xref: /freebsd/sys/dev/ae/if_ae.c (revision d5b0e70f7e04d971691517ce1304d86a1e367e2e)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2008 Stanislav Sedov <stas@FreeBSD.org>.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  *
27  * Driver for Attansic Technology Corp. L2 FastEthernet adapter.
28  *
29  * This driver is heavily based on age(4) Attansic L1 driver by Pyun YongHyeon.
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/bus.h>
38 #include <sys/endian.h>
39 #include <sys/kernel.h>
40 #include <sys/lock.h>
41 #include <sys/malloc.h>
42 #include <sys/mbuf.h>
43 #include <sys/mutex.h>
44 #include <sys/rman.h>
45 #include <sys/module.h>
46 #include <sys/queue.h>
47 #include <sys/socket.h>
48 #include <sys/sockio.h>
49 #include <sys/sysctl.h>
50 #include <sys/taskqueue.h>
51 
52 #include <net/bpf.h>
53 #include <net/if.h>
54 #include <net/if_var.h>
55 #include <net/if_arp.h>
56 #include <net/ethernet.h>
57 #include <net/if_dl.h>
58 #include <net/if_media.h>
59 #include <net/if_types.h>
60 #include <net/if_vlan_var.h>
61 
62 #include <netinet/in.h>
63 #include <netinet/in_systm.h>
64 #include <netinet/ip.h>
65 #include <netinet/tcp.h>
66 
67 #include <dev/mii/mii.h>
68 #include <dev/mii/miivar.h>
69 #include <dev/pci/pcireg.h>
70 #include <dev/pci/pcivar.h>
71 
72 #include <machine/bus.h>
73 
74 #include "miibus_if.h"
75 
76 #include "if_aereg.h"
77 #include "if_aevar.h"
78 
79 /*
80  * Devices supported by this driver.
81  */
82 static struct ae_dev {
83 	uint16_t	vendorid;
84 	uint16_t	deviceid;
85 	const char	*name;
86 } ae_devs[] = {
87 	{ VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L2,
88 		"Attansic Technology Corp, L2 FastEthernet" },
89 };
90 #define	AE_DEVS_COUNT nitems(ae_devs)
91 
92 static struct resource_spec ae_res_spec_mem[] = {
93 	{ SYS_RES_MEMORY,       PCIR_BAR(0),    RF_ACTIVE },
94 	{ -1,			0,		0 }
95 };
96 static struct resource_spec ae_res_spec_irq[] = {
97 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
98 	{ -1,			0,		0 }
99 };
100 static struct resource_spec ae_res_spec_msi[] = {
101 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
102 	{ -1,			0,		0 }
103 };
104 
105 static int	ae_probe(device_t dev);
106 static int	ae_attach(device_t dev);
107 static void	ae_pcie_init(ae_softc_t *sc);
108 static void	ae_phy_reset(ae_softc_t *sc);
109 static void	ae_phy_init(ae_softc_t *sc);
110 static int	ae_reset(ae_softc_t *sc);
111 static void	ae_init(void *arg);
112 static int	ae_init_locked(ae_softc_t *sc);
113 static int	ae_detach(device_t dev);
114 static int	ae_miibus_readreg(device_t dev, int phy, int reg);
115 static int	ae_miibus_writereg(device_t dev, int phy, int reg, int val);
116 static void	ae_miibus_statchg(device_t dev);
117 static void	ae_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr);
118 static int	ae_mediachange(struct ifnet *ifp);
119 static void	ae_retrieve_address(ae_softc_t *sc);
120 static void	ae_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs,
121     int error);
122 static int	ae_alloc_rings(ae_softc_t *sc);
123 static void	ae_dma_free(ae_softc_t *sc);
124 static int	ae_shutdown(device_t dev);
125 static int	ae_suspend(device_t dev);
126 static void	ae_powersave_disable(ae_softc_t *sc);
127 static void	ae_powersave_enable(ae_softc_t *sc);
128 static int	ae_resume(device_t dev);
129 static unsigned int	ae_tx_avail_size(ae_softc_t *sc);
130 static int	ae_encap(ae_softc_t *sc, struct mbuf **m_head);
131 static void	ae_start(struct ifnet *ifp);
132 static void	ae_start_locked(struct ifnet *ifp);
133 static void	ae_link_task(void *arg, int pending);
134 static void	ae_stop_rxmac(ae_softc_t *sc);
135 static void	ae_stop_txmac(ae_softc_t *sc);
136 static void	ae_mac_config(ae_softc_t *sc);
137 static int	ae_intr(void *arg);
138 static void	ae_int_task(void *arg, int pending);
139 static void	ae_tx_intr(ae_softc_t *sc);
140 static void	ae_rxeof(ae_softc_t *sc, ae_rxd_t *rxd);
141 static void	ae_rx_intr(ae_softc_t *sc);
142 static void	ae_watchdog(ae_softc_t *sc);
143 static void	ae_tick(void *arg);
144 static void	ae_rxfilter(ae_softc_t *sc);
145 static void	ae_rxvlan(ae_softc_t *sc);
146 static int	ae_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data);
147 static void	ae_stop(ae_softc_t *sc);
148 static int	ae_check_eeprom_present(ae_softc_t *sc, int *vpdc);
149 static int	ae_vpd_read_word(ae_softc_t *sc, int reg, uint32_t *word);
150 static int	ae_get_vpd_eaddr(ae_softc_t *sc, uint32_t *eaddr);
151 static int	ae_get_reg_eaddr(ae_softc_t *sc, uint32_t *eaddr);
152 static void	ae_update_stats_rx(uint16_t flags, ae_stats_t *stats);
153 static void	ae_update_stats_tx(uint16_t flags, ae_stats_t *stats);
154 static void	ae_init_tunables(ae_softc_t *sc);
155 
156 static device_method_t ae_methods[] = {
157 	/* Device interface. */
158 	DEVMETHOD(device_probe,		ae_probe),
159 	DEVMETHOD(device_attach,	ae_attach),
160 	DEVMETHOD(device_detach,	ae_detach),
161 	DEVMETHOD(device_shutdown,	ae_shutdown),
162 	DEVMETHOD(device_suspend,	ae_suspend),
163 	DEVMETHOD(device_resume,	ae_resume),
164 
165 	/* MII interface. */
166 	DEVMETHOD(miibus_readreg,	ae_miibus_readreg),
167 	DEVMETHOD(miibus_writereg,	ae_miibus_writereg),
168 	DEVMETHOD(miibus_statchg,	ae_miibus_statchg),
169 	{ NULL, NULL }
170 };
171 static driver_t ae_driver = {
172         "ae",
173         ae_methods,
174         sizeof(ae_softc_t)
175 };
176 
177 DRIVER_MODULE(ae, pci, ae_driver, 0, 0);
178 MODULE_PNP_INFO("U16:vendor;U16:device;D:#", pci, ae, ae_devs,
179     nitems(ae_devs));
180 DRIVER_MODULE(miibus, ae, miibus_driver, 0, 0);
181 MODULE_DEPEND(ae, pci, 1, 1, 1);
182 MODULE_DEPEND(ae, ether, 1, 1, 1);
183 MODULE_DEPEND(ae, miibus, 1, 1, 1);
184 
185 /*
186  * Tunables.
187  */
188 static int msi_disable = 0;
189 TUNABLE_INT("hw.ae.msi_disable", &msi_disable);
190 
191 #define	AE_READ_4(sc, reg) \
192 	bus_read_4((sc)->mem[0], (reg))
193 #define	AE_READ_2(sc, reg) \
194 	bus_read_2((sc)->mem[0], (reg))
195 #define	AE_READ_1(sc, reg) \
196 	bus_read_1((sc)->mem[0], (reg))
197 #define	AE_WRITE_4(sc, reg, val) \
198 	bus_write_4((sc)->mem[0], (reg), (val))
199 #define	AE_WRITE_2(sc, reg, val) \
200 	bus_write_2((sc)->mem[0], (reg), (val))
201 #define	AE_WRITE_1(sc, reg, val) \
202 	bus_write_1((sc)->mem[0], (reg), (val))
203 #define	AE_PHY_READ(sc, reg) \
204 	ae_miibus_readreg(sc->dev, 0, reg)
205 #define	AE_PHY_WRITE(sc, reg, val) \
206 	ae_miibus_writereg(sc->dev, 0, reg, val)
207 #define	AE_CHECK_EADDR_VALID(eaddr) \
208 	((eaddr[0] == 0 && eaddr[1] == 0) || \
209 	(eaddr[0] == 0xffffffff && eaddr[1] == 0xffff))
210 #define	AE_RXD_VLAN(vtag) \
211 	(((vtag) >> 4) | (((vtag) & 0x07) << 13) | (((vtag) & 0x08) << 9))
212 #define	AE_TXD_VLAN(vtag) \
213 	(((vtag) << 4) | (((vtag) >> 13) & 0x07) | (((vtag) >> 9) & 0x08))
214 
215 static int
216 ae_probe(device_t dev)
217 {
218 	uint16_t deviceid, vendorid;
219 	int i;
220 
221 	vendorid = pci_get_vendor(dev);
222 	deviceid = pci_get_device(dev);
223 
224 	/*
225 	 * Search through the list of supported devs for matching one.
226 	 */
227 	for (i = 0; i < AE_DEVS_COUNT; i++) {
228 		if (vendorid == ae_devs[i].vendorid &&
229 		    deviceid == ae_devs[i].deviceid) {
230 			device_set_desc(dev, ae_devs[i].name);
231 			return (BUS_PROBE_DEFAULT);
232 		}
233 	}
234 	return (ENXIO);
235 }
236 
237 static int
238 ae_attach(device_t dev)
239 {
240 	ae_softc_t *sc;
241 	struct ifnet *ifp;
242 	uint8_t chiprev;
243 	uint32_t pcirev;
244 	int nmsi, pmc;
245 	int error;
246 
247 	sc = device_get_softc(dev); /* Automatically allocated and zeroed
248 				       on attach. */
249 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
250 	sc->dev = dev;
251 
252 	/*
253 	 * Initialize mutexes and tasks.
254 	 */
255 	mtx_init(&sc->mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF);
256 	callout_init_mtx(&sc->tick_ch, &sc->mtx, 0);
257 	TASK_INIT(&sc->int_task, 0, ae_int_task, sc);
258 	TASK_INIT(&sc->link_task, 0, ae_link_task, sc);
259 
260 	pci_enable_busmaster(dev);		/* Enable bus mastering. */
261 
262 	sc->spec_mem = ae_res_spec_mem;
263 
264 	/*
265 	 * Allocate memory-mapped registers.
266 	 */
267 	error = bus_alloc_resources(dev, sc->spec_mem, sc->mem);
268 	if (error != 0) {
269 		device_printf(dev, "could not allocate memory resources.\n");
270 		sc->spec_mem = NULL;
271 		goto fail;
272 	}
273 
274 	/*
275 	 * Retrieve PCI and chip revisions.
276 	 */
277 	pcirev = pci_get_revid(dev);
278 	chiprev = (AE_READ_4(sc, AE_MASTER_REG) >> AE_MASTER_REVNUM_SHIFT) &
279 	    AE_MASTER_REVNUM_MASK;
280 	if (bootverbose) {
281 		device_printf(dev, "pci device revision: %#04x\n", pcirev);
282 		device_printf(dev, "chip id: %#02x\n", chiprev);
283 	}
284 	nmsi = pci_msi_count(dev);
285 	if (bootverbose)
286 		device_printf(dev, "MSI count: %d.\n", nmsi);
287 
288 	/*
289 	 * Allocate interrupt resources.
290 	 */
291 	if (msi_disable == 0 && nmsi == 1) {
292 		error = pci_alloc_msi(dev, &nmsi);
293 		if (error == 0) {
294 			device_printf(dev, "Using MSI messages.\n");
295 			sc->spec_irq = ae_res_spec_msi;
296 			error = bus_alloc_resources(dev, sc->spec_irq, sc->irq);
297 			if (error != 0) {
298 				device_printf(dev, "MSI allocation failed.\n");
299 				sc->spec_irq = NULL;
300 				pci_release_msi(dev);
301 			} else {
302 				sc->flags |= AE_FLAG_MSI;
303 			}
304 		}
305 	}
306 	if (sc->spec_irq == NULL) {
307 		sc->spec_irq = ae_res_spec_irq;
308 		error = bus_alloc_resources(dev, sc->spec_irq, sc->irq);
309 		if (error != 0) {
310 			device_printf(dev, "could not allocate IRQ resources.\n");
311 			sc->spec_irq = NULL;
312 			goto fail;
313 		}
314 	}
315 
316 	ae_init_tunables(sc);
317 
318 	ae_phy_reset(sc);		/* Reset PHY. */
319 	error = ae_reset(sc);		/* Reset the controller itself. */
320 	if (error != 0)
321 		goto fail;
322 
323 	ae_pcie_init(sc);
324 
325 	ae_retrieve_address(sc);	/* Load MAC address. */
326 
327 	error = ae_alloc_rings(sc);	/* Allocate ring buffers. */
328 	if (error != 0)
329 		goto fail;
330 
331 	ifp = sc->ifp = if_alloc(IFT_ETHER);
332 	if (ifp == NULL) {
333 		device_printf(dev, "could not allocate ifnet structure.\n");
334 		error = ENXIO;
335 		goto fail;
336 	}
337 
338 	ifp->if_softc = sc;
339 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
340 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
341 	ifp->if_ioctl = ae_ioctl;
342 	ifp->if_start = ae_start;
343 	ifp->if_init = ae_init;
344 	ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
345 	ifp->if_hwassist = 0;
346 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
347 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
348 	IFQ_SET_READY(&ifp->if_snd);
349 	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) {
350 		ifp->if_capabilities |= IFCAP_WOL_MAGIC;
351 		sc->flags |= AE_FLAG_PMG;
352 	}
353 	ifp->if_capenable = ifp->if_capabilities;
354 
355 	/*
356 	 * Configure and attach MII bus.
357 	 */
358 	error = mii_attach(dev, &sc->miibus, ifp, ae_mediachange,
359 	    ae_mediastatus, BMSR_DEFCAPMASK, AE_PHYADDR_DEFAULT,
360 	    MII_OFFSET_ANY, 0);
361 	if (error != 0) {
362 		device_printf(dev, "attaching PHYs failed\n");
363 		goto fail;
364 	}
365 
366 	ether_ifattach(ifp, sc->eaddr);
367 	/* Tell the upper layer(s) we support long frames. */
368 	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
369 
370 	/*
371 	 * Create and run all helper tasks.
372 	 */
373 	sc->tq = taskqueue_create_fast("ae_taskq", M_WAITOK,
374             taskqueue_thread_enqueue, &sc->tq);
375 	if (sc->tq == NULL) {
376 		device_printf(dev, "could not create taskqueue.\n");
377 		ether_ifdetach(ifp);
378 		error = ENXIO;
379 		goto fail;
380 	}
381 	taskqueue_start_threads(&sc->tq, 1, PI_NET, "%s taskq",
382 	    device_get_nameunit(sc->dev));
383 
384 	/*
385 	 * Configure interrupt handlers.
386 	 */
387 	error = bus_setup_intr(dev, sc->irq[0], INTR_TYPE_NET | INTR_MPSAFE,
388 	    ae_intr, NULL, sc, &sc->intrhand);
389 	if (error != 0) {
390 		device_printf(dev, "could not set up interrupt handler.\n");
391 		taskqueue_free(sc->tq);
392 		sc->tq = NULL;
393 		ether_ifdetach(ifp);
394 		goto fail;
395 	}
396 
397 fail:
398 	if (error != 0)
399 		ae_detach(dev);
400 
401 	return (error);
402 }
403 
404 #define	AE_SYSCTL(stx, parent, name, desc, ptr)	\
405 	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, name, CTLFLAG_RD, ptr, 0, desc)
406 
407 static void
408 ae_init_tunables(ae_softc_t *sc)
409 {
410 	struct sysctl_ctx_list *ctx;
411 	struct sysctl_oid *root, *stats, *stats_rx, *stats_tx;
412 	struct ae_stats *ae_stats;
413 
414 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
415 	ae_stats = &sc->stats;
416 
417 	ctx = device_get_sysctl_ctx(sc->dev);
418 	root = device_get_sysctl_tree(sc->dev);
419 	stats = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(root), OID_AUTO, "stats",
420 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "ae statistics");
421 
422 	/*
423 	 * Receiver statistcics.
424 	 */
425 	stats_rx = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(stats), OID_AUTO, "rx",
426 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Rx MAC statistics");
427 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "bcast",
428 	    "broadcast frames", &ae_stats->rx_bcast);
429 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "mcast",
430 	    "multicast frames", &ae_stats->rx_mcast);
431 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "pause",
432 	    "PAUSE frames", &ae_stats->rx_pause);
433 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "control",
434 	    "control frames", &ae_stats->rx_ctrl);
435 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "crc_errors",
436 	    "frames with CRC errors", &ae_stats->rx_crcerr);
437 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "code_errors",
438 	    "frames with invalid opcode", &ae_stats->rx_codeerr);
439 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "runt",
440 	    "runt frames", &ae_stats->rx_runt);
441 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "frag",
442 	    "fragmented frames", &ae_stats->rx_frag);
443 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "align_errors",
444 	    "frames with alignment errors", &ae_stats->rx_align);
445 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "truncated",
446 	    "frames truncated due to Rx FIFO inderrun", &ae_stats->rx_trunc);
447 
448 	/*
449 	 * Receiver statistcics.
450 	 */
451 	stats_tx = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(stats), OID_AUTO, "tx",
452 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Tx MAC statistics");
453 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "bcast",
454 	    "broadcast frames", &ae_stats->tx_bcast);
455 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "mcast",
456 	    "multicast frames", &ae_stats->tx_mcast);
457 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "pause",
458 	    "PAUSE frames", &ae_stats->tx_pause);
459 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "control",
460 	    "control frames", &ae_stats->tx_ctrl);
461 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "defers",
462 	    "deferrals occuried", &ae_stats->tx_defer);
463 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "exc_defers",
464 	    "excessive deferrals occuried", &ae_stats->tx_excdefer);
465 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "singlecols",
466 	    "single collisions occuried", &ae_stats->tx_singlecol);
467 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "multicols",
468 	    "multiple collisions occuried", &ae_stats->tx_multicol);
469 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "latecols",
470 	    "late collisions occuried", &ae_stats->tx_latecol);
471 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "aborts",
472 	    "transmit aborts due collisions", &ae_stats->tx_abortcol);
473 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "underruns",
474 	    "Tx FIFO underruns", &ae_stats->tx_underrun);
475 }
476 
477 static void
478 ae_pcie_init(ae_softc_t *sc)
479 {
480 
481 	AE_WRITE_4(sc, AE_PCIE_LTSSM_TESTMODE_REG, AE_PCIE_LTSSM_TESTMODE_DEFAULT);
482 	AE_WRITE_4(sc, AE_PCIE_DLL_TX_CTRL_REG, AE_PCIE_DLL_TX_CTRL_DEFAULT);
483 }
484 
485 static void
486 ae_phy_reset(ae_softc_t *sc)
487 {
488 
489 	AE_WRITE_4(sc, AE_PHY_ENABLE_REG, AE_PHY_ENABLE);
490 	DELAY(1000);	/* XXX: pause(9) ? */
491 }
492 
493 static int
494 ae_reset(ae_softc_t *sc)
495 {
496 	int i;
497 
498 	/*
499 	 * Issue a soft reset.
500 	 */
501 	AE_WRITE_4(sc, AE_MASTER_REG, AE_MASTER_SOFT_RESET);
502 	bus_barrier(sc->mem[0], AE_MASTER_REG, 4,
503 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
504 
505 	/*
506 	 * Wait for reset to complete.
507 	 */
508 	for (i = 0; i < AE_RESET_TIMEOUT; i++) {
509 		if ((AE_READ_4(sc, AE_MASTER_REG) & AE_MASTER_SOFT_RESET) == 0)
510 			break;
511 		DELAY(10);
512 	}
513 	if (i == AE_RESET_TIMEOUT) {
514 		device_printf(sc->dev, "reset timeout.\n");
515 		return (ENXIO);
516 	}
517 
518 	/*
519 	 * Wait for everything to enter idle state.
520 	 */
521 	for (i = 0; i < AE_IDLE_TIMEOUT; i++) {
522 		if (AE_READ_4(sc, AE_IDLE_REG) == 0)
523 			break;
524 		DELAY(100);
525 	}
526 	if (i == AE_IDLE_TIMEOUT) {
527 		device_printf(sc->dev, "could not enter idle state.\n");
528 		return (ENXIO);
529 	}
530 	return (0);
531 }
532 
533 static void
534 ae_init(void *arg)
535 {
536 	ae_softc_t *sc;
537 
538 	sc = (ae_softc_t *)arg;
539 	AE_LOCK(sc);
540 	ae_init_locked(sc);
541 	AE_UNLOCK(sc);
542 }
543 
544 static void
545 ae_phy_init(ae_softc_t *sc)
546 {
547 
548 	/*
549 	 * Enable link status change interrupt.
550 	 * XXX magic numbers.
551 	 */
552 #ifdef notyet
553 	AE_PHY_WRITE(sc, 18, 0xc00);
554 #endif
555 }
556 
557 static int
558 ae_init_locked(ae_softc_t *sc)
559 {
560 	struct ifnet *ifp;
561 	struct mii_data *mii;
562 	uint8_t eaddr[ETHER_ADDR_LEN];
563 	uint32_t val;
564 	bus_addr_t addr;
565 
566 	AE_LOCK_ASSERT(sc);
567 
568 	ifp = sc->ifp;
569 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
570 		return (0);
571 	mii = device_get_softc(sc->miibus);
572 
573 	ae_stop(sc);
574 	ae_reset(sc);
575 	ae_pcie_init(sc);		/* Initialize PCIE stuff. */
576 	ae_phy_init(sc);
577 	ae_powersave_disable(sc);
578 
579 	/*
580 	 * Clear and disable interrupts.
581 	 */
582 	AE_WRITE_4(sc, AE_ISR_REG, 0xffffffff);
583 
584 	/*
585 	 * Set the MAC address.
586 	 */
587 	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
588 	val = eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5];
589 	AE_WRITE_4(sc, AE_EADDR0_REG, val);
590 	val = eaddr[0] << 8 | eaddr[1];
591 	AE_WRITE_4(sc, AE_EADDR1_REG, val);
592 
593 	bzero(sc->rxd_base_dma, AE_RXD_COUNT_DEFAULT * 1536 + AE_RXD_PADDING);
594 	bzero(sc->txd_base, AE_TXD_BUFSIZE_DEFAULT);
595 	bzero(sc->txs_base, AE_TXS_COUNT_DEFAULT * 4);
596 	/*
597 	 * Set ring buffers base addresses.
598 	 */
599 	addr = sc->dma_rxd_busaddr;
600 	AE_WRITE_4(sc, AE_DESC_ADDR_HI_REG, BUS_ADDR_HI(addr));
601 	AE_WRITE_4(sc, AE_RXD_ADDR_LO_REG, BUS_ADDR_LO(addr));
602 	addr = sc->dma_txd_busaddr;
603 	AE_WRITE_4(sc, AE_TXD_ADDR_LO_REG, BUS_ADDR_LO(addr));
604 	addr = sc->dma_txs_busaddr;
605 	AE_WRITE_4(sc, AE_TXS_ADDR_LO_REG, BUS_ADDR_LO(addr));
606 
607 	/*
608 	 * Configure ring buffers sizes.
609 	 */
610 	AE_WRITE_2(sc, AE_RXD_COUNT_REG, AE_RXD_COUNT_DEFAULT);
611 	AE_WRITE_2(sc, AE_TXD_BUFSIZE_REG, AE_TXD_BUFSIZE_DEFAULT / 4);
612 	AE_WRITE_2(sc, AE_TXS_COUNT_REG, AE_TXS_COUNT_DEFAULT);
613 
614 	/*
615 	 * Configure interframe gap parameters.
616 	 */
617 	val = ((AE_IFG_TXIPG_DEFAULT << AE_IFG_TXIPG_SHIFT) &
618 	    AE_IFG_TXIPG_MASK) |
619 	    ((AE_IFG_RXIPG_DEFAULT << AE_IFG_RXIPG_SHIFT) &
620 	    AE_IFG_RXIPG_MASK) |
621 	    ((AE_IFG_IPGR1_DEFAULT << AE_IFG_IPGR1_SHIFT) &
622 	    AE_IFG_IPGR1_MASK) |
623 	    ((AE_IFG_IPGR2_DEFAULT << AE_IFG_IPGR2_SHIFT) &
624 	    AE_IFG_IPGR2_MASK);
625 	AE_WRITE_4(sc, AE_IFG_REG, val);
626 
627 	/*
628 	 * Configure half-duplex operation.
629 	 */
630 	val = ((AE_HDPX_LCOL_DEFAULT << AE_HDPX_LCOL_SHIFT) &
631 	    AE_HDPX_LCOL_MASK) |
632 	    ((AE_HDPX_RETRY_DEFAULT << AE_HDPX_RETRY_SHIFT) &
633 	    AE_HDPX_RETRY_MASK) |
634 	    ((AE_HDPX_ABEBT_DEFAULT << AE_HDPX_ABEBT_SHIFT) &
635 	    AE_HDPX_ABEBT_MASK) |
636 	    ((AE_HDPX_JAMIPG_DEFAULT << AE_HDPX_JAMIPG_SHIFT) &
637 	    AE_HDPX_JAMIPG_MASK) | AE_HDPX_EXC_EN;
638 	AE_WRITE_4(sc, AE_HDPX_REG, val);
639 
640 	/*
641 	 * Configure interrupt moderate timer.
642 	 */
643 	AE_WRITE_2(sc, AE_IMT_REG, AE_IMT_DEFAULT);
644 	val = AE_READ_4(sc, AE_MASTER_REG);
645 	val |= AE_MASTER_IMT_EN;
646 	AE_WRITE_4(sc, AE_MASTER_REG, val);
647 
648 	/*
649 	 * Configure interrupt clearing timer.
650 	 */
651 	AE_WRITE_2(sc, AE_ICT_REG, AE_ICT_DEFAULT);
652 
653 	/*
654 	 * Configure MTU.
655 	 */
656 	val = ifp->if_mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
657 	    ETHER_CRC_LEN;
658 	AE_WRITE_2(sc, AE_MTU_REG, val);
659 
660 	/*
661 	 * Configure cut-through threshold.
662 	 */
663 	AE_WRITE_4(sc, AE_CUT_THRESH_REG, AE_CUT_THRESH_DEFAULT);
664 
665 	/*
666 	 * Configure flow control.
667 	 */
668 	AE_WRITE_2(sc, AE_FLOW_THRESH_HI_REG, (AE_RXD_COUNT_DEFAULT / 8) * 7);
669 	AE_WRITE_2(sc, AE_FLOW_THRESH_LO_REG, (AE_RXD_COUNT_MIN / 8) >
670 	    (AE_RXD_COUNT_DEFAULT / 12) ? (AE_RXD_COUNT_MIN / 8) :
671 	    (AE_RXD_COUNT_DEFAULT / 12));
672 
673 	/*
674 	 * Init mailboxes.
675 	 */
676 	sc->txd_cur = sc->rxd_cur = 0;
677 	sc->txs_ack = sc->txd_ack = 0;
678 	sc->rxd_cur = 0;
679 	AE_WRITE_2(sc, AE_MB_TXD_IDX_REG, sc->txd_cur);
680 	AE_WRITE_2(sc, AE_MB_RXD_IDX_REG, sc->rxd_cur);
681 
682 	sc->tx_inproc = 0;	/* Number of packets the chip processes now. */
683 	sc->flags |= AE_FLAG_TXAVAIL;	/* Free Tx's available. */
684 
685 	/*
686 	 * Enable DMA.
687 	 */
688 	AE_WRITE_1(sc, AE_DMAREAD_REG, AE_DMAREAD_EN);
689 	AE_WRITE_1(sc, AE_DMAWRITE_REG, AE_DMAWRITE_EN);
690 
691 	/*
692 	 * Check if everything is OK.
693 	 */
694 	val = AE_READ_4(sc, AE_ISR_REG);
695 	if ((val & AE_ISR_PHY_LINKDOWN) != 0) {
696 		device_printf(sc->dev, "Initialization failed.\n");
697 		return (ENXIO);
698 	}
699 
700 	/*
701 	 * Clear interrupt status.
702 	 */
703 	AE_WRITE_4(sc, AE_ISR_REG, 0x3fffffff);
704 	AE_WRITE_4(sc, AE_ISR_REG, 0x0);
705 
706 	/*
707 	 * Enable interrupts.
708 	 */
709 	val = AE_READ_4(sc, AE_MASTER_REG);
710 	AE_WRITE_4(sc, AE_MASTER_REG, val | AE_MASTER_MANUAL_INT);
711 	AE_WRITE_4(sc, AE_IMR_REG, AE_IMR_DEFAULT);
712 
713 	/*
714 	 * Disable WOL.
715 	 */
716 	AE_WRITE_4(sc, AE_WOL_REG, 0);
717 
718 	/*
719 	 * Configure MAC.
720 	 */
721 	val = AE_MAC_TX_CRC_EN | AE_MAC_TX_AUTOPAD |
722 	    AE_MAC_FULL_DUPLEX | AE_MAC_CLK_PHY |
723 	    AE_MAC_TX_FLOW_EN | AE_MAC_RX_FLOW_EN |
724 	    ((AE_HALFBUF_DEFAULT << AE_HALFBUF_SHIFT) & AE_HALFBUF_MASK) |
725 	    ((AE_MAC_PREAMBLE_DEFAULT << AE_MAC_PREAMBLE_SHIFT) &
726 	    AE_MAC_PREAMBLE_MASK);
727 	AE_WRITE_4(sc, AE_MAC_REG, val);
728 
729 	/*
730 	 * Configure Rx MAC.
731 	 */
732 	ae_rxfilter(sc);
733 	ae_rxvlan(sc);
734 
735 	/*
736 	 * Enable Tx/Rx.
737 	 */
738 	val = AE_READ_4(sc, AE_MAC_REG);
739 	AE_WRITE_4(sc, AE_MAC_REG, val | AE_MAC_TX_EN | AE_MAC_RX_EN);
740 
741 	sc->flags &= ~AE_FLAG_LINK;
742 	mii_mediachg(mii);	/* Switch to the current media. */
743 
744 	callout_reset(&sc->tick_ch, hz, ae_tick, sc);
745 
746 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
747 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
748 
749 #ifdef AE_DEBUG
750 	device_printf(sc->dev, "Initialization complete.\n");
751 #endif
752 
753 	return (0);
754 }
755 
756 static int
757 ae_detach(device_t dev)
758 {
759 	struct ae_softc *sc;
760 	struct ifnet *ifp;
761 
762 	sc = device_get_softc(dev);
763 	KASSERT(sc != NULL, ("[ae: %d]: sc is NULL", __LINE__));
764 	ifp = sc->ifp;
765 	if (device_is_attached(dev)) {
766 		AE_LOCK(sc);
767 		sc->flags |= AE_FLAG_DETACH;
768 		ae_stop(sc);
769 		AE_UNLOCK(sc);
770 		callout_drain(&sc->tick_ch);
771 		taskqueue_drain(sc->tq, &sc->int_task);
772 		taskqueue_drain(taskqueue_swi, &sc->link_task);
773 		ether_ifdetach(ifp);
774 	}
775 	if (sc->tq != NULL) {
776 		taskqueue_drain(sc->tq, &sc->int_task);
777 		taskqueue_free(sc->tq);
778 		sc->tq = NULL;
779 	}
780 	if (sc->miibus != NULL) {
781 		device_delete_child(dev, sc->miibus);
782 		sc->miibus = NULL;
783 	}
784 	bus_generic_detach(sc->dev);
785 	ae_dma_free(sc);
786 	if (sc->intrhand != NULL) {
787 		bus_teardown_intr(dev, sc->irq[0], sc->intrhand);
788 		sc->intrhand = NULL;
789 	}
790 	if (ifp != NULL) {
791 		if_free(ifp);
792 		sc->ifp = NULL;
793 	}
794 	if (sc->spec_irq != NULL)
795 		bus_release_resources(dev, sc->spec_irq, sc->irq);
796 	if (sc->spec_mem != NULL)
797 		bus_release_resources(dev, sc->spec_mem, sc->mem);
798 	if ((sc->flags & AE_FLAG_MSI) != 0)
799 		pci_release_msi(dev);
800 	mtx_destroy(&sc->mtx);
801 
802 	return (0);
803 }
804 
805 static int
806 ae_miibus_readreg(device_t dev, int phy, int reg)
807 {
808 	ae_softc_t *sc;
809 	uint32_t val;
810 	int i;
811 
812 	sc = device_get_softc(dev);
813 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
814 
815 	/*
816 	 * Locking is done in upper layers.
817 	 */
818 
819 	val = ((reg << AE_MDIO_REGADDR_SHIFT) & AE_MDIO_REGADDR_MASK) |
820 	    AE_MDIO_START | AE_MDIO_READ | AE_MDIO_SUP_PREAMBLE |
821 	    ((AE_MDIO_CLK_25_4 << AE_MDIO_CLK_SHIFT) & AE_MDIO_CLK_MASK);
822 	AE_WRITE_4(sc, AE_MDIO_REG, val);
823 
824 	/*
825 	 * Wait for operation to complete.
826 	 */
827 	for (i = 0; i < AE_MDIO_TIMEOUT; i++) {
828 		DELAY(2);
829 		val = AE_READ_4(sc, AE_MDIO_REG);
830 		if ((val & (AE_MDIO_START | AE_MDIO_BUSY)) == 0)
831 			break;
832 	}
833 	if (i == AE_MDIO_TIMEOUT) {
834 		device_printf(sc->dev, "phy read timeout: %d.\n", reg);
835 		return (0);
836 	}
837 	return ((val << AE_MDIO_DATA_SHIFT) & AE_MDIO_DATA_MASK);
838 }
839 
840 static int
841 ae_miibus_writereg(device_t dev, int phy, int reg, int val)
842 {
843 	ae_softc_t *sc;
844 	uint32_t aereg;
845 	int i;
846 
847 	sc = device_get_softc(dev);
848 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
849 
850 	/*
851 	 * Locking is done in upper layers.
852 	 */
853 
854 	aereg = ((reg << AE_MDIO_REGADDR_SHIFT) & AE_MDIO_REGADDR_MASK) |
855 	    AE_MDIO_START | AE_MDIO_SUP_PREAMBLE |
856 	    ((AE_MDIO_CLK_25_4 << AE_MDIO_CLK_SHIFT) & AE_MDIO_CLK_MASK) |
857 	    ((val << AE_MDIO_DATA_SHIFT) & AE_MDIO_DATA_MASK);
858 	AE_WRITE_4(sc, AE_MDIO_REG, aereg);
859 
860 	/*
861 	 * Wait for operation to complete.
862 	 */
863 	for (i = 0; i < AE_MDIO_TIMEOUT; i++) {
864 		DELAY(2);
865 		aereg = AE_READ_4(sc, AE_MDIO_REG);
866 		if ((aereg & (AE_MDIO_START | AE_MDIO_BUSY)) == 0)
867 			break;
868 	}
869 	if (i == AE_MDIO_TIMEOUT) {
870 		device_printf(sc->dev, "phy write timeout: %d.\n", reg);
871 	}
872 	return (0);
873 }
874 
875 static void
876 ae_miibus_statchg(device_t dev)
877 {
878 	ae_softc_t *sc;
879 
880 	sc = device_get_softc(dev);
881 	taskqueue_enqueue(taskqueue_swi, &sc->link_task);
882 }
883 
884 static void
885 ae_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
886 {
887 	ae_softc_t *sc;
888 	struct mii_data *mii;
889 
890 	sc = ifp->if_softc;
891 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
892 
893 	AE_LOCK(sc);
894 	mii = device_get_softc(sc->miibus);
895 	mii_pollstat(mii);
896 	ifmr->ifm_status = mii->mii_media_status;
897 	ifmr->ifm_active = mii->mii_media_active;
898 	AE_UNLOCK(sc);
899 }
900 
901 static int
902 ae_mediachange(struct ifnet *ifp)
903 {
904 	ae_softc_t *sc;
905 	struct mii_data *mii;
906 	struct mii_softc *mii_sc;
907 	int error;
908 
909 	/* XXX: check IFF_UP ?? */
910 	sc = ifp->if_softc;
911 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
912 	AE_LOCK(sc);
913 	mii = device_get_softc(sc->miibus);
914 	LIST_FOREACH(mii_sc, &mii->mii_phys, mii_list)
915 		PHY_RESET(mii_sc);
916 	error = mii_mediachg(mii);
917 	AE_UNLOCK(sc);
918 
919 	return (error);
920 }
921 
922 static int
923 ae_check_eeprom_present(ae_softc_t *sc, int *vpdc)
924 {
925 	int error;
926 	uint32_t val;
927 
928 	KASSERT(vpdc != NULL, ("[ae, %d]: vpdc is NULL!\n", __LINE__));
929 
930 	/*
931 	 * Not sure why, but Linux does this.
932 	 */
933 	val = AE_READ_4(sc, AE_SPICTL_REG);
934 	if ((val & AE_SPICTL_VPD_EN) != 0) {
935 		val &= ~AE_SPICTL_VPD_EN;
936 		AE_WRITE_4(sc, AE_SPICTL_REG, val);
937 	}
938 	error = pci_find_cap(sc->dev, PCIY_VPD, vpdc);
939 	return (error);
940 }
941 
942 static int
943 ae_vpd_read_word(ae_softc_t *sc, int reg, uint32_t *word)
944 {
945 	uint32_t val;
946 	int i;
947 
948 	AE_WRITE_4(sc, AE_VPD_DATA_REG, 0);	/* Clear register value. */
949 
950 	/*
951 	 * VPD registers start at offset 0x100. Read them.
952 	 */
953 	val = 0x100 + reg * 4;
954 	AE_WRITE_4(sc, AE_VPD_CAP_REG, (val << AE_VPD_CAP_ADDR_SHIFT) &
955 	    AE_VPD_CAP_ADDR_MASK);
956 	for (i = 0; i < AE_VPD_TIMEOUT; i++) {
957 		DELAY(2000);
958 		val = AE_READ_4(sc, AE_VPD_CAP_REG);
959 		if ((val & AE_VPD_CAP_DONE) != 0)
960 			break;
961 	}
962 	if (i == AE_VPD_TIMEOUT) {
963 		device_printf(sc->dev, "timeout reading VPD register %d.\n",
964 		    reg);
965 		return (ETIMEDOUT);
966 	}
967 	*word = AE_READ_4(sc, AE_VPD_DATA_REG);
968 	return (0);
969 }
970 
971 static int
972 ae_get_vpd_eaddr(ae_softc_t *sc, uint32_t *eaddr)
973 {
974 	uint32_t word, reg, val;
975 	int error;
976 	int found;
977 	int vpdc;
978 	int i;
979 
980 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
981 	KASSERT(eaddr != NULL, ("[ae, %d]: eaddr is NULL", __LINE__));
982 
983 	/*
984 	 * Check for EEPROM.
985 	 */
986 	error = ae_check_eeprom_present(sc, &vpdc);
987 	if (error != 0)
988 		return (error);
989 
990 	/*
991 	 * Read the VPD configuration space.
992 	 * Each register is prefixed with signature,
993 	 * so we can check if it is valid.
994 	 */
995 	for (i = 0, found = 0; i < AE_VPD_NREGS; i++) {
996 		error = ae_vpd_read_word(sc, i, &word);
997 		if (error != 0)
998 			break;
999 
1000 		/*
1001 		 * Check signature.
1002 		 */
1003 		if ((word & AE_VPD_SIG_MASK) != AE_VPD_SIG)
1004 			break;
1005 		reg = word >> AE_VPD_REG_SHIFT;
1006 		i++;	/* Move to the next word. */
1007 
1008 		if (reg != AE_EADDR0_REG && reg != AE_EADDR1_REG)
1009 			continue;
1010 
1011 		error = ae_vpd_read_word(sc, i, &val);
1012 		if (error != 0)
1013 			break;
1014 		if (reg == AE_EADDR0_REG)
1015 			eaddr[0] = val;
1016 		else
1017 			eaddr[1] = val;
1018 		found++;
1019 	}
1020 
1021 	if (found < 2)
1022 		return (ENOENT);
1023 
1024 	eaddr[1] &= 0xffff;	/* Only last 2 bytes are used. */
1025 	if (AE_CHECK_EADDR_VALID(eaddr) != 0) {
1026 		if (bootverbose)
1027 			device_printf(sc->dev,
1028 			    "VPD ethernet address registers are invalid.\n");
1029 		return (EINVAL);
1030 	}
1031 	return (0);
1032 }
1033 
1034 static int
1035 ae_get_reg_eaddr(ae_softc_t *sc, uint32_t *eaddr)
1036 {
1037 
1038 	/*
1039 	 * BIOS is supposed to set this.
1040 	 */
1041 	eaddr[0] = AE_READ_4(sc, AE_EADDR0_REG);
1042 	eaddr[1] = AE_READ_4(sc, AE_EADDR1_REG);
1043 	eaddr[1] &= 0xffff;	/* Only last 2 bytes are used. */
1044 
1045 	if (AE_CHECK_EADDR_VALID(eaddr) != 0) {
1046 		if (bootverbose)
1047 			device_printf(sc->dev,
1048 			    "Ethernet address registers are invalid.\n");
1049 		return (EINVAL);
1050 	}
1051 	return (0);
1052 }
1053 
1054 static void
1055 ae_retrieve_address(ae_softc_t *sc)
1056 {
1057 	uint32_t eaddr[2] = {0, 0};
1058 	int error;
1059 
1060 	/*
1061 	 *Check for EEPROM.
1062 	 */
1063 	error = ae_get_vpd_eaddr(sc, eaddr);
1064 	if (error != 0)
1065 		error = ae_get_reg_eaddr(sc, eaddr);
1066 	if (error != 0) {
1067 		if (bootverbose)
1068 			device_printf(sc->dev,
1069 			    "Generating random ethernet address.\n");
1070 		eaddr[0] = arc4random();
1071 
1072 		/*
1073 		 * Set OUI to ASUSTek COMPUTER INC.
1074 		 */
1075 		sc->eaddr[0] = 0x02;	/* U/L bit set. */
1076 		sc->eaddr[1] = 0x1f;
1077 		sc->eaddr[2] = 0xc6;
1078 		sc->eaddr[3] = (eaddr[0] >> 16) & 0xff;
1079 		sc->eaddr[4] = (eaddr[0] >> 8) & 0xff;
1080 		sc->eaddr[5] = (eaddr[0] >> 0) & 0xff;
1081 	} else {
1082 		sc->eaddr[0] = (eaddr[1] >> 8) & 0xff;
1083 		sc->eaddr[1] = (eaddr[1] >> 0) & 0xff;
1084 		sc->eaddr[2] = (eaddr[0] >> 24) & 0xff;
1085 		sc->eaddr[3] = (eaddr[0] >> 16) & 0xff;
1086 		sc->eaddr[4] = (eaddr[0] >> 8) & 0xff;
1087 		sc->eaddr[5] = (eaddr[0] >> 0) & 0xff;
1088 	}
1089 }
1090 
1091 static void
1092 ae_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1093 {
1094 	bus_addr_t *addr = arg;
1095 
1096 	if (error != 0)
1097 		return;
1098 	KASSERT(nsegs == 1, ("[ae, %d]: %d segments instead of 1!", __LINE__,
1099 	    nsegs));
1100 	*addr = segs[0].ds_addr;
1101 }
1102 
1103 static int
1104 ae_alloc_rings(ae_softc_t *sc)
1105 {
1106 	bus_addr_t busaddr;
1107 	int error;
1108 
1109 	/*
1110 	 * Create parent DMA tag.
1111 	 */
1112 	error = bus_dma_tag_create(bus_get_dma_tag(sc->dev),
1113 	    1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
1114 	    NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 0,
1115 	    BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
1116 	    &sc->dma_parent_tag);
1117 	if (error != 0) {
1118 		device_printf(sc->dev, "could not creare parent DMA tag.\n");
1119 		return (error);
1120 	}
1121 
1122 	/*
1123 	 * Create DMA tag for TxD.
1124 	 */
1125 	error = bus_dma_tag_create(sc->dma_parent_tag,
1126 	    8, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1127 	    NULL, NULL, AE_TXD_BUFSIZE_DEFAULT, 1,
1128 	    AE_TXD_BUFSIZE_DEFAULT, 0, NULL, NULL,
1129 	    &sc->dma_txd_tag);
1130 	if (error != 0) {
1131 		device_printf(sc->dev, "could not creare TxD DMA tag.\n");
1132 		return (error);
1133 	}
1134 
1135 	/*
1136 	 * Create DMA tag for TxS.
1137 	 */
1138 	error = bus_dma_tag_create(sc->dma_parent_tag,
1139 	    8, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1140 	    NULL, NULL, AE_TXS_COUNT_DEFAULT * 4, 1,
1141 	    AE_TXS_COUNT_DEFAULT * 4, 0, NULL, NULL,
1142 	    &sc->dma_txs_tag);
1143 	if (error != 0) {
1144 		device_printf(sc->dev, "could not creare TxS DMA tag.\n");
1145 		return (error);
1146 	}
1147 
1148 	/*
1149 	 * Create DMA tag for RxD.
1150 	 */
1151 	error = bus_dma_tag_create(sc->dma_parent_tag,
1152 	    128, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1153 	    NULL, NULL, AE_RXD_COUNT_DEFAULT * 1536 + AE_RXD_PADDING, 1,
1154 	    AE_RXD_COUNT_DEFAULT * 1536 + AE_RXD_PADDING, 0, NULL, NULL,
1155 	    &sc->dma_rxd_tag);
1156 	if (error != 0) {
1157 		device_printf(sc->dev, "could not creare TxS DMA tag.\n");
1158 		return (error);
1159 	}
1160 
1161 	/*
1162 	 * Allocate TxD DMA memory.
1163 	 */
1164 	error = bus_dmamem_alloc(sc->dma_txd_tag, (void **)&sc->txd_base,
1165 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1166 	    &sc->dma_txd_map);
1167 	if (error != 0) {
1168 		device_printf(sc->dev,
1169 		    "could not allocate DMA memory for TxD ring.\n");
1170 		return (error);
1171 	}
1172 	error = bus_dmamap_load(sc->dma_txd_tag, sc->dma_txd_map, sc->txd_base,
1173 	    AE_TXD_BUFSIZE_DEFAULT, ae_dmamap_cb, &busaddr, BUS_DMA_NOWAIT);
1174 	if (error != 0 || busaddr == 0) {
1175 		device_printf(sc->dev,
1176 		    "could not load DMA map for TxD ring.\n");
1177 		return (error);
1178 	}
1179 	sc->dma_txd_busaddr = busaddr;
1180 
1181 	/*
1182 	 * Allocate TxS DMA memory.
1183 	 */
1184 	error = bus_dmamem_alloc(sc->dma_txs_tag, (void **)&sc->txs_base,
1185 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1186 	    &sc->dma_txs_map);
1187 	if (error != 0) {
1188 		device_printf(sc->dev,
1189 		    "could not allocate DMA memory for TxS ring.\n");
1190 		return (error);
1191 	}
1192 	error = bus_dmamap_load(sc->dma_txs_tag, sc->dma_txs_map, sc->txs_base,
1193 	    AE_TXS_COUNT_DEFAULT * 4, ae_dmamap_cb, &busaddr, BUS_DMA_NOWAIT);
1194 	if (error != 0 || busaddr == 0) {
1195 		device_printf(sc->dev,
1196 		    "could not load DMA map for TxS ring.\n");
1197 		return (error);
1198 	}
1199 	sc->dma_txs_busaddr = busaddr;
1200 
1201 	/*
1202 	 * Allocate RxD DMA memory.
1203 	 */
1204 	error = bus_dmamem_alloc(sc->dma_rxd_tag, (void **)&sc->rxd_base_dma,
1205 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1206 	    &sc->dma_rxd_map);
1207 	if (error != 0) {
1208 		device_printf(sc->dev,
1209 		    "could not allocate DMA memory for RxD ring.\n");
1210 		return (error);
1211 	}
1212 	error = bus_dmamap_load(sc->dma_rxd_tag, sc->dma_rxd_map,
1213 	    sc->rxd_base_dma, AE_RXD_COUNT_DEFAULT * 1536 + AE_RXD_PADDING,
1214 	    ae_dmamap_cb, &busaddr, BUS_DMA_NOWAIT);
1215 	if (error != 0 || busaddr == 0) {
1216 		device_printf(sc->dev,
1217 		    "could not load DMA map for RxD ring.\n");
1218 		return (error);
1219 	}
1220 	sc->dma_rxd_busaddr = busaddr + AE_RXD_PADDING;
1221 	sc->rxd_base = (ae_rxd_t *)(sc->rxd_base_dma + AE_RXD_PADDING);
1222 
1223 	return (0);
1224 }
1225 
1226 static void
1227 ae_dma_free(ae_softc_t *sc)
1228 {
1229 
1230 	if (sc->dma_txd_tag != NULL) {
1231 		if (sc->dma_txd_busaddr != 0)
1232 			bus_dmamap_unload(sc->dma_txd_tag, sc->dma_txd_map);
1233 		if (sc->txd_base != NULL)
1234 			bus_dmamem_free(sc->dma_txd_tag, sc->txd_base,
1235 			    sc->dma_txd_map);
1236 		bus_dma_tag_destroy(sc->dma_txd_tag);
1237 		sc->dma_txd_tag = NULL;
1238 		sc->txd_base = NULL;
1239 		sc->dma_txd_busaddr = 0;
1240 	}
1241 	if (sc->dma_txs_tag != NULL) {
1242 		if (sc->dma_txs_busaddr != 0)
1243 			bus_dmamap_unload(sc->dma_txs_tag, sc->dma_txs_map);
1244 		if (sc->txs_base != NULL)
1245 			bus_dmamem_free(sc->dma_txs_tag, sc->txs_base,
1246 			    sc->dma_txs_map);
1247 		bus_dma_tag_destroy(sc->dma_txs_tag);
1248 		sc->dma_txs_tag = NULL;
1249 		sc->txs_base = NULL;
1250 		sc->dma_txs_busaddr = 0;
1251 	}
1252 	if (sc->dma_rxd_tag != NULL) {
1253 		if (sc->dma_rxd_busaddr != 0)
1254 			bus_dmamap_unload(sc->dma_rxd_tag, sc->dma_rxd_map);
1255 		if (sc->rxd_base_dma != NULL)
1256 			bus_dmamem_free(sc->dma_rxd_tag, sc->rxd_base_dma,
1257 			    sc->dma_rxd_map);
1258 		bus_dma_tag_destroy(sc->dma_rxd_tag);
1259 		sc->dma_rxd_tag = NULL;
1260 		sc->rxd_base_dma = NULL;
1261 		sc->dma_rxd_busaddr = 0;
1262 	}
1263 	if (sc->dma_parent_tag != NULL) {
1264 		bus_dma_tag_destroy(sc->dma_parent_tag);
1265 		sc->dma_parent_tag = NULL;
1266 	}
1267 }
1268 
1269 static int
1270 ae_shutdown(device_t dev)
1271 {
1272 	ae_softc_t *sc;
1273 	int error;
1274 
1275 	sc = device_get_softc(dev);
1276 	KASSERT(sc != NULL, ("[ae: %d]: sc is NULL", __LINE__));
1277 
1278 	error = ae_suspend(dev);
1279 	AE_LOCK(sc);
1280 	ae_powersave_enable(sc);
1281 	AE_UNLOCK(sc);
1282 	return (error);
1283 }
1284 
1285 static void
1286 ae_powersave_disable(ae_softc_t *sc)
1287 {
1288 	uint32_t val;
1289 
1290 	AE_LOCK_ASSERT(sc);
1291 
1292 	AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 0);
1293 	val = AE_PHY_READ(sc, AE_PHY_DBG_DATA);
1294 	if (val & AE_PHY_DBG_POWERSAVE) {
1295 		val &= ~AE_PHY_DBG_POWERSAVE;
1296 		AE_PHY_WRITE(sc, AE_PHY_DBG_DATA, val);
1297 		DELAY(1000);
1298 	}
1299 }
1300 
1301 static void
1302 ae_powersave_enable(ae_softc_t *sc)
1303 {
1304 	uint32_t val;
1305 
1306 	AE_LOCK_ASSERT(sc);
1307 
1308 	/*
1309 	 * XXX magic numbers.
1310 	 */
1311 	AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 0);
1312 	val = AE_PHY_READ(sc, AE_PHY_DBG_DATA);
1313 	AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, val | 0x1000);
1314 	AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 2);
1315 	AE_PHY_WRITE(sc, AE_PHY_DBG_DATA, 0x3000);
1316 	AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 3);
1317 	AE_PHY_WRITE(sc, AE_PHY_DBG_DATA, 0);
1318 }
1319 
1320 static void
1321 ae_pm_init(ae_softc_t *sc)
1322 {
1323 	struct ifnet *ifp;
1324 	uint32_t val;
1325 	uint16_t pmstat;
1326 	struct mii_data *mii;
1327 	int pmc;
1328 
1329 	AE_LOCK_ASSERT(sc);
1330 
1331 	ifp = sc->ifp;
1332 	if ((sc->flags & AE_FLAG_PMG) == 0) {
1333 		/* Disable WOL entirely. */
1334 		AE_WRITE_4(sc, AE_WOL_REG, 0);
1335 		return;
1336 	}
1337 
1338 	/*
1339 	 * Configure WOL if enabled.
1340 	 */
1341 	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1342 		mii = device_get_softc(sc->miibus);
1343 		mii_pollstat(mii);
1344 		if ((mii->mii_media_status & IFM_AVALID) != 0 &&
1345 		    (mii->mii_media_status & IFM_ACTIVE) != 0) {
1346 			AE_WRITE_4(sc, AE_WOL_REG, AE_WOL_MAGIC | \
1347 			    AE_WOL_MAGIC_PME);
1348 
1349 			/*
1350 			 * Configure MAC.
1351 			 */
1352 			val = AE_MAC_RX_EN | AE_MAC_CLK_PHY | \
1353 			    AE_MAC_TX_CRC_EN | AE_MAC_TX_AUTOPAD | \
1354 			    ((AE_HALFBUF_DEFAULT << AE_HALFBUF_SHIFT) & \
1355 			    AE_HALFBUF_MASK) | \
1356 			    ((AE_MAC_PREAMBLE_DEFAULT << \
1357 			    AE_MAC_PREAMBLE_SHIFT) & AE_MAC_PREAMBLE_MASK) | \
1358 			    AE_MAC_BCAST_EN | AE_MAC_MCAST_EN;
1359 			if ((IFM_OPTIONS(mii->mii_media_active) & \
1360 			    IFM_FDX) != 0)
1361 				val |= AE_MAC_FULL_DUPLEX;
1362 			AE_WRITE_4(sc, AE_MAC_REG, val);
1363 
1364 		} else {	/* No link. */
1365 			AE_WRITE_4(sc, AE_WOL_REG, AE_WOL_LNKCHG | \
1366 			    AE_WOL_LNKCHG_PME);
1367 			AE_WRITE_4(sc, AE_MAC_REG, 0);
1368 		}
1369 	} else {
1370 		ae_powersave_enable(sc);
1371 	}
1372 
1373 	/*
1374 	 * PCIE hacks. Magic numbers.
1375 	 */
1376 	val = AE_READ_4(sc, AE_PCIE_PHYMISC_REG);
1377 	val |= AE_PCIE_PHYMISC_FORCE_RCV_DET;
1378 	AE_WRITE_4(sc, AE_PCIE_PHYMISC_REG, val);
1379 	val = AE_READ_4(sc, AE_PCIE_DLL_TX_CTRL_REG);
1380 	val |= AE_PCIE_DLL_TX_CTRL_SEL_NOR_CLK;
1381 	AE_WRITE_4(sc, AE_PCIE_DLL_TX_CTRL_REG, val);
1382 
1383 	/*
1384 	 * Configure PME.
1385 	 */
1386 	if (pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) {
1387 		pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
1388 		pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1389 		if ((ifp->if_capenable & IFCAP_WOL) != 0)
1390 			pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1391 		pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1392 	}
1393 }
1394 
1395 static int
1396 ae_suspend(device_t dev)
1397 {
1398 	ae_softc_t *sc;
1399 
1400 	sc = device_get_softc(dev);
1401 
1402 	AE_LOCK(sc);
1403 	ae_stop(sc);
1404 	ae_pm_init(sc);
1405 	AE_UNLOCK(sc);
1406 
1407 	return (0);
1408 }
1409 
1410 static int
1411 ae_resume(device_t dev)
1412 {
1413 	ae_softc_t *sc;
1414 
1415 	sc = device_get_softc(dev);
1416 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
1417 
1418 	AE_LOCK(sc);
1419 	AE_READ_4(sc, AE_WOL_REG);	/* Clear WOL status. */
1420 	if ((sc->ifp->if_flags & IFF_UP) != 0)
1421 		ae_init_locked(sc);
1422 	AE_UNLOCK(sc);
1423 
1424 	return (0);
1425 }
1426 
1427 static unsigned int
1428 ae_tx_avail_size(ae_softc_t *sc)
1429 {
1430 	unsigned int avail;
1431 
1432 	if (sc->txd_cur >= sc->txd_ack)
1433 		avail = AE_TXD_BUFSIZE_DEFAULT - (sc->txd_cur - sc->txd_ack);
1434 	else
1435 		avail = sc->txd_ack - sc->txd_cur;
1436 
1437 	return (avail);
1438 }
1439 
1440 static int
1441 ae_encap(ae_softc_t *sc, struct mbuf **m_head)
1442 {
1443 	struct mbuf *m0;
1444 	ae_txd_t *hdr;
1445 	unsigned int to_end;
1446 	uint16_t len;
1447 
1448 	AE_LOCK_ASSERT(sc);
1449 
1450 	m0 = *m_head;
1451 	len = m0->m_pkthdr.len;
1452 
1453 	if ((sc->flags & AE_FLAG_TXAVAIL) == 0 ||
1454 	    len + sizeof(ae_txd_t) + 3 > ae_tx_avail_size(sc)) {
1455 #ifdef AE_DEBUG
1456 		if_printf(sc->ifp, "No free Tx available.\n");
1457 #endif
1458 		return ENOBUFS;
1459 	}
1460 
1461 	hdr = (ae_txd_t *)(sc->txd_base + sc->txd_cur);
1462 	bzero(hdr, sizeof(*hdr));
1463 	/* Skip header size. */
1464 	sc->txd_cur = (sc->txd_cur + sizeof(ae_txd_t)) % AE_TXD_BUFSIZE_DEFAULT;
1465 	/* Space available to the end of the ring */
1466 	to_end = AE_TXD_BUFSIZE_DEFAULT - sc->txd_cur;
1467 	if (to_end >= len) {
1468 		m_copydata(m0, 0, len, (caddr_t)(sc->txd_base + sc->txd_cur));
1469 	} else {
1470 		m_copydata(m0, 0, to_end, (caddr_t)(sc->txd_base +
1471 		    sc->txd_cur));
1472 		m_copydata(m0, to_end, len - to_end, (caddr_t)sc->txd_base);
1473 	}
1474 
1475 	/*
1476 	 * Set TxD flags and parameters.
1477 	 */
1478 	if ((m0->m_flags & M_VLANTAG) != 0) {
1479 		hdr->vlan = htole16(AE_TXD_VLAN(m0->m_pkthdr.ether_vtag));
1480 		hdr->len = htole16(len | AE_TXD_INSERT_VTAG);
1481 	} else {
1482 		hdr->len = htole16(len);
1483 	}
1484 
1485 	/*
1486 	 * Set current TxD position and round up to a 4-byte boundary.
1487 	 */
1488 	sc->txd_cur = ((sc->txd_cur + len + 3) & ~3) % AE_TXD_BUFSIZE_DEFAULT;
1489 	if (sc->txd_cur == sc->txd_ack)
1490 		sc->flags &= ~AE_FLAG_TXAVAIL;
1491 #ifdef AE_DEBUG
1492 	if_printf(sc->ifp, "New txd_cur = %d.\n", sc->txd_cur);
1493 #endif
1494 
1495 	/*
1496 	 * Update TxS position and check if there are empty TxS available.
1497 	 */
1498 	sc->txs_base[sc->txs_cur].flags &= ~htole16(AE_TXS_UPDATE);
1499 	sc->txs_cur = (sc->txs_cur + 1) % AE_TXS_COUNT_DEFAULT;
1500 	if (sc->txs_cur == sc->txs_ack)
1501 		sc->flags &= ~AE_FLAG_TXAVAIL;
1502 
1503 	/*
1504 	 * Synchronize DMA memory.
1505 	 */
1506 	bus_dmamap_sync(sc->dma_txd_tag, sc->dma_txd_map, BUS_DMASYNC_PREREAD |
1507 	    BUS_DMASYNC_PREWRITE);
1508 	bus_dmamap_sync(sc->dma_txs_tag, sc->dma_txs_map,
1509 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1510 
1511 	return (0);
1512 }
1513 
1514 static void
1515 ae_start(struct ifnet *ifp)
1516 {
1517 	ae_softc_t *sc;
1518 
1519 	sc = ifp->if_softc;
1520 	AE_LOCK(sc);
1521 	ae_start_locked(ifp);
1522 	AE_UNLOCK(sc);
1523 }
1524 
1525 static void
1526 ae_start_locked(struct ifnet *ifp)
1527 {
1528 	ae_softc_t *sc;
1529 	unsigned int count;
1530 	struct mbuf *m0;
1531 	int error;
1532 
1533 	sc = ifp->if_softc;
1534 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
1535 	AE_LOCK_ASSERT(sc);
1536 
1537 #ifdef AE_DEBUG
1538 	if_printf(ifp, "Start called.\n");
1539 #endif
1540 
1541 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1542 	    IFF_DRV_RUNNING || (sc->flags & AE_FLAG_LINK) == 0)
1543 		return;
1544 
1545 	count = 0;
1546 	while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
1547 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
1548 		if (m0 == NULL)
1549 			break;	/* Nothing to do. */
1550 
1551 		error = ae_encap(sc, &m0);
1552 		if (error != 0) {
1553 			if (m0 != NULL) {
1554 				IFQ_DRV_PREPEND(&ifp->if_snd, m0);
1555 				ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1556 #ifdef AE_DEBUG
1557 				if_printf(ifp, "Setting OACTIVE.\n");
1558 #endif
1559 			}
1560 			break;
1561 		}
1562 		count++;
1563 		sc->tx_inproc++;
1564 
1565 		/* Bounce a copy of the frame to BPF. */
1566 		ETHER_BPF_MTAP(ifp, m0);
1567 
1568 		m_freem(m0);
1569 	}
1570 
1571 	if (count > 0) {	/* Something was dequeued. */
1572 		AE_WRITE_2(sc, AE_MB_TXD_IDX_REG, sc->txd_cur / 4);
1573 		sc->wd_timer = AE_TX_TIMEOUT;	/* Load watchdog. */
1574 #ifdef AE_DEBUG
1575 		if_printf(ifp, "%d packets dequeued.\n", count);
1576 		if_printf(ifp, "Tx pos now is %d.\n", sc->txd_cur);
1577 #endif
1578 	}
1579 }
1580 
1581 static void
1582 ae_link_task(void *arg, int pending)
1583 {
1584 	ae_softc_t *sc;
1585 	struct mii_data *mii;
1586 	struct ifnet *ifp;
1587 	uint32_t val;
1588 
1589 	sc = (ae_softc_t *)arg;
1590 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
1591 	AE_LOCK(sc);
1592 
1593 	ifp = sc->ifp;
1594 	mii = device_get_softc(sc->miibus);
1595 	if (mii == NULL || ifp == NULL ||
1596 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1597 		AE_UNLOCK(sc);	/* XXX: could happen? */
1598 		return;
1599 	}
1600 
1601 	sc->flags &= ~AE_FLAG_LINK;
1602 	if ((mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) ==
1603 	    (IFM_AVALID | IFM_ACTIVE)) {
1604 		switch(IFM_SUBTYPE(mii->mii_media_active)) {
1605 		case IFM_10_T:
1606 		case IFM_100_TX:
1607 			sc->flags |= AE_FLAG_LINK;
1608 			break;
1609 		default:
1610 			break;
1611 		}
1612 	}
1613 
1614 	/*
1615 	 * Stop Rx/Tx MACs.
1616 	 */
1617 	ae_stop_rxmac(sc);
1618 	ae_stop_txmac(sc);
1619 
1620 	if ((sc->flags & AE_FLAG_LINK) != 0) {
1621 		ae_mac_config(sc);
1622 
1623 		/*
1624 		 * Restart DMA engines.
1625 		 */
1626 		AE_WRITE_1(sc, AE_DMAREAD_REG, AE_DMAREAD_EN);
1627 		AE_WRITE_1(sc, AE_DMAWRITE_REG, AE_DMAWRITE_EN);
1628 
1629 		/*
1630 		 * Enable Rx and Tx MACs.
1631 		 */
1632 		val = AE_READ_4(sc, AE_MAC_REG);
1633 		val |= AE_MAC_TX_EN | AE_MAC_RX_EN;
1634 		AE_WRITE_4(sc, AE_MAC_REG, val);
1635 	}
1636 	AE_UNLOCK(sc);
1637 }
1638 
1639 static void
1640 ae_stop_rxmac(ae_softc_t *sc)
1641 {
1642 	uint32_t val;
1643 	int i;
1644 
1645 	AE_LOCK_ASSERT(sc);
1646 
1647 	/*
1648 	 * Stop Rx MAC engine.
1649 	 */
1650 	val = AE_READ_4(sc, AE_MAC_REG);
1651 	if ((val & AE_MAC_RX_EN) != 0) {
1652 		val &= ~AE_MAC_RX_EN;
1653 		AE_WRITE_4(sc, AE_MAC_REG, val);
1654 	}
1655 
1656 	/*
1657 	 * Stop Rx DMA engine.
1658 	 */
1659 	if (AE_READ_1(sc, AE_DMAWRITE_REG) == AE_DMAWRITE_EN)
1660 		AE_WRITE_1(sc, AE_DMAWRITE_REG, 0);
1661 
1662 	/*
1663 	 * Wait for IDLE state.
1664 	 */
1665 	for (i = 0; i < AE_IDLE_TIMEOUT; i++) {
1666 		val = AE_READ_4(sc, AE_IDLE_REG);
1667 		if ((val & (AE_IDLE_RXMAC | AE_IDLE_DMAWRITE)) == 0)
1668 			break;
1669 		DELAY(100);
1670 	}
1671 	if (i == AE_IDLE_TIMEOUT)
1672 		device_printf(sc->dev, "timed out while stopping Rx MAC.\n");
1673 }
1674 
1675 static void
1676 ae_stop_txmac(ae_softc_t *sc)
1677 {
1678 	uint32_t val;
1679 	int i;
1680 
1681 	AE_LOCK_ASSERT(sc);
1682 
1683 	/*
1684 	 * Stop Tx MAC engine.
1685 	 */
1686 	val = AE_READ_4(sc, AE_MAC_REG);
1687 	if ((val & AE_MAC_TX_EN) != 0) {
1688 		val &= ~AE_MAC_TX_EN;
1689 		AE_WRITE_4(sc, AE_MAC_REG, val);
1690 	}
1691 
1692 	/*
1693 	 * Stop Tx DMA engine.
1694 	 */
1695 	if (AE_READ_1(sc, AE_DMAREAD_REG) == AE_DMAREAD_EN)
1696 		AE_WRITE_1(sc, AE_DMAREAD_REG, 0);
1697 
1698 	/*
1699 	 * Wait for IDLE state.
1700 	 */
1701 	for (i = 0; i < AE_IDLE_TIMEOUT; i++) {
1702 		val = AE_READ_4(sc, AE_IDLE_REG);
1703 		if ((val & (AE_IDLE_TXMAC | AE_IDLE_DMAREAD)) == 0)
1704 			break;
1705 		DELAY(100);
1706 	}
1707 	if (i == AE_IDLE_TIMEOUT)
1708 		device_printf(sc->dev, "timed out while stopping Tx MAC.\n");
1709 }
1710 
1711 static void
1712 ae_mac_config(ae_softc_t *sc)
1713 {
1714 	struct mii_data *mii;
1715 	uint32_t val;
1716 
1717 	AE_LOCK_ASSERT(sc);
1718 
1719 	mii = device_get_softc(sc->miibus);
1720 	val = AE_READ_4(sc, AE_MAC_REG);
1721 	val &= ~AE_MAC_FULL_DUPLEX;
1722 	/* XXX disable AE_MAC_TX_FLOW_EN? */
1723 
1724 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
1725 		val |= AE_MAC_FULL_DUPLEX;
1726 
1727 	AE_WRITE_4(sc, AE_MAC_REG, val);
1728 }
1729 
1730 static int
1731 ae_intr(void *arg)
1732 {
1733 	ae_softc_t *sc;
1734 	uint32_t val;
1735 
1736 	sc = (ae_softc_t *)arg;
1737 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
1738 
1739 	val = AE_READ_4(sc, AE_ISR_REG);
1740 	if (val == 0 || (val & AE_IMR_DEFAULT) == 0)
1741 		return (FILTER_STRAY);
1742 
1743 	/* Disable interrupts. */
1744 	AE_WRITE_4(sc, AE_ISR_REG, AE_ISR_DISABLE);
1745 
1746 	/* Schedule interrupt processing. */
1747 	taskqueue_enqueue(sc->tq, &sc->int_task);
1748 
1749 	return (FILTER_HANDLED);
1750 }
1751 
1752 static void
1753 ae_int_task(void *arg, int pending)
1754 {
1755 	ae_softc_t *sc;
1756 	struct ifnet *ifp;
1757 	uint32_t val;
1758 
1759 	sc = (ae_softc_t *)arg;
1760 
1761 	AE_LOCK(sc);
1762 
1763 	ifp = sc->ifp;
1764 
1765 	val = AE_READ_4(sc, AE_ISR_REG);	/* Read interrupt status. */
1766 	if (val == 0) {
1767 		AE_UNLOCK(sc);
1768 		return;
1769 	}
1770 
1771 	/*
1772 	 * Clear interrupts and disable them.
1773 	 */
1774 	AE_WRITE_4(sc, AE_ISR_REG, val | AE_ISR_DISABLE);
1775 
1776 #ifdef AE_DEBUG
1777 	if_printf(ifp, "Interrupt received: 0x%08x\n", val);
1778 #endif
1779 
1780 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1781 		if ((val & (AE_ISR_DMAR_TIMEOUT | AE_ISR_DMAW_TIMEOUT |
1782 		    AE_ISR_PHY_LINKDOWN)) != 0) {
1783 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1784 			ae_init_locked(sc);
1785 			AE_UNLOCK(sc);
1786 			return;
1787 		}
1788 		if ((val & AE_ISR_TX_EVENT) != 0)
1789 			ae_tx_intr(sc);
1790 		if ((val & AE_ISR_RX_EVENT) != 0)
1791 			ae_rx_intr(sc);
1792 		/*
1793 		 * Re-enable interrupts.
1794 		 */
1795 		AE_WRITE_4(sc, AE_ISR_REG, 0);
1796 
1797 		if ((sc->flags & AE_FLAG_TXAVAIL) != 0) {
1798 			if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1799 				ae_start_locked(ifp);
1800 		}
1801 	}
1802 
1803 	AE_UNLOCK(sc);
1804 }
1805 
1806 static void
1807 ae_tx_intr(ae_softc_t *sc)
1808 {
1809 	struct ifnet *ifp;
1810 	ae_txd_t *txd;
1811 	ae_txs_t *txs;
1812 	uint16_t flags;
1813 
1814 	AE_LOCK_ASSERT(sc);
1815 
1816 	ifp = sc->ifp;
1817 
1818 #ifdef AE_DEBUG
1819 	if_printf(ifp, "Tx interrupt occuried.\n");
1820 #endif
1821 
1822 	/*
1823 	 * Syncronize DMA buffers.
1824 	 */
1825 	bus_dmamap_sync(sc->dma_txd_tag, sc->dma_txd_map,
1826 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1827 	bus_dmamap_sync(sc->dma_txs_tag, sc->dma_txs_map,
1828 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1829 
1830 	for (;;) {
1831 		txs = sc->txs_base + sc->txs_ack;
1832 		flags = le16toh(txs->flags);
1833 		if ((flags & AE_TXS_UPDATE) == 0)
1834 			break;
1835 		txs->flags = htole16(flags & ~AE_TXS_UPDATE);
1836 		/* Update stats. */
1837 		ae_update_stats_tx(flags, &sc->stats);
1838 
1839 		/*
1840 		 * Update TxS position.
1841 		 */
1842 		sc->txs_ack = (sc->txs_ack + 1) % AE_TXS_COUNT_DEFAULT;
1843 		sc->flags |= AE_FLAG_TXAVAIL;
1844 
1845 		txd = (ae_txd_t *)(sc->txd_base + sc->txd_ack);
1846 		if (txs->len != txd->len)
1847 			device_printf(sc->dev, "Size mismatch: TxS:%d TxD:%d\n",
1848 			    le16toh(txs->len), le16toh(txd->len));
1849 
1850 		/*
1851 		 * Move txd ack and align on 4-byte boundary.
1852 		 */
1853 		sc->txd_ack = ((sc->txd_ack + le16toh(txd->len) +
1854 		    sizeof(ae_txs_t) + 3) & ~3) % AE_TXD_BUFSIZE_DEFAULT;
1855 
1856 		if ((flags & AE_TXS_SUCCESS) != 0)
1857 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1858 		else
1859 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1860 
1861 		sc->tx_inproc--;
1862 	}
1863 
1864 	if ((sc->flags & AE_FLAG_TXAVAIL) != 0)
1865 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1866 	if (sc->tx_inproc < 0) {
1867 		if_printf(ifp, "Received stray Tx interrupt(s).\n");
1868 		sc->tx_inproc = 0;
1869 	}
1870 
1871 	if (sc->tx_inproc == 0)
1872 		sc->wd_timer = 0;	/* Unarm watchdog. */
1873 
1874 	/*
1875 	 * Syncronize DMA buffers.
1876 	 */
1877 	bus_dmamap_sync(sc->dma_txd_tag, sc->dma_txd_map,
1878 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1879 	bus_dmamap_sync(sc->dma_txs_tag, sc->dma_txs_map,
1880 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1881 }
1882 
1883 static void
1884 ae_rxeof(ae_softc_t *sc, ae_rxd_t *rxd)
1885 {
1886 	struct ifnet *ifp;
1887 	struct mbuf *m;
1888 	unsigned int size;
1889 	uint16_t flags;
1890 
1891 	AE_LOCK_ASSERT(sc);
1892 
1893 	ifp = sc->ifp;
1894 	flags = le16toh(rxd->flags);
1895 
1896 #ifdef AE_DEBUG
1897 	if_printf(ifp, "Rx interrupt occuried.\n");
1898 #endif
1899 	size = le16toh(rxd->len) - ETHER_CRC_LEN;
1900 	if (size < (ETHER_MIN_LEN - ETHER_CRC_LEN - ETHER_VLAN_ENCAP_LEN)) {
1901 		if_printf(ifp, "Runt frame received.");
1902 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1903 		return;
1904 	}
1905 
1906 	m = m_devget(&rxd->data[0], size, ETHER_ALIGN, ifp, NULL);
1907 	if (m == NULL) {
1908 		if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1909 		return;
1910 	}
1911 
1912 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
1913 	    (flags & AE_RXD_HAS_VLAN) != 0) {
1914 		m->m_pkthdr.ether_vtag = AE_RXD_VLAN(le16toh(rxd->vlan));
1915 		m->m_flags |= M_VLANTAG;
1916 	}
1917 
1918 	if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1919 	/*
1920 	 * Pass it through.
1921 	 */
1922 	AE_UNLOCK(sc);
1923 	(*ifp->if_input)(ifp, m);
1924 	AE_LOCK(sc);
1925 }
1926 
1927 static void
1928 ae_rx_intr(ae_softc_t *sc)
1929 {
1930 	ae_rxd_t *rxd;
1931 	struct ifnet *ifp;
1932 	uint16_t flags;
1933 	int count;
1934 
1935 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL!", __LINE__));
1936 
1937 	AE_LOCK_ASSERT(sc);
1938 
1939 	ifp = sc->ifp;
1940 
1941 	/*
1942 	 * Syncronize DMA buffers.
1943 	 */
1944 	bus_dmamap_sync(sc->dma_rxd_tag, sc->dma_rxd_map,
1945 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1946 
1947 	for (count = 0;; count++) {
1948 		rxd = (ae_rxd_t *)(sc->rxd_base + sc->rxd_cur);
1949 		flags = le16toh(rxd->flags);
1950 		if ((flags & AE_RXD_UPDATE) == 0)
1951 			break;
1952 		rxd->flags = htole16(flags & ~AE_RXD_UPDATE);
1953 		/* Update stats. */
1954 		ae_update_stats_rx(flags, &sc->stats);
1955 
1956 		/*
1957 		 * Update position index.
1958 		 */
1959 		sc->rxd_cur = (sc->rxd_cur + 1) % AE_RXD_COUNT_DEFAULT;
1960 
1961 		if ((flags & AE_RXD_SUCCESS) != 0)
1962 			ae_rxeof(sc, rxd);
1963 		else
1964 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1965 	}
1966 
1967 	if (count > 0) {
1968 		bus_dmamap_sync(sc->dma_rxd_tag, sc->dma_rxd_map,
1969 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1970 		/*
1971 		 * Update Rx index.
1972 		 */
1973 		AE_WRITE_2(sc, AE_MB_RXD_IDX_REG, sc->rxd_cur);
1974 	}
1975 }
1976 
1977 static void
1978 ae_watchdog(ae_softc_t *sc)
1979 {
1980 	struct ifnet *ifp;
1981 
1982 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL!", __LINE__));
1983 	AE_LOCK_ASSERT(sc);
1984 	ifp = sc->ifp;
1985 
1986 	if (sc->wd_timer == 0 || --sc->wd_timer != 0)
1987 		return;		/* Noting to do. */
1988 
1989 	if ((sc->flags & AE_FLAG_LINK) == 0)
1990 		if_printf(ifp, "watchdog timeout (missed link).\n");
1991 	else
1992 		if_printf(ifp, "watchdog timeout - resetting.\n");
1993 
1994 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1995 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1996 	ae_init_locked(sc);
1997 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1998 		ae_start_locked(ifp);
1999 }
2000 
2001 static void
2002 ae_tick(void *arg)
2003 {
2004 	ae_softc_t *sc;
2005 	struct mii_data *mii;
2006 
2007 	sc = (ae_softc_t *)arg;
2008 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL!", __LINE__));
2009 	AE_LOCK_ASSERT(sc);
2010 
2011 	mii = device_get_softc(sc->miibus);
2012 	mii_tick(mii);
2013 	ae_watchdog(sc);	/* Watchdog check. */
2014 	callout_reset(&sc->tick_ch, hz, ae_tick, sc);
2015 }
2016 
2017 static void
2018 ae_rxvlan(ae_softc_t *sc)
2019 {
2020 	struct ifnet *ifp;
2021 	uint32_t val;
2022 
2023 	AE_LOCK_ASSERT(sc);
2024 	ifp = sc->ifp;
2025 	val = AE_READ_4(sc, AE_MAC_REG);
2026 	val &= ~AE_MAC_RMVLAN_EN;
2027 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2028 		val |= AE_MAC_RMVLAN_EN;
2029 	AE_WRITE_4(sc, AE_MAC_REG, val);
2030 }
2031 
2032 static u_int
2033 ae_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
2034 {
2035 	uint32_t crc, *mchash = arg;
2036 
2037 	crc = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN);
2038 	mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2039 
2040 	return (1);
2041 }
2042 
2043 static void
2044 ae_rxfilter(ae_softc_t *sc)
2045 {
2046 	struct ifnet *ifp;
2047 	uint32_t mchash[2];
2048 	uint32_t rxcfg;
2049 
2050 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL!", __LINE__));
2051 
2052 	AE_LOCK_ASSERT(sc);
2053 
2054 	ifp = sc->ifp;
2055 
2056 	rxcfg = AE_READ_4(sc, AE_MAC_REG);
2057 	rxcfg &= ~(AE_MAC_MCAST_EN | AE_MAC_BCAST_EN | AE_MAC_PROMISC_EN);
2058 
2059 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
2060 		rxcfg |= AE_MAC_BCAST_EN;
2061 	if ((ifp->if_flags & IFF_PROMISC) != 0)
2062 		rxcfg |= AE_MAC_PROMISC_EN;
2063 	if ((ifp->if_flags & IFF_ALLMULTI) != 0)
2064 		rxcfg |= AE_MAC_MCAST_EN;
2065 
2066 	/*
2067 	 * Wipe old settings.
2068 	 */
2069 	AE_WRITE_4(sc, AE_REG_MHT0, 0);
2070 	AE_WRITE_4(sc, AE_REG_MHT1, 0);
2071 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
2072 		AE_WRITE_4(sc, AE_REG_MHT0, 0xffffffff);
2073 		AE_WRITE_4(sc, AE_REG_MHT1, 0xffffffff);
2074 		AE_WRITE_4(sc, AE_MAC_REG, rxcfg);
2075 		return;
2076 	}
2077 
2078 	/*
2079 	 * Load multicast tables.
2080 	 */
2081 	bzero(mchash, sizeof(mchash));
2082 	if_foreach_llmaddr(ifp, ae_hash_maddr, &mchash);
2083 	AE_WRITE_4(sc, AE_REG_MHT0, mchash[0]);
2084 	AE_WRITE_4(sc, AE_REG_MHT1, mchash[1]);
2085 	AE_WRITE_4(sc, AE_MAC_REG, rxcfg);
2086 }
2087 
2088 static int
2089 ae_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2090 {
2091 	struct ae_softc *sc;
2092 	struct ifreq *ifr;
2093 	struct mii_data *mii;
2094 	int error, mask;
2095 
2096 	sc = ifp->if_softc;
2097 	ifr = (struct ifreq *)data;
2098 	error = 0;
2099 
2100 	switch (cmd) {
2101 	case SIOCSIFMTU:
2102 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU)
2103 			error = EINVAL;
2104 		else if (ifp->if_mtu != ifr->ifr_mtu) {
2105 			AE_LOCK(sc);
2106 			ifp->if_mtu = ifr->ifr_mtu;
2107 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2108 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2109 				ae_init_locked(sc);
2110 			}
2111 			AE_UNLOCK(sc);
2112 		}
2113 		break;
2114 	case SIOCSIFFLAGS:
2115 		AE_LOCK(sc);
2116 		if ((ifp->if_flags & IFF_UP) != 0) {
2117 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2118 				if (((ifp->if_flags ^ sc->if_flags)
2119 				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2120 					ae_rxfilter(sc);
2121 			} else {
2122 				if ((sc->flags & AE_FLAG_DETACH) == 0)
2123 					ae_init_locked(sc);
2124 			}
2125 		} else {
2126 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2127 				ae_stop(sc);
2128 		}
2129 		sc->if_flags = ifp->if_flags;
2130 		AE_UNLOCK(sc);
2131 		break;
2132 	case SIOCADDMULTI:
2133 	case SIOCDELMULTI:
2134 		AE_LOCK(sc);
2135 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2136 			ae_rxfilter(sc);
2137 		AE_UNLOCK(sc);
2138 		break;
2139 	case SIOCSIFMEDIA:
2140 	case SIOCGIFMEDIA:
2141 		mii = device_get_softc(sc->miibus);
2142 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
2143 		break;
2144 	case SIOCSIFCAP:
2145 		AE_LOCK(sc);
2146 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2147 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2148 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
2149 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2150 			ae_rxvlan(sc);
2151 		}
2152 		VLAN_CAPABILITIES(ifp);
2153 		AE_UNLOCK(sc);
2154 		break;
2155 	default:
2156 		error = ether_ioctl(ifp, cmd, data);
2157 		break;
2158 	}
2159 	return (error);
2160 }
2161 
2162 static void
2163 ae_stop(ae_softc_t *sc)
2164 {
2165 	struct ifnet *ifp;
2166 	int i;
2167 
2168 	AE_LOCK_ASSERT(sc);
2169 
2170 	ifp = sc->ifp;
2171 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2172 	sc->flags &= ~AE_FLAG_LINK;
2173 	sc->wd_timer = 0;	/* Cancel watchdog. */
2174 	callout_stop(&sc->tick_ch);
2175 
2176 	/*
2177 	 * Clear and disable interrupts.
2178 	 */
2179 	AE_WRITE_4(sc, AE_IMR_REG, 0);
2180 	AE_WRITE_4(sc, AE_ISR_REG, 0xffffffff);
2181 
2182 	/*
2183 	 * Stop Rx/Tx MACs.
2184 	 */
2185 	ae_stop_txmac(sc);
2186 	ae_stop_rxmac(sc);
2187 
2188 	/*
2189 	 * Stop DMA engines.
2190 	 */
2191 	AE_WRITE_1(sc, AE_DMAREAD_REG, ~AE_DMAREAD_EN);
2192 	AE_WRITE_1(sc, AE_DMAWRITE_REG, ~AE_DMAWRITE_EN);
2193 
2194 	/*
2195 	 * Wait for everything to enter idle state.
2196 	 */
2197 	for (i = 0; i < AE_IDLE_TIMEOUT; i++) {
2198 		if (AE_READ_4(sc, AE_IDLE_REG) == 0)
2199 			break;
2200 		DELAY(100);
2201 	}
2202 	if (i == AE_IDLE_TIMEOUT)
2203 		device_printf(sc->dev, "could not enter idle state in stop.\n");
2204 }
2205 
2206 static void
2207 ae_update_stats_tx(uint16_t flags, ae_stats_t *stats)
2208 {
2209 
2210 	if ((flags & AE_TXS_BCAST) != 0)
2211 		stats->tx_bcast++;
2212 	if ((flags & AE_TXS_MCAST) != 0)
2213 		stats->tx_mcast++;
2214 	if ((flags & AE_TXS_PAUSE) != 0)
2215 		stats->tx_pause++;
2216 	if ((flags & AE_TXS_CTRL) != 0)
2217 		stats->tx_ctrl++;
2218 	if ((flags & AE_TXS_DEFER) != 0)
2219 		stats->tx_defer++;
2220 	if ((flags & AE_TXS_EXCDEFER) != 0)
2221 		stats->tx_excdefer++;
2222 	if ((flags & AE_TXS_SINGLECOL) != 0)
2223 		stats->tx_singlecol++;
2224 	if ((flags & AE_TXS_MULTICOL) != 0)
2225 		stats->tx_multicol++;
2226 	if ((flags & AE_TXS_LATECOL) != 0)
2227 		stats->tx_latecol++;
2228 	if ((flags & AE_TXS_ABORTCOL) != 0)
2229 		stats->tx_abortcol++;
2230 	if ((flags & AE_TXS_UNDERRUN) != 0)
2231 		stats->tx_underrun++;
2232 }
2233 
2234 static void
2235 ae_update_stats_rx(uint16_t flags, ae_stats_t *stats)
2236 {
2237 
2238 	if ((flags & AE_RXD_BCAST) != 0)
2239 		stats->rx_bcast++;
2240 	if ((flags & AE_RXD_MCAST) != 0)
2241 		stats->rx_mcast++;
2242 	if ((flags & AE_RXD_PAUSE) != 0)
2243 		stats->rx_pause++;
2244 	if ((flags & AE_RXD_CTRL) != 0)
2245 		stats->rx_ctrl++;
2246 	if ((flags & AE_RXD_CRCERR) != 0)
2247 		stats->rx_crcerr++;
2248 	if ((flags & AE_RXD_CODEERR) != 0)
2249 		stats->rx_codeerr++;
2250 	if ((flags & AE_RXD_RUNT) != 0)
2251 		stats->rx_runt++;
2252 	if ((flags & AE_RXD_FRAG) != 0)
2253 		stats->rx_frag++;
2254 	if ((flags & AE_RXD_TRUNC) != 0)
2255 		stats->rx_trunc++;
2256 	if ((flags & AE_RXD_ALIGN) != 0)
2257 		stats->rx_align++;
2258 }
2259