xref: /freebsd/sys/dev/age/if_age.c (revision 21fdc27a054f668c8b6c2be503fa68622e5226da)
1 /*-
2  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/bus.h>
36 #include <sys/endian.h>
37 #include <sys/kernel.h>
38 #include <sys/malloc.h>
39 #include <sys/mbuf.h>
40 #include <sys/rman.h>
41 #include <sys/module.h>
42 #include <sys/queue.h>
43 #include <sys/socket.h>
44 #include <sys/sockio.h>
45 #include <sys/sysctl.h>
46 #include <sys/taskqueue.h>
47 
48 #include <net/bpf.h>
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/ethernet.h>
52 #include <net/if_dl.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55 #include <net/if_vlan_var.h>
56 
57 #include <netinet/in.h>
58 #include <netinet/in_systm.h>
59 #include <netinet/ip.h>
60 #include <netinet/tcp.h>
61 
62 #include <dev/mii/mii.h>
63 #include <dev/mii/miivar.h>
64 
65 #include <dev/pci/pcireg.h>
66 #include <dev/pci/pcivar.h>
67 
68 #include <machine/bus.h>
69 #include <machine/in_cksum.h>
70 
71 #include <dev/age/if_agereg.h>
72 #include <dev/age/if_agevar.h>
73 
74 /* "device miibus" required.  See GENERIC if you get errors here. */
75 #include "miibus_if.h"
76 
77 #define	AGE_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
78 
79 MODULE_DEPEND(age, pci, 1, 1, 1);
80 MODULE_DEPEND(age, ether, 1, 1, 1);
81 MODULE_DEPEND(age, miibus, 1, 1, 1);
82 
83 /* Tunables. */
84 static int msi_disable = 0;
85 static int msix_disable = 0;
86 TUNABLE_INT("hw.age.msi_disable", &msi_disable);
87 TUNABLE_INT("hw.age.msix_disable", &msix_disable);
88 
89 /*
90  * Devices supported by this driver.
91  */
92 static struct age_dev {
93 	uint16_t	age_vendorid;
94 	uint16_t	age_deviceid;
95 	const char	*age_name;
96 } age_devs[] = {
97 	{ VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L1,
98 	    "Attansic Technology Corp, L1 Gigabit Ethernet" },
99 };
100 
101 static int age_miibus_readreg(device_t, int, int);
102 static int age_miibus_writereg(device_t, int, int, int);
103 static void age_miibus_statchg(device_t);
104 static void age_mediastatus(struct ifnet *, struct ifmediareq *);
105 static int age_mediachange(struct ifnet *);
106 static int age_probe(device_t);
107 static void age_get_macaddr(struct age_softc *);
108 static void age_phy_reset(struct age_softc *);
109 static int age_attach(device_t);
110 static int age_detach(device_t);
111 static void age_sysctl_node(struct age_softc *);
112 static void age_dmamap_cb(void *, bus_dma_segment_t *, int, int);
113 static int age_check_boundary(struct age_softc *);
114 static int age_dma_alloc(struct age_softc *);
115 static void age_dma_free(struct age_softc *);
116 static int age_shutdown(device_t);
117 static void age_setwol(struct age_softc *);
118 static int age_suspend(device_t);
119 static int age_resume(device_t);
120 static int age_encap(struct age_softc *, struct mbuf **);
121 static void age_tx_task(void *, int);
122 static void age_start(struct ifnet *);
123 static void age_watchdog(struct age_softc *);
124 static int age_ioctl(struct ifnet *, u_long, caddr_t);
125 static void age_mac_config(struct age_softc *);
126 static void age_link_task(void *, int);
127 static void age_stats_update(struct age_softc *);
128 static int age_intr(void *);
129 static void age_int_task(void *, int);
130 static void age_txintr(struct age_softc *, int);
131 static void age_rxeof(struct age_softc *sc, struct rx_rdesc *);
132 static int age_rxintr(struct age_softc *, int, int);
133 static void age_tick(void *);
134 static void age_reset(struct age_softc *);
135 static void age_init(void *);
136 static void age_init_locked(struct age_softc *);
137 static void age_stop(struct age_softc *);
138 static void age_stop_txmac(struct age_softc *);
139 static void age_stop_rxmac(struct age_softc *);
140 static void age_init_tx_ring(struct age_softc *);
141 static int age_init_rx_ring(struct age_softc *);
142 static void age_init_rr_ring(struct age_softc *);
143 static void age_init_cmb_block(struct age_softc *);
144 static void age_init_smb_block(struct age_softc *);
145 static int age_newbuf(struct age_softc *, struct age_rxdesc *);
146 static void age_rxvlan(struct age_softc *);
147 static void age_rxfilter(struct age_softc *);
148 static int sysctl_age_stats(SYSCTL_HANDLER_ARGS);
149 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
150 static int sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS);
151 static int sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS);
152 
153 
154 static device_method_t age_methods[] = {
155 	/* Device interface. */
156 	DEVMETHOD(device_probe,		age_probe),
157 	DEVMETHOD(device_attach,	age_attach),
158 	DEVMETHOD(device_detach,	age_detach),
159 	DEVMETHOD(device_shutdown,	age_shutdown),
160 	DEVMETHOD(device_suspend,	age_suspend),
161 	DEVMETHOD(device_resume,	age_resume),
162 
163 	/* MII interface. */
164 	DEVMETHOD(miibus_readreg,	age_miibus_readreg),
165 	DEVMETHOD(miibus_writereg,	age_miibus_writereg),
166 	DEVMETHOD(miibus_statchg,	age_miibus_statchg),
167 
168 	{ NULL, NULL }
169 };
170 
171 static driver_t age_driver = {
172 	"age",
173 	age_methods,
174 	sizeof(struct age_softc)
175 };
176 
177 static devclass_t age_devclass;
178 
179 DRIVER_MODULE(age, pci, age_driver, age_devclass, 0, 0);
180 DRIVER_MODULE(miibus, age, miibus_driver, miibus_devclass, 0, 0);
181 
182 static struct resource_spec age_res_spec_mem[] = {
183 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
184 	{ -1,			0,		0 }
185 };
186 
187 static struct resource_spec age_irq_spec_legacy[] = {
188 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
189 	{ -1,			0,		0 }
190 };
191 
192 static struct resource_spec age_irq_spec_msi[] = {
193 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
194 	{ -1,			0,		0 }
195 };
196 
197 static struct resource_spec age_irq_spec_msix[] = {
198 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
199 	{ -1,			0,		0 }
200 };
201 
202 /*
203  *	Read a PHY register on the MII of the L1.
204  */
205 static int
206 age_miibus_readreg(device_t dev, int phy, int reg)
207 {
208 	struct age_softc *sc;
209 	uint32_t v;
210 	int i;
211 
212 	sc = device_get_softc(dev);
213 	if (phy != sc->age_phyaddr)
214 		return (0);
215 
216 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
217 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
218 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
219 		DELAY(1);
220 		v = CSR_READ_4(sc, AGE_MDIO);
221 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
222 			break;
223 	}
224 
225 	if (i == 0) {
226 		device_printf(sc->age_dev, "phy read timeout : %d\n", reg);
227 		return (0);
228 	}
229 
230 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
231 }
232 
233 /*
234  *	Write a PHY register on the MII of the L1.
235  */
236 static int
237 age_miibus_writereg(device_t dev, int phy, int reg, int val)
238 {
239 	struct age_softc *sc;
240 	uint32_t v;
241 	int i;
242 
243 	sc = device_get_softc(dev);
244 	if (phy != sc->age_phyaddr)
245 		return (0);
246 
247 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
248 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
249 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
250 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
251 		DELAY(1);
252 		v = CSR_READ_4(sc, AGE_MDIO);
253 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
254 			break;
255 	}
256 
257 	if (i == 0)
258 		device_printf(sc->age_dev, "phy write timeout : %d\n", reg);
259 
260 	return (0);
261 }
262 
263 /*
264  *	Callback from MII layer when media changes.
265  */
266 static void
267 age_miibus_statchg(device_t dev)
268 {
269 	struct age_softc *sc;
270 
271 	sc = device_get_softc(dev);
272 	taskqueue_enqueue(taskqueue_swi, &sc->age_link_task);
273 }
274 
275 /*
276  *	Get the current interface media status.
277  */
278 static void
279 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
280 {
281 	struct age_softc *sc;
282 	struct mii_data *mii;
283 
284 	sc = ifp->if_softc;
285 	AGE_LOCK(sc);
286 	mii = device_get_softc(sc->age_miibus);
287 
288 	mii_pollstat(mii);
289 	AGE_UNLOCK(sc);
290 	ifmr->ifm_status = mii->mii_media_status;
291 	ifmr->ifm_active = mii->mii_media_active;
292 }
293 
294 /*
295  *	Set hardware to newly-selected media.
296  */
297 static int
298 age_mediachange(struct ifnet *ifp)
299 {
300 	struct age_softc *sc;
301 	struct mii_data *mii;
302 	struct mii_softc *miisc;
303 	int error;
304 
305 	sc = ifp->if_softc;
306 	AGE_LOCK(sc);
307 	mii = device_get_softc(sc->age_miibus);
308 	if (mii->mii_instance != 0) {
309 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
310 			mii_phy_reset(miisc);
311 	}
312 	error = mii_mediachg(mii);
313 	AGE_UNLOCK(sc);
314 
315 	return (error);
316 }
317 
318 static int
319 age_probe(device_t dev)
320 {
321 	struct age_dev *sp;
322 	int i;
323 	uint16_t vendor, devid;
324 
325 	vendor = pci_get_vendor(dev);
326 	devid = pci_get_device(dev);
327 	sp = age_devs;
328 	for (i = 0; i < sizeof(age_devs) / sizeof(age_devs[0]);
329 	    i++, sp++) {
330 		if (vendor == sp->age_vendorid &&
331 		    devid == sp->age_deviceid) {
332 			device_set_desc(dev, sp->age_name);
333 			return (BUS_PROBE_DEFAULT);
334 		}
335 	}
336 
337 	return (ENXIO);
338 }
339 
340 static void
341 age_get_macaddr(struct age_softc *sc)
342 {
343 	uint32_t ea[2], reg;
344 	int i, vpdc;
345 
346 	reg = CSR_READ_4(sc, AGE_SPI_CTRL);
347 	if ((reg & SPI_VPD_ENB) != 0) {
348 		/* Get VPD stored in TWSI EEPROM. */
349 		reg &= ~SPI_VPD_ENB;
350 		CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
351 	}
352 
353 	if (pci_find_extcap(sc->age_dev, PCIY_VPD, &vpdc) == 0) {
354 		/*
355 		 * PCI VPD capability found, let TWSI reload EEPROM.
356 		 * This will set ethernet address of controller.
357 		 */
358 		CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
359 		    TWSI_CTRL_SW_LD_START);
360 		for (i = 100; i > 0; i--) {
361 			DELAY(1000);
362 			reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
363 			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
364 				break;
365 		}
366 		if (i == 0)
367 			device_printf(sc->age_dev,
368 			    "reloading EEPROM timeout!\n");
369 	} else {
370 		if (bootverbose)
371 			device_printf(sc->age_dev,
372 			    "PCI VPD capability not found!\n");
373 	}
374 
375 	ea[0] = CSR_READ_4(sc, AGE_PAR0);
376 	ea[1] = CSR_READ_4(sc, AGE_PAR1);
377 	sc->age_eaddr[0] = (ea[1] >> 8) & 0xFF;
378 	sc->age_eaddr[1] = (ea[1] >> 0) & 0xFF;
379 	sc->age_eaddr[2] = (ea[0] >> 24) & 0xFF;
380 	sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF;
381 	sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF;
382 	sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF;
383 }
384 
385 static void
386 age_phy_reset(struct age_softc *sc)
387 {
388 	uint16_t reg, pn;
389 	int i, linkup;
390 
391 	/* Reset PHY. */
392 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
393 	DELAY(2000);
394 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
395 	DELAY(2000);
396 
397 #define	ATPHY_DBG_ADDR		0x1D
398 #define	ATPHY_DBG_DATA		0x1E
399 #define	ATPHY_CDTC		0x16
400 #define	PHY_CDTC_ENB		0x0001
401 #define	PHY_CDTC_POFF		8
402 #define	ATPHY_CDTS		0x1C
403 #define	PHY_CDTS_STAT_OK	0x0000
404 #define	PHY_CDTS_STAT_SHORT	0x0100
405 #define	PHY_CDTS_STAT_OPEN	0x0200
406 #define	PHY_CDTS_STAT_INVAL	0x0300
407 #define	PHY_CDTS_STAT_MASK	0x0300
408 
409 	/* Check power saving mode. Magic from Linux. */
410 	age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
411 	for (linkup = 0, pn = 0; pn < 4; pn++) {
412 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr, ATPHY_CDTC,
413 		    (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
414 		for (i = 200; i > 0; i--) {
415 			DELAY(1000);
416 			reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
417 			    ATPHY_CDTC);
418 			if ((reg & PHY_CDTC_ENB) == 0)
419 				break;
420 		}
421 		DELAY(1000);
422 		reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
423 		    ATPHY_CDTS);
424 		if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
425 			linkup++;
426 			break;
427 		}
428 	}
429 	age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR,
430 	    BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
431 	if (linkup == 0) {
432 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
433 		    ATPHY_DBG_ADDR, 0);
434 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
435 		    ATPHY_DBG_DATA, 0x124E);
436 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
437 		    ATPHY_DBG_ADDR, 1);
438 		reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
439 		    ATPHY_DBG_DATA);
440 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
441 		    ATPHY_DBG_DATA, reg | 0x03);
442 		/* XXX */
443 		DELAY(1500 * 1000);
444 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
445 		    ATPHY_DBG_ADDR, 0);
446 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
447 		    ATPHY_DBG_DATA, 0x024E);
448     }
449 
450 #undef	ATPHY_DBG_ADDR
451 #undef	ATPHY_DBG_DATA
452 #undef	ATPHY_CDTC
453 #undef	PHY_CDTC_ENB
454 #undef	PHY_CDTC_POFF
455 #undef	ATPHY_CDTS
456 #undef	PHY_CDTS_STAT_OK
457 #undef	PHY_CDTS_STAT_SHORT
458 #undef	PHY_CDTS_STAT_OPEN
459 #undef	PHY_CDTS_STAT_INVAL
460 #undef	PHY_CDTS_STAT_MASK
461 }
462 
463 static int
464 age_attach(device_t dev)
465 {
466 	struct age_softc *sc;
467 	struct ifnet *ifp;
468 	uint16_t burst;
469 	int error, i, msic, msixc, pmc;
470 
471 	error = 0;
472 	sc = device_get_softc(dev);
473 	sc->age_dev = dev;
474 
475 	mtx_init(&sc->age_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
476 	    MTX_DEF);
477 	callout_init_mtx(&sc->age_tick_ch, &sc->age_mtx, 0);
478 	TASK_INIT(&sc->age_int_task, 0, age_int_task, sc);
479 	TASK_INIT(&sc->age_link_task, 0, age_link_task, sc);
480 
481 	/* Map the device. */
482 	pci_enable_busmaster(dev);
483 	sc->age_res_spec = age_res_spec_mem;
484 	sc->age_irq_spec = age_irq_spec_legacy;
485 	error = bus_alloc_resources(dev, sc->age_res_spec, sc->age_res);
486 	if (error != 0) {
487 		device_printf(dev, "cannot allocate memory resources.\n");
488 		goto fail;
489 	}
490 
491 	/* Set PHY address. */
492 	sc->age_phyaddr = AGE_PHY_ADDR;
493 
494 	/* Reset PHY. */
495 	age_phy_reset(sc);
496 
497 	/* Reset the ethernet controller. */
498 	age_reset(sc);
499 
500 	/* Get PCI and chip id/revision. */
501 	sc->age_rev = pci_get_revid(dev);
502 	sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
503 	    MASTER_CHIP_REV_SHIFT;
504 	if (bootverbose) {
505 		device_printf(dev, "PCI device revision : 0x%04x\n",
506 		    sc->age_rev);
507 		device_printf(dev, "Chip id/revision : 0x%04x\n",
508 		    sc->age_chip_rev);
509 	}
510 
511 	/*
512 	 * XXX
513 	 * Unintialized hardware returns an invalid chip id/revision
514 	 * as well as 0xFFFFFFFF for Tx/Rx fifo length. It seems that
515 	 * unplugged cable results in putting hardware into automatic
516 	 * power down mode which in turn returns invalld chip revision.
517 	 */
518 	if (sc->age_chip_rev == 0xFFFF) {
519 		device_printf(dev,"invalid chip revision : 0x%04x -- "
520 		    "not initialized?\n", sc->age_chip_rev);
521 		error = ENXIO;
522 		goto fail;
523 	}
524 
525 	device_printf(dev, "%d Tx FIFO, %d Rx FIFO\n",
526 	    CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
527 	    CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
528 
529 	/* Allocate IRQ resources. */
530 	msixc = pci_msix_count(dev);
531 	msic = pci_msi_count(dev);
532 	if (bootverbose) {
533 		device_printf(dev, "MSIX count : %d\n", msixc);
534 		device_printf(dev, "MSI count : %d\n", msic);
535 	}
536 
537 	/* Prefer MSIX over MSI. */
538 	if (msix_disable == 0 || msi_disable == 0) {
539 		if (msix_disable == 0 && msixc == AGE_MSIX_MESSAGES &&
540 		    pci_alloc_msix(dev, &msixc) == 0) {
541 			if (msic == AGE_MSIX_MESSAGES) {
542 				device_printf(dev, "Using %d MSIX messages.\n",
543 				    msixc);
544 				sc->age_flags |= AGE_FLAG_MSIX;
545 				sc->age_irq_spec = age_irq_spec_msix;
546 			} else
547 				pci_release_msi(dev);
548 		}
549 		if (msi_disable == 0 && (sc->age_flags & AGE_FLAG_MSIX) == 0 &&
550 		    msic == AGE_MSI_MESSAGES &&
551 		    pci_alloc_msi(dev, &msic) == 0) {
552 			if (msic == AGE_MSI_MESSAGES) {
553 				device_printf(dev, "Using %d MSI messages.\n",
554 				    msic);
555 				sc->age_flags |= AGE_FLAG_MSI;
556 				sc->age_irq_spec = age_irq_spec_msi;
557 			} else
558 				pci_release_msi(dev);
559 		}
560 	}
561 
562 	error = bus_alloc_resources(dev, sc->age_irq_spec, sc->age_irq);
563 	if (error != 0) {
564 		device_printf(dev, "cannot allocate IRQ resources.\n");
565 		goto fail;
566 	}
567 
568 
569 	/* Get DMA parameters from PCIe device control register. */
570 	if (pci_find_extcap(dev, PCIY_EXPRESS, &i) == 0) {
571 		sc->age_flags |= AGE_FLAG_PCIE;
572 		burst = pci_read_config(dev, i + 0x08, 2);
573 		/* Max read request size. */
574 		sc->age_dma_rd_burst = ((burst >> 12) & 0x07) <<
575 		    DMA_CFG_RD_BURST_SHIFT;
576 		/* Max payload size. */
577 		sc->age_dma_wr_burst = ((burst >> 5) & 0x07) <<
578 		    DMA_CFG_WR_BURST_SHIFT;
579 		if (bootverbose) {
580 			device_printf(dev, "Read request size : %d bytes.\n",
581 			    128 << ((burst >> 12) & 0x07));
582 			device_printf(dev, "TLP payload size : %d bytes.\n",
583 			    128 << ((burst >> 5) & 0x07));
584 		}
585 	} else {
586 		sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
587 		sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
588 	}
589 
590 	/* Create device sysctl node. */
591 	age_sysctl_node(sc);
592 
593 	if ((error = age_dma_alloc(sc) != 0))
594 		goto fail;
595 
596 	/* Load station address. */
597 	age_get_macaddr(sc);
598 
599 	ifp = sc->age_ifp = if_alloc(IFT_ETHER);
600 	if (ifp == NULL) {
601 		device_printf(dev, "cannot allocate ifnet structure.\n");
602 		error = ENXIO;
603 		goto fail;
604 	}
605 
606 	ifp->if_softc = sc;
607 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
608 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
609 	ifp->if_ioctl = age_ioctl;
610 	ifp->if_start = age_start;
611 	ifp->if_init = age_init;
612 	ifp->if_snd.ifq_drv_maxlen = AGE_TX_RING_CNT - 1;
613 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
614 	IFQ_SET_READY(&ifp->if_snd);
615 	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
616 	ifp->if_hwassist = AGE_CSUM_FEATURES | CSUM_TSO;
617 	if (pci_find_extcap(dev, PCIY_PMG, &pmc) == 0) {
618 		sc->age_flags |= AGE_FLAG_PMCAP;
619 		ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST;
620 	}
621 	ifp->if_capenable = ifp->if_capabilities;
622 
623 	/* Set up MII bus. */
624 	if ((error = mii_phy_probe(dev, &sc->age_miibus, age_mediachange,
625 	    age_mediastatus)) != 0) {
626 		device_printf(dev, "no PHY found!\n");
627 		goto fail;
628 	}
629 
630 	ether_ifattach(ifp, sc->age_eaddr);
631 
632 	/* VLAN capability setup. */
633 	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
634 	    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
635 	ifp->if_capenable = ifp->if_capabilities;
636 
637 	/* Tell the upper layer(s) we support long frames. */
638 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
639 
640 	/* Create local taskq. */
641 	TASK_INIT(&sc->age_tx_task, 1, age_tx_task, ifp);
642 	sc->age_tq = taskqueue_create_fast("age_taskq", M_WAITOK,
643 	    taskqueue_thread_enqueue, &sc->age_tq);
644 	if (sc->age_tq == NULL) {
645 		device_printf(dev, "could not create taskqueue.\n");
646 		ether_ifdetach(ifp);
647 		error = ENXIO;
648 		goto fail;
649 	}
650 	taskqueue_start_threads(&sc->age_tq, 1, PI_NET, "%s taskq",
651 	    device_get_nameunit(sc->age_dev));
652 
653 	if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
654 		msic = AGE_MSIX_MESSAGES;
655 	else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
656 		msic = AGE_MSI_MESSAGES;
657 	else
658 		msic = 1;
659 	for (i = 0; i < msic; i++) {
660 		error = bus_setup_intr(dev, sc->age_irq[i],
661 		    INTR_TYPE_NET | INTR_MPSAFE, age_intr, NULL, sc,
662 		    &sc->age_intrhand[i]);
663 		if (error != 0)
664 			break;
665 	}
666 	if (error != 0) {
667 		device_printf(dev, "could not set up interrupt handler.\n");
668 		taskqueue_free(sc->age_tq);
669 		sc->age_tq = NULL;
670 		ether_ifdetach(ifp);
671 		goto fail;
672 	}
673 
674 fail:
675 	if (error != 0)
676 		age_detach(dev);
677 
678 	return (error);
679 }
680 
681 static int
682 age_detach(device_t dev)
683 {
684 	struct age_softc *sc;
685 	struct ifnet *ifp;
686 	int i, msic;
687 
688 	sc = device_get_softc(dev);
689 
690 	ifp = sc->age_ifp;
691 	if (device_is_attached(dev)) {
692 		AGE_LOCK(sc);
693 		sc->age_flags |= AGE_FLAG_DETACH;
694 		age_stop(sc);
695 		AGE_UNLOCK(sc);
696 		callout_drain(&sc->age_tick_ch);
697 		taskqueue_drain(sc->age_tq, &sc->age_int_task);
698 		taskqueue_drain(sc->age_tq, &sc->age_tx_task);
699 		taskqueue_drain(taskqueue_swi, &sc->age_link_task);
700 		ether_ifdetach(ifp);
701 	}
702 
703 	if (sc->age_tq != NULL) {
704 		taskqueue_drain(sc->age_tq, &sc->age_int_task);
705 		taskqueue_free(sc->age_tq);
706 		sc->age_tq = NULL;
707 	}
708 
709 	if (sc->age_miibus != NULL) {
710 		device_delete_child(dev, sc->age_miibus);
711 		sc->age_miibus = NULL;
712 	}
713 	bus_generic_detach(dev);
714 	age_dma_free(sc);
715 
716 	if (ifp != NULL) {
717 		if_free(ifp);
718 		sc->age_ifp = NULL;
719 	}
720 
721 	if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
722 		msic = AGE_MSIX_MESSAGES;
723 	else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
724 		msic = AGE_MSI_MESSAGES;
725 	else
726 		msic = 1;
727 	for (i = 0; i < msic; i++) {
728 		if (sc->age_intrhand[i] != NULL) {
729 			bus_teardown_intr(dev, sc->age_irq[i],
730 			    sc->age_intrhand[i]);
731 			sc->age_intrhand[i] = NULL;
732 		}
733 	}
734 
735 	bus_release_resources(dev, sc->age_irq_spec, sc->age_irq);
736 	if ((sc->age_flags & (AGE_FLAG_MSI | AGE_FLAG_MSIX)) != 0)
737 		pci_release_msi(dev);
738 	bus_release_resources(dev, sc->age_res_spec, sc->age_res);
739 	mtx_destroy(&sc->age_mtx);
740 
741 	return (0);
742 }
743 
744 static void
745 age_sysctl_node(struct age_softc *sc)
746 {
747 	int error;
748 
749 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
750 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
751 	    "stats", CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_age_stats,
752 	    "I", "Statistics");
753 
754 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
755 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
756 	    "int_mod", CTLTYPE_INT | CTLFLAG_RW, &sc->age_int_mod, 0,
757 	    sysctl_hw_age_int_mod, "I", "age interrupt moderation");
758 
759 	/* Pull in device tunables. */
760 	sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
761 	error = resource_int_value(device_get_name(sc->age_dev),
762 	    device_get_unit(sc->age_dev), "int_mod", &sc->age_int_mod);
763 	if (error == 0) {
764 		if (sc->age_int_mod < AGE_IM_TIMER_MIN ||
765 		    sc->age_int_mod > AGE_IM_TIMER_MAX) {
766 			device_printf(sc->age_dev,
767 			    "int_mod value out of range; using default: %d\n",
768 			    AGE_IM_TIMER_DEFAULT);
769 			sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
770 		}
771 	}
772 
773 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
774 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
775 	    "process_limit", CTLTYPE_INT | CTLFLAG_RW, &sc->age_process_limit,
776 	    0, sysctl_hw_age_proc_limit, "I",
777 	    "max number of Rx events to process");
778 
779 	/* Pull in device tunables. */
780 	sc->age_process_limit = AGE_PROC_DEFAULT;
781 	error = resource_int_value(device_get_name(sc->age_dev),
782 	    device_get_unit(sc->age_dev), "process_limit",
783 	    &sc->age_process_limit);
784 	if (error == 0) {
785 		if (sc->age_process_limit < AGE_PROC_MIN ||
786 		    sc->age_process_limit > AGE_PROC_MAX) {
787 			device_printf(sc->age_dev,
788 			    "process_limit value out of range; "
789 			    "using default: %d\n", AGE_PROC_DEFAULT);
790 			sc->age_process_limit = AGE_PROC_DEFAULT;
791 		}
792 	}
793 }
794 
795 struct age_dmamap_arg {
796 	bus_addr_t	age_busaddr;
797 };
798 
799 static void
800 age_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
801 {
802 	struct age_dmamap_arg *ctx;
803 
804 	if (error != 0)
805 		return;
806 
807 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
808 
809 	ctx = (struct age_dmamap_arg *)arg;
810 	ctx->age_busaddr = segs[0].ds_addr;
811 }
812 
813 /*
814  * Attansic L1 controller have single register to specify high
815  * address part of DMA blocks. So all descriptor structures and
816  * DMA memory blocks should have the same high address of given
817  * 4GB address space(i.e. crossing 4GB boundary is not allowed).
818  */
819 static int
820 age_check_boundary(struct age_softc *sc)
821 {
822 	bus_addr_t rx_ring_end, rr_ring_end, tx_ring_end;
823 	bus_addr_t cmb_block_end, smb_block_end;
824 
825 	/* Tx/Rx descriptor queue should reside within 4GB boundary. */
826 	tx_ring_end = sc->age_rdata.age_tx_ring_paddr + AGE_TX_RING_SZ;
827 	rx_ring_end = sc->age_rdata.age_rx_ring_paddr + AGE_RX_RING_SZ;
828 	rr_ring_end = sc->age_rdata.age_rr_ring_paddr + AGE_RR_RING_SZ;
829 	cmb_block_end = sc->age_rdata.age_cmb_block_paddr + AGE_CMB_BLOCK_SZ;
830 	smb_block_end = sc->age_rdata.age_smb_block_paddr + AGE_SMB_BLOCK_SZ;
831 
832 	if ((AGE_ADDR_HI(tx_ring_end) !=
833 	    AGE_ADDR_HI(sc->age_rdata.age_tx_ring_paddr)) ||
834 	    (AGE_ADDR_HI(rx_ring_end) !=
835 	    AGE_ADDR_HI(sc->age_rdata.age_rx_ring_paddr)) ||
836 	    (AGE_ADDR_HI(rr_ring_end) !=
837 	    AGE_ADDR_HI(sc->age_rdata.age_rr_ring_paddr)) ||
838 	    (AGE_ADDR_HI(cmb_block_end) !=
839 	    AGE_ADDR_HI(sc->age_rdata.age_cmb_block_paddr)) ||
840 	    (AGE_ADDR_HI(smb_block_end) !=
841 	    AGE_ADDR_HI(sc->age_rdata.age_smb_block_paddr)))
842 		return (EFBIG);
843 
844 	if ((AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rx_ring_end)) ||
845 	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rr_ring_end)) ||
846 	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(cmb_block_end)) ||
847 	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(smb_block_end)))
848 		return (EFBIG);
849 
850 	return (0);
851 }
852 
853 static int
854 age_dma_alloc(struct age_softc *sc)
855 {
856 	struct age_txdesc *txd;
857 	struct age_rxdesc *rxd;
858 	bus_addr_t lowaddr;
859 	struct age_dmamap_arg ctx;
860 	int error, i;
861 
862 	lowaddr = BUS_SPACE_MAXADDR;
863 
864 again:
865 	/* Create parent ring/DMA block tag. */
866 	error = bus_dma_tag_create(
867 	    bus_get_dma_tag(sc->age_dev), /* parent */
868 	    1, 0,			/* alignment, boundary */
869 	    lowaddr,			/* lowaddr */
870 	    BUS_SPACE_MAXADDR,		/* highaddr */
871 	    NULL, NULL,			/* filter, filterarg */
872 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
873 	    0,				/* nsegments */
874 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
875 	    0,				/* flags */
876 	    NULL, NULL,			/* lockfunc, lockarg */
877 	    &sc->age_cdata.age_parent_tag);
878 	if (error != 0) {
879 		device_printf(sc->age_dev,
880 		    "could not create parent DMA tag.\n");
881 		goto fail;
882 	}
883 
884 	/* Create tag for Tx ring. */
885 	error = bus_dma_tag_create(
886 	    sc->age_cdata.age_parent_tag, /* parent */
887 	    AGE_TX_RING_ALIGN, 0,	/* alignment, boundary */
888 	    BUS_SPACE_MAXADDR,		/* lowaddr */
889 	    BUS_SPACE_MAXADDR,		/* highaddr */
890 	    NULL, NULL,			/* filter, filterarg */
891 	    AGE_TX_RING_SZ,		/* maxsize */
892 	    1,				/* nsegments */
893 	    AGE_TX_RING_SZ,		/* maxsegsize */
894 	    0,				/* flags */
895 	    NULL, NULL,			/* lockfunc, lockarg */
896 	    &sc->age_cdata.age_tx_ring_tag);
897 	if (error != 0) {
898 		device_printf(sc->age_dev,
899 		    "could not create Tx ring DMA tag.\n");
900 		goto fail;
901 	}
902 
903 	/* Create tag for Rx ring. */
904 	error = bus_dma_tag_create(
905 	    sc->age_cdata.age_parent_tag, /* parent */
906 	    AGE_RX_RING_ALIGN, 0,	/* alignment, boundary */
907 	    BUS_SPACE_MAXADDR,		/* lowaddr */
908 	    BUS_SPACE_MAXADDR,		/* highaddr */
909 	    NULL, NULL,			/* filter, filterarg */
910 	    AGE_RX_RING_SZ,		/* maxsize */
911 	    1,				/* nsegments */
912 	    AGE_RX_RING_SZ,		/* maxsegsize */
913 	    0,				/* flags */
914 	    NULL, NULL,			/* lockfunc, lockarg */
915 	    &sc->age_cdata.age_rx_ring_tag);
916 	if (error != 0) {
917 		device_printf(sc->age_dev,
918 		    "could not create Rx ring DMA tag.\n");
919 		goto fail;
920 	}
921 
922 	/* Create tag for Rx return ring. */
923 	error = bus_dma_tag_create(
924 	    sc->age_cdata.age_parent_tag, /* parent */
925 	    AGE_RR_RING_ALIGN, 0,	/* alignment, boundary */
926 	    BUS_SPACE_MAXADDR,		/* lowaddr */
927 	    BUS_SPACE_MAXADDR,		/* highaddr */
928 	    NULL, NULL,			/* filter, filterarg */
929 	    AGE_RR_RING_SZ,		/* maxsize */
930 	    1,				/* nsegments */
931 	    AGE_RR_RING_SZ,		/* maxsegsize */
932 	    0,				/* flags */
933 	    NULL, NULL,			/* lockfunc, lockarg */
934 	    &sc->age_cdata.age_rr_ring_tag);
935 	if (error != 0) {
936 		device_printf(sc->age_dev,
937 		    "could not create Rx return ring DMA tag.\n");
938 		goto fail;
939 	}
940 
941 	/* Create tag for coalesing message block. */
942 	error = bus_dma_tag_create(
943 	    sc->age_cdata.age_parent_tag, /* parent */
944 	    AGE_CMB_ALIGN, 0,		/* alignment, boundary */
945 	    BUS_SPACE_MAXADDR,		/* lowaddr */
946 	    BUS_SPACE_MAXADDR,		/* highaddr */
947 	    NULL, NULL,			/* filter, filterarg */
948 	    AGE_CMB_BLOCK_SZ,		/* maxsize */
949 	    1,				/* nsegments */
950 	    AGE_CMB_BLOCK_SZ,		/* maxsegsize */
951 	    0,				/* flags */
952 	    NULL, NULL,			/* lockfunc, lockarg */
953 	    &sc->age_cdata.age_cmb_block_tag);
954 	if (error != 0) {
955 		device_printf(sc->age_dev,
956 		    "could not create CMB DMA tag.\n");
957 		goto fail;
958 	}
959 
960 	/* Create tag for statistics message block. */
961 	error = bus_dma_tag_create(
962 	    sc->age_cdata.age_parent_tag, /* parent */
963 	    AGE_SMB_ALIGN, 0,		/* alignment, boundary */
964 	    BUS_SPACE_MAXADDR,		/* lowaddr */
965 	    BUS_SPACE_MAXADDR,		/* highaddr */
966 	    NULL, NULL,			/* filter, filterarg */
967 	    AGE_SMB_BLOCK_SZ,		/* maxsize */
968 	    1,				/* nsegments */
969 	    AGE_SMB_BLOCK_SZ,		/* maxsegsize */
970 	    0,				/* flags */
971 	    NULL, NULL,			/* lockfunc, lockarg */
972 	    &sc->age_cdata.age_smb_block_tag);
973 	if (error != 0) {
974 		device_printf(sc->age_dev,
975 		    "could not create SMB DMA tag.\n");
976 		goto fail;
977 	}
978 
979 	/* Allocate DMA'able memory and load the DMA map. */
980 	error = bus_dmamem_alloc(sc->age_cdata.age_tx_ring_tag,
981 	    (void **)&sc->age_rdata.age_tx_ring,
982 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
983 	    &sc->age_cdata.age_tx_ring_map);
984 	if (error != 0) {
985 		device_printf(sc->age_dev,
986 		    "could not allocate DMA'able memory for Tx ring.\n");
987 		goto fail;
988 	}
989 	ctx.age_busaddr = 0;
990 	error = bus_dmamap_load(sc->age_cdata.age_tx_ring_tag,
991 	    sc->age_cdata.age_tx_ring_map, sc->age_rdata.age_tx_ring,
992 	    AGE_TX_RING_SZ, age_dmamap_cb, &ctx, 0);
993 	if (error != 0 || ctx.age_busaddr == 0) {
994 		device_printf(sc->age_dev,
995 		    "could not load DMA'able memory for Tx ring.\n");
996 		goto fail;
997 	}
998 	sc->age_rdata.age_tx_ring_paddr = ctx.age_busaddr;
999 	/* Rx ring */
1000 	error = bus_dmamem_alloc(sc->age_cdata.age_rx_ring_tag,
1001 	    (void **)&sc->age_rdata.age_rx_ring,
1002 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1003 	    &sc->age_cdata.age_rx_ring_map);
1004 	if (error != 0) {
1005 		device_printf(sc->age_dev,
1006 		    "could not allocate DMA'able memory for Rx ring.\n");
1007 		goto fail;
1008 	}
1009 	ctx.age_busaddr = 0;
1010 	error = bus_dmamap_load(sc->age_cdata.age_rx_ring_tag,
1011 	    sc->age_cdata.age_rx_ring_map, sc->age_rdata.age_rx_ring,
1012 	    AGE_RX_RING_SZ, age_dmamap_cb, &ctx, 0);
1013 	if (error != 0 || ctx.age_busaddr == 0) {
1014 		device_printf(sc->age_dev,
1015 		    "could not load DMA'able memory for Rx ring.\n");
1016 		goto fail;
1017 	}
1018 	sc->age_rdata.age_rx_ring_paddr = ctx.age_busaddr;
1019 	/* Rx return ring */
1020 	error = bus_dmamem_alloc(sc->age_cdata.age_rr_ring_tag,
1021 	    (void **)&sc->age_rdata.age_rr_ring,
1022 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1023 	    &sc->age_cdata.age_rr_ring_map);
1024 	if (error != 0) {
1025 		device_printf(sc->age_dev,
1026 		    "could not allocate DMA'able memory for Rx return ring.\n");
1027 		goto fail;
1028 	}
1029 	ctx.age_busaddr = 0;
1030 	error = bus_dmamap_load(sc->age_cdata.age_rr_ring_tag,
1031 	    sc->age_cdata.age_rr_ring_map, sc->age_rdata.age_rr_ring,
1032 	    AGE_RR_RING_SZ, age_dmamap_cb,
1033 	    &ctx, 0);
1034 	if (error != 0 || ctx.age_busaddr == 0) {
1035 		device_printf(sc->age_dev,
1036 		    "could not load DMA'able memory for Rx return ring.\n");
1037 		goto fail;
1038 	}
1039 	sc->age_rdata.age_rr_ring_paddr = ctx.age_busaddr;
1040 	/* CMB block */
1041 	error = bus_dmamem_alloc(sc->age_cdata.age_cmb_block_tag,
1042 	    (void **)&sc->age_rdata.age_cmb_block,
1043 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1044 	    &sc->age_cdata.age_cmb_block_map);
1045 	if (error != 0) {
1046 		device_printf(sc->age_dev,
1047 		    "could not allocate DMA'able memory for CMB block.\n");
1048 		goto fail;
1049 	}
1050 	ctx.age_busaddr = 0;
1051 	error = bus_dmamap_load(sc->age_cdata.age_cmb_block_tag,
1052 	    sc->age_cdata.age_cmb_block_map, sc->age_rdata.age_cmb_block,
1053 	    AGE_CMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1054 	if (error != 0 || ctx.age_busaddr == 0) {
1055 		device_printf(sc->age_dev,
1056 		    "could not load DMA'able memory for CMB block.\n");
1057 		goto fail;
1058 	}
1059 	sc->age_rdata.age_cmb_block_paddr = ctx.age_busaddr;
1060 	/* SMB block */
1061 	error = bus_dmamem_alloc(sc->age_cdata.age_smb_block_tag,
1062 	    (void **)&sc->age_rdata.age_smb_block,
1063 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1064 	    &sc->age_cdata.age_smb_block_map);
1065 	if (error != 0) {
1066 		device_printf(sc->age_dev,
1067 		    "could not allocate DMA'able memory for SMB block.\n");
1068 		goto fail;
1069 	}
1070 	ctx.age_busaddr = 0;
1071 	error = bus_dmamap_load(sc->age_cdata.age_smb_block_tag,
1072 	    sc->age_cdata.age_smb_block_map, sc->age_rdata.age_smb_block,
1073 	    AGE_SMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1074 	if (error != 0 || ctx.age_busaddr == 0) {
1075 		device_printf(sc->age_dev,
1076 		    "could not load DMA'able memory for SMB block.\n");
1077 		goto fail;
1078 	}
1079 	sc->age_rdata.age_smb_block_paddr = ctx.age_busaddr;
1080 
1081 	/*
1082 	 * All ring buffer and DMA blocks should have the same
1083 	 * high address part of 64bit DMA address space.
1084 	 */
1085 	if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1086 	    (error = age_check_boundary(sc)) != 0) {
1087 		device_printf(sc->age_dev, "4GB boundary crossed, "
1088 		    "switching to 32bit DMA addressing mode.\n");
1089 		age_dma_free(sc);
1090 		/* Limit DMA address space to 32bit and try again. */
1091 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1092 		goto again;
1093 	}
1094 
1095 	/*
1096 	 * Create Tx/Rx buffer parent tag.
1097 	 * L1 supports full 64bit DMA addressing in Tx/Rx buffers
1098 	 * so it needs separate parent DMA tag.
1099 	 */
1100 	error = bus_dma_tag_create(
1101 	    bus_get_dma_tag(sc->age_dev), /* parent */
1102 	    1, 0,			/* alignment, boundary */
1103 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1104 	    BUS_SPACE_MAXADDR,		/* highaddr */
1105 	    NULL, NULL,			/* filter, filterarg */
1106 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1107 	    0,				/* nsegments */
1108 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1109 	    0,				/* flags */
1110 	    NULL, NULL,			/* lockfunc, lockarg */
1111 	    &sc->age_cdata.age_buffer_tag);
1112 	if (error != 0) {
1113 		device_printf(sc->age_dev,
1114 		    "could not create parent buffer DMA tag.\n");
1115 		goto fail;
1116 	}
1117 
1118 	/* Create tag for Tx buffers. */
1119 	error = bus_dma_tag_create(
1120 	    sc->age_cdata.age_buffer_tag, /* parent */
1121 	    1, 0,			/* alignment, boundary */
1122 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1123 	    BUS_SPACE_MAXADDR,		/* highaddr */
1124 	    NULL, NULL,			/* filter, filterarg */
1125 	    AGE_TSO_MAXSIZE,		/* maxsize */
1126 	    AGE_MAXTXSEGS,		/* nsegments */
1127 	    AGE_TSO_MAXSEGSIZE,		/* maxsegsize */
1128 	    0,				/* flags */
1129 	    NULL, NULL,			/* lockfunc, lockarg */
1130 	    &sc->age_cdata.age_tx_tag);
1131 	if (error != 0) {
1132 		device_printf(sc->age_dev, "could not create Tx DMA tag.\n");
1133 		goto fail;
1134 	}
1135 
1136 	/* Create tag for Rx buffers. */
1137 	error = bus_dma_tag_create(
1138 	    sc->age_cdata.age_buffer_tag, /* parent */
1139 	    1, 0,			/* alignment, boundary */
1140 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1141 	    BUS_SPACE_MAXADDR,		/* highaddr */
1142 	    NULL, NULL,			/* filter, filterarg */
1143 	    MCLBYTES,			/* maxsize */
1144 	    1,				/* nsegments */
1145 	    MCLBYTES,			/* maxsegsize */
1146 	    0,				/* flags */
1147 	    NULL, NULL,			/* lockfunc, lockarg */
1148 	    &sc->age_cdata.age_rx_tag);
1149 	if (error != 0) {
1150 		device_printf(sc->age_dev, "could not create Rx DMA tag.\n");
1151 		goto fail;
1152 	}
1153 
1154 	/* Create DMA maps for Tx buffers. */
1155 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
1156 		txd = &sc->age_cdata.age_txdesc[i];
1157 		txd->tx_m = NULL;
1158 		txd->tx_dmamap = NULL;
1159 		error = bus_dmamap_create(sc->age_cdata.age_tx_tag, 0,
1160 		    &txd->tx_dmamap);
1161 		if (error != 0) {
1162 			device_printf(sc->age_dev,
1163 			    "could not create Tx dmamap.\n");
1164 			goto fail;
1165 		}
1166 	}
1167 	/* Create DMA maps for Rx buffers. */
1168 	if ((error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1169 	    &sc->age_cdata.age_rx_sparemap)) != 0) {
1170 		device_printf(sc->age_dev,
1171 		    "could not create spare Rx dmamap.\n");
1172 		goto fail;
1173 	}
1174 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
1175 		rxd = &sc->age_cdata.age_rxdesc[i];
1176 		rxd->rx_m = NULL;
1177 		rxd->rx_dmamap = NULL;
1178 		error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1179 		    &rxd->rx_dmamap);
1180 		if (error != 0) {
1181 			device_printf(sc->age_dev,
1182 			    "could not create Rx dmamap.\n");
1183 			goto fail;
1184 		}
1185 	}
1186 
1187 fail:
1188 	return (error);
1189 }
1190 
1191 static void
1192 age_dma_free(struct age_softc *sc)
1193 {
1194 	struct age_txdesc *txd;
1195 	struct age_rxdesc *rxd;
1196 	int i;
1197 
1198 	/* Tx buffers */
1199 	if (sc->age_cdata.age_tx_tag != NULL) {
1200 		for (i = 0; i < AGE_TX_RING_CNT; i++) {
1201 			txd = &sc->age_cdata.age_txdesc[i];
1202 			if (txd->tx_dmamap != NULL) {
1203 				bus_dmamap_destroy(sc->age_cdata.age_tx_tag,
1204 				    txd->tx_dmamap);
1205 				txd->tx_dmamap = NULL;
1206 			}
1207 		}
1208 		bus_dma_tag_destroy(sc->age_cdata.age_tx_tag);
1209 		sc->age_cdata.age_tx_tag = NULL;
1210 	}
1211 	/* Rx buffers */
1212 	if (sc->age_cdata.age_rx_tag != NULL) {
1213 		for (i = 0; i < AGE_RX_RING_CNT; i++) {
1214 			rxd = &sc->age_cdata.age_rxdesc[i];
1215 			if (rxd->rx_dmamap != NULL) {
1216 				bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1217 				    rxd->rx_dmamap);
1218 				rxd->rx_dmamap = NULL;
1219 			}
1220 		}
1221 		if (sc->age_cdata.age_rx_sparemap != NULL) {
1222 			bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1223 			    sc->age_cdata.age_rx_sparemap);
1224 			sc->age_cdata.age_rx_sparemap = NULL;
1225 		}
1226 		bus_dma_tag_destroy(sc->age_cdata.age_rx_tag);
1227 		sc->age_cdata.age_rx_tag = NULL;
1228 	}
1229 	/* Tx ring. */
1230 	if (sc->age_cdata.age_tx_ring_tag != NULL) {
1231 		if (sc->age_cdata.age_tx_ring_map != NULL)
1232 			bus_dmamap_unload(sc->age_cdata.age_tx_ring_tag,
1233 			    sc->age_cdata.age_tx_ring_map);
1234 		if (sc->age_cdata.age_tx_ring_map != NULL &&
1235 		    sc->age_rdata.age_tx_ring != NULL)
1236 			bus_dmamem_free(sc->age_cdata.age_tx_ring_tag,
1237 			    sc->age_rdata.age_tx_ring,
1238 			    sc->age_cdata.age_tx_ring_map);
1239 		sc->age_rdata.age_tx_ring = NULL;
1240 		sc->age_cdata.age_tx_ring_map = NULL;
1241 		bus_dma_tag_destroy(sc->age_cdata.age_tx_ring_tag);
1242 		sc->age_cdata.age_tx_ring_tag = NULL;
1243 	}
1244 	/* Rx ring. */
1245 	if (sc->age_cdata.age_rx_ring_tag != NULL) {
1246 		if (sc->age_cdata.age_rx_ring_map != NULL)
1247 			bus_dmamap_unload(sc->age_cdata.age_rx_ring_tag,
1248 			    sc->age_cdata.age_rx_ring_map);
1249 		if (sc->age_cdata.age_rx_ring_map != NULL &&
1250 		    sc->age_rdata.age_rx_ring != NULL)
1251 			bus_dmamem_free(sc->age_cdata.age_rx_ring_tag,
1252 			    sc->age_rdata.age_rx_ring,
1253 			    sc->age_cdata.age_rx_ring_map);
1254 		sc->age_rdata.age_rx_ring = NULL;
1255 		sc->age_cdata.age_rx_ring_map = NULL;
1256 		bus_dma_tag_destroy(sc->age_cdata.age_rx_ring_tag);
1257 		sc->age_cdata.age_rx_ring_tag = NULL;
1258 	}
1259 	/* Rx return ring. */
1260 	if (sc->age_cdata.age_rr_ring_tag != NULL) {
1261 		if (sc->age_cdata.age_rr_ring_map != NULL)
1262 			bus_dmamap_unload(sc->age_cdata.age_rr_ring_tag,
1263 			    sc->age_cdata.age_rr_ring_map);
1264 		if (sc->age_cdata.age_rr_ring_map != NULL &&
1265 		    sc->age_rdata.age_rr_ring != NULL)
1266 			bus_dmamem_free(sc->age_cdata.age_rr_ring_tag,
1267 			    sc->age_rdata.age_rr_ring,
1268 			    sc->age_cdata.age_rr_ring_map);
1269 		sc->age_rdata.age_rr_ring = NULL;
1270 		sc->age_cdata.age_rr_ring_map = NULL;
1271 		bus_dma_tag_destroy(sc->age_cdata.age_rr_ring_tag);
1272 		sc->age_cdata.age_rr_ring_tag = NULL;
1273 	}
1274 	/* CMB block */
1275 	if (sc->age_cdata.age_cmb_block_tag != NULL) {
1276 		if (sc->age_cdata.age_cmb_block_map != NULL)
1277 			bus_dmamap_unload(sc->age_cdata.age_cmb_block_tag,
1278 			    sc->age_cdata.age_cmb_block_map);
1279 		if (sc->age_cdata.age_cmb_block_map != NULL &&
1280 		    sc->age_rdata.age_cmb_block != NULL)
1281 			bus_dmamem_free(sc->age_cdata.age_cmb_block_tag,
1282 			    sc->age_rdata.age_cmb_block,
1283 			    sc->age_cdata.age_cmb_block_map);
1284 		sc->age_rdata.age_cmb_block = NULL;
1285 		sc->age_cdata.age_cmb_block_map = NULL;
1286 		bus_dma_tag_destroy(sc->age_cdata.age_cmb_block_tag);
1287 		sc->age_cdata.age_cmb_block_tag = NULL;
1288 	}
1289 	/* SMB block */
1290 	if (sc->age_cdata.age_smb_block_tag != NULL) {
1291 		if (sc->age_cdata.age_smb_block_map != NULL)
1292 			bus_dmamap_unload(sc->age_cdata.age_smb_block_tag,
1293 			    sc->age_cdata.age_smb_block_map);
1294 		if (sc->age_cdata.age_smb_block_map != NULL &&
1295 		    sc->age_rdata.age_smb_block != NULL)
1296 			bus_dmamem_free(sc->age_cdata.age_smb_block_tag,
1297 			    sc->age_rdata.age_smb_block,
1298 			    sc->age_cdata.age_smb_block_map);
1299 		sc->age_rdata.age_smb_block = NULL;
1300 		sc->age_cdata.age_smb_block_map = NULL;
1301 		bus_dma_tag_destroy(sc->age_cdata.age_smb_block_tag);
1302 		sc->age_cdata.age_smb_block_tag = NULL;
1303 	}
1304 
1305 	if (sc->age_cdata.age_buffer_tag != NULL) {
1306 		bus_dma_tag_destroy(sc->age_cdata.age_buffer_tag);
1307 		sc->age_cdata.age_buffer_tag = NULL;
1308 	}
1309 	if (sc->age_cdata.age_parent_tag != NULL) {
1310 		bus_dma_tag_destroy(sc->age_cdata.age_parent_tag);
1311 		sc->age_cdata.age_parent_tag = NULL;
1312 	}
1313 }
1314 
1315 /*
1316  *	Make sure the interface is stopped at reboot time.
1317  */
1318 static int
1319 age_shutdown(device_t dev)
1320 {
1321 
1322 	return (age_suspend(dev));
1323 }
1324 
1325 static void
1326 age_setwol(struct age_softc *sc)
1327 {
1328 	struct ifnet *ifp;
1329 	struct mii_data *mii;
1330 	uint32_t reg, pmcs;
1331 	uint16_t pmstat;
1332 	int aneg, i, pmc;
1333 
1334 	AGE_LOCK_ASSERT(sc);
1335 
1336 	if (pci_find_extcap(sc->age_dev, PCIY_PMG, &pmc) != 0) {
1337 		CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1338 		/*
1339 		 * No PME capability, PHY power down.
1340 		 * XXX
1341 		 * Due to an unknown reason powering down PHY resulted
1342 		 * in unexpected results such as inaccessbility of
1343 		 * hardware of freshly rebooted system. Disable
1344 		 * powering down PHY until I got more information for
1345 		 * Attansic/Atheros PHY hardwares.
1346 		 */
1347 #ifdef notyet
1348 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1349 		    MII_BMCR, BMCR_PDOWN);
1350 #endif
1351 		return;
1352 	}
1353 
1354 	ifp = sc->age_ifp;
1355 	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1356 		/*
1357 		 * Note, this driver resets the link speed to 10/100Mbps with
1358 		 * auto-negotiation but we don't know whether that operation
1359 		 * would succeed or not as it have no control after powering
1360 		 * off. If the renegotiation fail WOL may not work. Running
1361 		 * at 1Gbps will draw more power than 375mA at 3.3V which is
1362 		 * specified in PCI specification and that would result in
1363 		 * complete shutdowning power to ethernet controller.
1364 		 *
1365 		 * TODO
1366 		 *  Save current negotiated media speed/duplex/flow-control
1367 		 *  to softc and restore the same link again after resuming.
1368 		 *  PHY handling such as power down/resetting to 100Mbps
1369 		 *  may be better handled in suspend method in phy driver.
1370 		 */
1371 		mii = device_get_softc(sc->age_miibus);
1372 		mii_pollstat(mii);
1373 		aneg = 0;
1374 		if ((mii->mii_media_status & IFM_AVALID) != 0) {
1375 			switch IFM_SUBTYPE(mii->mii_media_active) {
1376 			case IFM_10_T:
1377 			case IFM_100_TX:
1378 				goto got_link;
1379 			case IFM_1000_T:
1380 				aneg++;
1381 			default:
1382 				break;
1383 			}
1384 		}
1385 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1386 		    MII_100T2CR, 0);
1387 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1388 		    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD |
1389 		    ANAR_10 | ANAR_CSMA);
1390 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1391 		    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1392 		DELAY(1000);
1393 		if (aneg != 0) {
1394 			/* Poll link state until age(4) get a 10/100 link. */
1395 			for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1396 				mii_pollstat(mii);
1397 				if ((mii->mii_media_status & IFM_AVALID) != 0) {
1398 					switch (IFM_SUBTYPE(
1399 					    mii->mii_media_active)) {
1400 					case IFM_10_T:
1401 					case IFM_100_TX:
1402 						age_mac_config(sc);
1403 						goto got_link;
1404 					default:
1405 						break;
1406 					}
1407 				}
1408 				AGE_UNLOCK(sc);
1409 				pause("agelnk", hz);
1410 				AGE_LOCK(sc);
1411 			}
1412 			if (i == MII_ANEGTICKS_GIGE)
1413 				device_printf(sc->age_dev,
1414 				    "establishing link failed, "
1415 				    "WOL may not work!");
1416 		}
1417 		/*
1418 		 * No link, force MAC to have 100Mbps, full-duplex link.
1419 		 * This is the last resort and may/may not work.
1420 		 */
1421 		mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1422 		mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1423 		age_mac_config(sc);
1424 	}
1425 
1426 got_link:
1427 	pmcs = 0;
1428 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1429 		pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1430 	CSR_WRITE_4(sc, AGE_WOL_CFG, pmcs);
1431 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1432 	reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC);
1433 	reg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST);
1434 	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
1435 		reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1436 	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1437 		reg |= MAC_CFG_RX_ENB;
1438 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1439 	}
1440 
1441 	/* Request PME. */
1442 	pmstat = pci_read_config(sc->age_dev, pmc + PCIR_POWER_STATUS, 2);
1443 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1444 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1445 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1446 	pci_write_config(sc->age_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1447 #ifdef notyet
1448 	/* See above for powering down PHY issues. */
1449 	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1450 		/* No WOL, PHY power down. */
1451 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1452 		    MII_BMCR, BMCR_PDOWN);
1453 	}
1454 #endif
1455 }
1456 
1457 static int
1458 age_suspend(device_t dev)
1459 {
1460 	struct age_softc *sc;
1461 
1462 	sc = device_get_softc(dev);
1463 
1464 	AGE_LOCK(sc);
1465 	age_stop(sc);
1466 	age_setwol(sc);
1467 	AGE_UNLOCK(sc);
1468 
1469 	return (0);
1470 }
1471 
1472 static int
1473 age_resume(device_t dev)
1474 {
1475 	struct age_softc *sc;
1476 	struct ifnet *ifp;
1477 
1478 	sc = device_get_softc(dev);
1479 
1480 	AGE_LOCK(sc);
1481 	age_phy_reset(sc);
1482 	ifp = sc->age_ifp;
1483 	if ((ifp->if_flags & IFF_UP) != 0)
1484 		age_init_locked(sc);
1485 
1486 	AGE_UNLOCK(sc);
1487 
1488 	return (0);
1489 }
1490 
1491 static int
1492 age_encap(struct age_softc *sc, struct mbuf **m_head)
1493 {
1494 	struct age_txdesc *txd, *txd_last;
1495 	struct tx_desc *desc;
1496 	struct mbuf *m;
1497 	struct ip *ip;
1498 	struct tcphdr *tcp;
1499 	bus_dma_segment_t txsegs[AGE_MAXTXSEGS];
1500 	bus_dmamap_t map;
1501 	uint32_t cflags, ip_off, poff, vtag;
1502 	int error, i, nsegs, prod, si;
1503 
1504 	AGE_LOCK_ASSERT(sc);
1505 
1506 	M_ASSERTPKTHDR((*m_head));
1507 
1508 	m = *m_head;
1509 	ip = NULL;
1510 	tcp = NULL;
1511 	cflags = vtag = 0;
1512 	ip_off = poff = 0;
1513 	if ((m->m_pkthdr.csum_flags & (AGE_CSUM_FEATURES | CSUM_TSO)) != 0) {
1514 		/*
1515 		 * L1 requires offset of TCP/UDP payload in its Tx
1516 		 * descriptor to perform hardware Tx checksum offload.
1517 		 * Additionally, TSO requires IP/TCP header size and
1518 		 * modification of IP/TCP header in order to make TSO
1519 		 * engine work. This kind of operation takes many CPU
1520 		 * cycles on FreeBSD so fast host CPU is needed to get
1521 		 * smooth TSO performance.
1522 		 */
1523 		struct ether_header *eh;
1524 
1525 		if (M_WRITABLE(m) == 0) {
1526 			/* Get a writable copy. */
1527 			m = m_dup(*m_head, M_DONTWAIT);
1528 			/* Release original mbufs. */
1529 			m_freem(*m_head);
1530 			if (m == NULL) {
1531 				*m_head = NULL;
1532 				return (ENOBUFS);
1533 			}
1534 			*m_head = m;
1535 		}
1536 		ip_off = sizeof(struct ether_header);
1537 		m = m_pullup(m, ip_off);
1538 		if (m == NULL) {
1539 			*m_head = NULL;
1540 			return (ENOBUFS);
1541 		}
1542 		eh = mtod(m, struct ether_header *);
1543 		/*
1544 		 * Check if hardware VLAN insertion is off.
1545 		 * Additional check for LLC/SNAP frame?
1546 		 */
1547 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1548 			ip_off = sizeof(struct ether_vlan_header);
1549 			m = m_pullup(m, ip_off);
1550 			if (m == NULL) {
1551 				*m_head = NULL;
1552 				return (ENOBUFS);
1553 			}
1554 		}
1555 		m = m_pullup(m, ip_off + sizeof(struct ip));
1556 		if (m == NULL) {
1557 			*m_head = NULL;
1558 			return (ENOBUFS);
1559 		}
1560 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1561 		poff = ip_off + (ip->ip_hl << 2);
1562 		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1563 			m = m_pullup(m, poff + sizeof(struct tcphdr));
1564 			if (m == NULL) {
1565 				*m_head = NULL;
1566 				return (ENOBUFS);
1567 			}
1568 			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1569 			/*
1570 			 * L1 requires IP/TCP header size and offset as
1571 			 * well as TCP pseudo checksum which complicates
1572 			 * TSO configuration. I guess this comes from the
1573 			 * adherence to Microsoft NDIS Large Send
1574 			 * specification which requires insertion of
1575 			 * pseudo checksum by upper stack. The pseudo
1576 			 * checksum that NDIS refers to doesn't include
1577 			 * TCP payload length so age(4) should recompute
1578 			 * the pseudo checksum here. Hopefully this wouldn't
1579 			 * be much burden on modern CPUs.
1580 			 * Reset IP checksum and recompute TCP pseudo
1581 			 * checksum as NDIS specification said.
1582 			 */
1583 			ip->ip_sum = 0;
1584 			if (poff + (tcp->th_off << 2) == m->m_pkthdr.len)
1585 				tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1586 				    ip->ip_dst.s_addr,
1587 				    htons((tcp->th_off << 2) + IPPROTO_TCP));
1588 			else
1589 				tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1590 				    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1591 		}
1592 		*m_head = m;
1593 	}
1594 
1595 	si = prod = sc->age_cdata.age_tx_prod;
1596 	txd = &sc->age_cdata.age_txdesc[prod];
1597 	txd_last = txd;
1598 	map = txd->tx_dmamap;
1599 
1600 	error =  bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1601 	    *m_head, txsegs, &nsegs, 0);
1602 	if (error == EFBIG) {
1603 		m = m_collapse(*m_head, M_DONTWAIT, AGE_MAXTXSEGS);
1604 		if (m == NULL) {
1605 			m_freem(*m_head);
1606 			*m_head = NULL;
1607 			return (ENOMEM);
1608 		}
1609 		*m_head = m;
1610 		error = bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1611 		    *m_head, txsegs, &nsegs, 0);
1612 		if (error != 0) {
1613 			m_freem(*m_head);
1614 			*m_head = NULL;
1615 			return (error);
1616 		}
1617 	} else if (error != 0)
1618 		return (error);
1619 	if (nsegs == 0) {
1620 		m_freem(*m_head);
1621 		*m_head = NULL;
1622 		return (EIO);
1623 	}
1624 
1625 	/* Check descriptor overrun. */
1626 	if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1627 		bus_dmamap_unload(sc->age_cdata.age_tx_tag, map);
1628 		return (ENOBUFS);
1629 	}
1630 
1631 	m = *m_head;
1632 	/* Configure Tx IP/TCP/UDP checksum offload. */
1633 	if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1634 		cflags |= AGE_TD_CSUM;
1635 		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1636 			cflags |= AGE_TD_TCPCSUM;
1637 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1638 			cflags |= AGE_TD_UDPCSUM;
1639 		/* Set checksum start offset. */
1640 		cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1641 		/* Set checksum insertion position of TCP/UDP. */
1642 		cflags |= ((poff + m->m_pkthdr.csum_data) <<
1643 		    AGE_TD_CSUM_XSUMOFFSET_SHIFT);
1644 	}
1645 
1646 	/* Configure TSO. */
1647 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1648 		if (poff + (tcp->th_off << 2) == m->m_pkthdr.len) {
1649 			/* Not TSO but IP/TCP checksum offload. */
1650 			cflags |= AGE_TD_IPCSUM | AGE_TD_TCPCSUM;
1651 			/* Clear TSO in order not to set AGE_TD_TSO_HDR. */
1652 			m->m_pkthdr.csum_flags &= ~CSUM_TSO;
1653 		} else {
1654 			/* Request TSO and set MSS. */
1655 			cflags |= AGE_TD_TSO_IPV4;
1656 			cflags |= AGE_TD_IPCSUM | AGE_TD_TCPCSUM;
1657 			cflags |= ((uint32_t)m->m_pkthdr.tso_segsz <<
1658 			    AGE_TD_TSO_MSS_SHIFT);
1659 		}
1660 		/* Set IP/TCP header size. */
1661 		cflags |= ip->ip_hl << AGE_TD_IPHDR_LEN_SHIFT;
1662 		cflags |= tcp->th_off << AGE_TD_TSO_TCPHDR_LEN_SHIFT;
1663 	}
1664 
1665 	/* Configure VLAN hardware tag insertion. */
1666 	if ((m->m_flags & M_VLANTAG) != 0) {
1667 		vtag = AGE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
1668 		vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1669 		cflags |= AGE_TD_INSERT_VLAN_TAG;
1670 	}
1671 
1672 	desc = NULL;
1673 	for (i = 0; i < nsegs; i++) {
1674 		desc = &sc->age_rdata.age_tx_ring[prod];
1675 		desc->addr = htole64(txsegs[i].ds_addr);
1676 		desc->len = htole32(AGE_TX_BYTES(txsegs[i].ds_len) | vtag);
1677 		desc->flags = htole32(cflags);
1678 		sc->age_cdata.age_tx_cnt++;
1679 		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1680 	}
1681 	/* Update producer index. */
1682 	sc->age_cdata.age_tx_prod = prod;
1683 
1684 	/* Set EOP on the last descriptor. */
1685 	prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1686 	desc = &sc->age_rdata.age_tx_ring[prod];
1687 	desc->flags |= htole32(AGE_TD_EOP);
1688 
1689 	/* Lastly set TSO header and modify IP/TCP header for TSO operation. */
1690 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1691 		desc = &sc->age_rdata.age_tx_ring[si];
1692 		desc->flags |= htole32(AGE_TD_TSO_HDR);
1693 	}
1694 
1695 	/* Swap dmamap of the first and the last. */
1696 	txd = &sc->age_cdata.age_txdesc[prod];
1697 	map = txd_last->tx_dmamap;
1698 	txd_last->tx_dmamap = txd->tx_dmamap;
1699 	txd->tx_dmamap = map;
1700 	txd->tx_m = m;
1701 
1702 	/* Sync descriptors. */
1703 	bus_dmamap_sync(sc->age_cdata.age_tx_tag, map, BUS_DMASYNC_PREWRITE);
1704 	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
1705 	    sc->age_cdata.age_tx_ring_map,
1706 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1707 
1708 	return (0);
1709 }
1710 
1711 static void
1712 age_tx_task(void *arg, int pending)
1713 {
1714 	struct ifnet *ifp;
1715 
1716 	ifp = (struct ifnet *)arg;
1717 	age_start(ifp);
1718 }
1719 
1720 static void
1721 age_start(struct ifnet *ifp)
1722 {
1723         struct age_softc *sc;
1724         struct mbuf *m_head;
1725 	int enq;
1726 
1727 	sc = ifp->if_softc;
1728 
1729 	AGE_LOCK(sc);
1730 
1731 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1732 	    IFF_DRV_RUNNING || (sc->age_flags & AGE_FLAG_LINK) == 0) {
1733 		AGE_UNLOCK(sc);
1734 		return;
1735 	}
1736 
1737 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1738 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1739 		if (m_head == NULL)
1740 			break;
1741 		/*
1742 		 * Pack the data into the transmit ring. If we
1743 		 * don't have room, set the OACTIVE flag and wait
1744 		 * for the NIC to drain the ring.
1745 		 */
1746 		if (age_encap(sc, &m_head)) {
1747 			if (m_head == NULL)
1748 				break;
1749 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1750 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1751 			break;
1752 		}
1753 
1754 		enq++;
1755 		/*
1756 		 * If there's a BPF listener, bounce a copy of this frame
1757 		 * to him.
1758 		 */
1759 		ETHER_BPF_MTAP(ifp, m_head);
1760 	}
1761 
1762 	if (enq > 0) {
1763 		/* Update mbox. */
1764 		AGE_COMMIT_MBOX(sc);
1765 		/* Set a timeout in case the chip goes out to lunch. */
1766 		sc->age_watchdog_timer = AGE_TX_TIMEOUT;
1767 	}
1768 
1769 	AGE_UNLOCK(sc);
1770 }
1771 
1772 static void
1773 age_watchdog(struct age_softc *sc)
1774 {
1775 	struct ifnet *ifp;
1776 
1777 	AGE_LOCK_ASSERT(sc);
1778 
1779 	if (sc->age_watchdog_timer == 0 || --sc->age_watchdog_timer)
1780 		return;
1781 
1782 	ifp = sc->age_ifp;
1783 	if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1784 		if_printf(sc->age_ifp, "watchdog timeout (missed link)\n");
1785 		ifp->if_oerrors++;
1786 		age_init_locked(sc);
1787 		return;
1788 	}
1789 	if (sc->age_cdata.age_tx_cnt == 0) {
1790 		if_printf(sc->age_ifp,
1791 		    "watchdog timeout (missed Tx interrupts) -- recovering\n");
1792 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1793 			taskqueue_enqueue(sc->age_tq, &sc->age_tx_task);
1794 		return;
1795 	}
1796 	if_printf(sc->age_ifp, "watchdog timeout\n");
1797 	ifp->if_oerrors++;
1798 	age_init_locked(sc);
1799 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1800 		taskqueue_enqueue(sc->age_tq, &sc->age_tx_task);
1801 }
1802 
1803 static int
1804 age_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1805 {
1806 	struct age_softc *sc;
1807 	struct ifreq *ifr;
1808 	struct mii_data *mii;
1809 	uint32_t reg;
1810 	int error, mask;
1811 
1812 	sc = ifp->if_softc;
1813 	ifr = (struct ifreq *)data;
1814 	error = 0;
1815 	switch (cmd) {
1816 	case SIOCSIFMTU:
1817 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > AGE_JUMBO_MTU)
1818 			error = EINVAL;
1819 		else if (ifp->if_mtu != ifr->ifr_mtu) {
1820 			AGE_LOCK(sc);
1821 			ifp->if_mtu = ifr->ifr_mtu;
1822 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1823 				age_init_locked(sc);
1824 			AGE_UNLOCK(sc);
1825 		}
1826 		break;
1827 	case SIOCSIFFLAGS:
1828 		AGE_LOCK(sc);
1829 		if ((ifp->if_flags & IFF_UP) != 0) {
1830 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1831 				if (((ifp->if_flags ^ sc->age_if_flags)
1832 				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1833 					age_rxfilter(sc);
1834 			} else {
1835 				if ((sc->age_flags & AGE_FLAG_DETACH) == 0)
1836 					age_init_locked(sc);
1837 			}
1838 		} else {
1839 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1840 				age_stop(sc);
1841 		}
1842 		sc->age_if_flags = ifp->if_flags;
1843 		AGE_UNLOCK(sc);
1844 		break;
1845 	case SIOCADDMULTI:
1846 	case SIOCDELMULTI:
1847 		AGE_LOCK(sc);
1848 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1849 			age_rxfilter(sc);
1850 		AGE_UNLOCK(sc);
1851 		break;
1852 	case SIOCSIFMEDIA:
1853 	case SIOCGIFMEDIA:
1854 		mii = device_get_softc(sc->age_miibus);
1855 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1856 		break;
1857 	case SIOCSIFCAP:
1858 		AGE_LOCK(sc);
1859 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1860 		if ((mask & IFCAP_TXCSUM) != 0 &&
1861 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
1862 			ifp->if_capenable ^= IFCAP_TXCSUM;
1863 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1864 				ifp->if_hwassist |= AGE_CSUM_FEATURES;
1865 			else
1866 				ifp->if_hwassist &= ~AGE_CSUM_FEATURES;
1867 		}
1868 		if ((mask & IFCAP_RXCSUM) != 0 &&
1869 		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
1870 			ifp->if_capenable ^= IFCAP_RXCSUM;
1871 			reg = CSR_READ_4(sc, AGE_MAC_CFG);
1872 			reg &= ~MAC_CFG_RXCSUM_ENB;
1873 			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
1874 				reg |= MAC_CFG_RXCSUM_ENB;
1875 			CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1876 		}
1877 		if ((mask & IFCAP_TSO4) != 0 &&
1878 		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
1879 			ifp->if_capenable ^= IFCAP_TSO4;
1880 			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
1881 				ifp->if_hwassist |= CSUM_TSO;
1882 			else
1883 				ifp->if_hwassist &= ~CSUM_TSO;
1884 		}
1885 
1886 		if ((mask & IFCAP_WOL_MCAST) != 0 &&
1887 		    (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
1888 			ifp->if_capenable ^= IFCAP_WOL_MCAST;
1889 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
1890 		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
1891 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1892 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
1893 		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
1894 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
1895 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1896 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
1897 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1898 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1899 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
1900 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1901 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
1902 				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
1903 			age_rxvlan(sc);
1904 		}
1905 		AGE_UNLOCK(sc);
1906 		VLAN_CAPABILITIES(ifp);
1907 		break;
1908 	default:
1909 		error = ether_ioctl(ifp, cmd, data);
1910 		break;
1911 	}
1912 
1913 	return (error);
1914 }
1915 
1916 static void
1917 age_mac_config(struct age_softc *sc)
1918 {
1919 	struct mii_data *mii;
1920 	uint32_t reg;
1921 
1922 	AGE_LOCK_ASSERT(sc);
1923 
1924 	mii = device_get_softc(sc->age_miibus);
1925 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1926 	reg &= ~MAC_CFG_FULL_DUPLEX;
1927 	reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1928 	reg &= ~MAC_CFG_SPEED_MASK;
1929 	/* Reprogram MAC with resolved speed/duplex. */
1930 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1931 	case IFM_10_T:
1932 	case IFM_100_TX:
1933 		reg |= MAC_CFG_SPEED_10_100;
1934 		break;
1935 	case IFM_1000_T:
1936 		reg |= MAC_CFG_SPEED_1000;
1937 		break;
1938 	}
1939 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1940 		reg |= MAC_CFG_FULL_DUPLEX;
1941 #ifdef notyet
1942 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1943 			reg |= MAC_CFG_TX_FC;
1944 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1945 			reg |= MAC_CFG_RX_FC;
1946 #endif
1947 	}
1948 
1949 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1950 }
1951 
1952 static void
1953 age_link_task(void *arg, int pending)
1954 {
1955 	struct age_softc *sc;
1956 	struct mii_data *mii;
1957 	struct ifnet *ifp;
1958 	uint32_t reg;
1959 
1960 	sc = (struct age_softc *)arg;
1961 
1962 	AGE_LOCK(sc);
1963 	mii = device_get_softc(sc->age_miibus);
1964 	ifp = sc->age_ifp;
1965 	if (mii == NULL || ifp == NULL ||
1966 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1967 		AGE_UNLOCK(sc);
1968 		return;
1969 	}
1970 
1971 	sc->age_flags &= ~AGE_FLAG_LINK;
1972 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
1973 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
1974 		case IFM_10_T:
1975 		case IFM_100_TX:
1976 		case IFM_1000_T:
1977 			sc->age_flags |= AGE_FLAG_LINK;
1978 			break;
1979 		default:
1980 			break;
1981 		}
1982 	}
1983 
1984 	/* Stop Rx/Tx MACs. */
1985 	age_stop_rxmac(sc);
1986 	age_stop_txmac(sc);
1987 
1988 	/* Program MACs with resolved speed/duplex/flow-control. */
1989 	if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
1990 		age_mac_config(sc);
1991 		reg = CSR_READ_4(sc, AGE_MAC_CFG);
1992 		/* Restart DMA engine and Tx/Rx MAC. */
1993 		CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
1994 		    DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
1995 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
1996 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1997 	}
1998 
1999 	AGE_UNLOCK(sc);
2000 }
2001 
2002 static void
2003 age_stats_update(struct age_softc *sc)
2004 {
2005 	struct age_stats *stat;
2006 	struct smb *smb;
2007 	struct ifnet *ifp;
2008 
2009 	AGE_LOCK_ASSERT(sc);
2010 
2011 	stat = &sc->age_stat;
2012 
2013 	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2014 	    sc->age_cdata.age_smb_block_map,
2015 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2016 
2017 	smb = sc->age_rdata.age_smb_block;
2018 	if (smb->updated == 0)
2019 		return;
2020 
2021 	ifp = sc->age_ifp;
2022 	/* Rx stats. */
2023 	stat->rx_frames += smb->rx_frames;
2024 	stat->rx_bcast_frames += smb->rx_bcast_frames;
2025 	stat->rx_mcast_frames += smb->rx_mcast_frames;
2026 	stat->rx_pause_frames += smb->rx_pause_frames;
2027 	stat->rx_control_frames += smb->rx_control_frames;
2028 	stat->rx_crcerrs += smb->rx_crcerrs;
2029 	stat->rx_lenerrs += smb->rx_lenerrs;
2030 	stat->rx_bytes += smb->rx_bytes;
2031 	stat->rx_runts += smb->rx_runts;
2032 	stat->rx_fragments += smb->rx_fragments;
2033 	stat->rx_pkts_64 += smb->rx_pkts_64;
2034 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2035 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2036 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2037 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2038 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2039 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2040 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2041 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2042 	stat->rx_desc_oflows += smb->rx_desc_oflows;
2043 	stat->rx_alignerrs += smb->rx_alignerrs;
2044 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2045 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2046 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2047 
2048 	/* Tx stats. */
2049 	stat->tx_frames += smb->tx_frames;
2050 	stat->tx_bcast_frames += smb->tx_bcast_frames;
2051 	stat->tx_mcast_frames += smb->tx_mcast_frames;
2052 	stat->tx_pause_frames += smb->tx_pause_frames;
2053 	stat->tx_excess_defer += smb->tx_excess_defer;
2054 	stat->tx_control_frames += smb->tx_control_frames;
2055 	stat->tx_deferred += smb->tx_deferred;
2056 	stat->tx_bytes += smb->tx_bytes;
2057 	stat->tx_pkts_64 += smb->tx_pkts_64;
2058 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2059 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2060 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2061 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2062 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2063 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2064 	stat->tx_single_colls += smb->tx_single_colls;
2065 	stat->tx_multi_colls += smb->tx_multi_colls;
2066 	stat->tx_late_colls += smb->tx_late_colls;
2067 	stat->tx_excess_colls += smb->tx_excess_colls;
2068 	stat->tx_underrun += smb->tx_underrun;
2069 	stat->tx_desc_underrun += smb->tx_desc_underrun;
2070 	stat->tx_lenerrs += smb->tx_lenerrs;
2071 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2072 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2073 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2074 
2075 	/* Update counters in ifnet. */
2076 	ifp->if_opackets += smb->tx_frames;
2077 
2078 	ifp->if_collisions += smb->tx_single_colls +
2079 	    smb->tx_multi_colls + smb->tx_late_colls +
2080 	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
2081 
2082 	ifp->if_oerrors += smb->tx_excess_colls +
2083 	    smb->tx_late_colls + smb->tx_underrun +
2084 	    smb->tx_pkts_truncated;
2085 
2086 	ifp->if_ipackets += smb->rx_frames;
2087 
2088 	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2089 	    smb->rx_runts + smb->rx_pkts_truncated +
2090 	    smb->rx_fifo_oflows + smb->rx_desc_oflows +
2091 	    smb->rx_alignerrs;
2092 
2093 	/* Update done, clear. */
2094 	smb->updated = 0;
2095 
2096 	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2097 	    sc->age_cdata.age_smb_block_map,
2098 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2099 }
2100 
2101 static int
2102 age_intr(void *arg)
2103 {
2104 	struct age_softc *sc;
2105 	uint32_t status;
2106 
2107 	sc = (struct age_softc *)arg;
2108 
2109 	status = CSR_READ_4(sc, AGE_INTR_STATUS);
2110 	if (status == 0 || (status & AGE_INTRS) == 0)
2111 		return (FILTER_STRAY);
2112 	/* Disable interrupts. */
2113 	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
2114 	taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2115 
2116 	return (FILTER_HANDLED);
2117 }
2118 
2119 static void
2120 age_int_task(void *arg, int pending)
2121 {
2122 	struct age_softc *sc;
2123 	struct ifnet *ifp;
2124 	struct cmb *cmb;
2125 	uint32_t status;
2126 
2127 	sc = (struct age_softc *)arg;
2128 
2129 	AGE_LOCK(sc);
2130 
2131 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2132 	    sc->age_cdata.age_cmb_block_map,
2133 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2134 	cmb = sc->age_rdata.age_cmb_block;
2135 	status = le32toh(cmb->intr_status);
2136 	if (sc->age_morework != 0)
2137 		status |= INTR_CMB_RX;
2138 	if ((status & AGE_INTRS) == 0)
2139 		goto done;
2140 
2141 	sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
2142 	    TPD_CONS_SHIFT;
2143 	sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
2144 	    RRD_PROD_SHIFT;
2145 	/* Let hardware know CMB was served. */
2146 	cmb->intr_status = 0;
2147 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2148 	    sc->age_cdata.age_cmb_block_map,
2149 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2150 
2151 #if 0
2152 	printf("INTR: 0x%08x\n", status);
2153 	status &= ~INTR_DIS_DMA;
2154 	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
2155 #endif
2156 	ifp = sc->age_ifp;
2157 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2158 		if ((status & INTR_CMB_RX) != 0)
2159 			sc->age_morework = age_rxintr(sc, sc->age_rr_prod,
2160 			    sc->age_process_limit);
2161 		if ((status & INTR_CMB_TX) != 0)
2162 			age_txintr(sc, sc->age_tpd_cons);
2163 		if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
2164 			if ((status & INTR_DMA_RD_TO_RST) != 0)
2165 				device_printf(sc->age_dev,
2166 				    "DMA read error! -- resetting\n");
2167 			if ((status & INTR_DMA_WR_TO_RST) != 0)
2168 				device_printf(sc->age_dev,
2169 				    "DMA write error! -- resetting\n");
2170 			age_init_locked(sc);
2171 		}
2172 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2173 			taskqueue_enqueue(sc->age_tq, &sc->age_tx_task);
2174 		if ((status & INTR_SMB) != 0)
2175 			age_stats_update(sc);
2176 	}
2177 
2178 	/* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
2179 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2180 	    sc->age_cdata.age_cmb_block_map,
2181 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2182 	status = le32toh(cmb->intr_status);
2183 	if (sc->age_morework != 0 || (status & AGE_INTRS) != 0) {
2184 		taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2185 		AGE_UNLOCK(sc);
2186 		return;
2187 	}
2188 
2189 done:
2190 	/* Re-enable interrupts. */
2191 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2192 	AGE_UNLOCK(sc);
2193 }
2194 
2195 static void
2196 age_txintr(struct age_softc *sc, int tpd_cons)
2197 {
2198 	struct ifnet *ifp;
2199 	struct age_txdesc *txd;
2200 	int cons, prog;
2201 
2202 	AGE_LOCK_ASSERT(sc);
2203 
2204 	ifp = sc->age_ifp;
2205 
2206 	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2207 	    sc->age_cdata.age_tx_ring_map,
2208 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2209 
2210 	/*
2211 	 * Go through our Tx list and free mbufs for those
2212 	 * frames which have been transmitted.
2213 	 */
2214 	cons = sc->age_cdata.age_tx_cons;
2215 	for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
2216 		if (sc->age_cdata.age_tx_cnt <= 0)
2217 			break;
2218 		prog++;
2219 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2220 		sc->age_cdata.age_tx_cnt--;
2221 		txd = &sc->age_cdata.age_txdesc[cons];
2222 		/*
2223 		 * Clear Tx descriptors, it's not required but would
2224 		 * help debugging in case of Tx issues.
2225 		 */
2226 		txd->tx_desc->addr = 0;
2227 		txd->tx_desc->len = 0;
2228 		txd->tx_desc->flags = 0;
2229 
2230 		if (txd->tx_m == NULL)
2231 			continue;
2232 		/* Reclaim transmitted mbufs. */
2233 		bus_dmamap_sync(sc->age_cdata.age_tx_tag, txd->tx_dmamap,
2234 		    BUS_DMASYNC_POSTWRITE);
2235 		bus_dmamap_unload(sc->age_cdata.age_tx_tag, txd->tx_dmamap);
2236 		m_freem(txd->tx_m);
2237 		txd->tx_m = NULL;
2238 	}
2239 
2240 	if (prog > 0) {
2241 		sc->age_cdata.age_tx_cons = cons;
2242 
2243 		/*
2244 		 * Unarm watchdog timer only when there are no pending
2245 		 * Tx descriptors in queue.
2246 		 */
2247 		if (sc->age_cdata.age_tx_cnt == 0)
2248 			sc->age_watchdog_timer = 0;
2249 		bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2250 		    sc->age_cdata.age_tx_ring_map,
2251 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2252 	}
2253 }
2254 
2255 /* Receive a frame. */
2256 static void
2257 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
2258 {
2259 	struct age_rxdesc *rxd;
2260 	struct rx_desc *desc;
2261 	struct ifnet *ifp;
2262 	struct mbuf *mp, *m;
2263 	uint32_t status, index, vtag;
2264 	int count, nsegs, pktlen;
2265 	int rx_cons;
2266 
2267 	AGE_LOCK_ASSERT(sc);
2268 
2269 	ifp = sc->age_ifp;
2270 	status = le32toh(rxrd->flags);
2271 	index = le32toh(rxrd->index);
2272 	rx_cons = AGE_RX_CONS(index);
2273 	nsegs = AGE_RX_NSEGS(index);
2274 
2275 	sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
2276 	if ((status & AGE_RRD_ERROR) != 0 &&
2277 	    (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
2278 	    AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
2279 		/*
2280 		 * We want to pass the following frames to upper
2281 		 * layer regardless of error status of Rx return
2282 		 * ring.
2283 		 *
2284 		 *  o IP/TCP/UDP checksum is bad.
2285 		 *  o frame length and protocol specific length
2286 		 *     does not match.
2287 		 */
2288 		sc->age_cdata.age_rx_cons += nsegs;
2289 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
2290 		return;
2291 	}
2292 
2293 	pktlen = 0;
2294 	for (count = 0; count < nsegs; count++,
2295 	    AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
2296 		rxd = &sc->age_cdata.age_rxdesc[rx_cons];
2297 		mp = rxd->rx_m;
2298 		desc = rxd->rx_desc;
2299 		/* Add a new receive buffer to the ring. */
2300 		if (age_newbuf(sc, rxd) != 0) {
2301 			ifp->if_iqdrops++;
2302 			/* Reuse Rx buffers. */
2303 			if (sc->age_cdata.age_rxhead != NULL) {
2304 				m_freem(sc->age_cdata.age_rxhead);
2305 				AGE_RXCHAIN_RESET(sc);
2306 			}
2307 			break;
2308 		}
2309 
2310 		/* The length of the first mbuf is computed last. */
2311 		if (count != 0) {
2312 			mp->m_len = AGE_RX_BYTES(le32toh(desc->len));
2313 			pktlen += mp->m_len;
2314 		}
2315 
2316 		/* Chain received mbufs. */
2317 		if (sc->age_cdata.age_rxhead == NULL) {
2318 			sc->age_cdata.age_rxhead = mp;
2319 			sc->age_cdata.age_rxtail = mp;
2320 		} else {
2321 			mp->m_flags &= ~M_PKTHDR;
2322 			sc->age_cdata.age_rxprev_tail =
2323 			    sc->age_cdata.age_rxtail;
2324 			sc->age_cdata.age_rxtail->m_next = mp;
2325 			sc->age_cdata.age_rxtail = mp;
2326 		}
2327 
2328 		if (count == nsegs - 1) {
2329 			/*
2330 			 * It seems that L1 controller has no way
2331 			 * to tell hardware to strip CRC bytes.
2332 			 */
2333 			sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
2334 			if (nsegs > 1) {
2335 				/* Remove the CRC bytes in chained mbufs. */
2336 				pktlen -= ETHER_CRC_LEN;
2337 				if (mp->m_len <= ETHER_CRC_LEN) {
2338 					sc->age_cdata.age_rxtail =
2339 					    sc->age_cdata.age_rxprev_tail;
2340 					sc->age_cdata.age_rxtail->m_len -=
2341 					    (ETHER_CRC_LEN - mp->m_len);
2342 					sc->age_cdata.age_rxtail->m_next = NULL;
2343 					m_freem(mp);
2344 				} else {
2345 					mp->m_len -= ETHER_CRC_LEN;
2346 				}
2347 			}
2348 
2349 			m = sc->age_cdata.age_rxhead;
2350 			m->m_flags |= M_PKTHDR;
2351 			m->m_pkthdr.rcvif = ifp;
2352 			m->m_pkthdr.len = sc->age_cdata.age_rxlen;
2353 			/* Set the first mbuf length. */
2354 			m->m_len = sc->age_cdata.age_rxlen - pktlen;
2355 
2356 			/*
2357 			 * Set checksum information.
2358 			 * It seems that L1 controller can compute partial
2359 			 * checksum. The partial checksum value can be used
2360 			 * to accelerate checksum computation for fragmented
2361 			 * TCP/UDP packets. Upper network stack already
2362 			 * takes advantage of the partial checksum value in
2363 			 * IP reassembly stage. But I'm not sure the
2364 			 * correctness of the partial hardware checksum
2365 			 * assistance due to lack of data sheet. If it is
2366 			 * proven to work on L1 I'll enable it.
2367 			 */
2368 			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
2369 			    (status & AGE_RRD_IPV4) != 0) {
2370 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2371 				if ((status & AGE_RRD_IPCSUM_NOK) == 0)
2372 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2373 				if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
2374 				    (status & AGE_RRD_TCP_UDPCSUM_NOK) == 0) {
2375 					m->m_pkthdr.csum_flags |=
2376 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2377 					m->m_pkthdr.csum_data = 0xffff;
2378 				}
2379 				/*
2380 				 * Don't mark bad checksum for TCP/UDP frames
2381 				 * as fragmented frames may always have set
2382 				 * bad checksummed bit of descriptor status.
2383 				 */
2384 			}
2385 
2386 			/* Check for VLAN tagged frames. */
2387 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
2388 			    (status & AGE_RRD_VLAN) != 0) {
2389 				vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
2390 				m->m_pkthdr.ether_vtag = AGE_RX_VLAN_TAG(vtag);
2391 				m->m_flags |= M_VLANTAG;
2392 			}
2393 
2394 			/* Pass it on. */
2395 			AGE_UNLOCK(sc);
2396 			(*ifp->if_input)(ifp, m);
2397 			AGE_LOCK(sc);
2398 
2399 			/* Reset mbuf chains. */
2400 			AGE_RXCHAIN_RESET(sc);
2401 		}
2402 	}
2403 
2404 	if (count != nsegs) {
2405 		sc->age_cdata.age_rx_cons += nsegs;
2406 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
2407 	} else
2408 		sc->age_cdata.age_rx_cons = rx_cons;
2409 }
2410 
2411 static int
2412 age_rxintr(struct age_softc *sc, int rr_prod, int count)
2413 {
2414 	struct rx_rdesc *rxrd;
2415 	int rr_cons, nsegs, pktlen, prog;
2416 
2417 	AGE_LOCK_ASSERT(sc);
2418 
2419 	rr_cons = sc->age_cdata.age_rr_cons;
2420 	if (rr_cons == rr_prod)
2421 		return (0);
2422 
2423 	bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2424 	    sc->age_cdata.age_rr_ring_map,
2425 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2426 
2427 	for (prog = 0; rr_cons != rr_prod; prog++) {
2428 		if (count <= 0)
2429 			break;
2430 		rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
2431 		nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
2432 		if (nsegs == 0)
2433 			break;
2434 		/*
2435 		 * Check number of segments against received bytes.
2436 		 * Non-matching value would indicate that hardware
2437 		 * is still trying to update Rx return descriptors.
2438 		 * I'm not sure whether this check is really needed.
2439 		 */
2440 		pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
2441 		if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
2442 		    (MCLBYTES - ETHER_ALIGN)))
2443 			break;
2444 
2445 		prog++;
2446 		/* Received a frame. */
2447 		age_rxeof(sc, rxrd);
2448 		/* Clear return ring. */
2449 		rxrd->index = 0;
2450 		AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
2451 	}
2452 
2453 	if (prog > 0) {
2454 		/* Update the consumer index. */
2455 		sc->age_cdata.age_rr_cons = rr_cons;
2456 
2457 		/* Sync descriptors. */
2458 		bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2459 		    sc->age_cdata.age_rr_ring_map,
2460 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2461 
2462 		/* Notify hardware availability of new Rx buffers. */
2463 		AGE_COMMIT_MBOX(sc);
2464 	}
2465 
2466 	return (count > 0 ? 0 : EAGAIN);
2467 }
2468 
2469 static void
2470 age_tick(void *arg)
2471 {
2472 	struct age_softc *sc;
2473 	struct mii_data *mii;
2474 
2475 	sc = (struct age_softc *)arg;
2476 
2477 	AGE_LOCK_ASSERT(sc);
2478 
2479 	mii = device_get_softc(sc->age_miibus);
2480 	mii_tick(mii);
2481 	age_watchdog(sc);
2482 	callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2483 }
2484 
2485 static void
2486 age_reset(struct age_softc *sc)
2487 {
2488 	uint32_t reg;
2489 	int i;
2490 
2491 	CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
2492 	CSR_READ_4(sc, AGE_MASTER_CFG);
2493 	DELAY(1000);
2494 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2495 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2496 			break;
2497 		DELAY(10);
2498 	}
2499 
2500 	if (i == 0)
2501 		device_printf(sc->age_dev, "reset timeout(0x%08x)!\n", reg);
2502 	/* Initialize PCIe module. From Linux. */
2503 	CSR_WRITE_4(sc, 0x12FC, 0x6500);
2504 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2505 }
2506 
2507 static void
2508 age_init(void *xsc)
2509 {
2510 	struct age_softc *sc;
2511 
2512 	sc = (struct age_softc *)xsc;
2513 	AGE_LOCK(sc);
2514 	age_init_locked(sc);
2515 	AGE_UNLOCK(sc);
2516 }
2517 
2518 static void
2519 age_init_locked(struct age_softc *sc)
2520 {
2521 	struct ifnet *ifp;
2522 	struct mii_data *mii;
2523 	uint8_t eaddr[ETHER_ADDR_LEN];
2524 	bus_addr_t paddr;
2525 	uint32_t reg, fsize;
2526 	uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
2527 	int error;
2528 
2529 	AGE_LOCK_ASSERT(sc);
2530 
2531 	ifp = sc->age_ifp;
2532 	mii = device_get_softc(sc->age_miibus);
2533 
2534 	/*
2535 	 * Cancel any pending I/O.
2536 	 */
2537 	age_stop(sc);
2538 
2539 	/*
2540 	 * Reset the chip to a known state.
2541 	 */
2542 	age_reset(sc);
2543 
2544 	/* Initialize descriptors. */
2545 	error = age_init_rx_ring(sc);
2546         if (error != 0) {
2547                 device_printf(sc->age_dev, "no memory for Rx buffers.\n");
2548                 age_stop(sc);
2549 		return;
2550         }
2551 	age_init_rr_ring(sc);
2552 	age_init_tx_ring(sc);
2553 	age_init_cmb_block(sc);
2554 	age_init_smb_block(sc);
2555 
2556 	/* Reprogram the station address. */
2557 	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2558 	CSR_WRITE_4(sc, AGE_PAR0,
2559 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2560 	CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
2561 
2562 	/* Set descriptor base addresses. */
2563 	paddr = sc->age_rdata.age_tx_ring_paddr;
2564 	CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
2565 	paddr = sc->age_rdata.age_rx_ring_paddr;
2566 	CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
2567 	paddr = sc->age_rdata.age_rr_ring_paddr;
2568 	CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
2569 	paddr = sc->age_rdata.age_tx_ring_paddr;
2570 	CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
2571 	paddr = sc->age_rdata.age_cmb_block_paddr;
2572 	CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
2573 	paddr = sc->age_rdata.age_smb_block_paddr;
2574 	CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
2575 	/* Set Rx/Rx return descriptor counter. */
2576 	CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
2577 	    ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
2578 	    DESC_RRD_CNT_MASK) |
2579 	    ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
2580 	/* Set Tx descriptor counter. */
2581 	CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
2582 	    (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
2583 
2584 	/* Tell hardware that we're ready to load descriptors. */
2585 	CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
2586 
2587 	/*
2588 	 * Initialize mailbox register.
2589 	 * Updated producer/consumer index information is exchanged
2590 	 * through this mailbox register. However Tx producer and
2591 	 * Rx return consumer/Rx producer are all shared such that
2592 	 * it's hard to separate code path between Tx and Rx without
2593 	 * locking. If L1 hardware have a separate mail box register
2594 	 * for Tx and Rx consumer/producer management we could have
2595 	 * indepent Tx/Rx handler which in turn Rx handler could have
2596 	 * been run without any locking.
2597 	 */
2598 	AGE_COMMIT_MBOX(sc);
2599 
2600 	/* Configure IPG/IFG parameters. */
2601 	CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
2602 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
2603 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2604 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2605 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
2606 
2607 	/* Set parameters for half-duplex media. */
2608 	CSR_WRITE_4(sc, AGE_HDPX_CFG,
2609 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2610 	    HDPX_CFG_LCOL_MASK) |
2611 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2612 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2613 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2614 	    HDPX_CFG_ABEBT_MASK) |
2615 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2616 	    HDPX_CFG_JAMIPG_MASK));
2617 
2618 	/* Configure interrupt moderation timer. */
2619 	CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
2620 	reg = CSR_READ_4(sc, AGE_MASTER_CFG);
2621 	reg &= ~MASTER_MTIMER_ENB;
2622 	if (AGE_USECS(sc->age_int_mod) == 0)
2623 		reg &= ~MASTER_ITIMER_ENB;
2624 	else
2625 		reg |= MASTER_ITIMER_ENB;
2626 	CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
2627 	if (bootverbose)
2628 		device_printf(sc->age_dev, "interrupt moderation is %d us.\n",
2629 		    sc->age_int_mod);
2630 	CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
2631 
2632 	/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
2633 	if (ifp->if_mtu < ETHERMTU)
2634 		sc->age_max_frame_size = ETHERMTU;
2635 	else
2636 		sc->age_max_frame_size = ifp->if_mtu;
2637 	sc->age_max_frame_size += ETHER_HDR_LEN +
2638 	    sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
2639 	CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
2640 	/* Configure jumbo frame. */
2641 	fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
2642 	CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
2643 	    (((fsize / sizeof(uint64_t)) <<
2644 	    RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
2645 	    ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
2646 	    RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
2647 	    ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
2648 	    RXQ_JUMBO_CFG_RRD_TIMER_MASK));
2649 
2650 	/* Configure flow-control parameters. From Linux. */
2651 	if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
2652 		/*
2653 		 * Magic workaround for old-L1.
2654 		 * Don't know which hw revision requires this magic.
2655 		 */
2656 		CSR_WRITE_4(sc, 0x12FC, 0x6500);
2657 		/*
2658 		 * Another magic workaround for flow-control mode
2659 		 * change. From Linux.
2660 		 */
2661 		CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2662 	}
2663 	/*
2664 	 * TODO
2665 	 *  Should understand pause parameter relationships between FIFO
2666 	 *  size and number of Rx descriptors and Rx return descriptors.
2667 	 *
2668 	 *  Magic parameters came from Linux.
2669 	 */
2670 	switch (sc->age_chip_rev) {
2671 	case 0x8001:
2672 	case 0x9001:
2673 	case 0x9002:
2674 	case 0x9003:
2675 		rxf_hi = AGE_RX_RING_CNT / 16;
2676 		rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
2677 		rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
2678 		rrd_lo = AGE_RR_RING_CNT / 16;
2679 		break;
2680 	default:
2681 		reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
2682 		rxf_lo = reg / 16;
2683 		if (rxf_lo < 192)
2684 			rxf_lo = 192;
2685 		rxf_hi = (reg * 7) / 8;
2686 		if (rxf_hi < rxf_lo)
2687 			rxf_hi = rxf_lo + 16;
2688 		reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
2689 		rrd_lo = reg / 8;
2690 		rrd_hi = (reg * 7) / 8;
2691 		if (rrd_lo < 2)
2692 			rrd_lo = 2;
2693 		if (rrd_hi < rrd_lo)
2694 			rrd_hi = rrd_lo + 3;
2695 		break;
2696 	}
2697 	CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
2698 	    ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
2699 	    RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
2700 	    ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
2701 	    RXQ_FIFO_PAUSE_THRESH_HI_MASK));
2702 	CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
2703 	    ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
2704 	    RXQ_RRD_PAUSE_THRESH_LO_MASK) |
2705 	    ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
2706 	    RXQ_RRD_PAUSE_THRESH_HI_MASK));
2707 
2708 	/* Configure RxQ. */
2709 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
2710 	    ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
2711 	    RXQ_CFG_RD_BURST_MASK) |
2712 	    ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
2713 	    RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
2714 	    ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
2715 	    RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
2716 	    RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
2717 
2718 	/* Configure TxQ. */
2719 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
2720 	    ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
2721 	    TXQ_CFG_TPD_BURST_MASK) |
2722 	    ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
2723 	    TXQ_CFG_TX_FIFO_BURST_MASK) |
2724 	    ((TXQ_CFG_TPD_FETCH_DEFAULT <<
2725 	    TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
2726 	    TXQ_CFG_ENB);
2727 
2728 	CSR_WRITE_4(sc, AGE_TX_JUMBO_TPD_TH_IPG,
2729 	    (((fsize / sizeof(uint64_t) << TX_JUMBO_TPD_TH_SHIFT)) &
2730 	    TX_JUMBO_TPD_TH_MASK) |
2731 	    ((TX_JUMBO_TPD_IPG_DEFAULT << TX_JUMBO_TPD_IPG_SHIFT) &
2732 	    TX_JUMBO_TPD_IPG_MASK));
2733 	/* Configure DMA parameters. */
2734 	CSR_WRITE_4(sc, AGE_DMA_CFG,
2735 	    DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
2736 	    sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
2737 	    sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
2738 
2739 	/* Configure CMB DMA write threshold. */
2740 	CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
2741 	    ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
2742 	    CMB_WR_THRESH_RRD_MASK) |
2743 	    ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
2744 	    CMB_WR_THRESH_TPD_MASK));
2745 
2746 	/* Set CMB/SMB timer and enable them. */
2747 	CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
2748 	    ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
2749 	    ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
2750 	/* Request SMB updates for every seconds. */
2751 	CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
2752 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
2753 
2754 	/*
2755 	 * Disable all WOL bits as WOL can interfere normal Rx
2756 	 * operation.
2757 	 */
2758 	CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
2759 
2760 	/*
2761 	 * Configure Tx/Rx MACs.
2762 	 *  - Auto-padding for short frames.
2763 	 *  - Enable CRC generation.
2764 	 *  Start with full-duplex/1000Mbps media. Actual reconfiguration
2765 	 *  of MAC is followed after link establishment.
2766 	 */
2767 	CSR_WRITE_4(sc, AGE_MAC_CFG,
2768 	    MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
2769 	    MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
2770 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2771 	    MAC_CFG_PREAMBLE_MASK));
2772 	/* Set up the receive filter. */
2773 	age_rxfilter(sc);
2774 	age_rxvlan(sc);
2775 
2776 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2777 	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2778 		reg |= MAC_CFG_RXCSUM_ENB;
2779 
2780 	/* Ack all pending interrupts and clear it. */
2781 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2782 	CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
2783 
2784 	/* Finally enable Tx/Rx MAC. */
2785 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
2786 
2787 	sc->age_flags &= ~AGE_FLAG_LINK;
2788 	/* Switch to the current media. */
2789 	mii_mediachg(mii);
2790 
2791 	callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2792 
2793 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2794 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2795 }
2796 
2797 static void
2798 age_stop(struct age_softc *sc)
2799 {
2800 	struct ifnet *ifp;
2801 	struct age_txdesc *txd;
2802 	struct age_rxdesc *rxd;
2803 	uint32_t reg;
2804 	int i;
2805 
2806 	AGE_LOCK_ASSERT(sc);
2807 	/*
2808 	 * Mark the interface down and cancel the watchdog timer.
2809 	 */
2810 	ifp = sc->age_ifp;
2811 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2812 	sc->age_flags &= ~AGE_FLAG_LINK;
2813 	callout_stop(&sc->age_tick_ch);
2814 	sc->age_watchdog_timer = 0;
2815 
2816 	/*
2817 	 * Disable interrupts.
2818 	 */
2819 	CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
2820 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
2821 	/* Stop CMB/SMB updates. */
2822 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
2823 	/* Stop Rx/Tx MAC. */
2824 	age_stop_rxmac(sc);
2825 	age_stop_txmac(sc);
2826 	/* Stop DMA. */
2827 	CSR_WRITE_4(sc, AGE_DMA_CFG,
2828 	    CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
2829 	/* Stop TxQ/RxQ. */
2830 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
2831 	    CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
2832 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
2833 	    CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
2834 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2835 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2836 			break;
2837 		DELAY(10);
2838 	}
2839 	if (i == 0)
2840 		device_printf(sc->age_dev,
2841 		    "stopping Rx/Tx MACs timed out(0x%08x)!\n", reg);
2842 
2843 	 /* Reclaim Rx buffers that have been processed. */
2844 	if (sc->age_cdata.age_rxhead != NULL)
2845 		m_freem(sc->age_cdata.age_rxhead);
2846 	AGE_RXCHAIN_RESET(sc);
2847 	/*
2848 	 * Free RX and TX mbufs still in the queues.
2849 	 */
2850 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
2851 		rxd = &sc->age_cdata.age_rxdesc[i];
2852 		if (rxd->rx_m != NULL) {
2853 			bus_dmamap_sync(sc->age_cdata.age_rx_tag,
2854 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2855 			bus_dmamap_unload(sc->age_cdata.age_rx_tag,
2856 			    rxd->rx_dmamap);
2857 			m_freem(rxd->rx_m);
2858 			rxd->rx_m = NULL;
2859 		}
2860         }
2861 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2862 		txd = &sc->age_cdata.age_txdesc[i];
2863 		if (txd->tx_m != NULL) {
2864 			bus_dmamap_sync(sc->age_cdata.age_tx_tag,
2865 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2866 			bus_dmamap_unload(sc->age_cdata.age_tx_tag,
2867 			    txd->tx_dmamap);
2868 			m_freem(txd->tx_m);
2869 			txd->tx_m = NULL;
2870 		}
2871         }
2872 }
2873 
2874 static void
2875 age_stop_txmac(struct age_softc *sc)
2876 {
2877 	uint32_t reg;
2878 	int i;
2879 
2880 	AGE_LOCK_ASSERT(sc);
2881 
2882 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2883 	if ((reg & MAC_CFG_TX_ENB) != 0) {
2884 		reg &= ~MAC_CFG_TX_ENB;
2885 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2886 	}
2887 	/* Stop Tx DMA engine. */
2888 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2889 	if ((reg & DMA_CFG_RD_ENB) != 0) {
2890 		reg &= ~DMA_CFG_RD_ENB;
2891 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2892 	}
2893 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2894 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2895 		    (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2896 			break;
2897 		DELAY(10);
2898 	}
2899 	if (i == 0)
2900 		device_printf(sc->age_dev, "stopping TxMAC timeout!\n");
2901 }
2902 
2903 static void
2904 age_stop_rxmac(struct age_softc *sc)
2905 {
2906 	uint32_t reg;
2907 	int i;
2908 
2909 	AGE_LOCK_ASSERT(sc);
2910 
2911 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2912 	if ((reg & MAC_CFG_RX_ENB) != 0) {
2913 		reg &= ~MAC_CFG_RX_ENB;
2914 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2915 	}
2916 	/* Stop Rx DMA engine. */
2917 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2918 	if ((reg & DMA_CFG_WR_ENB) != 0) {
2919 		reg &= ~DMA_CFG_WR_ENB;
2920 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2921 	}
2922 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2923 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2924 		    (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2925 			break;
2926 		DELAY(10);
2927 	}
2928 	if (i == 0)
2929 		device_printf(sc->age_dev, "stopping RxMAC timeout!\n");
2930 }
2931 
2932 static void
2933 age_init_tx_ring(struct age_softc *sc)
2934 {
2935 	struct age_ring_data *rd;
2936 	struct age_txdesc *txd;
2937 	int i;
2938 
2939 	AGE_LOCK_ASSERT(sc);
2940 
2941 	sc->age_cdata.age_tx_prod = 0;
2942 	sc->age_cdata.age_tx_cons = 0;
2943 	sc->age_cdata.age_tx_cnt = 0;
2944 
2945 	rd = &sc->age_rdata;
2946 	bzero(rd->age_tx_ring, AGE_TX_RING_SZ);
2947 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2948 		txd = &sc->age_cdata.age_txdesc[i];
2949 		txd->tx_desc = &rd->age_tx_ring[i];
2950 		txd->tx_m = NULL;
2951 	}
2952 
2953 	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2954 	    sc->age_cdata.age_tx_ring_map,
2955 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2956 }
2957 
2958 static int
2959 age_init_rx_ring(struct age_softc *sc)
2960 {
2961 	struct age_ring_data *rd;
2962 	struct age_rxdesc *rxd;
2963 	int i;
2964 
2965 	AGE_LOCK_ASSERT(sc);
2966 
2967 	sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
2968 	sc->age_morework = 0;
2969 	rd = &sc->age_rdata;
2970 	bzero(rd->age_rx_ring, AGE_RX_RING_SZ);
2971 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
2972 		rxd = &sc->age_cdata.age_rxdesc[i];
2973 		rxd->rx_m = NULL;
2974 		rxd->rx_desc = &rd->age_rx_ring[i];
2975 		if (age_newbuf(sc, rxd) != 0)
2976 			return (ENOBUFS);
2977 	}
2978 
2979 	bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2980 	    sc->age_cdata.age_rx_ring_map,
2981 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2982 
2983 	return (0);
2984 }
2985 
2986 static void
2987 age_init_rr_ring(struct age_softc *sc)
2988 {
2989 	struct age_ring_data *rd;
2990 
2991 	AGE_LOCK_ASSERT(sc);
2992 
2993 	sc->age_cdata.age_rr_cons = 0;
2994 	AGE_RXCHAIN_RESET(sc);
2995 
2996 	rd = &sc->age_rdata;
2997 	bzero(rd->age_rr_ring, AGE_RR_RING_SZ);
2998 	bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2999 	    sc->age_cdata.age_rr_ring_map,
3000 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3001 }
3002 
3003 static void
3004 age_init_cmb_block(struct age_softc *sc)
3005 {
3006 	struct age_ring_data *rd;
3007 
3008 	AGE_LOCK_ASSERT(sc);
3009 
3010 	rd = &sc->age_rdata;
3011 	bzero(rd->age_cmb_block, AGE_CMB_BLOCK_SZ);
3012 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
3013 	    sc->age_cdata.age_cmb_block_map,
3014 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3015 }
3016 
3017 static void
3018 age_init_smb_block(struct age_softc *sc)
3019 {
3020 	struct age_ring_data *rd;
3021 
3022 	AGE_LOCK_ASSERT(sc);
3023 
3024 	rd = &sc->age_rdata;
3025 	bzero(rd->age_smb_block, AGE_SMB_BLOCK_SZ);
3026 	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
3027 	    sc->age_cdata.age_smb_block_map,
3028 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3029 }
3030 
3031 static int
3032 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd)
3033 {
3034 	struct rx_desc *desc;
3035 	struct mbuf *m;
3036 	bus_dma_segment_t segs[1];
3037 	bus_dmamap_t map;
3038 	int nsegs;
3039 
3040 	AGE_LOCK_ASSERT(sc);
3041 
3042 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
3043 	if (m == NULL)
3044 		return (ENOBUFS);
3045 	m->m_len = m->m_pkthdr.len = MCLBYTES;
3046 	m_adj(m, ETHER_ALIGN);
3047 
3048 	if (bus_dmamap_load_mbuf_sg(sc->age_cdata.age_rx_tag,
3049 	    sc->age_cdata.age_rx_sparemap, m, segs, &nsegs, 0) != 0) {
3050 		m_freem(m);
3051 		return (ENOBUFS);
3052 	}
3053 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
3054 
3055 	if (rxd->rx_m != NULL) {
3056 		bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3057 		    BUS_DMASYNC_POSTREAD);
3058 		bus_dmamap_unload(sc->age_cdata.age_rx_tag, rxd->rx_dmamap);
3059 	}
3060 	map = rxd->rx_dmamap;
3061 	rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
3062 	sc->age_cdata.age_rx_sparemap = map;
3063 	bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3064 	    BUS_DMASYNC_PREREAD);
3065 	rxd->rx_m = m;
3066 
3067 	desc = rxd->rx_desc;
3068 	desc->addr = htole64(segs[0].ds_addr);
3069 	desc->len = htole32((segs[0].ds_len & AGE_RD_LEN_MASK) <<
3070 	    AGE_RD_LEN_SHIFT);
3071 	return (0);
3072 }
3073 
3074 static void
3075 age_rxvlan(struct age_softc *sc)
3076 {
3077 	struct ifnet *ifp;
3078 	uint32_t reg;
3079 
3080 	AGE_LOCK_ASSERT(sc);
3081 
3082 	ifp = sc->age_ifp;
3083 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
3084 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3085 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3086 		reg |= MAC_CFG_VLAN_TAG_STRIP;
3087 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
3088 }
3089 
3090 static void
3091 age_rxfilter(struct age_softc *sc)
3092 {
3093 	struct ifnet *ifp;
3094 	struct ifmultiaddr *ifma;
3095 	uint32_t crc;
3096 	uint32_t mchash[2];
3097 	uint32_t rxcfg;
3098 
3099 	AGE_LOCK_ASSERT(sc);
3100 
3101 	ifp = sc->age_ifp;
3102 
3103 	rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
3104 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3105 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
3106 		rxcfg |= MAC_CFG_BCAST;
3107 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3108 		if ((ifp->if_flags & IFF_PROMISC) != 0)
3109 			rxcfg |= MAC_CFG_PROMISC;
3110 		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
3111 			rxcfg |= MAC_CFG_ALLMULTI;
3112 		CSR_WRITE_4(sc, AGE_MAR0, 0xFFFFFFFF);
3113 		CSR_WRITE_4(sc, AGE_MAR1, 0xFFFFFFFF);
3114 		CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3115 		return;
3116 	}
3117 
3118 	/* Program new filter. */
3119 	bzero(mchash, sizeof(mchash));
3120 
3121 	if_maddr_rlock(ifp);
3122 	TAILQ_FOREACH(ifma, &sc->age_ifp->if_multiaddrs, ifma_link) {
3123 		if (ifma->ifma_addr->sa_family != AF_LINK)
3124 			continue;
3125 		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
3126 		    ifma->ifma_addr), ETHER_ADDR_LEN);
3127 		mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3128 	}
3129 	if_maddr_runlock(ifp);
3130 
3131 	CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
3132 	CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
3133 	CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3134 }
3135 
3136 static int
3137 sysctl_age_stats(SYSCTL_HANDLER_ARGS)
3138 {
3139 	struct age_softc *sc;
3140 	struct age_stats *stats;
3141 	int error, result;
3142 
3143 	result = -1;
3144 	error = sysctl_handle_int(oidp, &result, 0, req);
3145 
3146 	if (error != 0 || req->newptr == NULL)
3147 		return (error);
3148 
3149 	if (result != 1)
3150 		return (error);
3151 
3152 	sc = (struct age_softc *)arg1;
3153 	stats = &sc->age_stat;
3154 	printf("%s statistics:\n", device_get_nameunit(sc->age_dev));
3155 	printf("Transmit good frames : %ju\n",
3156 	    (uintmax_t)stats->tx_frames);
3157 	printf("Transmit good broadcast frames : %ju\n",
3158 	    (uintmax_t)stats->tx_bcast_frames);
3159 	printf("Transmit good multicast frames : %ju\n",
3160 	    (uintmax_t)stats->tx_mcast_frames);
3161 	printf("Transmit pause control frames : %u\n",
3162 	    stats->tx_pause_frames);
3163 	printf("Transmit control frames : %u\n",
3164 	    stats->tx_control_frames);
3165 	printf("Transmit frames with excessive deferrals : %u\n",
3166 	    stats->tx_excess_defer);
3167 	printf("Transmit deferrals : %u\n",
3168 	    stats->tx_deferred);
3169 	printf("Transmit good octets : %ju\n",
3170 	    (uintmax_t)stats->tx_bytes);
3171 	printf("Transmit good broadcast octets : %ju\n",
3172 	    (uintmax_t)stats->tx_bcast_bytes);
3173 	printf("Transmit good multicast octets : %ju\n",
3174 	    (uintmax_t)stats->tx_mcast_bytes);
3175 	printf("Transmit frames 64 bytes : %ju\n",
3176 	    (uintmax_t)stats->tx_pkts_64);
3177 	printf("Transmit frames 65 to 127 bytes : %ju\n",
3178 	    (uintmax_t)stats->tx_pkts_65_127);
3179 	printf("Transmit frames 128 to 255 bytes : %ju\n",
3180 	    (uintmax_t)stats->tx_pkts_128_255);
3181 	printf("Transmit frames 256 to 511 bytes : %ju\n",
3182 	    (uintmax_t)stats->tx_pkts_256_511);
3183 	printf("Transmit frames 512 to 1024 bytes : %ju\n",
3184 	    (uintmax_t)stats->tx_pkts_512_1023);
3185 	printf("Transmit frames 1024 to 1518 bytes : %ju\n",
3186 	    (uintmax_t)stats->tx_pkts_1024_1518);
3187 	printf("Transmit frames 1519 to MTU bytes : %ju\n",
3188 	    (uintmax_t)stats->tx_pkts_1519_max);
3189 	printf("Transmit single collisions : %u\n",
3190 	    stats->tx_single_colls);
3191 	printf("Transmit multiple collisions : %u\n",
3192 	    stats->tx_multi_colls);
3193 	printf("Transmit late collisions : %u\n",
3194 	    stats->tx_late_colls);
3195 	printf("Transmit abort due to excessive collisions : %u\n",
3196 	    stats->tx_excess_colls);
3197 	printf("Transmit underruns due to FIFO underruns : %u\n",
3198 	    stats->tx_underrun);
3199 	printf("Transmit descriptor write-back errors : %u\n",
3200 	    stats->tx_desc_underrun);
3201 	printf("Transmit frames with length mismatched frame size : %u\n",
3202 	    stats->tx_lenerrs);
3203 	printf("Transmit frames with truncated due to MTU size : %u\n",
3204 	    stats->tx_lenerrs);
3205 
3206 	printf("Receive good frames : %ju\n",
3207 	    (uintmax_t)stats->rx_frames);
3208 	printf("Receive good broadcast frames : %ju\n",
3209 	    (uintmax_t)stats->rx_bcast_frames);
3210 	printf("Receive good multicast frames : %ju\n",
3211 	    (uintmax_t)stats->rx_mcast_frames);
3212 	printf("Receive pause control frames : %u\n",
3213 	    stats->rx_pause_frames);
3214 	printf("Receive control frames : %u\n",
3215 	    stats->rx_control_frames);
3216 	printf("Receive CRC errors : %u\n",
3217 	    stats->rx_crcerrs);
3218 	printf("Receive frames with length errors : %u\n",
3219 	    stats->rx_lenerrs);
3220 	printf("Receive good octets : %ju\n",
3221 	    (uintmax_t)stats->rx_bytes);
3222 	printf("Receive good broadcast octets : %ju\n",
3223 	    (uintmax_t)stats->rx_bcast_bytes);
3224 	printf("Receive good multicast octets : %ju\n",
3225 	    (uintmax_t)stats->rx_mcast_bytes);
3226 	printf("Receive frames too short : %u\n",
3227 	    stats->rx_runts);
3228 	printf("Receive fragmented frames : %ju\n",
3229 	    (uintmax_t)stats->rx_fragments);
3230 	printf("Receive frames 64 bytes : %ju\n",
3231 	    (uintmax_t)stats->rx_pkts_64);
3232 	printf("Receive frames 65 to 127 bytes : %ju\n",
3233 	    (uintmax_t)stats->rx_pkts_65_127);
3234 	printf("Receive frames 128 to 255 bytes : %ju\n",
3235 	    (uintmax_t)stats->rx_pkts_128_255);
3236 	printf("Receive frames 256 to 511 bytes : %ju\n",
3237 	    (uintmax_t)stats->rx_pkts_256_511);
3238 	printf("Receive frames 512 to 1024 bytes : %ju\n",
3239 	    (uintmax_t)stats->rx_pkts_512_1023);
3240 	printf("Receive frames 1024 to 1518 bytes : %ju\n",
3241 	    (uintmax_t)stats->rx_pkts_1024_1518);
3242 	printf("Receive frames 1519 to MTU bytes : %ju\n",
3243 	    (uintmax_t)stats->rx_pkts_1519_max);
3244 	printf("Receive frames too long : %ju\n",
3245 	    (uint64_t)stats->rx_pkts_truncated);
3246 	printf("Receive frames with FIFO overflow : %u\n",
3247 	    stats->rx_fifo_oflows);
3248 	printf("Receive frames with return descriptor overflow : %u\n",
3249 	    stats->rx_desc_oflows);
3250 	printf("Receive frames with alignment errors : %u\n",
3251 	    stats->rx_alignerrs);
3252 	printf("Receive frames dropped due to address filtering : %ju\n",
3253 	    (uint64_t)stats->rx_pkts_filtered);
3254 
3255 	return (error);
3256 }
3257 
3258 static int
3259 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3260 {
3261 	int error, value;
3262 
3263 	if (arg1 == NULL)
3264 		return (EINVAL);
3265 	value = *(int *)arg1;
3266 	error = sysctl_handle_int(oidp, &value, 0, req);
3267 	if (error || req->newptr == NULL)
3268 		return (error);
3269 	if (value < low || value > high)
3270 		return (EINVAL);
3271         *(int *)arg1 = value;
3272 
3273         return (0);
3274 }
3275 
3276 static int
3277 sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS)
3278 {
3279 	return (sysctl_int_range(oidp, arg1, arg2, req,
3280 	    AGE_PROC_MIN, AGE_PROC_MAX));
3281 }
3282 
3283 static int
3284 sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS)
3285 {
3286 
3287 	return (sysctl_int_range(oidp, arg1, arg2, req, AGE_IM_TIMER_MIN,
3288 	    AGE_IM_TIMER_MAX));
3289 }
3290