1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2008 Stanislav Sedov <stas@FreeBSD.org>. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * 27 * Driver for Attansic Technology Corp. L2 FastEthernet adapter. 28 * 29 * This driver is heavily based on age(4) Attansic L1 driver by Pyun YongHyeon. 30 */ 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/bus.h> 35 #include <sys/endian.h> 36 #include <sys/kernel.h> 37 #include <sys/lock.h> 38 #include <sys/malloc.h> 39 #include <sys/mbuf.h> 40 #include <sys/mutex.h> 41 #include <sys/rman.h> 42 #include <sys/module.h> 43 #include <sys/queue.h> 44 #include <sys/socket.h> 45 #include <sys/sockio.h> 46 #include <sys/sysctl.h> 47 #include <sys/taskqueue.h> 48 49 #include <net/bpf.h> 50 #include <net/if.h> 51 #include <net/if_var.h> 52 #include <net/if_arp.h> 53 #include <net/ethernet.h> 54 #include <net/if_dl.h> 55 #include <net/if_media.h> 56 #include <net/if_types.h> 57 #include <net/if_vlan_var.h> 58 59 #include <netinet/in.h> 60 #include <netinet/in_systm.h> 61 #include <netinet/ip.h> 62 #include <netinet/tcp.h> 63 64 #include <dev/mii/mii.h> 65 #include <dev/mii/miivar.h> 66 #include <dev/pci/pcireg.h> 67 #include <dev/pci/pcivar.h> 68 69 #include <machine/bus.h> 70 71 #include "miibus_if.h" 72 73 #include "if_aereg.h" 74 #include "if_aevar.h" 75 76 /* 77 * Devices supported by this driver. 78 */ 79 static struct ae_dev { 80 uint16_t vendorid; 81 uint16_t deviceid; 82 const char *name; 83 } ae_devs[] = { 84 { VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L2, 85 "Attansic Technology Corp, L2 FastEthernet" }, 86 }; 87 #define AE_DEVS_COUNT nitems(ae_devs) 88 89 static struct resource_spec ae_res_spec_mem[] = { 90 { SYS_RES_MEMORY, PCIR_BAR(0), RF_ACTIVE }, 91 { -1, 0, 0 } 92 }; 93 static struct resource_spec ae_res_spec_irq[] = { 94 { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE }, 95 { -1, 0, 0 } 96 }; 97 static struct resource_spec ae_res_spec_msi[] = { 98 { SYS_RES_IRQ, 1, RF_ACTIVE }, 99 { -1, 0, 0 } 100 }; 101 102 static int ae_probe(device_t dev); 103 static int ae_attach(device_t dev); 104 static void ae_pcie_init(ae_softc_t *sc); 105 static void ae_phy_reset(ae_softc_t *sc); 106 static void ae_phy_init(ae_softc_t *sc); 107 static int ae_reset(ae_softc_t *sc); 108 static void ae_init(void *arg); 109 static int ae_init_locked(ae_softc_t *sc); 110 static int ae_detach(device_t dev); 111 static int ae_miibus_readreg(device_t dev, int phy, int reg); 112 static int ae_miibus_writereg(device_t dev, int phy, int reg, int val); 113 static void ae_miibus_statchg(device_t dev); 114 static void ae_mediastatus(if_t ifp, struct ifmediareq *ifmr); 115 static int ae_mediachange(if_t ifp); 116 static void ae_retrieve_address(ae_softc_t *sc); 117 static void ae_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, 118 int error); 119 static int ae_alloc_rings(ae_softc_t *sc); 120 static void ae_dma_free(ae_softc_t *sc); 121 static int ae_shutdown(device_t dev); 122 static int ae_suspend(device_t dev); 123 static void ae_powersave_disable(ae_softc_t *sc); 124 static void ae_powersave_enable(ae_softc_t *sc); 125 static int ae_resume(device_t dev); 126 static unsigned int ae_tx_avail_size(ae_softc_t *sc); 127 static int ae_encap(ae_softc_t *sc, struct mbuf **m_head); 128 static void ae_start(if_t ifp); 129 static void ae_start_locked(if_t ifp); 130 static void ae_link_task(void *arg, int pending); 131 static void ae_stop_rxmac(ae_softc_t *sc); 132 static void ae_stop_txmac(ae_softc_t *sc); 133 static void ae_mac_config(ae_softc_t *sc); 134 static int ae_intr(void *arg); 135 static void ae_int_task(void *arg, int pending); 136 static void ae_tx_intr(ae_softc_t *sc); 137 static void ae_rxeof(ae_softc_t *sc, ae_rxd_t *rxd); 138 static void ae_rx_intr(ae_softc_t *sc); 139 static void ae_watchdog(ae_softc_t *sc); 140 static void ae_tick(void *arg); 141 static void ae_rxfilter(ae_softc_t *sc); 142 static void ae_rxvlan(ae_softc_t *sc); 143 static int ae_ioctl(if_t ifp, u_long cmd, caddr_t data); 144 static void ae_stop(ae_softc_t *sc); 145 static int ae_check_eeprom_present(ae_softc_t *sc, int *vpdc); 146 static int ae_vpd_read_word(ae_softc_t *sc, int reg, uint32_t *word); 147 static int ae_get_vpd_eaddr(ae_softc_t *sc, uint32_t *eaddr); 148 static int ae_get_reg_eaddr(ae_softc_t *sc, uint32_t *eaddr); 149 static void ae_update_stats_rx(uint16_t flags, ae_stats_t *stats); 150 static void ae_update_stats_tx(uint16_t flags, ae_stats_t *stats); 151 static void ae_init_tunables(ae_softc_t *sc); 152 153 static device_method_t ae_methods[] = { 154 /* Device interface. */ 155 DEVMETHOD(device_probe, ae_probe), 156 DEVMETHOD(device_attach, ae_attach), 157 DEVMETHOD(device_detach, ae_detach), 158 DEVMETHOD(device_shutdown, ae_shutdown), 159 DEVMETHOD(device_suspend, ae_suspend), 160 DEVMETHOD(device_resume, ae_resume), 161 162 /* MII interface. */ 163 DEVMETHOD(miibus_readreg, ae_miibus_readreg), 164 DEVMETHOD(miibus_writereg, ae_miibus_writereg), 165 DEVMETHOD(miibus_statchg, ae_miibus_statchg), 166 { NULL, NULL } 167 }; 168 static driver_t ae_driver = { 169 "ae", 170 ae_methods, 171 sizeof(ae_softc_t) 172 }; 173 174 DRIVER_MODULE(ae, pci, ae_driver, 0, 0); 175 MODULE_PNP_INFO("U16:vendor;U16:device;D:#", pci, ae, ae_devs, 176 nitems(ae_devs)); 177 DRIVER_MODULE(miibus, ae, miibus_driver, 0, 0); 178 MODULE_DEPEND(ae, pci, 1, 1, 1); 179 MODULE_DEPEND(ae, ether, 1, 1, 1); 180 MODULE_DEPEND(ae, miibus, 1, 1, 1); 181 182 /* 183 * Tunables. 184 */ 185 static int msi_disable = 0; 186 TUNABLE_INT("hw.ae.msi_disable", &msi_disable); 187 188 #define AE_READ_4(sc, reg) \ 189 bus_read_4((sc)->mem[0], (reg)) 190 #define AE_READ_2(sc, reg) \ 191 bus_read_2((sc)->mem[0], (reg)) 192 #define AE_READ_1(sc, reg) \ 193 bus_read_1((sc)->mem[0], (reg)) 194 #define AE_WRITE_4(sc, reg, val) \ 195 bus_write_4((sc)->mem[0], (reg), (val)) 196 #define AE_WRITE_2(sc, reg, val) \ 197 bus_write_2((sc)->mem[0], (reg), (val)) 198 #define AE_WRITE_1(sc, reg, val) \ 199 bus_write_1((sc)->mem[0], (reg), (val)) 200 #define AE_PHY_READ(sc, reg) \ 201 ae_miibus_readreg(sc->dev, 0, reg) 202 #define AE_PHY_WRITE(sc, reg, val) \ 203 ae_miibus_writereg(sc->dev, 0, reg, val) 204 #define AE_CHECK_EADDR_VALID(eaddr) \ 205 ((eaddr[0] == 0 && eaddr[1] == 0) || \ 206 (eaddr[0] == 0xffffffff && eaddr[1] == 0xffff)) 207 #define AE_RXD_VLAN(vtag) \ 208 (((vtag) >> 4) | (((vtag) & 0x07) << 13) | (((vtag) & 0x08) << 9)) 209 #define AE_TXD_VLAN(vtag) \ 210 (((vtag) << 4) | (((vtag) >> 13) & 0x07) | (((vtag) >> 9) & 0x08)) 211 212 static int 213 ae_probe(device_t dev) 214 { 215 uint16_t deviceid, vendorid; 216 int i; 217 218 vendorid = pci_get_vendor(dev); 219 deviceid = pci_get_device(dev); 220 221 /* 222 * Search through the list of supported devs for matching one. 223 */ 224 for (i = 0; i < AE_DEVS_COUNT; i++) { 225 if (vendorid == ae_devs[i].vendorid && 226 deviceid == ae_devs[i].deviceid) { 227 device_set_desc(dev, ae_devs[i].name); 228 return (BUS_PROBE_DEFAULT); 229 } 230 } 231 return (ENXIO); 232 } 233 234 static int 235 ae_attach(device_t dev) 236 { 237 ae_softc_t *sc; 238 if_t ifp; 239 uint8_t chiprev; 240 uint32_t pcirev; 241 int nmsi; 242 int error; 243 244 sc = device_get_softc(dev); /* Automatically allocated and zeroed 245 on attach. */ 246 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__)); 247 sc->dev = dev; 248 249 /* 250 * Initialize mutexes and tasks. 251 */ 252 mtx_init(&sc->mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF); 253 callout_init_mtx(&sc->tick_ch, &sc->mtx, 0); 254 TASK_INIT(&sc->int_task, 0, ae_int_task, sc); 255 TASK_INIT(&sc->link_task, 0, ae_link_task, sc); 256 257 pci_enable_busmaster(dev); /* Enable bus mastering. */ 258 259 sc->spec_mem = ae_res_spec_mem; 260 261 /* 262 * Allocate memory-mapped registers. 263 */ 264 error = bus_alloc_resources(dev, sc->spec_mem, sc->mem); 265 if (error != 0) { 266 device_printf(dev, "could not allocate memory resources.\n"); 267 sc->spec_mem = NULL; 268 goto fail; 269 } 270 271 /* 272 * Retrieve PCI and chip revisions. 273 */ 274 pcirev = pci_get_revid(dev); 275 chiprev = (AE_READ_4(sc, AE_MASTER_REG) >> AE_MASTER_REVNUM_SHIFT) & 276 AE_MASTER_REVNUM_MASK; 277 if (bootverbose) { 278 device_printf(dev, "pci device revision: %#04x\n", pcirev); 279 device_printf(dev, "chip id: %#02x\n", chiprev); 280 } 281 nmsi = pci_msi_count(dev); 282 if (bootverbose) 283 device_printf(dev, "MSI count: %d.\n", nmsi); 284 285 /* 286 * Allocate interrupt resources. 287 */ 288 if (msi_disable == 0 && nmsi == 1) { 289 error = pci_alloc_msi(dev, &nmsi); 290 if (error == 0) { 291 device_printf(dev, "Using MSI messages.\n"); 292 sc->spec_irq = ae_res_spec_msi; 293 error = bus_alloc_resources(dev, sc->spec_irq, sc->irq); 294 if (error != 0) { 295 device_printf(dev, "MSI allocation failed.\n"); 296 sc->spec_irq = NULL; 297 pci_release_msi(dev); 298 } else { 299 sc->flags |= AE_FLAG_MSI; 300 } 301 } 302 } 303 if (sc->spec_irq == NULL) { 304 sc->spec_irq = ae_res_spec_irq; 305 error = bus_alloc_resources(dev, sc->spec_irq, sc->irq); 306 if (error != 0) { 307 device_printf(dev, "could not allocate IRQ resources.\n"); 308 sc->spec_irq = NULL; 309 goto fail; 310 } 311 } 312 313 ae_init_tunables(sc); 314 315 ae_phy_reset(sc); /* Reset PHY. */ 316 error = ae_reset(sc); /* Reset the controller itself. */ 317 if (error != 0) 318 goto fail; 319 320 ae_pcie_init(sc); 321 322 ae_retrieve_address(sc); /* Load MAC address. */ 323 324 error = ae_alloc_rings(sc); /* Allocate ring buffers. */ 325 if (error != 0) 326 goto fail; 327 328 ifp = sc->ifp = if_alloc(IFT_ETHER); 329 if_setsoftc(ifp, sc); 330 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 331 if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST); 332 if_setioctlfn(ifp, ae_ioctl); 333 if_setstartfn(ifp, ae_start); 334 if_setinitfn(ifp, ae_init); 335 if_setcapabilities(ifp, IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING); 336 if_sethwassist(ifp, 0); 337 if_setsendqlen(ifp, ifqmaxlen); 338 if_setsendqready(ifp); 339 if (pci_has_pm(dev)) { 340 if_setcapabilitiesbit(ifp, IFCAP_WOL_MAGIC, 0); 341 sc->flags |= AE_FLAG_PMG; 342 } 343 if_setcapenable(ifp, if_getcapabilities(ifp)); 344 345 /* 346 * Configure and attach MII bus. 347 */ 348 error = mii_attach(dev, &sc->miibus, ifp, ae_mediachange, 349 ae_mediastatus, BMSR_DEFCAPMASK, AE_PHYADDR_DEFAULT, 350 MII_OFFSET_ANY, 0); 351 if (error != 0) { 352 device_printf(dev, "attaching PHYs failed\n"); 353 goto fail; 354 } 355 356 ether_ifattach(ifp, sc->eaddr); 357 /* Tell the upper layer(s) we support long frames. */ 358 if_setifheaderlen(ifp, sizeof(struct ether_vlan_header)); 359 360 /* 361 * Create and run all helper tasks. 362 */ 363 sc->tq = taskqueue_create_fast("ae_taskq", M_WAITOK, 364 taskqueue_thread_enqueue, &sc->tq); 365 taskqueue_start_threads(&sc->tq, 1, PI_NET, "%s taskq", 366 device_get_nameunit(sc->dev)); 367 368 /* 369 * Configure interrupt handlers. 370 */ 371 error = bus_setup_intr(dev, sc->irq[0], INTR_TYPE_NET | INTR_MPSAFE, 372 ae_intr, NULL, sc, &sc->intrhand); 373 if (error != 0) { 374 device_printf(dev, "could not set up interrupt handler.\n"); 375 taskqueue_free(sc->tq); 376 sc->tq = NULL; 377 ether_ifdetach(ifp); 378 goto fail; 379 } 380 381 fail: 382 if (error != 0) 383 ae_detach(dev); 384 385 return (error); 386 } 387 388 #define AE_SYSCTL(stx, parent, name, desc, ptr) \ 389 SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, name, CTLFLAG_RD, ptr, 0, desc) 390 391 static void 392 ae_init_tunables(ae_softc_t *sc) 393 { 394 struct sysctl_ctx_list *ctx; 395 struct sysctl_oid *root, *stats, *stats_rx, *stats_tx; 396 struct ae_stats *ae_stats; 397 398 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__)); 399 ae_stats = &sc->stats; 400 401 ctx = device_get_sysctl_ctx(sc->dev); 402 root = device_get_sysctl_tree(sc->dev); 403 stats = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(root), OID_AUTO, "stats", 404 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "ae statistics"); 405 406 /* 407 * Receiver statistcics. 408 */ 409 stats_rx = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(stats), OID_AUTO, "rx", 410 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Rx MAC statistics"); 411 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "bcast", 412 "broadcast frames", &ae_stats->rx_bcast); 413 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "mcast", 414 "multicast frames", &ae_stats->rx_mcast); 415 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "pause", 416 "PAUSE frames", &ae_stats->rx_pause); 417 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "control", 418 "control frames", &ae_stats->rx_ctrl); 419 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "crc_errors", 420 "frames with CRC errors", &ae_stats->rx_crcerr); 421 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "code_errors", 422 "frames with invalid opcode", &ae_stats->rx_codeerr); 423 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "runt", 424 "runt frames", &ae_stats->rx_runt); 425 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "frag", 426 "fragmented frames", &ae_stats->rx_frag); 427 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "align_errors", 428 "frames with alignment errors", &ae_stats->rx_align); 429 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "truncated", 430 "frames truncated due to Rx FIFO inderrun", &ae_stats->rx_trunc); 431 432 /* 433 * Receiver statistcics. 434 */ 435 stats_tx = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(stats), OID_AUTO, "tx", 436 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Tx MAC statistics"); 437 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "bcast", 438 "broadcast frames", &ae_stats->tx_bcast); 439 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "mcast", 440 "multicast frames", &ae_stats->tx_mcast); 441 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "pause", 442 "PAUSE frames", &ae_stats->tx_pause); 443 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "control", 444 "control frames", &ae_stats->tx_ctrl); 445 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "defers", 446 "deferrals occuried", &ae_stats->tx_defer); 447 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "exc_defers", 448 "excessive deferrals occuried", &ae_stats->tx_excdefer); 449 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "singlecols", 450 "single collisions occuried", &ae_stats->tx_singlecol); 451 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "multicols", 452 "multiple collisions occuried", &ae_stats->tx_multicol); 453 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "latecols", 454 "late collisions occuried", &ae_stats->tx_latecol); 455 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "aborts", 456 "transmit aborts due collisions", &ae_stats->tx_abortcol); 457 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "underruns", 458 "Tx FIFO underruns", &ae_stats->tx_underrun); 459 } 460 461 static void 462 ae_pcie_init(ae_softc_t *sc) 463 { 464 465 AE_WRITE_4(sc, AE_PCIE_LTSSM_TESTMODE_REG, AE_PCIE_LTSSM_TESTMODE_DEFAULT); 466 AE_WRITE_4(sc, AE_PCIE_DLL_TX_CTRL_REG, AE_PCIE_DLL_TX_CTRL_DEFAULT); 467 } 468 469 static void 470 ae_phy_reset(ae_softc_t *sc) 471 { 472 473 AE_WRITE_4(sc, AE_PHY_ENABLE_REG, AE_PHY_ENABLE); 474 DELAY(1000); /* XXX: pause(9) ? */ 475 } 476 477 static int 478 ae_reset(ae_softc_t *sc) 479 { 480 int i; 481 482 /* 483 * Issue a soft reset. 484 */ 485 AE_WRITE_4(sc, AE_MASTER_REG, AE_MASTER_SOFT_RESET); 486 bus_barrier(sc->mem[0], AE_MASTER_REG, 4, 487 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); 488 489 /* 490 * Wait for reset to complete. 491 */ 492 for (i = 0; i < AE_RESET_TIMEOUT; i++) { 493 if ((AE_READ_4(sc, AE_MASTER_REG) & AE_MASTER_SOFT_RESET) == 0) 494 break; 495 DELAY(10); 496 } 497 if (i == AE_RESET_TIMEOUT) { 498 device_printf(sc->dev, "reset timeout.\n"); 499 return (ENXIO); 500 } 501 502 /* 503 * Wait for everything to enter idle state. 504 */ 505 for (i = 0; i < AE_IDLE_TIMEOUT; i++) { 506 if (AE_READ_4(sc, AE_IDLE_REG) == 0) 507 break; 508 DELAY(100); 509 } 510 if (i == AE_IDLE_TIMEOUT) { 511 device_printf(sc->dev, "could not enter idle state.\n"); 512 return (ENXIO); 513 } 514 return (0); 515 } 516 517 static void 518 ae_init(void *arg) 519 { 520 ae_softc_t *sc; 521 522 sc = (ae_softc_t *)arg; 523 AE_LOCK(sc); 524 ae_init_locked(sc); 525 AE_UNLOCK(sc); 526 } 527 528 static void 529 ae_phy_init(ae_softc_t *sc) 530 { 531 532 /* 533 * Enable link status change interrupt. 534 * XXX magic numbers. 535 */ 536 #ifdef notyet 537 AE_PHY_WRITE(sc, 18, 0xc00); 538 #endif 539 } 540 541 static int 542 ae_init_locked(ae_softc_t *sc) 543 { 544 if_t ifp; 545 struct mii_data *mii; 546 uint8_t eaddr[ETHER_ADDR_LEN]; 547 uint32_t val; 548 bus_addr_t addr; 549 550 AE_LOCK_ASSERT(sc); 551 552 ifp = sc->ifp; 553 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) 554 return (0); 555 mii = device_get_softc(sc->miibus); 556 557 ae_stop(sc); 558 ae_reset(sc); 559 ae_pcie_init(sc); /* Initialize PCIE stuff. */ 560 ae_phy_init(sc); 561 ae_powersave_disable(sc); 562 563 /* 564 * Clear and disable interrupts. 565 */ 566 AE_WRITE_4(sc, AE_ISR_REG, 0xffffffff); 567 568 /* 569 * Set the MAC address. 570 */ 571 bcopy(if_getlladdr(ifp), eaddr, ETHER_ADDR_LEN); 572 val = eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]; 573 AE_WRITE_4(sc, AE_EADDR0_REG, val); 574 val = eaddr[0] << 8 | eaddr[1]; 575 AE_WRITE_4(sc, AE_EADDR1_REG, val); 576 577 bzero(sc->rxd_base_dma, AE_RXD_COUNT_DEFAULT * 1536 + AE_RXD_PADDING); 578 bzero(sc->txd_base, AE_TXD_BUFSIZE_DEFAULT); 579 bzero(sc->txs_base, AE_TXS_COUNT_DEFAULT * 4); 580 /* 581 * Set ring buffers base addresses. 582 */ 583 addr = sc->dma_rxd_busaddr; 584 AE_WRITE_4(sc, AE_DESC_ADDR_HI_REG, BUS_ADDR_HI(addr)); 585 AE_WRITE_4(sc, AE_RXD_ADDR_LO_REG, BUS_ADDR_LO(addr)); 586 addr = sc->dma_txd_busaddr; 587 AE_WRITE_4(sc, AE_TXD_ADDR_LO_REG, BUS_ADDR_LO(addr)); 588 addr = sc->dma_txs_busaddr; 589 AE_WRITE_4(sc, AE_TXS_ADDR_LO_REG, BUS_ADDR_LO(addr)); 590 591 /* 592 * Configure ring buffers sizes. 593 */ 594 AE_WRITE_2(sc, AE_RXD_COUNT_REG, AE_RXD_COUNT_DEFAULT); 595 AE_WRITE_2(sc, AE_TXD_BUFSIZE_REG, AE_TXD_BUFSIZE_DEFAULT / 4); 596 AE_WRITE_2(sc, AE_TXS_COUNT_REG, AE_TXS_COUNT_DEFAULT); 597 598 /* 599 * Configure interframe gap parameters. 600 */ 601 val = ((AE_IFG_TXIPG_DEFAULT << AE_IFG_TXIPG_SHIFT) & 602 AE_IFG_TXIPG_MASK) | 603 ((AE_IFG_RXIPG_DEFAULT << AE_IFG_RXIPG_SHIFT) & 604 AE_IFG_RXIPG_MASK) | 605 ((AE_IFG_IPGR1_DEFAULT << AE_IFG_IPGR1_SHIFT) & 606 AE_IFG_IPGR1_MASK) | 607 ((AE_IFG_IPGR2_DEFAULT << AE_IFG_IPGR2_SHIFT) & 608 AE_IFG_IPGR2_MASK); 609 AE_WRITE_4(sc, AE_IFG_REG, val); 610 611 /* 612 * Configure half-duplex operation. 613 */ 614 val = ((AE_HDPX_LCOL_DEFAULT << AE_HDPX_LCOL_SHIFT) & 615 AE_HDPX_LCOL_MASK) | 616 ((AE_HDPX_RETRY_DEFAULT << AE_HDPX_RETRY_SHIFT) & 617 AE_HDPX_RETRY_MASK) | 618 ((AE_HDPX_ABEBT_DEFAULT << AE_HDPX_ABEBT_SHIFT) & 619 AE_HDPX_ABEBT_MASK) | 620 ((AE_HDPX_JAMIPG_DEFAULT << AE_HDPX_JAMIPG_SHIFT) & 621 AE_HDPX_JAMIPG_MASK) | AE_HDPX_EXC_EN; 622 AE_WRITE_4(sc, AE_HDPX_REG, val); 623 624 /* 625 * Configure interrupt moderate timer. 626 */ 627 AE_WRITE_2(sc, AE_IMT_REG, AE_IMT_DEFAULT); 628 val = AE_READ_4(sc, AE_MASTER_REG); 629 val |= AE_MASTER_IMT_EN; 630 AE_WRITE_4(sc, AE_MASTER_REG, val); 631 632 /* 633 * Configure interrupt clearing timer. 634 */ 635 AE_WRITE_2(sc, AE_ICT_REG, AE_ICT_DEFAULT); 636 637 /* 638 * Configure MTU. 639 */ 640 val = if_getmtu(ifp) + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + 641 ETHER_CRC_LEN; 642 AE_WRITE_2(sc, AE_MTU_REG, val); 643 644 /* 645 * Configure cut-through threshold. 646 */ 647 AE_WRITE_4(sc, AE_CUT_THRESH_REG, AE_CUT_THRESH_DEFAULT); 648 649 /* 650 * Configure flow control. 651 */ 652 AE_WRITE_2(sc, AE_FLOW_THRESH_HI_REG, (AE_RXD_COUNT_DEFAULT / 8) * 7); 653 AE_WRITE_2(sc, AE_FLOW_THRESH_LO_REG, (AE_RXD_COUNT_MIN / 8) > 654 (AE_RXD_COUNT_DEFAULT / 12) ? (AE_RXD_COUNT_MIN / 8) : 655 (AE_RXD_COUNT_DEFAULT / 12)); 656 657 /* 658 * Init mailboxes. 659 */ 660 sc->txd_cur = sc->rxd_cur = 0; 661 sc->txs_ack = sc->txd_ack = 0; 662 sc->rxd_cur = 0; 663 AE_WRITE_2(sc, AE_MB_TXD_IDX_REG, sc->txd_cur); 664 AE_WRITE_2(sc, AE_MB_RXD_IDX_REG, sc->rxd_cur); 665 666 sc->tx_inproc = 0; /* Number of packets the chip processes now. */ 667 sc->flags |= AE_FLAG_TXAVAIL; /* Free Tx's available. */ 668 669 /* 670 * Enable DMA. 671 */ 672 AE_WRITE_1(sc, AE_DMAREAD_REG, AE_DMAREAD_EN); 673 AE_WRITE_1(sc, AE_DMAWRITE_REG, AE_DMAWRITE_EN); 674 675 /* 676 * Check if everything is OK. 677 */ 678 val = AE_READ_4(sc, AE_ISR_REG); 679 if ((val & AE_ISR_PHY_LINKDOWN) != 0) { 680 device_printf(sc->dev, "Initialization failed.\n"); 681 return (ENXIO); 682 } 683 684 /* 685 * Clear interrupt status. 686 */ 687 AE_WRITE_4(sc, AE_ISR_REG, 0x3fffffff); 688 AE_WRITE_4(sc, AE_ISR_REG, 0x0); 689 690 /* 691 * Enable interrupts. 692 */ 693 val = AE_READ_4(sc, AE_MASTER_REG); 694 AE_WRITE_4(sc, AE_MASTER_REG, val | AE_MASTER_MANUAL_INT); 695 AE_WRITE_4(sc, AE_IMR_REG, AE_IMR_DEFAULT); 696 697 /* 698 * Disable WOL. 699 */ 700 AE_WRITE_4(sc, AE_WOL_REG, 0); 701 702 /* 703 * Configure MAC. 704 */ 705 val = AE_MAC_TX_CRC_EN | AE_MAC_TX_AUTOPAD | 706 AE_MAC_FULL_DUPLEX | AE_MAC_CLK_PHY | 707 AE_MAC_TX_FLOW_EN | AE_MAC_RX_FLOW_EN | 708 ((AE_HALFBUF_DEFAULT << AE_HALFBUF_SHIFT) & AE_HALFBUF_MASK) | 709 ((AE_MAC_PREAMBLE_DEFAULT << AE_MAC_PREAMBLE_SHIFT) & 710 AE_MAC_PREAMBLE_MASK); 711 AE_WRITE_4(sc, AE_MAC_REG, val); 712 713 /* 714 * Configure Rx MAC. 715 */ 716 ae_rxfilter(sc); 717 ae_rxvlan(sc); 718 719 /* 720 * Enable Tx/Rx. 721 */ 722 val = AE_READ_4(sc, AE_MAC_REG); 723 AE_WRITE_4(sc, AE_MAC_REG, val | AE_MAC_TX_EN | AE_MAC_RX_EN); 724 725 sc->flags &= ~AE_FLAG_LINK; 726 mii_mediachg(mii); /* Switch to the current media. */ 727 728 callout_reset(&sc->tick_ch, hz, ae_tick, sc); 729 730 if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0); 731 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE); 732 733 #ifdef AE_DEBUG 734 device_printf(sc->dev, "Initialization complete.\n"); 735 #endif 736 737 return (0); 738 } 739 740 static int 741 ae_detach(device_t dev) 742 { 743 struct ae_softc *sc; 744 if_t ifp; 745 746 sc = device_get_softc(dev); 747 KASSERT(sc != NULL, ("[ae: %d]: sc is NULL", __LINE__)); 748 ifp = sc->ifp; 749 if (device_is_attached(dev)) { 750 AE_LOCK(sc); 751 sc->flags |= AE_FLAG_DETACH; 752 ae_stop(sc); 753 AE_UNLOCK(sc); 754 callout_drain(&sc->tick_ch); 755 taskqueue_drain(sc->tq, &sc->int_task); 756 taskqueue_drain(taskqueue_swi, &sc->link_task); 757 ether_ifdetach(ifp); 758 } 759 if (sc->tq != NULL) { 760 taskqueue_drain(sc->tq, &sc->int_task); 761 taskqueue_free(sc->tq); 762 sc->tq = NULL; 763 } 764 bus_generic_detach(sc->dev); 765 ae_dma_free(sc); 766 if (sc->intrhand != NULL) { 767 bus_teardown_intr(dev, sc->irq[0], sc->intrhand); 768 sc->intrhand = NULL; 769 } 770 if (ifp != NULL) { 771 if_free(ifp); 772 sc->ifp = NULL; 773 } 774 if (sc->spec_irq != NULL) 775 bus_release_resources(dev, sc->spec_irq, sc->irq); 776 if (sc->spec_mem != NULL) 777 bus_release_resources(dev, sc->spec_mem, sc->mem); 778 if ((sc->flags & AE_FLAG_MSI) != 0) 779 pci_release_msi(dev); 780 mtx_destroy(&sc->mtx); 781 782 return (0); 783 } 784 785 static int 786 ae_miibus_readreg(device_t dev, int phy, int reg) 787 { 788 ae_softc_t *sc; 789 uint32_t val; 790 int i; 791 792 sc = device_get_softc(dev); 793 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__)); 794 795 /* 796 * Locking is done in upper layers. 797 */ 798 799 val = ((reg << AE_MDIO_REGADDR_SHIFT) & AE_MDIO_REGADDR_MASK) | 800 AE_MDIO_START | AE_MDIO_READ | AE_MDIO_SUP_PREAMBLE | 801 ((AE_MDIO_CLK_25_4 << AE_MDIO_CLK_SHIFT) & AE_MDIO_CLK_MASK); 802 AE_WRITE_4(sc, AE_MDIO_REG, val); 803 804 /* 805 * Wait for operation to complete. 806 */ 807 for (i = 0; i < AE_MDIO_TIMEOUT; i++) { 808 DELAY(2); 809 val = AE_READ_4(sc, AE_MDIO_REG); 810 if ((val & (AE_MDIO_START | AE_MDIO_BUSY)) == 0) 811 break; 812 } 813 if (i == AE_MDIO_TIMEOUT) { 814 device_printf(sc->dev, "phy read timeout: %d.\n", reg); 815 return (0); 816 } 817 return ((val << AE_MDIO_DATA_SHIFT) & AE_MDIO_DATA_MASK); 818 } 819 820 static int 821 ae_miibus_writereg(device_t dev, int phy, int reg, int val) 822 { 823 ae_softc_t *sc; 824 uint32_t aereg; 825 int i; 826 827 sc = device_get_softc(dev); 828 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__)); 829 830 /* 831 * Locking is done in upper layers. 832 */ 833 834 aereg = ((reg << AE_MDIO_REGADDR_SHIFT) & AE_MDIO_REGADDR_MASK) | 835 AE_MDIO_START | AE_MDIO_SUP_PREAMBLE | 836 ((AE_MDIO_CLK_25_4 << AE_MDIO_CLK_SHIFT) & AE_MDIO_CLK_MASK) | 837 ((val << AE_MDIO_DATA_SHIFT) & AE_MDIO_DATA_MASK); 838 AE_WRITE_4(sc, AE_MDIO_REG, aereg); 839 840 /* 841 * Wait for operation to complete. 842 */ 843 for (i = 0; i < AE_MDIO_TIMEOUT; i++) { 844 DELAY(2); 845 aereg = AE_READ_4(sc, AE_MDIO_REG); 846 if ((aereg & (AE_MDIO_START | AE_MDIO_BUSY)) == 0) 847 break; 848 } 849 if (i == AE_MDIO_TIMEOUT) { 850 device_printf(sc->dev, "phy write timeout: %d.\n", reg); 851 } 852 return (0); 853 } 854 855 static void 856 ae_miibus_statchg(device_t dev) 857 { 858 ae_softc_t *sc; 859 860 sc = device_get_softc(dev); 861 taskqueue_enqueue(taskqueue_swi, &sc->link_task); 862 } 863 864 static void 865 ae_mediastatus(if_t ifp, struct ifmediareq *ifmr) 866 { 867 ae_softc_t *sc; 868 struct mii_data *mii; 869 870 sc = if_getsoftc(ifp); 871 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__)); 872 873 AE_LOCK(sc); 874 mii = device_get_softc(sc->miibus); 875 mii_pollstat(mii); 876 ifmr->ifm_status = mii->mii_media_status; 877 ifmr->ifm_active = mii->mii_media_active; 878 AE_UNLOCK(sc); 879 } 880 881 static int 882 ae_mediachange(if_t ifp) 883 { 884 ae_softc_t *sc; 885 struct mii_data *mii; 886 struct mii_softc *mii_sc; 887 int error; 888 889 /* XXX: check IFF_UP ?? */ 890 sc = if_getsoftc(ifp); 891 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__)); 892 AE_LOCK(sc); 893 mii = device_get_softc(sc->miibus); 894 LIST_FOREACH(mii_sc, &mii->mii_phys, mii_list) 895 PHY_RESET(mii_sc); 896 error = mii_mediachg(mii); 897 AE_UNLOCK(sc); 898 899 return (error); 900 } 901 902 static int 903 ae_check_eeprom_present(ae_softc_t *sc, int *vpdc) 904 { 905 int error; 906 uint32_t val; 907 908 KASSERT(vpdc != NULL, ("[ae, %d]: vpdc is NULL!\n", __LINE__)); 909 910 /* 911 * Not sure why, but Linux does this. 912 */ 913 val = AE_READ_4(sc, AE_SPICTL_REG); 914 if ((val & AE_SPICTL_VPD_EN) != 0) { 915 val &= ~AE_SPICTL_VPD_EN; 916 AE_WRITE_4(sc, AE_SPICTL_REG, val); 917 } 918 error = pci_find_cap(sc->dev, PCIY_VPD, vpdc); 919 return (error); 920 } 921 922 static int 923 ae_vpd_read_word(ae_softc_t *sc, int reg, uint32_t *word) 924 { 925 uint32_t val; 926 int i; 927 928 AE_WRITE_4(sc, AE_VPD_DATA_REG, 0); /* Clear register value. */ 929 930 /* 931 * VPD registers start at offset 0x100. Read them. 932 */ 933 val = 0x100 + reg * 4; 934 AE_WRITE_4(sc, AE_VPD_CAP_REG, (val << AE_VPD_CAP_ADDR_SHIFT) & 935 AE_VPD_CAP_ADDR_MASK); 936 for (i = 0; i < AE_VPD_TIMEOUT; i++) { 937 DELAY(2000); 938 val = AE_READ_4(sc, AE_VPD_CAP_REG); 939 if ((val & AE_VPD_CAP_DONE) != 0) 940 break; 941 } 942 if (i == AE_VPD_TIMEOUT) { 943 device_printf(sc->dev, "timeout reading VPD register %d.\n", 944 reg); 945 return (ETIMEDOUT); 946 } 947 *word = AE_READ_4(sc, AE_VPD_DATA_REG); 948 return (0); 949 } 950 951 static int 952 ae_get_vpd_eaddr(ae_softc_t *sc, uint32_t *eaddr) 953 { 954 uint32_t word, reg, val; 955 int error; 956 int found; 957 int vpdc; 958 int i; 959 960 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__)); 961 KASSERT(eaddr != NULL, ("[ae, %d]: eaddr is NULL", __LINE__)); 962 963 /* 964 * Check for EEPROM. 965 */ 966 error = ae_check_eeprom_present(sc, &vpdc); 967 if (error != 0) 968 return (error); 969 970 /* 971 * Read the VPD configuration space. 972 * Each register is prefixed with signature, 973 * so we can check if it is valid. 974 */ 975 for (i = 0, found = 0; i < AE_VPD_NREGS; i++) { 976 error = ae_vpd_read_word(sc, i, &word); 977 if (error != 0) 978 break; 979 980 /* 981 * Check signature. 982 */ 983 if ((word & AE_VPD_SIG_MASK) != AE_VPD_SIG) 984 break; 985 reg = word >> AE_VPD_REG_SHIFT; 986 i++; /* Move to the next word. */ 987 988 if (reg != AE_EADDR0_REG && reg != AE_EADDR1_REG) 989 continue; 990 991 error = ae_vpd_read_word(sc, i, &val); 992 if (error != 0) 993 break; 994 if (reg == AE_EADDR0_REG) 995 eaddr[0] = val; 996 else 997 eaddr[1] = val; 998 found++; 999 } 1000 1001 if (found < 2) 1002 return (ENOENT); 1003 1004 eaddr[1] &= 0xffff; /* Only last 2 bytes are used. */ 1005 if (AE_CHECK_EADDR_VALID(eaddr) != 0) { 1006 if (bootverbose) 1007 device_printf(sc->dev, 1008 "VPD ethernet address registers are invalid.\n"); 1009 return (EINVAL); 1010 } 1011 return (0); 1012 } 1013 1014 static int 1015 ae_get_reg_eaddr(ae_softc_t *sc, uint32_t *eaddr) 1016 { 1017 1018 /* 1019 * BIOS is supposed to set this. 1020 */ 1021 eaddr[0] = AE_READ_4(sc, AE_EADDR0_REG); 1022 eaddr[1] = AE_READ_4(sc, AE_EADDR1_REG); 1023 eaddr[1] &= 0xffff; /* Only last 2 bytes are used. */ 1024 1025 if (AE_CHECK_EADDR_VALID(eaddr) != 0) { 1026 if (bootverbose) 1027 device_printf(sc->dev, 1028 "Ethernet address registers are invalid.\n"); 1029 return (EINVAL); 1030 } 1031 return (0); 1032 } 1033 1034 static void 1035 ae_retrieve_address(ae_softc_t *sc) 1036 { 1037 uint32_t eaddr[2] = {0, 0}; 1038 int error; 1039 1040 /* 1041 *Check for EEPROM. 1042 */ 1043 error = ae_get_vpd_eaddr(sc, eaddr); 1044 if (error != 0) 1045 error = ae_get_reg_eaddr(sc, eaddr); 1046 if (error != 0) { 1047 if (bootverbose) 1048 device_printf(sc->dev, 1049 "Generating random ethernet address.\n"); 1050 eaddr[0] = arc4random(); 1051 1052 /* 1053 * Set OUI to ASUSTek COMPUTER INC. 1054 */ 1055 sc->eaddr[0] = 0x02; /* U/L bit set. */ 1056 sc->eaddr[1] = 0x1f; 1057 sc->eaddr[2] = 0xc6; 1058 sc->eaddr[3] = (eaddr[0] >> 16) & 0xff; 1059 sc->eaddr[4] = (eaddr[0] >> 8) & 0xff; 1060 sc->eaddr[5] = (eaddr[0] >> 0) & 0xff; 1061 } else { 1062 sc->eaddr[0] = (eaddr[1] >> 8) & 0xff; 1063 sc->eaddr[1] = (eaddr[1] >> 0) & 0xff; 1064 sc->eaddr[2] = (eaddr[0] >> 24) & 0xff; 1065 sc->eaddr[3] = (eaddr[0] >> 16) & 0xff; 1066 sc->eaddr[4] = (eaddr[0] >> 8) & 0xff; 1067 sc->eaddr[5] = (eaddr[0] >> 0) & 0xff; 1068 } 1069 } 1070 1071 static void 1072 ae_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 1073 { 1074 bus_addr_t *addr = arg; 1075 1076 if (error != 0) 1077 return; 1078 KASSERT(nsegs == 1, ("[ae, %d]: %d segments instead of 1!", __LINE__, 1079 nsegs)); 1080 *addr = segs[0].ds_addr; 1081 } 1082 1083 static int 1084 ae_alloc_rings(ae_softc_t *sc) 1085 { 1086 bus_addr_t busaddr; 1087 int error; 1088 1089 /* 1090 * Create parent DMA tag. 1091 */ 1092 error = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1093 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, 1094 NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 0, 1095 BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL, 1096 &sc->dma_parent_tag); 1097 if (error != 0) { 1098 device_printf(sc->dev, "could not creare parent DMA tag.\n"); 1099 return (error); 1100 } 1101 1102 /* 1103 * Create DMA tag for TxD. 1104 */ 1105 error = bus_dma_tag_create(sc->dma_parent_tag, 1106 8, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, 1107 NULL, NULL, AE_TXD_BUFSIZE_DEFAULT, 1, 1108 AE_TXD_BUFSIZE_DEFAULT, 0, NULL, NULL, 1109 &sc->dma_txd_tag); 1110 if (error != 0) { 1111 device_printf(sc->dev, "could not creare TxD DMA tag.\n"); 1112 return (error); 1113 } 1114 1115 /* 1116 * Create DMA tag for TxS. 1117 */ 1118 error = bus_dma_tag_create(sc->dma_parent_tag, 1119 8, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, 1120 NULL, NULL, AE_TXS_COUNT_DEFAULT * 4, 1, 1121 AE_TXS_COUNT_DEFAULT * 4, 0, NULL, NULL, 1122 &sc->dma_txs_tag); 1123 if (error != 0) { 1124 device_printf(sc->dev, "could not creare TxS DMA tag.\n"); 1125 return (error); 1126 } 1127 1128 /* 1129 * Create DMA tag for RxD. 1130 */ 1131 error = bus_dma_tag_create(sc->dma_parent_tag, 1132 128, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, 1133 NULL, NULL, AE_RXD_COUNT_DEFAULT * 1536 + AE_RXD_PADDING, 1, 1134 AE_RXD_COUNT_DEFAULT * 1536 + AE_RXD_PADDING, 0, NULL, NULL, 1135 &sc->dma_rxd_tag); 1136 if (error != 0) { 1137 device_printf(sc->dev, "could not creare TxS DMA tag.\n"); 1138 return (error); 1139 } 1140 1141 /* 1142 * Allocate TxD DMA memory. 1143 */ 1144 error = bus_dmamem_alloc(sc->dma_txd_tag, (void **)&sc->txd_base, 1145 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 1146 &sc->dma_txd_map); 1147 if (error != 0) { 1148 device_printf(sc->dev, 1149 "could not allocate DMA memory for TxD ring.\n"); 1150 return (error); 1151 } 1152 error = bus_dmamap_load(sc->dma_txd_tag, sc->dma_txd_map, sc->txd_base, 1153 AE_TXD_BUFSIZE_DEFAULT, ae_dmamap_cb, &busaddr, BUS_DMA_NOWAIT); 1154 if (error != 0 || busaddr == 0) { 1155 device_printf(sc->dev, 1156 "could not load DMA map for TxD ring.\n"); 1157 return (error); 1158 } 1159 sc->dma_txd_busaddr = busaddr; 1160 1161 /* 1162 * Allocate TxS DMA memory. 1163 */ 1164 error = bus_dmamem_alloc(sc->dma_txs_tag, (void **)&sc->txs_base, 1165 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 1166 &sc->dma_txs_map); 1167 if (error != 0) { 1168 device_printf(sc->dev, 1169 "could not allocate DMA memory for TxS ring.\n"); 1170 return (error); 1171 } 1172 error = bus_dmamap_load(sc->dma_txs_tag, sc->dma_txs_map, sc->txs_base, 1173 AE_TXS_COUNT_DEFAULT * 4, ae_dmamap_cb, &busaddr, BUS_DMA_NOWAIT); 1174 if (error != 0 || busaddr == 0) { 1175 device_printf(sc->dev, 1176 "could not load DMA map for TxS ring.\n"); 1177 return (error); 1178 } 1179 sc->dma_txs_busaddr = busaddr; 1180 1181 /* 1182 * Allocate RxD DMA memory. 1183 */ 1184 error = bus_dmamem_alloc(sc->dma_rxd_tag, (void **)&sc->rxd_base_dma, 1185 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 1186 &sc->dma_rxd_map); 1187 if (error != 0) { 1188 device_printf(sc->dev, 1189 "could not allocate DMA memory for RxD ring.\n"); 1190 return (error); 1191 } 1192 error = bus_dmamap_load(sc->dma_rxd_tag, sc->dma_rxd_map, 1193 sc->rxd_base_dma, AE_RXD_COUNT_DEFAULT * 1536 + AE_RXD_PADDING, 1194 ae_dmamap_cb, &busaddr, BUS_DMA_NOWAIT); 1195 if (error != 0 || busaddr == 0) { 1196 device_printf(sc->dev, 1197 "could not load DMA map for RxD ring.\n"); 1198 return (error); 1199 } 1200 sc->dma_rxd_busaddr = busaddr + AE_RXD_PADDING; 1201 sc->rxd_base = (ae_rxd_t *)(sc->rxd_base_dma + AE_RXD_PADDING); 1202 1203 return (0); 1204 } 1205 1206 static void 1207 ae_dma_free(ae_softc_t *sc) 1208 { 1209 1210 if (sc->dma_txd_tag != NULL) { 1211 if (sc->dma_txd_busaddr != 0) 1212 bus_dmamap_unload(sc->dma_txd_tag, sc->dma_txd_map); 1213 if (sc->txd_base != NULL) 1214 bus_dmamem_free(sc->dma_txd_tag, sc->txd_base, 1215 sc->dma_txd_map); 1216 bus_dma_tag_destroy(sc->dma_txd_tag); 1217 sc->dma_txd_tag = NULL; 1218 sc->txd_base = NULL; 1219 sc->dma_txd_busaddr = 0; 1220 } 1221 if (sc->dma_txs_tag != NULL) { 1222 if (sc->dma_txs_busaddr != 0) 1223 bus_dmamap_unload(sc->dma_txs_tag, sc->dma_txs_map); 1224 if (sc->txs_base != NULL) 1225 bus_dmamem_free(sc->dma_txs_tag, sc->txs_base, 1226 sc->dma_txs_map); 1227 bus_dma_tag_destroy(sc->dma_txs_tag); 1228 sc->dma_txs_tag = NULL; 1229 sc->txs_base = NULL; 1230 sc->dma_txs_busaddr = 0; 1231 } 1232 if (sc->dma_rxd_tag != NULL) { 1233 if (sc->dma_rxd_busaddr != 0) 1234 bus_dmamap_unload(sc->dma_rxd_tag, sc->dma_rxd_map); 1235 if (sc->rxd_base_dma != NULL) 1236 bus_dmamem_free(sc->dma_rxd_tag, sc->rxd_base_dma, 1237 sc->dma_rxd_map); 1238 bus_dma_tag_destroy(sc->dma_rxd_tag); 1239 sc->dma_rxd_tag = NULL; 1240 sc->rxd_base_dma = NULL; 1241 sc->dma_rxd_busaddr = 0; 1242 } 1243 if (sc->dma_parent_tag != NULL) { 1244 bus_dma_tag_destroy(sc->dma_parent_tag); 1245 sc->dma_parent_tag = NULL; 1246 } 1247 } 1248 1249 static int 1250 ae_shutdown(device_t dev) 1251 { 1252 ae_softc_t *sc; 1253 int error; 1254 1255 sc = device_get_softc(dev); 1256 KASSERT(sc != NULL, ("[ae: %d]: sc is NULL", __LINE__)); 1257 1258 error = ae_suspend(dev); 1259 AE_LOCK(sc); 1260 ae_powersave_enable(sc); 1261 AE_UNLOCK(sc); 1262 return (error); 1263 } 1264 1265 static void 1266 ae_powersave_disable(ae_softc_t *sc) 1267 { 1268 uint32_t val; 1269 1270 AE_LOCK_ASSERT(sc); 1271 1272 AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 0); 1273 val = AE_PHY_READ(sc, AE_PHY_DBG_DATA); 1274 if (val & AE_PHY_DBG_POWERSAVE) { 1275 val &= ~AE_PHY_DBG_POWERSAVE; 1276 AE_PHY_WRITE(sc, AE_PHY_DBG_DATA, val); 1277 DELAY(1000); 1278 } 1279 } 1280 1281 static void 1282 ae_powersave_enable(ae_softc_t *sc) 1283 { 1284 uint32_t val; 1285 1286 AE_LOCK_ASSERT(sc); 1287 1288 /* 1289 * XXX magic numbers. 1290 */ 1291 AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 0); 1292 val = AE_PHY_READ(sc, AE_PHY_DBG_DATA); 1293 AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, val | 0x1000); 1294 AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 2); 1295 AE_PHY_WRITE(sc, AE_PHY_DBG_DATA, 0x3000); 1296 AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 3); 1297 AE_PHY_WRITE(sc, AE_PHY_DBG_DATA, 0); 1298 } 1299 1300 static void 1301 ae_pm_init(ae_softc_t *sc) 1302 { 1303 if_t ifp; 1304 uint32_t val; 1305 struct mii_data *mii; 1306 1307 AE_LOCK_ASSERT(sc); 1308 1309 ifp = sc->ifp; 1310 if ((sc->flags & AE_FLAG_PMG) == 0) { 1311 /* Disable WOL entirely. */ 1312 AE_WRITE_4(sc, AE_WOL_REG, 0); 1313 return; 1314 } 1315 1316 /* 1317 * Configure WOL if enabled. 1318 */ 1319 if ((if_getcapenable(ifp) & IFCAP_WOL) != 0) { 1320 mii = device_get_softc(sc->miibus); 1321 mii_pollstat(mii); 1322 if ((mii->mii_media_status & IFM_AVALID) != 0 && 1323 (mii->mii_media_status & IFM_ACTIVE) != 0) { 1324 AE_WRITE_4(sc, AE_WOL_REG, AE_WOL_MAGIC | \ 1325 AE_WOL_MAGIC_PME); 1326 1327 /* 1328 * Configure MAC. 1329 */ 1330 val = AE_MAC_RX_EN | AE_MAC_CLK_PHY | \ 1331 AE_MAC_TX_CRC_EN | AE_MAC_TX_AUTOPAD | \ 1332 ((AE_HALFBUF_DEFAULT << AE_HALFBUF_SHIFT) & \ 1333 AE_HALFBUF_MASK) | \ 1334 ((AE_MAC_PREAMBLE_DEFAULT << \ 1335 AE_MAC_PREAMBLE_SHIFT) & AE_MAC_PREAMBLE_MASK) | \ 1336 AE_MAC_BCAST_EN | AE_MAC_MCAST_EN; 1337 if ((IFM_OPTIONS(mii->mii_media_active) & \ 1338 IFM_FDX) != 0) 1339 val |= AE_MAC_FULL_DUPLEX; 1340 AE_WRITE_4(sc, AE_MAC_REG, val); 1341 1342 } else { /* No link. */ 1343 AE_WRITE_4(sc, AE_WOL_REG, AE_WOL_LNKCHG | \ 1344 AE_WOL_LNKCHG_PME); 1345 AE_WRITE_4(sc, AE_MAC_REG, 0); 1346 } 1347 } else { 1348 ae_powersave_enable(sc); 1349 } 1350 1351 /* 1352 * PCIE hacks. Magic numbers. 1353 */ 1354 val = AE_READ_4(sc, AE_PCIE_PHYMISC_REG); 1355 val |= AE_PCIE_PHYMISC_FORCE_RCV_DET; 1356 AE_WRITE_4(sc, AE_PCIE_PHYMISC_REG, val); 1357 val = AE_READ_4(sc, AE_PCIE_DLL_TX_CTRL_REG); 1358 val |= AE_PCIE_DLL_TX_CTRL_SEL_NOR_CLK; 1359 AE_WRITE_4(sc, AE_PCIE_DLL_TX_CTRL_REG, val); 1360 1361 /* 1362 * Configure PME. 1363 */ 1364 if ((if_getcapenable(ifp) & IFCAP_WOL) != 0) 1365 pci_enable_pme(sc->dev); 1366 } 1367 1368 static int 1369 ae_suspend(device_t dev) 1370 { 1371 ae_softc_t *sc; 1372 1373 sc = device_get_softc(dev); 1374 1375 AE_LOCK(sc); 1376 ae_stop(sc); 1377 ae_pm_init(sc); 1378 AE_UNLOCK(sc); 1379 1380 return (0); 1381 } 1382 1383 static int 1384 ae_resume(device_t dev) 1385 { 1386 ae_softc_t *sc; 1387 1388 sc = device_get_softc(dev); 1389 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__)); 1390 1391 AE_LOCK(sc); 1392 AE_READ_4(sc, AE_WOL_REG); /* Clear WOL status. */ 1393 if ((if_getflags(sc->ifp) & IFF_UP) != 0) 1394 ae_init_locked(sc); 1395 AE_UNLOCK(sc); 1396 1397 return (0); 1398 } 1399 1400 static unsigned int 1401 ae_tx_avail_size(ae_softc_t *sc) 1402 { 1403 unsigned int avail; 1404 1405 if (sc->txd_cur >= sc->txd_ack) 1406 avail = AE_TXD_BUFSIZE_DEFAULT - (sc->txd_cur - sc->txd_ack); 1407 else 1408 avail = sc->txd_ack - sc->txd_cur; 1409 1410 return (avail); 1411 } 1412 1413 static int 1414 ae_encap(ae_softc_t *sc, struct mbuf **m_head) 1415 { 1416 struct mbuf *m0; 1417 ae_txd_t *hdr; 1418 unsigned int to_end; 1419 uint16_t len; 1420 1421 AE_LOCK_ASSERT(sc); 1422 1423 m0 = *m_head; 1424 len = m0->m_pkthdr.len; 1425 1426 if ((sc->flags & AE_FLAG_TXAVAIL) == 0 || 1427 len + sizeof(ae_txd_t) + 3 > ae_tx_avail_size(sc)) { 1428 #ifdef AE_DEBUG 1429 if_printf(sc->ifp, "No free Tx available.\n"); 1430 #endif 1431 return ENOBUFS; 1432 } 1433 1434 hdr = (ae_txd_t *)(sc->txd_base + sc->txd_cur); 1435 bzero(hdr, sizeof(*hdr)); 1436 /* Skip header size. */ 1437 sc->txd_cur = (sc->txd_cur + sizeof(ae_txd_t)) % AE_TXD_BUFSIZE_DEFAULT; 1438 /* Space available to the end of the ring */ 1439 to_end = AE_TXD_BUFSIZE_DEFAULT - sc->txd_cur; 1440 if (to_end >= len) { 1441 m_copydata(m0, 0, len, (caddr_t)(sc->txd_base + sc->txd_cur)); 1442 } else { 1443 m_copydata(m0, 0, to_end, (caddr_t)(sc->txd_base + 1444 sc->txd_cur)); 1445 m_copydata(m0, to_end, len - to_end, (caddr_t)sc->txd_base); 1446 } 1447 1448 /* 1449 * Set TxD flags and parameters. 1450 */ 1451 if ((m0->m_flags & M_VLANTAG) != 0) { 1452 hdr->vlan = htole16(AE_TXD_VLAN(m0->m_pkthdr.ether_vtag)); 1453 hdr->len = htole16(len | AE_TXD_INSERT_VTAG); 1454 } else { 1455 hdr->len = htole16(len); 1456 } 1457 1458 /* 1459 * Set current TxD position and round up to a 4-byte boundary. 1460 */ 1461 sc->txd_cur = ((sc->txd_cur + len + 3) & ~3) % AE_TXD_BUFSIZE_DEFAULT; 1462 if (sc->txd_cur == sc->txd_ack) 1463 sc->flags &= ~AE_FLAG_TXAVAIL; 1464 #ifdef AE_DEBUG 1465 if_printf(sc->ifp, "New txd_cur = %d.\n", sc->txd_cur); 1466 #endif 1467 1468 /* 1469 * Update TxS position and check if there are empty TxS available. 1470 */ 1471 sc->txs_base[sc->txs_cur].flags &= ~htole16(AE_TXS_UPDATE); 1472 sc->txs_cur = (sc->txs_cur + 1) % AE_TXS_COUNT_DEFAULT; 1473 if (sc->txs_cur == sc->txs_ack) 1474 sc->flags &= ~AE_FLAG_TXAVAIL; 1475 1476 /* 1477 * Synchronize DMA memory. 1478 */ 1479 bus_dmamap_sync(sc->dma_txd_tag, sc->dma_txd_map, BUS_DMASYNC_PREREAD | 1480 BUS_DMASYNC_PREWRITE); 1481 bus_dmamap_sync(sc->dma_txs_tag, sc->dma_txs_map, 1482 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1483 1484 return (0); 1485 } 1486 1487 static void 1488 ae_start(if_t ifp) 1489 { 1490 ae_softc_t *sc; 1491 1492 sc = if_getsoftc(ifp); 1493 AE_LOCK(sc); 1494 ae_start_locked(ifp); 1495 AE_UNLOCK(sc); 1496 } 1497 1498 static void 1499 ae_start_locked(if_t ifp) 1500 { 1501 ae_softc_t *sc; 1502 unsigned int count; 1503 struct mbuf *m0; 1504 int error; 1505 1506 sc = if_getsoftc(ifp); 1507 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__)); 1508 AE_LOCK_ASSERT(sc); 1509 1510 #ifdef AE_DEBUG 1511 if_printf(ifp, "Start called.\n"); 1512 #endif 1513 1514 if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 1515 IFF_DRV_RUNNING || (sc->flags & AE_FLAG_LINK) == 0) 1516 return; 1517 1518 count = 0; 1519 while (!if_sendq_empty(ifp)) { 1520 m0 = if_dequeue(ifp); 1521 if (m0 == NULL) 1522 break; /* Nothing to do. */ 1523 1524 error = ae_encap(sc, &m0); 1525 if (error != 0) { 1526 if (m0 != NULL) { 1527 if_sendq_prepend(ifp, m0); 1528 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 1529 #ifdef AE_DEBUG 1530 if_printf(ifp, "Setting OACTIVE.\n"); 1531 #endif 1532 } 1533 break; 1534 } 1535 count++; 1536 sc->tx_inproc++; 1537 1538 /* Bounce a copy of the frame to BPF. */ 1539 ETHER_BPF_MTAP(ifp, m0); 1540 1541 m_freem(m0); 1542 } 1543 1544 if (count > 0) { /* Something was dequeued. */ 1545 AE_WRITE_2(sc, AE_MB_TXD_IDX_REG, sc->txd_cur / 4); 1546 sc->wd_timer = AE_TX_TIMEOUT; /* Load watchdog. */ 1547 #ifdef AE_DEBUG 1548 if_printf(ifp, "%d packets dequeued.\n", count); 1549 if_printf(ifp, "Tx pos now is %d.\n", sc->txd_cur); 1550 #endif 1551 } 1552 } 1553 1554 static void 1555 ae_link_task(void *arg, int pending) 1556 { 1557 ae_softc_t *sc; 1558 struct mii_data *mii; 1559 if_t ifp; 1560 uint32_t val; 1561 1562 sc = (ae_softc_t *)arg; 1563 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__)); 1564 AE_LOCK(sc); 1565 1566 ifp = sc->ifp; 1567 mii = device_get_softc(sc->miibus); 1568 if (mii == NULL || ifp == NULL || 1569 (if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) { 1570 AE_UNLOCK(sc); /* XXX: could happen? */ 1571 return; 1572 } 1573 1574 sc->flags &= ~AE_FLAG_LINK; 1575 if ((mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) == 1576 (IFM_AVALID | IFM_ACTIVE)) { 1577 switch(IFM_SUBTYPE(mii->mii_media_active)) { 1578 case IFM_10_T: 1579 case IFM_100_TX: 1580 sc->flags |= AE_FLAG_LINK; 1581 break; 1582 default: 1583 break; 1584 } 1585 } 1586 1587 /* 1588 * Stop Rx/Tx MACs. 1589 */ 1590 ae_stop_rxmac(sc); 1591 ae_stop_txmac(sc); 1592 1593 if ((sc->flags & AE_FLAG_LINK) != 0) { 1594 ae_mac_config(sc); 1595 1596 /* 1597 * Restart DMA engines. 1598 */ 1599 AE_WRITE_1(sc, AE_DMAREAD_REG, AE_DMAREAD_EN); 1600 AE_WRITE_1(sc, AE_DMAWRITE_REG, AE_DMAWRITE_EN); 1601 1602 /* 1603 * Enable Rx and Tx MACs. 1604 */ 1605 val = AE_READ_4(sc, AE_MAC_REG); 1606 val |= AE_MAC_TX_EN | AE_MAC_RX_EN; 1607 AE_WRITE_4(sc, AE_MAC_REG, val); 1608 } 1609 AE_UNLOCK(sc); 1610 } 1611 1612 static void 1613 ae_stop_rxmac(ae_softc_t *sc) 1614 { 1615 uint32_t val; 1616 int i; 1617 1618 AE_LOCK_ASSERT(sc); 1619 1620 /* 1621 * Stop Rx MAC engine. 1622 */ 1623 val = AE_READ_4(sc, AE_MAC_REG); 1624 if ((val & AE_MAC_RX_EN) != 0) { 1625 val &= ~AE_MAC_RX_EN; 1626 AE_WRITE_4(sc, AE_MAC_REG, val); 1627 } 1628 1629 /* 1630 * Stop Rx DMA engine. 1631 */ 1632 if (AE_READ_1(sc, AE_DMAWRITE_REG) == AE_DMAWRITE_EN) 1633 AE_WRITE_1(sc, AE_DMAWRITE_REG, 0); 1634 1635 /* 1636 * Wait for IDLE state. 1637 */ 1638 for (i = 0; i < AE_IDLE_TIMEOUT; i++) { 1639 val = AE_READ_4(sc, AE_IDLE_REG); 1640 if ((val & (AE_IDLE_RXMAC | AE_IDLE_DMAWRITE)) == 0) 1641 break; 1642 DELAY(100); 1643 } 1644 if (i == AE_IDLE_TIMEOUT) 1645 device_printf(sc->dev, "timed out while stopping Rx MAC.\n"); 1646 } 1647 1648 static void 1649 ae_stop_txmac(ae_softc_t *sc) 1650 { 1651 uint32_t val; 1652 int i; 1653 1654 AE_LOCK_ASSERT(sc); 1655 1656 /* 1657 * Stop Tx MAC engine. 1658 */ 1659 val = AE_READ_4(sc, AE_MAC_REG); 1660 if ((val & AE_MAC_TX_EN) != 0) { 1661 val &= ~AE_MAC_TX_EN; 1662 AE_WRITE_4(sc, AE_MAC_REG, val); 1663 } 1664 1665 /* 1666 * Stop Tx DMA engine. 1667 */ 1668 if (AE_READ_1(sc, AE_DMAREAD_REG) == AE_DMAREAD_EN) 1669 AE_WRITE_1(sc, AE_DMAREAD_REG, 0); 1670 1671 /* 1672 * Wait for IDLE state. 1673 */ 1674 for (i = 0; i < AE_IDLE_TIMEOUT; i++) { 1675 val = AE_READ_4(sc, AE_IDLE_REG); 1676 if ((val & (AE_IDLE_TXMAC | AE_IDLE_DMAREAD)) == 0) 1677 break; 1678 DELAY(100); 1679 } 1680 if (i == AE_IDLE_TIMEOUT) 1681 device_printf(sc->dev, "timed out while stopping Tx MAC.\n"); 1682 } 1683 1684 static void 1685 ae_mac_config(ae_softc_t *sc) 1686 { 1687 struct mii_data *mii; 1688 uint32_t val; 1689 1690 AE_LOCK_ASSERT(sc); 1691 1692 mii = device_get_softc(sc->miibus); 1693 val = AE_READ_4(sc, AE_MAC_REG); 1694 val &= ~AE_MAC_FULL_DUPLEX; 1695 /* XXX disable AE_MAC_TX_FLOW_EN? */ 1696 1697 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) 1698 val |= AE_MAC_FULL_DUPLEX; 1699 1700 AE_WRITE_4(sc, AE_MAC_REG, val); 1701 } 1702 1703 static int 1704 ae_intr(void *arg) 1705 { 1706 ae_softc_t *sc; 1707 uint32_t val; 1708 1709 sc = (ae_softc_t *)arg; 1710 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__)); 1711 1712 val = AE_READ_4(sc, AE_ISR_REG); 1713 if (val == 0 || (val & AE_IMR_DEFAULT) == 0) 1714 return (FILTER_STRAY); 1715 1716 /* Disable interrupts. */ 1717 AE_WRITE_4(sc, AE_ISR_REG, AE_ISR_DISABLE); 1718 1719 /* Schedule interrupt processing. */ 1720 taskqueue_enqueue(sc->tq, &sc->int_task); 1721 1722 return (FILTER_HANDLED); 1723 } 1724 1725 static void 1726 ae_int_task(void *arg, int pending) 1727 { 1728 ae_softc_t *sc; 1729 if_t ifp; 1730 uint32_t val; 1731 1732 sc = (ae_softc_t *)arg; 1733 1734 AE_LOCK(sc); 1735 1736 ifp = sc->ifp; 1737 1738 val = AE_READ_4(sc, AE_ISR_REG); /* Read interrupt status. */ 1739 if (val == 0) { 1740 AE_UNLOCK(sc); 1741 return; 1742 } 1743 1744 /* 1745 * Clear interrupts and disable them. 1746 */ 1747 AE_WRITE_4(sc, AE_ISR_REG, val | AE_ISR_DISABLE); 1748 1749 #ifdef AE_DEBUG 1750 if_printf(ifp, "Interrupt received: 0x%08x\n", val); 1751 #endif 1752 1753 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) { 1754 if ((val & (AE_ISR_DMAR_TIMEOUT | AE_ISR_DMAW_TIMEOUT | 1755 AE_ISR_PHY_LINKDOWN)) != 0) { 1756 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 1757 ae_init_locked(sc); 1758 AE_UNLOCK(sc); 1759 return; 1760 } 1761 if ((val & AE_ISR_TX_EVENT) != 0) 1762 ae_tx_intr(sc); 1763 if ((val & AE_ISR_RX_EVENT) != 0) 1764 ae_rx_intr(sc); 1765 /* 1766 * Re-enable interrupts. 1767 */ 1768 AE_WRITE_4(sc, AE_ISR_REG, 0); 1769 1770 if ((sc->flags & AE_FLAG_TXAVAIL) != 0) { 1771 if (!if_sendq_empty(ifp)) 1772 ae_start_locked(ifp); 1773 } 1774 } 1775 1776 AE_UNLOCK(sc); 1777 } 1778 1779 static void 1780 ae_tx_intr(ae_softc_t *sc) 1781 { 1782 if_t ifp; 1783 ae_txd_t *txd; 1784 ae_txs_t *txs; 1785 uint16_t flags; 1786 1787 AE_LOCK_ASSERT(sc); 1788 1789 ifp = sc->ifp; 1790 1791 #ifdef AE_DEBUG 1792 if_printf(ifp, "Tx interrupt occuried.\n"); 1793 #endif 1794 1795 /* 1796 * Syncronize DMA buffers. 1797 */ 1798 bus_dmamap_sync(sc->dma_txd_tag, sc->dma_txd_map, 1799 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1800 bus_dmamap_sync(sc->dma_txs_tag, sc->dma_txs_map, 1801 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1802 1803 for (;;) { 1804 txs = sc->txs_base + sc->txs_ack; 1805 flags = le16toh(txs->flags); 1806 if ((flags & AE_TXS_UPDATE) == 0) 1807 break; 1808 txs->flags = htole16(flags & ~AE_TXS_UPDATE); 1809 /* Update stats. */ 1810 ae_update_stats_tx(flags, &sc->stats); 1811 1812 /* 1813 * Update TxS position. 1814 */ 1815 sc->txs_ack = (sc->txs_ack + 1) % AE_TXS_COUNT_DEFAULT; 1816 sc->flags |= AE_FLAG_TXAVAIL; 1817 1818 txd = (ae_txd_t *)(sc->txd_base + sc->txd_ack); 1819 if (txs->len != txd->len) 1820 device_printf(sc->dev, "Size mismatch: TxS:%d TxD:%d\n", 1821 le16toh(txs->len), le16toh(txd->len)); 1822 1823 /* 1824 * Move txd ack and align on 4-byte boundary. 1825 */ 1826 sc->txd_ack = ((sc->txd_ack + le16toh(txd->len) + 1827 sizeof(ae_txs_t) + 3) & ~3) % AE_TXD_BUFSIZE_DEFAULT; 1828 1829 if ((flags & AE_TXS_SUCCESS) != 0) 1830 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 1831 else 1832 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 1833 1834 sc->tx_inproc--; 1835 } 1836 1837 if ((sc->flags & AE_FLAG_TXAVAIL) != 0) 1838 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE); 1839 if (sc->tx_inproc < 0) { 1840 if_printf(ifp, "Received stray Tx interrupt(s).\n"); 1841 sc->tx_inproc = 0; 1842 } 1843 1844 if (sc->tx_inproc == 0) 1845 sc->wd_timer = 0; /* Unarm watchdog. */ 1846 1847 /* 1848 * Syncronize DMA buffers. 1849 */ 1850 bus_dmamap_sync(sc->dma_txd_tag, sc->dma_txd_map, 1851 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1852 bus_dmamap_sync(sc->dma_txs_tag, sc->dma_txs_map, 1853 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1854 } 1855 1856 static void 1857 ae_rxeof(ae_softc_t *sc, ae_rxd_t *rxd) 1858 { 1859 if_t ifp; 1860 struct mbuf *m; 1861 unsigned int size; 1862 uint16_t flags; 1863 1864 AE_LOCK_ASSERT(sc); 1865 1866 ifp = sc->ifp; 1867 flags = le16toh(rxd->flags); 1868 1869 #ifdef AE_DEBUG 1870 if_printf(ifp, "Rx interrupt occuried.\n"); 1871 #endif 1872 size = le16toh(rxd->len) - ETHER_CRC_LEN; 1873 if (size < (ETHER_MIN_LEN - ETHER_CRC_LEN - ETHER_VLAN_ENCAP_LEN)) { 1874 if_printf(ifp, "Runt frame received."); 1875 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 1876 return; 1877 } 1878 1879 m = m_devget(&rxd->data[0], size, ETHER_ALIGN, ifp, NULL); 1880 if (m == NULL) { 1881 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); 1882 return; 1883 } 1884 1885 if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0 && 1886 (flags & AE_RXD_HAS_VLAN) != 0) { 1887 m->m_pkthdr.ether_vtag = AE_RXD_VLAN(le16toh(rxd->vlan)); 1888 m->m_flags |= M_VLANTAG; 1889 } 1890 1891 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 1892 /* 1893 * Pass it through. 1894 */ 1895 AE_UNLOCK(sc); 1896 if_input(ifp, m); 1897 AE_LOCK(sc); 1898 } 1899 1900 static void 1901 ae_rx_intr(ae_softc_t *sc) 1902 { 1903 ae_rxd_t *rxd; 1904 if_t ifp; 1905 uint16_t flags; 1906 int count; 1907 1908 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL!", __LINE__)); 1909 1910 AE_LOCK_ASSERT(sc); 1911 1912 ifp = sc->ifp; 1913 1914 /* 1915 * Syncronize DMA buffers. 1916 */ 1917 bus_dmamap_sync(sc->dma_rxd_tag, sc->dma_rxd_map, 1918 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1919 1920 for (count = 0;; count++) { 1921 rxd = (ae_rxd_t *)(sc->rxd_base + sc->rxd_cur); 1922 flags = le16toh(rxd->flags); 1923 if ((flags & AE_RXD_UPDATE) == 0) 1924 break; 1925 rxd->flags = htole16(flags & ~AE_RXD_UPDATE); 1926 /* Update stats. */ 1927 ae_update_stats_rx(flags, &sc->stats); 1928 1929 /* 1930 * Update position index. 1931 */ 1932 sc->rxd_cur = (sc->rxd_cur + 1) % AE_RXD_COUNT_DEFAULT; 1933 1934 if ((flags & AE_RXD_SUCCESS) != 0) 1935 ae_rxeof(sc, rxd); 1936 else 1937 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 1938 } 1939 1940 if (count > 0) { 1941 bus_dmamap_sync(sc->dma_rxd_tag, sc->dma_rxd_map, 1942 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1943 /* 1944 * Update Rx index. 1945 */ 1946 AE_WRITE_2(sc, AE_MB_RXD_IDX_REG, sc->rxd_cur); 1947 } 1948 } 1949 1950 static void 1951 ae_watchdog(ae_softc_t *sc) 1952 { 1953 if_t ifp; 1954 1955 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL!", __LINE__)); 1956 AE_LOCK_ASSERT(sc); 1957 ifp = sc->ifp; 1958 1959 if (sc->wd_timer == 0 || --sc->wd_timer != 0) 1960 return; /* Noting to do. */ 1961 1962 if ((sc->flags & AE_FLAG_LINK) == 0) 1963 if_printf(ifp, "watchdog timeout (missed link).\n"); 1964 else 1965 if_printf(ifp, "watchdog timeout - resetting.\n"); 1966 1967 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 1968 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 1969 ae_init_locked(sc); 1970 if (!if_sendq_empty(ifp)) 1971 ae_start_locked(ifp); 1972 } 1973 1974 static void 1975 ae_tick(void *arg) 1976 { 1977 ae_softc_t *sc; 1978 struct mii_data *mii; 1979 1980 sc = (ae_softc_t *)arg; 1981 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL!", __LINE__)); 1982 AE_LOCK_ASSERT(sc); 1983 1984 mii = device_get_softc(sc->miibus); 1985 mii_tick(mii); 1986 ae_watchdog(sc); /* Watchdog check. */ 1987 callout_reset(&sc->tick_ch, hz, ae_tick, sc); 1988 } 1989 1990 static void 1991 ae_rxvlan(ae_softc_t *sc) 1992 { 1993 if_t ifp; 1994 uint32_t val; 1995 1996 AE_LOCK_ASSERT(sc); 1997 ifp = sc->ifp; 1998 val = AE_READ_4(sc, AE_MAC_REG); 1999 val &= ~AE_MAC_RMVLAN_EN; 2000 if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0) 2001 val |= AE_MAC_RMVLAN_EN; 2002 AE_WRITE_4(sc, AE_MAC_REG, val); 2003 } 2004 2005 static u_int 2006 ae_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 2007 { 2008 uint32_t crc, *mchash = arg; 2009 2010 crc = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN); 2011 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f); 2012 2013 return (1); 2014 } 2015 2016 static void 2017 ae_rxfilter(ae_softc_t *sc) 2018 { 2019 if_t ifp; 2020 uint32_t mchash[2]; 2021 uint32_t rxcfg; 2022 2023 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL!", __LINE__)); 2024 2025 AE_LOCK_ASSERT(sc); 2026 2027 ifp = sc->ifp; 2028 2029 rxcfg = AE_READ_4(sc, AE_MAC_REG); 2030 rxcfg &= ~(AE_MAC_MCAST_EN | AE_MAC_BCAST_EN | AE_MAC_PROMISC_EN); 2031 2032 if ((if_getflags(ifp) & IFF_BROADCAST) != 0) 2033 rxcfg |= AE_MAC_BCAST_EN; 2034 if ((if_getflags(ifp) & IFF_PROMISC) != 0) 2035 rxcfg |= AE_MAC_PROMISC_EN; 2036 if ((if_getflags(ifp) & IFF_ALLMULTI) != 0) 2037 rxcfg |= AE_MAC_MCAST_EN; 2038 2039 /* 2040 * Wipe old settings. 2041 */ 2042 AE_WRITE_4(sc, AE_REG_MHT0, 0); 2043 AE_WRITE_4(sc, AE_REG_MHT1, 0); 2044 if ((if_getflags(ifp) & (IFF_PROMISC | IFF_ALLMULTI)) != 0) { 2045 AE_WRITE_4(sc, AE_REG_MHT0, 0xffffffff); 2046 AE_WRITE_4(sc, AE_REG_MHT1, 0xffffffff); 2047 AE_WRITE_4(sc, AE_MAC_REG, rxcfg); 2048 return; 2049 } 2050 2051 /* 2052 * Load multicast tables. 2053 */ 2054 bzero(mchash, sizeof(mchash)); 2055 if_foreach_llmaddr(ifp, ae_hash_maddr, &mchash); 2056 AE_WRITE_4(sc, AE_REG_MHT0, mchash[0]); 2057 AE_WRITE_4(sc, AE_REG_MHT1, mchash[1]); 2058 AE_WRITE_4(sc, AE_MAC_REG, rxcfg); 2059 } 2060 2061 static int 2062 ae_ioctl(if_t ifp, u_long cmd, caddr_t data) 2063 { 2064 struct ae_softc *sc; 2065 struct ifreq *ifr; 2066 struct mii_data *mii; 2067 int error, mask; 2068 2069 sc = if_getsoftc(ifp); 2070 ifr = (struct ifreq *)data; 2071 error = 0; 2072 2073 switch (cmd) { 2074 case SIOCSIFMTU: 2075 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU) 2076 error = EINVAL; 2077 else if (if_getmtu(ifp) != ifr->ifr_mtu) { 2078 AE_LOCK(sc); 2079 if_setmtu(ifp, ifr->ifr_mtu); 2080 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) { 2081 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 2082 ae_init_locked(sc); 2083 } 2084 AE_UNLOCK(sc); 2085 } 2086 break; 2087 case SIOCSIFFLAGS: 2088 AE_LOCK(sc); 2089 if ((if_getflags(ifp) & IFF_UP) != 0) { 2090 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) { 2091 if (((if_getflags(ifp) ^ sc->if_flags) 2092 & (IFF_PROMISC | IFF_ALLMULTI)) != 0) 2093 ae_rxfilter(sc); 2094 } else { 2095 if ((sc->flags & AE_FLAG_DETACH) == 0) 2096 ae_init_locked(sc); 2097 } 2098 } else { 2099 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) 2100 ae_stop(sc); 2101 } 2102 sc->if_flags = if_getflags(ifp); 2103 AE_UNLOCK(sc); 2104 break; 2105 case SIOCADDMULTI: 2106 case SIOCDELMULTI: 2107 AE_LOCK(sc); 2108 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) 2109 ae_rxfilter(sc); 2110 AE_UNLOCK(sc); 2111 break; 2112 case SIOCSIFMEDIA: 2113 case SIOCGIFMEDIA: 2114 mii = device_get_softc(sc->miibus); 2115 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd); 2116 break; 2117 case SIOCSIFCAP: 2118 AE_LOCK(sc); 2119 mask = ifr->ifr_reqcap ^ if_getcapenable(ifp); 2120 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 && 2121 (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) { 2122 if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING); 2123 ae_rxvlan(sc); 2124 } 2125 VLAN_CAPABILITIES(ifp); 2126 AE_UNLOCK(sc); 2127 break; 2128 default: 2129 error = ether_ioctl(ifp, cmd, data); 2130 break; 2131 } 2132 return (error); 2133 } 2134 2135 static void 2136 ae_stop(ae_softc_t *sc) 2137 { 2138 if_t ifp; 2139 int i; 2140 2141 AE_LOCK_ASSERT(sc); 2142 2143 ifp = sc->ifp; 2144 if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)); 2145 sc->flags &= ~AE_FLAG_LINK; 2146 sc->wd_timer = 0; /* Cancel watchdog. */ 2147 callout_stop(&sc->tick_ch); 2148 2149 /* 2150 * Clear and disable interrupts. 2151 */ 2152 AE_WRITE_4(sc, AE_IMR_REG, 0); 2153 AE_WRITE_4(sc, AE_ISR_REG, 0xffffffff); 2154 2155 /* 2156 * Stop Rx/Tx MACs. 2157 */ 2158 ae_stop_txmac(sc); 2159 ae_stop_rxmac(sc); 2160 2161 /* 2162 * Stop DMA engines. 2163 */ 2164 AE_WRITE_1(sc, AE_DMAREAD_REG, ~AE_DMAREAD_EN); 2165 AE_WRITE_1(sc, AE_DMAWRITE_REG, ~AE_DMAWRITE_EN); 2166 2167 /* 2168 * Wait for everything to enter idle state. 2169 */ 2170 for (i = 0; i < AE_IDLE_TIMEOUT; i++) { 2171 if (AE_READ_4(sc, AE_IDLE_REG) == 0) 2172 break; 2173 DELAY(100); 2174 } 2175 if (i == AE_IDLE_TIMEOUT) 2176 device_printf(sc->dev, "could not enter idle state in stop.\n"); 2177 } 2178 2179 static void 2180 ae_update_stats_tx(uint16_t flags, ae_stats_t *stats) 2181 { 2182 2183 if ((flags & AE_TXS_BCAST) != 0) 2184 stats->tx_bcast++; 2185 if ((flags & AE_TXS_MCAST) != 0) 2186 stats->tx_mcast++; 2187 if ((flags & AE_TXS_PAUSE) != 0) 2188 stats->tx_pause++; 2189 if ((flags & AE_TXS_CTRL) != 0) 2190 stats->tx_ctrl++; 2191 if ((flags & AE_TXS_DEFER) != 0) 2192 stats->tx_defer++; 2193 if ((flags & AE_TXS_EXCDEFER) != 0) 2194 stats->tx_excdefer++; 2195 if ((flags & AE_TXS_SINGLECOL) != 0) 2196 stats->tx_singlecol++; 2197 if ((flags & AE_TXS_MULTICOL) != 0) 2198 stats->tx_multicol++; 2199 if ((flags & AE_TXS_LATECOL) != 0) 2200 stats->tx_latecol++; 2201 if ((flags & AE_TXS_ABORTCOL) != 0) 2202 stats->tx_abortcol++; 2203 if ((flags & AE_TXS_UNDERRUN) != 0) 2204 stats->tx_underrun++; 2205 } 2206 2207 static void 2208 ae_update_stats_rx(uint16_t flags, ae_stats_t *stats) 2209 { 2210 2211 if ((flags & AE_RXD_BCAST) != 0) 2212 stats->rx_bcast++; 2213 if ((flags & AE_RXD_MCAST) != 0) 2214 stats->rx_mcast++; 2215 if ((flags & AE_RXD_PAUSE) != 0) 2216 stats->rx_pause++; 2217 if ((flags & AE_RXD_CTRL) != 0) 2218 stats->rx_ctrl++; 2219 if ((flags & AE_RXD_CRCERR) != 0) 2220 stats->rx_crcerr++; 2221 if ((flags & AE_RXD_CODEERR) != 0) 2222 stats->rx_codeerr++; 2223 if ((flags & AE_RXD_RUNT) != 0) 2224 stats->rx_runt++; 2225 if ((flags & AE_RXD_FRAG) != 0) 2226 stats->rx_frag++; 2227 if ((flags & AE_RXD_TRUNC) != 0) 2228 stats->rx_trunc++; 2229 if ((flags & AE_RXD_ALIGN) != 0) 2230 stats->rx_align++; 2231 } 2232