xref: /freebsd/sys/dev/ae/if_ae.c (revision fb2971ccd2bab42f5406f919812ceb8e014773ea)
1 /*-
2  * Copyright (c) 2008 Stanislav Sedov <stas@FreeBSD.org>.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  *
25  * Driver for Attansic Technology Corp. L2 FastEthernet adapter.
26  *
27  * This driver is heavily based on age(4) Attansic L1 driver by Pyun YongHyeon.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/bus.h>
36 #include <sys/endian.h>
37 #include <sys/kernel.h>
38 #include <sys/malloc.h>
39 #include <sys/mbuf.h>
40 #include <sys/rman.h>
41 #include <sys/module.h>
42 #include <sys/queue.h>
43 #include <sys/socket.h>
44 #include <sys/sockio.h>
45 #include <sys/sysctl.h>
46 #include <sys/taskqueue.h>
47 
48 #include <net/bpf.h>
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/ethernet.h>
52 #include <net/if_dl.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55 #include <net/if_vlan_var.h>
56 
57 #include <netinet/in.h>
58 #include <netinet/in_systm.h>
59 #include <netinet/ip.h>
60 #include <netinet/tcp.h>
61 
62 #include <dev/mii/mii.h>
63 #include <dev/mii/miivar.h>
64 #include <dev/pci/pcireg.h>
65 #include <dev/pci/pcivar.h>
66 
67 #include <machine/bus.h>
68 
69 #include "miibus_if.h"
70 
71 #include "if_aereg.h"
72 #include "if_aevar.h"
73 
74 /*
75  * Devices supported by this driver.
76  */
77 static struct ae_dev {
78 	uint16_t	vendorid;
79 	uint16_t	deviceid;
80 	const char	*name;
81 } ae_devs[] = {
82 	{ VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L2,
83 		"Attansic Technology Corp, L2 FastEthernet" },
84 };
85 #define	AE_DEVS_COUNT (sizeof(ae_devs) / sizeof(*ae_devs))
86 
87 static struct resource_spec ae_res_spec_mem[] = {
88 	{ SYS_RES_MEMORY,       PCIR_BAR(0),    RF_ACTIVE },
89 	{ -1,			0,		0 }
90 };
91 static struct resource_spec ae_res_spec_irq[] = {
92 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
93 	{ -1,			0,		0 }
94 };
95 static struct resource_spec ae_res_spec_msi[] = {
96 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
97 	{ -1,			0,		0 }
98 };
99 
100 static int	ae_probe(device_t dev);
101 static int	ae_attach(device_t dev);
102 static void	ae_pcie_init(ae_softc_t *sc);
103 static void	ae_phy_reset(ae_softc_t *sc);
104 static void	ae_phy_init(ae_softc_t *sc);
105 static int	ae_reset(ae_softc_t *sc);
106 static void	ae_init(void *arg);
107 static int	ae_init_locked(ae_softc_t *sc);
108 static int	ae_detach(device_t dev);
109 static int	ae_miibus_readreg(device_t dev, int phy, int reg);
110 static int	ae_miibus_writereg(device_t dev, int phy, int reg, int val);
111 static void	ae_miibus_statchg(device_t dev);
112 static void	ae_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr);
113 static int	ae_mediachange(struct ifnet *ifp);
114 static void	ae_retrieve_address(ae_softc_t *sc);
115 static void	ae_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs,
116     int error);
117 static int	ae_alloc_rings(ae_softc_t *sc);
118 static void	ae_dma_free(ae_softc_t *sc);
119 static int	ae_shutdown(device_t dev);
120 static int	ae_suspend(device_t dev);
121 static void	ae_powersave_disable(ae_softc_t *sc);
122 static void	ae_powersave_enable(ae_softc_t *sc);
123 static int	ae_resume(device_t dev);
124 static unsigned int	ae_tx_avail_size(ae_softc_t *sc);
125 static int	ae_encap(ae_softc_t *sc, struct mbuf **m_head);
126 static void	ae_start(struct ifnet *ifp);
127 static void	ae_link_task(void *arg, int pending);
128 static void	ae_stop_rxmac(ae_softc_t *sc);
129 static void	ae_stop_txmac(ae_softc_t *sc);
130 static void	ae_tx_task(void *arg, int pending);
131 static void	ae_mac_config(ae_softc_t *sc);
132 static int	ae_intr(void *arg);
133 static void	ae_int_task(void *arg, int pending);
134 static void	ae_tx_intr(ae_softc_t *sc);
135 static int	ae_rxeof(ae_softc_t *sc, ae_rxd_t *rxd);
136 static void	ae_rx_intr(ae_softc_t *sc);
137 static void	ae_watchdog(ae_softc_t *sc);
138 static void	ae_tick(void *arg);
139 static void	ae_rxfilter(ae_softc_t *sc);
140 static void	ae_rxvlan(ae_softc_t *sc);
141 static int	ae_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data);
142 static void	ae_stop(ae_softc_t *sc);
143 static int	ae_check_eeprom_present(ae_softc_t *sc, int *vpdc);
144 static int	ae_vpd_read_word(ae_softc_t *sc, int reg, uint32_t *word);
145 static int	ae_get_vpd_eaddr(ae_softc_t *sc, uint32_t *eaddr);
146 static int	ae_get_reg_eaddr(ae_softc_t *sc, uint32_t *eaddr);
147 static void	ae_update_stats_rx(uint16_t flags, ae_stats_t *stats);
148 static void	ae_update_stats_tx(uint16_t flags, ae_stats_t *stats);
149 static void	ae_init_tunables(ae_softc_t *sc);
150 
151 static device_method_t ae_methods[] = {
152 	/* Device interface. */
153 	DEVMETHOD(device_probe,		ae_probe),
154 	DEVMETHOD(device_attach,	ae_attach),
155 	DEVMETHOD(device_detach,	ae_detach),
156 	DEVMETHOD(device_shutdown,	ae_shutdown),
157 	DEVMETHOD(device_suspend,	ae_suspend),
158 	DEVMETHOD(device_resume,	ae_resume),
159 
160 	/* MII interface. */
161 	DEVMETHOD(miibus_readreg,	ae_miibus_readreg),
162 	DEVMETHOD(miibus_writereg,	ae_miibus_writereg),
163 	DEVMETHOD(miibus_statchg,	ae_miibus_statchg),
164 
165 	{ NULL, NULL }
166 };
167 static driver_t ae_driver = {
168         "ae",
169         ae_methods,
170         sizeof(ae_softc_t)
171 };
172 static devclass_t ae_devclass;
173 
174 DRIVER_MODULE(ae, pci, ae_driver, ae_devclass, 0, 0);
175 DRIVER_MODULE(miibus, ae, miibus_driver, miibus_devclass, 0, 0);
176 MODULE_DEPEND(ae, pci, 1, 1, 1);
177 MODULE_DEPEND(ae, ether, 1, 1, 1);
178 MODULE_DEPEND(ae, miibus, 1, 1, 1);
179 
180 /*
181  * Tunables.
182  */
183 static int msi_disable = 0;
184 TUNABLE_INT("hw.ae.msi_disable", &msi_disable);
185 
186 #define	AE_READ_4(sc, reg) \
187 	bus_read_4((sc)->mem[0], (reg))
188 #define	AE_READ_2(sc, reg) \
189 	bus_read_2((sc)->mem[0], (reg))
190 #define	AE_READ_1(sc, reg) \
191 	bus_read_1((sc)->mem[0], (reg))
192 #define	AE_WRITE_4(sc, reg, val) \
193 	bus_write_4((sc)->mem[0], (reg), (val))
194 #define	AE_WRITE_2(sc, reg, val) \
195 	bus_write_2((sc)->mem[0], (reg), (val))
196 #define	AE_WRITE_1(sc, reg, val) \
197 	bus_write_1((sc)->mem[0], (reg), (val))
198 #define	AE_PHY_READ(sc, reg) \
199 	ae_miibus_readreg(sc->dev, 0, reg)
200 #define	AE_PHY_WRITE(sc, reg, val) \
201 	ae_miibus_writereg(sc->dev, 0, reg, val)
202 #define	AE_CHECK_EADDR_VALID(eaddr) \
203 	((eaddr[0] == 0 && eaddr[1] == 0) || \
204 	(eaddr[0] == 0xffffffff && eaddr[1] == 0xffff))
205 #define	AE_RXD_VLAN(vtag) \
206 	(((vtag) >> 4) | (((vtag) & 0x07) << 13) | (((vtag) & 0x08) << 9))
207 #define	AE_TXD_VLAN(vtag) \
208 	(((vtag) << 4) | (((vtag) >> 13) & 0x07) | (((vtag) >> 9) & 0x08))
209 
210 /*
211  * ae statistics.
212  */
213 #define	STATS_ENTRY(node, desc, field) \
214     { node, desc, offsetof(struct ae_stats, field) }
215 struct {
216 	const char	*node;
217 	const char	*desc;
218 	intptr_t	offset;
219 } ae_stats_tx[] = {
220 	STATS_ENTRY("bcast", "broadcast frames", tx_bcast),
221 	STATS_ENTRY("mcast", "multicast frames", tx_mcast),
222 	STATS_ENTRY("pause", "PAUSE frames", tx_pause),
223 	STATS_ENTRY("control", "control frames", tx_ctrl),
224 	STATS_ENTRY("defers", "deferrals occuried", tx_defer),
225 	STATS_ENTRY("exc_defers", "excessive deferrals occuried", tx_excdefer),
226 	STATS_ENTRY("singlecols", "single collisions occuried", tx_singlecol),
227 	STATS_ENTRY("multicols", "multiple collisions occuried", tx_multicol),
228 	STATS_ENTRY("latecols", "late collisions occuried", tx_latecol),
229 	STATS_ENTRY("aborts", "transmit aborts due collisions", tx_abortcol),
230 	STATS_ENTRY("underruns", "Tx FIFO underruns", tx_underrun)
231 }, ae_stats_rx[] = {
232 	STATS_ENTRY("bcast", "broadcast frames", rx_bcast),
233 	STATS_ENTRY("mcast", "multicast frames", rx_mcast),
234 	STATS_ENTRY("pause", "PAUSE frames", rx_pause),
235 	STATS_ENTRY("control", "control frames", rx_ctrl),
236 	STATS_ENTRY("crc_errors", "frames with CRC errors", rx_crcerr),
237 	STATS_ENTRY("code_errors", "frames with invalid opcode", rx_codeerr),
238 	STATS_ENTRY("runt", "runt frames", rx_runt),
239 	STATS_ENTRY("frag", "fragmented frames", rx_frag),
240 	STATS_ENTRY("align_errors", "frames with alignment errors", rx_align),
241 	STATS_ENTRY("truncated", "frames truncated due to Rx FIFO inderrun",
242 	    rx_trunc)
243 };
244 #define	AE_STATS_RX_LEN	(sizeof(ae_stats_rx) / sizeof(*ae_stats_rx))
245 #define	AE_STATS_TX_LEN	(sizeof(ae_stats_tx) / sizeof(*ae_stats_tx))
246 
247 static int
248 ae_probe(device_t dev)
249 {
250 	uint16_t deviceid, vendorid;
251 	int i;
252 
253 	vendorid = pci_get_vendor(dev);
254 	deviceid = pci_get_device(dev);
255 
256 	/*
257 	 * Search through the list of supported devs for matching one.
258 	 */
259 	for (i = 0; i < AE_DEVS_COUNT; i++) {
260 		if (vendorid == ae_devs[i].vendorid &&
261 		    deviceid == ae_devs[i].deviceid) {
262 			device_set_desc(dev, ae_devs[i].name);
263 			return (BUS_PROBE_DEFAULT);
264 		}
265 	}
266 	return (ENXIO);
267 }
268 
269 static int
270 ae_attach(device_t dev)
271 {
272 	ae_softc_t *sc;
273 	struct ifnet *ifp;
274 	uint8_t chiprev;
275 	uint32_t pcirev;
276 	int nmsi, pmc;
277 	int error;
278 
279 	sc = device_get_softc(dev); /* Automatically allocated and zeroed
280 				       on attach. */
281 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
282 	sc->dev = dev;
283 
284 	/*
285 	 * Initialize mutexes and tasks.
286 	 */
287 	mtx_init(&sc->mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF);
288 	callout_init_mtx(&sc->tick_ch, &sc->mtx, 0);
289 	TASK_INIT(&sc->int_task, 0, ae_int_task, sc);
290 	TASK_INIT(&sc->link_task, 0, ae_link_task, sc);
291 
292 	pci_enable_busmaster(dev);		/* Enable bus mastering. */
293 
294 	sc->spec_mem = ae_res_spec_mem;
295 
296 	/*
297 	 * Allocate memory-mapped registers.
298 	 */
299 	error = bus_alloc_resources(dev, sc->spec_mem, sc->mem);
300 	if (error != 0) {
301 		device_printf(dev, "could not allocate memory resources.\n");
302 		sc->spec_mem = NULL;
303 		goto fail;
304 	}
305 
306 	/*
307 	 * Retrieve PCI and chip revisions.
308 	 */
309 	pcirev = pci_get_revid(dev);
310 	chiprev = (AE_READ_4(sc, AE_MASTER_REG) >> AE_MASTER_REVNUM_SHIFT) &
311 	    AE_MASTER_REVNUM_MASK;
312 	if (bootverbose) {
313 		device_printf(dev, "pci device revision: %#04x\n", pcirev);
314 		device_printf(dev, "chip id: %#02x\n", chiprev);
315 	}
316 	nmsi = pci_msi_count(dev);
317 	if (bootverbose)
318 		device_printf(dev, "MSI count: %d.\n", nmsi);
319 
320 	/*
321 	 * Allocate interrupt resources.
322 	 */
323 	if (msi_disable == 0 && nmsi == 1) {
324 		error = pci_alloc_msi(dev, &nmsi);
325 		if (error == 0) {
326 			device_printf(dev, "Using MSI messages.\n");
327 			sc->spec_irq = ae_res_spec_msi;
328 			error = bus_alloc_resources(dev, sc->spec_irq, sc->irq);
329 			if (error != 0) {
330 				device_printf(dev, "MSI allocation failed.\n");
331 				sc->spec_irq = NULL;
332 				pci_release_msi(dev);
333 			} else {
334 				sc->flags |= AE_FLAG_MSI;
335 			}
336 		}
337 	}
338 	if (sc->spec_irq == NULL) {
339 		sc->spec_irq = ae_res_spec_irq;
340 		error = bus_alloc_resources(dev, sc->spec_irq, sc->irq);
341 		if (error != 0) {
342 			device_printf(dev, "could not allocate IRQ resources.\n");
343 			sc->spec_irq = NULL;
344 			goto fail;
345 		}
346 	}
347 
348 	ae_init_tunables(sc);
349 
350 	ae_phy_reset(sc);		/* Reset PHY. */
351 	error = ae_reset(sc);		/* Reset the controller itself. */
352 	if (error != 0)
353 		goto fail;
354 
355 	ae_pcie_init(sc);
356 
357 	ae_retrieve_address(sc);	/* Load MAC address. */
358 
359 	error = ae_alloc_rings(sc);	/* Allocate ring buffers. */
360 	if (error != 0)
361 		goto fail;
362 
363 	ifp = sc->ifp = if_alloc(IFT_ETHER);
364 	if (ifp == NULL) {
365 		device_printf(dev, "could not allocate ifnet structure.\n");
366 		error = ENXIO;
367 		goto fail;
368 	}
369 
370 	ifp->if_softc = sc;
371 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
372 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
373 	ifp->if_ioctl = ae_ioctl;
374 	ifp->if_start = ae_start;
375 	ifp->if_init = ae_init;
376 	ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
377 	ifp->if_hwassist = 0;
378 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
379 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
380 	IFQ_SET_READY(&ifp->if_snd);
381 	if (pci_find_extcap(dev, PCIY_PMG, &pmc) == 0) {
382 		ifp->if_capabilities |= IFCAP_WOL_MAGIC;
383 		sc->flags |= AE_FLAG_PMG;
384 	}
385 	ifp->if_capenable = ifp->if_capabilities;
386 
387 	/*
388 	 * Configure and attach MII bus.
389 	 */
390 	error = mii_attach(dev, &sc->miibus, ifp, ae_mediachange,
391 	    ae_mediastatus, BMSR_DEFCAPMASK, AE_PHYADDR_DEFAULT,
392 	    MII_OFFSET_ANY, 0);
393 	if (error != 0) {
394 		device_printf(dev, "attaching PHYs failed\n");
395 		goto fail;
396 	}
397 
398 	ether_ifattach(ifp, sc->eaddr);
399 	/* Tell the upper layer(s) we support long frames. */
400 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
401 
402 	/*
403 	 * Create and run all helper tasks.
404 	 */
405 	TASK_INIT(&sc->tx_task, 1, ae_tx_task, ifp);
406 	sc->tq = taskqueue_create_fast("ae_taskq", M_WAITOK,
407             taskqueue_thread_enqueue, &sc->tq);
408 	if (sc->tq == NULL) {
409 		device_printf(dev, "could not create taskqueue.\n");
410 		ether_ifdetach(ifp);
411 		error = ENXIO;
412 		goto fail;
413 	}
414 	taskqueue_start_threads(&sc->tq, 1, PI_NET, "%s taskq",
415 	    device_get_nameunit(sc->dev));
416 
417 	/*
418 	 * Configure interrupt handlers.
419 	 */
420 	error = bus_setup_intr(dev, sc->irq[0], INTR_TYPE_NET | INTR_MPSAFE,
421 	    ae_intr, NULL, sc, &sc->intrhand);
422 	if (error != 0) {
423 		device_printf(dev, "could not set up interrupt handler.\n");
424 		taskqueue_free(sc->tq);
425 		sc->tq = NULL;
426 		ether_ifdetach(ifp);
427 		goto fail;
428 	}
429 
430 fail:
431 	if (error != 0)
432 		ae_detach(dev);
433 
434 	return (error);
435 }
436 
437 static void
438 ae_init_tunables(ae_softc_t *sc)
439 {
440 	struct sysctl_ctx_list *ctx;
441 	struct sysctl_oid *root, *stats, *stats_rx, *stats_tx;
442 	struct ae_stats *ae_stats;
443 	unsigned int i;
444 
445 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
446 	ae_stats = &sc->stats;
447 
448 	ctx = device_get_sysctl_ctx(sc->dev);
449 	root = device_get_sysctl_tree(sc->dev);
450 	stats = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(root), OID_AUTO, "stats",
451 	    CTLFLAG_RD, NULL, "ae statistics");
452 
453 	/*
454 	 * Receiver statistcics.
455 	 */
456 	stats_rx = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(stats), OID_AUTO, "rx",
457 	    CTLFLAG_RD, NULL, "Rx MAC statistics");
458 	for (i = 0; i < AE_STATS_RX_LEN; i++)
459 		SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(stats_rx), OID_AUTO,
460 		    ae_stats_rx[i].node, CTLFLAG_RD, (char *)ae_stats +
461 		    ae_stats_rx[i].offset, 0, ae_stats_rx[i].desc);
462 
463 	/*
464 	 * Receiver statistcics.
465 	 */
466 	stats_tx = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(stats), OID_AUTO, "tx",
467 	    CTLFLAG_RD, NULL, "Tx MAC statistics");
468 	for (i = 0; i < AE_STATS_TX_LEN; i++)
469 		SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(stats_tx), OID_AUTO,
470 		    ae_stats_tx[i].node, CTLFLAG_RD, (char *)ae_stats +
471 		    ae_stats_tx[i].offset, 0, ae_stats_tx[i].desc);
472 }
473 
474 static void
475 ae_pcie_init(ae_softc_t *sc)
476 {
477 
478 	AE_WRITE_4(sc, AE_PCIE_LTSSM_TESTMODE_REG, AE_PCIE_LTSSM_TESTMODE_DEFAULT);
479 	AE_WRITE_4(sc, AE_PCIE_DLL_TX_CTRL_REG, AE_PCIE_DLL_TX_CTRL_DEFAULT);
480 }
481 
482 static void
483 ae_phy_reset(ae_softc_t *sc)
484 {
485 
486 	AE_WRITE_4(sc, AE_PHY_ENABLE_REG, AE_PHY_ENABLE);
487 	DELAY(1000);	/* XXX: pause(9) ? */
488 }
489 
490 static int
491 ae_reset(ae_softc_t *sc)
492 {
493 	int i;
494 
495 	/*
496 	 * Issue a soft reset.
497 	 */
498 	AE_WRITE_4(sc, AE_MASTER_REG, AE_MASTER_SOFT_RESET);
499 	bus_barrier(sc->mem[0], AE_MASTER_REG, 4,
500 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
501 
502 	/*
503 	 * Wait for reset to complete.
504 	 */
505 	for (i = 0; i < AE_RESET_TIMEOUT; i++) {
506 		if ((AE_READ_4(sc, AE_MASTER_REG) & AE_MASTER_SOFT_RESET) == 0)
507 			break;
508 		DELAY(10);
509 	}
510 	if (i == AE_RESET_TIMEOUT) {
511 		device_printf(sc->dev, "reset timeout.\n");
512 		return (ENXIO);
513 	}
514 
515 	/*
516 	 * Wait for everything to enter idle state.
517 	 */
518 	for (i = 0; i < AE_IDLE_TIMEOUT; i++) {
519 		if (AE_READ_4(sc, AE_IDLE_REG) == 0)
520 			break;
521 		DELAY(100);
522 	}
523 	if (i == AE_IDLE_TIMEOUT) {
524 		device_printf(sc->dev, "could not enter idle state.\n");
525 		return (ENXIO);
526 	}
527 	return (0);
528 }
529 
530 static void
531 ae_init(void *arg)
532 {
533 	ae_softc_t *sc;
534 
535 	sc = (ae_softc_t *)arg;
536 	AE_LOCK(sc);
537 	ae_init_locked(sc);
538 	AE_UNLOCK(sc);
539 }
540 
541 static void
542 ae_phy_init(ae_softc_t *sc)
543 {
544 
545 	/*
546 	 * Enable link status change interrupt.
547 	 * XXX magic numbers.
548 	 */
549 #ifdef notyet
550 	AE_PHY_WRITE(sc, 18, 0xc00);
551 #endif
552 }
553 
554 static int
555 ae_init_locked(ae_softc_t *sc)
556 {
557 	struct ifnet *ifp;
558 	struct mii_data *mii;
559 	uint8_t eaddr[ETHER_ADDR_LEN];
560 	uint32_t val;
561 	bus_addr_t addr;
562 
563 	AE_LOCK_ASSERT(sc);
564 
565 	ifp = sc->ifp;
566 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
567 		return (0);
568 	mii = device_get_softc(sc->miibus);
569 
570 	ae_stop(sc);
571 	ae_reset(sc);
572 	ae_pcie_init(sc);		/* Initialize PCIE stuff. */
573 	ae_phy_init(sc);
574 	ae_powersave_disable(sc);
575 
576 	/*
577 	 * Clear and disable interrupts.
578 	 */
579 	AE_WRITE_4(sc, AE_ISR_REG, 0xffffffff);
580 
581 	/*
582 	 * Set the MAC address.
583 	 */
584 	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
585 	val = eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5];
586 	AE_WRITE_4(sc, AE_EADDR0_REG, val);
587 	val = eaddr[0] << 8 | eaddr[1];
588 	AE_WRITE_4(sc, AE_EADDR1_REG, val);
589 
590 	/*
591 	 * Set ring buffers base addresses.
592 	 */
593 	addr = sc->dma_rxd_busaddr;
594 	AE_WRITE_4(sc, AE_DESC_ADDR_HI_REG, BUS_ADDR_HI(addr));
595 	AE_WRITE_4(sc, AE_RXD_ADDR_LO_REG, BUS_ADDR_LO(addr));
596 	addr = sc->dma_txd_busaddr;
597 	AE_WRITE_4(sc, AE_TXD_ADDR_LO_REG, BUS_ADDR_LO(addr));
598 	addr = sc->dma_txs_busaddr;
599 	AE_WRITE_4(sc, AE_TXS_ADDR_LO_REG, BUS_ADDR_LO(addr));
600 
601 	/*
602 	 * Configure ring buffers sizes.
603 	 */
604 	AE_WRITE_2(sc, AE_RXD_COUNT_REG, AE_RXD_COUNT_DEFAULT);
605 	AE_WRITE_2(sc, AE_TXD_BUFSIZE_REG, AE_TXD_BUFSIZE_DEFAULT / 4);
606 	AE_WRITE_2(sc, AE_TXS_COUNT_REG, AE_TXS_COUNT_DEFAULT);
607 
608 	/*
609 	 * Configure interframe gap parameters.
610 	 */
611 	val = ((AE_IFG_TXIPG_DEFAULT << AE_IFG_TXIPG_SHIFT) &
612 	    AE_IFG_TXIPG_MASK) |
613 	    ((AE_IFG_RXIPG_DEFAULT << AE_IFG_RXIPG_SHIFT) &
614 	    AE_IFG_RXIPG_MASK) |
615 	    ((AE_IFG_IPGR1_DEFAULT << AE_IFG_IPGR1_SHIFT) &
616 	    AE_IFG_IPGR1_MASK) |
617 	    ((AE_IFG_IPGR2_DEFAULT << AE_IFG_IPGR2_SHIFT) &
618 	    AE_IFG_IPGR2_MASK);
619 	AE_WRITE_4(sc, AE_IFG_REG, val);
620 
621 	/*
622 	 * Configure half-duplex operation.
623 	 */
624 	val = ((AE_HDPX_LCOL_DEFAULT << AE_HDPX_LCOL_SHIFT) &
625 	    AE_HDPX_LCOL_MASK) |
626 	    ((AE_HDPX_RETRY_DEFAULT << AE_HDPX_RETRY_SHIFT) &
627 	    AE_HDPX_RETRY_MASK) |
628 	    ((AE_HDPX_ABEBT_DEFAULT << AE_HDPX_ABEBT_SHIFT) &
629 	    AE_HDPX_ABEBT_MASK) |
630 	    ((AE_HDPX_JAMIPG_DEFAULT << AE_HDPX_JAMIPG_SHIFT) &
631 	    AE_HDPX_JAMIPG_MASK) | AE_HDPX_EXC_EN;
632 	AE_WRITE_4(sc, AE_HDPX_REG, val);
633 
634 	/*
635 	 * Configure interrupt moderate timer.
636 	 */
637 	AE_WRITE_2(sc, AE_IMT_REG, AE_IMT_DEFAULT);
638 	val = AE_READ_4(sc, AE_MASTER_REG);
639 	val |= AE_MASTER_IMT_EN;
640 	AE_WRITE_4(sc, AE_MASTER_REG, val);
641 
642 	/*
643 	 * Configure interrupt clearing timer.
644 	 */
645 	AE_WRITE_2(sc, AE_ICT_REG, AE_ICT_DEFAULT);
646 
647 	/*
648 	 * Configure MTU.
649 	 */
650 	val = ifp->if_mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
651 	    ETHER_CRC_LEN;
652 	AE_WRITE_2(sc, AE_MTU_REG, val);
653 
654 	/*
655 	 * Configure cut-through threshold.
656 	 */
657 	AE_WRITE_4(sc, AE_CUT_THRESH_REG, AE_CUT_THRESH_DEFAULT);
658 
659 	/*
660 	 * Configure flow control.
661 	 */
662 	AE_WRITE_2(sc, AE_FLOW_THRESH_HI_REG, (AE_RXD_COUNT_DEFAULT / 8) * 7);
663 	AE_WRITE_2(sc, AE_FLOW_THRESH_LO_REG, (AE_RXD_COUNT_MIN / 8) >
664 	    (AE_RXD_COUNT_DEFAULT / 12) ? (AE_RXD_COUNT_MIN / 8) :
665 	    (AE_RXD_COUNT_DEFAULT / 12));
666 
667 	/*
668 	 * Init mailboxes.
669 	 */
670 	sc->txd_cur = sc->rxd_cur = 0;
671 	sc->txs_ack = sc->txd_ack = 0;
672 	sc->rxd_cur = 0;
673 	AE_WRITE_2(sc, AE_MB_TXD_IDX_REG, sc->txd_cur);
674 	AE_WRITE_2(sc, AE_MB_RXD_IDX_REG, sc->rxd_cur);
675 
676 	sc->tx_inproc = 0;	/* Number of packets the chip processes now. */
677 	sc->flags |= AE_FLAG_TXAVAIL;	/* Free Tx's available. */
678 
679 	/*
680 	 * Enable DMA.
681 	 */
682 	AE_WRITE_1(sc, AE_DMAREAD_REG, AE_DMAREAD_EN);
683 	AE_WRITE_1(sc, AE_DMAWRITE_REG, AE_DMAWRITE_EN);
684 
685 	/*
686 	 * Check if everything is OK.
687 	 */
688 	val = AE_READ_4(sc, AE_ISR_REG);
689 	if ((val & AE_ISR_PHY_LINKDOWN) != 0) {
690 		device_printf(sc->dev, "Initialization failed.\n");
691 		return (ENXIO);
692 	}
693 
694 	/*
695 	 * Clear interrupt status.
696 	 */
697 	AE_WRITE_4(sc, AE_ISR_REG, 0x3fffffff);
698 	AE_WRITE_4(sc, AE_ISR_REG, 0x0);
699 
700 	/*
701 	 * Enable interrupts.
702 	 */
703 	val = AE_READ_4(sc, AE_MASTER_REG);
704 	AE_WRITE_4(sc, AE_MASTER_REG, val | AE_MASTER_MANUAL_INT);
705 	AE_WRITE_4(sc, AE_IMR_REG, AE_IMR_DEFAULT);
706 
707 	/*
708 	 * Disable WOL.
709 	 */
710 	AE_WRITE_4(sc, AE_WOL_REG, 0);
711 
712 	/*
713 	 * Configure MAC.
714 	 */
715 	val = AE_MAC_TX_CRC_EN | AE_MAC_TX_AUTOPAD |
716 	    AE_MAC_FULL_DUPLEX | AE_MAC_CLK_PHY |
717 	    AE_MAC_TX_FLOW_EN | AE_MAC_RX_FLOW_EN |
718 	    ((AE_HALFBUF_DEFAULT << AE_HALFBUF_SHIFT) & AE_HALFBUF_MASK) |
719 	    ((AE_MAC_PREAMBLE_DEFAULT << AE_MAC_PREAMBLE_SHIFT) &
720 	    AE_MAC_PREAMBLE_MASK);
721 	AE_WRITE_4(sc, AE_MAC_REG, val);
722 
723 	/*
724 	 * Configure Rx MAC.
725 	 */
726 	ae_rxfilter(sc);
727 	ae_rxvlan(sc);
728 
729 	/*
730 	 * Enable Tx/Rx.
731 	 */
732 	val = AE_READ_4(sc, AE_MAC_REG);
733 	AE_WRITE_4(sc, AE_MAC_REG, val | AE_MAC_TX_EN | AE_MAC_RX_EN);
734 
735 	sc->flags &= ~AE_FLAG_LINK;
736 	mii_mediachg(mii);	/* Switch to the current media. */
737 
738 	callout_reset(&sc->tick_ch, hz, ae_tick, sc);
739 
740 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
741 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
742 
743 #ifdef AE_DEBUG
744 	device_printf(sc->dev, "Initialization complete.\n");
745 #endif
746 
747 	return (0);
748 }
749 
750 static int
751 ae_detach(device_t dev)
752 {
753 	struct ae_softc *sc;
754 	struct ifnet *ifp;
755 
756 	sc = device_get_softc(dev);
757 	KASSERT(sc != NULL, ("[ae: %d]: sc is NULL", __LINE__));
758 	ifp = sc->ifp;
759 	if (device_is_attached(dev)) {
760 		AE_LOCK(sc);
761 		sc->flags |= AE_FLAG_DETACH;
762 		ae_stop(sc);
763 		AE_UNLOCK(sc);
764 		callout_drain(&sc->tick_ch);
765 		taskqueue_drain(sc->tq, &sc->int_task);
766 		taskqueue_drain(sc->tq, &sc->tx_task);
767 		taskqueue_drain(taskqueue_swi, &sc->link_task);
768 		ether_ifdetach(ifp);
769 	}
770 	if (sc->tq != NULL) {
771 		taskqueue_drain(sc->tq, &sc->int_task);
772 		taskqueue_free(sc->tq);
773 		sc->tq = NULL;
774 	}
775 	if (sc->miibus != NULL) {
776 		device_delete_child(dev, sc->miibus);
777 		sc->miibus = NULL;
778 	}
779 	bus_generic_detach(sc->dev);
780 	ae_dma_free(sc);
781 	if (sc->intrhand != NULL) {
782 		bus_teardown_intr(dev, sc->irq[0], sc->intrhand);
783 		sc->intrhand = NULL;
784 	}
785 	if (ifp != NULL) {
786 		if_free(ifp);
787 		sc->ifp = NULL;
788 	}
789 	if (sc->spec_irq != NULL)
790 		bus_release_resources(dev, sc->spec_irq, sc->irq);
791 	if (sc->spec_mem != NULL)
792 		bus_release_resources(dev, sc->spec_mem, sc->mem);
793 	if ((sc->flags & AE_FLAG_MSI) != 0)
794 		pci_release_msi(dev);
795 	mtx_destroy(&sc->mtx);
796 
797 	return (0);
798 }
799 
800 static int
801 ae_miibus_readreg(device_t dev, int phy, int reg)
802 {
803 	ae_softc_t *sc;
804 	uint32_t val;
805 	int i;
806 
807 	sc = device_get_softc(dev);
808 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
809 
810 	/*
811 	 * Locking is done in upper layers.
812 	 */
813 
814 	val = ((reg << AE_MDIO_REGADDR_SHIFT) & AE_MDIO_REGADDR_MASK) |
815 	    AE_MDIO_START | AE_MDIO_READ | AE_MDIO_SUP_PREAMBLE |
816 	    ((AE_MDIO_CLK_25_4 << AE_MDIO_CLK_SHIFT) & AE_MDIO_CLK_MASK);
817 	AE_WRITE_4(sc, AE_MDIO_REG, val);
818 
819 	/*
820 	 * Wait for operation to complete.
821 	 */
822 	for (i = 0; i < AE_MDIO_TIMEOUT; i++) {
823 		DELAY(2);
824 		val = AE_READ_4(sc, AE_MDIO_REG);
825 		if ((val & (AE_MDIO_START | AE_MDIO_BUSY)) == 0)
826 			break;
827 	}
828 	if (i == AE_MDIO_TIMEOUT) {
829 		device_printf(sc->dev, "phy read timeout: %d.\n", reg);
830 		return (0);
831 	}
832 	return ((val << AE_MDIO_DATA_SHIFT) & AE_MDIO_DATA_MASK);
833 }
834 
835 static int
836 ae_miibus_writereg(device_t dev, int phy, int reg, int val)
837 {
838 	ae_softc_t *sc;
839 	uint32_t aereg;
840 	int i;
841 
842 	sc = device_get_softc(dev);
843 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
844 
845 	/*
846 	 * Locking is done in upper layers.
847 	 */
848 
849 	aereg = ((reg << AE_MDIO_REGADDR_SHIFT) & AE_MDIO_REGADDR_MASK) |
850 	    AE_MDIO_START | AE_MDIO_SUP_PREAMBLE |
851 	    ((AE_MDIO_CLK_25_4 << AE_MDIO_CLK_SHIFT) & AE_MDIO_CLK_MASK) |
852 	    ((val << AE_MDIO_DATA_SHIFT) & AE_MDIO_DATA_MASK);
853 	AE_WRITE_4(sc, AE_MDIO_REG, aereg);
854 
855 	/*
856 	 * Wait for operation to complete.
857 	 */
858 	for (i = 0; i < AE_MDIO_TIMEOUT; i++) {
859 		DELAY(2);
860 		aereg = AE_READ_4(sc, AE_MDIO_REG);
861 		if ((aereg & (AE_MDIO_START | AE_MDIO_BUSY)) == 0)
862 			break;
863 	}
864 	if (i == AE_MDIO_TIMEOUT) {
865 		device_printf(sc->dev, "phy write timeout: %d.\n", reg);
866 	}
867 	return (0);
868 }
869 
870 static void
871 ae_miibus_statchg(device_t dev)
872 {
873 	ae_softc_t *sc;
874 
875 	sc = device_get_softc(dev);
876 	taskqueue_enqueue(taskqueue_swi, &sc->link_task);
877 }
878 
879 static void
880 ae_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
881 {
882 	ae_softc_t *sc;
883 	struct mii_data *mii;
884 
885 	sc = ifp->if_softc;
886 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
887 
888 	AE_LOCK(sc);
889 	mii = device_get_softc(sc->miibus);
890 	mii_pollstat(mii);
891 	ifmr->ifm_status = mii->mii_media_status;
892 	ifmr->ifm_active = mii->mii_media_active;
893 	AE_UNLOCK(sc);
894 }
895 
896 static int
897 ae_mediachange(struct ifnet *ifp)
898 {
899 	ae_softc_t *sc;
900 	struct mii_data *mii;
901 	struct mii_softc *mii_sc;
902 	int error;
903 
904 	/* XXX: check IFF_UP ?? */
905 	sc = ifp->if_softc;
906 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
907 	AE_LOCK(sc);
908 	mii = device_get_softc(sc->miibus);
909 	if (mii->mii_instance != 0) {
910 		LIST_FOREACH(mii_sc, &mii->mii_phys, mii_list)
911 			mii_phy_reset(mii_sc);
912 	}
913 	error = mii_mediachg(mii);
914 	AE_UNLOCK(sc);
915 
916 	return (error);
917 }
918 
919 static int
920 ae_check_eeprom_present(ae_softc_t *sc, int *vpdc)
921 {
922 	int error;
923 	uint32_t val;
924 
925 	KASSERT(vpdc != NULL, ("[ae, %d]: vpdc is NULL!\n", __LINE__));
926 
927 	/*
928 	 * Not sure why, but Linux does this.
929 	 */
930 	val = AE_READ_4(sc, AE_SPICTL_REG);
931 	if ((val & AE_SPICTL_VPD_EN) != 0) {
932 		val &= ~AE_SPICTL_VPD_EN;
933 		AE_WRITE_4(sc, AE_SPICTL_REG, val);
934 	}
935 	error = pci_find_extcap(sc->dev, PCIY_VPD, vpdc);
936 	return (error);
937 }
938 
939 static int
940 ae_vpd_read_word(ae_softc_t *sc, int reg, uint32_t *word)
941 {
942 	uint32_t val;
943 	int i;
944 
945 	AE_WRITE_4(sc, AE_VPD_DATA_REG, 0);	/* Clear register value. */
946 
947 	/*
948 	 * VPD registers start at offset 0x100. Read them.
949 	 */
950 	val = 0x100 + reg * 4;
951 	AE_WRITE_4(sc, AE_VPD_CAP_REG, (val << AE_VPD_CAP_ADDR_SHIFT) &
952 	    AE_VPD_CAP_ADDR_MASK);
953 	for (i = 0; i < AE_VPD_TIMEOUT; i++) {
954 		DELAY(2000);
955 		val = AE_READ_4(sc, AE_VPD_CAP_REG);
956 		if ((val & AE_VPD_CAP_DONE) != 0)
957 			break;
958 	}
959 	if (i == AE_VPD_TIMEOUT) {
960 		device_printf(sc->dev, "timeout reading VPD register %d.\n",
961 		    reg);
962 		return (ETIMEDOUT);
963 	}
964 	*word = AE_READ_4(sc, AE_VPD_DATA_REG);
965 	return (0);
966 }
967 
968 static int
969 ae_get_vpd_eaddr(ae_softc_t *sc, uint32_t *eaddr)
970 {
971 	uint32_t word, reg, val;
972 	int error;
973 	int found;
974 	int vpdc;
975 	int i;
976 
977 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
978 	KASSERT(eaddr != NULL, ("[ae, %d]: eaddr is NULL", __LINE__));
979 
980 	/*
981 	 * Check for EEPROM.
982 	 */
983 	error = ae_check_eeprom_present(sc, &vpdc);
984 	if (error != 0)
985 		return (error);
986 
987 	/*
988 	 * Read the VPD configuration space.
989 	 * Each register is prefixed with signature,
990 	 * so we can check if it is valid.
991 	 */
992 	for (i = 0, found = 0; i < AE_VPD_NREGS; i++) {
993 		error = ae_vpd_read_word(sc, i, &word);
994 		if (error != 0)
995 			break;
996 
997 		/*
998 		 * Check signature.
999 		 */
1000 		if ((word & AE_VPD_SIG_MASK) != AE_VPD_SIG)
1001 			break;
1002 		reg = word >> AE_VPD_REG_SHIFT;
1003 		i++;	/* Move to the next word. */
1004 
1005 		if (reg != AE_EADDR0_REG && reg != AE_EADDR1_REG)
1006 			continue;
1007 
1008 		error = ae_vpd_read_word(sc, i, &val);
1009 		if (error != 0)
1010 			break;
1011 		if (reg == AE_EADDR0_REG)
1012 			eaddr[0] = val;
1013 		else
1014 			eaddr[1] = val;
1015 		found++;
1016 	}
1017 
1018 	if (found < 2)
1019 		return (ENOENT);
1020 
1021 	eaddr[1] &= 0xffff;	/* Only last 2 bytes are used. */
1022 	if (AE_CHECK_EADDR_VALID(eaddr) != 0) {
1023 		if (bootverbose)
1024 			device_printf(sc->dev,
1025 			    "VPD ethernet address registers are invalid.\n");
1026 		return (EINVAL);
1027 	}
1028 	return (0);
1029 }
1030 
1031 static int
1032 ae_get_reg_eaddr(ae_softc_t *sc, uint32_t *eaddr)
1033 {
1034 
1035 	/*
1036 	 * BIOS is supposed to set this.
1037 	 */
1038 	eaddr[0] = AE_READ_4(sc, AE_EADDR0_REG);
1039 	eaddr[1] = AE_READ_4(sc, AE_EADDR1_REG);
1040 	eaddr[1] &= 0xffff;	/* Only last 2 bytes are used. */
1041 
1042 	if (AE_CHECK_EADDR_VALID(eaddr) != 0) {
1043 		if (bootverbose)
1044 			device_printf(sc->dev,
1045 			    "Ethernet address registers are invalid.\n");
1046 		return (EINVAL);
1047 	}
1048 	return (0);
1049 }
1050 
1051 static void
1052 ae_retrieve_address(ae_softc_t *sc)
1053 {
1054 	uint32_t eaddr[2] = {0, 0};
1055 	int error;
1056 
1057 	/*
1058 	 *Check for EEPROM.
1059 	 */
1060 	error = ae_get_vpd_eaddr(sc, eaddr);
1061 	if (error != 0)
1062 		error = ae_get_reg_eaddr(sc, eaddr);
1063 	if (error != 0) {
1064 		if (bootverbose)
1065 			device_printf(sc->dev,
1066 			    "Generating random ethernet address.\n");
1067 		eaddr[0] = arc4random();
1068 
1069 		/*
1070 		 * Set OUI to ASUSTek COMPUTER INC.
1071 		 */
1072 		sc->eaddr[0] = 0x02;	/* U/L bit set. */
1073 		sc->eaddr[1] = 0x1f;
1074 		sc->eaddr[2] = 0xc6;
1075 		sc->eaddr[3] = (eaddr[0] >> 16) & 0xff;
1076 		sc->eaddr[4] = (eaddr[0] >> 8) & 0xff;
1077 		sc->eaddr[5] = (eaddr[0] >> 0) & 0xff;
1078 	} else {
1079 		sc->eaddr[0] = (eaddr[1] >> 8) & 0xff;
1080 		sc->eaddr[1] = (eaddr[1] >> 0) & 0xff;
1081 		sc->eaddr[2] = (eaddr[0] >> 24) & 0xff;
1082 		sc->eaddr[3] = (eaddr[0] >> 16) & 0xff;
1083 		sc->eaddr[4] = (eaddr[0] >> 8) & 0xff;
1084 		sc->eaddr[5] = (eaddr[0] >> 0) & 0xff;
1085 	}
1086 }
1087 
1088 static void
1089 ae_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1090 {
1091 	bus_addr_t *addr = arg;
1092 
1093 	if (error != 0)
1094 		return;
1095 	KASSERT(nsegs == 1, ("[ae, %d]: %d segments instead of 1!", __LINE__,
1096 	    nsegs));
1097 	*addr = segs[0].ds_addr;
1098 }
1099 
1100 static int
1101 ae_alloc_rings(ae_softc_t *sc)
1102 {
1103 	bus_addr_t busaddr;
1104 	int error;
1105 
1106 	/*
1107 	 * Create parent DMA tag.
1108 	 */
1109 	error = bus_dma_tag_create(bus_get_dma_tag(sc->dev),
1110 	    1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
1111 	    NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 0,
1112 	    BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
1113 	    &sc->dma_parent_tag);
1114 	if (error != 0) {
1115 		device_printf(sc->dev, "could not creare parent DMA tag.\n");
1116 		return (error);
1117 	}
1118 
1119 	/*
1120 	 * Create DMA tag for TxD.
1121 	 */
1122 	error = bus_dma_tag_create(sc->dma_parent_tag,
1123 	    4, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1124 	    NULL, NULL, AE_TXD_BUFSIZE_DEFAULT, 1,
1125 	    AE_TXD_BUFSIZE_DEFAULT, 0, NULL, NULL,
1126 	    &sc->dma_txd_tag);
1127 	if (error != 0) {
1128 		device_printf(sc->dev, "could not creare TxD DMA tag.\n");
1129 		return (error);
1130 	}
1131 
1132 	/*
1133 	 * Create DMA tag for TxS.
1134 	 */
1135 	error = bus_dma_tag_create(sc->dma_parent_tag,
1136 	    4, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1137 	    NULL, NULL, AE_TXS_COUNT_DEFAULT * 4, 1,
1138 	    AE_TXS_COUNT_DEFAULT * 4, 0, NULL, NULL,
1139 	    &sc->dma_txs_tag);
1140 	if (error != 0) {
1141 		device_printf(sc->dev, "could not creare TxS DMA tag.\n");
1142 		return (error);
1143 	}
1144 
1145 	/*
1146 	 * Create DMA tag for RxD.
1147 	 */
1148 	error = bus_dma_tag_create(sc->dma_parent_tag,
1149 	    128, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1150 	    NULL, NULL, AE_RXD_COUNT_DEFAULT * 1536 + 120, 1,
1151 	    AE_RXD_COUNT_DEFAULT * 1536 + 120, 0, NULL, NULL,
1152 	    &sc->dma_rxd_tag);
1153 	if (error != 0) {
1154 		device_printf(sc->dev, "could not creare TxS DMA tag.\n");
1155 		return (error);
1156 	}
1157 
1158 	/*
1159 	 * Allocate TxD DMA memory.
1160 	 */
1161 	error = bus_dmamem_alloc(sc->dma_txd_tag, (void **)&sc->txd_base,
1162 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1163 	    &sc->dma_txd_map);
1164 	if (error != 0) {
1165 		device_printf(sc->dev,
1166 		    "could not allocate DMA memory for TxD ring.\n");
1167 		return (error);
1168 	}
1169 	error = bus_dmamap_load(sc->dma_txd_tag, sc->dma_txd_map, sc->txd_base,
1170 	    AE_TXD_BUFSIZE_DEFAULT, ae_dmamap_cb, &busaddr, BUS_DMA_NOWAIT);
1171 	if (error != 0 || busaddr == 0) {
1172 		device_printf(sc->dev,
1173 		    "could not load DMA map for TxD ring.\n");
1174 		return (error);
1175 	}
1176 	sc->dma_txd_busaddr = busaddr;
1177 
1178 	/*
1179 	 * Allocate TxS DMA memory.
1180 	 */
1181 	error = bus_dmamem_alloc(sc->dma_txs_tag, (void **)&sc->txs_base,
1182 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1183 	    &sc->dma_txs_map);
1184 	if (error != 0) {
1185 		device_printf(sc->dev,
1186 		    "could not allocate DMA memory for TxS ring.\n");
1187 		return (error);
1188 	}
1189 	error = bus_dmamap_load(sc->dma_txs_tag, sc->dma_txs_map, sc->txs_base,
1190 	    AE_TXS_COUNT_DEFAULT * 4, ae_dmamap_cb, &busaddr, BUS_DMA_NOWAIT);
1191 	if (error != 0 || busaddr == 0) {
1192 		device_printf(sc->dev,
1193 		    "could not load DMA map for TxS ring.\n");
1194 		return (error);
1195 	}
1196 	sc->dma_txs_busaddr = busaddr;
1197 
1198 	/*
1199 	 * Allocate RxD DMA memory.
1200 	 */
1201 	error = bus_dmamem_alloc(sc->dma_rxd_tag, (void **)&sc->rxd_base_dma,
1202 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1203 	    &sc->dma_rxd_map);
1204 	if (error != 0) {
1205 		device_printf(sc->dev,
1206 		    "could not allocate DMA memory for RxD ring.\n");
1207 		return (error);
1208 	}
1209 	error = bus_dmamap_load(sc->dma_rxd_tag, sc->dma_rxd_map,
1210 	    sc->rxd_base_dma, AE_RXD_COUNT_DEFAULT * 1536 + 120, ae_dmamap_cb,
1211 	    &busaddr, BUS_DMA_NOWAIT);
1212 	if (error != 0 || busaddr == 0) {
1213 		device_printf(sc->dev,
1214 		    "could not load DMA map for RxD ring.\n");
1215 		return (error);
1216 	}
1217 	sc->dma_rxd_busaddr = busaddr + 120;
1218 	sc->rxd_base = (ae_rxd_t *)(sc->rxd_base_dma + 120);
1219 
1220 	return (0);
1221 }
1222 
1223 static void
1224 ae_dma_free(ae_softc_t *sc)
1225 {
1226 
1227 	if (sc->dma_txd_tag != NULL) {
1228 		if (sc->dma_txd_map != NULL) {
1229 			bus_dmamap_unload(sc->dma_txd_tag, sc->dma_txd_map);
1230 			if (sc->txd_base != NULL)
1231 				bus_dmamem_free(sc->dma_txd_tag, sc->txd_base,
1232 				    sc->dma_txd_map);
1233 
1234 		}
1235 		bus_dma_tag_destroy(sc->dma_txd_tag);
1236 		sc->dma_txd_map = NULL;
1237 		sc->dma_txd_tag = NULL;
1238 		sc->txd_base = NULL;
1239 	}
1240 	if (sc->dma_txs_tag != NULL) {
1241 		if (sc->dma_txs_map != NULL) {
1242 			bus_dmamap_unload(sc->dma_txs_tag, sc->dma_txs_map);
1243 			if (sc->txs_base != NULL)
1244 				bus_dmamem_free(sc->dma_txs_tag, sc->txs_base,
1245 				    sc->dma_txs_map);
1246 
1247 		}
1248 		bus_dma_tag_destroy(sc->dma_txs_tag);
1249 		sc->dma_txs_map = NULL;
1250 		sc->dma_txs_tag = NULL;
1251 		sc->txs_base = NULL;
1252 	}
1253 	if (sc->dma_rxd_tag != NULL) {
1254 		if (sc->dma_rxd_map != NULL) {
1255 			bus_dmamap_unload(sc->dma_rxd_tag, sc->dma_rxd_map);
1256 			if (sc->rxd_base_dma != NULL)
1257 				bus_dmamem_free(sc->dma_rxd_tag,
1258 				    sc->rxd_base_dma, sc->dma_rxd_map);
1259 
1260 		}
1261 		bus_dma_tag_destroy(sc->dma_rxd_tag);
1262 		sc->dma_rxd_map = NULL;
1263 		sc->dma_rxd_tag = NULL;
1264 		sc->rxd_base_dma = NULL;
1265 	}
1266 	if (sc->dma_parent_tag != NULL) {
1267 		bus_dma_tag_destroy(sc->dma_parent_tag);
1268 		sc->dma_parent_tag = NULL;
1269 	}
1270 }
1271 
1272 static int
1273 ae_shutdown(device_t dev)
1274 {
1275 	ae_softc_t *sc;
1276 	int error;
1277 
1278 	sc = device_get_softc(dev);
1279 	KASSERT(sc != NULL, ("[ae: %d]: sc is NULL", __LINE__));
1280 
1281 	error = ae_suspend(dev);
1282 	AE_LOCK(sc);
1283 	ae_powersave_enable(sc);
1284 	AE_UNLOCK(sc);
1285 	return (error);
1286 }
1287 
1288 static void
1289 ae_powersave_disable(ae_softc_t *sc)
1290 {
1291 	uint32_t val;
1292 
1293 	AE_LOCK_ASSERT(sc);
1294 
1295 	AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 0);
1296 	val = AE_PHY_READ(sc, AE_PHY_DBG_DATA);
1297 	if (val & AE_PHY_DBG_POWERSAVE) {
1298 		val &= ~AE_PHY_DBG_POWERSAVE;
1299 		AE_PHY_WRITE(sc, AE_PHY_DBG_DATA, val);
1300 		DELAY(1000);
1301 	}
1302 }
1303 
1304 static void
1305 ae_powersave_enable(ae_softc_t *sc)
1306 {
1307 	uint32_t val;
1308 
1309 	AE_LOCK_ASSERT(sc);
1310 
1311 	/*
1312 	 * XXX magic numbers.
1313 	 */
1314 	AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 0);
1315 	val = AE_PHY_READ(sc, AE_PHY_DBG_DATA);
1316 	AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, val | 0x1000);
1317 	AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 2);
1318 	AE_PHY_WRITE(sc, AE_PHY_DBG_DATA, 0x3000);
1319 	AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 3);
1320 	AE_PHY_WRITE(sc, AE_PHY_DBG_DATA, 0);
1321 }
1322 
1323 static void
1324 ae_pm_init(ae_softc_t *sc)
1325 {
1326 	struct ifnet *ifp;
1327 	uint32_t val;
1328 	uint16_t pmstat;
1329 	struct mii_data *mii;
1330 	int pmc;
1331 
1332 	AE_LOCK_ASSERT(sc);
1333 
1334 	ifp = sc->ifp;
1335 	if ((sc->flags & AE_FLAG_PMG) == 0) {
1336 		/* Disable WOL entirely. */
1337 		AE_WRITE_4(sc, AE_WOL_REG, 0);
1338 		return;
1339 	}
1340 
1341 	/*
1342 	 * Configure WOL if enabled.
1343 	 */
1344 	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1345 		mii = device_get_softc(sc->miibus);
1346 		mii_pollstat(mii);
1347 		if ((mii->mii_media_status & IFM_AVALID) != 0 &&
1348 		    (mii->mii_media_status & IFM_ACTIVE) != 0) {
1349 			AE_WRITE_4(sc, AE_WOL_REG, AE_WOL_MAGIC | \
1350 			    AE_WOL_MAGIC_PME);
1351 
1352 			/*
1353 			 * Configure MAC.
1354 			 */
1355 			val = AE_MAC_RX_EN | AE_MAC_CLK_PHY | \
1356 			    AE_MAC_TX_CRC_EN | AE_MAC_TX_AUTOPAD | \
1357 			    ((AE_HALFBUF_DEFAULT << AE_HALFBUF_SHIFT) & \
1358 			    AE_HALFBUF_MASK) | \
1359 			    ((AE_MAC_PREAMBLE_DEFAULT << \
1360 			    AE_MAC_PREAMBLE_SHIFT) & AE_MAC_PREAMBLE_MASK) | \
1361 			    AE_MAC_BCAST_EN | AE_MAC_MCAST_EN;
1362 			if ((IFM_OPTIONS(mii->mii_media_active) & \
1363 			    IFM_FDX) != 0)
1364 				val |= AE_MAC_FULL_DUPLEX;
1365 			AE_WRITE_4(sc, AE_MAC_REG, val);
1366 
1367 		} else {	/* No link. */
1368 			AE_WRITE_4(sc, AE_WOL_REG, AE_WOL_LNKCHG | \
1369 			    AE_WOL_LNKCHG_PME);
1370 			AE_WRITE_4(sc, AE_MAC_REG, 0);
1371 		}
1372 	} else {
1373 		ae_powersave_enable(sc);
1374 	}
1375 
1376 	/*
1377 	 * PCIE hacks. Magic numbers.
1378 	 */
1379 	val = AE_READ_4(sc, AE_PCIE_PHYMISC_REG);
1380 	val |= AE_PCIE_PHYMISC_FORCE_RCV_DET;
1381 	AE_WRITE_4(sc, AE_PCIE_PHYMISC_REG, val);
1382 	val = AE_READ_4(sc, AE_PCIE_DLL_TX_CTRL_REG);
1383 	val |= AE_PCIE_DLL_TX_CTRL_SEL_NOR_CLK;
1384 	AE_WRITE_4(sc, AE_PCIE_DLL_TX_CTRL_REG, val);
1385 
1386 	/*
1387 	 * Configure PME.
1388 	 */
1389 	pci_find_extcap(sc->dev, PCIY_PMG, &pmc);
1390 	pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
1391 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1392 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1393 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1394 	pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1395 }
1396 
1397 static int
1398 ae_suspend(device_t dev)
1399 {
1400 	ae_softc_t *sc;
1401 
1402 	sc = device_get_softc(dev);
1403 
1404 	AE_LOCK(sc);
1405 	ae_stop(sc);
1406 	ae_pm_init(sc);
1407 	AE_UNLOCK(sc);
1408 
1409 	return (0);
1410 }
1411 
1412 static int
1413 ae_resume(device_t dev)
1414 {
1415 	ae_softc_t *sc;
1416 
1417 	sc = device_get_softc(dev);
1418 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
1419 
1420 	AE_LOCK(sc);
1421 	AE_READ_4(sc, AE_WOL_REG);	/* Clear WOL status. */
1422 	if ((sc->ifp->if_flags & IFF_UP) != 0)
1423 		ae_init_locked(sc);
1424 	AE_UNLOCK(sc);
1425 
1426 	return (0);
1427 }
1428 
1429 static unsigned int
1430 ae_tx_avail_size(ae_softc_t *sc)
1431 {
1432 	unsigned int avail;
1433 
1434 	if (sc->txd_cur >= sc->txd_ack)
1435 		avail = AE_TXD_BUFSIZE_DEFAULT - (sc->txd_cur - sc->txd_ack);
1436 	else
1437 		avail = sc->txd_ack - sc->txd_cur;
1438 
1439 	return (avail - 4);	/* 4-byte header. */
1440 }
1441 
1442 static int
1443 ae_encap(ae_softc_t *sc, struct mbuf **m_head)
1444 {
1445 	struct mbuf *m0;
1446 	ae_txd_t *hdr;
1447 	unsigned int to_end;
1448 	uint16_t len;
1449 
1450 	AE_LOCK_ASSERT(sc);
1451 
1452 	m0 = *m_head;
1453 	len = m0->m_pkthdr.len;
1454 
1455 	if ((sc->flags & AE_FLAG_TXAVAIL) == 0 ||
1456 	    ae_tx_avail_size(sc) < len) {
1457 #ifdef AE_DEBUG
1458 		if_printf(sc->ifp, "No free Tx available.\n");
1459 #endif
1460 		return ENOBUFS;
1461 	}
1462 
1463 	hdr = (ae_txd_t *)(sc->txd_base + sc->txd_cur);
1464 	bzero(hdr, sizeof(*hdr));
1465 	sc->txd_cur = (sc->txd_cur + 4) % AE_TXD_BUFSIZE_DEFAULT; /* Header
1466 								     size. */
1467 	to_end = AE_TXD_BUFSIZE_DEFAULT - sc->txd_cur; /* Space available to
1468 							* the end of the ring
1469 							*/
1470 	if (to_end >= len) {
1471 		m_copydata(m0, 0, len, (caddr_t)(sc->txd_base + sc->txd_cur));
1472 	} else {
1473 		m_copydata(m0, 0, to_end, (caddr_t)(sc->txd_base +
1474 		    sc->txd_cur));
1475 		m_copydata(m0, to_end, len - to_end, (caddr_t)sc->txd_base);
1476 	}
1477 
1478 	/*
1479 	 * Set TxD flags and parameters.
1480 	 */
1481 	if ((m0->m_flags & M_VLANTAG) != 0) {
1482 		hdr->vlan = htole16(AE_TXD_VLAN(m0->m_pkthdr.ether_vtag));
1483 		hdr->len = htole16(len | AE_TXD_INSERT_VTAG);
1484 	} else {
1485 		hdr->len = htole16(len);
1486 	}
1487 
1488 	/*
1489 	 * Set current TxD position and round up to a 4-byte boundary.
1490 	 */
1491 	sc->txd_cur = ((sc->txd_cur + len + 3) & ~3) % AE_TXD_BUFSIZE_DEFAULT;
1492 	if (sc->txd_cur == sc->txd_ack)
1493 		sc->flags &= ~AE_FLAG_TXAVAIL;
1494 #ifdef AE_DEBUG
1495 	if_printf(sc->ifp, "New txd_cur = %d.\n", sc->txd_cur);
1496 #endif
1497 
1498 	/*
1499 	 * Update TxS position and check if there are empty TxS available.
1500 	 */
1501 	sc->txs_base[sc->txs_cur].flags &= ~htole16(AE_TXS_UPDATE);
1502 	sc->txs_cur = (sc->txs_cur + 1) % AE_TXS_COUNT_DEFAULT;
1503 	if (sc->txs_cur == sc->txs_ack)
1504 		sc->flags &= ~AE_FLAG_TXAVAIL;
1505 
1506 	/*
1507 	 * Synchronize DMA memory.
1508 	 */
1509 	bus_dmamap_sync(sc->dma_txd_tag, sc->dma_txd_map, BUS_DMASYNC_PREREAD |
1510 	    BUS_DMASYNC_PREWRITE);
1511 	bus_dmamap_sync(sc->dma_txs_tag, sc->dma_txs_map,
1512 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1513 
1514 	return (0);
1515 }
1516 
1517 static void
1518 ae_start(struct ifnet *ifp)
1519 {
1520 	ae_softc_t *sc;
1521 	unsigned int count;
1522 	struct mbuf *m0;
1523 	int error;
1524 
1525 	sc = ifp->if_softc;
1526 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
1527 	AE_LOCK(sc);
1528 
1529 #ifdef AE_DEBUG
1530 	if_printf(ifp, "Start called.\n");
1531 #endif
1532 
1533 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1534 	    IFF_DRV_RUNNING || (sc->flags & AE_FLAG_LINK) == 0) {
1535 		AE_UNLOCK(sc);
1536 		return;
1537 	}
1538 
1539 	count = 0;
1540 	while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
1541 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
1542 		if (m0 == NULL)
1543 			break;	/* Nothing to do. */
1544 
1545 		error = ae_encap(sc, &m0);
1546 		if (error != 0) {
1547 			if (m0 != NULL) {
1548 				IFQ_DRV_PREPEND(&ifp->if_snd, m0);
1549 				ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1550 #ifdef AE_DEBUG
1551 				if_printf(ifp, "Setting OACTIVE.\n");
1552 #endif
1553 			}
1554 			break;
1555 		}
1556 		count++;
1557 		sc->tx_inproc++;
1558 
1559 		/* Bounce a copy of the frame to BPF. */
1560 		ETHER_BPF_MTAP(ifp, m0);
1561 
1562 		m_freem(m0);
1563 	}
1564 
1565 	if (count > 0) {	/* Something was dequeued. */
1566 		AE_WRITE_2(sc, AE_MB_TXD_IDX_REG, sc->txd_cur / 4);
1567 		sc->wd_timer = AE_TX_TIMEOUT;	/* Load watchdog. */
1568 #ifdef AE_DEBUG
1569 		if_printf(ifp, "%d packets dequeued.\n", count);
1570 		if_printf(ifp, "Tx pos now is %d.\n", sc->txd_cur);
1571 #endif
1572 	}
1573 	AE_UNLOCK(sc);
1574 }
1575 
1576 static void
1577 ae_link_task(void *arg, int pending)
1578 {
1579 	ae_softc_t *sc;
1580 	struct mii_data *mii;
1581 	struct ifnet *ifp;
1582 	uint32_t val;
1583 
1584 	sc = (ae_softc_t *)arg;
1585 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
1586 	AE_LOCK(sc);
1587 
1588 	ifp = sc->ifp;
1589 	mii = device_get_softc(sc->miibus);
1590 	if (mii == NULL || ifp == NULL ||
1591 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1592 		AE_UNLOCK(sc);	/* XXX: could happen? */
1593 		return;
1594 	}
1595 
1596 	sc->flags &= ~AE_FLAG_LINK;
1597 	if ((mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) ==
1598 	    (IFM_AVALID | IFM_ACTIVE)) {
1599 		switch(IFM_SUBTYPE(mii->mii_media_active)) {
1600 		case IFM_10_T:
1601 		case IFM_100_TX:
1602 			sc->flags |= AE_FLAG_LINK;
1603 			break;
1604 		default:
1605 			break;
1606 		}
1607 	}
1608 
1609 	/*
1610 	 * Stop Rx/Tx MACs.
1611 	 */
1612 	ae_stop_rxmac(sc);
1613 	ae_stop_txmac(sc);
1614 
1615 	if ((sc->flags & AE_FLAG_LINK) != 0) {
1616 		ae_mac_config(sc);
1617 
1618 		/*
1619 		 * Restart DMA engines.
1620 		 */
1621 		AE_WRITE_1(sc, AE_DMAREAD_REG, AE_DMAREAD_EN);
1622 		AE_WRITE_1(sc, AE_DMAWRITE_REG, AE_DMAWRITE_EN);
1623 
1624 		/*
1625 		 * Enable Rx and Tx MACs.
1626 		 */
1627 		val = AE_READ_4(sc, AE_MAC_REG);
1628 		val |= AE_MAC_TX_EN | AE_MAC_RX_EN;
1629 		AE_WRITE_4(sc, AE_MAC_REG, val);
1630 	}
1631 	AE_UNLOCK(sc);
1632 }
1633 
1634 static void
1635 ae_stop_rxmac(ae_softc_t *sc)
1636 {
1637 	uint32_t val;
1638 	int i;
1639 
1640 	AE_LOCK_ASSERT(sc);
1641 
1642 	/*
1643 	 * Stop Rx MAC engine.
1644 	 */
1645 	val = AE_READ_4(sc, AE_MAC_REG);
1646 	if ((val & AE_MAC_RX_EN) != 0) {
1647 		val &= ~AE_MAC_RX_EN;
1648 		AE_WRITE_4(sc, AE_MAC_REG, val);
1649 	}
1650 
1651 	/*
1652 	 * Stop Rx DMA engine.
1653 	 */
1654 	if (AE_READ_1(sc, AE_DMAWRITE_REG) == AE_DMAWRITE_EN)
1655 		AE_WRITE_1(sc, AE_DMAWRITE_REG, 0);
1656 
1657 	/*
1658 	 * Wait for IDLE state.
1659 	 */
1660 	for (i = 0; i < AE_IDLE_TIMEOUT; i--) {
1661 		val = AE_READ_4(sc, AE_IDLE_REG);
1662 		if ((val & (AE_IDLE_RXMAC | AE_IDLE_DMAWRITE)) == 0)
1663 			break;
1664 		DELAY(100);
1665 	}
1666 	if (i == AE_IDLE_TIMEOUT)
1667 		device_printf(sc->dev, "timed out while stopping Rx MAC.\n");
1668 }
1669 
1670 static void
1671 ae_stop_txmac(ae_softc_t *sc)
1672 {
1673 	uint32_t val;
1674 	int i;
1675 
1676 	AE_LOCK_ASSERT(sc);
1677 
1678 	/*
1679 	 * Stop Tx MAC engine.
1680 	 */
1681 	val = AE_READ_4(sc, AE_MAC_REG);
1682 	if ((val & AE_MAC_TX_EN) != 0) {
1683 		val &= ~AE_MAC_TX_EN;
1684 		AE_WRITE_4(sc, AE_MAC_REG, val);
1685 	}
1686 
1687 	/*
1688 	 * Stop Tx DMA engine.
1689 	 */
1690 	if (AE_READ_1(sc, AE_DMAREAD_REG) == AE_DMAREAD_EN)
1691 		AE_WRITE_1(sc, AE_DMAREAD_REG, 0);
1692 
1693 	/*
1694 	 * Wait for IDLE state.
1695 	 */
1696 	for (i = 0; i < AE_IDLE_TIMEOUT; i--) {
1697 		val = AE_READ_4(sc, AE_IDLE_REG);
1698 		if ((val & (AE_IDLE_TXMAC | AE_IDLE_DMAREAD)) == 0)
1699 			break;
1700 		DELAY(100);
1701 	}
1702 	if (i == AE_IDLE_TIMEOUT)
1703 		device_printf(sc->dev, "timed out while stopping Tx MAC.\n");
1704 }
1705 
1706 static void
1707 ae_tx_task(void *arg, int pending)
1708 {
1709 	struct ifnet *ifp;
1710 
1711 	ifp = (struct ifnet *)arg;
1712 	ae_start(ifp);
1713 }
1714 
1715 static void
1716 ae_mac_config(ae_softc_t *sc)
1717 {
1718 	struct mii_data *mii;
1719 	uint32_t val;
1720 
1721 	AE_LOCK_ASSERT(sc);
1722 
1723 	mii = device_get_softc(sc->miibus);
1724 	val = AE_READ_4(sc, AE_MAC_REG);
1725 	val &= ~AE_MAC_FULL_DUPLEX;
1726 	/* XXX disable AE_MAC_TX_FLOW_EN? */
1727 
1728 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
1729 		val |= AE_MAC_FULL_DUPLEX;
1730 
1731 	AE_WRITE_4(sc, AE_MAC_REG, val);
1732 }
1733 
1734 static int
1735 ae_intr(void *arg)
1736 {
1737 	ae_softc_t *sc;
1738 	uint32_t val;
1739 
1740 	sc = (ae_softc_t *)arg;
1741 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
1742 
1743 	val = AE_READ_4(sc, AE_ISR_REG);
1744 	if (val == 0 || (val & AE_IMR_DEFAULT) == 0)
1745 		return (FILTER_STRAY);
1746 
1747 	/* Disable interrupts. */
1748 	AE_WRITE_4(sc, AE_ISR_REG, AE_ISR_DISABLE);
1749 
1750 	/* Schedule interrupt processing. */
1751 	taskqueue_enqueue(sc->tq, &sc->int_task);
1752 
1753 	return (FILTER_HANDLED);
1754 }
1755 
1756 static void
1757 ae_int_task(void *arg, int pending)
1758 {
1759 	ae_softc_t *sc;
1760 	struct ifnet *ifp;
1761 	uint32_t val;
1762 
1763 	sc = (ae_softc_t *)arg;
1764 
1765 	AE_LOCK(sc);
1766 
1767 	ifp = sc->ifp;
1768 
1769 	val = AE_READ_4(sc, AE_ISR_REG);	/* Read interrupt status. */
1770 
1771 	/*
1772 	 * Clear interrupts and disable them.
1773 	 */
1774 	AE_WRITE_4(sc, AE_ISR_REG, val | AE_ISR_DISABLE);
1775 
1776 #ifdef AE_DEBUG
1777 	if_printf(ifp, "Interrupt received: 0x%08x\n", val);
1778 #endif
1779 
1780 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1781 		if ((val & (AE_ISR_DMAR_TIMEOUT | AE_ISR_DMAW_TIMEOUT |
1782 		    AE_ISR_PHY_LINKDOWN)) != 0) {
1783 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1784 			ae_init_locked(sc);
1785 			AE_UNLOCK(sc);
1786 			return;
1787 		}
1788 		if ((val & AE_ISR_TX_EVENT) != 0)
1789 			ae_tx_intr(sc);
1790 		if ((val & AE_ISR_RX_EVENT) != 0)
1791 			ae_rx_intr(sc);
1792 	}
1793 
1794 	/*
1795 	 * Re-enable interrupts.
1796 	 */
1797 	AE_WRITE_4(sc, AE_ISR_REG, 0);
1798 
1799 	AE_UNLOCK(sc);
1800 }
1801 
1802 static void
1803 ae_tx_intr(ae_softc_t *sc)
1804 {
1805 	struct ifnet *ifp;
1806 	ae_txd_t *txd;
1807 	ae_txs_t *txs;
1808 	uint16_t flags;
1809 
1810 	AE_LOCK_ASSERT(sc);
1811 
1812 	ifp = sc->ifp;
1813 
1814 #ifdef AE_DEBUG
1815 	if_printf(ifp, "Tx interrupt occuried.\n");
1816 #endif
1817 
1818 	/*
1819 	 * Syncronize DMA buffers.
1820 	 */
1821 	bus_dmamap_sync(sc->dma_txd_tag, sc->dma_txd_map,
1822 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1823 	bus_dmamap_sync(sc->dma_txs_tag, sc->dma_txs_map,
1824 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1825 
1826 	for (;;) {
1827 		txs = sc->txs_base + sc->txs_ack;
1828 		flags = le16toh(txs->flags);
1829 		if ((flags & AE_TXS_UPDATE) == 0)
1830 			break;
1831 		txs->flags = htole16(flags & ~AE_TXS_UPDATE);
1832 		/* Update stats. */
1833 		ae_update_stats_tx(flags, &sc->stats);
1834 
1835 		/*
1836 		 * Update TxS position.
1837 		 */
1838 		sc->txs_ack = (sc->txs_ack + 1) % AE_TXS_COUNT_DEFAULT;
1839 		sc->flags |= AE_FLAG_TXAVAIL;
1840 
1841 		txd = (ae_txd_t *)(sc->txd_base + sc->txd_ack);
1842 		if (txs->len != txd->len)
1843 			device_printf(sc->dev, "Size mismatch: TxS:%d TxD:%d\n",
1844 			    le16toh(txs->len), le16toh(txd->len));
1845 
1846 		/*
1847 		 * Move txd ack and align on 4-byte boundary.
1848 		 */
1849 		sc->txd_ack = ((sc->txd_ack + le16toh(txd->len) + 4 + 3) & ~3) %
1850 		    AE_TXD_BUFSIZE_DEFAULT;
1851 
1852 		if ((flags & AE_TXS_SUCCESS) != 0)
1853 			ifp->if_opackets++;
1854 		else
1855 			ifp->if_oerrors++;
1856 
1857 		sc->tx_inproc--;
1858 
1859 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1860 	}
1861 
1862 	if (sc->tx_inproc < 0) {
1863 		if_printf(ifp, "Received stray Tx interrupt(s).\n");
1864 		sc->tx_inproc = 0;
1865 	}
1866 
1867 	if (sc->tx_inproc == 0)
1868 		sc->wd_timer = 0;	/* Unarm watchdog. */
1869 
1870 	if ((sc->flags & AE_FLAG_TXAVAIL) != 0) {
1871 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1872 			taskqueue_enqueue(sc->tq, &sc->tx_task);
1873 	}
1874 
1875 	/*
1876 	 * Syncronize DMA buffers.
1877 	 */
1878 	bus_dmamap_sync(sc->dma_txd_tag, sc->dma_txd_map,
1879 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1880 	bus_dmamap_sync(sc->dma_txs_tag, sc->dma_txs_map,
1881 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1882 }
1883 
1884 static int
1885 ae_rxeof(ae_softc_t *sc, ae_rxd_t *rxd)
1886 {
1887 	struct ifnet *ifp;
1888 	struct mbuf *m;
1889 	unsigned int size;
1890 	uint16_t flags;
1891 
1892 	AE_LOCK_ASSERT(sc);
1893 
1894 	ifp = sc->ifp;
1895 	flags = le16toh(rxd->flags);
1896 
1897 #ifdef AE_DEBUG
1898 	if_printf(ifp, "Rx interrupt occuried.\n");
1899 #endif
1900 	size = le16toh(rxd->len) - ETHER_CRC_LEN;
1901 	if (size < (ETHER_MIN_LEN - ETHER_CRC_LEN - ETHER_VLAN_ENCAP_LEN)) {
1902 		if_printf(ifp, "Runt frame received.");
1903 		return (EIO);
1904 	}
1905 
1906 	m = m_devget(&rxd->data[0], size, ETHER_ALIGN, ifp, NULL);
1907 	if (m == NULL)
1908 		return (ENOBUFS);
1909 
1910 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
1911 	    (flags & AE_RXD_HAS_VLAN) != 0) {
1912 		m->m_pkthdr.ether_vtag = AE_RXD_VLAN(le16toh(rxd->vlan));
1913 		m->m_flags |= M_VLANTAG;
1914 	}
1915 
1916 	/*
1917 	 * Pass it through.
1918 	 */
1919 	AE_UNLOCK(sc);
1920 	(*ifp->if_input)(ifp, m);
1921 	AE_LOCK(sc);
1922 
1923 	return (0);
1924 }
1925 
1926 static void
1927 ae_rx_intr(ae_softc_t *sc)
1928 {
1929 	ae_rxd_t *rxd;
1930 	struct ifnet *ifp;
1931 	uint16_t flags;
1932 	int error;
1933 
1934 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL!", __LINE__));
1935 
1936 	AE_LOCK_ASSERT(sc);
1937 
1938 	ifp = sc->ifp;
1939 
1940 	/*
1941 	 * Syncronize DMA buffers.
1942 	 */
1943 	bus_dmamap_sync(sc->dma_rxd_tag, sc->dma_rxd_map,
1944 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1945 
1946 	for (;;) {
1947 		rxd = (ae_rxd_t *)(sc->rxd_base + sc->rxd_cur);
1948 		flags = le16toh(rxd->flags);
1949 		if ((flags & AE_RXD_UPDATE) == 0)
1950 			break;
1951 		rxd->flags = htole16(flags & ~AE_RXD_UPDATE);
1952 		/* Update stats. */
1953 		ae_update_stats_rx(flags, &sc->stats);
1954 
1955 		/*
1956 		 * Update position index.
1957 		 */
1958 		sc->rxd_cur = (sc->rxd_cur + 1) % AE_RXD_COUNT_DEFAULT;
1959 
1960 		if ((flags & AE_RXD_SUCCESS) == 0) {
1961 			ifp->if_ierrors++;
1962 			continue;
1963 		}
1964 		error = ae_rxeof(sc, rxd);
1965 		if (error != 0) {
1966 			ifp->if_ierrors++;
1967 			continue;
1968 		} else {
1969 			ifp->if_ipackets++;
1970 		}
1971 	}
1972 
1973 	/*
1974 	 * Update Rx index.
1975 	 */
1976 	AE_WRITE_2(sc, AE_MB_RXD_IDX_REG, sc->rxd_cur);
1977 }
1978 
1979 static void
1980 ae_watchdog(ae_softc_t *sc)
1981 {
1982 	struct ifnet *ifp;
1983 
1984 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL!", __LINE__));
1985 	AE_LOCK_ASSERT(sc);
1986 	ifp = sc->ifp;
1987 
1988 	if (sc->wd_timer == 0 || --sc->wd_timer != 0)
1989 		return;		/* Noting to do. */
1990 
1991 	if ((sc->flags & AE_FLAG_LINK) == 0)
1992 		if_printf(ifp, "watchdog timeout (missed link).\n");
1993 	else
1994 		if_printf(ifp, "watchdog timeout - resetting.\n");
1995 
1996 	ifp->if_oerrors++;
1997 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1998 	ae_init_locked(sc);
1999 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2000 		taskqueue_enqueue(sc->tq, &sc->tx_task);
2001 }
2002 
2003 static void
2004 ae_tick(void *arg)
2005 {
2006 	ae_softc_t *sc;
2007 	struct mii_data *mii;
2008 
2009 	sc = (ae_softc_t *)arg;
2010 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL!", __LINE__));
2011 	AE_LOCK_ASSERT(sc);
2012 
2013 	mii = device_get_softc(sc->miibus);
2014 	mii_tick(mii);
2015 	ae_watchdog(sc);	/* Watchdog check. */
2016 	callout_reset(&sc->tick_ch, hz, ae_tick, sc);
2017 }
2018 
2019 static void
2020 ae_rxvlan(ae_softc_t *sc)
2021 {
2022 	struct ifnet *ifp;
2023 	uint32_t val;
2024 
2025 	AE_LOCK_ASSERT(sc);
2026 	ifp = sc->ifp;
2027 	val = AE_READ_4(sc, AE_MAC_REG);
2028 	val &= ~AE_MAC_RMVLAN_EN;
2029 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2030 		val |= AE_MAC_RMVLAN_EN;
2031 	AE_WRITE_4(sc, AE_MAC_REG, val);
2032 }
2033 
2034 static void
2035 ae_rxfilter(ae_softc_t *sc)
2036 {
2037 	struct ifnet *ifp;
2038 	struct ifmultiaddr *ifma;
2039 	uint32_t crc;
2040 	uint32_t mchash[2];
2041 	uint32_t rxcfg;
2042 
2043 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL!", __LINE__));
2044 
2045 	AE_LOCK_ASSERT(sc);
2046 
2047 	ifp = sc->ifp;
2048 
2049 	rxcfg = AE_READ_4(sc, AE_MAC_REG);
2050 	rxcfg &= ~(AE_MAC_MCAST_EN | AE_MAC_BCAST_EN | AE_MAC_PROMISC_EN);
2051 
2052 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
2053 		rxcfg |= AE_MAC_BCAST_EN;
2054 	if ((ifp->if_flags & IFF_PROMISC) != 0)
2055 		rxcfg |= AE_MAC_PROMISC_EN;
2056 	if ((ifp->if_flags & IFF_ALLMULTI) != 0)
2057 		rxcfg |= AE_MAC_MCAST_EN;
2058 
2059 	/*
2060 	 * Wipe old settings.
2061 	 */
2062 	AE_WRITE_4(sc, AE_REG_MHT0, 0);
2063 	AE_WRITE_4(sc, AE_REG_MHT1, 0);
2064 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
2065 		AE_WRITE_4(sc, AE_REG_MHT0, 0xffffffff);
2066 		AE_WRITE_4(sc, AE_REG_MHT1, 0xffffffff);
2067 		AE_WRITE_4(sc, AE_MAC_REG, rxcfg);
2068 		return;
2069 	}
2070 
2071 	/*
2072 	 * Load multicast tables.
2073 	 */
2074 	bzero(mchash, sizeof(mchash));
2075 	if_maddr_rlock(ifp);
2076 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2077 		if (ifma->ifma_addr->sa_family != AF_LINK)
2078 			continue;
2079 		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
2080 			ifma->ifma_addr), ETHER_ADDR_LEN);
2081 		mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2082 	}
2083 	if_maddr_runlock(ifp);
2084 	AE_WRITE_4(sc, AE_REG_MHT0, mchash[0]);
2085 	AE_WRITE_4(sc, AE_REG_MHT1, mchash[1]);
2086 	AE_WRITE_4(sc, AE_MAC_REG, rxcfg);
2087 }
2088 
2089 static int
2090 ae_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2091 {
2092 	struct ae_softc *sc;
2093 	struct ifreq *ifr;
2094 	struct mii_data *mii;
2095 	int error, mask;
2096 
2097 	sc = ifp->if_softc;
2098 	ifr = (struct ifreq *)data;
2099 	error = 0;
2100 
2101 	switch (cmd) {
2102 	case SIOCSIFMTU:
2103 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU)
2104 			error = EINVAL;
2105 		else if (ifp->if_mtu != ifr->ifr_mtu) {
2106 			AE_LOCK(sc);
2107 			ifp->if_mtu = ifr->ifr_mtu;
2108 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2109 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2110 				ae_init_locked(sc);
2111 			}
2112 			AE_UNLOCK(sc);
2113 		}
2114 		break;
2115 	case SIOCSIFFLAGS:
2116 		AE_LOCK(sc);
2117 		if ((ifp->if_flags & IFF_UP) != 0) {
2118 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2119 				if (((ifp->if_flags ^ sc->if_flags)
2120 				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2121 					ae_rxfilter(sc);
2122 			} else {
2123 				if ((sc->flags & AE_FLAG_DETACH) == 0)
2124 					ae_init_locked(sc);
2125 			}
2126 		} else {
2127 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2128 				ae_stop(sc);
2129 		}
2130 		sc->if_flags = ifp->if_flags;
2131 		AE_UNLOCK(sc);
2132 		break;
2133 	case SIOCADDMULTI:
2134 	case SIOCDELMULTI:
2135 		AE_LOCK(sc);
2136 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2137 			ae_rxfilter(sc);
2138 		AE_UNLOCK(sc);
2139 		break;
2140 	case SIOCSIFMEDIA:
2141 	case SIOCGIFMEDIA:
2142 		mii = device_get_softc(sc->miibus);
2143 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
2144 		break;
2145 	case SIOCSIFCAP:
2146 		AE_LOCK(sc);
2147 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2148 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2149 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
2150 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2151 			ae_rxvlan(sc);
2152 		}
2153 		VLAN_CAPABILITIES(ifp);
2154 		AE_UNLOCK(sc);
2155 		break;
2156 	default:
2157 		error = ether_ioctl(ifp, cmd, data);
2158 		break;
2159 	}
2160 	return (error);
2161 }
2162 
2163 static void
2164 ae_stop(ae_softc_t *sc)
2165 {
2166 	struct ifnet *ifp;
2167 	int i;
2168 
2169 	AE_LOCK_ASSERT(sc);
2170 
2171 	ifp = sc->ifp;
2172 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2173 	sc->flags &= ~AE_FLAG_LINK;
2174 	sc->wd_timer = 0;	/* Cancel watchdog. */
2175 	callout_stop(&sc->tick_ch);
2176 
2177 	/*
2178 	 * Clear and disable interrupts.
2179 	 */
2180 	AE_WRITE_4(sc, AE_IMR_REG, 0);
2181 	AE_WRITE_4(sc, AE_ISR_REG, 0xffffffff);
2182 
2183 	/*
2184 	 * Stop Rx/Tx MACs.
2185 	 */
2186 	ae_stop_txmac(sc);
2187 	ae_stop_rxmac(sc);
2188 
2189 	/*
2190 	 * Stop DMA engines.
2191 	 */
2192 	AE_WRITE_1(sc, AE_DMAREAD_REG, ~AE_DMAREAD_EN);
2193 	AE_WRITE_1(sc, AE_DMAWRITE_REG, ~AE_DMAWRITE_EN);
2194 
2195 	/*
2196 	 * Wait for everything to enter idle state.
2197 	 */
2198 	for (i = 0; i < AE_IDLE_TIMEOUT; i++) {
2199 		if (AE_READ_4(sc, AE_IDLE_REG) == 0)
2200 			break;
2201 		DELAY(100);
2202 	}
2203 	if (i == AE_IDLE_TIMEOUT)
2204 		device_printf(sc->dev, "could not enter idle state in stop.\n");
2205 }
2206 
2207 static void
2208 ae_update_stats_tx(uint16_t flags, ae_stats_t *stats)
2209 {
2210 
2211 	if ((flags & AE_TXS_BCAST) != 0)
2212 		stats->tx_bcast++;
2213 	if ((flags & AE_TXS_MCAST) != 0)
2214 		stats->tx_mcast++;
2215 	if ((flags & AE_TXS_PAUSE) != 0)
2216 		stats->tx_pause++;
2217 	if ((flags & AE_TXS_CTRL) != 0)
2218 		stats->tx_ctrl++;
2219 	if ((flags & AE_TXS_DEFER) != 0)
2220 		stats->tx_defer++;
2221 	if ((flags & AE_TXS_EXCDEFER) != 0)
2222 		stats->tx_excdefer++;
2223 	if ((flags & AE_TXS_SINGLECOL) != 0)
2224 		stats->tx_singlecol++;
2225 	if ((flags & AE_TXS_MULTICOL) != 0)
2226 		stats->tx_multicol++;
2227 	if ((flags & AE_TXS_LATECOL) != 0)
2228 		stats->tx_latecol++;
2229 	if ((flags & AE_TXS_ABORTCOL) != 0)
2230 		stats->tx_abortcol++;
2231 	if ((flags & AE_TXS_UNDERRUN) != 0)
2232 		stats->tx_underrun++;
2233 }
2234 
2235 static void
2236 ae_update_stats_rx(uint16_t flags, ae_stats_t *stats)
2237 {
2238 
2239 	if ((flags & AE_RXD_BCAST) != 0)
2240 		stats->rx_bcast++;
2241 	if ((flags & AE_RXD_MCAST) != 0)
2242 		stats->rx_mcast++;
2243 	if ((flags & AE_RXD_PAUSE) != 0)
2244 		stats->rx_pause++;
2245 	if ((flags & AE_RXD_CTRL) != 0)
2246 		stats->rx_ctrl++;
2247 	if ((flags & AE_RXD_CRCERR) != 0)
2248 		stats->rx_crcerr++;
2249 	if ((flags & AE_RXD_CODEERR) != 0)
2250 		stats->rx_codeerr++;
2251 	if ((flags & AE_RXD_RUNT) != 0)
2252 		stats->rx_runt++;
2253 	if ((flags & AE_RXD_FRAG) != 0)
2254 		stats->rx_frag++;
2255 	if ((flags & AE_RXD_TRUNC) != 0)
2256 		stats->rx_trunc++;
2257 	if ((flags & AE_RXD_ALIGN) != 0)
2258 		stats->rx_align++;
2259 }
2260