1 /*- 2 * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice unmodified, this list of conditions, and the following 10 * disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/systm.h> 35 #include <sys/bus.h> 36 #include <sys/endian.h> 37 #include <sys/kernel.h> 38 #include <sys/malloc.h> 39 #include <sys/mbuf.h> 40 #include <sys/rman.h> 41 #include <sys/module.h> 42 #include <sys/queue.h> 43 #include <sys/socket.h> 44 #include <sys/sockio.h> 45 #include <sys/sysctl.h> 46 #include <sys/taskqueue.h> 47 48 #include <net/bpf.h> 49 #include <net/if.h> 50 #include <net/if_arp.h> 51 #include <net/ethernet.h> 52 #include <net/if_dl.h> 53 #include <net/if_media.h> 54 #include <net/if_types.h> 55 #include <net/if_vlan_var.h> 56 57 #include <netinet/in.h> 58 #include <netinet/in_systm.h> 59 #include <netinet/ip.h> 60 #include <netinet/tcp.h> 61 62 #include <dev/mii/mii.h> 63 #include <dev/mii/miivar.h> 64 65 #include <dev/pci/pcireg.h> 66 #include <dev/pci/pcivar.h> 67 68 #include <machine/bus.h> 69 #include <machine/in_cksum.h> 70 71 #include <dev/age/if_agereg.h> 72 #include <dev/age/if_agevar.h> 73 74 /* "device miibus" required. See GENERIC if you get errors here. */ 75 #include "miibus_if.h" 76 77 #ifndef IFCAP_VLAN_HWTSO 78 #define IFCAP_VLAN_HWTSO 0 79 #endif 80 #define AGE_CSUM_FEATURES (CSUM_TCP | CSUM_UDP) 81 82 MODULE_DEPEND(age, pci, 1, 1, 1); 83 MODULE_DEPEND(age, ether, 1, 1, 1); 84 MODULE_DEPEND(age, miibus, 1, 1, 1); 85 86 /* Tunables. */ 87 static int msi_disable = 0; 88 static int msix_disable = 0; 89 TUNABLE_INT("hw.age.msi_disable", &msi_disable); 90 TUNABLE_INT("hw.age.msix_disable", &msix_disable); 91 92 /* 93 * Devices supported by this driver. 94 */ 95 static struct age_dev { 96 uint16_t age_vendorid; 97 uint16_t age_deviceid; 98 const char *age_name; 99 } age_devs[] = { 100 { VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L1, 101 "Attansic Technology Corp, L1 Gigabit Ethernet" }, 102 }; 103 104 static int age_miibus_readreg(device_t, int, int); 105 static int age_miibus_writereg(device_t, int, int, int); 106 static void age_miibus_statchg(device_t); 107 static void age_mediastatus(struct ifnet *, struct ifmediareq *); 108 static int age_mediachange(struct ifnet *); 109 static int age_probe(device_t); 110 static void age_get_macaddr(struct age_softc *); 111 static void age_phy_reset(struct age_softc *); 112 static int age_attach(device_t); 113 static int age_detach(device_t); 114 static void age_sysctl_node(struct age_softc *); 115 static void age_dmamap_cb(void *, bus_dma_segment_t *, int, int); 116 static int age_check_boundary(struct age_softc *); 117 static int age_dma_alloc(struct age_softc *); 118 static void age_dma_free(struct age_softc *); 119 static int age_shutdown(device_t); 120 static void age_setwol(struct age_softc *); 121 static int age_suspend(device_t); 122 static int age_resume(device_t); 123 static int age_encap(struct age_softc *, struct mbuf **); 124 static void age_tx_task(void *, int); 125 static void age_start(struct ifnet *); 126 static void age_watchdog(struct age_softc *); 127 static int age_ioctl(struct ifnet *, u_long, caddr_t); 128 static void age_mac_config(struct age_softc *); 129 static void age_link_task(void *, int); 130 static void age_stats_update(struct age_softc *); 131 static int age_intr(void *); 132 static void age_int_task(void *, int); 133 static void age_txintr(struct age_softc *, int); 134 static void age_rxeof(struct age_softc *sc, struct rx_rdesc *); 135 static int age_rxintr(struct age_softc *, int, int); 136 static void age_tick(void *); 137 static void age_reset(struct age_softc *); 138 static void age_init(void *); 139 static void age_init_locked(struct age_softc *); 140 static void age_stop(struct age_softc *); 141 static void age_stop_txmac(struct age_softc *); 142 static void age_stop_rxmac(struct age_softc *); 143 static void age_init_tx_ring(struct age_softc *); 144 static int age_init_rx_ring(struct age_softc *); 145 static void age_init_rr_ring(struct age_softc *); 146 static void age_init_cmb_block(struct age_softc *); 147 static void age_init_smb_block(struct age_softc *); 148 static int age_newbuf(struct age_softc *, struct age_rxdesc *); 149 static void age_rxvlan(struct age_softc *); 150 static void age_rxfilter(struct age_softc *); 151 static int sysctl_age_stats(SYSCTL_HANDLER_ARGS); 152 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int); 153 static int sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS); 154 static int sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS); 155 156 157 static device_method_t age_methods[] = { 158 /* Device interface. */ 159 DEVMETHOD(device_probe, age_probe), 160 DEVMETHOD(device_attach, age_attach), 161 DEVMETHOD(device_detach, age_detach), 162 DEVMETHOD(device_shutdown, age_shutdown), 163 DEVMETHOD(device_suspend, age_suspend), 164 DEVMETHOD(device_resume, age_resume), 165 166 /* MII interface. */ 167 DEVMETHOD(miibus_readreg, age_miibus_readreg), 168 DEVMETHOD(miibus_writereg, age_miibus_writereg), 169 DEVMETHOD(miibus_statchg, age_miibus_statchg), 170 171 { NULL, NULL } 172 }; 173 174 static driver_t age_driver = { 175 "age", 176 age_methods, 177 sizeof(struct age_softc) 178 }; 179 180 static devclass_t age_devclass; 181 182 DRIVER_MODULE(age, pci, age_driver, age_devclass, 0, 0); 183 DRIVER_MODULE(miibus, age, miibus_driver, miibus_devclass, 0, 0); 184 185 static struct resource_spec age_res_spec_mem[] = { 186 { SYS_RES_MEMORY, PCIR_BAR(0), RF_ACTIVE }, 187 { -1, 0, 0 } 188 }; 189 190 static struct resource_spec age_irq_spec_legacy[] = { 191 { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE }, 192 { -1, 0, 0 } 193 }; 194 195 static struct resource_spec age_irq_spec_msi[] = { 196 { SYS_RES_IRQ, 1, RF_ACTIVE }, 197 { -1, 0, 0 } 198 }; 199 200 static struct resource_spec age_irq_spec_msix[] = { 201 { SYS_RES_IRQ, 1, RF_ACTIVE }, 202 { -1, 0, 0 } 203 }; 204 205 /* 206 * Read a PHY register on the MII of the L1. 207 */ 208 static int 209 age_miibus_readreg(device_t dev, int phy, int reg) 210 { 211 struct age_softc *sc; 212 uint32_t v; 213 int i; 214 215 sc = device_get_softc(dev); 216 if (phy != sc->age_phyaddr) 217 return (0); 218 219 CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ | 220 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg)); 221 for (i = AGE_PHY_TIMEOUT; i > 0; i--) { 222 DELAY(1); 223 v = CSR_READ_4(sc, AGE_MDIO); 224 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0) 225 break; 226 } 227 228 if (i == 0) { 229 device_printf(sc->age_dev, "phy read timeout : %d\n", reg); 230 return (0); 231 } 232 233 return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT); 234 } 235 236 /* 237 * Write a PHY register on the MII of the L1. 238 */ 239 static int 240 age_miibus_writereg(device_t dev, int phy, int reg, int val) 241 { 242 struct age_softc *sc; 243 uint32_t v; 244 int i; 245 246 sc = device_get_softc(dev); 247 if (phy != sc->age_phyaddr) 248 return (0); 249 250 CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE | 251 (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT | 252 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg)); 253 for (i = AGE_PHY_TIMEOUT; i > 0; i--) { 254 DELAY(1); 255 v = CSR_READ_4(sc, AGE_MDIO); 256 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0) 257 break; 258 } 259 260 if (i == 0) 261 device_printf(sc->age_dev, "phy write timeout : %d\n", reg); 262 263 return (0); 264 } 265 266 /* 267 * Callback from MII layer when media changes. 268 */ 269 static void 270 age_miibus_statchg(device_t dev) 271 { 272 struct age_softc *sc; 273 274 sc = device_get_softc(dev); 275 taskqueue_enqueue(taskqueue_swi, &sc->age_link_task); 276 } 277 278 /* 279 * Get the current interface media status. 280 */ 281 static void 282 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) 283 { 284 struct age_softc *sc; 285 struct mii_data *mii; 286 287 sc = ifp->if_softc; 288 AGE_LOCK(sc); 289 mii = device_get_softc(sc->age_miibus); 290 291 mii_pollstat(mii); 292 AGE_UNLOCK(sc); 293 ifmr->ifm_status = mii->mii_media_status; 294 ifmr->ifm_active = mii->mii_media_active; 295 } 296 297 /* 298 * Set hardware to newly-selected media. 299 */ 300 static int 301 age_mediachange(struct ifnet *ifp) 302 { 303 struct age_softc *sc; 304 struct mii_data *mii; 305 struct mii_softc *miisc; 306 int error; 307 308 sc = ifp->if_softc; 309 AGE_LOCK(sc); 310 mii = device_get_softc(sc->age_miibus); 311 if (mii->mii_instance != 0) { 312 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) 313 mii_phy_reset(miisc); 314 } 315 error = mii_mediachg(mii); 316 AGE_UNLOCK(sc); 317 318 return (error); 319 } 320 321 static int 322 age_probe(device_t dev) 323 { 324 struct age_dev *sp; 325 int i; 326 uint16_t vendor, devid; 327 328 vendor = pci_get_vendor(dev); 329 devid = pci_get_device(dev); 330 sp = age_devs; 331 for (i = 0; i < sizeof(age_devs) / sizeof(age_devs[0]); 332 i++, sp++) { 333 if (vendor == sp->age_vendorid && 334 devid == sp->age_deviceid) { 335 device_set_desc(dev, sp->age_name); 336 return (BUS_PROBE_DEFAULT); 337 } 338 } 339 340 return (ENXIO); 341 } 342 343 static void 344 age_get_macaddr(struct age_softc *sc) 345 { 346 uint32_t ea[2], reg; 347 int i, vpdc; 348 349 reg = CSR_READ_4(sc, AGE_SPI_CTRL); 350 if ((reg & SPI_VPD_ENB) != 0) { 351 /* Get VPD stored in TWSI EEPROM. */ 352 reg &= ~SPI_VPD_ENB; 353 CSR_WRITE_4(sc, AGE_SPI_CTRL, reg); 354 } 355 356 if (pci_find_extcap(sc->age_dev, PCIY_VPD, &vpdc) == 0) { 357 /* 358 * PCI VPD capability found, let TWSI reload EEPROM. 359 * This will set ethernet address of controller. 360 */ 361 CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) | 362 TWSI_CTRL_SW_LD_START); 363 for (i = 100; i > 0; i--) { 364 DELAY(1000); 365 reg = CSR_READ_4(sc, AGE_TWSI_CTRL); 366 if ((reg & TWSI_CTRL_SW_LD_START) == 0) 367 break; 368 } 369 if (i == 0) 370 device_printf(sc->age_dev, 371 "reloading EEPROM timeout!\n"); 372 } else { 373 if (bootverbose) 374 device_printf(sc->age_dev, 375 "PCI VPD capability not found!\n"); 376 } 377 378 ea[0] = CSR_READ_4(sc, AGE_PAR0); 379 ea[1] = CSR_READ_4(sc, AGE_PAR1); 380 sc->age_eaddr[0] = (ea[1] >> 8) & 0xFF; 381 sc->age_eaddr[1] = (ea[1] >> 0) & 0xFF; 382 sc->age_eaddr[2] = (ea[0] >> 24) & 0xFF; 383 sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF; 384 sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF; 385 sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF; 386 } 387 388 static void 389 age_phy_reset(struct age_softc *sc) 390 { 391 uint16_t reg, pn; 392 int i, linkup; 393 394 /* Reset PHY. */ 395 CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST); 396 DELAY(2000); 397 CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR); 398 DELAY(2000); 399 400 #define ATPHY_DBG_ADDR 0x1D 401 #define ATPHY_DBG_DATA 0x1E 402 #define ATPHY_CDTC 0x16 403 #define PHY_CDTC_ENB 0x0001 404 #define PHY_CDTC_POFF 8 405 #define ATPHY_CDTS 0x1C 406 #define PHY_CDTS_STAT_OK 0x0000 407 #define PHY_CDTS_STAT_SHORT 0x0100 408 #define PHY_CDTS_STAT_OPEN 0x0200 409 #define PHY_CDTS_STAT_INVAL 0x0300 410 #define PHY_CDTS_STAT_MASK 0x0300 411 412 /* Check power saving mode. Magic from Linux. */ 413 age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET); 414 for (linkup = 0, pn = 0; pn < 4; pn++) { 415 age_miibus_writereg(sc->age_dev, sc->age_phyaddr, ATPHY_CDTC, 416 (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB); 417 for (i = 200; i > 0; i--) { 418 DELAY(1000); 419 reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr, 420 ATPHY_CDTC); 421 if ((reg & PHY_CDTC_ENB) == 0) 422 break; 423 } 424 DELAY(1000); 425 reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr, 426 ATPHY_CDTS); 427 if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) { 428 linkup++; 429 break; 430 } 431 } 432 age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR, 433 BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG); 434 if (linkup == 0) { 435 age_miibus_writereg(sc->age_dev, sc->age_phyaddr, 436 ATPHY_DBG_ADDR, 0); 437 age_miibus_writereg(sc->age_dev, sc->age_phyaddr, 438 ATPHY_DBG_DATA, 0x124E); 439 age_miibus_writereg(sc->age_dev, sc->age_phyaddr, 440 ATPHY_DBG_ADDR, 1); 441 reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr, 442 ATPHY_DBG_DATA); 443 age_miibus_writereg(sc->age_dev, sc->age_phyaddr, 444 ATPHY_DBG_DATA, reg | 0x03); 445 /* XXX */ 446 DELAY(1500 * 1000); 447 age_miibus_writereg(sc->age_dev, sc->age_phyaddr, 448 ATPHY_DBG_ADDR, 0); 449 age_miibus_writereg(sc->age_dev, sc->age_phyaddr, 450 ATPHY_DBG_DATA, 0x024E); 451 } 452 453 #undef ATPHY_DBG_ADDR 454 #undef ATPHY_DBG_DATA 455 #undef ATPHY_CDTC 456 #undef PHY_CDTC_ENB 457 #undef PHY_CDTC_POFF 458 #undef ATPHY_CDTS 459 #undef PHY_CDTS_STAT_OK 460 #undef PHY_CDTS_STAT_SHORT 461 #undef PHY_CDTS_STAT_OPEN 462 #undef PHY_CDTS_STAT_INVAL 463 #undef PHY_CDTS_STAT_MASK 464 } 465 466 static int 467 age_attach(device_t dev) 468 { 469 struct age_softc *sc; 470 struct ifnet *ifp; 471 uint16_t burst; 472 int error, i, msic, msixc, pmc; 473 474 error = 0; 475 sc = device_get_softc(dev); 476 sc->age_dev = dev; 477 478 mtx_init(&sc->age_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 479 MTX_DEF); 480 callout_init_mtx(&sc->age_tick_ch, &sc->age_mtx, 0); 481 TASK_INIT(&sc->age_int_task, 0, age_int_task, sc); 482 TASK_INIT(&sc->age_link_task, 0, age_link_task, sc); 483 484 /* Map the device. */ 485 pci_enable_busmaster(dev); 486 sc->age_res_spec = age_res_spec_mem; 487 sc->age_irq_spec = age_irq_spec_legacy; 488 error = bus_alloc_resources(dev, sc->age_res_spec, sc->age_res); 489 if (error != 0) { 490 device_printf(dev, "cannot allocate memory resources.\n"); 491 goto fail; 492 } 493 494 /* Set PHY address. */ 495 sc->age_phyaddr = AGE_PHY_ADDR; 496 497 /* Reset PHY. */ 498 age_phy_reset(sc); 499 500 /* Reset the ethernet controller. */ 501 age_reset(sc); 502 503 /* Get PCI and chip id/revision. */ 504 sc->age_rev = pci_get_revid(dev); 505 sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >> 506 MASTER_CHIP_REV_SHIFT; 507 if (bootverbose) { 508 device_printf(dev, "PCI device revision : 0x%04x\n", 509 sc->age_rev); 510 device_printf(dev, "Chip id/revision : 0x%04x\n", 511 sc->age_chip_rev); 512 } 513 514 /* 515 * XXX 516 * Unintialized hardware returns an invalid chip id/revision 517 * as well as 0xFFFFFFFF for Tx/Rx fifo length. It seems that 518 * unplugged cable results in putting hardware into automatic 519 * power down mode which in turn returns invalld chip revision. 520 */ 521 if (sc->age_chip_rev == 0xFFFF) { 522 device_printf(dev,"invalid chip revision : 0x%04x -- " 523 "not initialized?\n", sc->age_chip_rev); 524 error = ENXIO; 525 goto fail; 526 } 527 528 device_printf(dev, "%d Tx FIFO, %d Rx FIFO\n", 529 CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN), 530 CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN)); 531 532 /* Allocate IRQ resources. */ 533 msixc = pci_msix_count(dev); 534 msic = pci_msi_count(dev); 535 if (bootverbose) { 536 device_printf(dev, "MSIX count : %d\n", msixc); 537 device_printf(dev, "MSI count : %d\n", msic); 538 } 539 540 /* Prefer MSIX over MSI. */ 541 if (msix_disable == 0 || msi_disable == 0) { 542 if (msix_disable == 0 && msixc == AGE_MSIX_MESSAGES && 543 pci_alloc_msix(dev, &msixc) == 0) { 544 if (msic == AGE_MSIX_MESSAGES) { 545 device_printf(dev, "Using %d MSIX messages.\n", 546 msixc); 547 sc->age_flags |= AGE_FLAG_MSIX; 548 sc->age_irq_spec = age_irq_spec_msix; 549 } else 550 pci_release_msi(dev); 551 } 552 if (msi_disable == 0 && (sc->age_flags & AGE_FLAG_MSIX) == 0 && 553 msic == AGE_MSI_MESSAGES && 554 pci_alloc_msi(dev, &msic) == 0) { 555 if (msic == AGE_MSI_MESSAGES) { 556 device_printf(dev, "Using %d MSI messages.\n", 557 msic); 558 sc->age_flags |= AGE_FLAG_MSI; 559 sc->age_irq_spec = age_irq_spec_msi; 560 } else 561 pci_release_msi(dev); 562 } 563 } 564 565 error = bus_alloc_resources(dev, sc->age_irq_spec, sc->age_irq); 566 if (error != 0) { 567 device_printf(dev, "cannot allocate IRQ resources.\n"); 568 goto fail; 569 } 570 571 572 /* Get DMA parameters from PCIe device control register. */ 573 if (pci_find_extcap(dev, PCIY_EXPRESS, &i) == 0) { 574 sc->age_flags |= AGE_FLAG_PCIE; 575 burst = pci_read_config(dev, i + 0x08, 2); 576 /* Max read request size. */ 577 sc->age_dma_rd_burst = ((burst >> 12) & 0x07) << 578 DMA_CFG_RD_BURST_SHIFT; 579 /* Max payload size. */ 580 sc->age_dma_wr_burst = ((burst >> 5) & 0x07) << 581 DMA_CFG_WR_BURST_SHIFT; 582 if (bootverbose) { 583 device_printf(dev, "Read request size : %d bytes.\n", 584 128 << ((burst >> 12) & 0x07)); 585 device_printf(dev, "TLP payload size : %d bytes.\n", 586 128 << ((burst >> 5) & 0x07)); 587 } 588 } else { 589 sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128; 590 sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128; 591 } 592 593 /* Create device sysctl node. */ 594 age_sysctl_node(sc); 595 596 if ((error = age_dma_alloc(sc) != 0)) 597 goto fail; 598 599 /* Load station address. */ 600 age_get_macaddr(sc); 601 602 ifp = sc->age_ifp = if_alloc(IFT_ETHER); 603 if (ifp == NULL) { 604 device_printf(dev, "cannot allocate ifnet structure.\n"); 605 error = ENXIO; 606 goto fail; 607 } 608 609 ifp->if_softc = sc; 610 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 611 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 612 ifp->if_ioctl = age_ioctl; 613 ifp->if_start = age_start; 614 ifp->if_init = age_init; 615 ifp->if_snd.ifq_drv_maxlen = AGE_TX_RING_CNT - 1; 616 IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen); 617 IFQ_SET_READY(&ifp->if_snd); 618 ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4; 619 ifp->if_hwassist = AGE_CSUM_FEATURES | CSUM_TSO; 620 if (pci_find_extcap(dev, PCIY_PMG, &pmc) == 0) { 621 sc->age_flags |= AGE_FLAG_PMCAP; 622 ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST; 623 } 624 ifp->if_capenable = ifp->if_capabilities; 625 626 /* Set up MII bus. */ 627 if ((error = mii_phy_probe(dev, &sc->age_miibus, age_mediachange, 628 age_mediastatus)) != 0) { 629 device_printf(dev, "no PHY found!\n"); 630 goto fail; 631 } 632 633 ether_ifattach(ifp, sc->age_eaddr); 634 635 /* VLAN capability setup. */ 636 ifp->if_capabilities |= IFCAP_VLAN_MTU; 637 ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM; 638 ifp->if_capenable = ifp->if_capabilities; 639 640 /* Tell the upper layer(s) we support long frames. */ 641 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); 642 643 /* Create local taskq. */ 644 TASK_INIT(&sc->age_tx_task, 1, age_tx_task, ifp); 645 sc->age_tq = taskqueue_create_fast("age_taskq", M_WAITOK, 646 taskqueue_thread_enqueue, &sc->age_tq); 647 if (sc->age_tq == NULL) { 648 device_printf(dev, "could not create taskqueue.\n"); 649 ether_ifdetach(ifp); 650 error = ENXIO; 651 goto fail; 652 } 653 taskqueue_start_threads(&sc->age_tq, 1, PI_NET, "%s taskq", 654 device_get_nameunit(sc->age_dev)); 655 656 if ((sc->age_flags & AGE_FLAG_MSIX) != 0) 657 msic = AGE_MSIX_MESSAGES; 658 else if ((sc->age_flags & AGE_FLAG_MSI) != 0) 659 msic = AGE_MSI_MESSAGES; 660 else 661 msic = 1; 662 for (i = 0; i < msic; i++) { 663 error = bus_setup_intr(dev, sc->age_irq[i], 664 INTR_TYPE_NET | INTR_MPSAFE, age_intr, NULL, sc, 665 &sc->age_intrhand[i]); 666 if (error != 0) 667 break; 668 } 669 if (error != 0) { 670 device_printf(dev, "could not set up interrupt handler.\n"); 671 taskqueue_free(sc->age_tq); 672 sc->age_tq = NULL; 673 ether_ifdetach(ifp); 674 goto fail; 675 } 676 677 fail: 678 if (error != 0) 679 age_detach(dev); 680 681 return (error); 682 } 683 684 static int 685 age_detach(device_t dev) 686 { 687 struct age_softc *sc; 688 struct ifnet *ifp; 689 int i, msic; 690 691 sc = device_get_softc(dev); 692 693 ifp = sc->age_ifp; 694 if (device_is_attached(dev)) { 695 AGE_LOCK(sc); 696 sc->age_flags |= AGE_FLAG_DETACH; 697 age_stop(sc); 698 AGE_UNLOCK(sc); 699 callout_drain(&sc->age_tick_ch); 700 taskqueue_drain(sc->age_tq, &sc->age_int_task); 701 taskqueue_drain(sc->age_tq, &sc->age_tx_task); 702 taskqueue_drain(taskqueue_swi, &sc->age_link_task); 703 ether_ifdetach(ifp); 704 } 705 706 if (sc->age_tq != NULL) { 707 taskqueue_drain(sc->age_tq, &sc->age_int_task); 708 taskqueue_free(sc->age_tq); 709 sc->age_tq = NULL; 710 } 711 712 if (sc->age_miibus != NULL) { 713 device_delete_child(dev, sc->age_miibus); 714 sc->age_miibus = NULL; 715 } 716 bus_generic_detach(dev); 717 age_dma_free(sc); 718 719 if (ifp != NULL) { 720 if_free(ifp); 721 sc->age_ifp = NULL; 722 } 723 724 if ((sc->age_flags & AGE_FLAG_MSIX) != 0) 725 msic = AGE_MSIX_MESSAGES; 726 else if ((sc->age_flags & AGE_FLAG_MSI) != 0) 727 msic = AGE_MSI_MESSAGES; 728 else 729 msic = 1; 730 for (i = 0; i < msic; i++) { 731 if (sc->age_intrhand[i] != NULL) { 732 bus_teardown_intr(dev, sc->age_irq[i], 733 sc->age_intrhand[i]); 734 sc->age_intrhand[i] = NULL; 735 } 736 } 737 738 bus_release_resources(dev, sc->age_irq_spec, sc->age_irq); 739 if ((sc->age_flags & (AGE_FLAG_MSI | AGE_FLAG_MSIX)) != 0) 740 pci_release_msi(dev); 741 bus_release_resources(dev, sc->age_res_spec, sc->age_res); 742 mtx_destroy(&sc->age_mtx); 743 744 return (0); 745 } 746 747 static void 748 age_sysctl_node(struct age_softc *sc) 749 { 750 int error; 751 752 SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev), 753 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO, 754 "stats", CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_age_stats, 755 "I", "Statistics"); 756 757 SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev), 758 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO, 759 "int_mod", CTLTYPE_INT | CTLFLAG_RW, &sc->age_int_mod, 0, 760 sysctl_hw_age_int_mod, "I", "age interrupt moderation"); 761 762 /* Pull in device tunables. */ 763 sc->age_int_mod = AGE_IM_TIMER_DEFAULT; 764 error = resource_int_value(device_get_name(sc->age_dev), 765 device_get_unit(sc->age_dev), "int_mod", &sc->age_int_mod); 766 if (error == 0) { 767 if (sc->age_int_mod < AGE_IM_TIMER_MIN || 768 sc->age_int_mod > AGE_IM_TIMER_MAX) { 769 device_printf(sc->age_dev, 770 "int_mod value out of range; using default: %d\n", 771 AGE_IM_TIMER_DEFAULT); 772 sc->age_int_mod = AGE_IM_TIMER_DEFAULT; 773 } 774 } 775 776 SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev), 777 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO, 778 "process_limit", CTLTYPE_INT | CTLFLAG_RW, &sc->age_process_limit, 779 0, sysctl_hw_age_proc_limit, "I", 780 "max number of Rx events to process"); 781 782 /* Pull in device tunables. */ 783 sc->age_process_limit = AGE_PROC_DEFAULT; 784 error = resource_int_value(device_get_name(sc->age_dev), 785 device_get_unit(sc->age_dev), "process_limit", 786 &sc->age_process_limit); 787 if (error == 0) { 788 if (sc->age_process_limit < AGE_PROC_MIN || 789 sc->age_process_limit > AGE_PROC_MAX) { 790 device_printf(sc->age_dev, 791 "process_limit value out of range; " 792 "using default: %d\n", AGE_PROC_DEFAULT); 793 sc->age_process_limit = AGE_PROC_DEFAULT; 794 } 795 } 796 } 797 798 struct age_dmamap_arg { 799 bus_addr_t age_busaddr; 800 }; 801 802 static void 803 age_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 804 { 805 struct age_dmamap_arg *ctx; 806 807 if (error != 0) 808 return; 809 810 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); 811 812 ctx = (struct age_dmamap_arg *)arg; 813 ctx->age_busaddr = segs[0].ds_addr; 814 } 815 816 /* 817 * Attansic L1 controller have single register to specify high 818 * address part of DMA blocks. So all descriptor structures and 819 * DMA memory blocks should have the same high address of given 820 * 4GB address space(i.e. crossing 4GB boundary is not allowed). 821 */ 822 static int 823 age_check_boundary(struct age_softc *sc) 824 { 825 bus_addr_t rx_ring_end, rr_ring_end, tx_ring_end; 826 bus_addr_t cmb_block_end, smb_block_end; 827 828 /* Tx/Rx descriptor queue should reside within 4GB boundary. */ 829 tx_ring_end = sc->age_rdata.age_tx_ring_paddr + AGE_TX_RING_SZ; 830 rx_ring_end = sc->age_rdata.age_rx_ring_paddr + AGE_RX_RING_SZ; 831 rr_ring_end = sc->age_rdata.age_rr_ring_paddr + AGE_RR_RING_SZ; 832 cmb_block_end = sc->age_rdata.age_cmb_block_paddr + AGE_CMB_BLOCK_SZ; 833 smb_block_end = sc->age_rdata.age_smb_block_paddr + AGE_SMB_BLOCK_SZ; 834 835 if ((AGE_ADDR_HI(tx_ring_end) != 836 AGE_ADDR_HI(sc->age_rdata.age_tx_ring_paddr)) || 837 (AGE_ADDR_HI(rx_ring_end) != 838 AGE_ADDR_HI(sc->age_rdata.age_rx_ring_paddr)) || 839 (AGE_ADDR_HI(rr_ring_end) != 840 AGE_ADDR_HI(sc->age_rdata.age_rr_ring_paddr)) || 841 (AGE_ADDR_HI(cmb_block_end) != 842 AGE_ADDR_HI(sc->age_rdata.age_cmb_block_paddr)) || 843 (AGE_ADDR_HI(smb_block_end) != 844 AGE_ADDR_HI(sc->age_rdata.age_smb_block_paddr))) 845 return (EFBIG); 846 847 if ((AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rx_ring_end)) || 848 (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rr_ring_end)) || 849 (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(cmb_block_end)) || 850 (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(smb_block_end))) 851 return (EFBIG); 852 853 return (0); 854 } 855 856 static int 857 age_dma_alloc(struct age_softc *sc) 858 { 859 struct age_txdesc *txd; 860 struct age_rxdesc *rxd; 861 bus_addr_t lowaddr; 862 struct age_dmamap_arg ctx; 863 int error, i; 864 865 lowaddr = BUS_SPACE_MAXADDR; 866 867 again: 868 /* Create parent ring/DMA block tag. */ 869 error = bus_dma_tag_create( 870 bus_get_dma_tag(sc->age_dev), /* parent */ 871 1, 0, /* alignment, boundary */ 872 lowaddr, /* lowaddr */ 873 BUS_SPACE_MAXADDR, /* highaddr */ 874 NULL, NULL, /* filter, filterarg */ 875 BUS_SPACE_MAXSIZE_32BIT, /* maxsize */ 876 0, /* nsegments */ 877 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 878 0, /* flags */ 879 NULL, NULL, /* lockfunc, lockarg */ 880 &sc->age_cdata.age_parent_tag); 881 if (error != 0) { 882 device_printf(sc->age_dev, 883 "could not create parent DMA tag.\n"); 884 goto fail; 885 } 886 887 /* Create tag for Tx ring. */ 888 error = bus_dma_tag_create( 889 sc->age_cdata.age_parent_tag, /* parent */ 890 AGE_TX_RING_ALIGN, 0, /* alignment, boundary */ 891 BUS_SPACE_MAXADDR, /* lowaddr */ 892 BUS_SPACE_MAXADDR, /* highaddr */ 893 NULL, NULL, /* filter, filterarg */ 894 AGE_TX_RING_SZ, /* maxsize */ 895 1, /* nsegments */ 896 AGE_TX_RING_SZ, /* maxsegsize */ 897 0, /* flags */ 898 NULL, NULL, /* lockfunc, lockarg */ 899 &sc->age_cdata.age_tx_ring_tag); 900 if (error != 0) { 901 device_printf(sc->age_dev, 902 "could not create Tx ring DMA tag.\n"); 903 goto fail; 904 } 905 906 /* Create tag for Rx ring. */ 907 error = bus_dma_tag_create( 908 sc->age_cdata.age_parent_tag, /* parent */ 909 AGE_RX_RING_ALIGN, 0, /* alignment, boundary */ 910 BUS_SPACE_MAXADDR, /* lowaddr */ 911 BUS_SPACE_MAXADDR, /* highaddr */ 912 NULL, NULL, /* filter, filterarg */ 913 AGE_RX_RING_SZ, /* maxsize */ 914 1, /* nsegments */ 915 AGE_RX_RING_SZ, /* maxsegsize */ 916 0, /* flags */ 917 NULL, NULL, /* lockfunc, lockarg */ 918 &sc->age_cdata.age_rx_ring_tag); 919 if (error != 0) { 920 device_printf(sc->age_dev, 921 "could not create Rx ring DMA tag.\n"); 922 goto fail; 923 } 924 925 /* Create tag for Rx return ring. */ 926 error = bus_dma_tag_create( 927 sc->age_cdata.age_parent_tag, /* parent */ 928 AGE_RR_RING_ALIGN, 0, /* alignment, boundary */ 929 BUS_SPACE_MAXADDR, /* lowaddr */ 930 BUS_SPACE_MAXADDR, /* highaddr */ 931 NULL, NULL, /* filter, filterarg */ 932 AGE_RR_RING_SZ, /* maxsize */ 933 1, /* nsegments */ 934 AGE_RR_RING_SZ, /* maxsegsize */ 935 0, /* flags */ 936 NULL, NULL, /* lockfunc, lockarg */ 937 &sc->age_cdata.age_rr_ring_tag); 938 if (error != 0) { 939 device_printf(sc->age_dev, 940 "could not create Rx return ring DMA tag.\n"); 941 goto fail; 942 } 943 944 /* Create tag for coalesing message block. */ 945 error = bus_dma_tag_create( 946 sc->age_cdata.age_parent_tag, /* parent */ 947 AGE_CMB_ALIGN, 0, /* alignment, boundary */ 948 BUS_SPACE_MAXADDR, /* lowaddr */ 949 BUS_SPACE_MAXADDR, /* highaddr */ 950 NULL, NULL, /* filter, filterarg */ 951 AGE_CMB_BLOCK_SZ, /* maxsize */ 952 1, /* nsegments */ 953 AGE_CMB_BLOCK_SZ, /* maxsegsize */ 954 0, /* flags */ 955 NULL, NULL, /* lockfunc, lockarg */ 956 &sc->age_cdata.age_cmb_block_tag); 957 if (error != 0) { 958 device_printf(sc->age_dev, 959 "could not create CMB DMA tag.\n"); 960 goto fail; 961 } 962 963 /* Create tag for statistics message block. */ 964 error = bus_dma_tag_create( 965 sc->age_cdata.age_parent_tag, /* parent */ 966 AGE_SMB_ALIGN, 0, /* alignment, boundary */ 967 BUS_SPACE_MAXADDR, /* lowaddr */ 968 BUS_SPACE_MAXADDR, /* highaddr */ 969 NULL, NULL, /* filter, filterarg */ 970 AGE_SMB_BLOCK_SZ, /* maxsize */ 971 1, /* nsegments */ 972 AGE_SMB_BLOCK_SZ, /* maxsegsize */ 973 0, /* flags */ 974 NULL, NULL, /* lockfunc, lockarg */ 975 &sc->age_cdata.age_smb_block_tag); 976 if (error != 0) { 977 device_printf(sc->age_dev, 978 "could not create SMB DMA tag.\n"); 979 goto fail; 980 } 981 982 /* Allocate DMA'able memory and load the DMA map. */ 983 error = bus_dmamem_alloc(sc->age_cdata.age_tx_ring_tag, 984 (void **)&sc->age_rdata.age_tx_ring, 985 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 986 &sc->age_cdata.age_tx_ring_map); 987 if (error != 0) { 988 device_printf(sc->age_dev, 989 "could not allocate DMA'able memory for Tx ring.\n"); 990 goto fail; 991 } 992 ctx.age_busaddr = 0; 993 error = bus_dmamap_load(sc->age_cdata.age_tx_ring_tag, 994 sc->age_cdata.age_tx_ring_map, sc->age_rdata.age_tx_ring, 995 AGE_TX_RING_SZ, age_dmamap_cb, &ctx, 0); 996 if (error != 0 || ctx.age_busaddr == 0) { 997 device_printf(sc->age_dev, 998 "could not load DMA'able memory for Tx ring.\n"); 999 goto fail; 1000 } 1001 sc->age_rdata.age_tx_ring_paddr = ctx.age_busaddr; 1002 /* Rx ring */ 1003 error = bus_dmamem_alloc(sc->age_cdata.age_rx_ring_tag, 1004 (void **)&sc->age_rdata.age_rx_ring, 1005 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 1006 &sc->age_cdata.age_rx_ring_map); 1007 if (error != 0) { 1008 device_printf(sc->age_dev, 1009 "could not allocate DMA'able memory for Rx ring.\n"); 1010 goto fail; 1011 } 1012 ctx.age_busaddr = 0; 1013 error = bus_dmamap_load(sc->age_cdata.age_rx_ring_tag, 1014 sc->age_cdata.age_rx_ring_map, sc->age_rdata.age_rx_ring, 1015 AGE_RX_RING_SZ, age_dmamap_cb, &ctx, 0); 1016 if (error != 0 || ctx.age_busaddr == 0) { 1017 device_printf(sc->age_dev, 1018 "could not load DMA'able memory for Rx ring.\n"); 1019 goto fail; 1020 } 1021 sc->age_rdata.age_rx_ring_paddr = ctx.age_busaddr; 1022 /* Rx return ring */ 1023 error = bus_dmamem_alloc(sc->age_cdata.age_rr_ring_tag, 1024 (void **)&sc->age_rdata.age_rr_ring, 1025 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 1026 &sc->age_cdata.age_rr_ring_map); 1027 if (error != 0) { 1028 device_printf(sc->age_dev, 1029 "could not allocate DMA'able memory for Rx return ring.\n"); 1030 goto fail; 1031 } 1032 ctx.age_busaddr = 0; 1033 error = bus_dmamap_load(sc->age_cdata.age_rr_ring_tag, 1034 sc->age_cdata.age_rr_ring_map, sc->age_rdata.age_rr_ring, 1035 AGE_RR_RING_SZ, age_dmamap_cb, 1036 &ctx, 0); 1037 if (error != 0 || ctx.age_busaddr == 0) { 1038 device_printf(sc->age_dev, 1039 "could not load DMA'able memory for Rx return ring.\n"); 1040 goto fail; 1041 } 1042 sc->age_rdata.age_rr_ring_paddr = ctx.age_busaddr; 1043 /* CMB block */ 1044 error = bus_dmamem_alloc(sc->age_cdata.age_cmb_block_tag, 1045 (void **)&sc->age_rdata.age_cmb_block, 1046 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 1047 &sc->age_cdata.age_cmb_block_map); 1048 if (error != 0) { 1049 device_printf(sc->age_dev, 1050 "could not allocate DMA'able memory for CMB block.\n"); 1051 goto fail; 1052 } 1053 ctx.age_busaddr = 0; 1054 error = bus_dmamap_load(sc->age_cdata.age_cmb_block_tag, 1055 sc->age_cdata.age_cmb_block_map, sc->age_rdata.age_cmb_block, 1056 AGE_CMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0); 1057 if (error != 0 || ctx.age_busaddr == 0) { 1058 device_printf(sc->age_dev, 1059 "could not load DMA'able memory for CMB block.\n"); 1060 goto fail; 1061 } 1062 sc->age_rdata.age_cmb_block_paddr = ctx.age_busaddr; 1063 /* SMB block */ 1064 error = bus_dmamem_alloc(sc->age_cdata.age_smb_block_tag, 1065 (void **)&sc->age_rdata.age_smb_block, 1066 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 1067 &sc->age_cdata.age_smb_block_map); 1068 if (error != 0) { 1069 device_printf(sc->age_dev, 1070 "could not allocate DMA'able memory for SMB block.\n"); 1071 goto fail; 1072 } 1073 ctx.age_busaddr = 0; 1074 error = bus_dmamap_load(sc->age_cdata.age_smb_block_tag, 1075 sc->age_cdata.age_smb_block_map, sc->age_rdata.age_smb_block, 1076 AGE_SMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0); 1077 if (error != 0 || ctx.age_busaddr == 0) { 1078 device_printf(sc->age_dev, 1079 "could not load DMA'able memory for SMB block.\n"); 1080 goto fail; 1081 } 1082 sc->age_rdata.age_smb_block_paddr = ctx.age_busaddr; 1083 1084 /* 1085 * All ring buffer and DMA blocks should have the same 1086 * high address part of 64bit DMA address space. 1087 */ 1088 if (lowaddr != BUS_SPACE_MAXADDR_32BIT && 1089 (error = age_check_boundary(sc)) != 0) { 1090 device_printf(sc->age_dev, "4GB boundary crossed, " 1091 "switching to 32bit DMA addressing mode.\n"); 1092 age_dma_free(sc); 1093 /* Limit DMA address space to 32bit and try again. */ 1094 lowaddr = BUS_SPACE_MAXADDR_32BIT; 1095 goto again; 1096 } 1097 1098 /* 1099 * Create Tx/Rx buffer parent tag. 1100 * L1 supports full 64bit DMA addressing in Tx/Rx buffers 1101 * so it needs separate parent DMA tag. 1102 */ 1103 error = bus_dma_tag_create( 1104 bus_get_dma_tag(sc->age_dev), /* parent */ 1105 1, 0, /* alignment, boundary */ 1106 BUS_SPACE_MAXADDR, /* lowaddr */ 1107 BUS_SPACE_MAXADDR, /* highaddr */ 1108 NULL, NULL, /* filter, filterarg */ 1109 BUS_SPACE_MAXSIZE_32BIT, /* maxsize */ 1110 0, /* nsegments */ 1111 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 1112 0, /* flags */ 1113 NULL, NULL, /* lockfunc, lockarg */ 1114 &sc->age_cdata.age_buffer_tag); 1115 if (error != 0) { 1116 device_printf(sc->age_dev, 1117 "could not create parent buffer DMA tag.\n"); 1118 goto fail; 1119 } 1120 1121 /* Create tag for Tx buffers. */ 1122 error = bus_dma_tag_create( 1123 sc->age_cdata.age_buffer_tag, /* parent */ 1124 1, 0, /* alignment, boundary */ 1125 BUS_SPACE_MAXADDR, /* lowaddr */ 1126 BUS_SPACE_MAXADDR, /* highaddr */ 1127 NULL, NULL, /* filter, filterarg */ 1128 AGE_TSO_MAXSIZE, /* maxsize */ 1129 AGE_MAXTXSEGS, /* nsegments */ 1130 AGE_TSO_MAXSEGSIZE, /* maxsegsize */ 1131 0, /* flags */ 1132 NULL, NULL, /* lockfunc, lockarg */ 1133 &sc->age_cdata.age_tx_tag); 1134 if (error != 0) { 1135 device_printf(sc->age_dev, "could not create Tx DMA tag.\n"); 1136 goto fail; 1137 } 1138 1139 /* Create tag for Rx buffers. */ 1140 error = bus_dma_tag_create( 1141 sc->age_cdata.age_buffer_tag, /* parent */ 1142 1, 0, /* alignment, boundary */ 1143 BUS_SPACE_MAXADDR, /* lowaddr */ 1144 BUS_SPACE_MAXADDR, /* highaddr */ 1145 NULL, NULL, /* filter, filterarg */ 1146 MCLBYTES, /* maxsize */ 1147 1, /* nsegments */ 1148 MCLBYTES, /* maxsegsize */ 1149 0, /* flags */ 1150 NULL, NULL, /* lockfunc, lockarg */ 1151 &sc->age_cdata.age_rx_tag); 1152 if (error != 0) { 1153 device_printf(sc->age_dev, "could not create Rx DMA tag.\n"); 1154 goto fail; 1155 } 1156 1157 /* Create DMA maps for Tx buffers. */ 1158 for (i = 0; i < AGE_TX_RING_CNT; i++) { 1159 txd = &sc->age_cdata.age_txdesc[i]; 1160 txd->tx_m = NULL; 1161 txd->tx_dmamap = NULL; 1162 error = bus_dmamap_create(sc->age_cdata.age_tx_tag, 0, 1163 &txd->tx_dmamap); 1164 if (error != 0) { 1165 device_printf(sc->age_dev, 1166 "could not create Tx dmamap.\n"); 1167 goto fail; 1168 } 1169 } 1170 /* Create DMA maps for Rx buffers. */ 1171 if ((error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0, 1172 &sc->age_cdata.age_rx_sparemap)) != 0) { 1173 device_printf(sc->age_dev, 1174 "could not create spare Rx dmamap.\n"); 1175 goto fail; 1176 } 1177 for (i = 0; i < AGE_RX_RING_CNT; i++) { 1178 rxd = &sc->age_cdata.age_rxdesc[i]; 1179 rxd->rx_m = NULL; 1180 rxd->rx_dmamap = NULL; 1181 error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0, 1182 &rxd->rx_dmamap); 1183 if (error != 0) { 1184 device_printf(sc->age_dev, 1185 "could not create Rx dmamap.\n"); 1186 goto fail; 1187 } 1188 } 1189 1190 fail: 1191 return (error); 1192 } 1193 1194 static void 1195 age_dma_free(struct age_softc *sc) 1196 { 1197 struct age_txdesc *txd; 1198 struct age_rxdesc *rxd; 1199 int i; 1200 1201 /* Tx buffers */ 1202 if (sc->age_cdata.age_tx_tag != NULL) { 1203 for (i = 0; i < AGE_TX_RING_CNT; i++) { 1204 txd = &sc->age_cdata.age_txdesc[i]; 1205 if (txd->tx_dmamap != NULL) { 1206 bus_dmamap_destroy(sc->age_cdata.age_tx_tag, 1207 txd->tx_dmamap); 1208 txd->tx_dmamap = NULL; 1209 } 1210 } 1211 bus_dma_tag_destroy(sc->age_cdata.age_tx_tag); 1212 sc->age_cdata.age_tx_tag = NULL; 1213 } 1214 /* Rx buffers */ 1215 if (sc->age_cdata.age_rx_tag != NULL) { 1216 for (i = 0; i < AGE_RX_RING_CNT; i++) { 1217 rxd = &sc->age_cdata.age_rxdesc[i]; 1218 if (rxd->rx_dmamap != NULL) { 1219 bus_dmamap_destroy(sc->age_cdata.age_rx_tag, 1220 rxd->rx_dmamap); 1221 rxd->rx_dmamap = NULL; 1222 } 1223 } 1224 if (sc->age_cdata.age_rx_sparemap != NULL) { 1225 bus_dmamap_destroy(sc->age_cdata.age_rx_tag, 1226 sc->age_cdata.age_rx_sparemap); 1227 sc->age_cdata.age_rx_sparemap = NULL; 1228 } 1229 bus_dma_tag_destroy(sc->age_cdata.age_rx_tag); 1230 sc->age_cdata.age_rx_tag = NULL; 1231 } 1232 /* Tx ring. */ 1233 if (sc->age_cdata.age_tx_ring_tag != NULL) { 1234 if (sc->age_cdata.age_tx_ring_map != NULL) 1235 bus_dmamap_unload(sc->age_cdata.age_tx_ring_tag, 1236 sc->age_cdata.age_tx_ring_map); 1237 if (sc->age_cdata.age_tx_ring_map != NULL && 1238 sc->age_rdata.age_tx_ring != NULL) 1239 bus_dmamem_free(sc->age_cdata.age_tx_ring_tag, 1240 sc->age_rdata.age_tx_ring, 1241 sc->age_cdata.age_tx_ring_map); 1242 sc->age_rdata.age_tx_ring = NULL; 1243 sc->age_cdata.age_tx_ring_map = NULL; 1244 bus_dma_tag_destroy(sc->age_cdata.age_tx_ring_tag); 1245 sc->age_cdata.age_tx_ring_tag = NULL; 1246 } 1247 /* Rx ring. */ 1248 if (sc->age_cdata.age_rx_ring_tag != NULL) { 1249 if (sc->age_cdata.age_rx_ring_map != NULL) 1250 bus_dmamap_unload(sc->age_cdata.age_rx_ring_tag, 1251 sc->age_cdata.age_rx_ring_map); 1252 if (sc->age_cdata.age_rx_ring_map != NULL && 1253 sc->age_rdata.age_rx_ring != NULL) 1254 bus_dmamem_free(sc->age_cdata.age_rx_ring_tag, 1255 sc->age_rdata.age_rx_ring, 1256 sc->age_cdata.age_rx_ring_map); 1257 sc->age_rdata.age_rx_ring = NULL; 1258 sc->age_cdata.age_rx_ring_map = NULL; 1259 bus_dma_tag_destroy(sc->age_cdata.age_rx_ring_tag); 1260 sc->age_cdata.age_rx_ring_tag = NULL; 1261 } 1262 /* Rx return ring. */ 1263 if (sc->age_cdata.age_rr_ring_tag != NULL) { 1264 if (sc->age_cdata.age_rr_ring_map != NULL) 1265 bus_dmamap_unload(sc->age_cdata.age_rr_ring_tag, 1266 sc->age_cdata.age_rr_ring_map); 1267 if (sc->age_cdata.age_rr_ring_map != NULL && 1268 sc->age_rdata.age_rr_ring != NULL) 1269 bus_dmamem_free(sc->age_cdata.age_rr_ring_tag, 1270 sc->age_rdata.age_rr_ring, 1271 sc->age_cdata.age_rr_ring_map); 1272 sc->age_rdata.age_rr_ring = NULL; 1273 sc->age_cdata.age_rr_ring_map = NULL; 1274 bus_dma_tag_destroy(sc->age_cdata.age_rr_ring_tag); 1275 sc->age_cdata.age_rr_ring_tag = NULL; 1276 } 1277 /* CMB block */ 1278 if (sc->age_cdata.age_cmb_block_tag != NULL) { 1279 if (sc->age_cdata.age_cmb_block_map != NULL) 1280 bus_dmamap_unload(sc->age_cdata.age_cmb_block_tag, 1281 sc->age_cdata.age_cmb_block_map); 1282 if (sc->age_cdata.age_cmb_block_map != NULL && 1283 sc->age_rdata.age_cmb_block != NULL) 1284 bus_dmamem_free(sc->age_cdata.age_cmb_block_tag, 1285 sc->age_rdata.age_cmb_block, 1286 sc->age_cdata.age_cmb_block_map); 1287 sc->age_rdata.age_cmb_block = NULL; 1288 sc->age_cdata.age_cmb_block_map = NULL; 1289 bus_dma_tag_destroy(sc->age_cdata.age_cmb_block_tag); 1290 sc->age_cdata.age_cmb_block_tag = NULL; 1291 } 1292 /* SMB block */ 1293 if (sc->age_cdata.age_smb_block_tag != NULL) { 1294 if (sc->age_cdata.age_smb_block_map != NULL) 1295 bus_dmamap_unload(sc->age_cdata.age_smb_block_tag, 1296 sc->age_cdata.age_smb_block_map); 1297 if (sc->age_cdata.age_smb_block_map != NULL && 1298 sc->age_rdata.age_smb_block != NULL) 1299 bus_dmamem_free(sc->age_cdata.age_smb_block_tag, 1300 sc->age_rdata.age_smb_block, 1301 sc->age_cdata.age_smb_block_map); 1302 sc->age_rdata.age_smb_block = NULL; 1303 sc->age_cdata.age_smb_block_map = NULL; 1304 bus_dma_tag_destroy(sc->age_cdata.age_smb_block_tag); 1305 sc->age_cdata.age_smb_block_tag = NULL; 1306 } 1307 1308 if (sc->age_cdata.age_buffer_tag != NULL) { 1309 bus_dma_tag_destroy(sc->age_cdata.age_buffer_tag); 1310 sc->age_cdata.age_buffer_tag = NULL; 1311 } 1312 if (sc->age_cdata.age_parent_tag != NULL) { 1313 bus_dma_tag_destroy(sc->age_cdata.age_parent_tag); 1314 sc->age_cdata.age_parent_tag = NULL; 1315 } 1316 } 1317 1318 /* 1319 * Make sure the interface is stopped at reboot time. 1320 */ 1321 static int 1322 age_shutdown(device_t dev) 1323 { 1324 1325 return (age_suspend(dev)); 1326 } 1327 1328 static void 1329 age_setwol(struct age_softc *sc) 1330 { 1331 struct ifnet *ifp; 1332 struct mii_data *mii; 1333 uint32_t reg, pmcs; 1334 uint16_t pmstat; 1335 int aneg, i, pmc; 1336 1337 AGE_LOCK_ASSERT(sc); 1338 1339 if (pci_find_extcap(sc->age_dev, PCIY_PMG, &pmc) != 0) { 1340 CSR_WRITE_4(sc, AGE_WOL_CFG, 0); 1341 /* 1342 * No PME capability, PHY power down. 1343 * XXX 1344 * Due to an unknown reason powering down PHY resulted 1345 * in unexpected results such as inaccessbility of 1346 * hardware of freshly rebooted system. Disable 1347 * powering down PHY until I got more information for 1348 * Attansic/Atheros PHY hardwares. 1349 */ 1350 #ifdef notyet 1351 age_miibus_writereg(sc->age_dev, sc->age_phyaddr, 1352 MII_BMCR, BMCR_PDOWN); 1353 #endif 1354 return; 1355 } 1356 1357 ifp = sc->age_ifp; 1358 if ((ifp->if_capenable & IFCAP_WOL) != 0) { 1359 /* 1360 * Note, this driver resets the link speed to 10/100Mbps with 1361 * auto-negotiation but we don't know whether that operation 1362 * would succeed or not as it have no control after powering 1363 * off. If the renegotiation fail WOL may not work. Running 1364 * at 1Gbps will draw more power than 375mA at 3.3V which is 1365 * specified in PCI specification and that would result in 1366 * complete shutdowning power to ethernet controller. 1367 * 1368 * TODO 1369 * Save current negotiated media speed/duplex/flow-control 1370 * to softc and restore the same link again after resuming. 1371 * PHY handling such as power down/resetting to 100Mbps 1372 * may be better handled in suspend method in phy driver. 1373 */ 1374 mii = device_get_softc(sc->age_miibus); 1375 mii_pollstat(mii); 1376 aneg = 0; 1377 if ((mii->mii_media_status & IFM_AVALID) != 0) { 1378 switch IFM_SUBTYPE(mii->mii_media_active) { 1379 case IFM_10_T: 1380 case IFM_100_TX: 1381 goto got_link; 1382 case IFM_1000_T: 1383 aneg++; 1384 default: 1385 break; 1386 } 1387 } 1388 age_miibus_writereg(sc->age_dev, sc->age_phyaddr, 1389 MII_100T2CR, 0); 1390 age_miibus_writereg(sc->age_dev, sc->age_phyaddr, 1391 MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | 1392 ANAR_10 | ANAR_CSMA); 1393 age_miibus_writereg(sc->age_dev, sc->age_phyaddr, 1394 MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG); 1395 DELAY(1000); 1396 if (aneg != 0) { 1397 /* Poll link state until age(4) get a 10/100 link. */ 1398 for (i = 0; i < MII_ANEGTICKS_GIGE; i++) { 1399 mii_pollstat(mii); 1400 if ((mii->mii_media_status & IFM_AVALID) != 0) { 1401 switch (IFM_SUBTYPE( 1402 mii->mii_media_active)) { 1403 case IFM_10_T: 1404 case IFM_100_TX: 1405 age_mac_config(sc); 1406 goto got_link; 1407 default: 1408 break; 1409 } 1410 } 1411 AGE_UNLOCK(sc); 1412 pause("agelnk", hz); 1413 AGE_LOCK(sc); 1414 } 1415 if (i == MII_ANEGTICKS_GIGE) 1416 device_printf(sc->age_dev, 1417 "establishing link failed, " 1418 "WOL may not work!"); 1419 } 1420 /* 1421 * No link, force MAC to have 100Mbps, full-duplex link. 1422 * This is the last resort and may/may not work. 1423 */ 1424 mii->mii_media_status = IFM_AVALID | IFM_ACTIVE; 1425 mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX; 1426 age_mac_config(sc); 1427 } 1428 1429 got_link: 1430 pmcs = 0; 1431 if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) 1432 pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB; 1433 CSR_WRITE_4(sc, AGE_WOL_CFG, pmcs); 1434 reg = CSR_READ_4(sc, AGE_MAC_CFG); 1435 reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC); 1436 reg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST); 1437 if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0) 1438 reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST; 1439 if ((ifp->if_capenable & IFCAP_WOL) != 0) { 1440 reg |= MAC_CFG_RX_ENB; 1441 CSR_WRITE_4(sc, AGE_MAC_CFG, reg); 1442 } 1443 1444 /* Request PME. */ 1445 pmstat = pci_read_config(sc->age_dev, pmc + PCIR_POWER_STATUS, 2); 1446 pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE); 1447 if ((ifp->if_capenable & IFCAP_WOL) != 0) 1448 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE; 1449 pci_write_config(sc->age_dev, pmc + PCIR_POWER_STATUS, pmstat, 2); 1450 #ifdef notyet 1451 /* See above for powering down PHY issues. */ 1452 if ((ifp->if_capenable & IFCAP_WOL) == 0) { 1453 /* No WOL, PHY power down. */ 1454 age_miibus_writereg(sc->age_dev, sc->age_phyaddr, 1455 MII_BMCR, BMCR_PDOWN); 1456 } 1457 #endif 1458 } 1459 1460 static int 1461 age_suspend(device_t dev) 1462 { 1463 struct age_softc *sc; 1464 1465 sc = device_get_softc(dev); 1466 1467 AGE_LOCK(sc); 1468 age_stop(sc); 1469 age_setwol(sc); 1470 AGE_UNLOCK(sc); 1471 1472 return (0); 1473 } 1474 1475 static int 1476 age_resume(device_t dev) 1477 { 1478 struct age_softc *sc; 1479 struct ifnet *ifp; 1480 1481 sc = device_get_softc(dev); 1482 1483 AGE_LOCK(sc); 1484 age_phy_reset(sc); 1485 ifp = sc->age_ifp; 1486 if ((ifp->if_flags & IFF_UP) != 0) 1487 age_init_locked(sc); 1488 1489 AGE_UNLOCK(sc); 1490 1491 return (0); 1492 } 1493 1494 static int 1495 age_encap(struct age_softc *sc, struct mbuf **m_head) 1496 { 1497 struct age_txdesc *txd, *txd_last; 1498 struct tx_desc *desc; 1499 struct mbuf *m; 1500 struct ip *ip; 1501 struct tcphdr *tcp; 1502 bus_dma_segment_t txsegs[AGE_MAXTXSEGS]; 1503 bus_dmamap_t map; 1504 uint32_t cflags, ip_off, poff, vtag; 1505 int error, i, nsegs, prod, si; 1506 1507 AGE_LOCK_ASSERT(sc); 1508 1509 M_ASSERTPKTHDR((*m_head)); 1510 1511 m = *m_head; 1512 ip = NULL; 1513 tcp = NULL; 1514 cflags = vtag = 0; 1515 ip_off = poff = 0; 1516 if ((m->m_pkthdr.csum_flags & (AGE_CSUM_FEATURES | CSUM_TSO)) != 0) { 1517 /* 1518 * L1 requires offset of TCP/UDP payload in its Tx 1519 * descriptor to perform hardware Tx checksum offload. 1520 * Additionally, TSO requires IP/TCP header size and 1521 * modification of IP/TCP header in order to make TSO 1522 * engine work. This kind of operation takes many CPU 1523 * cycles on FreeBSD so fast host CPU is needed to get 1524 * smooth TSO performance. 1525 */ 1526 struct ether_header *eh; 1527 1528 if (M_WRITABLE(m) == 0) { 1529 /* Get a writable copy. */ 1530 m = m_dup(*m_head, M_DONTWAIT); 1531 /* Release original mbufs. */ 1532 m_freem(*m_head); 1533 if (m == NULL) { 1534 *m_head = NULL; 1535 return (ENOBUFS); 1536 } 1537 *m_head = m; 1538 } 1539 ip_off = sizeof(struct ether_header); 1540 m = m_pullup(m, ip_off); 1541 if (m == NULL) { 1542 *m_head = NULL; 1543 return (ENOBUFS); 1544 } 1545 eh = mtod(m, struct ether_header *); 1546 /* 1547 * Check if hardware VLAN insertion is off. 1548 * Additional check for LLC/SNAP frame? 1549 */ 1550 if (eh->ether_type == htons(ETHERTYPE_VLAN)) { 1551 ip_off = sizeof(struct ether_vlan_header); 1552 m = m_pullup(m, ip_off); 1553 if (m == NULL) { 1554 *m_head = NULL; 1555 return (ENOBUFS); 1556 } 1557 } 1558 m = m_pullup(m, ip_off + sizeof(struct ip)); 1559 if (m == NULL) { 1560 *m_head = NULL; 1561 return (ENOBUFS); 1562 } 1563 ip = (struct ip *)(mtod(m, char *) + ip_off); 1564 poff = ip_off + (ip->ip_hl << 2); 1565 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 1566 m = m_pullup(m, poff + sizeof(struct tcphdr)); 1567 if (m == NULL) { 1568 *m_head = NULL; 1569 return (ENOBUFS); 1570 } 1571 tcp = (struct tcphdr *)(mtod(m, char *) + poff); 1572 /* 1573 * L1 requires IP/TCP header size and offset as 1574 * well as TCP pseudo checksum which complicates 1575 * TSO configuration. I guess this comes from the 1576 * adherence to Microsoft NDIS Large Send 1577 * specification which requires insertion of 1578 * pseudo checksum by upper stack. The pseudo 1579 * checksum that NDIS refers to doesn't include 1580 * TCP payload length so age(4) should recompute 1581 * the pseudo checksum here. Hopefully this wouldn't 1582 * be much burden on modern CPUs. 1583 * Reset IP checksum and recompute TCP pseudo 1584 * checksum as NDIS specification said. 1585 */ 1586 ip->ip_sum = 0; 1587 if (poff + (tcp->th_off << 2) == m->m_pkthdr.len) 1588 tcp->th_sum = in_pseudo(ip->ip_src.s_addr, 1589 ip->ip_dst.s_addr, 1590 htons((tcp->th_off << 2) + IPPROTO_TCP)); 1591 else 1592 tcp->th_sum = in_pseudo(ip->ip_src.s_addr, 1593 ip->ip_dst.s_addr, htons(IPPROTO_TCP)); 1594 } 1595 *m_head = m; 1596 } 1597 1598 si = prod = sc->age_cdata.age_tx_prod; 1599 txd = &sc->age_cdata.age_txdesc[prod]; 1600 txd_last = txd; 1601 map = txd->tx_dmamap; 1602 1603 error = bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map, 1604 *m_head, txsegs, &nsegs, 0); 1605 if (error == EFBIG) { 1606 m = m_collapse(*m_head, M_DONTWAIT, AGE_MAXTXSEGS); 1607 if (m == NULL) { 1608 m_freem(*m_head); 1609 *m_head = NULL; 1610 return (ENOMEM); 1611 } 1612 *m_head = m; 1613 error = bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map, 1614 *m_head, txsegs, &nsegs, 0); 1615 if (error != 0) { 1616 m_freem(*m_head); 1617 *m_head = NULL; 1618 return (error); 1619 } 1620 } else if (error != 0) 1621 return (error); 1622 if (nsegs == 0) { 1623 m_freem(*m_head); 1624 *m_head = NULL; 1625 return (EIO); 1626 } 1627 1628 /* Check descriptor overrun. */ 1629 if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) { 1630 bus_dmamap_unload(sc->age_cdata.age_tx_tag, map); 1631 return (ENOBUFS); 1632 } 1633 1634 m = *m_head; 1635 /* Configure Tx IP/TCP/UDP checksum offload. */ 1636 if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) { 1637 cflags |= AGE_TD_CSUM; 1638 if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0) 1639 cflags |= AGE_TD_TCPCSUM; 1640 if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0) 1641 cflags |= AGE_TD_UDPCSUM; 1642 /* Set checksum start offset. */ 1643 cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT); 1644 /* Set checksum insertion position of TCP/UDP. */ 1645 cflags |= ((poff + m->m_pkthdr.csum_data) << 1646 AGE_TD_CSUM_XSUMOFFSET_SHIFT); 1647 } 1648 1649 /* Configure TSO. */ 1650 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 1651 if (poff + (tcp->th_off << 2) == m->m_pkthdr.len) { 1652 /* Not TSO but IP/TCP checksum offload. */ 1653 cflags |= AGE_TD_IPCSUM | AGE_TD_TCPCSUM; 1654 /* Clear TSO in order not to set AGE_TD_TSO_HDR. */ 1655 m->m_pkthdr.csum_flags &= ~CSUM_TSO; 1656 } else { 1657 /* Request TSO and set MSS. */ 1658 cflags |= AGE_TD_TSO_IPV4; 1659 cflags |= AGE_TD_IPCSUM | AGE_TD_TCPCSUM; 1660 cflags |= ((uint32_t)m->m_pkthdr.tso_segsz << 1661 AGE_TD_TSO_MSS_SHIFT); 1662 } 1663 /* Set IP/TCP header size. */ 1664 cflags |= ip->ip_hl << AGE_TD_IPHDR_LEN_SHIFT; 1665 cflags |= tcp->th_off << AGE_TD_TSO_TCPHDR_LEN_SHIFT; 1666 } 1667 1668 /* Configure VLAN hardware tag insertion. */ 1669 if ((m->m_flags & M_VLANTAG) != 0) { 1670 vtag = AGE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag); 1671 vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK); 1672 cflags |= AGE_TD_INSERT_VLAN_TAG; 1673 } 1674 1675 desc = NULL; 1676 for (i = 0; i < nsegs; i++) { 1677 desc = &sc->age_rdata.age_tx_ring[prod]; 1678 desc->addr = htole64(txsegs[i].ds_addr); 1679 desc->len = htole32(AGE_TX_BYTES(txsegs[i].ds_len) | vtag); 1680 desc->flags = htole32(cflags); 1681 sc->age_cdata.age_tx_cnt++; 1682 AGE_DESC_INC(prod, AGE_TX_RING_CNT); 1683 } 1684 /* Update producer index. */ 1685 sc->age_cdata.age_tx_prod = prod; 1686 1687 /* Set EOP on the last descriptor. */ 1688 prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT; 1689 desc = &sc->age_rdata.age_tx_ring[prod]; 1690 desc->flags |= htole32(AGE_TD_EOP); 1691 1692 /* Lastly set TSO header and modify IP/TCP header for TSO operation. */ 1693 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 1694 desc = &sc->age_rdata.age_tx_ring[si]; 1695 desc->flags |= htole32(AGE_TD_TSO_HDR); 1696 } 1697 1698 /* Swap dmamap of the first and the last. */ 1699 txd = &sc->age_cdata.age_txdesc[prod]; 1700 map = txd_last->tx_dmamap; 1701 txd_last->tx_dmamap = txd->tx_dmamap; 1702 txd->tx_dmamap = map; 1703 txd->tx_m = m; 1704 1705 /* Sync descriptors. */ 1706 bus_dmamap_sync(sc->age_cdata.age_tx_tag, map, BUS_DMASYNC_PREWRITE); 1707 bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag, 1708 sc->age_cdata.age_tx_ring_map, 1709 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1710 1711 return (0); 1712 } 1713 1714 static void 1715 age_tx_task(void *arg, int pending) 1716 { 1717 struct ifnet *ifp; 1718 1719 ifp = (struct ifnet *)arg; 1720 age_start(ifp); 1721 } 1722 1723 static void 1724 age_start(struct ifnet *ifp) 1725 { 1726 struct age_softc *sc; 1727 struct mbuf *m_head; 1728 int enq; 1729 1730 sc = ifp->if_softc; 1731 1732 AGE_LOCK(sc); 1733 1734 if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 1735 IFF_DRV_RUNNING || (sc->age_flags & AGE_FLAG_LINK) == 0) { 1736 AGE_UNLOCK(sc); 1737 return; 1738 } 1739 1740 for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) { 1741 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); 1742 if (m_head == NULL) 1743 break; 1744 /* 1745 * Pack the data into the transmit ring. If we 1746 * don't have room, set the OACTIVE flag and wait 1747 * for the NIC to drain the ring. 1748 */ 1749 if (age_encap(sc, &m_head)) { 1750 if (m_head == NULL) 1751 break; 1752 IFQ_DRV_PREPEND(&ifp->if_snd, m_head); 1753 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1754 break; 1755 } 1756 1757 enq++; 1758 /* 1759 * If there's a BPF listener, bounce a copy of this frame 1760 * to him. 1761 */ 1762 ETHER_BPF_MTAP(ifp, m_head); 1763 } 1764 1765 if (enq > 0) { 1766 /* Update mbox. */ 1767 AGE_COMMIT_MBOX(sc); 1768 /* Set a timeout in case the chip goes out to lunch. */ 1769 sc->age_watchdog_timer = AGE_TX_TIMEOUT; 1770 } 1771 1772 AGE_UNLOCK(sc); 1773 } 1774 1775 static void 1776 age_watchdog(struct age_softc *sc) 1777 { 1778 struct ifnet *ifp; 1779 1780 AGE_LOCK_ASSERT(sc); 1781 1782 if (sc->age_watchdog_timer == 0 || --sc->age_watchdog_timer) 1783 return; 1784 1785 ifp = sc->age_ifp; 1786 if ((sc->age_flags & AGE_FLAG_LINK) == 0) { 1787 if_printf(sc->age_ifp, "watchdog timeout (missed link)\n"); 1788 ifp->if_oerrors++; 1789 age_init_locked(sc); 1790 return; 1791 } 1792 if (sc->age_cdata.age_tx_cnt == 0) { 1793 if_printf(sc->age_ifp, 1794 "watchdog timeout (missed Tx interrupts) -- recovering\n"); 1795 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1796 taskqueue_enqueue(sc->age_tq, &sc->age_tx_task); 1797 return; 1798 } 1799 if_printf(sc->age_ifp, "watchdog timeout\n"); 1800 ifp->if_oerrors++; 1801 age_init_locked(sc); 1802 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1803 taskqueue_enqueue(sc->age_tq, &sc->age_tx_task); 1804 } 1805 1806 static int 1807 age_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1808 { 1809 struct age_softc *sc; 1810 struct ifreq *ifr; 1811 struct mii_data *mii; 1812 uint32_t reg; 1813 int error, mask; 1814 1815 sc = ifp->if_softc; 1816 ifr = (struct ifreq *)data; 1817 error = 0; 1818 switch (cmd) { 1819 case SIOCSIFMTU: 1820 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > AGE_JUMBO_MTU) 1821 error = EINVAL; 1822 else if (ifp->if_mtu != ifr->ifr_mtu) { 1823 AGE_LOCK(sc); 1824 ifp->if_mtu = ifr->ifr_mtu; 1825 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 1826 age_init_locked(sc); 1827 AGE_UNLOCK(sc); 1828 } 1829 break; 1830 case SIOCSIFFLAGS: 1831 AGE_LOCK(sc); 1832 if ((ifp->if_flags & IFF_UP) != 0) { 1833 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 1834 if (((ifp->if_flags ^ sc->age_if_flags) 1835 & (IFF_PROMISC | IFF_ALLMULTI)) != 0) 1836 age_rxfilter(sc); 1837 } else { 1838 if ((sc->age_flags & AGE_FLAG_DETACH) == 0) 1839 age_init_locked(sc); 1840 } 1841 } else { 1842 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 1843 age_stop(sc); 1844 } 1845 sc->age_if_flags = ifp->if_flags; 1846 AGE_UNLOCK(sc); 1847 break; 1848 case SIOCADDMULTI: 1849 case SIOCDELMULTI: 1850 AGE_LOCK(sc); 1851 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 1852 age_rxfilter(sc); 1853 AGE_UNLOCK(sc); 1854 break; 1855 case SIOCSIFMEDIA: 1856 case SIOCGIFMEDIA: 1857 mii = device_get_softc(sc->age_miibus); 1858 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd); 1859 break; 1860 case SIOCSIFCAP: 1861 AGE_LOCK(sc); 1862 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 1863 if ((mask & IFCAP_TXCSUM) != 0 && 1864 (ifp->if_capabilities & IFCAP_TXCSUM) != 0) { 1865 ifp->if_capenable ^= IFCAP_TXCSUM; 1866 if ((ifp->if_capenable & IFCAP_TXCSUM) != 0) 1867 ifp->if_hwassist |= AGE_CSUM_FEATURES; 1868 else 1869 ifp->if_hwassist &= ~AGE_CSUM_FEATURES; 1870 } 1871 if ((mask & IFCAP_RXCSUM) != 0 && 1872 (ifp->if_capabilities & IFCAP_RXCSUM) != 0) { 1873 ifp->if_capenable ^= IFCAP_RXCSUM; 1874 reg = CSR_READ_4(sc, AGE_MAC_CFG); 1875 reg &= ~MAC_CFG_RXCSUM_ENB; 1876 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) 1877 reg |= MAC_CFG_RXCSUM_ENB; 1878 CSR_WRITE_4(sc, AGE_MAC_CFG, reg); 1879 } 1880 if ((mask & IFCAP_TSO4) != 0 && 1881 (ifp->if_capabilities & IFCAP_TSO4) != 0) { 1882 ifp->if_capenable ^= IFCAP_TSO4; 1883 if ((ifp->if_capenable & IFCAP_TSO4) != 0) 1884 ifp->if_hwassist |= CSUM_TSO; 1885 else 1886 ifp->if_hwassist &= ~CSUM_TSO; 1887 } 1888 1889 if ((mask & IFCAP_WOL_MCAST) != 0 && 1890 (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0) 1891 ifp->if_capenable ^= IFCAP_WOL_MCAST; 1892 if ((mask & IFCAP_WOL_MAGIC) != 0 && 1893 (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0) 1894 ifp->if_capenable ^= IFCAP_WOL_MAGIC; 1895 1896 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 && 1897 (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) { 1898 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; 1899 age_rxvlan(sc); 1900 } 1901 if ((mask & IFCAP_VLAN_HWCSUM) != 0 && 1902 (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0) 1903 ifp->if_capenable ^= IFCAP_VLAN_HWCSUM; 1904 if ((mask & IFCAP_VLAN_HWTSO) != 0 && 1905 (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0) 1906 ifp->if_capenable ^= IFCAP_VLAN_HWTSO; 1907 /* 1908 * VLAN hardware tagging is required to do checksum 1909 * offload or TSO on VLAN interface. Checksum offload 1910 * on VLAN interface also requires hardware assistance 1911 * of parent interface. 1912 */ 1913 if ((ifp->if_capenable & IFCAP_TXCSUM) == 0) 1914 ifp->if_capenable &= ~IFCAP_VLAN_HWCSUM; 1915 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0) 1916 ifp->if_capenable &= 1917 ~(IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM); 1918 AGE_UNLOCK(sc); 1919 VLAN_CAPABILITIES(ifp); 1920 break; 1921 default: 1922 error = ether_ioctl(ifp, cmd, data); 1923 break; 1924 } 1925 1926 return (error); 1927 } 1928 1929 static void 1930 age_mac_config(struct age_softc *sc) 1931 { 1932 struct mii_data *mii; 1933 uint32_t reg; 1934 1935 AGE_LOCK_ASSERT(sc); 1936 1937 mii = device_get_softc(sc->age_miibus); 1938 reg = CSR_READ_4(sc, AGE_MAC_CFG); 1939 reg &= ~MAC_CFG_FULL_DUPLEX; 1940 reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC); 1941 reg &= ~MAC_CFG_SPEED_MASK; 1942 /* Reprogram MAC with resolved speed/duplex. */ 1943 switch (IFM_SUBTYPE(mii->mii_media_active)) { 1944 case IFM_10_T: 1945 case IFM_100_TX: 1946 reg |= MAC_CFG_SPEED_10_100; 1947 break; 1948 case IFM_1000_T: 1949 reg |= MAC_CFG_SPEED_1000; 1950 break; 1951 } 1952 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) { 1953 reg |= MAC_CFG_FULL_DUPLEX; 1954 #ifdef notyet 1955 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0) 1956 reg |= MAC_CFG_TX_FC; 1957 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0) 1958 reg |= MAC_CFG_RX_FC; 1959 #endif 1960 } 1961 1962 CSR_WRITE_4(sc, AGE_MAC_CFG, reg); 1963 } 1964 1965 static void 1966 age_link_task(void *arg, int pending) 1967 { 1968 struct age_softc *sc; 1969 struct mii_data *mii; 1970 struct ifnet *ifp; 1971 uint32_t reg; 1972 1973 sc = (struct age_softc *)arg; 1974 1975 AGE_LOCK(sc); 1976 mii = device_get_softc(sc->age_miibus); 1977 ifp = sc->age_ifp; 1978 if (mii == NULL || ifp == NULL || 1979 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1980 AGE_UNLOCK(sc); 1981 return; 1982 } 1983 1984 sc->age_flags &= ~AGE_FLAG_LINK; 1985 if ((mii->mii_media_status & IFM_AVALID) != 0) { 1986 switch (IFM_SUBTYPE(mii->mii_media_active)) { 1987 case IFM_10_T: 1988 case IFM_100_TX: 1989 case IFM_1000_T: 1990 sc->age_flags |= AGE_FLAG_LINK; 1991 break; 1992 default: 1993 break; 1994 } 1995 } 1996 1997 /* Stop Rx/Tx MACs. */ 1998 age_stop_rxmac(sc); 1999 age_stop_txmac(sc); 2000 2001 /* Program MACs with resolved speed/duplex/flow-control. */ 2002 if ((sc->age_flags & AGE_FLAG_LINK) != 0) { 2003 age_mac_config(sc); 2004 reg = CSR_READ_4(sc, AGE_MAC_CFG); 2005 /* Restart DMA engine and Tx/Rx MAC. */ 2006 CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) | 2007 DMA_CFG_RD_ENB | DMA_CFG_WR_ENB); 2008 reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB; 2009 CSR_WRITE_4(sc, AGE_MAC_CFG, reg); 2010 } 2011 2012 AGE_UNLOCK(sc); 2013 } 2014 2015 static void 2016 age_stats_update(struct age_softc *sc) 2017 { 2018 struct age_stats *stat; 2019 struct smb *smb; 2020 struct ifnet *ifp; 2021 2022 AGE_LOCK_ASSERT(sc); 2023 2024 stat = &sc->age_stat; 2025 2026 bus_dmamap_sync(sc->age_cdata.age_smb_block_tag, 2027 sc->age_cdata.age_smb_block_map, 2028 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2029 2030 smb = sc->age_rdata.age_smb_block; 2031 if (smb->updated == 0) 2032 return; 2033 2034 ifp = sc->age_ifp; 2035 /* Rx stats. */ 2036 stat->rx_frames += smb->rx_frames; 2037 stat->rx_bcast_frames += smb->rx_bcast_frames; 2038 stat->rx_mcast_frames += smb->rx_mcast_frames; 2039 stat->rx_pause_frames += smb->rx_pause_frames; 2040 stat->rx_control_frames += smb->rx_control_frames; 2041 stat->rx_crcerrs += smb->rx_crcerrs; 2042 stat->rx_lenerrs += smb->rx_lenerrs; 2043 stat->rx_bytes += smb->rx_bytes; 2044 stat->rx_runts += smb->rx_runts; 2045 stat->rx_fragments += smb->rx_fragments; 2046 stat->rx_pkts_64 += smb->rx_pkts_64; 2047 stat->rx_pkts_65_127 += smb->rx_pkts_65_127; 2048 stat->rx_pkts_128_255 += smb->rx_pkts_128_255; 2049 stat->rx_pkts_256_511 += smb->rx_pkts_256_511; 2050 stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023; 2051 stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518; 2052 stat->rx_pkts_1519_max += smb->rx_pkts_1519_max; 2053 stat->rx_pkts_truncated += smb->rx_pkts_truncated; 2054 stat->rx_fifo_oflows += smb->rx_fifo_oflows; 2055 stat->rx_desc_oflows += smb->rx_desc_oflows; 2056 stat->rx_alignerrs += smb->rx_alignerrs; 2057 stat->rx_bcast_bytes += smb->rx_bcast_bytes; 2058 stat->rx_mcast_bytes += smb->rx_mcast_bytes; 2059 stat->rx_pkts_filtered += smb->rx_pkts_filtered; 2060 2061 /* Tx stats. */ 2062 stat->tx_frames += smb->tx_frames; 2063 stat->tx_bcast_frames += smb->tx_bcast_frames; 2064 stat->tx_mcast_frames += smb->tx_mcast_frames; 2065 stat->tx_pause_frames += smb->tx_pause_frames; 2066 stat->tx_excess_defer += smb->tx_excess_defer; 2067 stat->tx_control_frames += smb->tx_control_frames; 2068 stat->tx_deferred += smb->tx_deferred; 2069 stat->tx_bytes += smb->tx_bytes; 2070 stat->tx_pkts_64 += smb->tx_pkts_64; 2071 stat->tx_pkts_65_127 += smb->tx_pkts_65_127; 2072 stat->tx_pkts_128_255 += smb->tx_pkts_128_255; 2073 stat->tx_pkts_256_511 += smb->tx_pkts_256_511; 2074 stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023; 2075 stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518; 2076 stat->tx_pkts_1519_max += smb->tx_pkts_1519_max; 2077 stat->tx_single_colls += smb->tx_single_colls; 2078 stat->tx_multi_colls += smb->tx_multi_colls; 2079 stat->tx_late_colls += smb->tx_late_colls; 2080 stat->tx_excess_colls += smb->tx_excess_colls; 2081 stat->tx_underrun += smb->tx_underrun; 2082 stat->tx_desc_underrun += smb->tx_desc_underrun; 2083 stat->tx_lenerrs += smb->tx_lenerrs; 2084 stat->tx_pkts_truncated += smb->tx_pkts_truncated; 2085 stat->tx_bcast_bytes += smb->tx_bcast_bytes; 2086 stat->tx_mcast_bytes += smb->tx_mcast_bytes; 2087 2088 /* Update counters in ifnet. */ 2089 ifp->if_opackets += smb->tx_frames; 2090 2091 ifp->if_collisions += smb->tx_single_colls + 2092 smb->tx_multi_colls + smb->tx_late_colls + 2093 smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT; 2094 2095 ifp->if_oerrors += smb->tx_excess_colls + 2096 smb->tx_late_colls + smb->tx_underrun + 2097 smb->tx_pkts_truncated; 2098 2099 ifp->if_ipackets += smb->rx_frames; 2100 2101 ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs + 2102 smb->rx_runts + smb->rx_pkts_truncated + 2103 smb->rx_fifo_oflows + smb->rx_desc_oflows + 2104 smb->rx_alignerrs; 2105 2106 /* Update done, clear. */ 2107 smb->updated = 0; 2108 2109 bus_dmamap_sync(sc->age_cdata.age_smb_block_tag, 2110 sc->age_cdata.age_smb_block_map, 2111 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2112 } 2113 2114 static int 2115 age_intr(void *arg) 2116 { 2117 struct age_softc *sc; 2118 uint32_t status; 2119 2120 sc = (struct age_softc *)arg; 2121 2122 status = CSR_READ_4(sc, AGE_INTR_STATUS); 2123 if (status == 0 || (status & AGE_INTRS) == 0) 2124 return (FILTER_STRAY); 2125 /* Disable interrupts. */ 2126 CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT); 2127 taskqueue_enqueue(sc->age_tq, &sc->age_int_task); 2128 2129 return (FILTER_HANDLED); 2130 } 2131 2132 static void 2133 age_int_task(void *arg, int pending) 2134 { 2135 struct age_softc *sc; 2136 struct ifnet *ifp; 2137 struct cmb *cmb; 2138 uint32_t status; 2139 2140 sc = (struct age_softc *)arg; 2141 2142 AGE_LOCK(sc); 2143 2144 bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag, 2145 sc->age_cdata.age_cmb_block_map, 2146 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2147 cmb = sc->age_rdata.age_cmb_block; 2148 status = le32toh(cmb->intr_status); 2149 if (sc->age_morework != 0) 2150 status |= INTR_CMB_RX; 2151 if ((status & AGE_INTRS) == 0) 2152 goto done; 2153 2154 sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >> 2155 TPD_CONS_SHIFT; 2156 sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >> 2157 RRD_PROD_SHIFT; 2158 /* Let hardware know CMB was served. */ 2159 cmb->intr_status = 0; 2160 bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag, 2161 sc->age_cdata.age_cmb_block_map, 2162 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2163 2164 #if 0 2165 printf("INTR: 0x%08x\n", status); 2166 status &= ~INTR_DIS_DMA; 2167 CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT); 2168 #endif 2169 ifp = sc->age_ifp; 2170 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 2171 if ((status & INTR_CMB_RX) != 0) 2172 sc->age_morework = age_rxintr(sc, sc->age_rr_prod, 2173 sc->age_process_limit); 2174 if ((status & INTR_CMB_TX) != 0) 2175 age_txintr(sc, sc->age_tpd_cons); 2176 if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) { 2177 if ((status & INTR_DMA_RD_TO_RST) != 0) 2178 device_printf(sc->age_dev, 2179 "DMA read error! -- resetting\n"); 2180 if ((status & INTR_DMA_WR_TO_RST) != 0) 2181 device_printf(sc->age_dev, 2182 "DMA write error! -- resetting\n"); 2183 age_init_locked(sc); 2184 } 2185 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 2186 taskqueue_enqueue(sc->age_tq, &sc->age_tx_task); 2187 if ((status & INTR_SMB) != 0) 2188 age_stats_update(sc); 2189 } 2190 2191 /* Check whether CMB was updated while serving Tx/Rx/SMB handler. */ 2192 bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag, 2193 sc->age_cdata.age_cmb_block_map, 2194 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2195 status = le32toh(cmb->intr_status); 2196 if (sc->age_morework != 0 || (status & AGE_INTRS) != 0) { 2197 taskqueue_enqueue(sc->age_tq, &sc->age_int_task); 2198 AGE_UNLOCK(sc); 2199 return; 2200 } 2201 2202 done: 2203 /* Re-enable interrupts. */ 2204 CSR_WRITE_4(sc, AGE_INTR_STATUS, 0); 2205 AGE_UNLOCK(sc); 2206 } 2207 2208 static void 2209 age_txintr(struct age_softc *sc, int tpd_cons) 2210 { 2211 struct ifnet *ifp; 2212 struct age_txdesc *txd; 2213 int cons, prog; 2214 2215 AGE_LOCK_ASSERT(sc); 2216 2217 ifp = sc->age_ifp; 2218 2219 bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag, 2220 sc->age_cdata.age_tx_ring_map, 2221 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2222 2223 /* 2224 * Go through our Tx list and free mbufs for those 2225 * frames which have been transmitted. 2226 */ 2227 cons = sc->age_cdata.age_tx_cons; 2228 for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) { 2229 if (sc->age_cdata.age_tx_cnt <= 0) 2230 break; 2231 prog++; 2232 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2233 sc->age_cdata.age_tx_cnt--; 2234 txd = &sc->age_cdata.age_txdesc[cons]; 2235 /* 2236 * Clear Tx descriptors, it's not required but would 2237 * help debugging in case of Tx issues. 2238 */ 2239 txd->tx_desc->addr = 0; 2240 txd->tx_desc->len = 0; 2241 txd->tx_desc->flags = 0; 2242 2243 if (txd->tx_m == NULL) 2244 continue; 2245 /* Reclaim transmitted mbufs. */ 2246 bus_dmamap_sync(sc->age_cdata.age_tx_tag, txd->tx_dmamap, 2247 BUS_DMASYNC_POSTWRITE); 2248 bus_dmamap_unload(sc->age_cdata.age_tx_tag, txd->tx_dmamap); 2249 m_freem(txd->tx_m); 2250 txd->tx_m = NULL; 2251 } 2252 2253 if (prog > 0) { 2254 sc->age_cdata.age_tx_cons = cons; 2255 2256 /* 2257 * Unarm watchdog timer only when there are no pending 2258 * Tx descriptors in queue. 2259 */ 2260 if (sc->age_cdata.age_tx_cnt == 0) 2261 sc->age_watchdog_timer = 0; 2262 bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag, 2263 sc->age_cdata.age_tx_ring_map, 2264 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2265 } 2266 } 2267 2268 /* Receive a frame. */ 2269 static void 2270 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd) 2271 { 2272 struct age_rxdesc *rxd; 2273 struct rx_desc *desc; 2274 struct ifnet *ifp; 2275 struct mbuf *mp, *m; 2276 uint32_t status, index, vtag; 2277 int count, nsegs, pktlen; 2278 int rx_cons; 2279 2280 AGE_LOCK_ASSERT(sc); 2281 2282 ifp = sc->age_ifp; 2283 status = le32toh(rxrd->flags); 2284 index = le32toh(rxrd->index); 2285 rx_cons = AGE_RX_CONS(index); 2286 nsegs = AGE_RX_NSEGS(index); 2287 2288 sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len)); 2289 if ((status & AGE_RRD_ERROR) != 0 && 2290 (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE | 2291 AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) { 2292 /* 2293 * We want to pass the following frames to upper 2294 * layer regardless of error status of Rx return 2295 * ring. 2296 * 2297 * o IP/TCP/UDP checksum is bad. 2298 * o frame length and protocol specific length 2299 * does not match. 2300 */ 2301 sc->age_cdata.age_rx_cons += nsegs; 2302 sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT; 2303 return; 2304 } 2305 2306 pktlen = 0; 2307 for (count = 0; count < nsegs; count++, 2308 AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) { 2309 rxd = &sc->age_cdata.age_rxdesc[rx_cons]; 2310 mp = rxd->rx_m; 2311 desc = rxd->rx_desc; 2312 /* Add a new receive buffer to the ring. */ 2313 if (age_newbuf(sc, rxd) != 0) { 2314 ifp->if_iqdrops++; 2315 /* Reuse Rx buffers. */ 2316 if (sc->age_cdata.age_rxhead != NULL) { 2317 m_freem(sc->age_cdata.age_rxhead); 2318 AGE_RXCHAIN_RESET(sc); 2319 } 2320 break; 2321 } 2322 2323 /* The length of the first mbuf is computed last. */ 2324 if (count != 0) { 2325 mp->m_len = AGE_RX_BYTES(le32toh(desc->len)); 2326 pktlen += mp->m_len; 2327 } 2328 2329 /* Chain received mbufs. */ 2330 if (sc->age_cdata.age_rxhead == NULL) { 2331 sc->age_cdata.age_rxhead = mp; 2332 sc->age_cdata.age_rxtail = mp; 2333 } else { 2334 mp->m_flags &= ~M_PKTHDR; 2335 sc->age_cdata.age_rxprev_tail = 2336 sc->age_cdata.age_rxtail; 2337 sc->age_cdata.age_rxtail->m_next = mp; 2338 sc->age_cdata.age_rxtail = mp; 2339 } 2340 2341 if (count == nsegs - 1) { 2342 /* 2343 * It seems that L1 controller has no way 2344 * to tell hardware to strip CRC bytes. 2345 */ 2346 sc->age_cdata.age_rxlen -= ETHER_CRC_LEN; 2347 if (nsegs > 1) { 2348 /* Remove the CRC bytes in chained mbufs. */ 2349 pktlen -= ETHER_CRC_LEN; 2350 if (mp->m_len <= ETHER_CRC_LEN) { 2351 sc->age_cdata.age_rxtail = 2352 sc->age_cdata.age_rxprev_tail; 2353 sc->age_cdata.age_rxtail->m_len -= 2354 (ETHER_CRC_LEN - mp->m_len); 2355 sc->age_cdata.age_rxtail->m_next = NULL; 2356 m_freem(mp); 2357 } else { 2358 mp->m_len -= ETHER_CRC_LEN; 2359 } 2360 } 2361 2362 m = sc->age_cdata.age_rxhead; 2363 m->m_flags |= M_PKTHDR; 2364 m->m_pkthdr.rcvif = ifp; 2365 m->m_pkthdr.len = sc->age_cdata.age_rxlen; 2366 /* Set the first mbuf length. */ 2367 m->m_len = sc->age_cdata.age_rxlen - pktlen; 2368 2369 /* 2370 * Set checksum information. 2371 * It seems that L1 controller can compute partial 2372 * checksum. The partial checksum value can be used 2373 * to accelerate checksum computation for fragmented 2374 * TCP/UDP packets. Upper network stack already 2375 * takes advantage of the partial checksum value in 2376 * IP reassembly stage. But I'm not sure the 2377 * correctness of the partial hardware checksum 2378 * assistance due to lack of data sheet. If it is 2379 * proven to work on L1 I'll enable it. 2380 */ 2381 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 && 2382 (status & AGE_RRD_IPV4) != 0) { 2383 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 2384 if ((status & AGE_RRD_IPCSUM_NOK) == 0) 2385 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 2386 if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) && 2387 (status & AGE_RRD_TCP_UDPCSUM_NOK) == 0) { 2388 m->m_pkthdr.csum_flags |= 2389 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 2390 m->m_pkthdr.csum_data = 0xffff; 2391 } 2392 /* 2393 * Don't mark bad checksum for TCP/UDP frames 2394 * as fragmented frames may always have set 2395 * bad checksummed bit of descriptor status. 2396 */ 2397 } 2398 2399 /* Check for VLAN tagged frames. */ 2400 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 && 2401 (status & AGE_RRD_VLAN) != 0) { 2402 vtag = AGE_RX_VLAN(le32toh(rxrd->vtags)); 2403 m->m_pkthdr.ether_vtag = AGE_RX_VLAN_TAG(vtag); 2404 m->m_flags |= M_VLANTAG; 2405 } 2406 2407 /* Pass it on. */ 2408 AGE_UNLOCK(sc); 2409 (*ifp->if_input)(ifp, m); 2410 AGE_LOCK(sc); 2411 2412 /* Reset mbuf chains. */ 2413 AGE_RXCHAIN_RESET(sc); 2414 } 2415 } 2416 2417 if (count != nsegs) { 2418 sc->age_cdata.age_rx_cons += nsegs; 2419 sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT; 2420 } else 2421 sc->age_cdata.age_rx_cons = rx_cons; 2422 } 2423 2424 static int 2425 age_rxintr(struct age_softc *sc, int rr_prod, int count) 2426 { 2427 struct rx_rdesc *rxrd; 2428 int rr_cons, nsegs, pktlen, prog; 2429 2430 AGE_LOCK_ASSERT(sc); 2431 2432 rr_cons = sc->age_cdata.age_rr_cons; 2433 if (rr_cons == rr_prod) 2434 return (0); 2435 2436 bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag, 2437 sc->age_cdata.age_rr_ring_map, 2438 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2439 2440 for (prog = 0; rr_cons != rr_prod; prog++) { 2441 if (count <= 0) 2442 break; 2443 rxrd = &sc->age_rdata.age_rr_ring[rr_cons]; 2444 nsegs = AGE_RX_NSEGS(le32toh(rxrd->index)); 2445 if (nsegs == 0) 2446 break; 2447 /* 2448 * Check number of segments against received bytes. 2449 * Non-matching value would indicate that hardware 2450 * is still trying to update Rx return descriptors. 2451 * I'm not sure whether this check is really needed. 2452 */ 2453 pktlen = AGE_RX_BYTES(le32toh(rxrd->len)); 2454 if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) / 2455 (MCLBYTES - ETHER_ALIGN))) 2456 break; 2457 2458 prog++; 2459 /* Received a frame. */ 2460 age_rxeof(sc, rxrd); 2461 /* Clear return ring. */ 2462 rxrd->index = 0; 2463 AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT); 2464 } 2465 2466 if (prog > 0) { 2467 /* Update the consumer index. */ 2468 sc->age_cdata.age_rr_cons = rr_cons; 2469 2470 /* Sync descriptors. */ 2471 bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag, 2472 sc->age_cdata.age_rr_ring_map, 2473 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2474 2475 /* Notify hardware availability of new Rx buffers. */ 2476 AGE_COMMIT_MBOX(sc); 2477 } 2478 2479 return (count > 0 ? 0 : EAGAIN); 2480 } 2481 2482 static void 2483 age_tick(void *arg) 2484 { 2485 struct age_softc *sc; 2486 struct mii_data *mii; 2487 2488 sc = (struct age_softc *)arg; 2489 2490 AGE_LOCK_ASSERT(sc); 2491 2492 mii = device_get_softc(sc->age_miibus); 2493 mii_tick(mii); 2494 age_watchdog(sc); 2495 callout_reset(&sc->age_tick_ch, hz, age_tick, sc); 2496 } 2497 2498 static void 2499 age_reset(struct age_softc *sc) 2500 { 2501 uint32_t reg; 2502 int i; 2503 2504 CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET); 2505 CSR_READ_4(sc, AGE_MASTER_CFG); 2506 DELAY(1000); 2507 for (i = AGE_RESET_TIMEOUT; i > 0; i--) { 2508 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0) 2509 break; 2510 DELAY(10); 2511 } 2512 2513 if (i == 0) 2514 device_printf(sc->age_dev, "reset timeout(0x%08x)!\n", reg); 2515 /* Initialize PCIe module. From Linux. */ 2516 CSR_WRITE_4(sc, 0x12FC, 0x6500); 2517 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000); 2518 } 2519 2520 static void 2521 age_init(void *xsc) 2522 { 2523 struct age_softc *sc; 2524 2525 sc = (struct age_softc *)xsc; 2526 AGE_LOCK(sc); 2527 age_init_locked(sc); 2528 AGE_UNLOCK(sc); 2529 } 2530 2531 static void 2532 age_init_locked(struct age_softc *sc) 2533 { 2534 struct ifnet *ifp; 2535 struct mii_data *mii; 2536 uint8_t eaddr[ETHER_ADDR_LEN]; 2537 bus_addr_t paddr; 2538 uint32_t reg, fsize; 2539 uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo; 2540 int error; 2541 2542 AGE_LOCK_ASSERT(sc); 2543 2544 ifp = sc->age_ifp; 2545 mii = device_get_softc(sc->age_miibus); 2546 2547 /* 2548 * Cancel any pending I/O. 2549 */ 2550 age_stop(sc); 2551 2552 /* 2553 * Reset the chip to a known state. 2554 */ 2555 age_reset(sc); 2556 2557 /* Initialize descriptors. */ 2558 error = age_init_rx_ring(sc); 2559 if (error != 0) { 2560 device_printf(sc->age_dev, "no memory for Rx buffers.\n"); 2561 age_stop(sc); 2562 return; 2563 } 2564 age_init_rr_ring(sc); 2565 age_init_tx_ring(sc); 2566 age_init_cmb_block(sc); 2567 age_init_smb_block(sc); 2568 2569 /* Reprogram the station address. */ 2570 bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN); 2571 CSR_WRITE_4(sc, AGE_PAR0, 2572 eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]); 2573 CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]); 2574 2575 /* Set descriptor base addresses. */ 2576 paddr = sc->age_rdata.age_tx_ring_paddr; 2577 CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr)); 2578 paddr = sc->age_rdata.age_rx_ring_paddr; 2579 CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr)); 2580 paddr = sc->age_rdata.age_rr_ring_paddr; 2581 CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr)); 2582 paddr = sc->age_rdata.age_tx_ring_paddr; 2583 CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr)); 2584 paddr = sc->age_rdata.age_cmb_block_paddr; 2585 CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr)); 2586 paddr = sc->age_rdata.age_smb_block_paddr; 2587 CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr)); 2588 /* Set Rx/Rx return descriptor counter. */ 2589 CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT, 2590 ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) & 2591 DESC_RRD_CNT_MASK) | 2592 ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK)); 2593 /* Set Tx descriptor counter. */ 2594 CSR_WRITE_4(sc, AGE_DESC_TPD_CNT, 2595 (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK); 2596 2597 /* Tell hardware that we're ready to load descriptors. */ 2598 CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD); 2599 2600 /* 2601 * Initialize mailbox register. 2602 * Updated producer/consumer index information is exchanged 2603 * through this mailbox register. However Tx producer and 2604 * Rx return consumer/Rx producer are all shared such that 2605 * it's hard to separate code path between Tx and Rx without 2606 * locking. If L1 hardware have a separate mail box register 2607 * for Tx and Rx consumer/producer management we could have 2608 * indepent Tx/Rx handler which in turn Rx handler could have 2609 * been run without any locking. 2610 */ 2611 AGE_COMMIT_MBOX(sc); 2612 2613 /* Configure IPG/IFG parameters. */ 2614 CSR_WRITE_4(sc, AGE_IPG_IFG_CFG, 2615 ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) | 2616 ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) | 2617 ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) | 2618 ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK)); 2619 2620 /* Set parameters for half-duplex media. */ 2621 CSR_WRITE_4(sc, AGE_HDPX_CFG, 2622 ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) & 2623 HDPX_CFG_LCOL_MASK) | 2624 ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) & 2625 HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN | 2626 ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) & 2627 HDPX_CFG_ABEBT_MASK) | 2628 ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) & 2629 HDPX_CFG_JAMIPG_MASK)); 2630 2631 /* Configure interrupt moderation timer. */ 2632 CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod)); 2633 reg = CSR_READ_4(sc, AGE_MASTER_CFG); 2634 reg &= ~MASTER_MTIMER_ENB; 2635 if (AGE_USECS(sc->age_int_mod) == 0) 2636 reg &= ~MASTER_ITIMER_ENB; 2637 else 2638 reg |= MASTER_ITIMER_ENB; 2639 CSR_WRITE_4(sc, AGE_MASTER_CFG, reg); 2640 if (bootverbose) 2641 device_printf(sc->age_dev, "interrupt moderation is %d us.\n", 2642 sc->age_int_mod); 2643 CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000)); 2644 2645 /* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */ 2646 if (ifp->if_mtu < ETHERMTU) 2647 sc->age_max_frame_size = ETHERMTU; 2648 else 2649 sc->age_max_frame_size = ifp->if_mtu; 2650 sc->age_max_frame_size += ETHER_HDR_LEN + 2651 sizeof(struct ether_vlan_header) + ETHER_CRC_LEN; 2652 CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size); 2653 /* Configure jumbo frame. */ 2654 fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t)); 2655 CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG, 2656 (((fsize / sizeof(uint64_t)) << 2657 RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) | 2658 ((RXQ_JUMBO_CFG_LKAH_DEFAULT << 2659 RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) | 2660 ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) & 2661 RXQ_JUMBO_CFG_RRD_TIMER_MASK)); 2662 2663 /* Configure flow-control parameters. From Linux. */ 2664 if ((sc->age_flags & AGE_FLAG_PCIE) != 0) { 2665 /* 2666 * Magic workaround for old-L1. 2667 * Don't know which hw revision requires this magic. 2668 */ 2669 CSR_WRITE_4(sc, 0x12FC, 0x6500); 2670 /* 2671 * Another magic workaround for flow-control mode 2672 * change. From Linux. 2673 */ 2674 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000); 2675 } 2676 /* 2677 * TODO 2678 * Should understand pause parameter relationships between FIFO 2679 * size and number of Rx descriptors and Rx return descriptors. 2680 * 2681 * Magic parameters came from Linux. 2682 */ 2683 switch (sc->age_chip_rev) { 2684 case 0x8001: 2685 case 0x9001: 2686 case 0x9002: 2687 case 0x9003: 2688 rxf_hi = AGE_RX_RING_CNT / 16; 2689 rxf_lo = (AGE_RX_RING_CNT * 7) / 8; 2690 rrd_hi = (AGE_RR_RING_CNT * 7) / 8; 2691 rrd_lo = AGE_RR_RING_CNT / 16; 2692 break; 2693 default: 2694 reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN); 2695 rxf_lo = reg / 16; 2696 if (rxf_lo < 192) 2697 rxf_lo = 192; 2698 rxf_hi = (reg * 7) / 8; 2699 if (rxf_hi < rxf_lo) 2700 rxf_hi = rxf_lo + 16; 2701 reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN); 2702 rrd_lo = reg / 8; 2703 rrd_hi = (reg * 7) / 8; 2704 if (rrd_lo < 2) 2705 rrd_lo = 2; 2706 if (rrd_hi < rrd_lo) 2707 rrd_hi = rrd_lo + 3; 2708 break; 2709 } 2710 CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH, 2711 ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) & 2712 RXQ_FIFO_PAUSE_THRESH_LO_MASK) | 2713 ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) & 2714 RXQ_FIFO_PAUSE_THRESH_HI_MASK)); 2715 CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH, 2716 ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) & 2717 RXQ_RRD_PAUSE_THRESH_LO_MASK) | 2718 ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) & 2719 RXQ_RRD_PAUSE_THRESH_HI_MASK)); 2720 2721 /* Configure RxQ. */ 2722 CSR_WRITE_4(sc, AGE_RXQ_CFG, 2723 ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) & 2724 RXQ_CFG_RD_BURST_MASK) | 2725 ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT << 2726 RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) | 2727 ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT << 2728 RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) | 2729 RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB); 2730 2731 /* Configure TxQ. */ 2732 CSR_WRITE_4(sc, AGE_TXQ_CFG, 2733 ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) & 2734 TXQ_CFG_TPD_BURST_MASK) | 2735 ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) & 2736 TXQ_CFG_TX_FIFO_BURST_MASK) | 2737 ((TXQ_CFG_TPD_FETCH_DEFAULT << 2738 TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) | 2739 TXQ_CFG_ENB); 2740 2741 CSR_WRITE_4(sc, AGE_TX_JUMBO_TPD_TH_IPG, 2742 (((fsize / sizeof(uint64_t) << TX_JUMBO_TPD_TH_SHIFT)) & 2743 TX_JUMBO_TPD_TH_MASK) | 2744 ((TX_JUMBO_TPD_IPG_DEFAULT << TX_JUMBO_TPD_IPG_SHIFT) & 2745 TX_JUMBO_TPD_IPG_MASK)); 2746 /* Configure DMA parameters. */ 2747 CSR_WRITE_4(sc, AGE_DMA_CFG, 2748 DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 | 2749 sc->age_dma_rd_burst | DMA_CFG_RD_ENB | 2750 sc->age_dma_wr_burst | DMA_CFG_WR_ENB); 2751 2752 /* Configure CMB DMA write threshold. */ 2753 CSR_WRITE_4(sc, AGE_CMB_WR_THRESH, 2754 ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) & 2755 CMB_WR_THRESH_RRD_MASK) | 2756 ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) & 2757 CMB_WR_THRESH_TPD_MASK)); 2758 2759 /* Set CMB/SMB timer and enable them. */ 2760 CSR_WRITE_4(sc, AGE_CMB_WR_TIMER, 2761 ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) | 2762 ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK)); 2763 /* Request SMB updates for every seconds. */ 2764 CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000)); 2765 CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB); 2766 2767 /* 2768 * Disable all WOL bits as WOL can interfere normal Rx 2769 * operation. 2770 */ 2771 CSR_WRITE_4(sc, AGE_WOL_CFG, 0); 2772 2773 /* 2774 * Configure Tx/Rx MACs. 2775 * - Auto-padding for short frames. 2776 * - Enable CRC generation. 2777 * Start with full-duplex/1000Mbps media. Actual reconfiguration 2778 * of MAC is followed after link establishment. 2779 */ 2780 CSR_WRITE_4(sc, AGE_MAC_CFG, 2781 MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | 2782 MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 | 2783 ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) & 2784 MAC_CFG_PREAMBLE_MASK)); 2785 /* Set up the receive filter. */ 2786 age_rxfilter(sc); 2787 age_rxvlan(sc); 2788 2789 reg = CSR_READ_4(sc, AGE_MAC_CFG); 2790 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) 2791 reg |= MAC_CFG_RXCSUM_ENB; 2792 2793 /* Ack all pending interrupts and clear it. */ 2794 CSR_WRITE_4(sc, AGE_INTR_STATUS, 0); 2795 CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS); 2796 2797 /* Finally enable Tx/Rx MAC. */ 2798 CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB); 2799 2800 sc->age_flags &= ~AGE_FLAG_LINK; 2801 /* Switch to the current media. */ 2802 mii_mediachg(mii); 2803 2804 callout_reset(&sc->age_tick_ch, hz, age_tick, sc); 2805 2806 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2807 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2808 } 2809 2810 static void 2811 age_stop(struct age_softc *sc) 2812 { 2813 struct ifnet *ifp; 2814 struct age_txdesc *txd; 2815 struct age_rxdesc *rxd; 2816 uint32_t reg; 2817 int i; 2818 2819 AGE_LOCK_ASSERT(sc); 2820 /* 2821 * Mark the interface down and cancel the watchdog timer. 2822 */ 2823 ifp = sc->age_ifp; 2824 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 2825 sc->age_flags &= ~AGE_FLAG_LINK; 2826 callout_stop(&sc->age_tick_ch); 2827 sc->age_watchdog_timer = 0; 2828 2829 /* 2830 * Disable interrupts. 2831 */ 2832 CSR_WRITE_4(sc, AGE_INTR_MASK, 0); 2833 CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF); 2834 /* Stop CMB/SMB updates. */ 2835 CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0); 2836 /* Stop Rx/Tx MAC. */ 2837 age_stop_rxmac(sc); 2838 age_stop_txmac(sc); 2839 /* Stop DMA. */ 2840 CSR_WRITE_4(sc, AGE_DMA_CFG, 2841 CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB)); 2842 /* Stop TxQ/RxQ. */ 2843 CSR_WRITE_4(sc, AGE_TXQ_CFG, 2844 CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB); 2845 CSR_WRITE_4(sc, AGE_RXQ_CFG, 2846 CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB); 2847 for (i = AGE_RESET_TIMEOUT; i > 0; i--) { 2848 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0) 2849 break; 2850 DELAY(10); 2851 } 2852 if (i == 0) 2853 device_printf(sc->age_dev, 2854 "stopping Rx/Tx MACs timed out(0x%08x)!\n", reg); 2855 2856 /* Reclaim Rx buffers that have been processed. */ 2857 if (sc->age_cdata.age_rxhead != NULL) 2858 m_freem(sc->age_cdata.age_rxhead); 2859 AGE_RXCHAIN_RESET(sc); 2860 /* 2861 * Free RX and TX mbufs still in the queues. 2862 */ 2863 for (i = 0; i < AGE_RX_RING_CNT; i++) { 2864 rxd = &sc->age_cdata.age_rxdesc[i]; 2865 if (rxd->rx_m != NULL) { 2866 bus_dmamap_sync(sc->age_cdata.age_rx_tag, 2867 rxd->rx_dmamap, BUS_DMASYNC_POSTREAD); 2868 bus_dmamap_unload(sc->age_cdata.age_rx_tag, 2869 rxd->rx_dmamap); 2870 m_freem(rxd->rx_m); 2871 rxd->rx_m = NULL; 2872 } 2873 } 2874 for (i = 0; i < AGE_TX_RING_CNT; i++) { 2875 txd = &sc->age_cdata.age_txdesc[i]; 2876 if (txd->tx_m != NULL) { 2877 bus_dmamap_sync(sc->age_cdata.age_tx_tag, 2878 txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); 2879 bus_dmamap_unload(sc->age_cdata.age_tx_tag, 2880 txd->tx_dmamap); 2881 m_freem(txd->tx_m); 2882 txd->tx_m = NULL; 2883 } 2884 } 2885 } 2886 2887 static void 2888 age_stop_txmac(struct age_softc *sc) 2889 { 2890 uint32_t reg; 2891 int i; 2892 2893 AGE_LOCK_ASSERT(sc); 2894 2895 reg = CSR_READ_4(sc, AGE_MAC_CFG); 2896 if ((reg & MAC_CFG_TX_ENB) != 0) { 2897 reg &= ~MAC_CFG_TX_ENB; 2898 CSR_WRITE_4(sc, AGE_MAC_CFG, reg); 2899 } 2900 /* Stop Tx DMA engine. */ 2901 reg = CSR_READ_4(sc, AGE_DMA_CFG); 2902 if ((reg & DMA_CFG_RD_ENB) != 0) { 2903 reg &= ~DMA_CFG_RD_ENB; 2904 CSR_WRITE_4(sc, AGE_DMA_CFG, reg); 2905 } 2906 for (i = AGE_RESET_TIMEOUT; i > 0; i--) { 2907 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) & 2908 (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0) 2909 break; 2910 DELAY(10); 2911 } 2912 if (i == 0) 2913 device_printf(sc->age_dev, "stopping TxMAC timeout!\n"); 2914 } 2915 2916 static void 2917 age_stop_rxmac(struct age_softc *sc) 2918 { 2919 uint32_t reg; 2920 int i; 2921 2922 AGE_LOCK_ASSERT(sc); 2923 2924 reg = CSR_READ_4(sc, AGE_MAC_CFG); 2925 if ((reg & MAC_CFG_RX_ENB) != 0) { 2926 reg &= ~MAC_CFG_RX_ENB; 2927 CSR_WRITE_4(sc, AGE_MAC_CFG, reg); 2928 } 2929 /* Stop Rx DMA engine. */ 2930 reg = CSR_READ_4(sc, AGE_DMA_CFG); 2931 if ((reg & DMA_CFG_WR_ENB) != 0) { 2932 reg &= ~DMA_CFG_WR_ENB; 2933 CSR_WRITE_4(sc, AGE_DMA_CFG, reg); 2934 } 2935 for (i = AGE_RESET_TIMEOUT; i > 0; i--) { 2936 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) & 2937 (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0) 2938 break; 2939 DELAY(10); 2940 } 2941 if (i == 0) 2942 device_printf(sc->age_dev, "stopping RxMAC timeout!\n"); 2943 } 2944 2945 static void 2946 age_init_tx_ring(struct age_softc *sc) 2947 { 2948 struct age_ring_data *rd; 2949 struct age_txdesc *txd; 2950 int i; 2951 2952 AGE_LOCK_ASSERT(sc); 2953 2954 sc->age_cdata.age_tx_prod = 0; 2955 sc->age_cdata.age_tx_cons = 0; 2956 sc->age_cdata.age_tx_cnt = 0; 2957 2958 rd = &sc->age_rdata; 2959 bzero(rd->age_tx_ring, AGE_TX_RING_SZ); 2960 for (i = 0; i < AGE_TX_RING_CNT; i++) { 2961 txd = &sc->age_cdata.age_txdesc[i]; 2962 txd->tx_desc = &rd->age_tx_ring[i]; 2963 txd->tx_m = NULL; 2964 } 2965 2966 bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag, 2967 sc->age_cdata.age_tx_ring_map, 2968 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2969 } 2970 2971 static int 2972 age_init_rx_ring(struct age_softc *sc) 2973 { 2974 struct age_ring_data *rd; 2975 struct age_rxdesc *rxd; 2976 int i; 2977 2978 AGE_LOCK_ASSERT(sc); 2979 2980 sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1; 2981 sc->age_morework = 0; 2982 rd = &sc->age_rdata; 2983 bzero(rd->age_rx_ring, AGE_RX_RING_SZ); 2984 for (i = 0; i < AGE_RX_RING_CNT; i++) { 2985 rxd = &sc->age_cdata.age_rxdesc[i]; 2986 rxd->rx_m = NULL; 2987 rxd->rx_desc = &rd->age_rx_ring[i]; 2988 if (age_newbuf(sc, rxd) != 0) 2989 return (ENOBUFS); 2990 } 2991 2992 bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag, 2993 sc->age_cdata.age_rx_ring_map, 2994 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2995 2996 return (0); 2997 } 2998 2999 static void 3000 age_init_rr_ring(struct age_softc *sc) 3001 { 3002 struct age_ring_data *rd; 3003 3004 AGE_LOCK_ASSERT(sc); 3005 3006 sc->age_cdata.age_rr_cons = 0; 3007 AGE_RXCHAIN_RESET(sc); 3008 3009 rd = &sc->age_rdata; 3010 bzero(rd->age_rr_ring, AGE_RR_RING_SZ); 3011 bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag, 3012 sc->age_cdata.age_rr_ring_map, 3013 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 3014 } 3015 3016 static void 3017 age_init_cmb_block(struct age_softc *sc) 3018 { 3019 struct age_ring_data *rd; 3020 3021 AGE_LOCK_ASSERT(sc); 3022 3023 rd = &sc->age_rdata; 3024 bzero(rd->age_cmb_block, AGE_CMB_BLOCK_SZ); 3025 bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag, 3026 sc->age_cdata.age_cmb_block_map, 3027 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 3028 } 3029 3030 static void 3031 age_init_smb_block(struct age_softc *sc) 3032 { 3033 struct age_ring_data *rd; 3034 3035 AGE_LOCK_ASSERT(sc); 3036 3037 rd = &sc->age_rdata; 3038 bzero(rd->age_smb_block, AGE_SMB_BLOCK_SZ); 3039 bus_dmamap_sync(sc->age_cdata.age_smb_block_tag, 3040 sc->age_cdata.age_smb_block_map, 3041 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 3042 } 3043 3044 static int 3045 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd) 3046 { 3047 struct rx_desc *desc; 3048 struct mbuf *m; 3049 bus_dma_segment_t segs[1]; 3050 bus_dmamap_t map; 3051 int nsegs; 3052 3053 AGE_LOCK_ASSERT(sc); 3054 3055 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 3056 if (m == NULL) 3057 return (ENOBUFS); 3058 m->m_len = m->m_pkthdr.len = MCLBYTES; 3059 m_adj(m, ETHER_ALIGN); 3060 3061 if (bus_dmamap_load_mbuf_sg(sc->age_cdata.age_rx_tag, 3062 sc->age_cdata.age_rx_sparemap, m, segs, &nsegs, 0) != 0) { 3063 m_freem(m); 3064 return (ENOBUFS); 3065 } 3066 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); 3067 3068 if (rxd->rx_m != NULL) { 3069 bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap, 3070 BUS_DMASYNC_POSTREAD); 3071 bus_dmamap_unload(sc->age_cdata.age_rx_tag, rxd->rx_dmamap); 3072 } 3073 map = rxd->rx_dmamap; 3074 rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap; 3075 sc->age_cdata.age_rx_sparemap = map; 3076 bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap, 3077 BUS_DMASYNC_PREREAD); 3078 rxd->rx_m = m; 3079 3080 desc = rxd->rx_desc; 3081 desc->addr = htole64(segs[0].ds_addr); 3082 desc->len = htole32((segs[0].ds_len & AGE_RD_LEN_MASK) << 3083 AGE_RD_LEN_SHIFT); 3084 return (0); 3085 } 3086 3087 static void 3088 age_rxvlan(struct age_softc *sc) 3089 { 3090 struct ifnet *ifp; 3091 uint32_t reg; 3092 3093 AGE_LOCK_ASSERT(sc); 3094 3095 ifp = sc->age_ifp; 3096 reg = CSR_READ_4(sc, AGE_MAC_CFG); 3097 reg &= ~MAC_CFG_VLAN_TAG_STRIP; 3098 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) 3099 reg |= MAC_CFG_VLAN_TAG_STRIP; 3100 CSR_WRITE_4(sc, AGE_MAC_CFG, reg); 3101 } 3102 3103 static void 3104 age_rxfilter(struct age_softc *sc) 3105 { 3106 struct ifnet *ifp; 3107 struct ifmultiaddr *ifma; 3108 uint32_t crc; 3109 uint32_t mchash[2]; 3110 uint32_t rxcfg; 3111 3112 AGE_LOCK_ASSERT(sc); 3113 3114 ifp = sc->age_ifp; 3115 3116 rxcfg = CSR_READ_4(sc, AGE_MAC_CFG); 3117 rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC); 3118 if ((ifp->if_flags & IFF_BROADCAST) != 0) 3119 rxcfg |= MAC_CFG_BCAST; 3120 if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) { 3121 if ((ifp->if_flags & IFF_PROMISC) != 0) 3122 rxcfg |= MAC_CFG_PROMISC; 3123 if ((ifp->if_flags & IFF_ALLMULTI) != 0) 3124 rxcfg |= MAC_CFG_ALLMULTI; 3125 CSR_WRITE_4(sc, AGE_MAR0, 0xFFFFFFFF); 3126 CSR_WRITE_4(sc, AGE_MAR1, 0xFFFFFFFF); 3127 CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg); 3128 return; 3129 } 3130 3131 /* Program new filter. */ 3132 bzero(mchash, sizeof(mchash)); 3133 3134 IF_ADDR_LOCK(ifp); 3135 TAILQ_FOREACH(ifma, &sc->age_ifp->if_multiaddrs, ifma_link) { 3136 if (ifma->ifma_addr->sa_family != AF_LINK) 3137 continue; 3138 crc = ether_crc32_le(LLADDR((struct sockaddr_dl *) 3139 ifma->ifma_addr), ETHER_ADDR_LEN); 3140 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f); 3141 } 3142 IF_ADDR_UNLOCK(ifp); 3143 3144 CSR_WRITE_4(sc, AGE_MAR0, mchash[0]); 3145 CSR_WRITE_4(sc, AGE_MAR1, mchash[1]); 3146 CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg); 3147 } 3148 3149 static int 3150 sysctl_age_stats(SYSCTL_HANDLER_ARGS) 3151 { 3152 struct age_softc *sc; 3153 struct age_stats *stats; 3154 int error, result; 3155 3156 result = -1; 3157 error = sysctl_handle_int(oidp, &result, 0, req); 3158 3159 if (error != 0 || req->newptr == NULL) 3160 return (error); 3161 3162 if (result != 1) 3163 return (error); 3164 3165 sc = (struct age_softc *)arg1; 3166 stats = &sc->age_stat; 3167 printf("%s statistics:\n", device_get_nameunit(sc->age_dev)); 3168 printf("Transmit good frames : %ju\n", 3169 (uintmax_t)stats->tx_frames); 3170 printf("Transmit good broadcast frames : %ju\n", 3171 (uintmax_t)stats->tx_bcast_frames); 3172 printf("Transmit good multicast frames : %ju\n", 3173 (uintmax_t)stats->tx_mcast_frames); 3174 printf("Transmit pause control frames : %u\n", 3175 stats->tx_pause_frames); 3176 printf("Transmit control frames : %u\n", 3177 stats->tx_control_frames); 3178 printf("Transmit frames with excessive deferrals : %u\n", 3179 stats->tx_excess_defer); 3180 printf("Transmit deferrals : %u\n", 3181 stats->tx_deferred); 3182 printf("Transmit good octets : %ju\n", 3183 (uintmax_t)stats->tx_bytes); 3184 printf("Transmit good broadcast octets : %ju\n", 3185 (uintmax_t)stats->tx_bcast_bytes); 3186 printf("Transmit good multicast octets : %ju\n", 3187 (uintmax_t)stats->tx_mcast_bytes); 3188 printf("Transmit frames 64 bytes : %ju\n", 3189 (uintmax_t)stats->tx_pkts_64); 3190 printf("Transmit frames 65 to 127 bytes : %ju\n", 3191 (uintmax_t)stats->tx_pkts_65_127); 3192 printf("Transmit frames 128 to 255 bytes : %ju\n", 3193 (uintmax_t)stats->tx_pkts_128_255); 3194 printf("Transmit frames 256 to 511 bytes : %ju\n", 3195 (uintmax_t)stats->tx_pkts_256_511); 3196 printf("Transmit frames 512 to 1024 bytes : %ju\n", 3197 (uintmax_t)stats->tx_pkts_512_1023); 3198 printf("Transmit frames 1024 to 1518 bytes : %ju\n", 3199 (uintmax_t)stats->tx_pkts_1024_1518); 3200 printf("Transmit frames 1519 to MTU bytes : %ju\n", 3201 (uintmax_t)stats->tx_pkts_1519_max); 3202 printf("Transmit single collisions : %u\n", 3203 stats->tx_single_colls); 3204 printf("Transmit multiple collisions : %u\n", 3205 stats->tx_multi_colls); 3206 printf("Transmit late collisions : %u\n", 3207 stats->tx_late_colls); 3208 printf("Transmit abort due to excessive collisions : %u\n", 3209 stats->tx_excess_colls); 3210 printf("Transmit underruns due to FIFO underruns : %u\n", 3211 stats->tx_underrun); 3212 printf("Transmit descriptor write-back errors : %u\n", 3213 stats->tx_desc_underrun); 3214 printf("Transmit frames with length mismatched frame size : %u\n", 3215 stats->tx_lenerrs); 3216 printf("Transmit frames with truncated due to MTU size : %u\n", 3217 stats->tx_lenerrs); 3218 3219 printf("Receive good frames : %ju\n", 3220 (uintmax_t)stats->rx_frames); 3221 printf("Receive good broadcast frames : %ju\n", 3222 (uintmax_t)stats->rx_bcast_frames); 3223 printf("Receive good multicast frames : %ju\n", 3224 (uintmax_t)stats->rx_mcast_frames); 3225 printf("Receive pause control frames : %u\n", 3226 stats->rx_pause_frames); 3227 printf("Receive control frames : %u\n", 3228 stats->rx_control_frames); 3229 printf("Receive CRC errors : %u\n", 3230 stats->rx_crcerrs); 3231 printf("Receive frames with length errors : %u\n", 3232 stats->rx_lenerrs); 3233 printf("Receive good octets : %ju\n", 3234 (uintmax_t)stats->rx_bytes); 3235 printf("Receive good broadcast octets : %ju\n", 3236 (uintmax_t)stats->rx_bcast_bytes); 3237 printf("Receive good multicast octets : %ju\n", 3238 (uintmax_t)stats->rx_mcast_bytes); 3239 printf("Receive frames too short : %u\n", 3240 stats->rx_runts); 3241 printf("Receive fragmented frames : %ju\n", 3242 (uintmax_t)stats->rx_fragments); 3243 printf("Receive frames 64 bytes : %ju\n", 3244 (uintmax_t)stats->rx_pkts_64); 3245 printf("Receive frames 65 to 127 bytes : %ju\n", 3246 (uintmax_t)stats->rx_pkts_65_127); 3247 printf("Receive frames 128 to 255 bytes : %ju\n", 3248 (uintmax_t)stats->rx_pkts_128_255); 3249 printf("Receive frames 256 to 511 bytes : %ju\n", 3250 (uintmax_t)stats->rx_pkts_256_511); 3251 printf("Receive frames 512 to 1024 bytes : %ju\n", 3252 (uintmax_t)stats->rx_pkts_512_1023); 3253 printf("Receive frames 1024 to 1518 bytes : %ju\n", 3254 (uintmax_t)stats->rx_pkts_1024_1518); 3255 printf("Receive frames 1519 to MTU bytes : %ju\n", 3256 (uintmax_t)stats->rx_pkts_1519_max); 3257 printf("Receive frames too long : %ju\n", 3258 (uint64_t)stats->rx_pkts_truncated); 3259 printf("Receive frames with FIFO overflow : %u\n", 3260 stats->rx_fifo_oflows); 3261 printf("Receive frames with return descriptor overflow : %u\n", 3262 stats->rx_desc_oflows); 3263 printf("Receive frames with alignment errors : %u\n", 3264 stats->rx_alignerrs); 3265 printf("Receive frames dropped due to address filtering : %ju\n", 3266 (uint64_t)stats->rx_pkts_filtered); 3267 3268 return (error); 3269 } 3270 3271 static int 3272 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high) 3273 { 3274 int error, value; 3275 3276 if (arg1 == NULL) 3277 return (EINVAL); 3278 value = *(int *)arg1; 3279 error = sysctl_handle_int(oidp, &value, 0, req); 3280 if (error || req->newptr == NULL) 3281 return (error); 3282 if (value < low || value > high) 3283 return (EINVAL); 3284 *(int *)arg1 = value; 3285 3286 return (0); 3287 } 3288 3289 static int 3290 sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS) 3291 { 3292 return (sysctl_int_range(oidp, arg1, arg2, req, 3293 AGE_PROC_MIN, AGE_PROC_MAX)); 3294 } 3295 3296 static int 3297 sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS) 3298 { 3299 3300 return (sysctl_int_range(oidp, arg1, arg2, req, AGE_IM_TIMER_MIN, 3301 AGE_IM_TIMER_MAX)); 3302 } 3303