xref: /freebsd/sys/dev/ae/if_ae.c (revision 907b59d76938e654f0d040a888e8dfca3de1e222)
1 /*-
2  * Copyright (c) 2008 Stanislav Sedov <stas@FreeBSD.org>.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  *
25  * Driver for Attansic Technology Corp. L2 FastEthernet adapter.
26  *
27  * This driver is heavily based on age(4) Attansic L1 driver by Pyun YongHyeon.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/bus.h>
36 #include <sys/endian.h>
37 #include <sys/kernel.h>
38 #include <sys/lock.h>
39 #include <sys/malloc.h>
40 #include <sys/mbuf.h>
41 #include <sys/mutex.h>
42 #include <sys/rman.h>
43 #include <sys/module.h>
44 #include <sys/queue.h>
45 #include <sys/socket.h>
46 #include <sys/sockio.h>
47 #include <sys/sysctl.h>
48 #include <sys/taskqueue.h>
49 
50 #include <net/bpf.h>
51 #include <net/if.h>
52 #include <net/if_var.h>
53 #include <net/if_arp.h>
54 #include <net/ethernet.h>
55 #include <net/if_dl.h>
56 #include <net/if_media.h>
57 #include <net/if_types.h>
58 #include <net/if_vlan_var.h>
59 
60 #include <netinet/in.h>
61 #include <netinet/in_systm.h>
62 #include <netinet/ip.h>
63 #include <netinet/tcp.h>
64 
65 #include <dev/mii/mii.h>
66 #include <dev/mii/miivar.h>
67 #include <dev/pci/pcireg.h>
68 #include <dev/pci/pcivar.h>
69 
70 #include <machine/bus.h>
71 
72 #include "miibus_if.h"
73 
74 #include "if_aereg.h"
75 #include "if_aevar.h"
76 
77 /*
78  * Devices supported by this driver.
79  */
80 static struct ae_dev {
81 	uint16_t	vendorid;
82 	uint16_t	deviceid;
83 	const char	*name;
84 } ae_devs[] = {
85 	{ VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L2,
86 		"Attansic Technology Corp, L2 FastEthernet" },
87 };
88 #define	AE_DEVS_COUNT nitems(ae_devs)
89 
90 static struct resource_spec ae_res_spec_mem[] = {
91 	{ SYS_RES_MEMORY,       PCIR_BAR(0),    RF_ACTIVE },
92 	{ -1,			0,		0 }
93 };
94 static struct resource_spec ae_res_spec_irq[] = {
95 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
96 	{ -1,			0,		0 }
97 };
98 static struct resource_spec ae_res_spec_msi[] = {
99 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
100 	{ -1,			0,		0 }
101 };
102 
103 static int	ae_probe(device_t dev);
104 static int	ae_attach(device_t dev);
105 static void	ae_pcie_init(ae_softc_t *sc);
106 static void	ae_phy_reset(ae_softc_t *sc);
107 static void	ae_phy_init(ae_softc_t *sc);
108 static int	ae_reset(ae_softc_t *sc);
109 static void	ae_init(void *arg);
110 static int	ae_init_locked(ae_softc_t *sc);
111 static int	ae_detach(device_t dev);
112 static int	ae_miibus_readreg(device_t dev, int phy, int reg);
113 static int	ae_miibus_writereg(device_t dev, int phy, int reg, int val);
114 static void	ae_miibus_statchg(device_t dev);
115 static void	ae_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr);
116 static int	ae_mediachange(struct ifnet *ifp);
117 static void	ae_retrieve_address(ae_softc_t *sc);
118 static void	ae_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs,
119     int error);
120 static int	ae_alloc_rings(ae_softc_t *sc);
121 static void	ae_dma_free(ae_softc_t *sc);
122 static int	ae_shutdown(device_t dev);
123 static int	ae_suspend(device_t dev);
124 static void	ae_powersave_disable(ae_softc_t *sc);
125 static void	ae_powersave_enable(ae_softc_t *sc);
126 static int	ae_resume(device_t dev);
127 static unsigned int	ae_tx_avail_size(ae_softc_t *sc);
128 static int	ae_encap(ae_softc_t *sc, struct mbuf **m_head);
129 static void	ae_start(struct ifnet *ifp);
130 static void	ae_start_locked(struct ifnet *ifp);
131 static void	ae_link_task(void *arg, int pending);
132 static void	ae_stop_rxmac(ae_softc_t *sc);
133 static void	ae_stop_txmac(ae_softc_t *sc);
134 static void	ae_mac_config(ae_softc_t *sc);
135 static int	ae_intr(void *arg);
136 static void	ae_int_task(void *arg, int pending);
137 static void	ae_tx_intr(ae_softc_t *sc);
138 static void	ae_rxeof(ae_softc_t *sc, ae_rxd_t *rxd);
139 static void	ae_rx_intr(ae_softc_t *sc);
140 static void	ae_watchdog(ae_softc_t *sc);
141 static void	ae_tick(void *arg);
142 static void	ae_rxfilter(ae_softc_t *sc);
143 static void	ae_rxvlan(ae_softc_t *sc);
144 static int	ae_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data);
145 static void	ae_stop(ae_softc_t *sc);
146 static int	ae_check_eeprom_present(ae_softc_t *sc, int *vpdc);
147 static int	ae_vpd_read_word(ae_softc_t *sc, int reg, uint32_t *word);
148 static int	ae_get_vpd_eaddr(ae_softc_t *sc, uint32_t *eaddr);
149 static int	ae_get_reg_eaddr(ae_softc_t *sc, uint32_t *eaddr);
150 static void	ae_update_stats_rx(uint16_t flags, ae_stats_t *stats);
151 static void	ae_update_stats_tx(uint16_t flags, ae_stats_t *stats);
152 static void	ae_init_tunables(ae_softc_t *sc);
153 
154 static device_method_t ae_methods[] = {
155 	/* Device interface. */
156 	DEVMETHOD(device_probe,		ae_probe),
157 	DEVMETHOD(device_attach,	ae_attach),
158 	DEVMETHOD(device_detach,	ae_detach),
159 	DEVMETHOD(device_shutdown,	ae_shutdown),
160 	DEVMETHOD(device_suspend,	ae_suspend),
161 	DEVMETHOD(device_resume,	ae_resume),
162 
163 	/* MII interface. */
164 	DEVMETHOD(miibus_readreg,	ae_miibus_readreg),
165 	DEVMETHOD(miibus_writereg,	ae_miibus_writereg),
166 	DEVMETHOD(miibus_statchg,	ae_miibus_statchg),
167 
168 	{ NULL, NULL }
169 };
170 static driver_t ae_driver = {
171         "ae",
172         ae_methods,
173         sizeof(ae_softc_t)
174 };
175 static devclass_t ae_devclass;
176 
177 DRIVER_MODULE(ae, pci, ae_driver, ae_devclass, 0, 0);
178 DRIVER_MODULE(miibus, ae, miibus_driver, miibus_devclass, 0, 0);
179 MODULE_DEPEND(ae, pci, 1, 1, 1);
180 MODULE_DEPEND(ae, ether, 1, 1, 1);
181 MODULE_DEPEND(ae, miibus, 1, 1, 1);
182 
183 /*
184  * Tunables.
185  */
186 static int msi_disable = 0;
187 TUNABLE_INT("hw.ae.msi_disable", &msi_disable);
188 
189 #define	AE_READ_4(sc, reg) \
190 	bus_read_4((sc)->mem[0], (reg))
191 #define	AE_READ_2(sc, reg) \
192 	bus_read_2((sc)->mem[0], (reg))
193 #define	AE_READ_1(sc, reg) \
194 	bus_read_1((sc)->mem[0], (reg))
195 #define	AE_WRITE_4(sc, reg, val) \
196 	bus_write_4((sc)->mem[0], (reg), (val))
197 #define	AE_WRITE_2(sc, reg, val) \
198 	bus_write_2((sc)->mem[0], (reg), (val))
199 #define	AE_WRITE_1(sc, reg, val) \
200 	bus_write_1((sc)->mem[0], (reg), (val))
201 #define	AE_PHY_READ(sc, reg) \
202 	ae_miibus_readreg(sc->dev, 0, reg)
203 #define	AE_PHY_WRITE(sc, reg, val) \
204 	ae_miibus_writereg(sc->dev, 0, reg, val)
205 #define	AE_CHECK_EADDR_VALID(eaddr) \
206 	((eaddr[0] == 0 && eaddr[1] == 0) || \
207 	(eaddr[0] == 0xffffffff && eaddr[1] == 0xffff))
208 #define	AE_RXD_VLAN(vtag) \
209 	(((vtag) >> 4) | (((vtag) & 0x07) << 13) | (((vtag) & 0x08) << 9))
210 #define	AE_TXD_VLAN(vtag) \
211 	(((vtag) << 4) | (((vtag) >> 13) & 0x07) | (((vtag) >> 9) & 0x08))
212 
213 static int
214 ae_probe(device_t dev)
215 {
216 	uint16_t deviceid, vendorid;
217 	int i;
218 
219 	vendorid = pci_get_vendor(dev);
220 	deviceid = pci_get_device(dev);
221 
222 	/*
223 	 * Search through the list of supported devs for matching one.
224 	 */
225 	for (i = 0; i < AE_DEVS_COUNT; i++) {
226 		if (vendorid == ae_devs[i].vendorid &&
227 		    deviceid == ae_devs[i].deviceid) {
228 			device_set_desc(dev, ae_devs[i].name);
229 			return (BUS_PROBE_DEFAULT);
230 		}
231 	}
232 	return (ENXIO);
233 }
234 
235 static int
236 ae_attach(device_t dev)
237 {
238 	ae_softc_t *sc;
239 	struct ifnet *ifp;
240 	uint8_t chiprev;
241 	uint32_t pcirev;
242 	int nmsi, pmc;
243 	int error;
244 
245 	sc = device_get_softc(dev); /* Automatically allocated and zeroed
246 				       on attach. */
247 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
248 	sc->dev = dev;
249 
250 	/*
251 	 * Initialize mutexes and tasks.
252 	 */
253 	mtx_init(&sc->mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF);
254 	callout_init_mtx(&sc->tick_ch, &sc->mtx, 0);
255 	TASK_INIT(&sc->int_task, 0, ae_int_task, sc);
256 	TASK_INIT(&sc->link_task, 0, ae_link_task, sc);
257 
258 	pci_enable_busmaster(dev);		/* Enable bus mastering. */
259 
260 	sc->spec_mem = ae_res_spec_mem;
261 
262 	/*
263 	 * Allocate memory-mapped registers.
264 	 */
265 	error = bus_alloc_resources(dev, sc->spec_mem, sc->mem);
266 	if (error != 0) {
267 		device_printf(dev, "could not allocate memory resources.\n");
268 		sc->spec_mem = NULL;
269 		goto fail;
270 	}
271 
272 	/*
273 	 * Retrieve PCI and chip revisions.
274 	 */
275 	pcirev = pci_get_revid(dev);
276 	chiprev = (AE_READ_4(sc, AE_MASTER_REG) >> AE_MASTER_REVNUM_SHIFT) &
277 	    AE_MASTER_REVNUM_MASK;
278 	if (bootverbose) {
279 		device_printf(dev, "pci device revision: %#04x\n", pcirev);
280 		device_printf(dev, "chip id: %#02x\n", chiprev);
281 	}
282 	nmsi = pci_msi_count(dev);
283 	if (bootverbose)
284 		device_printf(dev, "MSI count: %d.\n", nmsi);
285 
286 	/*
287 	 * Allocate interrupt resources.
288 	 */
289 	if (msi_disable == 0 && nmsi == 1) {
290 		error = pci_alloc_msi(dev, &nmsi);
291 		if (error == 0) {
292 			device_printf(dev, "Using MSI messages.\n");
293 			sc->spec_irq = ae_res_spec_msi;
294 			error = bus_alloc_resources(dev, sc->spec_irq, sc->irq);
295 			if (error != 0) {
296 				device_printf(dev, "MSI allocation failed.\n");
297 				sc->spec_irq = NULL;
298 				pci_release_msi(dev);
299 			} else {
300 				sc->flags |= AE_FLAG_MSI;
301 			}
302 		}
303 	}
304 	if (sc->spec_irq == NULL) {
305 		sc->spec_irq = ae_res_spec_irq;
306 		error = bus_alloc_resources(dev, sc->spec_irq, sc->irq);
307 		if (error != 0) {
308 			device_printf(dev, "could not allocate IRQ resources.\n");
309 			sc->spec_irq = NULL;
310 			goto fail;
311 		}
312 	}
313 
314 	ae_init_tunables(sc);
315 
316 	ae_phy_reset(sc);		/* Reset PHY. */
317 	error = ae_reset(sc);		/* Reset the controller itself. */
318 	if (error != 0)
319 		goto fail;
320 
321 	ae_pcie_init(sc);
322 
323 	ae_retrieve_address(sc);	/* Load MAC address. */
324 
325 	error = ae_alloc_rings(sc);	/* Allocate ring buffers. */
326 	if (error != 0)
327 		goto fail;
328 
329 	ifp = sc->ifp = if_alloc(IFT_ETHER);
330 	if (ifp == NULL) {
331 		device_printf(dev, "could not allocate ifnet structure.\n");
332 		error = ENXIO;
333 		goto fail;
334 	}
335 
336 	ifp->if_softc = sc;
337 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
338 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
339 	ifp->if_ioctl = ae_ioctl;
340 	ifp->if_start = ae_start;
341 	ifp->if_init = ae_init;
342 	ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
343 	ifp->if_hwassist = 0;
344 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
345 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
346 	IFQ_SET_READY(&ifp->if_snd);
347 	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) {
348 		ifp->if_capabilities |= IFCAP_WOL_MAGIC;
349 		sc->flags |= AE_FLAG_PMG;
350 	}
351 	ifp->if_capenable = ifp->if_capabilities;
352 
353 	/*
354 	 * Configure and attach MII bus.
355 	 */
356 	error = mii_attach(dev, &sc->miibus, ifp, ae_mediachange,
357 	    ae_mediastatus, BMSR_DEFCAPMASK, AE_PHYADDR_DEFAULT,
358 	    MII_OFFSET_ANY, 0);
359 	if (error != 0) {
360 		device_printf(dev, "attaching PHYs failed\n");
361 		goto fail;
362 	}
363 
364 	ether_ifattach(ifp, sc->eaddr);
365 	/* Tell the upper layer(s) we support long frames. */
366 	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
367 
368 	/*
369 	 * Create and run all helper tasks.
370 	 */
371 	sc->tq = taskqueue_create_fast("ae_taskq", M_WAITOK,
372             taskqueue_thread_enqueue, &sc->tq);
373 	if (sc->tq == NULL) {
374 		device_printf(dev, "could not create taskqueue.\n");
375 		ether_ifdetach(ifp);
376 		error = ENXIO;
377 		goto fail;
378 	}
379 	taskqueue_start_threads(&sc->tq, 1, PI_NET, "%s taskq",
380 	    device_get_nameunit(sc->dev));
381 
382 	/*
383 	 * Configure interrupt handlers.
384 	 */
385 	error = bus_setup_intr(dev, sc->irq[0], INTR_TYPE_NET | INTR_MPSAFE,
386 	    ae_intr, NULL, sc, &sc->intrhand);
387 	if (error != 0) {
388 		device_printf(dev, "could not set up interrupt handler.\n");
389 		taskqueue_free(sc->tq);
390 		sc->tq = NULL;
391 		ether_ifdetach(ifp);
392 		goto fail;
393 	}
394 
395 fail:
396 	if (error != 0)
397 		ae_detach(dev);
398 
399 	return (error);
400 }
401 
402 #define	AE_SYSCTL(stx, parent, name, desc, ptr)	\
403 	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, name, CTLFLAG_RD, ptr, 0, desc)
404 
405 static void
406 ae_init_tunables(ae_softc_t *sc)
407 {
408 	struct sysctl_ctx_list *ctx;
409 	struct sysctl_oid *root, *stats, *stats_rx, *stats_tx;
410 	struct ae_stats *ae_stats;
411 
412 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
413 	ae_stats = &sc->stats;
414 
415 	ctx = device_get_sysctl_ctx(sc->dev);
416 	root = device_get_sysctl_tree(sc->dev);
417 	stats = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(root), OID_AUTO, "stats",
418 	    CTLFLAG_RD, NULL, "ae statistics");
419 
420 	/*
421 	 * Receiver statistcics.
422 	 */
423 	stats_rx = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(stats), OID_AUTO, "rx",
424 	    CTLFLAG_RD, NULL, "Rx MAC statistics");
425 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "bcast",
426 	    "broadcast frames", &ae_stats->rx_bcast);
427 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "mcast",
428 	    "multicast frames", &ae_stats->rx_mcast);
429 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "pause",
430 	    "PAUSE frames", &ae_stats->rx_pause);
431 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "control",
432 	    "control frames", &ae_stats->rx_ctrl);
433 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "crc_errors",
434 	    "frames with CRC errors", &ae_stats->rx_crcerr);
435 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "code_errors",
436 	    "frames with invalid opcode", &ae_stats->rx_codeerr);
437 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "runt",
438 	    "runt frames", &ae_stats->rx_runt);
439 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "frag",
440 	    "fragmented frames", &ae_stats->rx_frag);
441 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "align_errors",
442 	    "frames with alignment errors", &ae_stats->rx_align);
443 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "truncated",
444 	    "frames truncated due to Rx FIFO inderrun", &ae_stats->rx_trunc);
445 
446 	/*
447 	 * Receiver statistcics.
448 	 */
449 	stats_tx = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(stats), OID_AUTO, "tx",
450 	    CTLFLAG_RD, NULL, "Tx MAC statistics");
451 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "bcast",
452 	    "broadcast frames", &ae_stats->tx_bcast);
453 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "mcast",
454 	    "multicast frames", &ae_stats->tx_mcast);
455 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "pause",
456 	    "PAUSE frames", &ae_stats->tx_pause);
457 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "control",
458 	    "control frames", &ae_stats->tx_ctrl);
459 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "defers",
460 	    "deferrals occuried", &ae_stats->tx_defer);
461 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "exc_defers",
462 	    "excessive deferrals occuried", &ae_stats->tx_excdefer);
463 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "singlecols",
464 	    "single collisions occuried", &ae_stats->tx_singlecol);
465 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "multicols",
466 	    "multiple collisions occuried", &ae_stats->tx_multicol);
467 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "latecols",
468 	    "late collisions occuried", &ae_stats->tx_latecol);
469 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "aborts",
470 	    "transmit aborts due collisions", &ae_stats->tx_abortcol);
471 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "underruns",
472 	    "Tx FIFO underruns", &ae_stats->tx_underrun);
473 }
474 
475 static void
476 ae_pcie_init(ae_softc_t *sc)
477 {
478 
479 	AE_WRITE_4(sc, AE_PCIE_LTSSM_TESTMODE_REG, AE_PCIE_LTSSM_TESTMODE_DEFAULT);
480 	AE_WRITE_4(sc, AE_PCIE_DLL_TX_CTRL_REG, AE_PCIE_DLL_TX_CTRL_DEFAULT);
481 }
482 
483 static void
484 ae_phy_reset(ae_softc_t *sc)
485 {
486 
487 	AE_WRITE_4(sc, AE_PHY_ENABLE_REG, AE_PHY_ENABLE);
488 	DELAY(1000);	/* XXX: pause(9) ? */
489 }
490 
491 static int
492 ae_reset(ae_softc_t *sc)
493 {
494 	int i;
495 
496 	/*
497 	 * Issue a soft reset.
498 	 */
499 	AE_WRITE_4(sc, AE_MASTER_REG, AE_MASTER_SOFT_RESET);
500 	bus_barrier(sc->mem[0], AE_MASTER_REG, 4,
501 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
502 
503 	/*
504 	 * Wait for reset to complete.
505 	 */
506 	for (i = 0; i < AE_RESET_TIMEOUT; i++) {
507 		if ((AE_READ_4(sc, AE_MASTER_REG) & AE_MASTER_SOFT_RESET) == 0)
508 			break;
509 		DELAY(10);
510 	}
511 	if (i == AE_RESET_TIMEOUT) {
512 		device_printf(sc->dev, "reset timeout.\n");
513 		return (ENXIO);
514 	}
515 
516 	/*
517 	 * Wait for everything to enter idle state.
518 	 */
519 	for (i = 0; i < AE_IDLE_TIMEOUT; i++) {
520 		if (AE_READ_4(sc, AE_IDLE_REG) == 0)
521 			break;
522 		DELAY(100);
523 	}
524 	if (i == AE_IDLE_TIMEOUT) {
525 		device_printf(sc->dev, "could not enter idle state.\n");
526 		return (ENXIO);
527 	}
528 	return (0);
529 }
530 
531 static void
532 ae_init(void *arg)
533 {
534 	ae_softc_t *sc;
535 
536 	sc = (ae_softc_t *)arg;
537 	AE_LOCK(sc);
538 	ae_init_locked(sc);
539 	AE_UNLOCK(sc);
540 }
541 
542 static void
543 ae_phy_init(ae_softc_t *sc)
544 {
545 
546 	/*
547 	 * Enable link status change interrupt.
548 	 * XXX magic numbers.
549 	 */
550 #ifdef notyet
551 	AE_PHY_WRITE(sc, 18, 0xc00);
552 #endif
553 }
554 
555 static int
556 ae_init_locked(ae_softc_t *sc)
557 {
558 	struct ifnet *ifp;
559 	struct mii_data *mii;
560 	uint8_t eaddr[ETHER_ADDR_LEN];
561 	uint32_t val;
562 	bus_addr_t addr;
563 
564 	AE_LOCK_ASSERT(sc);
565 
566 	ifp = sc->ifp;
567 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
568 		return (0);
569 	mii = device_get_softc(sc->miibus);
570 
571 	ae_stop(sc);
572 	ae_reset(sc);
573 	ae_pcie_init(sc);		/* Initialize PCIE stuff. */
574 	ae_phy_init(sc);
575 	ae_powersave_disable(sc);
576 
577 	/*
578 	 * Clear and disable interrupts.
579 	 */
580 	AE_WRITE_4(sc, AE_ISR_REG, 0xffffffff);
581 
582 	/*
583 	 * Set the MAC address.
584 	 */
585 	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
586 	val = eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5];
587 	AE_WRITE_4(sc, AE_EADDR0_REG, val);
588 	val = eaddr[0] << 8 | eaddr[1];
589 	AE_WRITE_4(sc, AE_EADDR1_REG, val);
590 
591 	bzero(sc->rxd_base_dma, AE_RXD_COUNT_DEFAULT * 1536 + AE_RXD_PADDING);
592 	bzero(sc->txd_base, AE_TXD_BUFSIZE_DEFAULT);
593 	bzero(sc->txs_base, AE_TXS_COUNT_DEFAULT * 4);
594 	/*
595 	 * Set ring buffers base addresses.
596 	 */
597 	addr = sc->dma_rxd_busaddr;
598 	AE_WRITE_4(sc, AE_DESC_ADDR_HI_REG, BUS_ADDR_HI(addr));
599 	AE_WRITE_4(sc, AE_RXD_ADDR_LO_REG, BUS_ADDR_LO(addr));
600 	addr = sc->dma_txd_busaddr;
601 	AE_WRITE_4(sc, AE_TXD_ADDR_LO_REG, BUS_ADDR_LO(addr));
602 	addr = sc->dma_txs_busaddr;
603 	AE_WRITE_4(sc, AE_TXS_ADDR_LO_REG, BUS_ADDR_LO(addr));
604 
605 	/*
606 	 * Configure ring buffers sizes.
607 	 */
608 	AE_WRITE_2(sc, AE_RXD_COUNT_REG, AE_RXD_COUNT_DEFAULT);
609 	AE_WRITE_2(sc, AE_TXD_BUFSIZE_REG, AE_TXD_BUFSIZE_DEFAULT / 4);
610 	AE_WRITE_2(sc, AE_TXS_COUNT_REG, AE_TXS_COUNT_DEFAULT);
611 
612 	/*
613 	 * Configure interframe gap parameters.
614 	 */
615 	val = ((AE_IFG_TXIPG_DEFAULT << AE_IFG_TXIPG_SHIFT) &
616 	    AE_IFG_TXIPG_MASK) |
617 	    ((AE_IFG_RXIPG_DEFAULT << AE_IFG_RXIPG_SHIFT) &
618 	    AE_IFG_RXIPG_MASK) |
619 	    ((AE_IFG_IPGR1_DEFAULT << AE_IFG_IPGR1_SHIFT) &
620 	    AE_IFG_IPGR1_MASK) |
621 	    ((AE_IFG_IPGR2_DEFAULT << AE_IFG_IPGR2_SHIFT) &
622 	    AE_IFG_IPGR2_MASK);
623 	AE_WRITE_4(sc, AE_IFG_REG, val);
624 
625 	/*
626 	 * Configure half-duplex operation.
627 	 */
628 	val = ((AE_HDPX_LCOL_DEFAULT << AE_HDPX_LCOL_SHIFT) &
629 	    AE_HDPX_LCOL_MASK) |
630 	    ((AE_HDPX_RETRY_DEFAULT << AE_HDPX_RETRY_SHIFT) &
631 	    AE_HDPX_RETRY_MASK) |
632 	    ((AE_HDPX_ABEBT_DEFAULT << AE_HDPX_ABEBT_SHIFT) &
633 	    AE_HDPX_ABEBT_MASK) |
634 	    ((AE_HDPX_JAMIPG_DEFAULT << AE_HDPX_JAMIPG_SHIFT) &
635 	    AE_HDPX_JAMIPG_MASK) | AE_HDPX_EXC_EN;
636 	AE_WRITE_4(sc, AE_HDPX_REG, val);
637 
638 	/*
639 	 * Configure interrupt moderate timer.
640 	 */
641 	AE_WRITE_2(sc, AE_IMT_REG, AE_IMT_DEFAULT);
642 	val = AE_READ_4(sc, AE_MASTER_REG);
643 	val |= AE_MASTER_IMT_EN;
644 	AE_WRITE_4(sc, AE_MASTER_REG, val);
645 
646 	/*
647 	 * Configure interrupt clearing timer.
648 	 */
649 	AE_WRITE_2(sc, AE_ICT_REG, AE_ICT_DEFAULT);
650 
651 	/*
652 	 * Configure MTU.
653 	 */
654 	val = ifp->if_mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
655 	    ETHER_CRC_LEN;
656 	AE_WRITE_2(sc, AE_MTU_REG, val);
657 
658 	/*
659 	 * Configure cut-through threshold.
660 	 */
661 	AE_WRITE_4(sc, AE_CUT_THRESH_REG, AE_CUT_THRESH_DEFAULT);
662 
663 	/*
664 	 * Configure flow control.
665 	 */
666 	AE_WRITE_2(sc, AE_FLOW_THRESH_HI_REG, (AE_RXD_COUNT_DEFAULT / 8) * 7);
667 	AE_WRITE_2(sc, AE_FLOW_THRESH_LO_REG, (AE_RXD_COUNT_MIN / 8) >
668 	    (AE_RXD_COUNT_DEFAULT / 12) ? (AE_RXD_COUNT_MIN / 8) :
669 	    (AE_RXD_COUNT_DEFAULT / 12));
670 
671 	/*
672 	 * Init mailboxes.
673 	 */
674 	sc->txd_cur = sc->rxd_cur = 0;
675 	sc->txs_ack = sc->txd_ack = 0;
676 	sc->rxd_cur = 0;
677 	AE_WRITE_2(sc, AE_MB_TXD_IDX_REG, sc->txd_cur);
678 	AE_WRITE_2(sc, AE_MB_RXD_IDX_REG, sc->rxd_cur);
679 
680 	sc->tx_inproc = 0;	/* Number of packets the chip processes now. */
681 	sc->flags |= AE_FLAG_TXAVAIL;	/* Free Tx's available. */
682 
683 	/*
684 	 * Enable DMA.
685 	 */
686 	AE_WRITE_1(sc, AE_DMAREAD_REG, AE_DMAREAD_EN);
687 	AE_WRITE_1(sc, AE_DMAWRITE_REG, AE_DMAWRITE_EN);
688 
689 	/*
690 	 * Check if everything is OK.
691 	 */
692 	val = AE_READ_4(sc, AE_ISR_REG);
693 	if ((val & AE_ISR_PHY_LINKDOWN) != 0) {
694 		device_printf(sc->dev, "Initialization failed.\n");
695 		return (ENXIO);
696 	}
697 
698 	/*
699 	 * Clear interrupt status.
700 	 */
701 	AE_WRITE_4(sc, AE_ISR_REG, 0x3fffffff);
702 	AE_WRITE_4(sc, AE_ISR_REG, 0x0);
703 
704 	/*
705 	 * Enable interrupts.
706 	 */
707 	val = AE_READ_4(sc, AE_MASTER_REG);
708 	AE_WRITE_4(sc, AE_MASTER_REG, val | AE_MASTER_MANUAL_INT);
709 	AE_WRITE_4(sc, AE_IMR_REG, AE_IMR_DEFAULT);
710 
711 	/*
712 	 * Disable WOL.
713 	 */
714 	AE_WRITE_4(sc, AE_WOL_REG, 0);
715 
716 	/*
717 	 * Configure MAC.
718 	 */
719 	val = AE_MAC_TX_CRC_EN | AE_MAC_TX_AUTOPAD |
720 	    AE_MAC_FULL_DUPLEX | AE_MAC_CLK_PHY |
721 	    AE_MAC_TX_FLOW_EN | AE_MAC_RX_FLOW_EN |
722 	    ((AE_HALFBUF_DEFAULT << AE_HALFBUF_SHIFT) & AE_HALFBUF_MASK) |
723 	    ((AE_MAC_PREAMBLE_DEFAULT << AE_MAC_PREAMBLE_SHIFT) &
724 	    AE_MAC_PREAMBLE_MASK);
725 	AE_WRITE_4(sc, AE_MAC_REG, val);
726 
727 	/*
728 	 * Configure Rx MAC.
729 	 */
730 	ae_rxfilter(sc);
731 	ae_rxvlan(sc);
732 
733 	/*
734 	 * Enable Tx/Rx.
735 	 */
736 	val = AE_READ_4(sc, AE_MAC_REG);
737 	AE_WRITE_4(sc, AE_MAC_REG, val | AE_MAC_TX_EN | AE_MAC_RX_EN);
738 
739 	sc->flags &= ~AE_FLAG_LINK;
740 	mii_mediachg(mii);	/* Switch to the current media. */
741 
742 	callout_reset(&sc->tick_ch, hz, ae_tick, sc);
743 
744 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
745 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
746 
747 #ifdef AE_DEBUG
748 	device_printf(sc->dev, "Initialization complete.\n");
749 #endif
750 
751 	return (0);
752 }
753 
754 static int
755 ae_detach(device_t dev)
756 {
757 	struct ae_softc *sc;
758 	struct ifnet *ifp;
759 
760 	sc = device_get_softc(dev);
761 	KASSERT(sc != NULL, ("[ae: %d]: sc is NULL", __LINE__));
762 	ifp = sc->ifp;
763 	if (device_is_attached(dev)) {
764 		AE_LOCK(sc);
765 		sc->flags |= AE_FLAG_DETACH;
766 		ae_stop(sc);
767 		AE_UNLOCK(sc);
768 		callout_drain(&sc->tick_ch);
769 		taskqueue_drain(sc->tq, &sc->int_task);
770 		taskqueue_drain(taskqueue_swi, &sc->link_task);
771 		ether_ifdetach(ifp);
772 	}
773 	if (sc->tq != NULL) {
774 		taskqueue_drain(sc->tq, &sc->int_task);
775 		taskqueue_free(sc->tq);
776 		sc->tq = NULL;
777 	}
778 	if (sc->miibus != NULL) {
779 		device_delete_child(dev, sc->miibus);
780 		sc->miibus = NULL;
781 	}
782 	bus_generic_detach(sc->dev);
783 	ae_dma_free(sc);
784 	if (sc->intrhand != NULL) {
785 		bus_teardown_intr(dev, sc->irq[0], sc->intrhand);
786 		sc->intrhand = NULL;
787 	}
788 	if (ifp != NULL) {
789 		if_free(ifp);
790 		sc->ifp = NULL;
791 	}
792 	if (sc->spec_irq != NULL)
793 		bus_release_resources(dev, sc->spec_irq, sc->irq);
794 	if (sc->spec_mem != NULL)
795 		bus_release_resources(dev, sc->spec_mem, sc->mem);
796 	if ((sc->flags & AE_FLAG_MSI) != 0)
797 		pci_release_msi(dev);
798 	mtx_destroy(&sc->mtx);
799 
800 	return (0);
801 }
802 
803 static int
804 ae_miibus_readreg(device_t dev, int phy, int reg)
805 {
806 	ae_softc_t *sc;
807 	uint32_t val;
808 	int i;
809 
810 	sc = device_get_softc(dev);
811 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
812 
813 	/*
814 	 * Locking is done in upper layers.
815 	 */
816 
817 	val = ((reg << AE_MDIO_REGADDR_SHIFT) & AE_MDIO_REGADDR_MASK) |
818 	    AE_MDIO_START | AE_MDIO_READ | AE_MDIO_SUP_PREAMBLE |
819 	    ((AE_MDIO_CLK_25_4 << AE_MDIO_CLK_SHIFT) & AE_MDIO_CLK_MASK);
820 	AE_WRITE_4(sc, AE_MDIO_REG, val);
821 
822 	/*
823 	 * Wait for operation to complete.
824 	 */
825 	for (i = 0; i < AE_MDIO_TIMEOUT; i++) {
826 		DELAY(2);
827 		val = AE_READ_4(sc, AE_MDIO_REG);
828 		if ((val & (AE_MDIO_START | AE_MDIO_BUSY)) == 0)
829 			break;
830 	}
831 	if (i == AE_MDIO_TIMEOUT) {
832 		device_printf(sc->dev, "phy read timeout: %d.\n", reg);
833 		return (0);
834 	}
835 	return ((val << AE_MDIO_DATA_SHIFT) & AE_MDIO_DATA_MASK);
836 }
837 
838 static int
839 ae_miibus_writereg(device_t dev, int phy, int reg, int val)
840 {
841 	ae_softc_t *sc;
842 	uint32_t aereg;
843 	int i;
844 
845 	sc = device_get_softc(dev);
846 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
847 
848 	/*
849 	 * Locking is done in upper layers.
850 	 */
851 
852 	aereg = ((reg << AE_MDIO_REGADDR_SHIFT) & AE_MDIO_REGADDR_MASK) |
853 	    AE_MDIO_START | AE_MDIO_SUP_PREAMBLE |
854 	    ((AE_MDIO_CLK_25_4 << AE_MDIO_CLK_SHIFT) & AE_MDIO_CLK_MASK) |
855 	    ((val << AE_MDIO_DATA_SHIFT) & AE_MDIO_DATA_MASK);
856 	AE_WRITE_4(sc, AE_MDIO_REG, aereg);
857 
858 	/*
859 	 * Wait for operation to complete.
860 	 */
861 	for (i = 0; i < AE_MDIO_TIMEOUT; i++) {
862 		DELAY(2);
863 		aereg = AE_READ_4(sc, AE_MDIO_REG);
864 		if ((aereg & (AE_MDIO_START | AE_MDIO_BUSY)) == 0)
865 			break;
866 	}
867 	if (i == AE_MDIO_TIMEOUT) {
868 		device_printf(sc->dev, "phy write timeout: %d.\n", reg);
869 	}
870 	return (0);
871 }
872 
873 static void
874 ae_miibus_statchg(device_t dev)
875 {
876 	ae_softc_t *sc;
877 
878 	sc = device_get_softc(dev);
879 	taskqueue_enqueue(taskqueue_swi, &sc->link_task);
880 }
881 
882 static void
883 ae_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
884 {
885 	ae_softc_t *sc;
886 	struct mii_data *mii;
887 
888 	sc = ifp->if_softc;
889 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
890 
891 	AE_LOCK(sc);
892 	mii = device_get_softc(sc->miibus);
893 	mii_pollstat(mii);
894 	ifmr->ifm_status = mii->mii_media_status;
895 	ifmr->ifm_active = mii->mii_media_active;
896 	AE_UNLOCK(sc);
897 }
898 
899 static int
900 ae_mediachange(struct ifnet *ifp)
901 {
902 	ae_softc_t *sc;
903 	struct mii_data *mii;
904 	struct mii_softc *mii_sc;
905 	int error;
906 
907 	/* XXX: check IFF_UP ?? */
908 	sc = ifp->if_softc;
909 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
910 	AE_LOCK(sc);
911 	mii = device_get_softc(sc->miibus);
912 	LIST_FOREACH(mii_sc, &mii->mii_phys, mii_list)
913 		PHY_RESET(mii_sc);
914 	error = mii_mediachg(mii);
915 	AE_UNLOCK(sc);
916 
917 	return (error);
918 }
919 
920 static int
921 ae_check_eeprom_present(ae_softc_t *sc, int *vpdc)
922 {
923 	int error;
924 	uint32_t val;
925 
926 	KASSERT(vpdc != NULL, ("[ae, %d]: vpdc is NULL!\n", __LINE__));
927 
928 	/*
929 	 * Not sure why, but Linux does this.
930 	 */
931 	val = AE_READ_4(sc, AE_SPICTL_REG);
932 	if ((val & AE_SPICTL_VPD_EN) != 0) {
933 		val &= ~AE_SPICTL_VPD_EN;
934 		AE_WRITE_4(sc, AE_SPICTL_REG, val);
935 	}
936 	error = pci_find_cap(sc->dev, PCIY_VPD, vpdc);
937 	return (error);
938 }
939 
940 static int
941 ae_vpd_read_word(ae_softc_t *sc, int reg, uint32_t *word)
942 {
943 	uint32_t val;
944 	int i;
945 
946 	AE_WRITE_4(sc, AE_VPD_DATA_REG, 0);	/* Clear register value. */
947 
948 	/*
949 	 * VPD registers start at offset 0x100. Read them.
950 	 */
951 	val = 0x100 + reg * 4;
952 	AE_WRITE_4(sc, AE_VPD_CAP_REG, (val << AE_VPD_CAP_ADDR_SHIFT) &
953 	    AE_VPD_CAP_ADDR_MASK);
954 	for (i = 0; i < AE_VPD_TIMEOUT; i++) {
955 		DELAY(2000);
956 		val = AE_READ_4(sc, AE_VPD_CAP_REG);
957 		if ((val & AE_VPD_CAP_DONE) != 0)
958 			break;
959 	}
960 	if (i == AE_VPD_TIMEOUT) {
961 		device_printf(sc->dev, "timeout reading VPD register %d.\n",
962 		    reg);
963 		return (ETIMEDOUT);
964 	}
965 	*word = AE_READ_4(sc, AE_VPD_DATA_REG);
966 	return (0);
967 }
968 
969 static int
970 ae_get_vpd_eaddr(ae_softc_t *sc, uint32_t *eaddr)
971 {
972 	uint32_t word, reg, val;
973 	int error;
974 	int found;
975 	int vpdc;
976 	int i;
977 
978 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
979 	KASSERT(eaddr != NULL, ("[ae, %d]: eaddr is NULL", __LINE__));
980 
981 	/*
982 	 * Check for EEPROM.
983 	 */
984 	error = ae_check_eeprom_present(sc, &vpdc);
985 	if (error != 0)
986 		return (error);
987 
988 	/*
989 	 * Read the VPD configuration space.
990 	 * Each register is prefixed with signature,
991 	 * so we can check if it is valid.
992 	 */
993 	for (i = 0, found = 0; i < AE_VPD_NREGS; i++) {
994 		error = ae_vpd_read_word(sc, i, &word);
995 		if (error != 0)
996 			break;
997 
998 		/*
999 		 * Check signature.
1000 		 */
1001 		if ((word & AE_VPD_SIG_MASK) != AE_VPD_SIG)
1002 			break;
1003 		reg = word >> AE_VPD_REG_SHIFT;
1004 		i++;	/* Move to the next word. */
1005 
1006 		if (reg != AE_EADDR0_REG && reg != AE_EADDR1_REG)
1007 			continue;
1008 
1009 		error = ae_vpd_read_word(sc, i, &val);
1010 		if (error != 0)
1011 			break;
1012 		if (reg == AE_EADDR0_REG)
1013 			eaddr[0] = val;
1014 		else
1015 			eaddr[1] = val;
1016 		found++;
1017 	}
1018 
1019 	if (found < 2)
1020 		return (ENOENT);
1021 
1022 	eaddr[1] &= 0xffff;	/* Only last 2 bytes are used. */
1023 	if (AE_CHECK_EADDR_VALID(eaddr) != 0) {
1024 		if (bootverbose)
1025 			device_printf(sc->dev,
1026 			    "VPD ethernet address registers are invalid.\n");
1027 		return (EINVAL);
1028 	}
1029 	return (0);
1030 }
1031 
1032 static int
1033 ae_get_reg_eaddr(ae_softc_t *sc, uint32_t *eaddr)
1034 {
1035 
1036 	/*
1037 	 * BIOS is supposed to set this.
1038 	 */
1039 	eaddr[0] = AE_READ_4(sc, AE_EADDR0_REG);
1040 	eaddr[1] = AE_READ_4(sc, AE_EADDR1_REG);
1041 	eaddr[1] &= 0xffff;	/* Only last 2 bytes are used. */
1042 
1043 	if (AE_CHECK_EADDR_VALID(eaddr) != 0) {
1044 		if (bootverbose)
1045 			device_printf(sc->dev,
1046 			    "Ethernet address registers are invalid.\n");
1047 		return (EINVAL);
1048 	}
1049 	return (0);
1050 }
1051 
1052 static void
1053 ae_retrieve_address(ae_softc_t *sc)
1054 {
1055 	uint32_t eaddr[2] = {0, 0};
1056 	int error;
1057 
1058 	/*
1059 	 *Check for EEPROM.
1060 	 */
1061 	error = ae_get_vpd_eaddr(sc, eaddr);
1062 	if (error != 0)
1063 		error = ae_get_reg_eaddr(sc, eaddr);
1064 	if (error != 0) {
1065 		if (bootverbose)
1066 			device_printf(sc->dev,
1067 			    "Generating random ethernet address.\n");
1068 		eaddr[0] = arc4random();
1069 
1070 		/*
1071 		 * Set OUI to ASUSTek COMPUTER INC.
1072 		 */
1073 		sc->eaddr[0] = 0x02;	/* U/L bit set. */
1074 		sc->eaddr[1] = 0x1f;
1075 		sc->eaddr[2] = 0xc6;
1076 		sc->eaddr[3] = (eaddr[0] >> 16) & 0xff;
1077 		sc->eaddr[4] = (eaddr[0] >> 8) & 0xff;
1078 		sc->eaddr[5] = (eaddr[0] >> 0) & 0xff;
1079 	} else {
1080 		sc->eaddr[0] = (eaddr[1] >> 8) & 0xff;
1081 		sc->eaddr[1] = (eaddr[1] >> 0) & 0xff;
1082 		sc->eaddr[2] = (eaddr[0] >> 24) & 0xff;
1083 		sc->eaddr[3] = (eaddr[0] >> 16) & 0xff;
1084 		sc->eaddr[4] = (eaddr[0] >> 8) & 0xff;
1085 		sc->eaddr[5] = (eaddr[0] >> 0) & 0xff;
1086 	}
1087 }
1088 
1089 static void
1090 ae_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1091 {
1092 	bus_addr_t *addr = arg;
1093 
1094 	if (error != 0)
1095 		return;
1096 	KASSERT(nsegs == 1, ("[ae, %d]: %d segments instead of 1!", __LINE__,
1097 	    nsegs));
1098 	*addr = segs[0].ds_addr;
1099 }
1100 
1101 static int
1102 ae_alloc_rings(ae_softc_t *sc)
1103 {
1104 	bus_addr_t busaddr;
1105 	int error;
1106 
1107 	/*
1108 	 * Create parent DMA tag.
1109 	 */
1110 	error = bus_dma_tag_create(bus_get_dma_tag(sc->dev),
1111 	    1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
1112 	    NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 0,
1113 	    BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
1114 	    &sc->dma_parent_tag);
1115 	if (error != 0) {
1116 		device_printf(sc->dev, "could not creare parent DMA tag.\n");
1117 		return (error);
1118 	}
1119 
1120 	/*
1121 	 * Create DMA tag for TxD.
1122 	 */
1123 	error = bus_dma_tag_create(sc->dma_parent_tag,
1124 	    8, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1125 	    NULL, NULL, AE_TXD_BUFSIZE_DEFAULT, 1,
1126 	    AE_TXD_BUFSIZE_DEFAULT, 0, NULL, NULL,
1127 	    &sc->dma_txd_tag);
1128 	if (error != 0) {
1129 		device_printf(sc->dev, "could not creare TxD DMA tag.\n");
1130 		return (error);
1131 	}
1132 
1133 	/*
1134 	 * Create DMA tag for TxS.
1135 	 */
1136 	error = bus_dma_tag_create(sc->dma_parent_tag,
1137 	    8, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1138 	    NULL, NULL, AE_TXS_COUNT_DEFAULT * 4, 1,
1139 	    AE_TXS_COUNT_DEFAULT * 4, 0, NULL, NULL,
1140 	    &sc->dma_txs_tag);
1141 	if (error != 0) {
1142 		device_printf(sc->dev, "could not creare TxS DMA tag.\n");
1143 		return (error);
1144 	}
1145 
1146 	/*
1147 	 * Create DMA tag for RxD.
1148 	 */
1149 	error = bus_dma_tag_create(sc->dma_parent_tag,
1150 	    128, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1151 	    NULL, NULL, AE_RXD_COUNT_DEFAULT * 1536 + AE_RXD_PADDING, 1,
1152 	    AE_RXD_COUNT_DEFAULT * 1536 + AE_RXD_PADDING, 0, NULL, NULL,
1153 	    &sc->dma_rxd_tag);
1154 	if (error != 0) {
1155 		device_printf(sc->dev, "could not creare TxS DMA tag.\n");
1156 		return (error);
1157 	}
1158 
1159 	/*
1160 	 * Allocate TxD DMA memory.
1161 	 */
1162 	error = bus_dmamem_alloc(sc->dma_txd_tag, (void **)&sc->txd_base,
1163 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1164 	    &sc->dma_txd_map);
1165 	if (error != 0) {
1166 		device_printf(sc->dev,
1167 		    "could not allocate DMA memory for TxD ring.\n");
1168 		return (error);
1169 	}
1170 	error = bus_dmamap_load(sc->dma_txd_tag, sc->dma_txd_map, sc->txd_base,
1171 	    AE_TXD_BUFSIZE_DEFAULT, ae_dmamap_cb, &busaddr, BUS_DMA_NOWAIT);
1172 	if (error != 0 || busaddr == 0) {
1173 		device_printf(sc->dev,
1174 		    "could not load DMA map for TxD ring.\n");
1175 		return (error);
1176 	}
1177 	sc->dma_txd_busaddr = busaddr;
1178 
1179 	/*
1180 	 * Allocate TxS DMA memory.
1181 	 */
1182 	error = bus_dmamem_alloc(sc->dma_txs_tag, (void **)&sc->txs_base,
1183 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1184 	    &sc->dma_txs_map);
1185 	if (error != 0) {
1186 		device_printf(sc->dev,
1187 		    "could not allocate DMA memory for TxS ring.\n");
1188 		return (error);
1189 	}
1190 	error = bus_dmamap_load(sc->dma_txs_tag, sc->dma_txs_map, sc->txs_base,
1191 	    AE_TXS_COUNT_DEFAULT * 4, ae_dmamap_cb, &busaddr, BUS_DMA_NOWAIT);
1192 	if (error != 0 || busaddr == 0) {
1193 		device_printf(sc->dev,
1194 		    "could not load DMA map for TxS ring.\n");
1195 		return (error);
1196 	}
1197 	sc->dma_txs_busaddr = busaddr;
1198 
1199 	/*
1200 	 * Allocate RxD DMA memory.
1201 	 */
1202 	error = bus_dmamem_alloc(sc->dma_rxd_tag, (void **)&sc->rxd_base_dma,
1203 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1204 	    &sc->dma_rxd_map);
1205 	if (error != 0) {
1206 		device_printf(sc->dev,
1207 		    "could not allocate DMA memory for RxD ring.\n");
1208 		return (error);
1209 	}
1210 	error = bus_dmamap_load(sc->dma_rxd_tag, sc->dma_rxd_map,
1211 	    sc->rxd_base_dma, AE_RXD_COUNT_DEFAULT * 1536 + AE_RXD_PADDING,
1212 	    ae_dmamap_cb, &busaddr, BUS_DMA_NOWAIT);
1213 	if (error != 0 || busaddr == 0) {
1214 		device_printf(sc->dev,
1215 		    "could not load DMA map for RxD ring.\n");
1216 		return (error);
1217 	}
1218 	sc->dma_rxd_busaddr = busaddr + AE_RXD_PADDING;
1219 	sc->rxd_base = (ae_rxd_t *)(sc->rxd_base_dma + AE_RXD_PADDING);
1220 
1221 	return (0);
1222 }
1223 
1224 static void
1225 ae_dma_free(ae_softc_t *sc)
1226 {
1227 
1228 	if (sc->dma_txd_tag != NULL) {
1229 		if (sc->dma_txd_busaddr != 0)
1230 			bus_dmamap_unload(sc->dma_txd_tag, sc->dma_txd_map);
1231 		if (sc->txd_base != NULL)
1232 			bus_dmamem_free(sc->dma_txd_tag, sc->txd_base,
1233 			    sc->dma_txd_map);
1234 		bus_dma_tag_destroy(sc->dma_txd_tag);
1235 		sc->dma_txd_tag = NULL;
1236 		sc->txd_base = NULL;
1237 		sc->dma_txd_busaddr = 0;
1238 	}
1239 	if (sc->dma_txs_tag != NULL) {
1240 		if (sc->dma_txs_busaddr != 0)
1241 			bus_dmamap_unload(sc->dma_txs_tag, sc->dma_txs_map);
1242 		if (sc->txs_base != NULL)
1243 			bus_dmamem_free(sc->dma_txs_tag, sc->txs_base,
1244 			    sc->dma_txs_map);
1245 		bus_dma_tag_destroy(sc->dma_txs_tag);
1246 		sc->dma_txs_tag = NULL;
1247 		sc->txs_base = NULL;
1248 		sc->dma_txs_busaddr = 0;
1249 	}
1250 	if (sc->dma_rxd_tag != NULL) {
1251 		if (sc->dma_rxd_busaddr != 0)
1252 			bus_dmamap_unload(sc->dma_rxd_tag, sc->dma_rxd_map);
1253 		if (sc->rxd_base_dma != NULL)
1254 			bus_dmamem_free(sc->dma_rxd_tag, sc->rxd_base_dma,
1255 			    sc->dma_rxd_map);
1256 		bus_dma_tag_destroy(sc->dma_rxd_tag);
1257 		sc->dma_rxd_tag = NULL;
1258 		sc->rxd_base_dma = NULL;
1259 		sc->dma_rxd_busaddr = 0;
1260 	}
1261 	if (sc->dma_parent_tag != NULL) {
1262 		bus_dma_tag_destroy(sc->dma_parent_tag);
1263 		sc->dma_parent_tag = NULL;
1264 	}
1265 }
1266 
1267 static int
1268 ae_shutdown(device_t dev)
1269 {
1270 	ae_softc_t *sc;
1271 	int error;
1272 
1273 	sc = device_get_softc(dev);
1274 	KASSERT(sc != NULL, ("[ae: %d]: sc is NULL", __LINE__));
1275 
1276 	error = ae_suspend(dev);
1277 	AE_LOCK(sc);
1278 	ae_powersave_enable(sc);
1279 	AE_UNLOCK(sc);
1280 	return (error);
1281 }
1282 
1283 static void
1284 ae_powersave_disable(ae_softc_t *sc)
1285 {
1286 	uint32_t val;
1287 
1288 	AE_LOCK_ASSERT(sc);
1289 
1290 	AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 0);
1291 	val = AE_PHY_READ(sc, AE_PHY_DBG_DATA);
1292 	if (val & AE_PHY_DBG_POWERSAVE) {
1293 		val &= ~AE_PHY_DBG_POWERSAVE;
1294 		AE_PHY_WRITE(sc, AE_PHY_DBG_DATA, val);
1295 		DELAY(1000);
1296 	}
1297 }
1298 
1299 static void
1300 ae_powersave_enable(ae_softc_t *sc)
1301 {
1302 	uint32_t val;
1303 
1304 	AE_LOCK_ASSERT(sc);
1305 
1306 	/*
1307 	 * XXX magic numbers.
1308 	 */
1309 	AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 0);
1310 	val = AE_PHY_READ(sc, AE_PHY_DBG_DATA);
1311 	AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, val | 0x1000);
1312 	AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 2);
1313 	AE_PHY_WRITE(sc, AE_PHY_DBG_DATA, 0x3000);
1314 	AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 3);
1315 	AE_PHY_WRITE(sc, AE_PHY_DBG_DATA, 0);
1316 }
1317 
1318 static void
1319 ae_pm_init(ae_softc_t *sc)
1320 {
1321 	struct ifnet *ifp;
1322 	uint32_t val;
1323 	uint16_t pmstat;
1324 	struct mii_data *mii;
1325 	int pmc;
1326 
1327 	AE_LOCK_ASSERT(sc);
1328 
1329 	ifp = sc->ifp;
1330 	if ((sc->flags & AE_FLAG_PMG) == 0) {
1331 		/* Disable WOL entirely. */
1332 		AE_WRITE_4(sc, AE_WOL_REG, 0);
1333 		return;
1334 	}
1335 
1336 	/*
1337 	 * Configure WOL if enabled.
1338 	 */
1339 	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1340 		mii = device_get_softc(sc->miibus);
1341 		mii_pollstat(mii);
1342 		if ((mii->mii_media_status & IFM_AVALID) != 0 &&
1343 		    (mii->mii_media_status & IFM_ACTIVE) != 0) {
1344 			AE_WRITE_4(sc, AE_WOL_REG, AE_WOL_MAGIC | \
1345 			    AE_WOL_MAGIC_PME);
1346 
1347 			/*
1348 			 * Configure MAC.
1349 			 */
1350 			val = AE_MAC_RX_EN | AE_MAC_CLK_PHY | \
1351 			    AE_MAC_TX_CRC_EN | AE_MAC_TX_AUTOPAD | \
1352 			    ((AE_HALFBUF_DEFAULT << AE_HALFBUF_SHIFT) & \
1353 			    AE_HALFBUF_MASK) | \
1354 			    ((AE_MAC_PREAMBLE_DEFAULT << \
1355 			    AE_MAC_PREAMBLE_SHIFT) & AE_MAC_PREAMBLE_MASK) | \
1356 			    AE_MAC_BCAST_EN | AE_MAC_MCAST_EN;
1357 			if ((IFM_OPTIONS(mii->mii_media_active) & \
1358 			    IFM_FDX) != 0)
1359 				val |= AE_MAC_FULL_DUPLEX;
1360 			AE_WRITE_4(sc, AE_MAC_REG, val);
1361 
1362 		} else {	/* No link. */
1363 			AE_WRITE_4(sc, AE_WOL_REG, AE_WOL_LNKCHG | \
1364 			    AE_WOL_LNKCHG_PME);
1365 			AE_WRITE_4(sc, AE_MAC_REG, 0);
1366 		}
1367 	} else {
1368 		ae_powersave_enable(sc);
1369 	}
1370 
1371 	/*
1372 	 * PCIE hacks. Magic numbers.
1373 	 */
1374 	val = AE_READ_4(sc, AE_PCIE_PHYMISC_REG);
1375 	val |= AE_PCIE_PHYMISC_FORCE_RCV_DET;
1376 	AE_WRITE_4(sc, AE_PCIE_PHYMISC_REG, val);
1377 	val = AE_READ_4(sc, AE_PCIE_DLL_TX_CTRL_REG);
1378 	val |= AE_PCIE_DLL_TX_CTRL_SEL_NOR_CLK;
1379 	AE_WRITE_4(sc, AE_PCIE_DLL_TX_CTRL_REG, val);
1380 
1381 	/*
1382 	 * Configure PME.
1383 	 */
1384 	if (pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) {
1385 		pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
1386 		pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1387 		if ((ifp->if_capenable & IFCAP_WOL) != 0)
1388 			pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1389 		pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1390 	}
1391 }
1392 
1393 static int
1394 ae_suspend(device_t dev)
1395 {
1396 	ae_softc_t *sc;
1397 
1398 	sc = device_get_softc(dev);
1399 
1400 	AE_LOCK(sc);
1401 	ae_stop(sc);
1402 	ae_pm_init(sc);
1403 	AE_UNLOCK(sc);
1404 
1405 	return (0);
1406 }
1407 
1408 static int
1409 ae_resume(device_t dev)
1410 {
1411 	ae_softc_t *sc;
1412 
1413 	sc = device_get_softc(dev);
1414 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
1415 
1416 	AE_LOCK(sc);
1417 	AE_READ_4(sc, AE_WOL_REG);	/* Clear WOL status. */
1418 	if ((sc->ifp->if_flags & IFF_UP) != 0)
1419 		ae_init_locked(sc);
1420 	AE_UNLOCK(sc);
1421 
1422 	return (0);
1423 }
1424 
1425 static unsigned int
1426 ae_tx_avail_size(ae_softc_t *sc)
1427 {
1428 	unsigned int avail;
1429 
1430 	if (sc->txd_cur >= sc->txd_ack)
1431 		avail = AE_TXD_BUFSIZE_DEFAULT - (sc->txd_cur - sc->txd_ack);
1432 	else
1433 		avail = sc->txd_ack - sc->txd_cur;
1434 
1435 	return (avail);
1436 }
1437 
1438 static int
1439 ae_encap(ae_softc_t *sc, struct mbuf **m_head)
1440 {
1441 	struct mbuf *m0;
1442 	ae_txd_t *hdr;
1443 	unsigned int to_end;
1444 	uint16_t len;
1445 
1446 	AE_LOCK_ASSERT(sc);
1447 
1448 	m0 = *m_head;
1449 	len = m0->m_pkthdr.len;
1450 
1451 	if ((sc->flags & AE_FLAG_TXAVAIL) == 0 ||
1452 	    len + sizeof(ae_txd_t) + 3 > ae_tx_avail_size(sc)) {
1453 #ifdef AE_DEBUG
1454 		if_printf(sc->ifp, "No free Tx available.\n");
1455 #endif
1456 		return ENOBUFS;
1457 	}
1458 
1459 	hdr = (ae_txd_t *)(sc->txd_base + sc->txd_cur);
1460 	bzero(hdr, sizeof(*hdr));
1461 	/* Skip header size. */
1462 	sc->txd_cur = (sc->txd_cur + sizeof(ae_txd_t)) % AE_TXD_BUFSIZE_DEFAULT;
1463 	/* Space available to the end of the ring */
1464 	to_end = AE_TXD_BUFSIZE_DEFAULT - sc->txd_cur;
1465 	if (to_end >= len) {
1466 		m_copydata(m0, 0, len, (caddr_t)(sc->txd_base + sc->txd_cur));
1467 	} else {
1468 		m_copydata(m0, 0, to_end, (caddr_t)(sc->txd_base +
1469 		    sc->txd_cur));
1470 		m_copydata(m0, to_end, len - to_end, (caddr_t)sc->txd_base);
1471 	}
1472 
1473 	/*
1474 	 * Set TxD flags and parameters.
1475 	 */
1476 	if ((m0->m_flags & M_VLANTAG) != 0) {
1477 		hdr->vlan = htole16(AE_TXD_VLAN(m0->m_pkthdr.ether_vtag));
1478 		hdr->len = htole16(len | AE_TXD_INSERT_VTAG);
1479 	} else {
1480 		hdr->len = htole16(len);
1481 	}
1482 
1483 	/*
1484 	 * Set current TxD position and round up to a 4-byte boundary.
1485 	 */
1486 	sc->txd_cur = ((sc->txd_cur + len + 3) & ~3) % AE_TXD_BUFSIZE_DEFAULT;
1487 	if (sc->txd_cur == sc->txd_ack)
1488 		sc->flags &= ~AE_FLAG_TXAVAIL;
1489 #ifdef AE_DEBUG
1490 	if_printf(sc->ifp, "New txd_cur = %d.\n", sc->txd_cur);
1491 #endif
1492 
1493 	/*
1494 	 * Update TxS position and check if there are empty TxS available.
1495 	 */
1496 	sc->txs_base[sc->txs_cur].flags &= ~htole16(AE_TXS_UPDATE);
1497 	sc->txs_cur = (sc->txs_cur + 1) % AE_TXS_COUNT_DEFAULT;
1498 	if (sc->txs_cur == sc->txs_ack)
1499 		sc->flags &= ~AE_FLAG_TXAVAIL;
1500 
1501 	/*
1502 	 * Synchronize DMA memory.
1503 	 */
1504 	bus_dmamap_sync(sc->dma_txd_tag, sc->dma_txd_map, BUS_DMASYNC_PREREAD |
1505 	    BUS_DMASYNC_PREWRITE);
1506 	bus_dmamap_sync(sc->dma_txs_tag, sc->dma_txs_map,
1507 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1508 
1509 	return (0);
1510 }
1511 
1512 static void
1513 ae_start(struct ifnet *ifp)
1514 {
1515 	ae_softc_t *sc;
1516 
1517 	sc = ifp->if_softc;
1518 	AE_LOCK(sc);
1519 	ae_start_locked(ifp);
1520 	AE_UNLOCK(sc);
1521 }
1522 
1523 static void
1524 ae_start_locked(struct ifnet *ifp)
1525 {
1526 	ae_softc_t *sc;
1527 	unsigned int count;
1528 	struct mbuf *m0;
1529 	int error;
1530 
1531 	sc = ifp->if_softc;
1532 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
1533 	AE_LOCK_ASSERT(sc);
1534 
1535 #ifdef AE_DEBUG
1536 	if_printf(ifp, "Start called.\n");
1537 #endif
1538 
1539 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1540 	    IFF_DRV_RUNNING || (sc->flags & AE_FLAG_LINK) == 0)
1541 		return;
1542 
1543 	count = 0;
1544 	while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
1545 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
1546 		if (m0 == NULL)
1547 			break;	/* Nothing to do. */
1548 
1549 		error = ae_encap(sc, &m0);
1550 		if (error != 0) {
1551 			if (m0 != NULL) {
1552 				IFQ_DRV_PREPEND(&ifp->if_snd, m0);
1553 				ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1554 #ifdef AE_DEBUG
1555 				if_printf(ifp, "Setting OACTIVE.\n");
1556 #endif
1557 			}
1558 			break;
1559 		}
1560 		count++;
1561 		sc->tx_inproc++;
1562 
1563 		/* Bounce a copy of the frame to BPF. */
1564 		ETHER_BPF_MTAP(ifp, m0);
1565 
1566 		m_freem(m0);
1567 	}
1568 
1569 	if (count > 0) {	/* Something was dequeued. */
1570 		AE_WRITE_2(sc, AE_MB_TXD_IDX_REG, sc->txd_cur / 4);
1571 		sc->wd_timer = AE_TX_TIMEOUT;	/* Load watchdog. */
1572 #ifdef AE_DEBUG
1573 		if_printf(ifp, "%d packets dequeued.\n", count);
1574 		if_printf(ifp, "Tx pos now is %d.\n", sc->txd_cur);
1575 #endif
1576 	}
1577 }
1578 
1579 static void
1580 ae_link_task(void *arg, int pending)
1581 {
1582 	ae_softc_t *sc;
1583 	struct mii_data *mii;
1584 	struct ifnet *ifp;
1585 	uint32_t val;
1586 
1587 	sc = (ae_softc_t *)arg;
1588 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
1589 	AE_LOCK(sc);
1590 
1591 	ifp = sc->ifp;
1592 	mii = device_get_softc(sc->miibus);
1593 	if (mii == NULL || ifp == NULL ||
1594 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1595 		AE_UNLOCK(sc);	/* XXX: could happen? */
1596 		return;
1597 	}
1598 
1599 	sc->flags &= ~AE_FLAG_LINK;
1600 	if ((mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) ==
1601 	    (IFM_AVALID | IFM_ACTIVE)) {
1602 		switch(IFM_SUBTYPE(mii->mii_media_active)) {
1603 		case IFM_10_T:
1604 		case IFM_100_TX:
1605 			sc->flags |= AE_FLAG_LINK;
1606 			break;
1607 		default:
1608 			break;
1609 		}
1610 	}
1611 
1612 	/*
1613 	 * Stop Rx/Tx MACs.
1614 	 */
1615 	ae_stop_rxmac(sc);
1616 	ae_stop_txmac(sc);
1617 
1618 	if ((sc->flags & AE_FLAG_LINK) != 0) {
1619 		ae_mac_config(sc);
1620 
1621 		/*
1622 		 * Restart DMA engines.
1623 		 */
1624 		AE_WRITE_1(sc, AE_DMAREAD_REG, AE_DMAREAD_EN);
1625 		AE_WRITE_1(sc, AE_DMAWRITE_REG, AE_DMAWRITE_EN);
1626 
1627 		/*
1628 		 * Enable Rx and Tx MACs.
1629 		 */
1630 		val = AE_READ_4(sc, AE_MAC_REG);
1631 		val |= AE_MAC_TX_EN | AE_MAC_RX_EN;
1632 		AE_WRITE_4(sc, AE_MAC_REG, val);
1633 	}
1634 	AE_UNLOCK(sc);
1635 }
1636 
1637 static void
1638 ae_stop_rxmac(ae_softc_t *sc)
1639 {
1640 	uint32_t val;
1641 	int i;
1642 
1643 	AE_LOCK_ASSERT(sc);
1644 
1645 	/*
1646 	 * Stop Rx MAC engine.
1647 	 */
1648 	val = AE_READ_4(sc, AE_MAC_REG);
1649 	if ((val & AE_MAC_RX_EN) != 0) {
1650 		val &= ~AE_MAC_RX_EN;
1651 		AE_WRITE_4(sc, AE_MAC_REG, val);
1652 	}
1653 
1654 	/*
1655 	 * Stop Rx DMA engine.
1656 	 */
1657 	if (AE_READ_1(sc, AE_DMAWRITE_REG) == AE_DMAWRITE_EN)
1658 		AE_WRITE_1(sc, AE_DMAWRITE_REG, 0);
1659 
1660 	/*
1661 	 * Wait for IDLE state.
1662 	 */
1663 	for (i = 0; i < AE_IDLE_TIMEOUT; i++) {
1664 		val = AE_READ_4(sc, AE_IDLE_REG);
1665 		if ((val & (AE_IDLE_RXMAC | AE_IDLE_DMAWRITE)) == 0)
1666 			break;
1667 		DELAY(100);
1668 	}
1669 	if (i == AE_IDLE_TIMEOUT)
1670 		device_printf(sc->dev, "timed out while stopping Rx MAC.\n");
1671 }
1672 
1673 static void
1674 ae_stop_txmac(ae_softc_t *sc)
1675 {
1676 	uint32_t val;
1677 	int i;
1678 
1679 	AE_LOCK_ASSERT(sc);
1680 
1681 	/*
1682 	 * Stop Tx MAC engine.
1683 	 */
1684 	val = AE_READ_4(sc, AE_MAC_REG);
1685 	if ((val & AE_MAC_TX_EN) != 0) {
1686 		val &= ~AE_MAC_TX_EN;
1687 		AE_WRITE_4(sc, AE_MAC_REG, val);
1688 	}
1689 
1690 	/*
1691 	 * Stop Tx DMA engine.
1692 	 */
1693 	if (AE_READ_1(sc, AE_DMAREAD_REG) == AE_DMAREAD_EN)
1694 		AE_WRITE_1(sc, AE_DMAREAD_REG, 0);
1695 
1696 	/*
1697 	 * Wait for IDLE state.
1698 	 */
1699 	for (i = 0; i < AE_IDLE_TIMEOUT; i--) {
1700 		val = AE_READ_4(sc, AE_IDLE_REG);
1701 		if ((val & (AE_IDLE_TXMAC | AE_IDLE_DMAREAD)) == 0)
1702 			break;
1703 		DELAY(100);
1704 	}
1705 	if (i == AE_IDLE_TIMEOUT)
1706 		device_printf(sc->dev, "timed out while stopping Tx MAC.\n");
1707 }
1708 
1709 static void
1710 ae_mac_config(ae_softc_t *sc)
1711 {
1712 	struct mii_data *mii;
1713 	uint32_t val;
1714 
1715 	AE_LOCK_ASSERT(sc);
1716 
1717 	mii = device_get_softc(sc->miibus);
1718 	val = AE_READ_4(sc, AE_MAC_REG);
1719 	val &= ~AE_MAC_FULL_DUPLEX;
1720 	/* XXX disable AE_MAC_TX_FLOW_EN? */
1721 
1722 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
1723 		val |= AE_MAC_FULL_DUPLEX;
1724 
1725 	AE_WRITE_4(sc, AE_MAC_REG, val);
1726 }
1727 
1728 static int
1729 ae_intr(void *arg)
1730 {
1731 	ae_softc_t *sc;
1732 	uint32_t val;
1733 
1734 	sc = (ae_softc_t *)arg;
1735 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
1736 
1737 	val = AE_READ_4(sc, AE_ISR_REG);
1738 	if (val == 0 || (val & AE_IMR_DEFAULT) == 0)
1739 		return (FILTER_STRAY);
1740 
1741 	/* Disable interrupts. */
1742 	AE_WRITE_4(sc, AE_ISR_REG, AE_ISR_DISABLE);
1743 
1744 	/* Schedule interrupt processing. */
1745 	taskqueue_enqueue(sc->tq, &sc->int_task);
1746 
1747 	return (FILTER_HANDLED);
1748 }
1749 
1750 static void
1751 ae_int_task(void *arg, int pending)
1752 {
1753 	ae_softc_t *sc;
1754 	struct ifnet *ifp;
1755 	uint32_t val;
1756 
1757 	sc = (ae_softc_t *)arg;
1758 
1759 	AE_LOCK(sc);
1760 
1761 	ifp = sc->ifp;
1762 
1763 	val = AE_READ_4(sc, AE_ISR_REG);	/* Read interrupt status. */
1764 	if (val == 0) {
1765 		AE_UNLOCK(sc);
1766 		return;
1767 	}
1768 
1769 	/*
1770 	 * Clear interrupts and disable them.
1771 	 */
1772 	AE_WRITE_4(sc, AE_ISR_REG, val | AE_ISR_DISABLE);
1773 
1774 #ifdef AE_DEBUG
1775 	if_printf(ifp, "Interrupt received: 0x%08x\n", val);
1776 #endif
1777 
1778 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1779 		if ((val & (AE_ISR_DMAR_TIMEOUT | AE_ISR_DMAW_TIMEOUT |
1780 		    AE_ISR_PHY_LINKDOWN)) != 0) {
1781 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1782 			ae_init_locked(sc);
1783 			AE_UNLOCK(sc);
1784 			return;
1785 		}
1786 		if ((val & AE_ISR_TX_EVENT) != 0)
1787 			ae_tx_intr(sc);
1788 		if ((val & AE_ISR_RX_EVENT) != 0)
1789 			ae_rx_intr(sc);
1790 		/*
1791 		 * Re-enable interrupts.
1792 		 */
1793 		AE_WRITE_4(sc, AE_ISR_REG, 0);
1794 
1795 		if ((sc->flags & AE_FLAG_TXAVAIL) != 0) {
1796 			if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1797 				ae_start_locked(ifp);
1798 		}
1799 	}
1800 
1801 	AE_UNLOCK(sc);
1802 }
1803 
1804 static void
1805 ae_tx_intr(ae_softc_t *sc)
1806 {
1807 	struct ifnet *ifp;
1808 	ae_txd_t *txd;
1809 	ae_txs_t *txs;
1810 	uint16_t flags;
1811 
1812 	AE_LOCK_ASSERT(sc);
1813 
1814 	ifp = sc->ifp;
1815 
1816 #ifdef AE_DEBUG
1817 	if_printf(ifp, "Tx interrupt occuried.\n");
1818 #endif
1819 
1820 	/*
1821 	 * Syncronize DMA buffers.
1822 	 */
1823 	bus_dmamap_sync(sc->dma_txd_tag, sc->dma_txd_map,
1824 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1825 	bus_dmamap_sync(sc->dma_txs_tag, sc->dma_txs_map,
1826 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1827 
1828 	for (;;) {
1829 		txs = sc->txs_base + sc->txs_ack;
1830 		flags = le16toh(txs->flags);
1831 		if ((flags & AE_TXS_UPDATE) == 0)
1832 			break;
1833 		txs->flags = htole16(flags & ~AE_TXS_UPDATE);
1834 		/* Update stats. */
1835 		ae_update_stats_tx(flags, &sc->stats);
1836 
1837 		/*
1838 		 * Update TxS position.
1839 		 */
1840 		sc->txs_ack = (sc->txs_ack + 1) % AE_TXS_COUNT_DEFAULT;
1841 		sc->flags |= AE_FLAG_TXAVAIL;
1842 
1843 		txd = (ae_txd_t *)(sc->txd_base + sc->txd_ack);
1844 		if (txs->len != txd->len)
1845 			device_printf(sc->dev, "Size mismatch: TxS:%d TxD:%d\n",
1846 			    le16toh(txs->len), le16toh(txd->len));
1847 
1848 		/*
1849 		 * Move txd ack and align on 4-byte boundary.
1850 		 */
1851 		sc->txd_ack = ((sc->txd_ack + le16toh(txd->len) +
1852 		    sizeof(ae_txs_t) + 3) & ~3) % AE_TXD_BUFSIZE_DEFAULT;
1853 
1854 		if ((flags & AE_TXS_SUCCESS) != 0)
1855 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1856 		else
1857 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1858 
1859 		sc->tx_inproc--;
1860 	}
1861 
1862 	if ((sc->flags & AE_FLAG_TXAVAIL) != 0)
1863 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1864 	if (sc->tx_inproc < 0) {
1865 		if_printf(ifp, "Received stray Tx interrupt(s).\n");
1866 		sc->tx_inproc = 0;
1867 	}
1868 
1869 	if (sc->tx_inproc == 0)
1870 		sc->wd_timer = 0;	/* Unarm watchdog. */
1871 
1872 	/*
1873 	 * Syncronize DMA buffers.
1874 	 */
1875 	bus_dmamap_sync(sc->dma_txd_tag, sc->dma_txd_map,
1876 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1877 	bus_dmamap_sync(sc->dma_txs_tag, sc->dma_txs_map,
1878 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1879 }
1880 
1881 static void
1882 ae_rxeof(ae_softc_t *sc, ae_rxd_t *rxd)
1883 {
1884 	struct ifnet *ifp;
1885 	struct mbuf *m;
1886 	unsigned int size;
1887 	uint16_t flags;
1888 
1889 	AE_LOCK_ASSERT(sc);
1890 
1891 	ifp = sc->ifp;
1892 	flags = le16toh(rxd->flags);
1893 
1894 #ifdef AE_DEBUG
1895 	if_printf(ifp, "Rx interrupt occuried.\n");
1896 #endif
1897 	size = le16toh(rxd->len) - ETHER_CRC_LEN;
1898 	if (size < (ETHER_MIN_LEN - ETHER_CRC_LEN - ETHER_VLAN_ENCAP_LEN)) {
1899 		if_printf(ifp, "Runt frame received.");
1900 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1901 		return;
1902 	}
1903 
1904 	m = m_devget(&rxd->data[0], size, ETHER_ALIGN, ifp, NULL);
1905 	if (m == NULL) {
1906 		if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1907 		return;
1908 	}
1909 
1910 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
1911 	    (flags & AE_RXD_HAS_VLAN) != 0) {
1912 		m->m_pkthdr.ether_vtag = AE_RXD_VLAN(le16toh(rxd->vlan));
1913 		m->m_flags |= M_VLANTAG;
1914 	}
1915 
1916 	if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1917 	/*
1918 	 * Pass it through.
1919 	 */
1920 	AE_UNLOCK(sc);
1921 	(*ifp->if_input)(ifp, m);
1922 	AE_LOCK(sc);
1923 }
1924 
1925 static void
1926 ae_rx_intr(ae_softc_t *sc)
1927 {
1928 	ae_rxd_t *rxd;
1929 	struct ifnet *ifp;
1930 	uint16_t flags;
1931 	int count;
1932 
1933 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL!", __LINE__));
1934 
1935 	AE_LOCK_ASSERT(sc);
1936 
1937 	ifp = sc->ifp;
1938 
1939 	/*
1940 	 * Syncronize DMA buffers.
1941 	 */
1942 	bus_dmamap_sync(sc->dma_rxd_tag, sc->dma_rxd_map,
1943 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1944 
1945 	for (count = 0;; count++) {
1946 		rxd = (ae_rxd_t *)(sc->rxd_base + sc->rxd_cur);
1947 		flags = le16toh(rxd->flags);
1948 		if ((flags & AE_RXD_UPDATE) == 0)
1949 			break;
1950 		rxd->flags = htole16(flags & ~AE_RXD_UPDATE);
1951 		/* Update stats. */
1952 		ae_update_stats_rx(flags, &sc->stats);
1953 
1954 		/*
1955 		 * Update position index.
1956 		 */
1957 		sc->rxd_cur = (sc->rxd_cur + 1) % AE_RXD_COUNT_DEFAULT;
1958 
1959 		if ((flags & AE_RXD_SUCCESS) != 0)
1960 			ae_rxeof(sc, rxd);
1961 		else
1962 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1963 	}
1964 
1965 	if (count > 0) {
1966 		bus_dmamap_sync(sc->dma_rxd_tag, sc->dma_rxd_map,
1967 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1968 		/*
1969 		 * Update Rx index.
1970 		 */
1971 		AE_WRITE_2(sc, AE_MB_RXD_IDX_REG, sc->rxd_cur);
1972 	}
1973 }
1974 
1975 static void
1976 ae_watchdog(ae_softc_t *sc)
1977 {
1978 	struct ifnet *ifp;
1979 
1980 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL!", __LINE__));
1981 	AE_LOCK_ASSERT(sc);
1982 	ifp = sc->ifp;
1983 
1984 	if (sc->wd_timer == 0 || --sc->wd_timer != 0)
1985 		return;		/* Noting to do. */
1986 
1987 	if ((sc->flags & AE_FLAG_LINK) == 0)
1988 		if_printf(ifp, "watchdog timeout (missed link).\n");
1989 	else
1990 		if_printf(ifp, "watchdog timeout - resetting.\n");
1991 
1992 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1993 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1994 	ae_init_locked(sc);
1995 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1996 		ae_start_locked(ifp);
1997 }
1998 
1999 static void
2000 ae_tick(void *arg)
2001 {
2002 	ae_softc_t *sc;
2003 	struct mii_data *mii;
2004 
2005 	sc = (ae_softc_t *)arg;
2006 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL!", __LINE__));
2007 	AE_LOCK_ASSERT(sc);
2008 
2009 	mii = device_get_softc(sc->miibus);
2010 	mii_tick(mii);
2011 	ae_watchdog(sc);	/* Watchdog check. */
2012 	callout_reset(&sc->tick_ch, hz, ae_tick, sc);
2013 }
2014 
2015 static void
2016 ae_rxvlan(ae_softc_t *sc)
2017 {
2018 	struct ifnet *ifp;
2019 	uint32_t val;
2020 
2021 	AE_LOCK_ASSERT(sc);
2022 	ifp = sc->ifp;
2023 	val = AE_READ_4(sc, AE_MAC_REG);
2024 	val &= ~AE_MAC_RMVLAN_EN;
2025 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2026 		val |= AE_MAC_RMVLAN_EN;
2027 	AE_WRITE_4(sc, AE_MAC_REG, val);
2028 }
2029 
2030 static void
2031 ae_rxfilter(ae_softc_t *sc)
2032 {
2033 	struct ifnet *ifp;
2034 	struct ifmultiaddr *ifma;
2035 	uint32_t crc;
2036 	uint32_t mchash[2];
2037 	uint32_t rxcfg;
2038 
2039 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL!", __LINE__));
2040 
2041 	AE_LOCK_ASSERT(sc);
2042 
2043 	ifp = sc->ifp;
2044 
2045 	rxcfg = AE_READ_4(sc, AE_MAC_REG);
2046 	rxcfg &= ~(AE_MAC_MCAST_EN | AE_MAC_BCAST_EN | AE_MAC_PROMISC_EN);
2047 
2048 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
2049 		rxcfg |= AE_MAC_BCAST_EN;
2050 	if ((ifp->if_flags & IFF_PROMISC) != 0)
2051 		rxcfg |= AE_MAC_PROMISC_EN;
2052 	if ((ifp->if_flags & IFF_ALLMULTI) != 0)
2053 		rxcfg |= AE_MAC_MCAST_EN;
2054 
2055 	/*
2056 	 * Wipe old settings.
2057 	 */
2058 	AE_WRITE_4(sc, AE_REG_MHT0, 0);
2059 	AE_WRITE_4(sc, AE_REG_MHT1, 0);
2060 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
2061 		AE_WRITE_4(sc, AE_REG_MHT0, 0xffffffff);
2062 		AE_WRITE_4(sc, AE_REG_MHT1, 0xffffffff);
2063 		AE_WRITE_4(sc, AE_MAC_REG, rxcfg);
2064 		return;
2065 	}
2066 
2067 	/*
2068 	 * Load multicast tables.
2069 	 */
2070 	bzero(mchash, sizeof(mchash));
2071 	if_maddr_rlock(ifp);
2072 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2073 		if (ifma->ifma_addr->sa_family != AF_LINK)
2074 			continue;
2075 		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
2076 			ifma->ifma_addr), ETHER_ADDR_LEN);
2077 		mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2078 	}
2079 	if_maddr_runlock(ifp);
2080 	AE_WRITE_4(sc, AE_REG_MHT0, mchash[0]);
2081 	AE_WRITE_4(sc, AE_REG_MHT1, mchash[1]);
2082 	AE_WRITE_4(sc, AE_MAC_REG, rxcfg);
2083 }
2084 
2085 static int
2086 ae_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2087 {
2088 	struct ae_softc *sc;
2089 	struct ifreq *ifr;
2090 	struct mii_data *mii;
2091 	int error, mask;
2092 
2093 	sc = ifp->if_softc;
2094 	ifr = (struct ifreq *)data;
2095 	error = 0;
2096 
2097 	switch (cmd) {
2098 	case SIOCSIFMTU:
2099 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU)
2100 			error = EINVAL;
2101 		else if (ifp->if_mtu != ifr->ifr_mtu) {
2102 			AE_LOCK(sc);
2103 			ifp->if_mtu = ifr->ifr_mtu;
2104 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2105 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2106 				ae_init_locked(sc);
2107 			}
2108 			AE_UNLOCK(sc);
2109 		}
2110 		break;
2111 	case SIOCSIFFLAGS:
2112 		AE_LOCK(sc);
2113 		if ((ifp->if_flags & IFF_UP) != 0) {
2114 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2115 				if (((ifp->if_flags ^ sc->if_flags)
2116 				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2117 					ae_rxfilter(sc);
2118 			} else {
2119 				if ((sc->flags & AE_FLAG_DETACH) == 0)
2120 					ae_init_locked(sc);
2121 			}
2122 		} else {
2123 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2124 				ae_stop(sc);
2125 		}
2126 		sc->if_flags = ifp->if_flags;
2127 		AE_UNLOCK(sc);
2128 		break;
2129 	case SIOCADDMULTI:
2130 	case SIOCDELMULTI:
2131 		AE_LOCK(sc);
2132 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2133 			ae_rxfilter(sc);
2134 		AE_UNLOCK(sc);
2135 		break;
2136 	case SIOCSIFMEDIA:
2137 	case SIOCGIFMEDIA:
2138 		mii = device_get_softc(sc->miibus);
2139 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
2140 		break;
2141 	case SIOCSIFCAP:
2142 		AE_LOCK(sc);
2143 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2144 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2145 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
2146 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2147 			ae_rxvlan(sc);
2148 		}
2149 		VLAN_CAPABILITIES(ifp);
2150 		AE_UNLOCK(sc);
2151 		break;
2152 	default:
2153 		error = ether_ioctl(ifp, cmd, data);
2154 		break;
2155 	}
2156 	return (error);
2157 }
2158 
2159 static void
2160 ae_stop(ae_softc_t *sc)
2161 {
2162 	struct ifnet *ifp;
2163 	int i;
2164 
2165 	AE_LOCK_ASSERT(sc);
2166 
2167 	ifp = sc->ifp;
2168 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2169 	sc->flags &= ~AE_FLAG_LINK;
2170 	sc->wd_timer = 0;	/* Cancel watchdog. */
2171 	callout_stop(&sc->tick_ch);
2172 
2173 	/*
2174 	 * Clear and disable interrupts.
2175 	 */
2176 	AE_WRITE_4(sc, AE_IMR_REG, 0);
2177 	AE_WRITE_4(sc, AE_ISR_REG, 0xffffffff);
2178 
2179 	/*
2180 	 * Stop Rx/Tx MACs.
2181 	 */
2182 	ae_stop_txmac(sc);
2183 	ae_stop_rxmac(sc);
2184 
2185 	/*
2186 	 * Stop DMA engines.
2187 	 */
2188 	AE_WRITE_1(sc, AE_DMAREAD_REG, ~AE_DMAREAD_EN);
2189 	AE_WRITE_1(sc, AE_DMAWRITE_REG, ~AE_DMAWRITE_EN);
2190 
2191 	/*
2192 	 * Wait for everything to enter idle state.
2193 	 */
2194 	for (i = 0; i < AE_IDLE_TIMEOUT; i++) {
2195 		if (AE_READ_4(sc, AE_IDLE_REG) == 0)
2196 			break;
2197 		DELAY(100);
2198 	}
2199 	if (i == AE_IDLE_TIMEOUT)
2200 		device_printf(sc->dev, "could not enter idle state in stop.\n");
2201 }
2202 
2203 static void
2204 ae_update_stats_tx(uint16_t flags, ae_stats_t *stats)
2205 {
2206 
2207 	if ((flags & AE_TXS_BCAST) != 0)
2208 		stats->tx_bcast++;
2209 	if ((flags & AE_TXS_MCAST) != 0)
2210 		stats->tx_mcast++;
2211 	if ((flags & AE_TXS_PAUSE) != 0)
2212 		stats->tx_pause++;
2213 	if ((flags & AE_TXS_CTRL) != 0)
2214 		stats->tx_ctrl++;
2215 	if ((flags & AE_TXS_DEFER) != 0)
2216 		stats->tx_defer++;
2217 	if ((flags & AE_TXS_EXCDEFER) != 0)
2218 		stats->tx_excdefer++;
2219 	if ((flags & AE_TXS_SINGLECOL) != 0)
2220 		stats->tx_singlecol++;
2221 	if ((flags & AE_TXS_MULTICOL) != 0)
2222 		stats->tx_multicol++;
2223 	if ((flags & AE_TXS_LATECOL) != 0)
2224 		stats->tx_latecol++;
2225 	if ((flags & AE_TXS_ABORTCOL) != 0)
2226 		stats->tx_abortcol++;
2227 	if ((flags & AE_TXS_UNDERRUN) != 0)
2228 		stats->tx_underrun++;
2229 }
2230 
2231 static void
2232 ae_update_stats_rx(uint16_t flags, ae_stats_t *stats)
2233 {
2234 
2235 	if ((flags & AE_RXD_BCAST) != 0)
2236 		stats->rx_bcast++;
2237 	if ((flags & AE_RXD_MCAST) != 0)
2238 		stats->rx_mcast++;
2239 	if ((flags & AE_RXD_PAUSE) != 0)
2240 		stats->rx_pause++;
2241 	if ((flags & AE_RXD_CTRL) != 0)
2242 		stats->rx_ctrl++;
2243 	if ((flags & AE_RXD_CRCERR) != 0)
2244 		stats->rx_crcerr++;
2245 	if ((flags & AE_RXD_CODEERR) != 0)
2246 		stats->rx_codeerr++;
2247 	if ((flags & AE_RXD_RUNT) != 0)
2248 		stats->rx_runt++;
2249 	if ((flags & AE_RXD_FRAG) != 0)
2250 		stats->rx_frag++;
2251 	if ((flags & AE_RXD_TRUNC) != 0)
2252 		stats->rx_trunc++;
2253 	if ((flags & AE_RXD_ALIGN) != 0)
2254 		stats->rx_align++;
2255 }
2256