1 /*- 2 * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice unmodified, this list of conditions, and the following 10 * disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/systm.h> 35 #include <sys/bus.h> 36 #include <sys/endian.h> 37 #include <sys/kernel.h> 38 #include <sys/malloc.h> 39 #include <sys/mbuf.h> 40 #include <sys/rman.h> 41 #include <sys/module.h> 42 #include <sys/queue.h> 43 #include <sys/socket.h> 44 #include <sys/sockio.h> 45 #include <sys/sysctl.h> 46 #include <sys/taskqueue.h> 47 48 #include <net/bpf.h> 49 #include <net/if.h> 50 #include <net/if_arp.h> 51 #include <net/ethernet.h> 52 #include <net/if_dl.h> 53 #include <net/if_media.h> 54 #include <net/if_types.h> 55 #include <net/if_vlan_var.h> 56 57 #include <netinet/in.h> 58 #include <netinet/in_systm.h> 59 #include <netinet/ip.h> 60 #include <netinet/tcp.h> 61 62 #include <dev/mii/mii.h> 63 #include <dev/mii/miivar.h> 64 65 #include <dev/pci/pcireg.h> 66 #include <dev/pci/pcivar.h> 67 68 #include <machine/bus.h> 69 #include <machine/in_cksum.h> 70 71 #include <dev/age/if_agereg.h> 72 #include <dev/age/if_agevar.h> 73 74 /* "device miibus" required. See GENERIC if you get errors here. */ 75 #include "miibus_if.h" 76 77 #define AGE_CSUM_FEATURES (CSUM_TCP | CSUM_UDP) 78 79 MODULE_DEPEND(age, pci, 1, 1, 1); 80 MODULE_DEPEND(age, ether, 1, 1, 1); 81 MODULE_DEPEND(age, miibus, 1, 1, 1); 82 83 /* Tunables. */ 84 static int msi_disable = 0; 85 static int msix_disable = 0; 86 TUNABLE_INT("hw.age.msi_disable", &msi_disable); 87 TUNABLE_INT("hw.age.msix_disable", &msix_disable); 88 89 /* 90 * Devices supported by this driver. 91 */ 92 static struct age_dev { 93 uint16_t age_vendorid; 94 uint16_t age_deviceid; 95 const char *age_name; 96 } age_devs[] = { 97 { VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L1, 98 "Attansic Technology Corp, L1 Gigabit Ethernet" }, 99 }; 100 101 static int age_miibus_readreg(device_t, int, int); 102 static int age_miibus_writereg(device_t, int, int, int); 103 static void age_miibus_statchg(device_t); 104 static void age_mediastatus(struct ifnet *, struct ifmediareq *); 105 static int age_mediachange(struct ifnet *); 106 static int age_probe(device_t); 107 static void age_get_macaddr(struct age_softc *); 108 static void age_phy_reset(struct age_softc *); 109 static int age_attach(device_t); 110 static int age_detach(device_t); 111 static void age_sysctl_node(struct age_softc *); 112 static void age_dmamap_cb(void *, bus_dma_segment_t *, int, int); 113 static int age_check_boundary(struct age_softc *); 114 static int age_dma_alloc(struct age_softc *); 115 static void age_dma_free(struct age_softc *); 116 static int age_shutdown(device_t); 117 static void age_setwol(struct age_softc *); 118 static int age_suspend(device_t); 119 static int age_resume(device_t); 120 static int age_encap(struct age_softc *, struct mbuf **); 121 static void age_start(struct ifnet *); 122 static void age_start_locked(struct ifnet *); 123 static void age_watchdog(struct age_softc *); 124 static int age_ioctl(struct ifnet *, u_long, caddr_t); 125 static void age_mac_config(struct age_softc *); 126 static void age_link_task(void *, int); 127 static void age_stats_update(struct age_softc *); 128 static int age_intr(void *); 129 static void age_int_task(void *, int); 130 static void age_txintr(struct age_softc *, int); 131 static void age_rxeof(struct age_softc *sc, struct rx_rdesc *); 132 static int age_rxintr(struct age_softc *, int, int); 133 static void age_tick(void *); 134 static void age_reset(struct age_softc *); 135 static void age_init(void *); 136 static void age_init_locked(struct age_softc *); 137 static void age_stop(struct age_softc *); 138 static void age_stop_txmac(struct age_softc *); 139 static void age_stop_rxmac(struct age_softc *); 140 static void age_init_tx_ring(struct age_softc *); 141 static int age_init_rx_ring(struct age_softc *); 142 static void age_init_rr_ring(struct age_softc *); 143 static void age_init_cmb_block(struct age_softc *); 144 static void age_init_smb_block(struct age_softc *); 145 static int age_newbuf(struct age_softc *, struct age_rxdesc *); 146 static void age_rxvlan(struct age_softc *); 147 static void age_rxfilter(struct age_softc *); 148 static int sysctl_age_stats(SYSCTL_HANDLER_ARGS); 149 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int); 150 static int sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS); 151 static int sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS); 152 153 154 static device_method_t age_methods[] = { 155 /* Device interface. */ 156 DEVMETHOD(device_probe, age_probe), 157 DEVMETHOD(device_attach, age_attach), 158 DEVMETHOD(device_detach, age_detach), 159 DEVMETHOD(device_shutdown, age_shutdown), 160 DEVMETHOD(device_suspend, age_suspend), 161 DEVMETHOD(device_resume, age_resume), 162 163 /* MII interface. */ 164 DEVMETHOD(miibus_readreg, age_miibus_readreg), 165 DEVMETHOD(miibus_writereg, age_miibus_writereg), 166 DEVMETHOD(miibus_statchg, age_miibus_statchg), 167 168 { NULL, NULL } 169 }; 170 171 static driver_t age_driver = { 172 "age", 173 age_methods, 174 sizeof(struct age_softc) 175 }; 176 177 static devclass_t age_devclass; 178 179 DRIVER_MODULE(age, pci, age_driver, age_devclass, 0, 0); 180 DRIVER_MODULE(miibus, age, miibus_driver, miibus_devclass, 0, 0); 181 182 static struct resource_spec age_res_spec_mem[] = { 183 { SYS_RES_MEMORY, PCIR_BAR(0), RF_ACTIVE }, 184 { -1, 0, 0 } 185 }; 186 187 static struct resource_spec age_irq_spec_legacy[] = { 188 { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE }, 189 { -1, 0, 0 } 190 }; 191 192 static struct resource_spec age_irq_spec_msi[] = { 193 { SYS_RES_IRQ, 1, RF_ACTIVE }, 194 { -1, 0, 0 } 195 }; 196 197 static struct resource_spec age_irq_spec_msix[] = { 198 { SYS_RES_IRQ, 1, RF_ACTIVE }, 199 { -1, 0, 0 } 200 }; 201 202 /* 203 * Read a PHY register on the MII of the L1. 204 */ 205 static int 206 age_miibus_readreg(device_t dev, int phy, int reg) 207 { 208 struct age_softc *sc; 209 uint32_t v; 210 int i; 211 212 sc = device_get_softc(dev); 213 214 CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ | 215 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg)); 216 for (i = AGE_PHY_TIMEOUT; i > 0; i--) { 217 DELAY(1); 218 v = CSR_READ_4(sc, AGE_MDIO); 219 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0) 220 break; 221 } 222 223 if (i == 0) { 224 device_printf(sc->age_dev, "phy read timeout : %d\n", reg); 225 return (0); 226 } 227 228 return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT); 229 } 230 231 /* 232 * Write a PHY register on the MII of the L1. 233 */ 234 static int 235 age_miibus_writereg(device_t dev, int phy, int reg, int val) 236 { 237 struct age_softc *sc; 238 uint32_t v; 239 int i; 240 241 sc = device_get_softc(dev); 242 243 CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE | 244 (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT | 245 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg)); 246 for (i = AGE_PHY_TIMEOUT; i > 0; i--) { 247 DELAY(1); 248 v = CSR_READ_4(sc, AGE_MDIO); 249 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0) 250 break; 251 } 252 253 if (i == 0) 254 device_printf(sc->age_dev, "phy write timeout : %d\n", reg); 255 256 return (0); 257 } 258 259 /* 260 * Callback from MII layer when media changes. 261 */ 262 static void 263 age_miibus_statchg(device_t dev) 264 { 265 struct age_softc *sc; 266 267 sc = device_get_softc(dev); 268 taskqueue_enqueue(taskqueue_swi, &sc->age_link_task); 269 } 270 271 /* 272 * Get the current interface media status. 273 */ 274 static void 275 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) 276 { 277 struct age_softc *sc; 278 struct mii_data *mii; 279 280 sc = ifp->if_softc; 281 AGE_LOCK(sc); 282 mii = device_get_softc(sc->age_miibus); 283 284 mii_pollstat(mii); 285 ifmr->ifm_status = mii->mii_media_status; 286 ifmr->ifm_active = mii->mii_media_active; 287 AGE_UNLOCK(sc); 288 } 289 290 /* 291 * Set hardware to newly-selected media. 292 */ 293 static int 294 age_mediachange(struct ifnet *ifp) 295 { 296 struct age_softc *sc; 297 struct mii_data *mii; 298 struct mii_softc *miisc; 299 int error; 300 301 sc = ifp->if_softc; 302 AGE_LOCK(sc); 303 mii = device_get_softc(sc->age_miibus); 304 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) 305 PHY_RESET(miisc); 306 error = mii_mediachg(mii); 307 AGE_UNLOCK(sc); 308 309 return (error); 310 } 311 312 static int 313 age_probe(device_t dev) 314 { 315 struct age_dev *sp; 316 int i; 317 uint16_t vendor, devid; 318 319 vendor = pci_get_vendor(dev); 320 devid = pci_get_device(dev); 321 sp = age_devs; 322 for (i = 0; i < sizeof(age_devs) / sizeof(age_devs[0]); 323 i++, sp++) { 324 if (vendor == sp->age_vendorid && 325 devid == sp->age_deviceid) { 326 device_set_desc(dev, sp->age_name); 327 return (BUS_PROBE_DEFAULT); 328 } 329 } 330 331 return (ENXIO); 332 } 333 334 static void 335 age_get_macaddr(struct age_softc *sc) 336 { 337 uint32_t ea[2], reg; 338 int i, vpdc; 339 340 reg = CSR_READ_4(sc, AGE_SPI_CTRL); 341 if ((reg & SPI_VPD_ENB) != 0) { 342 /* Get VPD stored in TWSI EEPROM. */ 343 reg &= ~SPI_VPD_ENB; 344 CSR_WRITE_4(sc, AGE_SPI_CTRL, reg); 345 } 346 347 if (pci_find_cap(sc->age_dev, PCIY_VPD, &vpdc) == 0) { 348 /* 349 * PCI VPD capability found, let TWSI reload EEPROM. 350 * This will set ethernet address of controller. 351 */ 352 CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) | 353 TWSI_CTRL_SW_LD_START); 354 for (i = 100; i > 0; i--) { 355 DELAY(1000); 356 reg = CSR_READ_4(sc, AGE_TWSI_CTRL); 357 if ((reg & TWSI_CTRL_SW_LD_START) == 0) 358 break; 359 } 360 if (i == 0) 361 device_printf(sc->age_dev, 362 "reloading EEPROM timeout!\n"); 363 } else { 364 if (bootverbose) 365 device_printf(sc->age_dev, 366 "PCI VPD capability not found!\n"); 367 } 368 369 ea[0] = CSR_READ_4(sc, AGE_PAR0); 370 ea[1] = CSR_READ_4(sc, AGE_PAR1); 371 sc->age_eaddr[0] = (ea[1] >> 8) & 0xFF; 372 sc->age_eaddr[1] = (ea[1] >> 0) & 0xFF; 373 sc->age_eaddr[2] = (ea[0] >> 24) & 0xFF; 374 sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF; 375 sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF; 376 sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF; 377 } 378 379 static void 380 age_phy_reset(struct age_softc *sc) 381 { 382 uint16_t reg, pn; 383 int i, linkup; 384 385 /* Reset PHY. */ 386 CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST); 387 DELAY(2000); 388 CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR); 389 DELAY(2000); 390 391 #define ATPHY_DBG_ADDR 0x1D 392 #define ATPHY_DBG_DATA 0x1E 393 #define ATPHY_CDTC 0x16 394 #define PHY_CDTC_ENB 0x0001 395 #define PHY_CDTC_POFF 8 396 #define ATPHY_CDTS 0x1C 397 #define PHY_CDTS_STAT_OK 0x0000 398 #define PHY_CDTS_STAT_SHORT 0x0100 399 #define PHY_CDTS_STAT_OPEN 0x0200 400 #define PHY_CDTS_STAT_INVAL 0x0300 401 #define PHY_CDTS_STAT_MASK 0x0300 402 403 /* Check power saving mode. Magic from Linux. */ 404 age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET); 405 for (linkup = 0, pn = 0; pn < 4; pn++) { 406 age_miibus_writereg(sc->age_dev, sc->age_phyaddr, ATPHY_CDTC, 407 (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB); 408 for (i = 200; i > 0; i--) { 409 DELAY(1000); 410 reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr, 411 ATPHY_CDTC); 412 if ((reg & PHY_CDTC_ENB) == 0) 413 break; 414 } 415 DELAY(1000); 416 reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr, 417 ATPHY_CDTS); 418 if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) { 419 linkup++; 420 break; 421 } 422 } 423 age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR, 424 BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG); 425 if (linkup == 0) { 426 age_miibus_writereg(sc->age_dev, sc->age_phyaddr, 427 ATPHY_DBG_ADDR, 0); 428 age_miibus_writereg(sc->age_dev, sc->age_phyaddr, 429 ATPHY_DBG_DATA, 0x124E); 430 age_miibus_writereg(sc->age_dev, sc->age_phyaddr, 431 ATPHY_DBG_ADDR, 1); 432 reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr, 433 ATPHY_DBG_DATA); 434 age_miibus_writereg(sc->age_dev, sc->age_phyaddr, 435 ATPHY_DBG_DATA, reg | 0x03); 436 /* XXX */ 437 DELAY(1500 * 1000); 438 age_miibus_writereg(sc->age_dev, sc->age_phyaddr, 439 ATPHY_DBG_ADDR, 0); 440 age_miibus_writereg(sc->age_dev, sc->age_phyaddr, 441 ATPHY_DBG_DATA, 0x024E); 442 } 443 444 #undef ATPHY_DBG_ADDR 445 #undef ATPHY_DBG_DATA 446 #undef ATPHY_CDTC 447 #undef PHY_CDTC_ENB 448 #undef PHY_CDTC_POFF 449 #undef ATPHY_CDTS 450 #undef PHY_CDTS_STAT_OK 451 #undef PHY_CDTS_STAT_SHORT 452 #undef PHY_CDTS_STAT_OPEN 453 #undef PHY_CDTS_STAT_INVAL 454 #undef PHY_CDTS_STAT_MASK 455 } 456 457 static int 458 age_attach(device_t dev) 459 { 460 struct age_softc *sc; 461 struct ifnet *ifp; 462 uint16_t burst; 463 int error, i, msic, msixc, pmc; 464 465 error = 0; 466 sc = device_get_softc(dev); 467 sc->age_dev = dev; 468 469 mtx_init(&sc->age_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 470 MTX_DEF); 471 callout_init_mtx(&sc->age_tick_ch, &sc->age_mtx, 0); 472 TASK_INIT(&sc->age_int_task, 0, age_int_task, sc); 473 TASK_INIT(&sc->age_link_task, 0, age_link_task, sc); 474 475 /* Map the device. */ 476 pci_enable_busmaster(dev); 477 sc->age_res_spec = age_res_spec_mem; 478 sc->age_irq_spec = age_irq_spec_legacy; 479 error = bus_alloc_resources(dev, sc->age_res_spec, sc->age_res); 480 if (error != 0) { 481 device_printf(dev, "cannot allocate memory resources.\n"); 482 goto fail; 483 } 484 485 /* Set PHY address. */ 486 sc->age_phyaddr = AGE_PHY_ADDR; 487 488 /* Reset PHY. */ 489 age_phy_reset(sc); 490 491 /* Reset the ethernet controller. */ 492 age_reset(sc); 493 494 /* Get PCI and chip id/revision. */ 495 sc->age_rev = pci_get_revid(dev); 496 sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >> 497 MASTER_CHIP_REV_SHIFT; 498 if (bootverbose) { 499 device_printf(dev, "PCI device revision : 0x%04x\n", 500 sc->age_rev); 501 device_printf(dev, "Chip id/revision : 0x%04x\n", 502 sc->age_chip_rev); 503 } 504 505 /* 506 * XXX 507 * Unintialized hardware returns an invalid chip id/revision 508 * as well as 0xFFFFFFFF for Tx/Rx fifo length. It seems that 509 * unplugged cable results in putting hardware into automatic 510 * power down mode which in turn returns invalld chip revision. 511 */ 512 if (sc->age_chip_rev == 0xFFFF) { 513 device_printf(dev,"invalid chip revision : 0x%04x -- " 514 "not initialized?\n", sc->age_chip_rev); 515 error = ENXIO; 516 goto fail; 517 } 518 519 device_printf(dev, "%d Tx FIFO, %d Rx FIFO\n", 520 CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN), 521 CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN)); 522 523 /* Allocate IRQ resources. */ 524 msixc = pci_msix_count(dev); 525 msic = pci_msi_count(dev); 526 if (bootverbose) { 527 device_printf(dev, "MSIX count : %d\n", msixc); 528 device_printf(dev, "MSI count : %d\n", msic); 529 } 530 531 /* Prefer MSIX over MSI. */ 532 if (msix_disable == 0 || msi_disable == 0) { 533 if (msix_disable == 0 && msixc == AGE_MSIX_MESSAGES && 534 pci_alloc_msix(dev, &msixc) == 0) { 535 if (msic == AGE_MSIX_MESSAGES) { 536 device_printf(dev, "Using %d MSIX messages.\n", 537 msixc); 538 sc->age_flags |= AGE_FLAG_MSIX; 539 sc->age_irq_spec = age_irq_spec_msix; 540 } else 541 pci_release_msi(dev); 542 } 543 if (msi_disable == 0 && (sc->age_flags & AGE_FLAG_MSIX) == 0 && 544 msic == AGE_MSI_MESSAGES && 545 pci_alloc_msi(dev, &msic) == 0) { 546 if (msic == AGE_MSI_MESSAGES) { 547 device_printf(dev, "Using %d MSI messages.\n", 548 msic); 549 sc->age_flags |= AGE_FLAG_MSI; 550 sc->age_irq_spec = age_irq_spec_msi; 551 } else 552 pci_release_msi(dev); 553 } 554 } 555 556 error = bus_alloc_resources(dev, sc->age_irq_spec, sc->age_irq); 557 if (error != 0) { 558 device_printf(dev, "cannot allocate IRQ resources.\n"); 559 goto fail; 560 } 561 562 563 /* Get DMA parameters from PCIe device control register. */ 564 if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) { 565 sc->age_flags |= AGE_FLAG_PCIE; 566 burst = pci_read_config(dev, i + 0x08, 2); 567 /* Max read request size. */ 568 sc->age_dma_rd_burst = ((burst >> 12) & 0x07) << 569 DMA_CFG_RD_BURST_SHIFT; 570 /* Max payload size. */ 571 sc->age_dma_wr_burst = ((burst >> 5) & 0x07) << 572 DMA_CFG_WR_BURST_SHIFT; 573 if (bootverbose) { 574 device_printf(dev, "Read request size : %d bytes.\n", 575 128 << ((burst >> 12) & 0x07)); 576 device_printf(dev, "TLP payload size : %d bytes.\n", 577 128 << ((burst >> 5) & 0x07)); 578 } 579 } else { 580 sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128; 581 sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128; 582 } 583 584 /* Create device sysctl node. */ 585 age_sysctl_node(sc); 586 587 if ((error = age_dma_alloc(sc) != 0)) 588 goto fail; 589 590 /* Load station address. */ 591 age_get_macaddr(sc); 592 593 ifp = sc->age_ifp = if_alloc(IFT_ETHER); 594 if (ifp == NULL) { 595 device_printf(dev, "cannot allocate ifnet structure.\n"); 596 error = ENXIO; 597 goto fail; 598 } 599 600 ifp->if_softc = sc; 601 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 602 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 603 ifp->if_ioctl = age_ioctl; 604 ifp->if_start = age_start; 605 ifp->if_init = age_init; 606 ifp->if_snd.ifq_drv_maxlen = AGE_TX_RING_CNT - 1; 607 IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen); 608 IFQ_SET_READY(&ifp->if_snd); 609 ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4; 610 ifp->if_hwassist = AGE_CSUM_FEATURES | CSUM_TSO; 611 if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) { 612 sc->age_flags |= AGE_FLAG_PMCAP; 613 ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST; 614 } 615 ifp->if_capenable = ifp->if_capabilities; 616 617 /* Set up MII bus. */ 618 error = mii_attach(dev, &sc->age_miibus, ifp, age_mediachange, 619 age_mediastatus, BMSR_DEFCAPMASK, sc->age_phyaddr, MII_OFFSET_ANY, 620 0); 621 if (error != 0) { 622 device_printf(dev, "attaching PHYs failed\n"); 623 goto fail; 624 } 625 626 ether_ifattach(ifp, sc->age_eaddr); 627 628 /* VLAN capability setup. */ 629 ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | 630 IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO; 631 ifp->if_capenable = ifp->if_capabilities; 632 633 /* Tell the upper layer(s) we support long frames. */ 634 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); 635 636 /* Create local taskq. */ 637 sc->age_tq = taskqueue_create_fast("age_taskq", M_WAITOK, 638 taskqueue_thread_enqueue, &sc->age_tq); 639 if (sc->age_tq == NULL) { 640 device_printf(dev, "could not create taskqueue.\n"); 641 ether_ifdetach(ifp); 642 error = ENXIO; 643 goto fail; 644 } 645 taskqueue_start_threads(&sc->age_tq, 1, PI_NET, "%s taskq", 646 device_get_nameunit(sc->age_dev)); 647 648 if ((sc->age_flags & AGE_FLAG_MSIX) != 0) 649 msic = AGE_MSIX_MESSAGES; 650 else if ((sc->age_flags & AGE_FLAG_MSI) != 0) 651 msic = AGE_MSI_MESSAGES; 652 else 653 msic = 1; 654 for (i = 0; i < msic; i++) { 655 error = bus_setup_intr(dev, sc->age_irq[i], 656 INTR_TYPE_NET | INTR_MPSAFE, age_intr, NULL, sc, 657 &sc->age_intrhand[i]); 658 if (error != 0) 659 break; 660 } 661 if (error != 0) { 662 device_printf(dev, "could not set up interrupt handler.\n"); 663 taskqueue_free(sc->age_tq); 664 sc->age_tq = NULL; 665 ether_ifdetach(ifp); 666 goto fail; 667 } 668 669 fail: 670 if (error != 0) 671 age_detach(dev); 672 673 return (error); 674 } 675 676 static int 677 age_detach(device_t dev) 678 { 679 struct age_softc *sc; 680 struct ifnet *ifp; 681 int i, msic; 682 683 sc = device_get_softc(dev); 684 685 ifp = sc->age_ifp; 686 if (device_is_attached(dev)) { 687 AGE_LOCK(sc); 688 sc->age_flags |= AGE_FLAG_DETACH; 689 age_stop(sc); 690 AGE_UNLOCK(sc); 691 callout_drain(&sc->age_tick_ch); 692 taskqueue_drain(sc->age_tq, &sc->age_int_task); 693 taskqueue_drain(taskqueue_swi, &sc->age_link_task); 694 ether_ifdetach(ifp); 695 } 696 697 if (sc->age_tq != NULL) { 698 taskqueue_drain(sc->age_tq, &sc->age_int_task); 699 taskqueue_free(sc->age_tq); 700 sc->age_tq = NULL; 701 } 702 703 if (sc->age_miibus != NULL) { 704 device_delete_child(dev, sc->age_miibus); 705 sc->age_miibus = NULL; 706 } 707 bus_generic_detach(dev); 708 age_dma_free(sc); 709 710 if (ifp != NULL) { 711 if_free(ifp); 712 sc->age_ifp = NULL; 713 } 714 715 if ((sc->age_flags & AGE_FLAG_MSIX) != 0) 716 msic = AGE_MSIX_MESSAGES; 717 else if ((sc->age_flags & AGE_FLAG_MSI) != 0) 718 msic = AGE_MSI_MESSAGES; 719 else 720 msic = 1; 721 for (i = 0; i < msic; i++) { 722 if (sc->age_intrhand[i] != NULL) { 723 bus_teardown_intr(dev, sc->age_irq[i], 724 sc->age_intrhand[i]); 725 sc->age_intrhand[i] = NULL; 726 } 727 } 728 729 bus_release_resources(dev, sc->age_irq_spec, sc->age_irq); 730 if ((sc->age_flags & (AGE_FLAG_MSI | AGE_FLAG_MSIX)) != 0) 731 pci_release_msi(dev); 732 bus_release_resources(dev, sc->age_res_spec, sc->age_res); 733 mtx_destroy(&sc->age_mtx); 734 735 return (0); 736 } 737 738 static void 739 age_sysctl_node(struct age_softc *sc) 740 { 741 int error; 742 743 SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev), 744 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO, 745 "stats", CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_age_stats, 746 "I", "Statistics"); 747 748 SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev), 749 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO, 750 "int_mod", CTLTYPE_INT | CTLFLAG_RW, &sc->age_int_mod, 0, 751 sysctl_hw_age_int_mod, "I", "age interrupt moderation"); 752 753 /* Pull in device tunables. */ 754 sc->age_int_mod = AGE_IM_TIMER_DEFAULT; 755 error = resource_int_value(device_get_name(sc->age_dev), 756 device_get_unit(sc->age_dev), "int_mod", &sc->age_int_mod); 757 if (error == 0) { 758 if (sc->age_int_mod < AGE_IM_TIMER_MIN || 759 sc->age_int_mod > AGE_IM_TIMER_MAX) { 760 device_printf(sc->age_dev, 761 "int_mod value out of range; using default: %d\n", 762 AGE_IM_TIMER_DEFAULT); 763 sc->age_int_mod = AGE_IM_TIMER_DEFAULT; 764 } 765 } 766 767 SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev), 768 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO, 769 "process_limit", CTLTYPE_INT | CTLFLAG_RW, &sc->age_process_limit, 770 0, sysctl_hw_age_proc_limit, "I", 771 "max number of Rx events to process"); 772 773 /* Pull in device tunables. */ 774 sc->age_process_limit = AGE_PROC_DEFAULT; 775 error = resource_int_value(device_get_name(sc->age_dev), 776 device_get_unit(sc->age_dev), "process_limit", 777 &sc->age_process_limit); 778 if (error == 0) { 779 if (sc->age_process_limit < AGE_PROC_MIN || 780 sc->age_process_limit > AGE_PROC_MAX) { 781 device_printf(sc->age_dev, 782 "process_limit value out of range; " 783 "using default: %d\n", AGE_PROC_DEFAULT); 784 sc->age_process_limit = AGE_PROC_DEFAULT; 785 } 786 } 787 } 788 789 struct age_dmamap_arg { 790 bus_addr_t age_busaddr; 791 }; 792 793 static void 794 age_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 795 { 796 struct age_dmamap_arg *ctx; 797 798 if (error != 0) 799 return; 800 801 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); 802 803 ctx = (struct age_dmamap_arg *)arg; 804 ctx->age_busaddr = segs[0].ds_addr; 805 } 806 807 /* 808 * Attansic L1 controller have single register to specify high 809 * address part of DMA blocks. So all descriptor structures and 810 * DMA memory blocks should have the same high address of given 811 * 4GB address space(i.e. crossing 4GB boundary is not allowed). 812 */ 813 static int 814 age_check_boundary(struct age_softc *sc) 815 { 816 bus_addr_t rx_ring_end, rr_ring_end, tx_ring_end; 817 bus_addr_t cmb_block_end, smb_block_end; 818 819 /* Tx/Rx descriptor queue should reside within 4GB boundary. */ 820 tx_ring_end = sc->age_rdata.age_tx_ring_paddr + AGE_TX_RING_SZ; 821 rx_ring_end = sc->age_rdata.age_rx_ring_paddr + AGE_RX_RING_SZ; 822 rr_ring_end = sc->age_rdata.age_rr_ring_paddr + AGE_RR_RING_SZ; 823 cmb_block_end = sc->age_rdata.age_cmb_block_paddr + AGE_CMB_BLOCK_SZ; 824 smb_block_end = sc->age_rdata.age_smb_block_paddr + AGE_SMB_BLOCK_SZ; 825 826 if ((AGE_ADDR_HI(tx_ring_end) != 827 AGE_ADDR_HI(sc->age_rdata.age_tx_ring_paddr)) || 828 (AGE_ADDR_HI(rx_ring_end) != 829 AGE_ADDR_HI(sc->age_rdata.age_rx_ring_paddr)) || 830 (AGE_ADDR_HI(rr_ring_end) != 831 AGE_ADDR_HI(sc->age_rdata.age_rr_ring_paddr)) || 832 (AGE_ADDR_HI(cmb_block_end) != 833 AGE_ADDR_HI(sc->age_rdata.age_cmb_block_paddr)) || 834 (AGE_ADDR_HI(smb_block_end) != 835 AGE_ADDR_HI(sc->age_rdata.age_smb_block_paddr))) 836 return (EFBIG); 837 838 if ((AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rx_ring_end)) || 839 (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rr_ring_end)) || 840 (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(cmb_block_end)) || 841 (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(smb_block_end))) 842 return (EFBIG); 843 844 return (0); 845 } 846 847 static int 848 age_dma_alloc(struct age_softc *sc) 849 { 850 struct age_txdesc *txd; 851 struct age_rxdesc *rxd; 852 bus_addr_t lowaddr; 853 struct age_dmamap_arg ctx; 854 int error, i; 855 856 lowaddr = BUS_SPACE_MAXADDR; 857 858 again: 859 /* Create parent ring/DMA block tag. */ 860 error = bus_dma_tag_create( 861 bus_get_dma_tag(sc->age_dev), /* parent */ 862 1, 0, /* alignment, boundary */ 863 lowaddr, /* lowaddr */ 864 BUS_SPACE_MAXADDR, /* highaddr */ 865 NULL, NULL, /* filter, filterarg */ 866 BUS_SPACE_MAXSIZE_32BIT, /* maxsize */ 867 0, /* nsegments */ 868 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 869 0, /* flags */ 870 NULL, NULL, /* lockfunc, lockarg */ 871 &sc->age_cdata.age_parent_tag); 872 if (error != 0) { 873 device_printf(sc->age_dev, 874 "could not create parent DMA tag.\n"); 875 goto fail; 876 } 877 878 /* Create tag for Tx ring. */ 879 error = bus_dma_tag_create( 880 sc->age_cdata.age_parent_tag, /* parent */ 881 AGE_TX_RING_ALIGN, 0, /* alignment, boundary */ 882 BUS_SPACE_MAXADDR, /* lowaddr */ 883 BUS_SPACE_MAXADDR, /* highaddr */ 884 NULL, NULL, /* filter, filterarg */ 885 AGE_TX_RING_SZ, /* maxsize */ 886 1, /* nsegments */ 887 AGE_TX_RING_SZ, /* maxsegsize */ 888 0, /* flags */ 889 NULL, NULL, /* lockfunc, lockarg */ 890 &sc->age_cdata.age_tx_ring_tag); 891 if (error != 0) { 892 device_printf(sc->age_dev, 893 "could not create Tx ring DMA tag.\n"); 894 goto fail; 895 } 896 897 /* Create tag for Rx ring. */ 898 error = bus_dma_tag_create( 899 sc->age_cdata.age_parent_tag, /* parent */ 900 AGE_RX_RING_ALIGN, 0, /* alignment, boundary */ 901 BUS_SPACE_MAXADDR, /* lowaddr */ 902 BUS_SPACE_MAXADDR, /* highaddr */ 903 NULL, NULL, /* filter, filterarg */ 904 AGE_RX_RING_SZ, /* maxsize */ 905 1, /* nsegments */ 906 AGE_RX_RING_SZ, /* maxsegsize */ 907 0, /* flags */ 908 NULL, NULL, /* lockfunc, lockarg */ 909 &sc->age_cdata.age_rx_ring_tag); 910 if (error != 0) { 911 device_printf(sc->age_dev, 912 "could not create Rx ring DMA tag.\n"); 913 goto fail; 914 } 915 916 /* Create tag for Rx return ring. */ 917 error = bus_dma_tag_create( 918 sc->age_cdata.age_parent_tag, /* parent */ 919 AGE_RR_RING_ALIGN, 0, /* alignment, boundary */ 920 BUS_SPACE_MAXADDR, /* lowaddr */ 921 BUS_SPACE_MAXADDR, /* highaddr */ 922 NULL, NULL, /* filter, filterarg */ 923 AGE_RR_RING_SZ, /* maxsize */ 924 1, /* nsegments */ 925 AGE_RR_RING_SZ, /* maxsegsize */ 926 0, /* flags */ 927 NULL, NULL, /* lockfunc, lockarg */ 928 &sc->age_cdata.age_rr_ring_tag); 929 if (error != 0) { 930 device_printf(sc->age_dev, 931 "could not create Rx return ring DMA tag.\n"); 932 goto fail; 933 } 934 935 /* Create tag for coalesing message block. */ 936 error = bus_dma_tag_create( 937 sc->age_cdata.age_parent_tag, /* parent */ 938 AGE_CMB_ALIGN, 0, /* alignment, boundary */ 939 BUS_SPACE_MAXADDR, /* lowaddr */ 940 BUS_SPACE_MAXADDR, /* highaddr */ 941 NULL, NULL, /* filter, filterarg */ 942 AGE_CMB_BLOCK_SZ, /* maxsize */ 943 1, /* nsegments */ 944 AGE_CMB_BLOCK_SZ, /* maxsegsize */ 945 0, /* flags */ 946 NULL, NULL, /* lockfunc, lockarg */ 947 &sc->age_cdata.age_cmb_block_tag); 948 if (error != 0) { 949 device_printf(sc->age_dev, 950 "could not create CMB DMA tag.\n"); 951 goto fail; 952 } 953 954 /* Create tag for statistics message block. */ 955 error = bus_dma_tag_create( 956 sc->age_cdata.age_parent_tag, /* parent */ 957 AGE_SMB_ALIGN, 0, /* alignment, boundary */ 958 BUS_SPACE_MAXADDR, /* lowaddr */ 959 BUS_SPACE_MAXADDR, /* highaddr */ 960 NULL, NULL, /* filter, filterarg */ 961 AGE_SMB_BLOCK_SZ, /* maxsize */ 962 1, /* nsegments */ 963 AGE_SMB_BLOCK_SZ, /* maxsegsize */ 964 0, /* flags */ 965 NULL, NULL, /* lockfunc, lockarg */ 966 &sc->age_cdata.age_smb_block_tag); 967 if (error != 0) { 968 device_printf(sc->age_dev, 969 "could not create SMB DMA tag.\n"); 970 goto fail; 971 } 972 973 /* Allocate DMA'able memory and load the DMA map. */ 974 error = bus_dmamem_alloc(sc->age_cdata.age_tx_ring_tag, 975 (void **)&sc->age_rdata.age_tx_ring, 976 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 977 &sc->age_cdata.age_tx_ring_map); 978 if (error != 0) { 979 device_printf(sc->age_dev, 980 "could not allocate DMA'able memory for Tx ring.\n"); 981 goto fail; 982 } 983 ctx.age_busaddr = 0; 984 error = bus_dmamap_load(sc->age_cdata.age_tx_ring_tag, 985 sc->age_cdata.age_tx_ring_map, sc->age_rdata.age_tx_ring, 986 AGE_TX_RING_SZ, age_dmamap_cb, &ctx, 0); 987 if (error != 0 || ctx.age_busaddr == 0) { 988 device_printf(sc->age_dev, 989 "could not load DMA'able memory for Tx ring.\n"); 990 goto fail; 991 } 992 sc->age_rdata.age_tx_ring_paddr = ctx.age_busaddr; 993 /* Rx ring */ 994 error = bus_dmamem_alloc(sc->age_cdata.age_rx_ring_tag, 995 (void **)&sc->age_rdata.age_rx_ring, 996 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 997 &sc->age_cdata.age_rx_ring_map); 998 if (error != 0) { 999 device_printf(sc->age_dev, 1000 "could not allocate DMA'able memory for Rx ring.\n"); 1001 goto fail; 1002 } 1003 ctx.age_busaddr = 0; 1004 error = bus_dmamap_load(sc->age_cdata.age_rx_ring_tag, 1005 sc->age_cdata.age_rx_ring_map, sc->age_rdata.age_rx_ring, 1006 AGE_RX_RING_SZ, age_dmamap_cb, &ctx, 0); 1007 if (error != 0 || ctx.age_busaddr == 0) { 1008 device_printf(sc->age_dev, 1009 "could not load DMA'able memory for Rx ring.\n"); 1010 goto fail; 1011 } 1012 sc->age_rdata.age_rx_ring_paddr = ctx.age_busaddr; 1013 /* Rx return ring */ 1014 error = bus_dmamem_alloc(sc->age_cdata.age_rr_ring_tag, 1015 (void **)&sc->age_rdata.age_rr_ring, 1016 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 1017 &sc->age_cdata.age_rr_ring_map); 1018 if (error != 0) { 1019 device_printf(sc->age_dev, 1020 "could not allocate DMA'able memory for Rx return ring.\n"); 1021 goto fail; 1022 } 1023 ctx.age_busaddr = 0; 1024 error = bus_dmamap_load(sc->age_cdata.age_rr_ring_tag, 1025 sc->age_cdata.age_rr_ring_map, sc->age_rdata.age_rr_ring, 1026 AGE_RR_RING_SZ, age_dmamap_cb, 1027 &ctx, 0); 1028 if (error != 0 || ctx.age_busaddr == 0) { 1029 device_printf(sc->age_dev, 1030 "could not load DMA'able memory for Rx return ring.\n"); 1031 goto fail; 1032 } 1033 sc->age_rdata.age_rr_ring_paddr = ctx.age_busaddr; 1034 /* CMB block */ 1035 error = bus_dmamem_alloc(sc->age_cdata.age_cmb_block_tag, 1036 (void **)&sc->age_rdata.age_cmb_block, 1037 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 1038 &sc->age_cdata.age_cmb_block_map); 1039 if (error != 0) { 1040 device_printf(sc->age_dev, 1041 "could not allocate DMA'able memory for CMB block.\n"); 1042 goto fail; 1043 } 1044 ctx.age_busaddr = 0; 1045 error = bus_dmamap_load(sc->age_cdata.age_cmb_block_tag, 1046 sc->age_cdata.age_cmb_block_map, sc->age_rdata.age_cmb_block, 1047 AGE_CMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0); 1048 if (error != 0 || ctx.age_busaddr == 0) { 1049 device_printf(sc->age_dev, 1050 "could not load DMA'able memory for CMB block.\n"); 1051 goto fail; 1052 } 1053 sc->age_rdata.age_cmb_block_paddr = ctx.age_busaddr; 1054 /* SMB block */ 1055 error = bus_dmamem_alloc(sc->age_cdata.age_smb_block_tag, 1056 (void **)&sc->age_rdata.age_smb_block, 1057 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 1058 &sc->age_cdata.age_smb_block_map); 1059 if (error != 0) { 1060 device_printf(sc->age_dev, 1061 "could not allocate DMA'able memory for SMB block.\n"); 1062 goto fail; 1063 } 1064 ctx.age_busaddr = 0; 1065 error = bus_dmamap_load(sc->age_cdata.age_smb_block_tag, 1066 sc->age_cdata.age_smb_block_map, sc->age_rdata.age_smb_block, 1067 AGE_SMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0); 1068 if (error != 0 || ctx.age_busaddr == 0) { 1069 device_printf(sc->age_dev, 1070 "could not load DMA'able memory for SMB block.\n"); 1071 goto fail; 1072 } 1073 sc->age_rdata.age_smb_block_paddr = ctx.age_busaddr; 1074 1075 /* 1076 * All ring buffer and DMA blocks should have the same 1077 * high address part of 64bit DMA address space. 1078 */ 1079 if (lowaddr != BUS_SPACE_MAXADDR_32BIT && 1080 (error = age_check_boundary(sc)) != 0) { 1081 device_printf(sc->age_dev, "4GB boundary crossed, " 1082 "switching to 32bit DMA addressing mode.\n"); 1083 age_dma_free(sc); 1084 /* Limit DMA address space to 32bit and try again. */ 1085 lowaddr = BUS_SPACE_MAXADDR_32BIT; 1086 goto again; 1087 } 1088 1089 /* 1090 * Create Tx/Rx buffer parent tag. 1091 * L1 supports full 64bit DMA addressing in Tx/Rx buffers 1092 * so it needs separate parent DMA tag. 1093 * XXX 1094 * It seems enabling 64bit DMA causes data corruption. Limit 1095 * DMA address space to 32bit. 1096 */ 1097 error = bus_dma_tag_create( 1098 bus_get_dma_tag(sc->age_dev), /* parent */ 1099 1, 0, /* alignment, boundary */ 1100 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 1101 BUS_SPACE_MAXADDR, /* highaddr */ 1102 NULL, NULL, /* filter, filterarg */ 1103 BUS_SPACE_MAXSIZE_32BIT, /* maxsize */ 1104 0, /* nsegments */ 1105 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 1106 0, /* flags */ 1107 NULL, NULL, /* lockfunc, lockarg */ 1108 &sc->age_cdata.age_buffer_tag); 1109 if (error != 0) { 1110 device_printf(sc->age_dev, 1111 "could not create parent buffer DMA tag.\n"); 1112 goto fail; 1113 } 1114 1115 /* Create tag for Tx buffers. */ 1116 error = bus_dma_tag_create( 1117 sc->age_cdata.age_buffer_tag, /* parent */ 1118 1, 0, /* alignment, boundary */ 1119 BUS_SPACE_MAXADDR, /* lowaddr */ 1120 BUS_SPACE_MAXADDR, /* highaddr */ 1121 NULL, NULL, /* filter, filterarg */ 1122 AGE_TSO_MAXSIZE, /* maxsize */ 1123 AGE_MAXTXSEGS, /* nsegments */ 1124 AGE_TSO_MAXSEGSIZE, /* maxsegsize */ 1125 0, /* flags */ 1126 NULL, NULL, /* lockfunc, lockarg */ 1127 &sc->age_cdata.age_tx_tag); 1128 if (error != 0) { 1129 device_printf(sc->age_dev, "could not create Tx DMA tag.\n"); 1130 goto fail; 1131 } 1132 1133 /* Create tag for Rx buffers. */ 1134 error = bus_dma_tag_create( 1135 sc->age_cdata.age_buffer_tag, /* parent */ 1136 1, 0, /* alignment, boundary */ 1137 BUS_SPACE_MAXADDR, /* lowaddr */ 1138 BUS_SPACE_MAXADDR, /* highaddr */ 1139 NULL, NULL, /* filter, filterarg */ 1140 MCLBYTES, /* maxsize */ 1141 1, /* nsegments */ 1142 MCLBYTES, /* maxsegsize */ 1143 0, /* flags */ 1144 NULL, NULL, /* lockfunc, lockarg */ 1145 &sc->age_cdata.age_rx_tag); 1146 if (error != 0) { 1147 device_printf(sc->age_dev, "could not create Rx DMA tag.\n"); 1148 goto fail; 1149 } 1150 1151 /* Create DMA maps for Tx buffers. */ 1152 for (i = 0; i < AGE_TX_RING_CNT; i++) { 1153 txd = &sc->age_cdata.age_txdesc[i]; 1154 txd->tx_m = NULL; 1155 txd->tx_dmamap = NULL; 1156 error = bus_dmamap_create(sc->age_cdata.age_tx_tag, 0, 1157 &txd->tx_dmamap); 1158 if (error != 0) { 1159 device_printf(sc->age_dev, 1160 "could not create Tx dmamap.\n"); 1161 goto fail; 1162 } 1163 } 1164 /* Create DMA maps for Rx buffers. */ 1165 if ((error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0, 1166 &sc->age_cdata.age_rx_sparemap)) != 0) { 1167 device_printf(sc->age_dev, 1168 "could not create spare Rx dmamap.\n"); 1169 goto fail; 1170 } 1171 for (i = 0; i < AGE_RX_RING_CNT; i++) { 1172 rxd = &sc->age_cdata.age_rxdesc[i]; 1173 rxd->rx_m = NULL; 1174 rxd->rx_dmamap = NULL; 1175 error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0, 1176 &rxd->rx_dmamap); 1177 if (error != 0) { 1178 device_printf(sc->age_dev, 1179 "could not create Rx dmamap.\n"); 1180 goto fail; 1181 } 1182 } 1183 1184 fail: 1185 return (error); 1186 } 1187 1188 static void 1189 age_dma_free(struct age_softc *sc) 1190 { 1191 struct age_txdesc *txd; 1192 struct age_rxdesc *rxd; 1193 int i; 1194 1195 /* Tx buffers */ 1196 if (sc->age_cdata.age_tx_tag != NULL) { 1197 for (i = 0; i < AGE_TX_RING_CNT; i++) { 1198 txd = &sc->age_cdata.age_txdesc[i]; 1199 if (txd->tx_dmamap != NULL) { 1200 bus_dmamap_destroy(sc->age_cdata.age_tx_tag, 1201 txd->tx_dmamap); 1202 txd->tx_dmamap = NULL; 1203 } 1204 } 1205 bus_dma_tag_destroy(sc->age_cdata.age_tx_tag); 1206 sc->age_cdata.age_tx_tag = NULL; 1207 } 1208 /* Rx buffers */ 1209 if (sc->age_cdata.age_rx_tag != NULL) { 1210 for (i = 0; i < AGE_RX_RING_CNT; i++) { 1211 rxd = &sc->age_cdata.age_rxdesc[i]; 1212 if (rxd->rx_dmamap != NULL) { 1213 bus_dmamap_destroy(sc->age_cdata.age_rx_tag, 1214 rxd->rx_dmamap); 1215 rxd->rx_dmamap = NULL; 1216 } 1217 } 1218 if (sc->age_cdata.age_rx_sparemap != NULL) { 1219 bus_dmamap_destroy(sc->age_cdata.age_rx_tag, 1220 sc->age_cdata.age_rx_sparemap); 1221 sc->age_cdata.age_rx_sparemap = NULL; 1222 } 1223 bus_dma_tag_destroy(sc->age_cdata.age_rx_tag); 1224 sc->age_cdata.age_rx_tag = NULL; 1225 } 1226 /* Tx ring. */ 1227 if (sc->age_cdata.age_tx_ring_tag != NULL) { 1228 if (sc->age_cdata.age_tx_ring_map != NULL) 1229 bus_dmamap_unload(sc->age_cdata.age_tx_ring_tag, 1230 sc->age_cdata.age_tx_ring_map); 1231 if (sc->age_cdata.age_tx_ring_map != NULL && 1232 sc->age_rdata.age_tx_ring != NULL) 1233 bus_dmamem_free(sc->age_cdata.age_tx_ring_tag, 1234 sc->age_rdata.age_tx_ring, 1235 sc->age_cdata.age_tx_ring_map); 1236 sc->age_rdata.age_tx_ring = NULL; 1237 sc->age_cdata.age_tx_ring_map = NULL; 1238 bus_dma_tag_destroy(sc->age_cdata.age_tx_ring_tag); 1239 sc->age_cdata.age_tx_ring_tag = NULL; 1240 } 1241 /* Rx ring. */ 1242 if (sc->age_cdata.age_rx_ring_tag != NULL) { 1243 if (sc->age_cdata.age_rx_ring_map != NULL) 1244 bus_dmamap_unload(sc->age_cdata.age_rx_ring_tag, 1245 sc->age_cdata.age_rx_ring_map); 1246 if (sc->age_cdata.age_rx_ring_map != NULL && 1247 sc->age_rdata.age_rx_ring != NULL) 1248 bus_dmamem_free(sc->age_cdata.age_rx_ring_tag, 1249 sc->age_rdata.age_rx_ring, 1250 sc->age_cdata.age_rx_ring_map); 1251 sc->age_rdata.age_rx_ring = NULL; 1252 sc->age_cdata.age_rx_ring_map = NULL; 1253 bus_dma_tag_destroy(sc->age_cdata.age_rx_ring_tag); 1254 sc->age_cdata.age_rx_ring_tag = NULL; 1255 } 1256 /* Rx return ring. */ 1257 if (sc->age_cdata.age_rr_ring_tag != NULL) { 1258 if (sc->age_cdata.age_rr_ring_map != NULL) 1259 bus_dmamap_unload(sc->age_cdata.age_rr_ring_tag, 1260 sc->age_cdata.age_rr_ring_map); 1261 if (sc->age_cdata.age_rr_ring_map != NULL && 1262 sc->age_rdata.age_rr_ring != NULL) 1263 bus_dmamem_free(sc->age_cdata.age_rr_ring_tag, 1264 sc->age_rdata.age_rr_ring, 1265 sc->age_cdata.age_rr_ring_map); 1266 sc->age_rdata.age_rr_ring = NULL; 1267 sc->age_cdata.age_rr_ring_map = NULL; 1268 bus_dma_tag_destroy(sc->age_cdata.age_rr_ring_tag); 1269 sc->age_cdata.age_rr_ring_tag = NULL; 1270 } 1271 /* CMB block */ 1272 if (sc->age_cdata.age_cmb_block_tag != NULL) { 1273 if (sc->age_cdata.age_cmb_block_map != NULL) 1274 bus_dmamap_unload(sc->age_cdata.age_cmb_block_tag, 1275 sc->age_cdata.age_cmb_block_map); 1276 if (sc->age_cdata.age_cmb_block_map != NULL && 1277 sc->age_rdata.age_cmb_block != NULL) 1278 bus_dmamem_free(sc->age_cdata.age_cmb_block_tag, 1279 sc->age_rdata.age_cmb_block, 1280 sc->age_cdata.age_cmb_block_map); 1281 sc->age_rdata.age_cmb_block = NULL; 1282 sc->age_cdata.age_cmb_block_map = NULL; 1283 bus_dma_tag_destroy(sc->age_cdata.age_cmb_block_tag); 1284 sc->age_cdata.age_cmb_block_tag = NULL; 1285 } 1286 /* SMB block */ 1287 if (sc->age_cdata.age_smb_block_tag != NULL) { 1288 if (sc->age_cdata.age_smb_block_map != NULL) 1289 bus_dmamap_unload(sc->age_cdata.age_smb_block_tag, 1290 sc->age_cdata.age_smb_block_map); 1291 if (sc->age_cdata.age_smb_block_map != NULL && 1292 sc->age_rdata.age_smb_block != NULL) 1293 bus_dmamem_free(sc->age_cdata.age_smb_block_tag, 1294 sc->age_rdata.age_smb_block, 1295 sc->age_cdata.age_smb_block_map); 1296 sc->age_rdata.age_smb_block = NULL; 1297 sc->age_cdata.age_smb_block_map = NULL; 1298 bus_dma_tag_destroy(sc->age_cdata.age_smb_block_tag); 1299 sc->age_cdata.age_smb_block_tag = NULL; 1300 } 1301 1302 if (sc->age_cdata.age_buffer_tag != NULL) { 1303 bus_dma_tag_destroy(sc->age_cdata.age_buffer_tag); 1304 sc->age_cdata.age_buffer_tag = NULL; 1305 } 1306 if (sc->age_cdata.age_parent_tag != NULL) { 1307 bus_dma_tag_destroy(sc->age_cdata.age_parent_tag); 1308 sc->age_cdata.age_parent_tag = NULL; 1309 } 1310 } 1311 1312 /* 1313 * Make sure the interface is stopped at reboot time. 1314 */ 1315 static int 1316 age_shutdown(device_t dev) 1317 { 1318 1319 return (age_suspend(dev)); 1320 } 1321 1322 static void 1323 age_setwol(struct age_softc *sc) 1324 { 1325 struct ifnet *ifp; 1326 struct mii_data *mii; 1327 uint32_t reg, pmcs; 1328 uint16_t pmstat; 1329 int aneg, i, pmc; 1330 1331 AGE_LOCK_ASSERT(sc); 1332 1333 if (pci_find_cap(sc->age_dev, PCIY_PMG, &pmc) != 0) { 1334 CSR_WRITE_4(sc, AGE_WOL_CFG, 0); 1335 /* 1336 * No PME capability, PHY power down. 1337 * XXX 1338 * Due to an unknown reason powering down PHY resulted 1339 * in unexpected results such as inaccessbility of 1340 * hardware of freshly rebooted system. Disable 1341 * powering down PHY until I got more information for 1342 * Attansic/Atheros PHY hardwares. 1343 */ 1344 #ifdef notyet 1345 age_miibus_writereg(sc->age_dev, sc->age_phyaddr, 1346 MII_BMCR, BMCR_PDOWN); 1347 #endif 1348 return; 1349 } 1350 1351 ifp = sc->age_ifp; 1352 if ((ifp->if_capenable & IFCAP_WOL) != 0) { 1353 /* 1354 * Note, this driver resets the link speed to 10/100Mbps with 1355 * auto-negotiation but we don't know whether that operation 1356 * would succeed or not as it have no control after powering 1357 * off. If the renegotiation fail WOL may not work. Running 1358 * at 1Gbps will draw more power than 375mA at 3.3V which is 1359 * specified in PCI specification and that would result in 1360 * complete shutdowning power to ethernet controller. 1361 * 1362 * TODO 1363 * Save current negotiated media speed/duplex/flow-control 1364 * to softc and restore the same link again after resuming. 1365 * PHY handling such as power down/resetting to 100Mbps 1366 * may be better handled in suspend method in phy driver. 1367 */ 1368 mii = device_get_softc(sc->age_miibus); 1369 mii_pollstat(mii); 1370 aneg = 0; 1371 if ((mii->mii_media_status & IFM_AVALID) != 0) { 1372 switch IFM_SUBTYPE(mii->mii_media_active) { 1373 case IFM_10_T: 1374 case IFM_100_TX: 1375 goto got_link; 1376 case IFM_1000_T: 1377 aneg++; 1378 default: 1379 break; 1380 } 1381 } 1382 age_miibus_writereg(sc->age_dev, sc->age_phyaddr, 1383 MII_100T2CR, 0); 1384 age_miibus_writereg(sc->age_dev, sc->age_phyaddr, 1385 MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | 1386 ANAR_10 | ANAR_CSMA); 1387 age_miibus_writereg(sc->age_dev, sc->age_phyaddr, 1388 MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG); 1389 DELAY(1000); 1390 if (aneg != 0) { 1391 /* Poll link state until age(4) get a 10/100 link. */ 1392 for (i = 0; i < MII_ANEGTICKS_GIGE; i++) { 1393 mii_pollstat(mii); 1394 if ((mii->mii_media_status & IFM_AVALID) != 0) { 1395 switch (IFM_SUBTYPE( 1396 mii->mii_media_active)) { 1397 case IFM_10_T: 1398 case IFM_100_TX: 1399 age_mac_config(sc); 1400 goto got_link; 1401 default: 1402 break; 1403 } 1404 } 1405 AGE_UNLOCK(sc); 1406 pause("agelnk", hz); 1407 AGE_LOCK(sc); 1408 } 1409 if (i == MII_ANEGTICKS_GIGE) 1410 device_printf(sc->age_dev, 1411 "establishing link failed, " 1412 "WOL may not work!"); 1413 } 1414 /* 1415 * No link, force MAC to have 100Mbps, full-duplex link. 1416 * This is the last resort and may/may not work. 1417 */ 1418 mii->mii_media_status = IFM_AVALID | IFM_ACTIVE; 1419 mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX; 1420 age_mac_config(sc); 1421 } 1422 1423 got_link: 1424 pmcs = 0; 1425 if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) 1426 pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB; 1427 CSR_WRITE_4(sc, AGE_WOL_CFG, pmcs); 1428 reg = CSR_READ_4(sc, AGE_MAC_CFG); 1429 reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC); 1430 reg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST); 1431 if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0) 1432 reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST; 1433 if ((ifp->if_capenable & IFCAP_WOL) != 0) { 1434 reg |= MAC_CFG_RX_ENB; 1435 CSR_WRITE_4(sc, AGE_MAC_CFG, reg); 1436 } 1437 1438 /* Request PME. */ 1439 pmstat = pci_read_config(sc->age_dev, pmc + PCIR_POWER_STATUS, 2); 1440 pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE); 1441 if ((ifp->if_capenable & IFCAP_WOL) != 0) 1442 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE; 1443 pci_write_config(sc->age_dev, pmc + PCIR_POWER_STATUS, pmstat, 2); 1444 #ifdef notyet 1445 /* See above for powering down PHY issues. */ 1446 if ((ifp->if_capenable & IFCAP_WOL) == 0) { 1447 /* No WOL, PHY power down. */ 1448 age_miibus_writereg(sc->age_dev, sc->age_phyaddr, 1449 MII_BMCR, BMCR_PDOWN); 1450 } 1451 #endif 1452 } 1453 1454 static int 1455 age_suspend(device_t dev) 1456 { 1457 struct age_softc *sc; 1458 1459 sc = device_get_softc(dev); 1460 1461 AGE_LOCK(sc); 1462 age_stop(sc); 1463 age_setwol(sc); 1464 AGE_UNLOCK(sc); 1465 1466 return (0); 1467 } 1468 1469 static int 1470 age_resume(device_t dev) 1471 { 1472 struct age_softc *sc; 1473 struct ifnet *ifp; 1474 1475 sc = device_get_softc(dev); 1476 1477 AGE_LOCK(sc); 1478 age_phy_reset(sc); 1479 ifp = sc->age_ifp; 1480 if ((ifp->if_flags & IFF_UP) != 0) 1481 age_init_locked(sc); 1482 1483 AGE_UNLOCK(sc); 1484 1485 return (0); 1486 } 1487 1488 static int 1489 age_encap(struct age_softc *sc, struct mbuf **m_head) 1490 { 1491 struct age_txdesc *txd, *txd_last; 1492 struct tx_desc *desc; 1493 struct mbuf *m; 1494 struct ip *ip; 1495 struct tcphdr *tcp; 1496 bus_dma_segment_t txsegs[AGE_MAXTXSEGS]; 1497 bus_dmamap_t map; 1498 uint32_t cflags, hdrlen, ip_off, poff, vtag; 1499 int error, i, nsegs, prod, si; 1500 1501 AGE_LOCK_ASSERT(sc); 1502 1503 M_ASSERTPKTHDR((*m_head)); 1504 1505 m = *m_head; 1506 ip = NULL; 1507 tcp = NULL; 1508 cflags = vtag = 0; 1509 ip_off = poff = 0; 1510 if ((m->m_pkthdr.csum_flags & (AGE_CSUM_FEATURES | CSUM_TSO)) != 0) { 1511 /* 1512 * L1 requires offset of TCP/UDP payload in its Tx 1513 * descriptor to perform hardware Tx checksum offload. 1514 * Additionally, TSO requires IP/TCP header size and 1515 * modification of IP/TCP header in order to make TSO 1516 * engine work. This kind of operation takes many CPU 1517 * cycles on FreeBSD so fast host CPU is needed to get 1518 * smooth TSO performance. 1519 */ 1520 struct ether_header *eh; 1521 1522 if (M_WRITABLE(m) == 0) { 1523 /* Get a writable copy. */ 1524 m = m_dup(*m_head, M_NOWAIT); 1525 /* Release original mbufs. */ 1526 m_freem(*m_head); 1527 if (m == NULL) { 1528 *m_head = NULL; 1529 return (ENOBUFS); 1530 } 1531 *m_head = m; 1532 } 1533 ip_off = sizeof(struct ether_header); 1534 m = m_pullup(m, ip_off); 1535 if (m == NULL) { 1536 *m_head = NULL; 1537 return (ENOBUFS); 1538 } 1539 eh = mtod(m, struct ether_header *); 1540 /* 1541 * Check if hardware VLAN insertion is off. 1542 * Additional check for LLC/SNAP frame? 1543 */ 1544 if (eh->ether_type == htons(ETHERTYPE_VLAN)) { 1545 ip_off = sizeof(struct ether_vlan_header); 1546 m = m_pullup(m, ip_off); 1547 if (m == NULL) { 1548 *m_head = NULL; 1549 return (ENOBUFS); 1550 } 1551 } 1552 m = m_pullup(m, ip_off + sizeof(struct ip)); 1553 if (m == NULL) { 1554 *m_head = NULL; 1555 return (ENOBUFS); 1556 } 1557 ip = (struct ip *)(mtod(m, char *) + ip_off); 1558 poff = ip_off + (ip->ip_hl << 2); 1559 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 1560 m = m_pullup(m, poff + sizeof(struct tcphdr)); 1561 if (m == NULL) { 1562 *m_head = NULL; 1563 return (ENOBUFS); 1564 } 1565 tcp = (struct tcphdr *)(mtod(m, char *) + poff); 1566 m = m_pullup(m, poff + (tcp->th_off << 2)); 1567 if (m == NULL) { 1568 *m_head = NULL; 1569 return (ENOBUFS); 1570 } 1571 /* 1572 * L1 requires IP/TCP header size and offset as 1573 * well as TCP pseudo checksum which complicates 1574 * TSO configuration. I guess this comes from the 1575 * adherence to Microsoft NDIS Large Send 1576 * specification which requires insertion of 1577 * pseudo checksum by upper stack. The pseudo 1578 * checksum that NDIS refers to doesn't include 1579 * TCP payload length so age(4) should recompute 1580 * the pseudo checksum here. Hopefully this wouldn't 1581 * be much burden on modern CPUs. 1582 * Reset IP checksum and recompute TCP pseudo 1583 * checksum as NDIS specification said. 1584 */ 1585 ip = (struct ip *)(mtod(m, char *) + ip_off); 1586 tcp = (struct tcphdr *)(mtod(m, char *) + poff); 1587 ip->ip_sum = 0; 1588 tcp->th_sum = in_pseudo(ip->ip_src.s_addr, 1589 ip->ip_dst.s_addr, htons(IPPROTO_TCP)); 1590 } 1591 *m_head = m; 1592 } 1593 1594 si = prod = sc->age_cdata.age_tx_prod; 1595 txd = &sc->age_cdata.age_txdesc[prod]; 1596 txd_last = txd; 1597 map = txd->tx_dmamap; 1598 1599 error = bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map, 1600 *m_head, txsegs, &nsegs, 0); 1601 if (error == EFBIG) { 1602 m = m_collapse(*m_head, M_NOWAIT, AGE_MAXTXSEGS); 1603 if (m == NULL) { 1604 m_freem(*m_head); 1605 *m_head = NULL; 1606 return (ENOMEM); 1607 } 1608 *m_head = m; 1609 error = bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map, 1610 *m_head, txsegs, &nsegs, 0); 1611 if (error != 0) { 1612 m_freem(*m_head); 1613 *m_head = NULL; 1614 return (error); 1615 } 1616 } else if (error != 0) 1617 return (error); 1618 if (nsegs == 0) { 1619 m_freem(*m_head); 1620 *m_head = NULL; 1621 return (EIO); 1622 } 1623 1624 /* Check descriptor overrun. */ 1625 if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) { 1626 bus_dmamap_unload(sc->age_cdata.age_tx_tag, map); 1627 return (ENOBUFS); 1628 } 1629 1630 m = *m_head; 1631 /* Configure VLAN hardware tag insertion. */ 1632 if ((m->m_flags & M_VLANTAG) != 0) { 1633 vtag = AGE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag); 1634 vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK); 1635 cflags |= AGE_TD_INSERT_VLAN_TAG; 1636 } 1637 1638 desc = NULL; 1639 i = 0; 1640 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 1641 /* Request TSO and set MSS. */ 1642 cflags |= AGE_TD_TSO_IPV4; 1643 cflags |= AGE_TD_IPCSUM | AGE_TD_TCPCSUM; 1644 cflags |= ((uint32_t)m->m_pkthdr.tso_segsz << 1645 AGE_TD_TSO_MSS_SHIFT); 1646 /* Set IP/TCP header size. */ 1647 cflags |= ip->ip_hl << AGE_TD_IPHDR_LEN_SHIFT; 1648 cflags |= tcp->th_off << AGE_TD_TSO_TCPHDR_LEN_SHIFT; 1649 /* 1650 * L1 requires the first buffer should only hold IP/TCP 1651 * header data. TCP payload should be handled in other 1652 * descriptors. 1653 */ 1654 hdrlen = poff + (tcp->th_off << 2); 1655 desc = &sc->age_rdata.age_tx_ring[prod]; 1656 desc->addr = htole64(txsegs[0].ds_addr); 1657 desc->len = htole32(AGE_TX_BYTES(hdrlen) | vtag); 1658 desc->flags = htole32(cflags); 1659 sc->age_cdata.age_tx_cnt++; 1660 AGE_DESC_INC(prod, AGE_TX_RING_CNT); 1661 if (m->m_len - hdrlen > 0) { 1662 /* Handle remaining payload of the 1st fragment. */ 1663 desc = &sc->age_rdata.age_tx_ring[prod]; 1664 desc->addr = htole64(txsegs[0].ds_addr + hdrlen); 1665 desc->len = htole32(AGE_TX_BYTES(m->m_len - hdrlen) | 1666 vtag); 1667 desc->flags = htole32(cflags); 1668 sc->age_cdata.age_tx_cnt++; 1669 AGE_DESC_INC(prod, AGE_TX_RING_CNT); 1670 } 1671 /* Handle remaining fragments. */ 1672 i = 1; 1673 } else if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) { 1674 /* Configure Tx IP/TCP/UDP checksum offload. */ 1675 cflags |= AGE_TD_CSUM; 1676 if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0) 1677 cflags |= AGE_TD_TCPCSUM; 1678 if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0) 1679 cflags |= AGE_TD_UDPCSUM; 1680 /* Set checksum start offset. */ 1681 cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT); 1682 /* Set checksum insertion position of TCP/UDP. */ 1683 cflags |= ((poff + m->m_pkthdr.csum_data) << 1684 AGE_TD_CSUM_XSUMOFFSET_SHIFT); 1685 } 1686 for (; i < nsegs; i++) { 1687 desc = &sc->age_rdata.age_tx_ring[prod]; 1688 desc->addr = htole64(txsegs[i].ds_addr); 1689 desc->len = htole32(AGE_TX_BYTES(txsegs[i].ds_len) | vtag); 1690 desc->flags = htole32(cflags); 1691 sc->age_cdata.age_tx_cnt++; 1692 AGE_DESC_INC(prod, AGE_TX_RING_CNT); 1693 } 1694 /* Update producer index. */ 1695 sc->age_cdata.age_tx_prod = prod; 1696 1697 /* Set EOP on the last descriptor. */ 1698 prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT; 1699 desc = &sc->age_rdata.age_tx_ring[prod]; 1700 desc->flags |= htole32(AGE_TD_EOP); 1701 1702 /* Lastly set TSO header and modify IP/TCP header for TSO operation. */ 1703 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 1704 desc = &sc->age_rdata.age_tx_ring[si]; 1705 desc->flags |= htole32(AGE_TD_TSO_HDR); 1706 } 1707 1708 /* Swap dmamap of the first and the last. */ 1709 txd = &sc->age_cdata.age_txdesc[prod]; 1710 map = txd_last->tx_dmamap; 1711 txd_last->tx_dmamap = txd->tx_dmamap; 1712 txd->tx_dmamap = map; 1713 txd->tx_m = m; 1714 1715 /* Sync descriptors. */ 1716 bus_dmamap_sync(sc->age_cdata.age_tx_tag, map, BUS_DMASYNC_PREWRITE); 1717 bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag, 1718 sc->age_cdata.age_tx_ring_map, 1719 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1720 1721 return (0); 1722 } 1723 1724 static void 1725 age_start(struct ifnet *ifp) 1726 { 1727 struct age_softc *sc; 1728 1729 sc = ifp->if_softc; 1730 AGE_LOCK(sc); 1731 age_start_locked(ifp); 1732 AGE_UNLOCK(sc); 1733 } 1734 1735 static void 1736 age_start_locked(struct ifnet *ifp) 1737 { 1738 struct age_softc *sc; 1739 struct mbuf *m_head; 1740 int enq; 1741 1742 sc = ifp->if_softc; 1743 1744 AGE_LOCK_ASSERT(sc); 1745 1746 if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 1747 IFF_DRV_RUNNING || (sc->age_flags & AGE_FLAG_LINK) == 0) 1748 return; 1749 1750 for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) { 1751 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); 1752 if (m_head == NULL) 1753 break; 1754 /* 1755 * Pack the data into the transmit ring. If we 1756 * don't have room, set the OACTIVE flag and wait 1757 * for the NIC to drain the ring. 1758 */ 1759 if (age_encap(sc, &m_head)) { 1760 if (m_head == NULL) 1761 break; 1762 IFQ_DRV_PREPEND(&ifp->if_snd, m_head); 1763 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1764 break; 1765 } 1766 1767 enq++; 1768 /* 1769 * If there's a BPF listener, bounce a copy of this frame 1770 * to him. 1771 */ 1772 ETHER_BPF_MTAP(ifp, m_head); 1773 } 1774 1775 if (enq > 0) { 1776 /* Update mbox. */ 1777 AGE_COMMIT_MBOX(sc); 1778 /* Set a timeout in case the chip goes out to lunch. */ 1779 sc->age_watchdog_timer = AGE_TX_TIMEOUT; 1780 } 1781 } 1782 1783 static void 1784 age_watchdog(struct age_softc *sc) 1785 { 1786 struct ifnet *ifp; 1787 1788 AGE_LOCK_ASSERT(sc); 1789 1790 if (sc->age_watchdog_timer == 0 || --sc->age_watchdog_timer) 1791 return; 1792 1793 ifp = sc->age_ifp; 1794 if ((sc->age_flags & AGE_FLAG_LINK) == 0) { 1795 if_printf(sc->age_ifp, "watchdog timeout (missed link)\n"); 1796 ifp->if_oerrors++; 1797 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1798 age_init_locked(sc); 1799 return; 1800 } 1801 if (sc->age_cdata.age_tx_cnt == 0) { 1802 if_printf(sc->age_ifp, 1803 "watchdog timeout (missed Tx interrupts) -- recovering\n"); 1804 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1805 age_start_locked(ifp); 1806 return; 1807 } 1808 if_printf(sc->age_ifp, "watchdog timeout\n"); 1809 ifp->if_oerrors++; 1810 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1811 age_init_locked(sc); 1812 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1813 age_start_locked(ifp); 1814 } 1815 1816 static int 1817 age_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1818 { 1819 struct age_softc *sc; 1820 struct ifreq *ifr; 1821 struct mii_data *mii; 1822 uint32_t reg; 1823 int error, mask; 1824 1825 sc = ifp->if_softc; 1826 ifr = (struct ifreq *)data; 1827 error = 0; 1828 switch (cmd) { 1829 case SIOCSIFMTU: 1830 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > AGE_JUMBO_MTU) 1831 error = EINVAL; 1832 else if (ifp->if_mtu != ifr->ifr_mtu) { 1833 AGE_LOCK(sc); 1834 ifp->if_mtu = ifr->ifr_mtu; 1835 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 1836 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1837 age_init_locked(sc); 1838 } 1839 AGE_UNLOCK(sc); 1840 } 1841 break; 1842 case SIOCSIFFLAGS: 1843 AGE_LOCK(sc); 1844 if ((ifp->if_flags & IFF_UP) != 0) { 1845 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 1846 if (((ifp->if_flags ^ sc->age_if_flags) 1847 & (IFF_PROMISC | IFF_ALLMULTI)) != 0) 1848 age_rxfilter(sc); 1849 } else { 1850 if ((sc->age_flags & AGE_FLAG_DETACH) == 0) 1851 age_init_locked(sc); 1852 } 1853 } else { 1854 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 1855 age_stop(sc); 1856 } 1857 sc->age_if_flags = ifp->if_flags; 1858 AGE_UNLOCK(sc); 1859 break; 1860 case SIOCADDMULTI: 1861 case SIOCDELMULTI: 1862 AGE_LOCK(sc); 1863 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 1864 age_rxfilter(sc); 1865 AGE_UNLOCK(sc); 1866 break; 1867 case SIOCSIFMEDIA: 1868 case SIOCGIFMEDIA: 1869 mii = device_get_softc(sc->age_miibus); 1870 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd); 1871 break; 1872 case SIOCSIFCAP: 1873 AGE_LOCK(sc); 1874 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 1875 if ((mask & IFCAP_TXCSUM) != 0 && 1876 (ifp->if_capabilities & IFCAP_TXCSUM) != 0) { 1877 ifp->if_capenable ^= IFCAP_TXCSUM; 1878 if ((ifp->if_capenable & IFCAP_TXCSUM) != 0) 1879 ifp->if_hwassist |= AGE_CSUM_FEATURES; 1880 else 1881 ifp->if_hwassist &= ~AGE_CSUM_FEATURES; 1882 } 1883 if ((mask & IFCAP_RXCSUM) != 0 && 1884 (ifp->if_capabilities & IFCAP_RXCSUM) != 0) { 1885 ifp->if_capenable ^= IFCAP_RXCSUM; 1886 reg = CSR_READ_4(sc, AGE_MAC_CFG); 1887 reg &= ~MAC_CFG_RXCSUM_ENB; 1888 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) 1889 reg |= MAC_CFG_RXCSUM_ENB; 1890 CSR_WRITE_4(sc, AGE_MAC_CFG, reg); 1891 } 1892 if ((mask & IFCAP_TSO4) != 0 && 1893 (ifp->if_capabilities & IFCAP_TSO4) != 0) { 1894 ifp->if_capenable ^= IFCAP_TSO4; 1895 if ((ifp->if_capenable & IFCAP_TSO4) != 0) 1896 ifp->if_hwassist |= CSUM_TSO; 1897 else 1898 ifp->if_hwassist &= ~CSUM_TSO; 1899 } 1900 1901 if ((mask & IFCAP_WOL_MCAST) != 0 && 1902 (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0) 1903 ifp->if_capenable ^= IFCAP_WOL_MCAST; 1904 if ((mask & IFCAP_WOL_MAGIC) != 0 && 1905 (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0) 1906 ifp->if_capenable ^= IFCAP_WOL_MAGIC; 1907 if ((mask & IFCAP_VLAN_HWCSUM) != 0 && 1908 (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0) 1909 ifp->if_capenable ^= IFCAP_VLAN_HWCSUM; 1910 if ((mask & IFCAP_VLAN_HWTSO) != 0 && 1911 (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0) 1912 ifp->if_capenable ^= IFCAP_VLAN_HWTSO; 1913 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 && 1914 (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) { 1915 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; 1916 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0) 1917 ifp->if_capenable &= ~IFCAP_VLAN_HWTSO; 1918 age_rxvlan(sc); 1919 } 1920 AGE_UNLOCK(sc); 1921 VLAN_CAPABILITIES(ifp); 1922 break; 1923 default: 1924 error = ether_ioctl(ifp, cmd, data); 1925 break; 1926 } 1927 1928 return (error); 1929 } 1930 1931 static void 1932 age_mac_config(struct age_softc *sc) 1933 { 1934 struct mii_data *mii; 1935 uint32_t reg; 1936 1937 AGE_LOCK_ASSERT(sc); 1938 1939 mii = device_get_softc(sc->age_miibus); 1940 reg = CSR_READ_4(sc, AGE_MAC_CFG); 1941 reg &= ~MAC_CFG_FULL_DUPLEX; 1942 reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC); 1943 reg &= ~MAC_CFG_SPEED_MASK; 1944 /* Reprogram MAC with resolved speed/duplex. */ 1945 switch (IFM_SUBTYPE(mii->mii_media_active)) { 1946 case IFM_10_T: 1947 case IFM_100_TX: 1948 reg |= MAC_CFG_SPEED_10_100; 1949 break; 1950 case IFM_1000_T: 1951 reg |= MAC_CFG_SPEED_1000; 1952 break; 1953 } 1954 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) { 1955 reg |= MAC_CFG_FULL_DUPLEX; 1956 #ifdef notyet 1957 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0) 1958 reg |= MAC_CFG_TX_FC; 1959 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0) 1960 reg |= MAC_CFG_RX_FC; 1961 #endif 1962 } 1963 1964 CSR_WRITE_4(sc, AGE_MAC_CFG, reg); 1965 } 1966 1967 static void 1968 age_link_task(void *arg, int pending) 1969 { 1970 struct age_softc *sc; 1971 struct mii_data *mii; 1972 struct ifnet *ifp; 1973 uint32_t reg; 1974 1975 sc = (struct age_softc *)arg; 1976 1977 AGE_LOCK(sc); 1978 mii = device_get_softc(sc->age_miibus); 1979 ifp = sc->age_ifp; 1980 if (mii == NULL || ifp == NULL || 1981 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1982 AGE_UNLOCK(sc); 1983 return; 1984 } 1985 1986 sc->age_flags &= ~AGE_FLAG_LINK; 1987 if ((mii->mii_media_status & IFM_AVALID) != 0) { 1988 switch (IFM_SUBTYPE(mii->mii_media_active)) { 1989 case IFM_10_T: 1990 case IFM_100_TX: 1991 case IFM_1000_T: 1992 sc->age_flags |= AGE_FLAG_LINK; 1993 break; 1994 default: 1995 break; 1996 } 1997 } 1998 1999 /* Stop Rx/Tx MACs. */ 2000 age_stop_rxmac(sc); 2001 age_stop_txmac(sc); 2002 2003 /* Program MACs with resolved speed/duplex/flow-control. */ 2004 if ((sc->age_flags & AGE_FLAG_LINK) != 0) { 2005 age_mac_config(sc); 2006 reg = CSR_READ_4(sc, AGE_MAC_CFG); 2007 /* Restart DMA engine and Tx/Rx MAC. */ 2008 CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) | 2009 DMA_CFG_RD_ENB | DMA_CFG_WR_ENB); 2010 reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB; 2011 CSR_WRITE_4(sc, AGE_MAC_CFG, reg); 2012 } 2013 2014 AGE_UNLOCK(sc); 2015 } 2016 2017 static void 2018 age_stats_update(struct age_softc *sc) 2019 { 2020 struct age_stats *stat; 2021 struct smb *smb; 2022 struct ifnet *ifp; 2023 2024 AGE_LOCK_ASSERT(sc); 2025 2026 stat = &sc->age_stat; 2027 2028 bus_dmamap_sync(sc->age_cdata.age_smb_block_tag, 2029 sc->age_cdata.age_smb_block_map, 2030 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2031 2032 smb = sc->age_rdata.age_smb_block; 2033 if (smb->updated == 0) 2034 return; 2035 2036 ifp = sc->age_ifp; 2037 /* Rx stats. */ 2038 stat->rx_frames += smb->rx_frames; 2039 stat->rx_bcast_frames += smb->rx_bcast_frames; 2040 stat->rx_mcast_frames += smb->rx_mcast_frames; 2041 stat->rx_pause_frames += smb->rx_pause_frames; 2042 stat->rx_control_frames += smb->rx_control_frames; 2043 stat->rx_crcerrs += smb->rx_crcerrs; 2044 stat->rx_lenerrs += smb->rx_lenerrs; 2045 stat->rx_bytes += smb->rx_bytes; 2046 stat->rx_runts += smb->rx_runts; 2047 stat->rx_fragments += smb->rx_fragments; 2048 stat->rx_pkts_64 += smb->rx_pkts_64; 2049 stat->rx_pkts_65_127 += smb->rx_pkts_65_127; 2050 stat->rx_pkts_128_255 += smb->rx_pkts_128_255; 2051 stat->rx_pkts_256_511 += smb->rx_pkts_256_511; 2052 stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023; 2053 stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518; 2054 stat->rx_pkts_1519_max += smb->rx_pkts_1519_max; 2055 stat->rx_pkts_truncated += smb->rx_pkts_truncated; 2056 stat->rx_fifo_oflows += smb->rx_fifo_oflows; 2057 stat->rx_desc_oflows += smb->rx_desc_oflows; 2058 stat->rx_alignerrs += smb->rx_alignerrs; 2059 stat->rx_bcast_bytes += smb->rx_bcast_bytes; 2060 stat->rx_mcast_bytes += smb->rx_mcast_bytes; 2061 stat->rx_pkts_filtered += smb->rx_pkts_filtered; 2062 2063 /* Tx stats. */ 2064 stat->tx_frames += smb->tx_frames; 2065 stat->tx_bcast_frames += smb->tx_bcast_frames; 2066 stat->tx_mcast_frames += smb->tx_mcast_frames; 2067 stat->tx_pause_frames += smb->tx_pause_frames; 2068 stat->tx_excess_defer += smb->tx_excess_defer; 2069 stat->tx_control_frames += smb->tx_control_frames; 2070 stat->tx_deferred += smb->tx_deferred; 2071 stat->tx_bytes += smb->tx_bytes; 2072 stat->tx_pkts_64 += smb->tx_pkts_64; 2073 stat->tx_pkts_65_127 += smb->tx_pkts_65_127; 2074 stat->tx_pkts_128_255 += smb->tx_pkts_128_255; 2075 stat->tx_pkts_256_511 += smb->tx_pkts_256_511; 2076 stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023; 2077 stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518; 2078 stat->tx_pkts_1519_max += smb->tx_pkts_1519_max; 2079 stat->tx_single_colls += smb->tx_single_colls; 2080 stat->tx_multi_colls += smb->tx_multi_colls; 2081 stat->tx_late_colls += smb->tx_late_colls; 2082 stat->tx_excess_colls += smb->tx_excess_colls; 2083 stat->tx_underrun += smb->tx_underrun; 2084 stat->tx_desc_underrun += smb->tx_desc_underrun; 2085 stat->tx_lenerrs += smb->tx_lenerrs; 2086 stat->tx_pkts_truncated += smb->tx_pkts_truncated; 2087 stat->tx_bcast_bytes += smb->tx_bcast_bytes; 2088 stat->tx_mcast_bytes += smb->tx_mcast_bytes; 2089 2090 /* Update counters in ifnet. */ 2091 ifp->if_opackets += smb->tx_frames; 2092 2093 ifp->if_collisions += smb->tx_single_colls + 2094 smb->tx_multi_colls + smb->tx_late_colls + 2095 smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT; 2096 2097 ifp->if_oerrors += smb->tx_excess_colls + 2098 smb->tx_late_colls + smb->tx_underrun + 2099 smb->tx_pkts_truncated; 2100 2101 ifp->if_ipackets += smb->rx_frames; 2102 2103 ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs + 2104 smb->rx_runts + smb->rx_pkts_truncated + 2105 smb->rx_fifo_oflows + smb->rx_desc_oflows + 2106 smb->rx_alignerrs; 2107 2108 /* Update done, clear. */ 2109 smb->updated = 0; 2110 2111 bus_dmamap_sync(sc->age_cdata.age_smb_block_tag, 2112 sc->age_cdata.age_smb_block_map, 2113 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2114 } 2115 2116 static int 2117 age_intr(void *arg) 2118 { 2119 struct age_softc *sc; 2120 uint32_t status; 2121 2122 sc = (struct age_softc *)arg; 2123 2124 status = CSR_READ_4(sc, AGE_INTR_STATUS); 2125 if (status == 0 || (status & AGE_INTRS) == 0) 2126 return (FILTER_STRAY); 2127 /* Disable interrupts. */ 2128 CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT); 2129 taskqueue_enqueue(sc->age_tq, &sc->age_int_task); 2130 2131 return (FILTER_HANDLED); 2132 } 2133 2134 static void 2135 age_int_task(void *arg, int pending) 2136 { 2137 struct age_softc *sc; 2138 struct ifnet *ifp; 2139 struct cmb *cmb; 2140 uint32_t status; 2141 2142 sc = (struct age_softc *)arg; 2143 2144 AGE_LOCK(sc); 2145 2146 bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag, 2147 sc->age_cdata.age_cmb_block_map, 2148 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2149 cmb = sc->age_rdata.age_cmb_block; 2150 status = le32toh(cmb->intr_status); 2151 if (sc->age_morework != 0) 2152 status |= INTR_CMB_RX; 2153 if ((status & AGE_INTRS) == 0) 2154 goto done; 2155 2156 sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >> 2157 TPD_CONS_SHIFT; 2158 sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >> 2159 RRD_PROD_SHIFT; 2160 /* Let hardware know CMB was served. */ 2161 cmb->intr_status = 0; 2162 bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag, 2163 sc->age_cdata.age_cmb_block_map, 2164 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2165 2166 #if 0 2167 printf("INTR: 0x%08x\n", status); 2168 status &= ~INTR_DIS_DMA; 2169 CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT); 2170 #endif 2171 ifp = sc->age_ifp; 2172 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 2173 if ((status & INTR_CMB_RX) != 0) 2174 sc->age_morework = age_rxintr(sc, sc->age_rr_prod, 2175 sc->age_process_limit); 2176 if ((status & INTR_CMB_TX) != 0) 2177 age_txintr(sc, sc->age_tpd_cons); 2178 if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) { 2179 if ((status & INTR_DMA_RD_TO_RST) != 0) 2180 device_printf(sc->age_dev, 2181 "DMA read error! -- resetting\n"); 2182 if ((status & INTR_DMA_WR_TO_RST) != 0) 2183 device_printf(sc->age_dev, 2184 "DMA write error! -- resetting\n"); 2185 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2186 age_init_locked(sc); 2187 } 2188 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 2189 age_start_locked(ifp); 2190 if ((status & INTR_SMB) != 0) 2191 age_stats_update(sc); 2192 } 2193 2194 /* Check whether CMB was updated while serving Tx/Rx/SMB handler. */ 2195 bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag, 2196 sc->age_cdata.age_cmb_block_map, 2197 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2198 status = le32toh(cmb->intr_status); 2199 if (sc->age_morework != 0 || (status & AGE_INTRS) != 0) { 2200 taskqueue_enqueue(sc->age_tq, &sc->age_int_task); 2201 AGE_UNLOCK(sc); 2202 return; 2203 } 2204 2205 done: 2206 /* Re-enable interrupts. */ 2207 CSR_WRITE_4(sc, AGE_INTR_STATUS, 0); 2208 AGE_UNLOCK(sc); 2209 } 2210 2211 static void 2212 age_txintr(struct age_softc *sc, int tpd_cons) 2213 { 2214 struct ifnet *ifp; 2215 struct age_txdesc *txd; 2216 int cons, prog; 2217 2218 AGE_LOCK_ASSERT(sc); 2219 2220 ifp = sc->age_ifp; 2221 2222 bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag, 2223 sc->age_cdata.age_tx_ring_map, 2224 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2225 2226 /* 2227 * Go through our Tx list and free mbufs for those 2228 * frames which have been transmitted. 2229 */ 2230 cons = sc->age_cdata.age_tx_cons; 2231 for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) { 2232 if (sc->age_cdata.age_tx_cnt <= 0) 2233 break; 2234 prog++; 2235 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2236 sc->age_cdata.age_tx_cnt--; 2237 txd = &sc->age_cdata.age_txdesc[cons]; 2238 /* 2239 * Clear Tx descriptors, it's not required but would 2240 * help debugging in case of Tx issues. 2241 */ 2242 txd->tx_desc->addr = 0; 2243 txd->tx_desc->len = 0; 2244 txd->tx_desc->flags = 0; 2245 2246 if (txd->tx_m == NULL) 2247 continue; 2248 /* Reclaim transmitted mbufs. */ 2249 bus_dmamap_sync(sc->age_cdata.age_tx_tag, txd->tx_dmamap, 2250 BUS_DMASYNC_POSTWRITE); 2251 bus_dmamap_unload(sc->age_cdata.age_tx_tag, txd->tx_dmamap); 2252 m_freem(txd->tx_m); 2253 txd->tx_m = NULL; 2254 } 2255 2256 if (prog > 0) { 2257 sc->age_cdata.age_tx_cons = cons; 2258 2259 /* 2260 * Unarm watchdog timer only when there are no pending 2261 * Tx descriptors in queue. 2262 */ 2263 if (sc->age_cdata.age_tx_cnt == 0) 2264 sc->age_watchdog_timer = 0; 2265 bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag, 2266 sc->age_cdata.age_tx_ring_map, 2267 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2268 } 2269 } 2270 2271 /* Receive a frame. */ 2272 static void 2273 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd) 2274 { 2275 struct age_rxdesc *rxd; 2276 struct rx_desc *desc; 2277 struct ifnet *ifp; 2278 struct mbuf *mp, *m; 2279 uint32_t status, index, vtag; 2280 int count, nsegs, pktlen; 2281 int rx_cons; 2282 2283 AGE_LOCK_ASSERT(sc); 2284 2285 ifp = sc->age_ifp; 2286 status = le32toh(rxrd->flags); 2287 index = le32toh(rxrd->index); 2288 rx_cons = AGE_RX_CONS(index); 2289 nsegs = AGE_RX_NSEGS(index); 2290 2291 sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len)); 2292 if ((status & AGE_RRD_ERROR) != 0 && 2293 (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE | 2294 AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) { 2295 /* 2296 * We want to pass the following frames to upper 2297 * layer regardless of error status of Rx return 2298 * ring. 2299 * 2300 * o IP/TCP/UDP checksum is bad. 2301 * o frame length and protocol specific length 2302 * does not match. 2303 */ 2304 sc->age_cdata.age_rx_cons += nsegs; 2305 sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT; 2306 return; 2307 } 2308 2309 pktlen = 0; 2310 for (count = 0; count < nsegs; count++, 2311 AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) { 2312 rxd = &sc->age_cdata.age_rxdesc[rx_cons]; 2313 mp = rxd->rx_m; 2314 desc = rxd->rx_desc; 2315 /* Add a new receive buffer to the ring. */ 2316 if (age_newbuf(sc, rxd) != 0) { 2317 ifp->if_iqdrops++; 2318 /* Reuse Rx buffers. */ 2319 if (sc->age_cdata.age_rxhead != NULL) { 2320 m_freem(sc->age_cdata.age_rxhead); 2321 AGE_RXCHAIN_RESET(sc); 2322 } 2323 break; 2324 } 2325 2326 /* The length of the first mbuf is computed last. */ 2327 if (count != 0) { 2328 mp->m_len = AGE_RX_BYTES(le32toh(desc->len)); 2329 pktlen += mp->m_len; 2330 } 2331 2332 /* Chain received mbufs. */ 2333 if (sc->age_cdata.age_rxhead == NULL) { 2334 sc->age_cdata.age_rxhead = mp; 2335 sc->age_cdata.age_rxtail = mp; 2336 } else { 2337 mp->m_flags &= ~M_PKTHDR; 2338 sc->age_cdata.age_rxprev_tail = 2339 sc->age_cdata.age_rxtail; 2340 sc->age_cdata.age_rxtail->m_next = mp; 2341 sc->age_cdata.age_rxtail = mp; 2342 } 2343 2344 if (count == nsegs - 1) { 2345 /* 2346 * It seems that L1 controller has no way 2347 * to tell hardware to strip CRC bytes. 2348 */ 2349 sc->age_cdata.age_rxlen -= ETHER_CRC_LEN; 2350 if (nsegs > 1) { 2351 /* Remove the CRC bytes in chained mbufs. */ 2352 pktlen -= ETHER_CRC_LEN; 2353 if (mp->m_len <= ETHER_CRC_LEN) { 2354 sc->age_cdata.age_rxtail = 2355 sc->age_cdata.age_rxprev_tail; 2356 sc->age_cdata.age_rxtail->m_len -= 2357 (ETHER_CRC_LEN - mp->m_len); 2358 sc->age_cdata.age_rxtail->m_next = NULL; 2359 m_freem(mp); 2360 } else { 2361 mp->m_len -= ETHER_CRC_LEN; 2362 } 2363 } 2364 2365 m = sc->age_cdata.age_rxhead; 2366 m->m_flags |= M_PKTHDR; 2367 m->m_pkthdr.rcvif = ifp; 2368 m->m_pkthdr.len = sc->age_cdata.age_rxlen; 2369 /* Set the first mbuf length. */ 2370 m->m_len = sc->age_cdata.age_rxlen - pktlen; 2371 2372 /* 2373 * Set checksum information. 2374 * It seems that L1 controller can compute partial 2375 * checksum. The partial checksum value can be used 2376 * to accelerate checksum computation for fragmented 2377 * TCP/UDP packets. Upper network stack already 2378 * takes advantage of the partial checksum value in 2379 * IP reassembly stage. But I'm not sure the 2380 * correctness of the partial hardware checksum 2381 * assistance due to lack of data sheet. If it is 2382 * proven to work on L1 I'll enable it. 2383 */ 2384 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 && 2385 (status & AGE_RRD_IPV4) != 0) { 2386 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 2387 if ((status & AGE_RRD_IPCSUM_NOK) == 0) 2388 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 2389 if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) && 2390 (status & AGE_RRD_TCP_UDPCSUM_NOK) == 0) { 2391 m->m_pkthdr.csum_flags |= 2392 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 2393 m->m_pkthdr.csum_data = 0xffff; 2394 } 2395 /* 2396 * Don't mark bad checksum for TCP/UDP frames 2397 * as fragmented frames may always have set 2398 * bad checksummed bit of descriptor status. 2399 */ 2400 } 2401 2402 /* Check for VLAN tagged frames. */ 2403 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 && 2404 (status & AGE_RRD_VLAN) != 0) { 2405 vtag = AGE_RX_VLAN(le32toh(rxrd->vtags)); 2406 m->m_pkthdr.ether_vtag = AGE_RX_VLAN_TAG(vtag); 2407 m->m_flags |= M_VLANTAG; 2408 } 2409 2410 /* Pass it on. */ 2411 AGE_UNLOCK(sc); 2412 (*ifp->if_input)(ifp, m); 2413 AGE_LOCK(sc); 2414 2415 /* Reset mbuf chains. */ 2416 AGE_RXCHAIN_RESET(sc); 2417 } 2418 } 2419 2420 if (count != nsegs) { 2421 sc->age_cdata.age_rx_cons += nsegs; 2422 sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT; 2423 } else 2424 sc->age_cdata.age_rx_cons = rx_cons; 2425 } 2426 2427 static int 2428 age_rxintr(struct age_softc *sc, int rr_prod, int count) 2429 { 2430 struct rx_rdesc *rxrd; 2431 int rr_cons, nsegs, pktlen, prog; 2432 2433 AGE_LOCK_ASSERT(sc); 2434 2435 rr_cons = sc->age_cdata.age_rr_cons; 2436 if (rr_cons == rr_prod) 2437 return (0); 2438 2439 bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag, 2440 sc->age_cdata.age_rr_ring_map, 2441 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2442 bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag, 2443 sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_POSTWRITE); 2444 2445 for (prog = 0; rr_cons != rr_prod; prog++) { 2446 if (count <= 0) 2447 break; 2448 rxrd = &sc->age_rdata.age_rr_ring[rr_cons]; 2449 nsegs = AGE_RX_NSEGS(le32toh(rxrd->index)); 2450 if (nsegs == 0) 2451 break; 2452 /* 2453 * Check number of segments against received bytes. 2454 * Non-matching value would indicate that hardware 2455 * is still trying to update Rx return descriptors. 2456 * I'm not sure whether this check is really needed. 2457 */ 2458 pktlen = AGE_RX_BYTES(le32toh(rxrd->len)); 2459 if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) / 2460 (MCLBYTES - ETHER_ALIGN))) 2461 break; 2462 2463 prog++; 2464 /* Received a frame. */ 2465 age_rxeof(sc, rxrd); 2466 /* Clear return ring. */ 2467 rxrd->index = 0; 2468 AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT); 2469 } 2470 2471 if (prog > 0) { 2472 /* Update the consumer index. */ 2473 sc->age_cdata.age_rr_cons = rr_cons; 2474 2475 bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag, 2476 sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREWRITE); 2477 /* Sync descriptors. */ 2478 bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag, 2479 sc->age_cdata.age_rr_ring_map, 2480 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2481 2482 /* Notify hardware availability of new Rx buffers. */ 2483 AGE_COMMIT_MBOX(sc); 2484 } 2485 2486 return (count > 0 ? 0 : EAGAIN); 2487 } 2488 2489 static void 2490 age_tick(void *arg) 2491 { 2492 struct age_softc *sc; 2493 struct mii_data *mii; 2494 2495 sc = (struct age_softc *)arg; 2496 2497 AGE_LOCK_ASSERT(sc); 2498 2499 mii = device_get_softc(sc->age_miibus); 2500 mii_tick(mii); 2501 age_watchdog(sc); 2502 callout_reset(&sc->age_tick_ch, hz, age_tick, sc); 2503 } 2504 2505 static void 2506 age_reset(struct age_softc *sc) 2507 { 2508 uint32_t reg; 2509 int i; 2510 2511 CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET); 2512 CSR_READ_4(sc, AGE_MASTER_CFG); 2513 DELAY(1000); 2514 for (i = AGE_RESET_TIMEOUT; i > 0; i--) { 2515 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0) 2516 break; 2517 DELAY(10); 2518 } 2519 2520 if (i == 0) 2521 device_printf(sc->age_dev, "reset timeout(0x%08x)!\n", reg); 2522 /* Initialize PCIe module. From Linux. */ 2523 CSR_WRITE_4(sc, 0x12FC, 0x6500); 2524 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000); 2525 } 2526 2527 static void 2528 age_init(void *xsc) 2529 { 2530 struct age_softc *sc; 2531 2532 sc = (struct age_softc *)xsc; 2533 AGE_LOCK(sc); 2534 age_init_locked(sc); 2535 AGE_UNLOCK(sc); 2536 } 2537 2538 static void 2539 age_init_locked(struct age_softc *sc) 2540 { 2541 struct ifnet *ifp; 2542 struct mii_data *mii; 2543 uint8_t eaddr[ETHER_ADDR_LEN]; 2544 bus_addr_t paddr; 2545 uint32_t reg, fsize; 2546 uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo; 2547 int error; 2548 2549 AGE_LOCK_ASSERT(sc); 2550 2551 ifp = sc->age_ifp; 2552 mii = device_get_softc(sc->age_miibus); 2553 2554 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 2555 return; 2556 2557 /* 2558 * Cancel any pending I/O. 2559 */ 2560 age_stop(sc); 2561 2562 /* 2563 * Reset the chip to a known state. 2564 */ 2565 age_reset(sc); 2566 2567 /* Initialize descriptors. */ 2568 error = age_init_rx_ring(sc); 2569 if (error != 0) { 2570 device_printf(sc->age_dev, "no memory for Rx buffers.\n"); 2571 age_stop(sc); 2572 return; 2573 } 2574 age_init_rr_ring(sc); 2575 age_init_tx_ring(sc); 2576 age_init_cmb_block(sc); 2577 age_init_smb_block(sc); 2578 2579 /* Reprogram the station address. */ 2580 bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN); 2581 CSR_WRITE_4(sc, AGE_PAR0, 2582 eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]); 2583 CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]); 2584 2585 /* Set descriptor base addresses. */ 2586 paddr = sc->age_rdata.age_tx_ring_paddr; 2587 CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr)); 2588 paddr = sc->age_rdata.age_rx_ring_paddr; 2589 CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr)); 2590 paddr = sc->age_rdata.age_rr_ring_paddr; 2591 CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr)); 2592 paddr = sc->age_rdata.age_tx_ring_paddr; 2593 CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr)); 2594 paddr = sc->age_rdata.age_cmb_block_paddr; 2595 CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr)); 2596 paddr = sc->age_rdata.age_smb_block_paddr; 2597 CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr)); 2598 /* Set Rx/Rx return descriptor counter. */ 2599 CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT, 2600 ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) & 2601 DESC_RRD_CNT_MASK) | 2602 ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK)); 2603 /* Set Tx descriptor counter. */ 2604 CSR_WRITE_4(sc, AGE_DESC_TPD_CNT, 2605 (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK); 2606 2607 /* Tell hardware that we're ready to load descriptors. */ 2608 CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD); 2609 2610 /* 2611 * Initialize mailbox register. 2612 * Updated producer/consumer index information is exchanged 2613 * through this mailbox register. However Tx producer and 2614 * Rx return consumer/Rx producer are all shared such that 2615 * it's hard to separate code path between Tx and Rx without 2616 * locking. If L1 hardware have a separate mail box register 2617 * for Tx and Rx consumer/producer management we could have 2618 * indepent Tx/Rx handler which in turn Rx handler could have 2619 * been run without any locking. 2620 */ 2621 AGE_COMMIT_MBOX(sc); 2622 2623 /* Configure IPG/IFG parameters. */ 2624 CSR_WRITE_4(sc, AGE_IPG_IFG_CFG, 2625 ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) | 2626 ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) | 2627 ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) | 2628 ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK)); 2629 2630 /* Set parameters for half-duplex media. */ 2631 CSR_WRITE_4(sc, AGE_HDPX_CFG, 2632 ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) & 2633 HDPX_CFG_LCOL_MASK) | 2634 ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) & 2635 HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN | 2636 ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) & 2637 HDPX_CFG_ABEBT_MASK) | 2638 ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) & 2639 HDPX_CFG_JAMIPG_MASK)); 2640 2641 /* Configure interrupt moderation timer. */ 2642 CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod)); 2643 reg = CSR_READ_4(sc, AGE_MASTER_CFG); 2644 reg &= ~MASTER_MTIMER_ENB; 2645 if (AGE_USECS(sc->age_int_mod) == 0) 2646 reg &= ~MASTER_ITIMER_ENB; 2647 else 2648 reg |= MASTER_ITIMER_ENB; 2649 CSR_WRITE_4(sc, AGE_MASTER_CFG, reg); 2650 if (bootverbose) 2651 device_printf(sc->age_dev, "interrupt moderation is %d us.\n", 2652 sc->age_int_mod); 2653 CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000)); 2654 2655 /* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */ 2656 if (ifp->if_mtu < ETHERMTU) 2657 sc->age_max_frame_size = ETHERMTU; 2658 else 2659 sc->age_max_frame_size = ifp->if_mtu; 2660 sc->age_max_frame_size += ETHER_HDR_LEN + 2661 sizeof(struct ether_vlan_header) + ETHER_CRC_LEN; 2662 CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size); 2663 /* Configure jumbo frame. */ 2664 fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t)); 2665 CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG, 2666 (((fsize / sizeof(uint64_t)) << 2667 RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) | 2668 ((RXQ_JUMBO_CFG_LKAH_DEFAULT << 2669 RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) | 2670 ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) & 2671 RXQ_JUMBO_CFG_RRD_TIMER_MASK)); 2672 2673 /* Configure flow-control parameters. From Linux. */ 2674 if ((sc->age_flags & AGE_FLAG_PCIE) != 0) { 2675 /* 2676 * Magic workaround for old-L1. 2677 * Don't know which hw revision requires this magic. 2678 */ 2679 CSR_WRITE_4(sc, 0x12FC, 0x6500); 2680 /* 2681 * Another magic workaround for flow-control mode 2682 * change. From Linux. 2683 */ 2684 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000); 2685 } 2686 /* 2687 * TODO 2688 * Should understand pause parameter relationships between FIFO 2689 * size and number of Rx descriptors and Rx return descriptors. 2690 * 2691 * Magic parameters came from Linux. 2692 */ 2693 switch (sc->age_chip_rev) { 2694 case 0x8001: 2695 case 0x9001: 2696 case 0x9002: 2697 case 0x9003: 2698 rxf_hi = AGE_RX_RING_CNT / 16; 2699 rxf_lo = (AGE_RX_RING_CNT * 7) / 8; 2700 rrd_hi = (AGE_RR_RING_CNT * 7) / 8; 2701 rrd_lo = AGE_RR_RING_CNT / 16; 2702 break; 2703 default: 2704 reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN); 2705 rxf_lo = reg / 16; 2706 if (rxf_lo < 192) 2707 rxf_lo = 192; 2708 rxf_hi = (reg * 7) / 8; 2709 if (rxf_hi < rxf_lo) 2710 rxf_hi = rxf_lo + 16; 2711 reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN); 2712 rrd_lo = reg / 8; 2713 rrd_hi = (reg * 7) / 8; 2714 if (rrd_lo < 2) 2715 rrd_lo = 2; 2716 if (rrd_hi < rrd_lo) 2717 rrd_hi = rrd_lo + 3; 2718 break; 2719 } 2720 CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH, 2721 ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) & 2722 RXQ_FIFO_PAUSE_THRESH_LO_MASK) | 2723 ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) & 2724 RXQ_FIFO_PAUSE_THRESH_HI_MASK)); 2725 CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH, 2726 ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) & 2727 RXQ_RRD_PAUSE_THRESH_LO_MASK) | 2728 ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) & 2729 RXQ_RRD_PAUSE_THRESH_HI_MASK)); 2730 2731 /* Configure RxQ. */ 2732 CSR_WRITE_4(sc, AGE_RXQ_CFG, 2733 ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) & 2734 RXQ_CFG_RD_BURST_MASK) | 2735 ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT << 2736 RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) | 2737 ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT << 2738 RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) | 2739 RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB); 2740 2741 /* Configure TxQ. */ 2742 CSR_WRITE_4(sc, AGE_TXQ_CFG, 2743 ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) & 2744 TXQ_CFG_TPD_BURST_MASK) | 2745 ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) & 2746 TXQ_CFG_TX_FIFO_BURST_MASK) | 2747 ((TXQ_CFG_TPD_FETCH_DEFAULT << 2748 TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) | 2749 TXQ_CFG_ENB); 2750 2751 CSR_WRITE_4(sc, AGE_TX_JUMBO_TPD_TH_IPG, 2752 (((fsize / sizeof(uint64_t) << TX_JUMBO_TPD_TH_SHIFT)) & 2753 TX_JUMBO_TPD_TH_MASK) | 2754 ((TX_JUMBO_TPD_IPG_DEFAULT << TX_JUMBO_TPD_IPG_SHIFT) & 2755 TX_JUMBO_TPD_IPG_MASK)); 2756 /* Configure DMA parameters. */ 2757 CSR_WRITE_4(sc, AGE_DMA_CFG, 2758 DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 | 2759 sc->age_dma_rd_burst | DMA_CFG_RD_ENB | 2760 sc->age_dma_wr_burst | DMA_CFG_WR_ENB); 2761 2762 /* Configure CMB DMA write threshold. */ 2763 CSR_WRITE_4(sc, AGE_CMB_WR_THRESH, 2764 ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) & 2765 CMB_WR_THRESH_RRD_MASK) | 2766 ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) & 2767 CMB_WR_THRESH_TPD_MASK)); 2768 2769 /* Set CMB/SMB timer and enable them. */ 2770 CSR_WRITE_4(sc, AGE_CMB_WR_TIMER, 2771 ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) | 2772 ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK)); 2773 /* Request SMB updates for every seconds. */ 2774 CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000)); 2775 CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB); 2776 2777 /* 2778 * Disable all WOL bits as WOL can interfere normal Rx 2779 * operation. 2780 */ 2781 CSR_WRITE_4(sc, AGE_WOL_CFG, 0); 2782 2783 /* 2784 * Configure Tx/Rx MACs. 2785 * - Auto-padding for short frames. 2786 * - Enable CRC generation. 2787 * Start with full-duplex/1000Mbps media. Actual reconfiguration 2788 * of MAC is followed after link establishment. 2789 */ 2790 CSR_WRITE_4(sc, AGE_MAC_CFG, 2791 MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | 2792 MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 | 2793 ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) & 2794 MAC_CFG_PREAMBLE_MASK)); 2795 /* Set up the receive filter. */ 2796 age_rxfilter(sc); 2797 age_rxvlan(sc); 2798 2799 reg = CSR_READ_4(sc, AGE_MAC_CFG); 2800 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) 2801 reg |= MAC_CFG_RXCSUM_ENB; 2802 2803 /* Ack all pending interrupts and clear it. */ 2804 CSR_WRITE_4(sc, AGE_INTR_STATUS, 0); 2805 CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS); 2806 2807 /* Finally enable Tx/Rx MAC. */ 2808 CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB); 2809 2810 sc->age_flags &= ~AGE_FLAG_LINK; 2811 /* Switch to the current media. */ 2812 mii_mediachg(mii); 2813 2814 callout_reset(&sc->age_tick_ch, hz, age_tick, sc); 2815 2816 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2817 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2818 } 2819 2820 static void 2821 age_stop(struct age_softc *sc) 2822 { 2823 struct ifnet *ifp; 2824 struct age_txdesc *txd; 2825 struct age_rxdesc *rxd; 2826 uint32_t reg; 2827 int i; 2828 2829 AGE_LOCK_ASSERT(sc); 2830 /* 2831 * Mark the interface down and cancel the watchdog timer. 2832 */ 2833 ifp = sc->age_ifp; 2834 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 2835 sc->age_flags &= ~AGE_FLAG_LINK; 2836 callout_stop(&sc->age_tick_ch); 2837 sc->age_watchdog_timer = 0; 2838 2839 /* 2840 * Disable interrupts. 2841 */ 2842 CSR_WRITE_4(sc, AGE_INTR_MASK, 0); 2843 CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF); 2844 /* Stop CMB/SMB updates. */ 2845 CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0); 2846 /* Stop Rx/Tx MAC. */ 2847 age_stop_rxmac(sc); 2848 age_stop_txmac(sc); 2849 /* Stop DMA. */ 2850 CSR_WRITE_4(sc, AGE_DMA_CFG, 2851 CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB)); 2852 /* Stop TxQ/RxQ. */ 2853 CSR_WRITE_4(sc, AGE_TXQ_CFG, 2854 CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB); 2855 CSR_WRITE_4(sc, AGE_RXQ_CFG, 2856 CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB); 2857 for (i = AGE_RESET_TIMEOUT; i > 0; i--) { 2858 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0) 2859 break; 2860 DELAY(10); 2861 } 2862 if (i == 0) 2863 device_printf(sc->age_dev, 2864 "stopping Rx/Tx MACs timed out(0x%08x)!\n", reg); 2865 2866 /* Reclaim Rx buffers that have been processed. */ 2867 if (sc->age_cdata.age_rxhead != NULL) 2868 m_freem(sc->age_cdata.age_rxhead); 2869 AGE_RXCHAIN_RESET(sc); 2870 /* 2871 * Free RX and TX mbufs still in the queues. 2872 */ 2873 for (i = 0; i < AGE_RX_RING_CNT; i++) { 2874 rxd = &sc->age_cdata.age_rxdesc[i]; 2875 if (rxd->rx_m != NULL) { 2876 bus_dmamap_sync(sc->age_cdata.age_rx_tag, 2877 rxd->rx_dmamap, BUS_DMASYNC_POSTREAD); 2878 bus_dmamap_unload(sc->age_cdata.age_rx_tag, 2879 rxd->rx_dmamap); 2880 m_freem(rxd->rx_m); 2881 rxd->rx_m = NULL; 2882 } 2883 } 2884 for (i = 0; i < AGE_TX_RING_CNT; i++) { 2885 txd = &sc->age_cdata.age_txdesc[i]; 2886 if (txd->tx_m != NULL) { 2887 bus_dmamap_sync(sc->age_cdata.age_tx_tag, 2888 txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); 2889 bus_dmamap_unload(sc->age_cdata.age_tx_tag, 2890 txd->tx_dmamap); 2891 m_freem(txd->tx_m); 2892 txd->tx_m = NULL; 2893 } 2894 } 2895 } 2896 2897 static void 2898 age_stop_txmac(struct age_softc *sc) 2899 { 2900 uint32_t reg; 2901 int i; 2902 2903 AGE_LOCK_ASSERT(sc); 2904 2905 reg = CSR_READ_4(sc, AGE_MAC_CFG); 2906 if ((reg & MAC_CFG_TX_ENB) != 0) { 2907 reg &= ~MAC_CFG_TX_ENB; 2908 CSR_WRITE_4(sc, AGE_MAC_CFG, reg); 2909 } 2910 /* Stop Tx DMA engine. */ 2911 reg = CSR_READ_4(sc, AGE_DMA_CFG); 2912 if ((reg & DMA_CFG_RD_ENB) != 0) { 2913 reg &= ~DMA_CFG_RD_ENB; 2914 CSR_WRITE_4(sc, AGE_DMA_CFG, reg); 2915 } 2916 for (i = AGE_RESET_TIMEOUT; i > 0; i--) { 2917 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) & 2918 (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0) 2919 break; 2920 DELAY(10); 2921 } 2922 if (i == 0) 2923 device_printf(sc->age_dev, "stopping TxMAC timeout!\n"); 2924 } 2925 2926 static void 2927 age_stop_rxmac(struct age_softc *sc) 2928 { 2929 uint32_t reg; 2930 int i; 2931 2932 AGE_LOCK_ASSERT(sc); 2933 2934 reg = CSR_READ_4(sc, AGE_MAC_CFG); 2935 if ((reg & MAC_CFG_RX_ENB) != 0) { 2936 reg &= ~MAC_CFG_RX_ENB; 2937 CSR_WRITE_4(sc, AGE_MAC_CFG, reg); 2938 } 2939 /* Stop Rx DMA engine. */ 2940 reg = CSR_READ_4(sc, AGE_DMA_CFG); 2941 if ((reg & DMA_CFG_WR_ENB) != 0) { 2942 reg &= ~DMA_CFG_WR_ENB; 2943 CSR_WRITE_4(sc, AGE_DMA_CFG, reg); 2944 } 2945 for (i = AGE_RESET_TIMEOUT; i > 0; i--) { 2946 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) & 2947 (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0) 2948 break; 2949 DELAY(10); 2950 } 2951 if (i == 0) 2952 device_printf(sc->age_dev, "stopping RxMAC timeout!\n"); 2953 } 2954 2955 static void 2956 age_init_tx_ring(struct age_softc *sc) 2957 { 2958 struct age_ring_data *rd; 2959 struct age_txdesc *txd; 2960 int i; 2961 2962 AGE_LOCK_ASSERT(sc); 2963 2964 sc->age_cdata.age_tx_prod = 0; 2965 sc->age_cdata.age_tx_cons = 0; 2966 sc->age_cdata.age_tx_cnt = 0; 2967 2968 rd = &sc->age_rdata; 2969 bzero(rd->age_tx_ring, AGE_TX_RING_SZ); 2970 for (i = 0; i < AGE_TX_RING_CNT; i++) { 2971 txd = &sc->age_cdata.age_txdesc[i]; 2972 txd->tx_desc = &rd->age_tx_ring[i]; 2973 txd->tx_m = NULL; 2974 } 2975 2976 bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag, 2977 sc->age_cdata.age_tx_ring_map, 2978 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2979 } 2980 2981 static int 2982 age_init_rx_ring(struct age_softc *sc) 2983 { 2984 struct age_ring_data *rd; 2985 struct age_rxdesc *rxd; 2986 int i; 2987 2988 AGE_LOCK_ASSERT(sc); 2989 2990 sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1; 2991 sc->age_morework = 0; 2992 rd = &sc->age_rdata; 2993 bzero(rd->age_rx_ring, AGE_RX_RING_SZ); 2994 for (i = 0; i < AGE_RX_RING_CNT; i++) { 2995 rxd = &sc->age_cdata.age_rxdesc[i]; 2996 rxd->rx_m = NULL; 2997 rxd->rx_desc = &rd->age_rx_ring[i]; 2998 if (age_newbuf(sc, rxd) != 0) 2999 return (ENOBUFS); 3000 } 3001 3002 bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag, 3003 sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREWRITE); 3004 3005 return (0); 3006 } 3007 3008 static void 3009 age_init_rr_ring(struct age_softc *sc) 3010 { 3011 struct age_ring_data *rd; 3012 3013 AGE_LOCK_ASSERT(sc); 3014 3015 sc->age_cdata.age_rr_cons = 0; 3016 AGE_RXCHAIN_RESET(sc); 3017 3018 rd = &sc->age_rdata; 3019 bzero(rd->age_rr_ring, AGE_RR_RING_SZ); 3020 bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag, 3021 sc->age_cdata.age_rr_ring_map, 3022 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 3023 } 3024 3025 static void 3026 age_init_cmb_block(struct age_softc *sc) 3027 { 3028 struct age_ring_data *rd; 3029 3030 AGE_LOCK_ASSERT(sc); 3031 3032 rd = &sc->age_rdata; 3033 bzero(rd->age_cmb_block, AGE_CMB_BLOCK_SZ); 3034 bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag, 3035 sc->age_cdata.age_cmb_block_map, 3036 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 3037 } 3038 3039 static void 3040 age_init_smb_block(struct age_softc *sc) 3041 { 3042 struct age_ring_data *rd; 3043 3044 AGE_LOCK_ASSERT(sc); 3045 3046 rd = &sc->age_rdata; 3047 bzero(rd->age_smb_block, AGE_SMB_BLOCK_SZ); 3048 bus_dmamap_sync(sc->age_cdata.age_smb_block_tag, 3049 sc->age_cdata.age_smb_block_map, 3050 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 3051 } 3052 3053 static int 3054 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd) 3055 { 3056 struct rx_desc *desc; 3057 struct mbuf *m; 3058 bus_dma_segment_t segs[1]; 3059 bus_dmamap_t map; 3060 int nsegs; 3061 3062 AGE_LOCK_ASSERT(sc); 3063 3064 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 3065 if (m == NULL) 3066 return (ENOBUFS); 3067 m->m_len = m->m_pkthdr.len = MCLBYTES; 3068 m_adj(m, ETHER_ALIGN); 3069 3070 if (bus_dmamap_load_mbuf_sg(sc->age_cdata.age_rx_tag, 3071 sc->age_cdata.age_rx_sparemap, m, segs, &nsegs, 0) != 0) { 3072 m_freem(m); 3073 return (ENOBUFS); 3074 } 3075 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); 3076 3077 if (rxd->rx_m != NULL) { 3078 bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap, 3079 BUS_DMASYNC_POSTREAD); 3080 bus_dmamap_unload(sc->age_cdata.age_rx_tag, rxd->rx_dmamap); 3081 } 3082 map = rxd->rx_dmamap; 3083 rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap; 3084 sc->age_cdata.age_rx_sparemap = map; 3085 bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap, 3086 BUS_DMASYNC_PREREAD); 3087 rxd->rx_m = m; 3088 3089 desc = rxd->rx_desc; 3090 desc->addr = htole64(segs[0].ds_addr); 3091 desc->len = htole32((segs[0].ds_len & AGE_RD_LEN_MASK) << 3092 AGE_RD_LEN_SHIFT); 3093 return (0); 3094 } 3095 3096 static void 3097 age_rxvlan(struct age_softc *sc) 3098 { 3099 struct ifnet *ifp; 3100 uint32_t reg; 3101 3102 AGE_LOCK_ASSERT(sc); 3103 3104 ifp = sc->age_ifp; 3105 reg = CSR_READ_4(sc, AGE_MAC_CFG); 3106 reg &= ~MAC_CFG_VLAN_TAG_STRIP; 3107 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) 3108 reg |= MAC_CFG_VLAN_TAG_STRIP; 3109 CSR_WRITE_4(sc, AGE_MAC_CFG, reg); 3110 } 3111 3112 static void 3113 age_rxfilter(struct age_softc *sc) 3114 { 3115 struct ifnet *ifp; 3116 struct ifmultiaddr *ifma; 3117 uint32_t crc; 3118 uint32_t mchash[2]; 3119 uint32_t rxcfg; 3120 3121 AGE_LOCK_ASSERT(sc); 3122 3123 ifp = sc->age_ifp; 3124 3125 rxcfg = CSR_READ_4(sc, AGE_MAC_CFG); 3126 rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC); 3127 if ((ifp->if_flags & IFF_BROADCAST) != 0) 3128 rxcfg |= MAC_CFG_BCAST; 3129 if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) { 3130 if ((ifp->if_flags & IFF_PROMISC) != 0) 3131 rxcfg |= MAC_CFG_PROMISC; 3132 if ((ifp->if_flags & IFF_ALLMULTI) != 0) 3133 rxcfg |= MAC_CFG_ALLMULTI; 3134 CSR_WRITE_4(sc, AGE_MAR0, 0xFFFFFFFF); 3135 CSR_WRITE_4(sc, AGE_MAR1, 0xFFFFFFFF); 3136 CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg); 3137 return; 3138 } 3139 3140 /* Program new filter. */ 3141 bzero(mchash, sizeof(mchash)); 3142 3143 if_maddr_rlock(ifp); 3144 TAILQ_FOREACH(ifma, &sc->age_ifp->if_multiaddrs, ifma_link) { 3145 if (ifma->ifma_addr->sa_family != AF_LINK) 3146 continue; 3147 crc = ether_crc32_be(LLADDR((struct sockaddr_dl *) 3148 ifma->ifma_addr), ETHER_ADDR_LEN); 3149 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f); 3150 } 3151 if_maddr_runlock(ifp); 3152 3153 CSR_WRITE_4(sc, AGE_MAR0, mchash[0]); 3154 CSR_WRITE_4(sc, AGE_MAR1, mchash[1]); 3155 CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg); 3156 } 3157 3158 static int 3159 sysctl_age_stats(SYSCTL_HANDLER_ARGS) 3160 { 3161 struct age_softc *sc; 3162 struct age_stats *stats; 3163 int error, result; 3164 3165 result = -1; 3166 error = sysctl_handle_int(oidp, &result, 0, req); 3167 3168 if (error != 0 || req->newptr == NULL) 3169 return (error); 3170 3171 if (result != 1) 3172 return (error); 3173 3174 sc = (struct age_softc *)arg1; 3175 stats = &sc->age_stat; 3176 printf("%s statistics:\n", device_get_nameunit(sc->age_dev)); 3177 printf("Transmit good frames : %ju\n", 3178 (uintmax_t)stats->tx_frames); 3179 printf("Transmit good broadcast frames : %ju\n", 3180 (uintmax_t)stats->tx_bcast_frames); 3181 printf("Transmit good multicast frames : %ju\n", 3182 (uintmax_t)stats->tx_mcast_frames); 3183 printf("Transmit pause control frames : %u\n", 3184 stats->tx_pause_frames); 3185 printf("Transmit control frames : %u\n", 3186 stats->tx_control_frames); 3187 printf("Transmit frames with excessive deferrals : %u\n", 3188 stats->tx_excess_defer); 3189 printf("Transmit deferrals : %u\n", 3190 stats->tx_deferred); 3191 printf("Transmit good octets : %ju\n", 3192 (uintmax_t)stats->tx_bytes); 3193 printf("Transmit good broadcast octets : %ju\n", 3194 (uintmax_t)stats->tx_bcast_bytes); 3195 printf("Transmit good multicast octets : %ju\n", 3196 (uintmax_t)stats->tx_mcast_bytes); 3197 printf("Transmit frames 64 bytes : %ju\n", 3198 (uintmax_t)stats->tx_pkts_64); 3199 printf("Transmit frames 65 to 127 bytes : %ju\n", 3200 (uintmax_t)stats->tx_pkts_65_127); 3201 printf("Transmit frames 128 to 255 bytes : %ju\n", 3202 (uintmax_t)stats->tx_pkts_128_255); 3203 printf("Transmit frames 256 to 511 bytes : %ju\n", 3204 (uintmax_t)stats->tx_pkts_256_511); 3205 printf("Transmit frames 512 to 1024 bytes : %ju\n", 3206 (uintmax_t)stats->tx_pkts_512_1023); 3207 printf("Transmit frames 1024 to 1518 bytes : %ju\n", 3208 (uintmax_t)stats->tx_pkts_1024_1518); 3209 printf("Transmit frames 1519 to MTU bytes : %ju\n", 3210 (uintmax_t)stats->tx_pkts_1519_max); 3211 printf("Transmit single collisions : %u\n", 3212 stats->tx_single_colls); 3213 printf("Transmit multiple collisions : %u\n", 3214 stats->tx_multi_colls); 3215 printf("Transmit late collisions : %u\n", 3216 stats->tx_late_colls); 3217 printf("Transmit abort due to excessive collisions : %u\n", 3218 stats->tx_excess_colls); 3219 printf("Transmit underruns due to FIFO underruns : %u\n", 3220 stats->tx_underrun); 3221 printf("Transmit descriptor write-back errors : %u\n", 3222 stats->tx_desc_underrun); 3223 printf("Transmit frames with length mismatched frame size : %u\n", 3224 stats->tx_lenerrs); 3225 printf("Transmit frames with truncated due to MTU size : %u\n", 3226 stats->tx_lenerrs); 3227 3228 printf("Receive good frames : %ju\n", 3229 (uintmax_t)stats->rx_frames); 3230 printf("Receive good broadcast frames : %ju\n", 3231 (uintmax_t)stats->rx_bcast_frames); 3232 printf("Receive good multicast frames : %ju\n", 3233 (uintmax_t)stats->rx_mcast_frames); 3234 printf("Receive pause control frames : %u\n", 3235 stats->rx_pause_frames); 3236 printf("Receive control frames : %u\n", 3237 stats->rx_control_frames); 3238 printf("Receive CRC errors : %u\n", 3239 stats->rx_crcerrs); 3240 printf("Receive frames with length errors : %u\n", 3241 stats->rx_lenerrs); 3242 printf("Receive good octets : %ju\n", 3243 (uintmax_t)stats->rx_bytes); 3244 printf("Receive good broadcast octets : %ju\n", 3245 (uintmax_t)stats->rx_bcast_bytes); 3246 printf("Receive good multicast octets : %ju\n", 3247 (uintmax_t)stats->rx_mcast_bytes); 3248 printf("Receive frames too short : %u\n", 3249 stats->rx_runts); 3250 printf("Receive fragmented frames : %ju\n", 3251 (uintmax_t)stats->rx_fragments); 3252 printf("Receive frames 64 bytes : %ju\n", 3253 (uintmax_t)stats->rx_pkts_64); 3254 printf("Receive frames 65 to 127 bytes : %ju\n", 3255 (uintmax_t)stats->rx_pkts_65_127); 3256 printf("Receive frames 128 to 255 bytes : %ju\n", 3257 (uintmax_t)stats->rx_pkts_128_255); 3258 printf("Receive frames 256 to 511 bytes : %ju\n", 3259 (uintmax_t)stats->rx_pkts_256_511); 3260 printf("Receive frames 512 to 1024 bytes : %ju\n", 3261 (uintmax_t)stats->rx_pkts_512_1023); 3262 printf("Receive frames 1024 to 1518 bytes : %ju\n", 3263 (uintmax_t)stats->rx_pkts_1024_1518); 3264 printf("Receive frames 1519 to MTU bytes : %ju\n", 3265 (uintmax_t)stats->rx_pkts_1519_max); 3266 printf("Receive frames too long : %ju\n", 3267 (uint64_t)stats->rx_pkts_truncated); 3268 printf("Receive frames with FIFO overflow : %u\n", 3269 stats->rx_fifo_oflows); 3270 printf("Receive frames with return descriptor overflow : %u\n", 3271 stats->rx_desc_oflows); 3272 printf("Receive frames with alignment errors : %u\n", 3273 stats->rx_alignerrs); 3274 printf("Receive frames dropped due to address filtering : %ju\n", 3275 (uint64_t)stats->rx_pkts_filtered); 3276 3277 return (error); 3278 } 3279 3280 static int 3281 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high) 3282 { 3283 int error, value; 3284 3285 if (arg1 == NULL) 3286 return (EINVAL); 3287 value = *(int *)arg1; 3288 error = sysctl_handle_int(oidp, &value, 0, req); 3289 if (error || req->newptr == NULL) 3290 return (error); 3291 if (value < low || value > high) 3292 return (EINVAL); 3293 *(int *)arg1 = value; 3294 3295 return (0); 3296 } 3297 3298 static int 3299 sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS) 3300 { 3301 return (sysctl_int_range(oidp, arg1, arg2, req, 3302 AGE_PROC_MIN, AGE_PROC_MAX)); 3303 } 3304 3305 static int 3306 sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS) 3307 { 3308 3309 return (sysctl_int_range(oidp, arg1, arg2, req, AGE_IM_TIMER_MIN, 3310 AGE_IM_TIMER_MAX)); 3311 } 3312