum. The partial checksum value can be used
2408 			 * to accelerate checksum computation for fragmented
2409 			 * TCP/UDP packets. Upper network stack already
2410 			 * takes advantage of the partial checksum value in
2411 			 * IP reassembly stage. But I'm not sure the
2412 			 * correctness of the partial hardware checksum
2413 			 * assistance due to lack of data sheet. If it is
2414 			 * proven to work on L1 I'll enable it.
2415 			 */
2416 			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
2417 			    (status & AGE_RRD_IPV4) != 0) {
2418 				if ((status & AGE_RRD_IPCSUM_NOK) == 0)
2419 					m->m_pkthdr.csum_flags |=
2420 					    CSUM_IP_CHECKED | CSUM_IP_VALID;
2421 				if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
2422 				    (status & AGE_RRD_TCP_UDPCSUM_NOK) == 0) {
2423 					m->m_pkthdr.csum_flags |=
2424 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2425 					m->m_pkthdr.csum_data = 0xffff;
2426 				}
2427 				/*
2428 				 * Don't mark bad checksum for TCP/UDP frames
2429 				 * as fragmented frames may always have set
2430 				 * bad checksummed bit of descriptor status.
2431 				 */
2432 			}
2433 
2434 			/* Check for VLAN tagged frames. */
2435 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
2436 			    (status & AGE_RRD_VLAN) != 0) {
2437 				vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
2438 				m->m_pkthdr.ether_vtag = AGE_RX_VLAN_TAG(vtag);
2439 				m->m_flags |= M_VLANTAG;
2440 			}
2441 #ifndef __NO_STRICT_ALIGNMENT
2442 			m = age_fixup_rx(ifp, m);
2443 			if (m != NULL)
2444 #endif
2445 			{
2446 			/* Pass it on. */
2447 			AGE_UNLOCK(sc);
2448 			(*ifp->if_input)(ifp, m);
2449 			AGE_LOCK(sc);
2450 			}
2451 		}
2452 	}
2453 
2454 	/* Reset mbuf chains. */
2455 	AGE_RXCHAIN_RESET(sc);
2456 }
2457 
2458 static int
2459 age_rxintr(struct age_softc *sc, int rr_prod, int count)
2460 {
2461 	struct rx_rdesc *rxrd;
2462 	int rr_cons, nsegs, pktlen, prog;
2463 
2464 	AGE_LOCK_ASSERT(sc);
2465 
2466 	rr_cons = sc->age_cdata.age_rr_cons;
2467 	if (rr_cons == rr_prod)
2468 		return (0);
2469 
2470 	bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2471 	    sc->age_cdata.age_rr_ring_map,
2472 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2473 	bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2474 	    sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_POSTWRITE);
2475 
2476 	for (prog = 0; rr_cons != rr_prod; prog++) {
2477 		if (count-- <= 0)
2478 			break;
2479 		rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
2480 		nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
2481 		if (nsegs == 0)
2482 			break;
2483 		/*
2484 		 * Check number of segments against received bytes.
2485 		 * Non-matching value would indicate that hardware
2486 		 * is still trying to update Rx return descriptors.
2487 		 * I'm not sure whether this check is really needed.
2488 		 */
2489 		pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
2490 		if (nsegs != (pktlen + (AGE_RX_BUF_SIZE - 1)) / AGE_RX_BUF_SIZE)
2491 			break;
2492 
2493 		/* Received a frame. */
2494 		age_rxeof(sc, rxrd);
2495 		/* Clear return ring. */
2496 		rxrd->index = 0;
2497 		AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
2498 		sc->age_cdata.age_rx_cons += nsegs;
2499 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
2500 	}
2501 
2502 	if (prog > 0) {
2503 		/* Update the consumer index. */
2504 		sc->age_cdata.age_rr_cons = rr_cons;
2505 
2506 		bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2507 		    sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREWRITE);
2508 		/* Sync descriptors. */
2509 		bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2510 		    sc->age_cdata.age_rr_ring_map,
2511 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2512 
2513 		/* Notify hardware availability of new Rx buffers. */
2514 		AGE_COMMIT_MBOX(sc);
2515 	}
2516 
2517 	return (count > 0 ? 0 : EAGAIN);
2518 }
2519 
2520 static void
2521 age_tick(void *arg)
2522 {
2523 	struct age_softc *sc;
2524 	struct mii_data *mii;
2525 
2526 	sc = (struct age_softc *)arg;
2527 
2528 	AGE_LOCK_ASSERT(sc);
2529 
2530 	mii = device_get_softc(sc->age_miibus);
2531 	mii_tick(mii);
2532 	age_watchdog(sc);
2533 	callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2534 }
2535 
2536 static void
2537 age_reset(struct age_softc *sc)
2538 {
2539 	uint32_t reg;
2540 	int i;
2541 
2542 	CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
2543 	CSR_READ_4(sc, AGE_MASTER_CFG);
2544 	DELAY(1000);
2545 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2546 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2547 			break;
2548 		DELAY(10);
2549 	}
2550 
2551 	if (i == 0)
2552 		device_printf(sc->age_dev, "reset timeout(0x%08x)!\n", reg);
2553 	/* Initialize PCIe module. From Linux. */
2554 	CSR_WRITE_4(sc, 0x12FC, 0x6500);
2555 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2556 }
2557 
2558 static void
2559 age_init(void *xsc)
2560 {
2561 	struct age_softc *sc;
2562 
2563 	sc = (struct age_softc *)xsc;
2564 	AGE_LOCK(sc);
2565 	age_init_locked(sc);
2566 	AGE_UNLOCK(sc);
2567 }
2568 
2569 static void
2570 age_init_locked(struct age_softc *sc)
2571 {
2572 	struct ifnet *ifp;
2573 	struct mii_data *mii;
2574 	uint8_t eaddr[ETHER_ADDR_LEN];
2575 	bus_addr_t paddr;
2576 	uint32_t reg, fsize;
2577 	uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
2578 	int error;
2579 
2580 	AGE_LOCK_ASSERT(sc);
2581 
2582 	ifp = sc->age_ifp;
2583 	mii = device_get_softc(sc->age_miibus);
2584 
2585 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2586 		return;
2587 
2588 	/*
2589 	 * Cancel any pending I/O.
2590 	 */
2591 	age_stop(sc);
2592 
2593 	/*
2594 	 * Reset the chip to a known state.
2595 	 */
2596 	age_reset(sc);
2597 
2598 	/* Initialize descriptors. */
2599 	error = age_init_rx_ring(sc);
2600         if (error != 0) {
2601                 device_printf(sc->age_dev, "no memory for Rx buffers.\n");
2602                 age_stop(sc);
2603 		return;
2604         }
2605 	age_init_rr_ring(sc);
2606 	age_init_tx_ring(sc);
2607 	age_init_cmb_block(sc);
2608 	age_init_smb_block(sc);
2609 
2610 	/* Reprogram the station address. */
2611 	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2612 	CSR_WRITE_4(sc, AGE_PAR0,
2613 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2614 	CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
2615 
2616 	/* Set descriptor base addresses. */
2617 	paddr = sc->age_rdata.age_tx_ring_paddr;
2618 	CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
2619 	paddr = sc->age_rdata.age_rx_ring_paddr;
2620 	CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
2621 	paddr = sc->age_rdata.age_rr_ring_paddr;
2622 	CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
2623 	paddr = sc->age_rdata.age_tx_ring_paddr;
2624 	CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
2625 	paddr = sc->age_rdata.age_cmb_block_paddr;
2626 	CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
2627 	paddr = sc->age_rdata.age_smb_block_paddr;
2628 	CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
2629 	/* Set Rx/Rx return descriptor counter. */
2630 	CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
2631 	    ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
2632 	    DESC_RRD_CNT_MASK) |
2633 	    ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
2634 	/* Set Tx descriptor counter. */
2635 	CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
2636 	    (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
2637 
2638 	/* Tell hardware that we're ready to load descriptors. */
2639 	CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
2640 
2641 	/*
2642 	 * Initialize mailbox register.
2643 	 * Updated producer/consumer index information is exchanged
2644 	 * through this mailbox register. However Tx producer and
2645 	 * Rx return consumer/Rx producer are all shared such that
2646 	 * it's hard to separate code path between Tx and Rx without
2647 	 * locking. If L1 hardware have a separate mail box register
2648 	 * for Tx and Rx consumer/producer management we could have
2649 	 * indepent Tx/Rx handler which in turn Rx handler could have
2650 	 * been run without any locking.
2651 	 */
2652 	AGE_COMMIT_MBOX(sc);
2653 
2654 	/* Configure IPG/IFG parameters. */
2655 	CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
2656 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
2657 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2658 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2659 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
2660 
2661 	/* Set parameters for half-duplex media. */
2662 	CSR_WRITE_4(sc, AGE_HDPX_CFG,
2663 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2664 	    HDPX_CFG_LCOL_MASK) |
2665 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2666 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2667 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2668 	    HDPX_CFG_ABEBT_MASK) |
2669 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2670 	    HDPX_CFG_JAMIPG_MASK));
2671 
2672 	/* Configure interrupt moderation timer. */
2673 	CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
2674 	reg = CSR_READ_4(sc, AGE_MASTER_CFG);
2675 	reg &= ~MASTER_MTIMER_ENB;
2676 	if (AGE_USECS(sc->age_int_mod) == 0)
2677 		reg &= ~MASTER_ITIMER_ENB;
2678 	else
2679 		reg |= MASTER_ITIMER_ENB;
2680 	CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
2681 	if (bootverbose)
2682 		device_printf(sc->age_dev, "interrupt moderation is %d us.\n",
2683 		    sc->age_int_mod);
2684 	CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
2685 
2686 	/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
2687 	if (ifp->if_mtu < ETHERMTU)
2688 		sc->age_max_frame_size = ETHERMTU;
2689 	else
2690 		sc->age_max_frame_size = ifp->if_mtu;
2691 	sc->age_max_frame_size += ETHER_HDR_LEN +
2692 	    sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
2693 	CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
2694 	/* Configure jumbo frame. */
2695 	fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
2696 	CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
2697 	    (((fsize / sizeof(uint64_t)) <<
2698 	    RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
2699 	    ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
2700 	    RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
2701 	    ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
2702 	    RXQ_JUMBO_CFG_RRD_TIMER_MASK));
2703 
2704 	/* Configure flow-control parameters. From Linux. */
2705 	if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
2706 		/*
2707 		 * Magic workaround for old-L1.
2708 		 * Don't know which hw revision requires this magic.
2709 		 */
2710 		CSR_WRITE_4(sc, 0x12FC, 0x6500);
2711 		/*
2712 		 * Another magic workaround for flow-control mode
2713 		 * change. From Linux.
2714 		 */
2715 		CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2716 	}
2717 	/*
2718 	 * TODO
2719 	 *  Should understand pause parameter relationships between FIFO
2720 	 *  size and number of Rx descriptors and Rx return descriptors.
2721 	 *
2722 	 *  Magic parameters came from Linux.
2723 	 */
2724 	switch (sc->age_chip_rev) {
2725 	case 0x8001:
2726 	case 0x9001:
2727 	case 0x9002:
2728 	case 0x9003:
2729 		rxf_hi = AGE_RX_RING_CNT / 16;
2730 		rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
2731 		rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
2732 		rrd_lo = AGE_RR_RING_CNT / 16;
2733 		break;
2734 	default:
2735 		reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
2736 		rxf_lo = reg / 16;
2737 		if (rxf_lo < 192)
2738 			rxf_lo = 192;
2739 		rxf_hi = (reg * 7) / 8;
2740 		if (rxf_hi < rxf_lo)
2741 			rxf_hi = rxf_lo + 16;
2742 		reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
2743 		rrd_lo = reg / 8;
2744 		rrd_hi = (reg * 7) / 8;
2745 		if (rrd_lo < 2)
2746 			rrd_lo = 2;
2747 		if (rrd_hi < rrd_lo)
2748 			rrd_hi = rrd_lo + 3;
2749 		break;
2750 	}
2751 	CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
2752 	    ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
2753 	    RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
2754 	    ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
2755 	    RXQ_FIFO_PAUSE_THRESH_HI_MASK));
2756 	CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
2757 	    ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
2758 	    RXQ_RRD_PAUSE_THRESH_LO_MASK) |
2759 	    ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
2760 	    RXQ_RRD_PAUSE_THRESH_HI_MASK));
2761 
2762 	/* Configure RxQ. */
2763 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
2764 	    ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
2765 	    RXQ_CFG_RD_BURST_MASK) |
2766 	    ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
2767 	    RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
2768 	    ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
2769 	    RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
2770 	    RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
2771 
2772 	/* Configure TxQ. */
2773 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
2774 	    ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
2775 	    TXQ_CFG_TPD_BURST_MASK) |
2776 	    ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
2777 	    TXQ_CFG_TX_FIFO_BURST_MASK) |
2778 	    ((TXQ_CFG_TPD_FETCH_DEFAULT <<
2779 	    TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
2780 	    TXQ_CFG_ENB);
2781 
2782 	CSR_WRITE_4(sc, AGE_TX_JUMBO_TPD_TH_IPG,
2783 	    (((fsize / sizeof(uint64_t) << TX_JUMBO_TPD_TH_SHIFT)) &
2784 	    TX_JUMBO_TPD_TH_MASK) |
2785 	    ((TX_JUMBO_TPD_IPG_DEFAULT << TX_JUMBO_TPD_IPG_SHIFT) &
2786 	    TX_JUMBO_TPD_IPG_MASK));
2787 	/* Configure DMA parameters. */
2788 	CSR_WRITE_4(sc, AGE_DMA_CFG,
2789 	    DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
2790 	    sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
2791 	    sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
2792 
2793 	/* Configure CMB DMA write threshold. */
2794 	CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
2795 	    ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
2796 	    CMB_WR_THRESH_RRD_MASK) |
2797 	    ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
2798 	    CMB_WR_THRESH_TPD_MASK));
2799 
2800 	/* Set CMB/SMB timer and enable them. */
2801 	CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
2802 	    ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
2803 	    ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
2804 	/* Request SMB updates for every seconds. */
2805 	CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
2806 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
2807 
2808 	/*
2809 	 * Disable all WOL bits as WOL can interfere normal Rx
2810 	 * operation.
2811 	 */
2812 	CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
2813 
2814 	/*
2815 	 * Configure Tx/Rx MACs.
2816 	 *  - Auto-padding for short frames.
2817 	 *  - Enable CRC generation.
2818 	 *  Start with full-duplex/1000Mbps media. Actual reconfiguration
2819 	 *  of MAC is followed after link establishment.
2820 	 */
2821 	CSR_WRITE_4(sc, AGE_MAC_CFG,
2822 	    MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
2823 	    MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
2824 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2825 	    MAC_CFG_PREAMBLE_MASK));
2826 	/* Set up the receive filter. */
2827 	age_rxfilter(sc);
2828 	age_rxvlan(sc);
2829 
2830 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2831 	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2832 		reg |= MAC_CFG_RXCSUM_ENB;
2833 
2834 	/* Ack all pending interrupts and clear it. */
2835 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2836 	CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
2837 
2838 	/* Finally enable Tx/Rx MAC. */
2839 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
2840 
2841 	sc->age_flags &= ~AGE_FLAG_LINK;
2842 	/* Switch to the current media. */
2843 	mii_mediachg(mii);
2844 
2845 	callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2846 
2847 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2848 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2849 }
2850 
2851 static void
2852 age_stop(struct age_softc *sc)
2853 {
2854 	struct ifnet *ifp;
2855 	struct age_txdesc *txd;
2856 	struct age_rxdesc *rxd;
2857 	uint32_t reg;
2858 	int i;
2859 
2860 	AGE_LOCK_ASSERT(sc);
2861 	/*
2862 	 * Mark the interface down and cancel the watchdog timer.
2863 	 */
2864 	ifp = sc->age_ifp;
2865 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2866 	sc->age_flags &= ~AGE_FLAG_LINK;
2867 	callout_stop(&sc->age_tick_ch);
2868 	sc->age_watchdog_timer = 0;
2869 
2870 	/*
2871 	 * Disable interrupts.
2872 	 */
2873 	CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
2874 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
2875 	/* Stop CMB/SMB updates. */
2876 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
2877 	/* Stop Rx/Tx MAC. */
2878 	age_stop_rxmac(sc);
2879 	age_stop_txmac(sc);
2880 	/* Stop DMA. */
2881 	CSR_WRITE_4(sc, AGE_DMA_CFG,
2882 	    CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
2883 	/* Stop TxQ/RxQ. */
2884 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
2885 	    CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
2886 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
2887 	    CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
2888 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2889 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2890 			break;
2891 		DELAY(10);
2892 	}
2893 	if (i == 0)
2894 		device_printf(sc->age_dev,
2895 		    "stopping Rx/Tx MACs timed out(0x%08x)!\n", reg);
2896 
2897 	 /* Reclaim Rx buffers that have been processed. */
2898 	if (sc->age_cdata.age_rxhead != NULL)
2899 		m_freem(sc->age_cdata.age_rxhead);
2900 	AGE_RXCHAIN_RESET(sc);
2901 	/*
2902 	 * Free RX and TX mbufs still in the queues.
2903 	 */
2904 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
2905 		rxd = &sc->age_cdata.age_rxdesc[i];
2906 		if (rxd->rx_m != NULL) {
2907 			bus_dmamap_sync(sc->age_cdata.age_rx_tag,
2908 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2909 			bus_dmamap_unload(sc->age_cdata.age_rx_tag,
2910 			    rxd->rx_dmamap);
2911 			m_freem(rxd->rx_m);
2912 			rxd->rx_m = NULL;
2913 		}
2914         }
2915 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2916 		txd = &sc->age_cdata.age_txdesc[i];
2917 		if (txd->tx_m != NULL) {
2918 			bus_dmamap_sync(sc->age_cdata.age_tx_tag,
2919 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2920 			bus_dmamap_unload(sc->age_cdata.age_tx_tag,
2921 			    txd->tx_dmamap);
2922 			m_freem(txd->tx_m);
2923 			txd->tx_m = NULL;
2924 		}
2925         }
2926 }
2927 
2928 static void
2929 age_stop_txmac(struct age_softc *sc)
2930 {
2931 	uint32_t reg;
2932 	int i;
2933 
2934 	AGE_LOCK_ASSERT(sc);
2935 
2936 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2937 	if ((reg & MAC_CFG_TX_ENB) != 0) {
2938 		reg &= ~MAC_CFG_TX_ENB;
2939 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2940 	}
2941 	/* Stop Tx DMA engine. */
2942 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2943 	if ((reg & DMA_CFG_RD_ENB) != 0) {
2944 		reg &= ~DMA_CFG_RD_ENB;
2945 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2946 	}
2947 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2948 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2949 		    (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2950 			break;
2951 		DELAY(10);
2952 	}
2953 	if (i == 0)
2954 		device_printf(sc->age_dev, "stopping TxMAC timeout!\n");
2955 }
2956 
2957 static void
2958 age_stop_rxmac(struct age_softc *sc)
2959 {
2960 	uint32_t reg;
2961 	int i;
2962 
2963 	AGE_LOCK_ASSERT(sc);
2964 
2965 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2966 	if ((reg & MAC_CFG_RX_ENB) != 0) {
2967 		reg &= ~MAC_CFG_RX_ENB;
2968 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2969 	}
2970 	/* Stop Rx DMA engine. */
2971 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2972 	if ((reg & DMA_CFG_WR_ENB) != 0) {
2973 		reg &= ~DMA_CFG_WR_ENB;
2974 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2975 	}
2976 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2977 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2978 		    (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2979 			break;
2980 		DELAY(10);
2981 	}
2982 	if (i == 0)
2983 		device_printf(sc->age_dev, "stopping RxMAC timeout!\n");
2984 }
2985 
2986 static void
2987 age_init_tx_ring(struct age_softc *sc)
2988 {
2989 	struct age_ring_data *rd;
2990 	struct age_txdesc *txd;
2991 	int i;
2992 
2993 	AGE_LOCK_ASSERT(sc);
2994 
2995 	sc->age_cdata.age_tx_prod = 0;
2996 	sc->age_cdata.age_tx_cons = 0;
2997 	sc->age_cdata.age_tx_cnt = 0;
2998 
2999 	rd = &sc->age_rdata;
3000 	bzero(rd->age_tx_ring, AGE_TX_RING_SZ);
3001 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
3002 		txd = &sc->age_cdata.age_txdesc[i];
3003 		txd->tx_desc = &rd->age_tx_ring[i];
3004 		txd->tx_m = NULL;
3005 	}
3006 
3007 	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
3008 	    sc->age_cdata.age_tx_ring_map,
3009 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3010 }
3011 
3012 static int
3013 age_init_rx_ring(struct age_softc *sc)
3014 {
3015 	struct age_ring_data *rd;
3016 	struct age_rxdesc *rxd;
3017 	int i;
3018 
3019 	AGE_LOCK_ASSERT(sc);
3020 
3021 	sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
3022 	sc->age_morework = 0;
3023 	rd = &sc->age_rdata;
3024 	bzero(rd->age_rx_ring, AGE_RX_RING_SZ);
3025 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
3026 		rxd = &sc->age_cdata.age_rxdesc[i];
3027 		rxd->rx_m = NULL;
3028 		rxd->rx_desc = &rd->age_rx_ring[i];
3029 		if (age_newbuf(sc, rxd) != 0)
3030 			return (ENOBUFS);
3031 	}
3032 
3033 	bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
3034 	    sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREWRITE);
3035 
3036 	return (0);
3037 }
3038 
3039 static void
3040 age_init_rr_ring(struct age_softc *sc)
3041 {
3042 	struct age_ring_data *rd;
3043 
3044 	AGE_LOCK_ASSERT(sc);
3045 
3046 	sc->age_cdata.age_rr_cons = 0;
3047 	AGE_RXCHAIN_RESET(sc);
3048 
3049 	rd = &sc->age_rdata;
3050 	bzero(rd->age_rr_ring, AGE_RR_RING_SZ);
3051 	bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
3052 	    sc->age_cdata.age_rr_ring_map,
3053 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3054 }
3055 
3056 static void
3057 age_init_cmb_block(struct age_softc *sc)
3058 {
3059 	struct age_ring_data *rd;
3060 
3061 	AGE_LOCK_ASSERT(sc);
3062 
3063 	rd = &sc->age_rdata;
3064 	bzero(rd->age_cmb_block, AGE_CMB_BLOCK_SZ);
3065 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
3066 	    sc->age_cdata.age_cmb_block_map,
3067 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3068 }
3069 
3070 static void
3071 age_init_smb_block(struct age_softc *sc)
3072 {
3073 	struct age_ring_data *rd;
3074 
3075 	AGE_LOCK_ASSERT(sc);
3076 
3077 	rd = &sc->age_rdata;
3078 	bzero(rd->age_smb_block, AGE_SMB_BLOCK_SZ);
3079 	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
3080 	    sc->age_cdata.age_smb_block_map,
3081 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3082 }
3083 
3084 static int
3085 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd)
3086 {
3087 	struct rx_desc *desc;
3088 	struct mbuf *m;
3089 	bus_dma_segment_t segs[1];
3090 	bus_dmamap_t map;
3091 	int nsegs;
3092 
3093 	AGE_LOCK_ASSERT(sc);
3094 
3095 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
3096 	if (m == NULL)
3097 		return (ENOBUFS);
3098 	m->m_len = m->m_pkthdr.len = MCLBYTES;
3099 #ifndef __NO_STRICT_ALIGNMENT
3100 	m_adj(m, AGE_RX_BUF_ALIGN);
3101 #endif
3102 
3103 	if (bus_dmamap_load_mbuf_sg(sc->age_cdata.age_rx_tag,
3104 	    sc->age_cdata.age_rx_sparemap, m, segs, &nsegs, 0) != 0) {
3105 		m_freem(m);
3106 		return (ENOBUFS);
3107 	}
3108 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
3109 
3110 	if (rxd->rx_m != NULL) {
3111 		bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3112 		    BUS_DMASYNC_POSTREAD);
3113 		bus_dmamap_unload(sc->age_cdata.age_rx_tag, rxd->rx_dmamap);
3114 	}
3115 	map = rxd->rx_dmamap;
3116 	rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
3117 	sc->age_cdata.age_rx_sparemap = map;
3118 	bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3119 	    BUS_DMASYNC_PREREAD);
3120 	rxd->rx_m = m;
3121 
3122 	desc = rxd->rx_desc;
3123 	desc->addr = htole64(segs[0].ds_addr);
3124 	desc->len = htole32((segs[0].ds_len & AGE_RD_LEN_MASK) <<
3125 	    AGE_RD_LEN_SHIFT);
3126 	return (0);
3127 }
3128 
3129 static void
3130 age_rxvlan(struct age_softc *sc)
3131 {
3132 	struct ifnet *ifp;
3133 	uint32_t reg;
3134 
3135 	AGE_LOCK_ASSERT(sc);
3136 
3137 	ifp = sc->age_ifp;
3138 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
3139 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3140 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3141 		reg |= MAC_CFG_VLAN_TAG_STRIP;
3142 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
3143 }
3144 
3145 static void
3146 age_rxfilter(struct age_softc *sc)
3147 {
3148 	struct ifnet *ifp;
3149 	struct ifmultiaddr *ifma;
3150 	uint32_t crc;
3151 	uint32_t mchash[2];
3152 	uint32_t rxcfg;
3153 
3154 	AGE_LOCK_ASSERT(sc);
3155 
3156 	ifp = sc->age_ifp;
3157 
3158 	rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
3159 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3160 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
3161 		rxcfg |= MAC_CFG_BCAST;
3162 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3163 		if ((ifp->if_flags & IFF_PROMISC) != 0)
3164 			rxcfg |= MAC_CFG_PROMISC;
3165 		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
3166 			rxcfg |= MAC_CFG_ALLMULTI;
3167 		CSR_WRITE_4(sc, AGE_MAR0, 0xFFFFFFFF);
3168 		CSR_WRITE_4(sc, AGE_MAR1, 0xFFFFFFFF);
3169 		CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3170 		return;
3171 	}
3172 
3173 	/* Program new filter. */
3174 	bzero(mchash, sizeof(mchash));
3175 
3176 	if_maddr_rlock(ifp);
3177 	TAILQ_FOREACH(ifma, &sc->age_ifp->if_multiaddrs, ifma_link) {
3178 		if (ifma->ifma_addr->sa_family != AF_LINK)
3179 			continue;
3180 		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
3181 		    ifma->ifma_addr), ETHER_ADDR_LEN);
3182 		mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3183 	}
3184 	if_maddr_runlock(ifp);
3185 
3186 	CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
3187 	CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
3188 	CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3189 }
3190 
3191 static int
3192 sysctl_age_stats(SYSCTL_HANDLER_ARGS)
3193 {
3194 	struct age_softc *sc;
3195 	struct age_stats *stats;
3196 	int error, result;
3197 
3198 	result = -1;
3199 	error = sysctl_handle_int(oidp, &result, 0, req);
3200 
3201 	if (error != 0 || req->newptr == NULL)
3202 		return (error);
3203 
3204 	if (result != 1)
3205 		return (error);
3206 
3207 	sc = (struct age_softc *)arg1;
3208 	stats = &sc->age_stat;
3209 	printf("%s statistics:\n", device_get_nameunit(sc->age_dev));
3210 	printf("Transmit good frames : %ju\n",
3211 	    (uintmax_t)stats->tx_frames);
3212 	printf("Transmit good broadcast frames : %ju\n",
3213 	    (uintmax_t)stats->tx_bcast_frames);
3214 	printf("Transmit good multicast frames : %ju\n",
3215 	    (uintmax_t)stats->tx_mcast_frames);
3216 	printf("Transmit pause control frames : %u\n",
3217 	    stats->tx_pause_frames);
3218 	printf("Transmit control frames : %u\n",
3219 	    stats->tx_control_frames);
3220 	printf("Transmit frames with excessive deferrals : %u\n",
3221 	    stats->tx_excess_defer);
3222 	printf("Transmit deferrals : %u\n",
3223 	    stats->tx_deferred);
3224 	printf("Transmit good octets : %ju\n",
3225 	    (uintmax_t)stats->tx_bytes);
3226 	printf("Transmit good broadcast octets : %ju\n",
3227 	    (uintmax_t)stats->tx_bcast_bytes);
3228 	printf("Transmit good multicast octets : %ju\n",
3229 	    (uintmax_t)stats->tx_mcast_bytes);
3230 	printf("Transmit frames 64 bytes : %ju\n",
3231 	    (uintmax_t)stats->tx_pkts_64);
3232 	printf("Transmit frames 65 to 127 bytes : %ju\n",
3233 	    (uintmax_t)stats->tx_pkts_65_127);
3234 	printf("Transmit frames 128 to 255 bytes : %ju\n",
3235 	    (uintmax_t)stats->tx_pkts_128_255);
3236 	printf("Transmit frames 256 to 511 bytes : %ju\n",
3237 	    (uintmax_t)stats->tx_pkts_256_511);
3238 	printf("Transmit frames 512 to 1024 bytes : %ju\n",
3239 	    (uintmax_t)stats->tx_pkts_512_1023);
3240 	printf("Transmit frames 1024 to 1518 bytes : %ju\n",
3241 	    (uintmax_t)stats->tx_pkts_1024_1518);
3242 	printf("Transmit frames 1519 to MTU bytes : %ju\n",
3243 	    (uintmax_t)stats->tx_pkts_1519_max);
3244 	printf("Transmit single collisions : %u\n",
3245 	    stats->tx_single_colls);
3246 	printf("Transmit multiple collisions : %u\n",
3247 	    stats->tx_multi_colls);
3248 	printf("Transmit late collisions : %u\n",
3249 	    stats->tx_late_colls);
3250 	printf("Transmit abort due to excessive collisions : %u\n",
3251 	    stats->tx_excess_colls);
3252 	printf("Transmit underruns due to FIFO underruns : %u\n",
3253 	    stats->tx_underrun);
3254 	printf("Transmit descriptor write-back errors : %u\n",
3255 	    stats->tx_desc_underrun);
3256 	printf("Transmit frames with length mismatched frame size : %u\n",
3257 	    stats->tx_lenerrs);
3258 	printf("Transmit frames with truncated due to MTU size : %u\n",
3259 	    stats->tx_lenerrs);
3260 
3261 	printf("Receive good frames : %ju\n",
3262 	    (uintmax_t)stats->rx_frames);
3263 	printf("Receive good broadcast frames : %ju\n",
3264 	    (uintmax_t)stats->rx_bcast_frames);
3265 	printf("Receive good multicast frames : %ju\n",
3266 	    (uintmax_t)stats->rx_mcast_frames);
3267 	printf("Receive pause control frames : %u\n",
3268 	    stats->rx_pause_frames);
3269 	printf("Receive control frames : %u\n",
3270 	    stats->rx_control_frames);
3271 	printf("Receive CRC errors : %u\n",
3272 	    stats->rx_crcerrs);
3273 	printf("Receive frames with length errors : %u\n",
3274 	    stats->rx_lenerrs);
3275 	printf("Receive good octets : %ju\n",
3276 	    (uintmax_t)stats->rx_bytes);
3277 	printf("Receive good broadcast octets : %ju\n",
3278 	    (uintmax_t)stats->rx_bcast_bytes);
3279 	printf("Receive good multicast octets : %ju\n",
3280 	    (uintmax_t)stats->rx_mcast_bytes);
3281 	printf("Receive frames too short : %u\n",
3282 	    stats->rx_runts);
3283 	printf("Receive fragmented frames : %ju\n",
3284 	    (uintmax_t)stats->rx_fragments);
3285 	printf("Receive frames 64 bytes : %ju\n",
3286 	    (uintmax_t)stats->rx_pkts_64);
3287 	printf("Receive frames 65 to 127 bytes : %ju\n",
3288 	    (uintmax_t)stats->rx_pkts_65_127);
3289 	printf("Receive frames 128 to 255 bytes : %ju\n",
3290 	    (uintmax_t)stats->rx_pkts_128_255);
3291 	printf("Receive frames 256 to 511 bytes : %ju\n",
3292 	    (uintmax_t)stats->rx_pkts_256_511);
3293 	printf("Receive frames 512 to 1024 bytes : %ju\n",
3294 	    (uintmax_t)stats->rx_pkts_512_1023);
3295 	printf("Receive frames 1024 to 1518 bytes : %ju\n",
3296 	    (uintmax_t)stats->rx_pkts_1024_1518);
3297 	printf("Receive frames 1519 to MTU bytes : %ju\n",
3298 	    (uintmax_t)stats->rx_pkts_1519_max);
3299 	printf("Receive frames too long : %ju\n",
3300 	    (uint64_t)stats->rx_pkts_truncated);
3301 	printf("Receive frames with FIFO overflow : %u\n",
3302 	    stats->rx_fifo_oflows);
3303 	printf("Receive frames with return descriptor overflow : %u\n",
3304 	    stats->rx_desc_oflows);
3305 	printf("Receive frames with alignment errors : %u\n",
3306 	    stats->rx_alignerrs);
3307 	printf("Receive frames dropped due to address filtering : %ju\n",
3308 	    (uint64_t)stats->rx_pkts_filtered);
3309 
3310 	return (error);
3311 }
3312 
3313 static int
3314 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3315 {
3316 	int error, value;
3317 
3318 	if (arg1 == NULL)
3319 		return (EINVAL);
3320 	value = *(int *)arg1;
3321 	error = sysctl_handle_int(oidp, &value, 0, req);
3322 	if (error || req->newptr == NULL)
3323 		return (error);
3324 	if (value < low || value > high)
3325 		return (EINVAL);
3326         *(int *)arg1 = value;
3327 
3328         return (0);
3329 }
3330 
3331 static int
3332 sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS)
3333 {
3334 	return (sysctl_int_range(oidp, arg1, arg2, req,
3335 	    AGE_PROC_MIN, AGE_PROC_MAX));
3336 }
3337 
3338 static int
3339 sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS)
3340 {
3341 
3342 	return (sysctl_int_range(oidp, arg1, arg2, req, AGE_IM_TIMER_MIN,
3343 	    AGE_IM_TIMER_MAX));
3344 }
3345