1 /*- 2 * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice unmodified, this list of conditions, and the following 10 * disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/systm.h> 35 #include <sys/bus.h> 36 #include <sys/endian.h> 37 #include <sys/kernel.h> 38 #include <sys/malloc.h> 39 #include <sys/mbuf.h> 40 #include <sys/rman.h> 41 #include <sys/module.h> 42 #include <sys/queue.h> 43 #include <sys/socket.h> 44 #include <sys/sockio.h> 45 #include <sys/sysctl.h> 46 #include <sys/taskqueue.h> 47 48 #include <net/bpf.h> 49 #include <net/if.h> 50 #include <net/if_arp.h> 51 #include <net/ethernet.h> 52 #include <net/if_dl.h> 53 #include <net/if_media.h> 54 #include <net/if_types.h> 55 #include <net/if_vlan_var.h> 56 57 #include <netinet/in.h> 58 #include <netinet/in_systm.h> 59 #include <netinet/ip.h> 60 #include <netinet/tcp.h> 61 62 #include <dev/mii/mii.h> 63 #include <dev/mii/miivar.h> 64 65 #include <dev/pci/pcireg.h> 66 #include <dev/pci/pcivar.h> 67 68 #include <machine/bus.h> 69 #include <machine/in_cksum.h> 70 71 #include <dev/age/if_agereg.h> 72 #include <dev/age/if_agevar.h> 73 74 /* "device miibus" required. See GENERIC if you get errors here. */ 75 #include "miibus_if.h" 76 77 #define AGE_CSUM_FEATURES (CSUM_TCP | CSUM_UDP) 78 79 MODULE_DEPEND(age, pci, 1, 1, 1); 80 MODULE_DEPEND(age, ether, 1, 1, 1); 81 MODULE_DEPEND(age, miibus, 1, 1, 1); 82 83 /* Tunables. */ 84 static int msi_disable = 0; 85 static int msix_disable = 0; 86 TUNABLE_INT("hw.age.msi_disable", &msi_disable); 87 TUNABLE_INT("hw.age.msix_disable", &msix_disable); 88 89 /* 90 * Devices supported by this driver. 91 */ 92 static struct age_dev { 93 uint16_t age_vendorid; 94 uint16_t age_deviceid; 95 const char *age_name; 96 } age_devs[] = { 97 { VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L1, 98 "Attansic Technology Corp, L1 Gigabit Ethernet" }, 99 }; 100 101 static int age_miibus_readreg(device_t, int, int); 102 static int age_miibus_writereg(device_t, int, int, int); 103 static void age_miibus_statchg(device_t); 104 static void age_mediastatus(struct ifnet *, struct ifmediareq *); 105 static int age_mediachange(struct ifnet *); 106 static int age_probe(device_t); 107 static void age_get_macaddr(struct age_softc *); 108 static void age_phy_reset(struct age_softc *); 109 static int age_attach(device_t); 110 static int age_detach(device_t); 111 static void age_sysctl_node(struct age_softc *); 112 static void age_dmamap_cb(void *, bus_dma_segment_t *, int, int); 113 static int age_check_boundary(struct age_softc *); 114 static int age_dma_alloc(struct age_softc *); 115 static void age_dma_free(struct age_softc *); 116 static int age_shutdown(device_t); 117 static void age_setwol(struct age_softc *); 118 static int age_suspend(device_t); 119 static int age_resume(device_t); 120 static int age_encap(struct age_softc *, struct mbuf **); 121 static void age_start(struct ifnet *); 122 static void age_start_locked(struct ifnet *); 123 static void age_watchdog(struct age_softc *); 124 static int age_ioctl(struct ifnet *, u_long, caddr_t); 125 static void age_mac_config(struct age_softc *); 126 static void age_link_task(void *, int); 127 static void age_stats_update(struct age_softc *); 128 static int age_intr(void *); 129 static void age_int_task(void *, int); 130 static void age_txintr(struct age_softc *, int); 131 static void age_rxeof(struct age_softc *sc, struct rx_rdesc *); 132 static int age_rxintr(struct age_softc *, int, int); 133 static void age_tick(void *); 134 static void age_reset(struct age_softc *); 135 static void age_init(void *); 136 static void age_init_locked(struct age_softc *); 137 static void age_stop(struct age_softc *); 138 static void age_stop_txmac(struct age_softc *); 139 static void age_stop_rxmac(struct age_softc *); 140 static void age_init_tx_ring(struct age_softc *); 141 static int age_init_rx_ring(struct age_softc *); 142 static void age_init_rr_ring(struct age_softc *); 143 static void age_init_cmb_block(struct age_softc *); 144 static void age_init_smb_block(struct age_softc *); 145 #ifndef __NO_STRICT_ALIGNMENT 146 static struct mbuf *age_fixup_rx(struct ifnet *, struct mbuf *); 147 #endif 148 static int age_newbuf(struct age_softc *, struct age_rxdesc *); 149 static void age_rxvlan(struct age_softc *); 150 static void age_rxfilter(struct age_softc *); 151 static int sysctl_age_stats(SYSCTL_HANDLER_ARGS); 152 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int); 153 static int sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS); 154 static int sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS); 155 156 157 static device_method_t age_methods[] = { 158 /* Device interface. */ 159 DEVMETHOD(device_probe, age_probe), 160 DEVMETHOD(device_attach, age_attach), 161 DEVMETHOD(device_detach, age_detach), 162 DEVMETHOD(device_shutdown, age_shutdown), 163 DEVMETHOD(device_suspend, age_suspend), 164 DEVMETHOD(device_resume, age_resume), 165 166 /* MII interface. */ 167 DEVMETHOD(miibus_readreg, age_miibus_readreg), 168 DEVMETHOD(miibus_writereg, age_miibus_writereg), 169 DEVMETHOD(miibus_statchg, age_miibus_statchg), 170 171 { NULL, NULL } 172 }; 173 174 static driver_t age_driver = { 175 "age", 176 age_methods, 177 sizeof(struct age_softc) 178 }; 179 180 static devclass_t age_devclass; 181 182 DRIVER_MODULE(age, pci, age_driver, age_devclass, 0, 0); 183 DRIVER_MODULE(miibus, age, miibus_driver, miibus_devclass, 0, 0); 184 185 static struct resource_spec age_res_spec_mem[] = { 186 { SYS_RES_MEMORY, PCIR_BAR(0), RF_ACTIVE }, 187 { -1, 0, 0 } 188 }; 189 190 static struct resource_spec age_irq_spec_legacy[] = { 191 { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE }, 192 { -1, 0, 0 } 193 }; 194 195 static struct resource_spec age_irq_spec_msi[] = { 196 { SYS_RES_IRQ, 1, RF_ACTIVE }, 197 { -1, 0, 0 } 198 }; 199 200 static struct resource_spec age_irq_spec_msix[] = { 201 { SYS_RES_IRQ, 1, RF_ACTIVE }, 202 { -1, 0, 0 } 203 }; 204 205 /* 206 * Read a PHY register on the MII of the L1. 207 */ 208 static int 209 age_miibus_readreg(device_t dev, int phy, int reg) 210 { 211 struct age_softc *sc; 212 uint32_t v; 213 int i; 214 215 sc = device_get_softc(dev); 216 217 CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ | 218 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg)); 219 for (i = AGE_PHY_TIMEOUT; i > 0; i--) { 220 DELAY(1); 221 v = CSR_READ_4(sc, AGE_MDIO); 222 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0) 223 break; 224 } 225 226 if (i == 0) { 227 device_printf(sc->age_dev, "phy read timeout : %d\n", reg); 228 return (0); 229 } 230 231 return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT); 232 } 233 234 /* 235 * Write a PHY register on the MII of the L1. 236 */ 237 static int 238 age_miibus_writereg(device_t dev, int phy, int reg, int val) 239 { 240 struct age_softc *sc; 241 uint32_t v; 242 int i; 243 244 sc = device_get_softc(dev); 245 246 CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE | 247 (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT | 248 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg)); 249 for (i = AGE_PHY_TIMEOUT; i > 0; i--) { 250 DELAY(1); 251 v = CSR_READ_4(sc, AGE_MDIO); 252 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0) 253 break; 254 } 255 256 if (i == 0) 257 device_printf(sc->age_dev, "phy write timeout : %d\n", reg); 258 259 return (0); 260 } 261 262 /* 263 * Callback from MII layer when media changes. 264 */ 265 static void 266 age_miibus_statchg(device_t dev) 267 { 268 struct age_softc *sc; 269 270 sc = device_get_softc(dev); 271 taskqueue_enqueue(taskqueue_swi, &sc->age_link_task); 272 } 273 274 /* 275 * Get the current interface media status. 276 */ 277 static void 278 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) 279 { 280 struct age_softc *sc; 281 struct mii_data *mii; 282 283 sc = ifp->if_softc; 284 AGE_LOCK(sc); 285 mii = device_get_softc(sc->age_miibus); 286 287 mii_pollstat(mii); 288 ifmr->ifm_status = mii->mii_media_status; 289 ifmr->ifm_active = mii->mii_media_active; 290 AGE_UNLOCK(sc); 291 } 292 293 /* 294 * Set hardware to newly-selected media. 295 */ 296 static int 297 age_mediachange(struct ifnet *ifp) 298 { 299 struct age_softc *sc; 300 struct mii_data *mii; 301 struct mii_softc *miisc; 302 int error; 303 304 sc = ifp->if_softc; 305 AGE_LOCK(sc); 306 mii = device_get_softc(sc->age_miibus); 307 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) 308 PHY_RESET(miisc); 309 error = mii_mediachg(mii); 310 AGE_UNLOCK(sc); 311 312 return (error); 313 } 314 315 static int 316 age_probe(device_t dev) 317 { 318 struct age_dev *sp; 319 int i; 320 uint16_t vendor, devid; 321 322 vendor = pci_get_vendor(dev); 323 devid = pci_get_device(dev); 324 sp = age_devs; 325 for (i = 0; i < sizeof(age_devs) / sizeof(age_devs[0]); 326 i++, sp++) { 327 if (vendor == sp->age_vendorid && 328 devid == sp->age_deviceid) { 329 device_set_desc(dev, sp->age_name); 330 return (BUS_PROBE_DEFAULT); 331 } 332 } 333 334 return (ENXIO); 335 } 336 337 static void 338 age_get_macaddr(struct age_softc *sc) 339 { 340 uint32_t ea[2], reg; 341 int i, vpdc; 342 343 reg = CSR_READ_4(sc, AGE_SPI_CTRL); 344 if ((reg & SPI_VPD_ENB) != 0) { 345 /* Get VPD stored in TWSI EEPROM. */ 346 reg &= ~SPI_VPD_ENB; 347 CSR_WRITE_4(sc, AGE_SPI_CTRL, reg); 348 } 349 350 if (pci_find_cap(sc->age_dev, PCIY_VPD, &vpdc) == 0) { 351 /* 352 * PCI VPD capability found, let TWSI reload EEPROM. 353 * This will set ethernet address of controller. 354 */ 355 CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) | 356 TWSI_CTRL_SW_LD_START); 357 for (i = 100; i > 0; i--) { 358 DELAY(1000); 359 reg = CSR_READ_4(sc, AGE_TWSI_CTRL); 360 if ((reg & TWSI_CTRL_SW_LD_START) == 0) 361 break; 362 } 363 if (i == 0) 364 device_printf(sc->age_dev, 365 "reloading EEPROM timeout!\n"); 366 } else { 367 if (bootverbose) 368 device_printf(sc->age_dev, 369 "PCI VPD capability not found!\n"); 370 } 371 372 ea[0] = CSR_READ_4(sc, AGE_PAR0); 373 ea[1] = CSR_READ_4(sc, AGE_PAR1); 374 sc->age_eaddr[0] = (ea[1] >> 8) & 0xFF; 375 sc->age_eaddr[1] = (ea[1] >> 0) & 0xFF; 376 sc->age_eaddr[2] = (ea[0] >> 24) & 0xFF; 377 sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF; 378 sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF; 379 sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF; 380 } 381 382 static void 383 age_phy_reset(struct age_softc *sc) 384 { 385 uint16_t reg, pn; 386 int i, linkup; 387 388 /* Reset PHY. */ 389 CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST); 390 DELAY(2000); 391 CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR); 392 DELAY(2000); 393 394 #define ATPHY_DBG_ADDR 0x1D 395 #define ATPHY_DBG_DATA 0x1E 396 #define ATPHY_CDTC 0x16 397 #define PHY_CDTC_ENB 0x0001 398 #define PHY_CDTC_POFF 8 399 #define ATPHY_CDTS 0x1C 400 #define PHY_CDTS_STAT_OK 0x0000 401 #define PHY_CDTS_STAT_SHORT 0x0100 402 #define PHY_CDTS_STAT_OPEN 0x0200 403 #define PHY_CDTS_STAT_INVAL 0x0300 404 #define PHY_CDTS_STAT_MASK 0x0300 405 406 /* Check power saving mode. Magic from Linux. */ 407 age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET); 408 for (linkup = 0, pn = 0; pn < 4; pn++) { 409 age_miibus_writereg(sc->age_dev, sc->age_phyaddr, ATPHY_CDTC, 410 (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB); 411 for (i = 200; i > 0; i--) { 412 DELAY(1000); 413 reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr, 414 ATPHY_CDTC); 415 if ((reg & PHY_CDTC_ENB) == 0) 416 break; 417 } 418 DELAY(1000); 419 reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr, 420 ATPHY_CDTS); 421 if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) { 422 linkup++; 423 break; 424 } 425 } 426 age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR, 427 BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG); 428 if (linkup == 0) { 429 age_miibus_writereg(sc->age_dev, sc->age_phyaddr, 430 ATPHY_DBG_ADDR, 0); 431 age_miibus_writereg(sc->age_dev, sc->age_phyaddr, 432 ATPHY_DBG_DATA, 0x124E); 433 age_miibus_writereg(sc->age_dev, sc->age_phyaddr, 434 ATPHY_DBG_ADDR, 1); 435 reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr, 436 ATPHY_DBG_DATA); 437 age_miibus_writereg(sc->age_dev, sc->age_phyaddr, 438 ATPHY_DBG_DATA, reg | 0x03); 439 /* XXX */ 440 DELAY(1500 * 1000); 441 age_miibus_writereg(sc->age_dev, sc->age_phyaddr, 442 ATPHY_DBG_ADDR, 0); 443 age_miibus_writereg(sc->age_dev, sc->age_phyaddr, 444 ATPHY_DBG_DATA, 0x024E); 445 } 446 447 #undef ATPHY_DBG_ADDR 448 #undef ATPHY_DBG_DATA 449 #undef ATPHY_CDTC 450 #undef PHY_CDTC_ENB 451 #undef PHY_CDTC_POFF 452 #undef ATPHY_CDTS 453 #undef PHY_CDTS_STAT_OK 454 #undef PHY_CDTS_STAT_SHORT 455 #undef PHY_CDTS_STAT_OPEN 456 #undef PHY_CDTS_STAT_INVAL 457 #undef PHY_CDTS_STAT_MASK 458 } 459 460 static int 461 age_attach(device_t dev) 462 { 463 struct age_softc *sc; 464 struct ifnet *ifp; 465 uint16_t burst; 466 int error, i, msic, msixc, pmc; 467 468 error = 0; 469 sc = device_get_softc(dev); 470 sc->age_dev = dev; 471 472 mtx_init(&sc->age_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 473 MTX_DEF); 474 callout_init_mtx(&sc->age_tick_ch, &sc->age_mtx, 0); 475 TASK_INIT(&sc->age_int_task, 0, age_int_task, sc); 476 TASK_INIT(&sc->age_link_task, 0, age_link_task, sc); 477 478 /* Map the device. */ 479 pci_enable_busmaster(dev); 480 sc->age_res_spec = age_res_spec_mem; 481 sc->age_irq_spec = age_irq_spec_legacy; 482 error = bus_alloc_resources(dev, sc->age_res_spec, sc->age_res); 483 if (error != 0) { 484 device_printf(dev, "cannot allocate memory resources.\n"); 485 goto fail; 486 } 487 488 /* Set PHY address. */ 489 sc->age_phyaddr = AGE_PHY_ADDR; 490 491 /* Reset PHY. */ 492 age_phy_reset(sc); 493 494 /* Reset the ethernet controller. */ 495 age_reset(sc); 496 497 /* Get PCI and chip id/revision. */ 498 sc->age_rev = pci_get_revid(dev); 499 sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >> 500 MASTER_CHIP_REV_SHIFT; 501 if (bootverbose) { 502 device_printf(dev, "PCI device revision : 0x%04x\n", 503 sc->age_rev); 504 device_printf(dev, "Chip id/revision : 0x%04x\n", 505 sc->age_chip_rev); 506 } 507 508 /* 509 * XXX 510 * Unintialized hardware returns an invalid chip id/revision 511 * as well as 0xFFFFFFFF for Tx/Rx fifo length. It seems that 512 * unplugged cable results in putting hardware into automatic 513 * power down mode which in turn returns invalld chip revision. 514 */ 515 if (sc->age_chip_rev == 0xFFFF) { 516 device_printf(dev,"invalid chip revision : 0x%04x -- " 517 "not initialized?\n", sc->age_chip_rev); 518 error = ENXIO; 519 goto fail; 520 } 521 522 device_printf(dev, "%d Tx FIFO, %d Rx FIFO\n", 523 CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN), 524 CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN)); 525 526 /* Allocate IRQ resources. */ 527 msixc = pci_msix_count(dev); 528 msic = pci_msi_count(dev); 529 if (bootverbose) { 530 device_printf(dev, "MSIX count : %d\n", msixc); 531 device_printf(dev, "MSI count : %d\n", msic); 532 } 533 534 /* Prefer MSIX over MSI. */ 535 if (msix_disable == 0 || msi_disable == 0) { 536 if (msix_disable == 0 && msixc == AGE_MSIX_MESSAGES && 537 pci_alloc_msix(dev, &msixc) == 0) { 538 if (msic == AGE_MSIX_MESSAGES) { 539 device_printf(dev, "Using %d MSIX messages.\n", 540 msixc); 541 sc->age_flags |= AGE_FLAG_MSIX; 542 sc->age_irq_spec = age_irq_spec_msix; 543 } else 544 pci_release_msi(dev); 545 } 546 if (msi_disable == 0 && (sc->age_flags & AGE_FLAG_MSIX) == 0 && 547 msic == AGE_MSI_MESSAGES && 548 pci_alloc_msi(dev, &msic) == 0) { 549 if (msic == AGE_MSI_MESSAGES) { 550 device_printf(dev, "Using %d MSI messages.\n", 551 msic); 552 sc->age_flags |= AGE_FLAG_MSI; 553 sc->age_irq_spec = age_irq_spec_msi; 554 } else 555 pci_release_msi(dev); 556 } 557 } 558 559 error = bus_alloc_resources(dev, sc->age_irq_spec, sc->age_irq); 560 if (error != 0) { 561 device_printf(dev, "cannot allocate IRQ resources.\n"); 562 goto fail; 563 } 564 565 566 /* Get DMA parameters from PCIe device control register. */ 567 if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) { 568 sc->age_flags |= AGE_FLAG_PCIE; 569 burst = pci_read_config(dev, i + 0x08, 2); 570 /* Max read request size. */ 571 sc->age_dma_rd_burst = ((burst >> 12) & 0x07) << 572 DMA_CFG_RD_BURST_SHIFT; 573 /* Max payload size. */ 574 sc->age_dma_wr_burst = ((burst >> 5) & 0x07) << 575 DMA_CFG_WR_BURST_SHIFT; 576 if (bootverbose) { 577 device_printf(dev, "Read request size : %d bytes.\n", 578 128 << ((burst >> 12) & 0x07)); 579 device_printf(dev, "TLP payload size : %d bytes.\n", 580 128 << ((burst >> 5) & 0x07)); 581 } 582 } else { 583 sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128; 584 sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128; 585 } 586 587 /* Create device sysctl node. */ 588 age_sysctl_node(sc); 589 590 if ((error = age_dma_alloc(sc) != 0)) 591 goto fail; 592 593 /* Load station address. */ 594 age_get_macaddr(sc); 595 596 ifp = sc->age_ifp = if_alloc(IFT_ETHER); 597 if (ifp == NULL) { 598 device_printf(dev, "cannot allocate ifnet structure.\n"); 599 error = ENXIO; 600 goto fail; 601 } 602 603 ifp->if_softc = sc; 604 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 605 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 606 ifp->if_ioctl = age_ioctl; 607 ifp->if_start = age_start; 608 ifp->if_init = age_init; 609 ifp->if_snd.ifq_drv_maxlen = AGE_TX_RING_CNT - 1; 610 IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen); 611 IFQ_SET_READY(&ifp->if_snd); 612 ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4; 613 ifp->if_hwassist = AGE_CSUM_FEATURES | CSUM_TSO; 614 if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) { 615 sc->age_flags |= AGE_FLAG_PMCAP; 616 ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST; 617 } 618 ifp->if_capenable = ifp->if_capabilities; 619 620 /* Set up MII bus. */ 621 error = mii_attach(dev, &sc->age_miibus, ifp, age_mediachange, 622 age_mediastatus, BMSR_DEFCAPMASK, sc->age_phyaddr, MII_OFFSET_ANY, 623 0); 624 if (error != 0) { 625 device_printf(dev, "attaching PHYs failed\n"); 626 goto fail; 627 } 628 629 ether_ifattach(ifp, sc->age_eaddr); 630 631 /* VLAN capability setup. */ 632 ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | 633 IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO; 634 ifp->if_capenable = ifp->if_capabilities; 635 636 /* Tell the upper layer(s) we support long frames. */ 637 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); 638 639 /* Create local taskq. */ 640 sc->age_tq = taskqueue_create_fast("age_taskq", M_WAITOK, 641 taskqueue_thread_enqueue, &sc->age_tq); 642 if (sc->age_tq == NULL) { 643 device_printf(dev, "could not create taskqueue.\n"); 644 ether_ifdetach(ifp); 645 error = ENXIO; 646 goto fail; 647 } 648 taskqueue_start_threads(&sc->age_tq, 1, PI_NET, "%s taskq", 649 device_get_nameunit(sc->age_dev)); 650 651 if ((sc->age_flags & AGE_FLAG_MSIX) != 0) 652 msic = AGE_MSIX_MESSAGES; 653 else if ((sc->age_flags & AGE_FLAG_MSI) != 0) 654 msic = AGE_MSI_MESSAGES; 655 else 656 msic = 1; 657 for (i = 0; i < msic; i++) { 658 error = bus_setup_intr(dev, sc->age_irq[i], 659 INTR_TYPE_NET | INTR_MPSAFE, age_intr, NULL, sc, 660 &sc->age_intrhand[i]); 661 if (error != 0) 662 break; 663 } 664 if (error != 0) { 665 device_printf(dev, "could not set up interrupt handler.\n"); 666 taskqueue_free(sc->age_tq); 667 sc->age_tq = NULL; 668 ether_ifdetach(ifp); 669 goto fail; 670 } 671 672 fail: 673 if (error != 0) 674 age_detach(dev); 675 676 return (error); 677 } 678 679 static int 680 age_detach(device_t dev) 681 { 682 struct age_softc *sc; 683 struct ifnet *ifp; 684 int i, msic; 685 686 sc = device_get_softc(dev); 687 688 ifp = sc->age_ifp; 689 if (device_is_attached(dev)) { 690 AGE_LOCK(sc); 691 sc->age_flags |= AGE_FLAG_DETACH; 692 age_stop(sc); 693 AGE_UNLOCK(sc); 694 callout_drain(&sc->age_tick_ch); 695 taskqueue_drain(sc->age_tq, &sc->age_int_task); 696 taskqueue_drain(taskqueue_swi, &sc->age_link_task); 697 ether_ifdetach(ifp); 698 } 699 700 if (sc->age_tq != NULL) { 701 taskqueue_drain(sc->age_tq, &sc->age_int_task); 702 taskqueue_free(sc->age_tq); 703 sc->age_tq = NULL; 704 } 705 706 if (sc->age_miibus != NULL) { 707 device_delete_child(dev, sc->age_miibus); 708 sc->age_miibus = NULL; 709 } 710 bus_generic_detach(dev); 711 age_dma_free(sc); 712 713 if (ifp != NULL) { 714 if_free(ifp); 715 sc->age_ifp = NULL; 716 } 717 718 if ((sc->age_flags & AGE_FLAG_MSIX) != 0) 719 msic = AGE_MSIX_MESSAGES; 720 else if ((sc->age_flags & AGE_FLAG_MSI) != 0) 721 msic = AGE_MSI_MESSAGES; 722 else 723 msic = 1; 724 for (i = 0; i < msic; i++) { 725 if (sc->age_intrhand[i] != NULL) { 726 bus_teardown_intr(dev, sc->age_irq[i], 727 sc->age_intrhand[i]); 728 sc->age_intrhand[i] = NULL; 729 } 730 } 731 732 bus_release_resources(dev, sc->age_irq_spec, sc->age_irq); 733 if ((sc->age_flags & (AGE_FLAG_MSI | AGE_FLAG_MSIX)) != 0) 734 pci_release_msi(dev); 735 bus_release_resources(dev, sc->age_res_spec, sc->age_res); 736 mtx_destroy(&sc->age_mtx); 737 738 return (0); 739 } 740 741 static void 742 age_sysctl_node(struct age_softc *sc) 743 { 744 int error; 745 746 SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev), 747 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO, 748 "stats", CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_age_stats, 749 "I", "Statistics"); 750 751 SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev), 752 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO, 753 "int_mod", CTLTYPE_INT | CTLFLAG_RW, &sc->age_int_mod, 0, 754 sysctl_hw_age_int_mod, "I", "age interrupt moderation"); 755 756 /* Pull in device tunables. */ 757 sc->age_int_mod = AGE_IM_TIMER_DEFAULT; 758 error = resource_int_value(device_get_name(sc->age_dev), 759 device_get_unit(sc->age_dev), "int_mod", &sc->age_int_mod); 760 if (error == 0) { 761 if (sc->age_int_mod < AGE_IM_TIMER_MIN || 762 sc->age_int_mod > AGE_IM_TIMER_MAX) { 763 device_printf(sc->age_dev, 764 "int_mod value out of range; using default: %d\n", 765 AGE_IM_TIMER_DEFAULT); 766 sc->age_int_mod = AGE_IM_TIMER_DEFAULT; 767 } 768 } 769 770 SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev), 771 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO, 772 "process_limit", CTLTYPE_INT | CTLFLAG_RW, &sc->age_process_limit, 773 0, sysctl_hw_age_proc_limit, "I", 774 "max number of Rx events to process"); 775 776 /* Pull in device tunables. */ 777 sc->age_process_limit = AGE_PROC_DEFAULT; 778 error = resource_int_value(device_get_name(sc->age_dev), 779 device_get_unit(sc->age_dev), "process_limit", 780 &sc->age_process_limit); 781 if (error == 0) { 782 if (sc->age_process_limit < AGE_PROC_MIN || 783 sc->age_process_limit > AGE_PROC_MAX) { 784 device_printf(sc->age_dev, 785 "process_limit value out of range; " 786 "using default: %d\n", AGE_PROC_DEFAULT); 787 sc->age_process_limit = AGE_PROC_DEFAULT; 788 } 789 } 790 } 791 792 struct age_dmamap_arg { 793 bus_addr_t age_busaddr; 794 }; 795 796 static void 797 age_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 798 { 799 struct age_dmamap_arg *ctx; 800 801 if (error != 0) 802 return; 803 804 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); 805 806 ctx = (struct age_dmamap_arg *)arg; 807 ctx->age_busaddr = segs[0].ds_addr; 808 } 809 810 /* 811 * Attansic L1 controller have single register to specify high 812 * address part of DMA blocks. So all descriptor structures and 813 * DMA memory blocks should have the same high address of given 814 * 4GB address space(i.e. crossing 4GB boundary is not allowed). 815 */ 816 static int 817 age_check_boundary(struct age_softc *sc) 818 { 819 bus_addr_t rx_ring_end, rr_ring_end, tx_ring_end; 820 bus_addr_t cmb_block_end, smb_block_end; 821 822 /* Tx/Rx descriptor queue should reside within 4GB boundary. */ 823 tx_ring_end = sc->age_rdata.age_tx_ring_paddr + AGE_TX_RING_SZ; 824 rx_ring_end = sc->age_rdata.age_rx_ring_paddr + AGE_RX_RING_SZ; 825 rr_ring_end = sc->age_rdata.age_rr_ring_paddr + AGE_RR_RING_SZ; 826 cmb_block_end = sc->age_rdata.age_cmb_block_paddr + AGE_CMB_BLOCK_SZ; 827 smb_block_end = sc->age_rdata.age_smb_block_paddr + AGE_SMB_BLOCK_SZ; 828 829 if ((AGE_ADDR_HI(tx_ring_end) != 830 AGE_ADDR_HI(sc->age_rdata.age_tx_ring_paddr)) || 831 (AGE_ADDR_HI(rx_ring_end) != 832 AGE_ADDR_HI(sc->age_rdata.age_rx_ring_paddr)) || 833 (AGE_ADDR_HI(rr_ring_end) != 834 AGE_ADDR_HI(sc->age_rdata.age_rr_ring_paddr)) || 835 (AGE_ADDR_HI(cmb_block_end) != 836 AGE_ADDR_HI(sc->age_rdata.age_cmb_block_paddr)) || 837 (AGE_ADDR_HI(smb_block_end) != 838 AGE_ADDR_HI(sc->age_rdata.age_smb_block_paddr))) 839 return (EFBIG); 840 841 if ((AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rx_ring_end)) || 842 (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rr_ring_end)) || 843 (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(cmb_block_end)) || 844 (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(smb_block_end))) 845 return (EFBIG); 846 847 return (0); 848 } 849 850 static int 851 age_dma_alloc(struct age_softc *sc) 852 { 853 struct age_txdesc *txd; 854 struct age_rxdesc *rxd; 855 bus_addr_t lowaddr; 856 struct age_dmamap_arg ctx; 857 int error, i; 858 859 lowaddr = BUS_SPACE_MAXADDR; 860 861 again: 862 /* Create parent ring/DMA block tag. */ 863 error = bus_dma_tag_create( 864 bus_get_dma_tag(sc->age_dev), /* parent */ 865 1, 0, /* alignment, boundary */ 866 lowaddr, /* lowaddr */ 867 BUS_SPACE_MAXADDR, /* highaddr */ 868 NULL, NULL, /* filter, filterarg */ 869 BUS_SPACE_MAXSIZE_32BIT, /* maxsize */ 870 0, /* nsegments */ 871 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 872 0, /* flags */ 873 NULL, NULL, /* lockfunc, lockarg */ 874 &sc->age_cdata.age_parent_tag); 875 if (error != 0) { 876 device_printf(sc->age_dev, 877 "could not create parent DMA tag.\n"); 878 goto fail; 879 } 880 881 /* Create tag for Tx ring. */ 882 error = bus_dma_tag_create( 883 sc->age_cdata.age_parent_tag, /* parent */ 884 AGE_TX_RING_ALIGN, 0, /* alignment, boundary */ 885 BUS_SPACE_MAXADDR, /* lowaddr */ 886 BUS_SPACE_MAXADDR, /* highaddr */ 887 NULL, NULL, /* filter, filterarg */ 888 AGE_TX_RING_SZ, /* maxsize */ 889 1, /* nsegments */ 890 AGE_TX_RING_SZ, /* maxsegsize */ 891 0, /* flags */ 892 NULL, NULL, /* lockfunc, lockarg */ 893 &sc->age_cdata.age_tx_ring_tag); 894 if (error != 0) { 895 device_printf(sc->age_dev, 896 "could not create Tx ring DMA tag.\n"); 897 goto fail; 898 } 899 900 /* Create tag for Rx ring. */ 901 error = bus_dma_tag_create( 902 sc->age_cdata.age_parent_tag, /* parent */ 903 AGE_RX_RING_ALIGN, 0, /* alignment, boundary */ 904 BUS_SPACE_MAXADDR, /* lowaddr */ 905 BUS_SPACE_MAXADDR, /* highaddr */ 906 NULL, NULL, /* filter, filterarg */ 907 AGE_RX_RING_SZ, /* maxsize */ 908 1, /* nsegments */ 909 AGE_RX_RING_SZ, /* maxsegsize */ 910 0, /* flags */ 911 NULL, NULL, /* lockfunc, lockarg */ 912 &sc->age_cdata.age_rx_ring_tag); 913 if (error != 0) { 914 device_printf(sc->age_dev, 915 "could not create Rx ring DMA tag.\n"); 916 goto fail; 917 } 918 919 /* Create tag for Rx return ring. */ 920 error = bus_dma_tag_create( 921 sc->age_cdata.age_parent_tag, /* parent */ 922 AGE_RR_RING_ALIGN, 0, /* alignment, boundary */ 923 BUS_SPACE_MAXADDR, /* lowaddr */ 924 BUS_SPACE_MAXADDR, /* highaddr */ 925 NULL, NULL, /* filter, filterarg */ 926 AGE_RR_RING_SZ, /* maxsize */ 927 1, /* nsegments */ 928 AGE_RR_RING_SZ, /* maxsegsize */ 929 0, /* flags */ 930 NULL, NULL, /* lockfunc, lockarg */ 931 &sc->age_cdata.age_rr_ring_tag); 932 if (error != 0) { 933 device_printf(sc->age_dev, 934 "could not create Rx return ring DMA tag.\n"); 935 goto fail; 936 } 937 938 /* Create tag for coalesing message block. */ 939 error = bus_dma_tag_create( 940 sc->age_cdata.age_parent_tag, /* parent */ 941 AGE_CMB_ALIGN, 0, /* alignment, boundary */ 942 BUS_SPACE_MAXADDR, /* lowaddr */ 943 BUS_SPACE_MAXADDR, /* highaddr */ 944 NULL, NULL, /* filter, filterarg */ 945 AGE_CMB_BLOCK_SZ, /* maxsize */ 946 1, /* nsegments */ 947 AGE_CMB_BLOCK_SZ, /* maxsegsize */ 948 0, /* flags */ 949 NULL, NULL, /* lockfunc, lockarg */ 950 &sc->age_cdata.age_cmb_block_tag); 951 if (error != 0) { 952 device_printf(sc->age_dev, 953 "could not create CMB DMA tag.\n"); 954 goto fail; 955 } 956 957 /* Create tag for statistics message block. */ 958 error = bus_dma_tag_create( 959 sc->age_cdata.age_parent_tag, /* parent */ 960 AGE_SMB_ALIGN, 0, /* alignment, boundary */ 961 BUS_SPACE_MAXADDR, /* lowaddr */ 962 BUS_SPACE_MAXADDR, /* highaddr */ 963 NULL, NULL, /* filter, filterarg */ 964 AGE_SMB_BLOCK_SZ, /* maxsize */ 965 1, /* nsegments */ 966 AGE_SMB_BLOCK_SZ, /* maxsegsize */ 967 0, /* flags */ 968 NULL, NULL, /* lockfunc, lockarg */ 969 &sc->age_cdata.age_smb_block_tag); 970 if (error != 0) { 971 device_printf(sc->age_dev, 972 "could not create SMB DMA tag.\n"); 973 goto fail; 974 } 975 976 /* Allocate DMA'able memory and load the DMA map. */ 977 error = bus_dmamem_alloc(sc->age_cdata.age_tx_ring_tag, 978 (void **)&sc->age_rdata.age_tx_ring, 979 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 980 &sc->age_cdata.age_tx_ring_map); 981 if (error != 0) { 982 device_printf(sc->age_dev, 983 "could not allocate DMA'able memory for Tx ring.\n"); 984 goto fail; 985 } 986 ctx.age_busaddr = 0; 987 error = bus_dmamap_load(sc->age_cdata.age_tx_ring_tag, 988 sc->age_cdata.age_tx_ring_map, sc->age_rdata.age_tx_ring, 989 AGE_TX_RING_SZ, age_dmamap_cb, &ctx, 0); 990 if (error != 0 || ctx.age_busaddr == 0) { 991 device_printf(sc->age_dev, 992 "could not load DMA'able memory for Tx ring.\n"); 993 goto fail; 994 } 995 sc->age_rdata.age_tx_ring_paddr = ctx.age_busaddr; 996 /* Rx ring */ 997 error = bus_dmamem_alloc(sc->age_cdata.age_rx_ring_tag, 998 (void **)&sc->age_rdata.age_rx_ring, 999 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 1000 &sc->age_cdata.age_rx_ring_map); 1001 if (error != 0) { 1002 device_printf(sc->age_dev, 1003 "could not allocate DMA'able memory for Rx ring.\n"); 1004 goto fail; 1005 } 1006 ctx.age_busaddr = 0; 1007 error = bus_dmamap_load(sc->age_cdata.age_rx_ring_tag, 1008 sc->age_cdata.age_rx_ring_map, sc->age_rdata.age_rx_ring, 1009 AGE_RX_RING_SZ, age_dmamap_cb, &ctx, 0); 1010 if (error != 0 || ctx.age_busaddr == 0) { 1011 device_printf(sc->age_dev, 1012 "could not load DMA'able memory for Rx ring.\n"); 1013 goto fail; 1014 } 1015 sc->age_rdata.age_rx_ring_paddr = ctx.age_busaddr; 1016 /* Rx return ring */ 1017 error = bus_dmamem_alloc(sc->age_cdata.age_rr_ring_tag, 1018 (void **)&sc->age_rdata.age_rr_ring, 1019 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 1020 &sc->age_cdata.age_rr_ring_map); 1021 if (error != 0) { 1022 device_printf(sc->age_dev, 1023 "could not allocate DMA'able memory for Rx return ring.\n"); 1024 goto fail; 1025 } 1026 ctx.age_busaddr = 0; 1027 error = bus_dmamap_load(sc->age_cdata.age_rr_ring_tag, 1028 sc->age_cdata.age_rr_ring_map, sc->age_rdata.age_rr_ring, 1029 AGE_RR_RING_SZ, age_dmamap_cb, 1030 &ctx, 0); 1031 if (error != 0 || ctx.age_busaddr == 0) { 1032 device_printf(sc->age_dev, 1033 "could not load DMA'able memory for Rx return ring.\n"); 1034 goto fail; 1035 } 1036 sc->age_rdata.age_rr_ring_paddr = ctx.age_busaddr; 1037 /* CMB block */ 1038 error = bus_dmamem_alloc(sc->age_cdata.age_cmb_block_tag, 1039 (void **)&sc->age_rdata.age_cmb_block, 1040 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 1041 &sc->age_cdata.age_cmb_block_map); 1042 if (error != 0) { 1043 device_printf(sc->age_dev, 1044 "could not allocate DMA'able memory for CMB block.\n"); 1045 goto fail; 1046 } 1047 ctx.age_busaddr = 0; 1048 error = bus_dmamap_load(sc->age_cdata.age_cmb_block_tag, 1049 sc->age_cdata.age_cmb_block_map, sc->age_rdata.age_cmb_block, 1050 AGE_CMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0); 1051 if (error != 0 || ctx.age_busaddr == 0) { 1052 device_printf(sc->age_dev, 1053 "could not load DMA'able memory for CMB block.\n"); 1054 goto fail; 1055 } 1056 sc->age_rdata.age_cmb_block_paddr = ctx.age_busaddr; 1057 /* SMB block */ 1058 error = bus_dmamem_alloc(sc->age_cdata.age_smb_block_tag, 1059 (void **)&sc->age_rdata.age_smb_block, 1060 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 1061 &sc->age_cdata.age_smb_block_map); 1062 if (error != 0) { 1063 device_printf(sc->age_dev, 1064 "could not allocate DMA'able memory for SMB block.\n"); 1065 goto fail; 1066 } 1067 ctx.age_busaddr = 0; 1068 error = bus_dmamap_load(sc->age_cdata.age_smb_block_tag, 1069 sc->age_cdata.age_smb_block_map, sc->age_rdata.age_smb_block, 1070 AGE_SMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0); 1071 if (error != 0 || ctx.age_busaddr == 0) { 1072 device_printf(sc->age_dev, 1073 "could not load DMA'able memory for SMB block.\n"); 1074 goto fail; 1075 } 1076 sc->age_rdata.age_smb_block_paddr = ctx.age_busaddr; 1077 1078 /* 1079 * All ring buffer and DMA blocks should have the same 1080 * high address part of 64bit DMA address space. 1081 */ 1082 if (lowaddr != BUS_SPACE_MAXADDR_32BIT && 1083 (error = age_check_boundary(sc)) != 0) { 1084 device_printf(sc->age_dev, "4GB boundary crossed, " 1085 "switching to 32bit DMA addressing mode.\n"); 1086 age_dma_free(sc); 1087 /* Limit DMA address space to 32bit and try again. */ 1088 lowaddr = BUS_SPACE_MAXADDR_32BIT; 1089 goto again; 1090 } 1091 1092 /* 1093 * Create Tx/Rx buffer parent tag. 1094 * L1 supports full 64bit DMA addressing in Tx/Rx buffers 1095 * so it needs separate parent DMA tag. 1096 * XXX 1097 * It seems enabling 64bit DMA causes data corruption. Limit 1098 * DMA address space to 32bit. 1099 */ 1100 error = bus_dma_tag_create( 1101 bus_get_dma_tag(sc->age_dev), /* parent */ 1102 1, 0, /* alignment, boundary */ 1103 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 1104 BUS_SPACE_MAXADDR, /* highaddr */ 1105 NULL, NULL, /* filter, filterarg */ 1106 BUS_SPACE_MAXSIZE_32BIT, /* maxsize */ 1107 0, /* nsegments */ 1108 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 1109 0, /* flags */ 1110 NULL, NULL, /* lockfunc, lockarg */ 1111 &sc->age_cdata.age_buffer_tag); 1112 if (error != 0) { 1113 device_printf(sc->age_dev, 1114 "could not create parent buffer DMA tag.\n"); 1115 goto fail; 1116 } 1117 1118 /* Create tag for Tx buffers. */ 1119 error = bus_dma_tag_create( 1120 sc->age_cdata.age_buffer_tag, /* parent */ 1121 1, 0, /* alignment, boundary */ 1122 BUS_SPACE_MAXADDR, /* lowaddr */ 1123 BUS_SPACE_MAXADDR, /* highaddr */ 1124 NULL, NULL, /* filter, filterarg */ 1125 AGE_TSO_MAXSIZE, /* maxsize */ 1126 AGE_MAXTXSEGS, /* nsegments */ 1127 AGE_TSO_MAXSEGSIZE, /* maxsegsize */ 1128 0, /* flags */ 1129 NULL, NULL, /* lockfunc, lockarg */ 1130 &sc->age_cdata.age_tx_tag); 1131 if (error != 0) { 1132 device_printf(sc->age_dev, "could not create Tx DMA tag.\n"); 1133 goto fail; 1134 } 1135 1136 /* Create tag for Rx buffers. */ 1137 error = bus_dma_tag_create( 1138 sc->age_cdata.age_buffer_tag, /* parent */ 1139 AGE_RX_BUF_ALIGN, 0, /* alignment, boundary */ 1140 BUS_SPACE_MAXADDR, /* lowaddr */ 1141 BUS_SPACE_MAXADDR, /* highaddr */ 1142 NULL, NULL, /* filter, filterarg */ 1143 MCLBYTES, /* maxsize */ 1144 1, /* nsegments */ 1145 MCLBYTES, /* maxsegsize */ 1146 0, /* flags */ 1147 NULL, NULL, /* lockfunc, lockarg */ 1148 &sc->age_cdata.age_rx_tag); 1149 if (error != 0) { 1150 device_printf(sc->age_dev, "could not create Rx DMA tag.\n"); 1151 goto fail; 1152 } 1153 1154 /* Create DMA maps for Tx buffers. */ 1155 for (i = 0; i < AGE_TX_RING_CNT; i++) { 1156 txd = &sc->age_cdata.age_txdesc[i]; 1157 txd->tx_m = NULL; 1158 txd->tx_dmamap = NULL; 1159 error = bus_dmamap_create(sc->age_cdata.age_tx_tag, 0, 1160 &txd->tx_dmamap); 1161 if (error != 0) { 1162 device_printf(sc->age_dev, 1163 "could not create Tx dmamap.\n"); 1164 goto fail; 1165 } 1166 } 1167 /* Create DMA maps for Rx buffers. */ 1168 if ((error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0, 1169 &sc->age_cdata.age_rx_sparemap)) != 0) { 1170 device_printf(sc->age_dev, 1171 "could not create spare Rx dmamap.\n"); 1172 goto fail; 1173 } 1174 for (i = 0; i < AGE_RX_RING_CNT; i++) { 1175 rxd = &sc->age_cdata.age_rxdesc[i]; 1176 rxd->rx_m = NULL; 1177 rxd->rx_dmamap = NULL; 1178 error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0, 1179 &rxd->rx_dmamap); 1180 if (error != 0) { 1181 device_printf(sc->age_dev, 1182 "could not create Rx dmamap.\n"); 1183 goto fail; 1184 } 1185 } 1186 1187 fail: 1188 return (error); 1189 } 1190 1191 static void 1192 age_dma_free(struct age_softc *sc) 1193 { 1194 struct age_txdesc *txd; 1195 struct age_rxdesc *rxd; 1196 int i; 1197 1198 /* Tx buffers */ 1199 if (sc->age_cdata.age_tx_tag != NULL) { 1200 for (i = 0; i < AGE_TX_RING_CNT; i++) { 1201 txd = &sc->age_cdata.age_txdesc[i]; 1202 if (txd->tx_dmamap != NULL) { 1203 bus_dmamap_destroy(sc->age_cdata.age_tx_tag, 1204 txd->tx_dmamap); 1205 txd->tx_dmamap = NULL; 1206 } 1207 } 1208 bus_dma_tag_destroy(sc->age_cdata.age_tx_tag); 1209 sc->age_cdata.age_tx_tag = NULL; 1210 } 1211 /* Rx buffers */ 1212 if (sc->age_cdata.age_rx_tag != NULL) { 1213 for (i = 0; i < AGE_RX_RING_CNT; i++) { 1214 rxd = &sc->age_cdata.age_rxdesc[i]; 1215 if (rxd->rx_dmamap != NULL) { 1216 bus_dmamap_destroy(sc->age_cdata.age_rx_tag, 1217 rxd->rx_dmamap); 1218 rxd->rx_dmamap = NULL; 1219 } 1220 } 1221 if (sc->age_cdata.age_rx_sparemap != NULL) { 1222 bus_dmamap_destroy(sc->age_cdata.age_rx_tag, 1223 sc->age_cdata.age_rx_sparemap); 1224 sc->age_cdata.age_rx_sparemap = NULL; 1225 } 1226 bus_dma_tag_destroy(sc->age_cdata.age_rx_tag); 1227 sc->age_cdata.age_rx_tag = NULL; 1228 } 1229 /* Tx ring. */ 1230 if (sc->age_cdata.age_tx_ring_tag != NULL) { 1231 if (sc->age_cdata.age_tx_ring_map != NULL) 1232 bus_dmamap_unload(sc->age_cdata.age_tx_ring_tag, 1233 sc->age_cdata.age_tx_ring_map); 1234 if (sc->age_cdata.age_tx_ring_map != NULL && 1235 sc->age_rdata.age_tx_ring != NULL) 1236 bus_dmamem_free(sc->age_cdata.age_tx_ring_tag, 1237 sc->age_rdata.age_tx_ring, 1238 sc->age_cdata.age_tx_ring_map); 1239 sc->age_rdata.age_tx_ring = NULL; 1240 sc->age_cdata.age_tx_ring_map = NULL; 1241 bus_dma_tag_destroy(sc->age_cdata.age_tx_ring_tag); 1242 sc->age_cdata.age_tx_ring_tag = NULL; 1243 } 1244 /* Rx ring. */ 1245 if (sc->age_cdata.age_rx_ring_tag != NULL) { 1246 if (sc->age_cdata.age_rx_ring_map != NULL) 1247 bus_dmamap_unload(sc->age_cdata.age_rx_ring_tag, 1248 sc->age_cdata.age_rx_ring_map); 1249 if (sc->age_cdata.age_rx_ring_map != NULL && 1250 sc->age_rdata.age_rx_ring != NULL) 1251 bus_dmamem_free(sc->age_cdata.age_rx_ring_tag, 1252 sc->age_rdata.age_rx_ring, 1253 sc->age_cdata.age_rx_ring_map); 1254 sc->age_rdata.age_rx_ring = NULL; 1255 sc->age_cdata.age_rx_ring_map = NULL; 1256 bus_dma_tag_destroy(sc->age_cdata.age_rx_ring_tag); 1257 sc->age_cdata.age_rx_ring_tag = NULL; 1258 } 1259 /* Rx return ring. */ 1260 if (sc->age_cdata.age_rr_ring_tag != NULL) { 1261 if (sc->age_cdata.age_rr_ring_map != NULL) 1262 bus_dmamap_unload(sc->age_cdata.age_rr_ring_tag, 1263 sc->age_cdata.age_rr_ring_map); 1264 if (sc->age_cdata.age_rr_ring_map != NULL && 1265 sc->age_rdata.age_rr_ring != NULL) 1266 bus_dmamem_free(sc->age_cdata.age_rr_ring_tag, 1267 sc->age_rdata.age_rr_ring, 1268 sc->age_cdata.age_rr_ring_map); 1269 sc->age_rdata.age_rr_ring = NULL; 1270 sc->age_cdata.age_rr_ring_map = NULL; 1271 bus_dma_tag_destroy(sc->age_cdata.age_rr_ring_tag); 1272 sc->age_cdata.age_rr_ring_tag = NULL; 1273 } 1274 /* CMB block */ 1275 if (sc->age_cdata.age_cmb_block_tag != NULL) { 1276 if (sc->age_cdata.age_cmb_block_map != NULL) 1277 bus_dmamap_unload(sc->age_cdata.age_cmb_block_tag, 1278 sc->age_cdata.age_cmb_block_map); 1279 if (sc->age_cdata.age_cmb_block_map != NULL && 1280 sc->age_rdata.age_cmb_block != NULL) 1281 bus_dmamem_free(sc->age_cdata.age_cmb_block_tag, 1282 sc->age_rdata.age_cmb_block, 1283 sc->age_cdata.age_cmb_block_map); 1284 sc->age_rdata.age_cmb_block = NULL; 1285 sc->age_cdata.age_cmb_block_map = NULL; 1286 bus_dma_tag_destroy(sc->age_cdata.age_cmb_block_tag); 1287 sc->age_cdata.age_cmb_block_tag = NULL; 1288 } 1289 /* SMB block */ 1290 if (sc->age_cdata.age_smb_block_tag != NULL) { 1291 if (sc->age_cdata.age_smb_block_map != NULL) 1292 bus_dmamap_unload(sc->age_cdata.age_smb_block_tag, 1293 sc->age_cdata.age_smb_block_map); 1294 if (sc->age_cdata.age_smb_block_map != NULL && 1295 sc->age_rdata.age_smb_block != NULL) 1296 bus_dmamem_free(sc->age_cdata.age_smb_block_tag, 1297 sc->age_rdata.age_smb_block, 1298 sc->age_cdata.age_smb_block_map); 1299 sc->age_rdata.age_smb_block = NULL; 1300 sc->age_cdata.age_smb_block_map = NULL; 1301 bus_dma_tag_destroy(sc->age_cdata.age_smb_block_tag); 1302 sc->age_cdata.age_smb_block_tag = NULL; 1303 } 1304 1305 if (sc->age_cdata.age_buffer_tag != NULL) { 1306 bus_dma_tag_destroy(sc->age_cdata.age_buffer_tag); 1307 sc->age_cdata.age_buffer_tag = NULL; 1308 } 1309 if (sc->age_cdata.age_parent_tag != NULL) { 1310 bus_dma_tag_destroy(sc->age_cdata.age_parent_tag); 1311 sc->age_cdata.age_parent_tag = NULL; 1312 } 1313 } 1314 1315 /* 1316 * Make sure the interface is stopped at reboot time. 1317 */ 1318 static int 1319 age_shutdown(device_t dev) 1320 { 1321 1322 return (age_suspend(dev)); 1323 } 1324 1325 static void 1326 age_setwol(struct age_softc *sc) 1327 { 1328 struct ifnet *ifp; 1329 struct mii_data *mii; 1330 uint32_t reg, pmcs; 1331 uint16_t pmstat; 1332 int aneg, i, pmc; 1333 1334 AGE_LOCK_ASSERT(sc); 1335 1336 if (pci_find_cap(sc->age_dev, PCIY_PMG, &pmc) != 0) { 1337 CSR_WRITE_4(sc, AGE_WOL_CFG, 0); 1338 /* 1339 * No PME capability, PHY power down. 1340 * XXX 1341 * Due to an unknown reason powering down PHY resulted 1342 * in unexpected results such as inaccessbility of 1343 * hardware of freshly rebooted system. Disable 1344 * powering down PHY until I got more information for 1345 * Attansic/Atheros PHY hardwares. 1346 */ 1347 #ifdef notyet 1348 age_miibus_writereg(sc->age_dev, sc->age_phyaddr, 1349 MII_BMCR, BMCR_PDOWN); 1350 #endif 1351 return; 1352 } 1353 1354 ifp = sc->age_ifp; 1355 if ((ifp->if_capenable & IFCAP_WOL) != 0) { 1356 /* 1357 * Note, this driver resets the link speed to 10/100Mbps with 1358 * auto-negotiation but we don't know whether that operation 1359 * would succeed or not as it have no control after powering 1360 * off. If the renegotiation fail WOL may not work. Running 1361 * at 1Gbps will draw more power than 375mA at 3.3V which is 1362 * specified in PCI specification and that would result in 1363 * complete shutdowning power to ethernet controller. 1364 * 1365 * TODO 1366 * Save current negotiated media speed/duplex/flow-control 1367 * to softc and restore the same link again after resuming. 1368 * PHY handling such as power down/resetting to 100Mbps 1369 * may be better handled in suspend method in phy driver. 1370 */ 1371 mii = device_get_softc(sc->age_miibus); 1372 mii_pollstat(mii); 1373 aneg = 0; 1374 if ((mii->mii_media_status & IFM_AVALID) != 0) { 1375 switch IFM_SUBTYPE(mii->mii_media_active) { 1376 case IFM_10_T: 1377 case IFM_100_TX: 1378 goto got_link; 1379 case IFM_1000_T: 1380 aneg++; 1381 default: 1382 break; 1383 } 1384 } 1385 age_miibus_writereg(sc->age_dev, sc->age_phyaddr, 1386 MII_100T2CR, 0); 1387 age_miibus_writereg(sc->age_dev, sc->age_phyaddr, 1388 MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | 1389 ANAR_10 | ANAR_CSMA); 1390 age_miibus_writereg(sc->age_dev, sc->age_phyaddr, 1391 MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG); 1392 DELAY(1000); 1393 if (aneg != 0) { 1394 /* Poll link state until age(4) get a 10/100 link. */ 1395 for (i = 0; i < MII_ANEGTICKS_GIGE; i++) { 1396 mii_pollstat(mii); 1397 if ((mii->mii_media_status & IFM_AVALID) != 0) { 1398 switch (IFM_SUBTYPE( 1399 mii->mii_media_active)) { 1400 case IFM_10_T: 1401 case IFM_100_TX: 1402 age_mac_config(sc); 1403 goto got_link; 1404 default: 1405 break; 1406 } 1407 } 1408 AGE_UNLOCK(sc); 1409 pause("agelnk", hz); 1410 AGE_LOCK(sc); 1411 } 1412 if (i == MII_ANEGTICKS_GIGE) 1413 device_printf(sc->age_dev, 1414 "establishing link failed, " 1415 "WOL may not work!"); 1416 } 1417 /* 1418 * No link, force MAC to have 100Mbps, full-duplex link. 1419 * This is the last resort and may/may not work. 1420 */ 1421 mii->mii_media_status = IFM_AVALID | IFM_ACTIVE; 1422 mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX; 1423 age_mac_config(sc); 1424 } 1425 1426 got_link: 1427 pmcs = 0; 1428 if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) 1429 pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB; 1430 CSR_WRITE_4(sc, AGE_WOL_CFG, pmcs); 1431 reg = CSR_READ_4(sc, AGE_MAC_CFG); 1432 reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC); 1433 reg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST); 1434 if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0) 1435 reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST; 1436 if ((ifp->if_capenable & IFCAP_WOL) != 0) { 1437 reg |= MAC_CFG_RX_ENB; 1438 CSR_WRITE_4(sc, AGE_MAC_CFG, reg); 1439 } 1440 1441 /* Request PME. */ 1442 pmstat = pci_read_config(sc->age_dev, pmc + PCIR_POWER_STATUS, 2); 1443 pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE); 1444 if ((ifp->if_capenable & IFCAP_WOL) != 0) 1445 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE; 1446 pci_write_config(sc->age_dev, pmc + PCIR_POWER_STATUS, pmstat, 2); 1447 #ifdef notyet 1448 /* See above for powering down PHY issues. */ 1449 if ((ifp->if_capenable & IFCAP_WOL) == 0) { 1450 /* No WOL, PHY power down. */ 1451 age_miibus_writereg(sc->age_dev, sc->age_phyaddr, 1452 MII_BMCR, BMCR_PDOWN); 1453 } 1454 #endif 1455 } 1456 1457 static int 1458 age_suspend(device_t dev) 1459 { 1460 struct age_softc *sc; 1461 1462 sc = device_get_softc(dev); 1463 1464 AGE_LOCK(sc); 1465 age_stop(sc); 1466 age_setwol(sc); 1467 AGE_UNLOCK(sc); 1468 1469 return (0); 1470 } 1471 1472 static int 1473 age_resume(device_t dev) 1474 { 1475 struct age_softc *sc; 1476 struct ifnet *ifp; 1477 1478 sc = device_get_softc(dev); 1479 1480 AGE_LOCK(sc); 1481 age_phy_reset(sc); 1482 ifp = sc->age_ifp; 1483 if ((ifp->if_flags & IFF_UP) != 0) 1484 age_init_locked(sc); 1485 1486 AGE_UNLOCK(sc); 1487 1488 return (0); 1489 } 1490 1491 static int 1492 age_encap(struct age_softc *sc, struct mbuf **m_head) 1493 { 1494 struct age_txdesc *txd, *txd_last; 1495 struct tx_desc *desc; 1496 struct mbuf *m; 1497 struct ip *ip; 1498 struct tcphdr *tcp; 1499 bus_dma_segment_t txsegs[AGE_MAXTXSEGS]; 1500 bus_dmamap_t map; 1501 uint32_t cflags, hdrlen, ip_off, poff, vtag; 1502 int error, i, nsegs, prod, si; 1503 1504 AGE_LOCK_ASSERT(sc); 1505 1506 M_ASSERTPKTHDR((*m_head)); 1507 1508 m = *m_head; 1509 ip = NULL; 1510 tcp = NULL; 1511 cflags = vtag = 0; 1512 ip_off = poff = 0; 1513 if ((m->m_pkthdr.csum_flags & (AGE_CSUM_FEATURES | CSUM_TSO)) != 0) { 1514 /* 1515 * L1 requires offset of TCP/UDP payload in its Tx 1516 * descriptor to perform hardware Tx checksum offload. 1517 * Additionally, TSO requires IP/TCP header size and 1518 * modification of IP/TCP header in order to make TSO 1519 * engine work. This kind of operation takes many CPU 1520 * cycles on FreeBSD so fast host CPU is needed to get 1521 * smooth TSO performance. 1522 */ 1523 struct ether_header *eh; 1524 1525 if (M_WRITABLE(m) == 0) { 1526 /* Get a writable copy. */ 1527 m = m_dup(*m_head, M_NOWAIT); 1528 /* Release original mbufs. */ 1529 m_freem(*m_head); 1530 if (m == NULL) { 1531 *m_head = NULL; 1532 return (ENOBUFS); 1533 } 1534 *m_head = m; 1535 } 1536 ip_off = sizeof(struct ether_header); 1537 m = m_pullup(m, ip_off); 1538 if (m == NULL) { 1539 *m_head = NULL; 1540 return (ENOBUFS); 1541 } 1542 eh = mtod(m, struct ether_header *); 1543 /* 1544 * Check if hardware VLAN insertion is off. 1545 * Additional check for LLC/SNAP frame? 1546 */ 1547 if (eh->ether_type == htons(ETHERTYPE_VLAN)) { 1548 ip_off = sizeof(struct ether_vlan_header); 1549 m = m_pullup(m, ip_off); 1550 if (m == NULL) { 1551 *m_head = NULL; 1552 return (ENOBUFS); 1553 } 1554 } 1555 m = m_pullup(m, ip_off + sizeof(struct ip)); 1556 if (m == NULL) { 1557 *m_head = NULL; 1558 return (ENOBUFS); 1559 } 1560 ip = (struct ip *)(mtod(m, char *) + ip_off); 1561 poff = ip_off + (ip->ip_hl << 2); 1562 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 1563 m = m_pullup(m, poff + sizeof(struct tcphdr)); 1564 if (m == NULL) { 1565 *m_head = NULL; 1566 return (ENOBUFS); 1567 } 1568 tcp = (struct tcphdr *)(mtod(m, char *) + poff); 1569 m = m_pullup(m, poff + (tcp->th_off << 2)); 1570 if (m == NULL) { 1571 *m_head = NULL; 1572 return (ENOBUFS); 1573 } 1574 /* 1575 * L1 requires IP/TCP header size and offset as 1576 * well as TCP pseudo checksum which complicates 1577 * TSO configuration. I guess this comes from the 1578 * adherence to Microsoft NDIS Large Send 1579 * specification which requires insertion of 1580 * pseudo checksum by upper stack. The pseudo 1581 * checksum that NDIS refers to doesn't include 1582 * TCP payload length so age(4) should recompute 1583 * the pseudo checksum here. Hopefully this wouldn't 1584 * be much burden on modern CPUs. 1585 * Reset IP checksum and recompute TCP pseudo 1586 * checksum as NDIS specification said. 1587 */ 1588 ip = (struct ip *)(mtod(m, char *) + ip_off); 1589 tcp = (struct tcphdr *)(mtod(m, char *) + poff); 1590 ip->ip_sum = 0; 1591 tcp->th_sum = in_pseudo(ip->ip_src.s_addr, 1592 ip->ip_dst.s_addr, htons(IPPROTO_TCP)); 1593 } 1594 *m_head = m; 1595 } 1596 1597 si = prod = sc->age_cdata.age_tx_prod; 1598 txd = &sc->age_cdata.age_txdesc[prod]; 1599 txd_last = txd; 1600 map = txd->tx_dmamap; 1601 1602 error = bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map, 1603 *m_head, txsegs, &nsegs, 0); 1604 if (error == EFBIG) { 1605 m = m_collapse(*m_head, M_NOWAIT, AGE_MAXTXSEGS); 1606 if (m == NULL) { 1607 m_freem(*m_head); 1608 *m_head = NULL; 1609 return (ENOMEM); 1610 } 1611 *m_head = m; 1612 error = bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map, 1613 *m_head, txsegs, &nsegs, 0); 1614 if (error != 0) { 1615 m_freem(*m_head); 1616 *m_head = NULL; 1617 return (error); 1618 } 1619 } else if (error != 0) 1620 return (error); 1621 if (nsegs == 0) { 1622 m_freem(*m_head); 1623 *m_head = NULL; 1624 return (EIO); 1625 } 1626 1627 /* Check descriptor overrun. */ 1628 if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) { 1629 bus_dmamap_unload(sc->age_cdata.age_tx_tag, map); 1630 return (ENOBUFS); 1631 } 1632 1633 m = *m_head; 1634 /* Configure VLAN hardware tag insertion. */ 1635 if ((m->m_flags & M_VLANTAG) != 0) { 1636 vtag = AGE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag); 1637 vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK); 1638 cflags |= AGE_TD_INSERT_VLAN_TAG; 1639 } 1640 1641 desc = NULL; 1642 i = 0; 1643 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 1644 /* Request TSO and set MSS. */ 1645 cflags |= AGE_TD_TSO_IPV4; 1646 cflags |= AGE_TD_IPCSUM | AGE_TD_TCPCSUM; 1647 cflags |= ((uint32_t)m->m_pkthdr.tso_segsz << 1648 AGE_TD_TSO_MSS_SHIFT); 1649 /* Set IP/TCP header size. */ 1650 cflags |= ip->ip_hl << AGE_TD_IPHDR_LEN_SHIFT; 1651 cflags |= tcp->th_off << AGE_TD_TSO_TCPHDR_LEN_SHIFT; 1652 /* 1653 * L1 requires the first buffer should only hold IP/TCP 1654 * header data. TCP payload should be handled in other 1655 * descriptors. 1656 */ 1657 hdrlen = poff + (tcp->th_off << 2); 1658 desc = &sc->age_rdata.age_tx_ring[prod]; 1659 desc->addr = htole64(txsegs[0].ds_addr); 1660 desc->len = htole32(AGE_TX_BYTES(hdrlen) | vtag); 1661 desc->flags = htole32(cflags); 1662 sc->age_cdata.age_tx_cnt++; 1663 AGE_DESC_INC(prod, AGE_TX_RING_CNT); 1664 if (m->m_len - hdrlen > 0) { 1665 /* Handle remaining payload of the 1st fragment. */ 1666 desc = &sc->age_rdata.age_tx_ring[prod]; 1667 desc->addr = htole64(txsegs[0].ds_addr + hdrlen); 1668 desc->len = htole32(AGE_TX_BYTES(m->m_len - hdrlen) | 1669 vtag); 1670 desc->flags = htole32(cflags); 1671 sc->age_cdata.age_tx_cnt++; 1672 AGE_DESC_INC(prod, AGE_TX_RING_CNT); 1673 } 1674 /* Handle remaining fragments. */ 1675 i = 1; 1676 } else if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) { 1677 /* Configure Tx IP/TCP/UDP checksum offload. */ 1678 cflags |= AGE_TD_CSUM; 1679 if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0) 1680 cflags |= AGE_TD_TCPCSUM; 1681 if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0) 1682 cflags |= AGE_TD_UDPCSUM; 1683 /* Set checksum start offset. */ 1684 cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT); 1685 /* Set checksum insertion position of TCP/UDP. */ 1686 cflags |= ((poff + m->m_pkthdr.csum_data) << 1687 AGE_TD_CSUM_XSUMOFFSET_SHIFT); 1688 } 1689 for (; i < nsegs; i++) { 1690 desc = &sc->age_rdata.age_tx_ring[prod]; 1691 desc->addr = htole64(txsegs[i].ds_addr); 1692 desc->len = htole32(AGE_TX_BYTES(txsegs[i].ds_len) | vtag); 1693 desc->flags = htole32(cflags); 1694 sc->age_cdata.age_tx_cnt++; 1695 AGE_DESC_INC(prod, AGE_TX_RING_CNT); 1696 } 1697 /* Update producer index. */ 1698 sc->age_cdata.age_tx_prod = prod; 1699 1700 /* Set EOP on the last descriptor. */ 1701 prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT; 1702 desc = &sc->age_rdata.age_tx_ring[prod]; 1703 desc->flags |= htole32(AGE_TD_EOP); 1704 1705 /* Lastly set TSO header and modify IP/TCP header for TSO operation. */ 1706 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 1707 desc = &sc->age_rdata.age_tx_ring[si]; 1708 desc->flags |= htole32(AGE_TD_TSO_HDR); 1709 } 1710 1711 /* Swap dmamap of the first and the last. */ 1712 txd = &sc->age_cdata.age_txdesc[prod]; 1713 map = txd_last->tx_dmamap; 1714 txd_last->tx_dmamap = txd->tx_dmamap; 1715 txd->tx_dmamap = map; 1716 txd->tx_m = m; 1717 1718 /* Sync descriptors. */ 1719 bus_dmamap_sync(sc->age_cdata.age_tx_tag, map, BUS_DMASYNC_PREWRITE); 1720 bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag, 1721 sc->age_cdata.age_tx_ring_map, 1722 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1723 1724 return (0); 1725 } 1726 1727 static void 1728 age_start(struct ifnet *ifp) 1729 { 1730 struct age_softc *sc; 1731 1732 sc = ifp->if_softc; 1733 AGE_LOCK(sc); 1734 age_start_locked(ifp); 1735 AGE_UNLOCK(sc); 1736 } 1737 1738 static void 1739 age_start_locked(struct ifnet *ifp) 1740 { 1741 struct age_softc *sc; 1742 struct mbuf *m_head; 1743 int enq; 1744 1745 sc = ifp->if_softc; 1746 1747 AGE_LOCK_ASSERT(sc); 1748 1749 if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 1750 IFF_DRV_RUNNING || (sc->age_flags & AGE_FLAG_LINK) == 0) 1751 return; 1752 1753 for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) { 1754 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); 1755 if (m_head == NULL) 1756 break; 1757 /* 1758 * Pack the data into the transmit ring. If we 1759 * don't have room, set the OACTIVE flag and wait 1760 * for the NIC to drain the ring. 1761 */ 1762 if (age_encap(sc, &m_head)) { 1763 if (m_head == NULL) 1764 break; 1765 IFQ_DRV_PREPEND(&ifp->if_snd, m_head); 1766 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1767 break; 1768 } 1769 1770 enq++; 1771 /* 1772 * If there's a BPF listener, bounce a copy of this frame 1773 * to him. 1774 */ 1775 ETHER_BPF_MTAP(ifp, m_head); 1776 } 1777 1778 if (enq > 0) { 1779 /* Update mbox. */ 1780 AGE_COMMIT_MBOX(sc); 1781 /* Set a timeout in case the chip goes out to lunch. */ 1782 sc->age_watchdog_timer = AGE_TX_TIMEOUT; 1783 } 1784 } 1785 1786 static void 1787 age_watchdog(struct age_softc *sc) 1788 { 1789 struct ifnet *ifp; 1790 1791 AGE_LOCK_ASSERT(sc); 1792 1793 if (sc->age_watchdog_timer == 0 || --sc->age_watchdog_timer) 1794 return; 1795 1796 ifp = sc->age_ifp; 1797 if ((sc->age_flags & AGE_FLAG_LINK) == 0) { 1798 if_printf(sc->age_ifp, "watchdog timeout (missed link)\n"); 1799 ifp->if_oerrors++; 1800 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1801 age_init_locked(sc); 1802 return; 1803 } 1804 if (sc->age_cdata.age_tx_cnt == 0) { 1805 if_printf(sc->age_ifp, 1806 "watchdog timeout (missed Tx interrupts) -- recovering\n"); 1807 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1808 age_start_locked(ifp); 1809 return; 1810 } 1811 if_printf(sc->age_ifp, "watchdog timeout\n"); 1812 ifp->if_oerrors++; 1813 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1814 age_init_locked(sc); 1815 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1816 age_start_locked(ifp); 1817 } 1818 1819 static int 1820 age_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1821 { 1822 struct age_softc *sc; 1823 struct ifreq *ifr; 1824 struct mii_data *mii; 1825 uint32_t reg; 1826 int error, mask; 1827 1828 sc = ifp->if_softc; 1829 ifr = (struct ifreq *)data; 1830 error = 0; 1831 switch (cmd) { 1832 case SIOCSIFMTU: 1833 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > AGE_JUMBO_MTU) 1834 error = EINVAL; 1835 else if (ifp->if_mtu != ifr->ifr_mtu) { 1836 AGE_LOCK(sc); 1837 ifp->if_mtu = ifr->ifr_mtu; 1838 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 1839 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1840 age_init_locked(sc); 1841 } 1842 AGE_UNLOCK(sc); 1843 } 1844 break; 1845 case SIOCSIFFLAGS: 1846 AGE_LOCK(sc); 1847 if ((ifp->if_flags & IFF_UP) != 0) { 1848 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 1849 if (((ifp->if_flags ^ sc->age_if_flags) 1850 & (IFF_PROMISC | IFF_ALLMULTI)) != 0) 1851 age_rxfilter(sc); 1852 } else { 1853 if ((sc->age_flags & AGE_FLAG_DETACH) == 0) 1854 age_init_locked(sc); 1855 } 1856 } else { 1857 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 1858 age_stop(sc); 1859 } 1860 sc->age_if_flags = ifp->if_flags; 1861 AGE_UNLOCK(sc); 1862 break; 1863 case SIOCADDMULTI: 1864 case SIOCDELMULTI: 1865 AGE_LOCK(sc); 1866 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 1867 age_rxfilter(sc); 1868 AGE_UNLOCK(sc); 1869 break; 1870 case SIOCSIFMEDIA: 1871 case SIOCGIFMEDIA: 1872 mii = device_get_softc(sc->age_miibus); 1873 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd); 1874 break; 1875 case SIOCSIFCAP: 1876 AGE_LOCK(sc); 1877 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 1878 if ((mask & IFCAP_TXCSUM) != 0 && 1879 (ifp->if_capabilities & IFCAP_TXCSUM) != 0) { 1880 ifp->if_capenable ^= IFCAP_TXCSUM; 1881 if ((ifp->if_capenable & IFCAP_TXCSUM) != 0) 1882 ifp->if_hwassist |= AGE_CSUM_FEATURES; 1883 else 1884 ifp->if_hwassist &= ~AGE_CSUM_FEATURES; 1885 } 1886 if ((mask & IFCAP_RXCSUM) != 0 && 1887 (ifp->if_capabilities & IFCAP_RXCSUM) != 0) { 1888 ifp->if_capenable ^= IFCAP_RXCSUM; 1889 reg = CSR_READ_4(sc, AGE_MAC_CFG); 1890 reg &= ~MAC_CFG_RXCSUM_ENB; 1891 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) 1892 reg |= MAC_CFG_RXCSUM_ENB; 1893 CSR_WRITE_4(sc, AGE_MAC_CFG, reg); 1894 } 1895 if ((mask & IFCAP_TSO4) != 0 && 1896 (ifp->if_capabilities & IFCAP_TSO4) != 0) { 1897 ifp->if_capenable ^= IFCAP_TSO4; 1898 if ((ifp->if_capenable & IFCAP_TSO4) != 0) 1899 ifp->if_hwassist |= CSUM_TSO; 1900 else 1901 ifp->if_hwassist &= ~CSUM_TSO; 1902 } 1903 1904 if ((mask & IFCAP_WOL_MCAST) != 0 && 1905 (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0) 1906 ifp->if_capenable ^= IFCAP_WOL_MCAST; 1907 if ((mask & IFCAP_WOL_MAGIC) != 0 && 1908 (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0) 1909 ifp->if_capenable ^= IFCAP_WOL_MAGIC; 1910 if ((mask & IFCAP_VLAN_HWCSUM) != 0 && 1911 (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0) 1912 ifp->if_capenable ^= IFCAP_VLAN_HWCSUM; 1913 if ((mask & IFCAP_VLAN_HWTSO) != 0 && 1914 (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0) 1915 ifp->if_capenable ^= IFCAP_VLAN_HWTSO; 1916 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 && 1917 (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) { 1918 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; 1919 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0) 1920 ifp->if_capenable &= ~IFCAP_VLAN_HWTSO; 1921 age_rxvlan(sc); 1922 } 1923 AGE_UNLOCK(sc); 1924 VLAN_CAPABILITIES(ifp); 1925 break; 1926 default: 1927 error = ether_ioctl(ifp, cmd, data); 1928 break; 1929 } 1930 1931 return (error); 1932 } 1933 1934 static void 1935 age_mac_config(struct age_softc *sc) 1936 { 1937 struct mii_data *mii; 1938 uint32_t reg; 1939 1940 AGE_LOCK_ASSERT(sc); 1941 1942 mii = device_get_softc(sc->age_miibus); 1943 reg = CSR_READ_4(sc, AGE_MAC_CFG); 1944 reg &= ~MAC_CFG_FULL_DUPLEX; 1945 reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC); 1946 reg &= ~MAC_CFG_SPEED_MASK; 1947 /* Reprogram MAC with resolved speed/duplex. */ 1948 switch (IFM_SUBTYPE(mii->mii_media_active)) { 1949 case IFM_10_T: 1950 case IFM_100_TX: 1951 reg |= MAC_CFG_SPEED_10_100; 1952 break; 1953 case IFM_1000_T: 1954 reg |= MAC_CFG_SPEED_1000; 1955 break; 1956 } 1957 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) { 1958 reg |= MAC_CFG_FULL_DUPLEX; 1959 #ifdef notyet 1960 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0) 1961 reg |= MAC_CFG_TX_FC; 1962 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0) 1963 reg |= MAC_CFG_RX_FC; 1964 #endif 1965 } 1966 1967 CSR_WRITE_4(sc, AGE_MAC_CFG, reg); 1968 } 1969 1970 static void 1971 age_link_task(void *arg, int pending) 1972 { 1973 struct age_softc *sc; 1974 struct mii_data *mii; 1975 struct ifnet *ifp; 1976 uint32_t reg; 1977 1978 sc = (struct age_softc *)arg; 1979 1980 AGE_LOCK(sc); 1981 mii = device_get_softc(sc->age_miibus); 1982 ifp = sc->age_ifp; 1983 if (mii == NULL || ifp == NULL || 1984 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1985 AGE_UNLOCK(sc); 1986 return; 1987 } 1988 1989 sc->age_flags &= ~AGE_FLAG_LINK; 1990 if ((mii->mii_media_status & IFM_AVALID) != 0) { 1991 switch (IFM_SUBTYPE(mii->mii_media_active)) { 1992 case IFM_10_T: 1993 case IFM_100_TX: 1994 case IFM_1000_T: 1995 sc->age_flags |= AGE_FLAG_LINK; 1996 break; 1997 default: 1998 break; 1999 } 2000 } 2001 2002 /* Stop Rx/Tx MACs. */ 2003 age_stop_rxmac(sc); 2004 age_stop_txmac(sc); 2005 2006 /* Program MACs with resolved speed/duplex/flow-control. */ 2007 if ((sc->age_flags & AGE_FLAG_LINK) != 0) { 2008 age_mac_config(sc); 2009 reg = CSR_READ_4(sc, AGE_MAC_CFG); 2010 /* Restart DMA engine and Tx/Rx MAC. */ 2011 CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) | 2012 DMA_CFG_RD_ENB | DMA_CFG_WR_ENB); 2013 reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB; 2014 CSR_WRITE_4(sc, AGE_MAC_CFG, reg); 2015 } 2016 2017 AGE_UNLOCK(sc); 2018 } 2019 2020 static void 2021 age_stats_update(struct age_softc *sc) 2022 { 2023 struct age_stats *stat; 2024 struct smb *smb; 2025 struct ifnet *ifp; 2026 2027 AGE_LOCK_ASSERT(sc); 2028 2029 stat = &sc->age_stat; 2030 2031 bus_dmamap_sync(sc->age_cdata.age_smb_block_tag, 2032 sc->age_cdata.age_smb_block_map, 2033 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2034 2035 smb = sc->age_rdata.age_smb_block; 2036 if (smb->updated == 0) 2037 return; 2038 2039 ifp = sc->age_ifp; 2040 /* Rx stats. */ 2041 stat->rx_frames += smb->rx_frames; 2042 stat->rx_bcast_frames += smb->rx_bcast_frames; 2043 stat->rx_mcast_frames += smb->rx_mcast_frames; 2044 stat->rx_pause_frames += smb->rx_pause_frames; 2045 stat->rx_control_frames += smb->rx_control_frames; 2046 stat->rx_crcerrs += smb->rx_crcerrs; 2047 stat->rx_lenerrs += smb->rx_lenerrs; 2048 stat->rx_bytes += smb->rx_bytes; 2049 stat->rx_runts += smb->rx_runts; 2050 stat->rx_fragments += smb->rx_fragments; 2051 stat->rx_pkts_64 += smb->rx_pkts_64; 2052 stat->rx_pkts_65_127 += smb->rx_pkts_65_127; 2053 stat->rx_pkts_128_255 += smb->rx_pkts_128_255; 2054 stat->rx_pkts_256_511 += smb->rx_pkts_256_511; 2055 stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023; 2056 stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518; 2057 stat->rx_pkts_1519_max += smb->rx_pkts_1519_max; 2058 stat->rx_pkts_truncated += smb->rx_pkts_truncated; 2059 stat->rx_fifo_oflows += smb->rx_fifo_oflows; 2060 stat->rx_desc_oflows += smb->rx_desc_oflows; 2061 stat->rx_alignerrs += smb->rx_alignerrs; 2062 stat->rx_bcast_bytes += smb->rx_bcast_bytes; 2063 stat->rx_mcast_bytes += smb->rx_mcast_bytes; 2064 stat->rx_pkts_filtered += smb->rx_pkts_filtered; 2065 2066 /* Tx stats. */ 2067 stat->tx_frames += smb->tx_frames; 2068 stat->tx_bcast_frames += smb->tx_bcast_frames; 2069 stat->tx_mcast_frames += smb->tx_mcast_frames; 2070 stat->tx_pause_frames += smb->tx_pause_frames; 2071 stat->tx_excess_defer += smb->tx_excess_defer; 2072 stat->tx_control_frames += smb->tx_control_frames; 2073 stat->tx_deferred += smb->tx_deferred; 2074 stat->tx_bytes += smb->tx_bytes; 2075 stat->tx_pkts_64 += smb->tx_pkts_64; 2076 stat->tx_pkts_65_127 += smb->tx_pkts_65_127; 2077 stat->tx_pkts_128_255 += smb->tx_pkts_128_255; 2078 stat->tx_pkts_256_511 += smb->tx_pkts_256_511; 2079 stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023; 2080 stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518; 2081 stat->tx_pkts_1519_max += smb->tx_pkts_1519_max; 2082 stat->tx_single_colls += smb->tx_single_colls; 2083 stat->tx_multi_colls += smb->tx_multi_colls; 2084 stat->tx_late_colls += smb->tx_late_colls; 2085 stat->tx_excess_colls += smb->tx_excess_colls; 2086 stat->tx_underrun += smb->tx_underrun; 2087 stat->tx_desc_underrun += smb->tx_desc_underrun; 2088 stat->tx_lenerrs += smb->tx_lenerrs; 2089 stat->tx_pkts_truncated += smb->tx_pkts_truncated; 2090 stat->tx_bcast_bytes += smb->tx_bcast_bytes; 2091 stat->tx_mcast_bytes += smb->tx_mcast_bytes; 2092 2093 /* Update counters in ifnet. */ 2094 ifp->if_opackets += smb->tx_frames; 2095 2096 ifp->if_collisions += smb->tx_single_colls + 2097 smb->tx_multi_colls + smb->tx_late_colls + 2098 smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT; 2099 2100 ifp->if_oerrors += smb->tx_excess_colls + 2101 smb->tx_late_colls + smb->tx_underrun + 2102 smb->tx_pkts_truncated; 2103 2104 ifp->if_ipackets += smb->rx_frames; 2105 2106 ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs + 2107 smb->rx_runts + smb->rx_pkts_truncated + 2108 smb->rx_fifo_oflows + smb->rx_desc_oflows + 2109 smb->rx_alignerrs; 2110 2111 /* Update done, clear. */ 2112 smb->updated = 0; 2113 2114 bus_dmamap_sync(sc->age_cdata.age_smb_block_tag, 2115 sc->age_cdata.age_smb_block_map, 2116 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2117 } 2118 2119 static int 2120 age_intr(void *arg) 2121 { 2122 struct age_softc *sc; 2123 uint32_t status; 2124 2125 sc = (struct age_softc *)arg; 2126 2127 status = CSR_READ_4(sc, AGE_INTR_STATUS); 2128 if (status == 0 || (status & AGE_INTRS) == 0) 2129 return (FILTER_STRAY); 2130 /* Disable interrupts. */ 2131 CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT); 2132 taskqueue_enqueue(sc->age_tq, &sc->age_int_task); 2133 2134 return (FILTER_HANDLED); 2135 } 2136 2137 static void 2138 age_int_task(void *arg, int pending) 2139 { 2140 struct age_softc *sc; 2141 struct ifnet *ifp; 2142 struct cmb *cmb; 2143 uint32_t status; 2144 2145 sc = (struct age_softc *)arg; 2146 2147 AGE_LOCK(sc); 2148 2149 bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag, 2150 sc->age_cdata.age_cmb_block_map, 2151 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2152 cmb = sc->age_rdata.age_cmb_block; 2153 status = le32toh(cmb->intr_status); 2154 if (sc->age_morework != 0) 2155 status |= INTR_CMB_RX; 2156 if ((status & AGE_INTRS) == 0) 2157 goto done; 2158 2159 sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >> 2160 TPD_CONS_SHIFT; 2161 sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >> 2162 RRD_PROD_SHIFT; 2163 /* Let hardware know CMB was served. */ 2164 cmb->intr_status = 0; 2165 bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag, 2166 sc->age_cdata.age_cmb_block_map, 2167 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2168 2169 #if 0 2170 printf("INTR: 0x%08x\n", status); 2171 status &= ~INTR_DIS_DMA; 2172 CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT); 2173 #endif 2174 ifp = sc->age_ifp; 2175 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 2176 if ((status & INTR_CMB_RX) != 0) 2177 sc->age_morework = age_rxintr(sc, sc->age_rr_prod, 2178 sc->age_process_limit); 2179 if ((status & INTR_CMB_TX) != 0) 2180 age_txintr(sc, sc->age_tpd_cons); 2181 if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) { 2182 if ((status & INTR_DMA_RD_TO_RST) != 0) 2183 device_printf(sc->age_dev, 2184 "DMA read error! -- resetting\n"); 2185 if ((status & INTR_DMA_WR_TO_RST) != 0) 2186 device_printf(sc->age_dev, 2187 "DMA write error! -- resetting\n"); 2188 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2189 age_init_locked(sc); 2190 } 2191 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 2192 age_start_locked(ifp); 2193 if ((status & INTR_SMB) != 0) 2194 age_stats_update(sc); 2195 } 2196 2197 /* Check whether CMB was updated while serving Tx/Rx/SMB handler. */ 2198 bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag, 2199 sc->age_cdata.age_cmb_block_map, 2200 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2201 status = le32toh(cmb->intr_status); 2202 if (sc->age_morework != 0 || (status & AGE_INTRS) != 0) { 2203 taskqueue_enqueue(sc->age_tq, &sc->age_int_task); 2204 AGE_UNLOCK(sc); 2205 return; 2206 } 2207 2208 done: 2209 /* Re-enable interrupts. */ 2210 CSR_WRITE_4(sc, AGE_INTR_STATUS, 0); 2211 AGE_UNLOCK(sc); 2212 } 2213 2214 static void 2215 age_txintr(struct age_softc *sc, int tpd_cons) 2216 { 2217 struct ifnet *ifp; 2218 struct age_txdesc *txd; 2219 int cons, prog; 2220 2221 AGE_LOCK_ASSERT(sc); 2222 2223 ifp = sc->age_ifp; 2224 2225 bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag, 2226 sc->age_cdata.age_tx_ring_map, 2227 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2228 2229 /* 2230 * Go through our Tx list and free mbufs for those 2231 * frames which have been transmitted. 2232 */ 2233 cons = sc->age_cdata.age_tx_cons; 2234 for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) { 2235 if (sc->age_cdata.age_tx_cnt <= 0) 2236 break; 2237 prog++; 2238 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2239 sc->age_cdata.age_tx_cnt--; 2240 txd = &sc->age_cdata.age_txdesc[cons]; 2241 /* 2242 * Clear Tx descriptors, it's not required but would 2243 * help debugging in case of Tx issues. 2244 */ 2245 txd->tx_desc->addr = 0; 2246 txd->tx_desc->len = 0; 2247 txd->tx_desc->flags = 0; 2248 2249 if (txd->tx_m == NULL) 2250 continue; 2251 /* Reclaim transmitted mbufs. */ 2252 bus_dmamap_sync(sc->age_cdata.age_tx_tag, txd->tx_dmamap, 2253 BUS_DMASYNC_POSTWRITE); 2254 bus_dmamap_unload(sc->age_cdata.age_tx_tag, txd->tx_dmamap); 2255 m_freem(txd->tx_m); 2256 txd->tx_m = NULL; 2257 } 2258 2259 if (prog > 0) { 2260 sc->age_cdata.age_tx_cons = cons; 2261 2262 /* 2263 * Unarm watchdog timer only when there are no pending 2264 * Tx descriptors in queue. 2265 */ 2266 if (sc->age_cdata.age_tx_cnt == 0) 2267 sc->age_watchdog_timer = 0; 2268 bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag, 2269 sc->age_cdata.age_tx_ring_map, 2270 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2271 } 2272 } 2273 2274 #ifndef __NO_STRICT_ALIGNMENT 2275 static struct mbuf * 2276 age_fixup_rx(struct ifnet *ifp, struct mbuf *m) 2277 { 2278 struct mbuf *n; 2279 int i; 2280 uint16_t *src, *dst; 2281 2282 src = mtod(m, uint16_t *); 2283 dst = src - 3; 2284 2285 if (m->m_next == NULL) { 2286 for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++) 2287 *dst++ = *src++; 2288 m->m_data -= 6; 2289 return (m); 2290 } 2291 /* 2292 * Append a new mbuf to received mbuf chain and copy ethernet 2293 * header from the mbuf chain. This can save lots of CPU 2294 * cycles for jumbo frame. 2295 */ 2296 MGETHDR(n, M_NOWAIT, MT_DATA); 2297 if (n == NULL) { 2298 ifp->if_iqdrops++; 2299 m_freem(m); 2300 return (NULL); 2301 } 2302 bcopy(m->m_data, n->m_data, ETHER_HDR_LEN); 2303 m->m_data += ETHER_HDR_LEN; 2304 m->m_len -= ETHER_HDR_LEN; 2305 n->m_len = ETHER_HDR_LEN; 2306 M_MOVE_PKTHDR(n, m); 2307 n->m_next = m; 2308 return (n); 2309 } 2310 #endif 2311 2312 /* Receive a frame. */ 2313 static void 2314 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd) 2315 { 2316 struct age_rxdesc *rxd; 2317 struct ifnet *ifp; 2318 struct mbuf *mp, *m; 2319 uint32_t status, index, vtag; 2320 int count, nsegs; 2321 int rx_cons; 2322 2323 AGE_LOCK_ASSERT(sc); 2324 2325 ifp = sc->age_ifp; 2326 status = le32toh(rxrd->flags); 2327 index = le32toh(rxrd->index); 2328 rx_cons = AGE_RX_CONS(index); 2329 nsegs = AGE_RX_NSEGS(index); 2330 2331 sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len)); 2332 if ((status & (AGE_RRD_ERROR | AGE_RRD_LENGTH_NOK)) != 0) { 2333 /* 2334 * We want to pass the following frames to upper 2335 * layer regardless of error status of Rx return 2336 * ring. 2337 * 2338 * o IP/TCP/UDP checksum is bad. 2339 * o frame length and protocol specific length 2340 * does not match. 2341 */ 2342 status |= AGE_RRD_IPCSUM_NOK | AGE_RRD_TCP_UDPCSUM_NOK; 2343 if ((status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE | 2344 AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) 2345 return; 2346 } 2347 2348 for (count = 0; count < nsegs; count++, 2349 AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) { 2350 rxd = &sc->age_cdata.age_rxdesc[rx_cons]; 2351 mp = rxd->rx_m; 2352 /* Add a new receive buffer to the ring. */ 2353 if (age_newbuf(sc, rxd) != 0) { 2354 ifp->if_iqdrops++; 2355 /* Reuse Rx buffers. */ 2356 if (sc->age_cdata.age_rxhead != NULL) 2357 m_freem(sc->age_cdata.age_rxhead); 2358 break; 2359 } 2360 2361 /* 2362 * Assume we've received a full sized frame. 2363 * Actual size is fixed when we encounter the end of 2364 * multi-segmented frame. 2365 */ 2366 mp->m_len = AGE_RX_BUF_SIZE; 2367 2368 /* Chain received mbufs. */ 2369 if (sc->age_cdata.age_rxhead == NULL) { 2370 sc->age_cdata.age_rxhead = mp; 2371 sc->age_cdata.age_rxtail = mp; 2372 } else { 2373 mp->m_flags &= ~M_PKTHDR; 2374 sc->age_cdata.age_rxprev_tail = 2375 sc->age_cdata.age_rxtail; 2376 sc->age_cdata.age_rxtail->m_next = mp; 2377 sc->age_cdata.age_rxtail = mp; 2378 } 2379 2380 if (count == nsegs - 1) { 2381 /* Last desc. for this frame. */ 2382 m = sc->age_cdata.age_rxhead; 2383 m->m_flags |= M_PKTHDR; 2384 /* 2385 * It seems that L1 controller has no way 2386 * to tell hardware to strip CRC bytes. 2387 */ 2388 m->m_pkthdr.len = sc->age_cdata.age_rxlen - 2389 ETHER_CRC_LEN; 2390 if (nsegs > 1) { 2391 /* Set last mbuf size. */ 2392 mp->m_len = sc->age_cdata.age_rxlen - 2393 ((nsegs - 1) * AGE_RX_BUF_SIZE); 2394 /* Remove the CRC bytes in chained mbufs. */ 2395 if (mp->m_len <= ETHER_CRC_LEN) { 2396 sc->age_cdata.age_rxtail = 2397 sc->age_cdata.age_rxprev_tail; 2398 sc->age_cdata.age_rxtail->m_len -= 2399 (ETHER_CRC_LEN - mp->m_len); 2400 sc->age_cdata.age_rxtail->m_next = NULL; 2401 m_freem(mp); 2402 } else { 2403 mp->m_len -= ETHER_CRC_LEN; 2404 } 2405 } else 2406 m->m_len = m->m_pkthdr.len; 2407 m->m_pkthdr.rcvif = ifp; 2408 /* 2409 * Set checksum information. 2410 * It seems that L1 controller can compute partial 2411 * checksum. The partial checksum value can be used 2412 * to accelerate checksum computation for fragmented 2413 * TCP/UDP packets. Upper network stack already 2414 * takes advantage of the partial checksum value in 2415 * IP reassembly stage. But I'm not sure the 2416 * correctness of the partial hardware checksum 2417 * assistance due to lack of data sheet. If it is 2418 * proven to work on L1 I'll enable it. 2419 */ 2420 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 && 2421 (status & AGE_RRD_IPV4) != 0) { 2422 if ((status & AGE_RRD_IPCSUM_NOK) == 0) 2423 m->m_pkthdr.csum_flags |= 2424 CSUM_IP_CHECKED | CSUM_IP_VALID; 2425 if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) && 2426 (status & AGE_RRD_TCP_UDPCSUM_NOK) == 0) { 2427 m->m_pkthdr.csum_flags |= 2428 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 2429 m->m_pkthdr.csum_data = 0xffff; 2430 } 2431 /* 2432 * Don't mark bad checksum for TCP/UDP frames 2433 * as fragmented frames may always have set 2434 * bad checksummed bit of descriptor status. 2435 */ 2436 } 2437 2438 /* Check for VLAN tagged frames. */ 2439 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 && 2440 (status & AGE_RRD_VLAN) != 0) { 2441 vtag = AGE_RX_VLAN(le32toh(rxrd->vtags)); 2442 m->m_pkthdr.ether_vtag = AGE_RX_VLAN_TAG(vtag); 2443 m->m_flags |= M_VLANTAG; 2444 } 2445 #ifndef __NO_STRICT_ALIGNMENT 2446 m = age_fixup_rx(ifp, m); 2447 if (m != NULL) 2448 #endif 2449 { 2450 /* Pass it on. */ 2451 AGE_UNLOCK(sc); 2452 (*ifp->if_input)(ifp, m); 2453 AGE_LOCK(sc); 2454 } 2455 } 2456 } 2457 2458 /* Reset mbuf chains. */ 2459 AGE_RXCHAIN_RESET(sc); 2460 } 2461 2462 static int 2463 age_rxintr(struct age_softc *sc, int rr_prod, int count) 2464 { 2465 struct rx_rdesc *rxrd; 2466 int rr_cons, nsegs, pktlen, prog; 2467 2468 AGE_LOCK_ASSERT(sc); 2469 2470 rr_cons = sc->age_cdata.age_rr_cons; 2471 if (rr_cons == rr_prod) 2472 return (0); 2473 2474 bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag, 2475 sc->age_cdata.age_rr_ring_map, 2476 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2477 bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag, 2478 sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_POSTWRITE); 2479 2480 for (prog = 0; rr_cons != rr_prod; prog++) { 2481 if (count-- <= 0) 2482 break; 2483 rxrd = &sc->age_rdata.age_rr_ring[rr_cons]; 2484 nsegs = AGE_RX_NSEGS(le32toh(rxrd->index)); 2485 if (nsegs == 0) 2486 break; 2487 /* 2488 * Check number of segments against received bytes. 2489 * Non-matching value would indicate that hardware 2490 * is still trying to update Rx return descriptors. 2491 * I'm not sure whether this check is really needed. 2492 */ 2493 pktlen = AGE_RX_BYTES(le32toh(rxrd->len)); 2494 if (nsegs != (pktlen + (AGE_RX_BUF_SIZE - 1)) / AGE_RX_BUF_SIZE) 2495 break; 2496 2497 /* Received a frame. */ 2498 age_rxeof(sc, rxrd); 2499 /* Clear return ring. */ 2500 rxrd->index = 0; 2501 AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT); 2502 sc->age_cdata.age_rx_cons += nsegs; 2503 sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT; 2504 } 2505 2506 if (prog > 0) { 2507 /* Update the consumer index. */ 2508 sc->age_cdata.age_rr_cons = rr_cons; 2509 2510 bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag, 2511 sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREWRITE); 2512 /* Sync descriptors. */ 2513 bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag, 2514 sc->age_cdata.age_rr_ring_map, 2515 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2516 2517 /* Notify hardware availability of new Rx buffers. */ 2518 AGE_COMMIT_MBOX(sc); 2519 } 2520 2521 return (count > 0 ? 0 : EAGAIN); 2522 } 2523 2524 static void 2525 age_tick(void *arg) 2526 { 2527 struct age_softc *sc; 2528 struct mii_data *mii; 2529 2530 sc = (struct age_softc *)arg; 2531 2532 AGE_LOCK_ASSERT(sc); 2533 2534 mii = device_get_softc(sc->age_miibus); 2535 mii_tick(mii); 2536 age_watchdog(sc); 2537 callout_reset(&sc->age_tick_ch, hz, age_tick, sc); 2538 } 2539 2540 static void 2541 age_reset(struct age_softc *sc) 2542 { 2543 uint32_t reg; 2544 int i; 2545 2546 CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET); 2547 CSR_READ_4(sc, AGE_MASTER_CFG); 2548 DELAY(1000); 2549 for (i = AGE_RESET_TIMEOUT; i > 0; i--) { 2550 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0) 2551 break; 2552 DELAY(10); 2553 } 2554 2555 if (i == 0) 2556 device_printf(sc->age_dev, "reset timeout(0x%08x)!\n", reg); 2557 /* Initialize PCIe module. From Linux. */ 2558 CSR_WRITE_4(sc, 0x12FC, 0x6500); 2559 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000); 2560 } 2561 2562 static void 2563 age_init(void *xsc) 2564 { 2565 struct age_softc *sc; 2566 2567 sc = (struct age_softc *)xsc; 2568 AGE_LOCK(sc); 2569 age_init_locked(sc); 2570 AGE_UNLOCK(sc); 2571 } 2572 2573 static void 2574 age_init_locked(struct age_softc *sc) 2575 { 2576 struct ifnet *ifp; 2577 struct mii_data *mii; 2578 uint8_t eaddr[ETHER_ADDR_LEN]; 2579 bus_addr_t paddr; 2580 uint32_t reg, fsize; 2581 uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo; 2582 int error; 2583 2584 AGE_LOCK_ASSERT(sc); 2585 2586 ifp = sc->age_ifp; 2587 mii = device_get_softc(sc->age_miibus); 2588 2589 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 2590 return; 2591 2592 /* 2593 * Cancel any pending I/O. 2594 */ 2595 age_stop(sc); 2596 2597 /* 2598 * Reset the chip to a known state. 2599 */ 2600 age_reset(sc); 2601 2602 /* Initialize descriptors. */ 2603 error = age_init_rx_ring(sc); 2604 if (error != 0) { 2605 device_printf(sc->age_dev, "no memory for Rx buffers.\n"); 2606 age_stop(sc); 2607 return; 2608 } 2609 age_init_rr_ring(sc); 2610 age_init_tx_ring(sc); 2611 age_init_cmb_block(sc); 2612 age_init_smb_block(sc); 2613 2614 /* Reprogram the station address. */ 2615 bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN); 2616 CSR_WRITE_4(sc, AGE_PAR0, 2617 eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]); 2618 CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]); 2619 2620 /* Set descriptor base addresses. */ 2621 paddr = sc->age_rdata.age_tx_ring_paddr; 2622 CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr)); 2623 paddr = sc->age_rdata.age_rx_ring_paddr; 2624 CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr)); 2625 paddr = sc->age_rdata.age_rr_ring_paddr; 2626 CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr)); 2627 paddr = sc->age_rdata.age_tx_ring_paddr; 2628 CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr)); 2629 paddr = sc->age_rdata.age_cmb_block_paddr; 2630 CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr)); 2631 paddr = sc->age_rdata.age_smb_block_paddr; 2632 CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr)); 2633 /* Set Rx/Rx return descriptor counter. */ 2634 CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT, 2635 ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) & 2636 DESC_RRD_CNT_MASK) | 2637 ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK)); 2638 /* Set Tx descriptor counter. */ 2639 CSR_WRITE_4(sc, AGE_DESC_TPD_CNT, 2640 (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK); 2641 2642 /* Tell hardware that we're ready to load descriptors. */ 2643 CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD); 2644 2645 /* 2646 * Initialize mailbox register. 2647 * Updated producer/consumer index information is exchanged 2648 * through this mailbox register. However Tx producer and 2649 * Rx return consumer/Rx producer are all shared such that 2650 * it's hard to separate code path between Tx and Rx without 2651 * locking. If L1 hardware have a separate mail box register 2652 * for Tx and Rx consumer/producer management we could have 2653 * indepent Tx/Rx handler which in turn Rx handler could have 2654 * been run without any locking. 2655 */ 2656 AGE_COMMIT_MBOX(sc); 2657 2658 /* Configure IPG/IFG parameters. */ 2659 CSR_WRITE_4(sc, AGE_IPG_IFG_CFG, 2660 ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) | 2661 ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) | 2662 ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) | 2663 ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK)); 2664 2665 /* Set parameters for half-duplex media. */ 2666 CSR_WRITE_4(sc, AGE_HDPX_CFG, 2667 ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) & 2668 HDPX_CFG_LCOL_MASK) | 2669 ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) & 2670 HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN | 2671 ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) & 2672 HDPX_CFG_ABEBT_MASK) | 2673 ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) & 2674 HDPX_CFG_JAMIPG_MASK)); 2675 2676 /* Configure interrupt moderation timer. */ 2677 CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod)); 2678 reg = CSR_READ_4(sc, AGE_MASTER_CFG); 2679 reg &= ~MASTER_MTIMER_ENB; 2680 if (AGE_USECS(sc->age_int_mod) == 0) 2681 reg &= ~MASTER_ITIMER_ENB; 2682 else 2683 reg |= MASTER_ITIMER_ENB; 2684 CSR_WRITE_4(sc, AGE_MASTER_CFG, reg); 2685 if (bootverbose) 2686 device_printf(sc->age_dev, "interrupt moderation is %d us.\n", 2687 sc->age_int_mod); 2688 CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000)); 2689 2690 /* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */ 2691 if (ifp->if_mtu < ETHERMTU) 2692 sc->age_max_frame_size = ETHERMTU; 2693 else 2694 sc->age_max_frame_size = ifp->if_mtu; 2695 sc->age_max_frame_size += ETHER_HDR_LEN + 2696 sizeof(struct ether_vlan_header) + ETHER_CRC_LEN; 2697 CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size); 2698 /* Configure jumbo frame. */ 2699 fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t)); 2700 CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG, 2701 (((fsize / sizeof(uint64_t)) << 2702 RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) | 2703 ((RXQ_JUMBO_CFG_LKAH_DEFAULT << 2704 RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) | 2705 ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) & 2706 RXQ_JUMBO_CFG_RRD_TIMER_MASK)); 2707 2708 /* Configure flow-control parameters. From Linux. */ 2709 if ((sc->age_flags & AGE_FLAG_PCIE) != 0) { 2710 /* 2711 * Magic workaround for old-L1. 2712 * Don't know which hw revision requires this magic. 2713 */ 2714 CSR_WRITE_4(sc, 0x12FC, 0x6500); 2715 /* 2716 * Another magic workaround for flow-control mode 2717 * change. From Linux. 2718 */ 2719 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000); 2720 } 2721 /* 2722 * TODO 2723 * Should understand pause parameter relationships between FIFO 2724 * size and number of Rx descriptors and Rx return descriptors. 2725 * 2726 * Magic parameters came from Linux. 2727 */ 2728 switch (sc->age_chip_rev) { 2729 case 0x8001: 2730 case 0x9001: 2731 case 0x9002: 2732 case 0x9003: 2733 rxf_hi = AGE_RX_RING_CNT / 16; 2734 rxf_lo = (AGE_RX_RING_CNT * 7) / 8; 2735 rrd_hi = (AGE_RR_RING_CNT * 7) / 8; 2736 rrd_lo = AGE_RR_RING_CNT / 16; 2737 break; 2738 default: 2739 reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN); 2740 rxf_lo = reg / 16; 2741 if (rxf_lo < 192) 2742 rxf_lo = 192; 2743 rxf_hi = (reg * 7) / 8; 2744 if (rxf_hi < rxf_lo) 2745 rxf_hi = rxf_lo + 16; 2746 reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN); 2747 rrd_lo = reg / 8; 2748 rrd_hi = (reg * 7) / 8; 2749 if (rrd_lo < 2) 2750 rrd_lo = 2; 2751 if (rrd_hi < rrd_lo) 2752 rrd_hi = rrd_lo + 3; 2753 break; 2754 } 2755 CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH, 2756 ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) & 2757 RXQ_FIFO_PAUSE_THRESH_LO_MASK) | 2758 ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) & 2759 RXQ_FIFO_PAUSE_THRESH_HI_MASK)); 2760 CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH, 2761 ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) & 2762 RXQ_RRD_PAUSE_THRESH_LO_MASK) | 2763 ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) & 2764 RXQ_RRD_PAUSE_THRESH_HI_MASK)); 2765 2766 /* Configure RxQ. */ 2767 CSR_WRITE_4(sc, AGE_RXQ_CFG, 2768 ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) & 2769 RXQ_CFG_RD_BURST_MASK) | 2770 ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT << 2771 RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) | 2772 ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT << 2773 RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) | 2774 RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB); 2775 2776 /* Configure TxQ. */ 2777 CSR_WRITE_4(sc, AGE_TXQ_CFG, 2778 ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) & 2779 TXQ_CFG_TPD_BURST_MASK) | 2780 ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) & 2781 TXQ_CFG_TX_FIFO_BURST_MASK) | 2782 ((TXQ_CFG_TPD_FETCH_DEFAULT << 2783 TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) | 2784 TXQ_CFG_ENB); 2785 2786 CSR_WRITE_4(sc, AGE_TX_JUMBO_TPD_TH_IPG, 2787 (((fsize / sizeof(uint64_t) << TX_JUMBO_TPD_TH_SHIFT)) & 2788 TX_JUMBO_TPD_TH_MASK) | 2789 ((TX_JUMBO_TPD_IPG_DEFAULT << TX_JUMBO_TPD_IPG_SHIFT) & 2790 TX_JUMBO_TPD_IPG_MASK)); 2791 /* Configure DMA parameters. */ 2792 CSR_WRITE_4(sc, AGE_DMA_CFG, 2793 DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 | 2794 sc->age_dma_rd_burst | DMA_CFG_RD_ENB | 2795 sc->age_dma_wr_burst | DMA_CFG_WR_ENB); 2796 2797 /* Configure CMB DMA write threshold. */ 2798 CSR_WRITE_4(sc, AGE_CMB_WR_THRESH, 2799 ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) & 2800 CMB_WR_THRESH_RRD_MASK) | 2801 ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) & 2802 CMB_WR_THRESH_TPD_MASK)); 2803 2804 /* Set CMB/SMB timer and enable them. */ 2805 CSR_WRITE_4(sc, AGE_CMB_WR_TIMER, 2806 ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) | 2807 ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK)); 2808 /* Request SMB updates for every seconds. */ 2809 CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000)); 2810 CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB); 2811 2812 /* 2813 * Disable all WOL bits as WOL can interfere normal Rx 2814 * operation. 2815 */ 2816 CSR_WRITE_4(sc, AGE_WOL_CFG, 0); 2817 2818 /* 2819 * Configure Tx/Rx MACs. 2820 * - Auto-padding for short frames. 2821 * - Enable CRC generation. 2822 * Start with full-duplex/1000Mbps media. Actual reconfiguration 2823 * of MAC is followed after link establishment. 2824 */ 2825 CSR_WRITE_4(sc, AGE_MAC_CFG, 2826 MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | 2827 MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 | 2828 ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) & 2829 MAC_CFG_PREAMBLE_MASK)); 2830 /* Set up the receive filter. */ 2831 age_rxfilter(sc); 2832 age_rxvlan(sc); 2833 2834 reg = CSR_READ_4(sc, AGE_MAC_CFG); 2835 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) 2836 reg |= MAC_CFG_RXCSUM_ENB; 2837 2838 /* Ack all pending interrupts and clear it. */ 2839 CSR_WRITE_4(sc, AGE_INTR_STATUS, 0); 2840 CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS); 2841 2842 /* Finally enable Tx/Rx MAC. */ 2843 CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB); 2844 2845 sc->age_flags &= ~AGE_FLAG_LINK; 2846 /* Switch to the current media. */ 2847 mii_mediachg(mii); 2848 2849 callout_reset(&sc->age_tick_ch, hz, age_tick, sc); 2850 2851 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2852 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2853 } 2854 2855 static void 2856 age_stop(struct age_softc *sc) 2857 { 2858 struct ifnet *ifp; 2859 struct age_txdesc *txd; 2860 struct age_rxdesc *rxd; 2861 uint32_t reg; 2862 int i; 2863 2864 AGE_LOCK_ASSERT(sc); 2865 /* 2866 * Mark the interface down and cancel the watchdog timer. 2867 */ 2868 ifp = sc->age_ifp; 2869 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 2870 sc->age_flags &= ~AGE_FLAG_LINK; 2871 callout_stop(&sc->age_tick_ch); 2872 sc->age_watchdog_timer = 0; 2873 2874 /* 2875 * Disable interrupts. 2876 */ 2877 CSR_WRITE_4(sc, AGE_INTR_MASK, 0); 2878 CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF); 2879 /* Stop CMB/SMB updates. */ 2880 CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0); 2881 /* Stop Rx/Tx MAC. */ 2882 age_stop_rxmac(sc); 2883 age_stop_txmac(sc); 2884 /* Stop DMA. */ 2885 CSR_WRITE_4(sc, AGE_DMA_CFG, 2886 CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB)); 2887 /* Stop TxQ/RxQ. */ 2888 CSR_WRITE_4(sc, AGE_TXQ_CFG, 2889 CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB); 2890 CSR_WRITE_4(sc, AGE_RXQ_CFG, 2891 CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB); 2892 for (i = AGE_RESET_TIMEOUT; i > 0; i--) { 2893 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0) 2894 break; 2895 DELAY(10); 2896 } 2897 if (i == 0) 2898 device_printf(sc->age_dev, 2899 "stopping Rx/Tx MACs timed out(0x%08x)!\n", reg); 2900 2901 /* Reclaim Rx buffers that have been processed. */ 2902 if (sc->age_cdata.age_rxhead != NULL) 2903 m_freem(sc->age_cdata.age_rxhead); 2904 AGE_RXCHAIN_RESET(sc); 2905 /* 2906 * Free RX and TX mbufs still in the queues. 2907 */ 2908 for (i = 0; i < AGE_RX_RING_CNT; i++) { 2909 rxd = &sc->age_cdata.age_rxdesc[i]; 2910 if (rxd->rx_m != NULL) { 2911 bus_dmamap_sync(sc->age_cdata.age_rx_tag, 2912 rxd->rx_dmamap, BUS_DMASYNC_POSTREAD); 2913 bus_dmamap_unload(sc->age_cdata.age_rx_tag, 2914 rxd->rx_dmamap); 2915 m_freem(rxd->rx_m); 2916 rxd->rx_m = NULL; 2917 } 2918 } 2919 for (i = 0; i < AGE_TX_RING_CNT; i++) { 2920 txd = &sc->age_cdata.age_txdesc[i]; 2921 if (txd->tx_m != NULL) { 2922 bus_dmamap_sync(sc->age_cdata.age_tx_tag, 2923 txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); 2924 bus_dmamap_unload(sc->age_cdata.age_tx_tag, 2925 txd->tx_dmamap); 2926 m_freem(txd->tx_m); 2927 txd->tx_m = NULL; 2928 } 2929 } 2930 } 2931 2932 static void 2933 age_stop_txmac(struct age_softc *sc) 2934 { 2935 uint32_t reg; 2936 int i; 2937 2938 AGE_LOCK_ASSERT(sc); 2939 2940 reg = CSR_READ_4(sc, AGE_MAC_CFG); 2941 if ((reg & MAC_CFG_TX_ENB) != 0) { 2942 reg &= ~MAC_CFG_TX_ENB; 2943 CSR_WRITE_4(sc, AGE_MAC_CFG, reg); 2944 } 2945 /* Stop Tx DMA engine. */ 2946 reg = CSR_READ_4(sc, AGE_DMA_CFG); 2947 if ((reg & DMA_CFG_RD_ENB) != 0) { 2948 reg &= ~DMA_CFG_RD_ENB; 2949 CSR_WRITE_4(sc, AGE_DMA_CFG, reg); 2950 } 2951 for (i = AGE_RESET_TIMEOUT; i > 0; i--) { 2952 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) & 2953 (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0) 2954 break; 2955 DELAY(10); 2956 } 2957 if (i == 0) 2958 device_printf(sc->age_dev, "stopping TxMAC timeout!\n"); 2959 } 2960 2961 static void 2962 age_stop_rxmac(struct age_softc *sc) 2963 { 2964 uint32_t reg; 2965 int i; 2966 2967 AGE_LOCK_ASSERT(sc); 2968 2969 reg = CSR_READ_4(sc, AGE_MAC_CFG); 2970 if ((reg & MAC_CFG_RX_ENB) != 0) { 2971 reg &= ~MAC_CFG_RX_ENB; 2972 CSR_WRITE_4(sc, AGE_MAC_CFG, reg); 2973 } 2974 /* Stop Rx DMA engine. */ 2975 reg = CSR_READ_4(sc, AGE_DMA_CFG); 2976 if ((reg & DMA_CFG_WR_ENB) != 0) { 2977 reg &= ~DMA_CFG_WR_ENB; 2978 CSR_WRITE_4(sc, AGE_DMA_CFG, reg); 2979 } 2980 for (i = AGE_RESET_TIMEOUT; i > 0; i--) { 2981 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) & 2982 (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0) 2983 break; 2984 DELAY(10); 2985 } 2986 if (i == 0) 2987 device_printf(sc->age_dev, "stopping RxMAC timeout!\n"); 2988 } 2989 2990 static void 2991 age_init_tx_ring(struct age_softc *sc) 2992 { 2993 struct age_ring_data *rd; 2994 struct age_txdesc *txd; 2995 int i; 2996 2997 AGE_LOCK_ASSERT(sc); 2998 2999 sc->age_cdata.age_tx_prod = 0; 3000 sc->age_cdata.age_tx_cons = 0; 3001 sc->age_cdata.age_tx_cnt = 0; 3002 3003 rd = &sc->age_rdata; 3004 bzero(rd->age_tx_ring, AGE_TX_RING_SZ); 3005 for (i = 0; i < AGE_TX_RING_CNT; i++) { 3006 txd = &sc->age_cdata.age_txdesc[i]; 3007 txd->tx_desc = &rd->age_tx_ring[i]; 3008 txd->tx_m = NULL; 3009 } 3010 3011 bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag, 3012 sc->age_cdata.age_tx_ring_map, 3013 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 3014 } 3015 3016 static int 3017 age_init_rx_ring(struct age_softc *sc) 3018 { 3019 struct age_ring_data *rd; 3020 struct age_rxdesc *rxd; 3021 int i; 3022 3023 AGE_LOCK_ASSERT(sc); 3024 3025 sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1; 3026 sc->age_morework = 0; 3027 rd = &sc->age_rdata; 3028 bzero(rd->age_rx_ring, AGE_RX_RING_SZ); 3029 for (i = 0; i < AGE_RX_RING_CNT; i++) { 3030 rxd = &sc->age_cdata.age_rxdesc[i]; 3031 rxd->rx_m = NULL; 3032 rxd->rx_desc = &rd->age_rx_ring[i]; 3033 if (age_newbuf(sc, rxd) != 0) 3034 return (ENOBUFS); 3035 } 3036 3037 bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag, 3038 sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREWRITE); 3039 3040 return (0); 3041 } 3042 3043 static void 3044 age_init_rr_ring(struct age_softc *sc) 3045 { 3046 struct age_ring_data *rd; 3047 3048 AGE_LOCK_ASSERT(sc); 3049 3050 sc->age_cdata.age_rr_cons = 0; 3051 AGE_RXCHAIN_RESET(sc); 3052 3053 rd = &sc->age_rdata; 3054 bzero(rd->age_rr_ring, AGE_RR_RING_SZ); 3055 bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag, 3056 sc->age_cdata.age_rr_ring_map, 3057 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 3058 } 3059 3060 static void 3061 age_init_cmb_block(struct age_softc *sc) 3062 { 3063 struct age_ring_data *rd; 3064 3065 AGE_LOCK_ASSERT(sc); 3066 3067 rd = &sc->age_rdata; 3068 bzero(rd->age_cmb_block, AGE_CMB_BLOCK_SZ); 3069 bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag, 3070 sc->age_cdata.age_cmb_block_map, 3071 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 3072 } 3073 3074 static void 3075 age_init_smb_block(struct age_softc *sc) 3076 { 3077 struct age_ring_data *rd; 3078 3079 AGE_LOCK_ASSERT(sc); 3080 3081 rd = &sc->age_rdata; 3082 bzero(rd->age_smb_block, AGE_SMB_BLOCK_SZ); 3083 bus_dmamap_sync(sc->age_cdata.age_smb_block_tag, 3084 sc->age_cdata.age_smb_block_map, 3085 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 3086 } 3087 3088 static int 3089 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd) 3090 { 3091 struct rx_desc *desc; 3092 struct mbuf *m; 3093 bus_dma_segment_t segs[1]; 3094 bus_dmamap_t map; 3095 int nsegs; 3096 3097 AGE_LOCK_ASSERT(sc); 3098 3099 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 3100 if (m == NULL) 3101 return (ENOBUFS); 3102 m->m_len = m->m_pkthdr.len = MCLBYTES; 3103 #ifndef __NO_STRICT_ALIGNMENT 3104 m_adj(m, AGE_RX_BUF_ALIGN); 3105 #endif 3106 3107 if (bus_dmamap_load_mbuf_sg(sc->age_cdata.age_rx_tag, 3108 sc->age_cdata.age_rx_sparemap, m, segs, &nsegs, 0) != 0) { 3109 m_freem(m); 3110 return (ENOBUFS); 3111 } 3112 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); 3113 3114 if (rxd->rx_m != NULL) { 3115 bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap, 3116 BUS_DMASYNC_POSTREAD); 3117 bus_dmamap_unload(sc->age_cdata.age_rx_tag, rxd->rx_dmamap); 3118 } 3119 map = rxd->rx_dmamap; 3120 rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap; 3121 sc->age_cdata.age_rx_sparemap = map; 3122 bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap, 3123 BUS_DMASYNC_PREREAD); 3124 rxd->rx_m = m; 3125 3126 desc = rxd->rx_desc; 3127 desc->addr = htole64(segs[0].ds_addr); 3128 desc->len = htole32((segs[0].ds_len & AGE_RD_LEN_MASK) << 3129 AGE_RD_LEN_SHIFT); 3130 return (0); 3131 } 3132 3133 static void 3134 age_rxvlan(struct age_softc *sc) 3135 { 3136 struct ifnet *ifp; 3137 uint32_t reg; 3138 3139 AGE_LOCK_ASSERT(sc); 3140 3141 ifp = sc->age_ifp; 3142 reg = CSR_READ_4(sc, AGE_MAC_CFG); 3143 reg &= ~MAC_CFG_VLAN_TAG_STRIP; 3144 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) 3145 reg |= MAC_CFG_VLAN_TAG_STRIP; 3146 CSR_WRITE_4(sc, AGE_MAC_CFG, reg); 3147 } 3148 3149 static void 3150 age_rxfilter(struct age_softc *sc) 3151 { 3152 struct ifnet *ifp; 3153 struct ifmultiaddr *ifma; 3154 uint32_t crc; 3155 uint32_t mchash[2]; 3156 uint32_t rxcfg; 3157 3158 AGE_LOCK_ASSERT(sc); 3159 3160 ifp = sc->age_ifp; 3161 3162 rxcfg = CSR_READ_4(sc, AGE_MAC_CFG); 3163 rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC); 3164 if ((ifp->if_flags & IFF_BROADCAST) != 0) 3165 rxcfg |= MAC_CFG_BCAST; 3166 if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) { 3167 if ((ifp->if_flags & IFF_PROMISC) != 0) 3168 rxcfg |= MAC_CFG_PROMISC; 3169 if ((ifp->if_flags & IFF_ALLMULTI) != 0) 3170 rxcfg |= MAC_CFG_ALLMULTI; 3171 CSR_WRITE_4(sc, AGE_MAR0, 0xFFFFFFFF); 3172 CSR_WRITE_4(sc, AGE_MAR1, 0xFFFFFFFF); 3173 CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg); 3174 return; 3175 } 3176 3177 /* Program new filter. */ 3178 bzero(mchash, sizeof(mchash)); 3179 3180 if_maddr_rlock(ifp); 3181 TAILQ_FOREACH(ifma, &sc->age_ifp->if_multiaddrs, ifma_link) { 3182 if (ifma->ifma_addr->sa_family != AF_LINK) 3183 continue; 3184 crc = ether_crc32_be(LLADDR((struct sockaddr_dl *) 3185 ifma->ifma_addr), ETHER_ADDR_LEN); 3186 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f); 3187 } 3188 if_maddr_runlock(ifp); 3189 3190 CSR_WRITE_4(sc, AGE_MAR0, mchash[0]); 3191 CSR_WRITE_4(sc, AGE_MAR1, mchash[1]); 3192 CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg); 3193 } 3194 3195 static int 3196 sysctl_age_stats(SYSCTL_HANDLER_ARGS) 3197 { 3198 struct age_softc *sc; 3199 struct age_stats *stats; 3200 int error, result; 3201 3202 result = -1; 3203 error = sysctl_handle_int(oidp, &result, 0, req); 3204 3205 if (error != 0 || req->newptr == NULL) 3206 return (error); 3207 3208 if (result != 1) 3209 return (error); 3210 3211 sc = (struct age_softc *)arg1; 3212 stats = &sc->age_stat; 3213 printf("%s statistics:\n", device_get_nameunit(sc->age_dev)); 3214 printf("Transmit good frames : %ju\n", 3215 (uintmax_t)stats->tx_frames); 3216 printf("Transmit good broadcast frames : %ju\n", 3217 (uintmax_t)stats->tx_bcast_frames); 3218 printf("Transmit good multicast frames : %ju\n", 3219 (uintmax_t)stats->tx_mcast_frames); 3220 printf("Transmit pause control frames : %u\n", 3221 stats->tx_pause_frames); 3222 printf("Transmit control frames : %u\n", 3223 stats->tx_control_frames); 3224 printf("Transmit frames with excessive deferrals : %u\n", 3225 stats->tx_excess_defer); 3226 printf("Transmit deferrals : %u\n", 3227 stats->tx_deferred); 3228 printf("Transmit good octets : %ju\n", 3229 (uintmax_t)stats->tx_bytes); 3230 printf("Transmit good broadcast octets : %ju\n", 3231 (uintmax_t)stats->tx_bcast_bytes); 3232 printf("Transmit good multicast octets : %ju\n", 3233 (uintmax_t)stats->tx_mcast_bytes); 3234 printf("Transmit frames 64 bytes : %ju\n", 3235 (uintmax_t)stats->tx_pkts_64); 3236 printf("Transmit frames 65 to 127 bytes : %ju\n", 3237 (uintmax_t)stats->tx_pkts_65_127); 3238 printf("Transmit frames 128 to 255 bytes : %ju\n", 3239 (uintmax_t)stats->tx_pkts_128_255); 3240 printf("Transmit frames 256 to 511 bytes : %ju\n", 3241 (uintmax_t)stats->tx_pkts_256_511); 3242 printf("Transmit frames 512 to 1024 bytes : %ju\n", 3243 (uintmax_t)stats->tx_pkts_512_1023); 3244 printf("Transmit frames 1024 to 1518 bytes : %ju\n", 3245 (uintmax_t)stats->tx_pkts_1024_1518); 3246 printf("Transmit frames 1519 to MTU bytes : %ju\n", 3247 (uintmax_t)stats->tx_pkts_1519_max); 3248 printf("Transmit single collisions : %u\n", 3249 stats->tx_single_colls); 3250 printf("Transmit multiple collisions : %u\n", 3251 stats->tx_multi_colls); 3252 printf("Transmit late collisions : %u\n", 3253 stats->tx_late_colls); 3254 printf("Transmit abort due to excessive collisions : %u\n", 3255 stats->tx_excess_colls); 3256 printf("Transmit underruns due to FIFO underruns : %u\n", 3257 stats->tx_underrun); 3258 printf("Transmit descriptor write-back errors : %u\n", 3259 stats->tx_desc_underrun); 3260 printf("Transmit frames with length mismatched frame size : %u\n", 3261 stats->tx_lenerrs); 3262 printf("Transmit frames with truncated due to MTU size : %u\n", 3263 stats->tx_lenerrs); 3264 3265 printf("Receive good frames : %ju\n", 3266 (uintmax_t)stats->rx_frames); 3267 printf("Receive good broadcast frames : %ju\n", 3268 (uintmax_t)stats->rx_bcast_frames); 3269 printf("Receive good multicast frames : %ju\n", 3270 (uintmax_t)stats->rx_mcast_frames); 3271 printf("Receive pause control frames : %u\n", 3272 stats->rx_pause_frames); 3273 printf("Receive control frames : %u\n", 3274 stats->rx_control_frames); 3275 printf("Receive CRC errors : %u\n", 3276 stats->rx_crcerrs); 3277 printf("Receive frames with length errors : %u\n", 3278 stats->rx_lenerrs); 3279 printf("Receive good octets : %ju\n", 3280 (uintmax_t)stats->rx_bytes); 3281 printf("Receive good broadcast octets : %ju\n", 3282 (uintmax_t)stats->rx_bcast_bytes); 3283 printf("Receive good multicast octets : %ju\n", 3284 (uintmax_t)stats->rx_mcast_bytes); 3285 printf("Receive frames too short : %u\n", 3286 stats->rx_runts); 3287 printf("Receive fragmented frames : %ju\n", 3288 (uintmax_t)stats->rx_fragments); 3289 printf("Receive frames 64 bytes : %ju\n", 3290 (uintmax_t)stats->rx_pkts_64); 3291 printf("Receive frames 65 to 127 bytes : %ju\n", 3292 (uintmax_t)stats->rx_pkts_65_127); 3293 printf("Receive frames 128 to 255 bytes : %ju\n", 3294 (uintmax_t)stats->rx_pkts_128_255); 3295 printf("Receive frames 256 to 511 bytes : %ju\n", 3296 (uintmax_t)stats->rx_pkts_256_511); 3297 printf("Receive frames 512 to 1024 bytes : %ju\n", 3298 (uintmax_t)stats->rx_pkts_512_1023); 3299 printf("Receive frames 1024 to 1518 bytes : %ju\n", 3300 (uintmax_t)stats->rx_pkts_1024_1518); 3301 printf("Receive frames 1519 to MTU bytes : %ju\n", 3302 (uintmax_t)stats->rx_pkts_1519_max); 3303 printf("Receive frames too long : %ju\n", 3304 (uint64_t)stats->rx_pkts_truncated); 3305 printf("Receive frames with FIFO overflow : %u\n", 3306 stats->rx_fifo_oflows); 3307 printf("Receive frames with return descriptor overflow : %u\n", 3308 stats->rx_desc_oflows); 3309 printf("Receive frames with alignment errors : %u\n", 3310 stats->rx_alignerrs); 3311 printf("Receive frames dropped due to address filtering : %ju\n", 3312 (uint64_t)stats->rx_pkts_filtered); 3313 3314 return (error); 3315 } 3316 3317 static int 3318 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high) 3319 { 3320 int error, value; 3321 3322 if (arg1 == NULL) 3323 return (EINVAL); 3324 value = *(int *)arg1; 3325 error = sysctl_handle_int(oidp, &value, 0, req); 3326 if (error || req->newptr == NULL) 3327 return (error); 3328 if (value < low || value > high) 3329 return (EINVAL); 3330 *(int *)arg1 = value; 3331 3332 return (0); 3333 } 3334 3335 static int 3336 sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS) 3337 { 3338 return (sysctl_int_range(oidp, arg1, arg2, req, 3339 AGE_PROC_MIN, AGE_PROC_MAX)); 3340 } 3341 3342 static int 3343 sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS) 3344 { 3345 3346 return (sysctl_int_range(oidp, arg1, arg2, req, AGE_IM_TIMER_MIN, 3347 AGE_IM_TIMER_MAX)); 3348 } 3349