xref: /freebsd/sys/dev/ae/if_ae.c (revision 66fd12cf4896eb08ad8e7a2627537f84ead84dd3)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2008 Stanislav Sedov <stas@FreeBSD.org>.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  *
27  * Driver for Attansic Technology Corp. L2 FastEthernet adapter.
28  *
29  * This driver is heavily based on age(4) Attansic L1 driver by Pyun YongHyeon.
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/bus.h>
38 #include <sys/endian.h>
39 #include <sys/kernel.h>
40 #include <sys/lock.h>
41 #include <sys/malloc.h>
42 #include <sys/mbuf.h>
43 #include <sys/mutex.h>
44 #include <sys/rman.h>
45 #include <sys/module.h>
46 #include <sys/queue.h>
47 #include <sys/socket.h>
48 #include <sys/sockio.h>
49 #include <sys/sysctl.h>
50 #include <sys/taskqueue.h>
51 
52 #include <net/bpf.h>
53 #include <net/if.h>
54 #include <net/if_var.h>
55 #include <net/if_arp.h>
56 #include <net/ethernet.h>
57 #include <net/if_dl.h>
58 #include <net/if_media.h>
59 #include <net/if_types.h>
60 #include <net/if_vlan_var.h>
61 
62 #include <netinet/in.h>
63 #include <netinet/in_systm.h>
64 #include <netinet/ip.h>
65 #include <netinet/tcp.h>
66 
67 #include <dev/mii/mii.h>
68 #include <dev/mii/miivar.h>
69 #include <dev/pci/pcireg.h>
70 #include <dev/pci/pcivar.h>
71 
72 #include <machine/bus.h>
73 
74 #include "miibus_if.h"
75 
76 #include "if_aereg.h"
77 #include "if_aevar.h"
78 
79 /*
80  * Devices supported by this driver.
81  */
82 static struct ae_dev {
83 	uint16_t	vendorid;
84 	uint16_t	deviceid;
85 	const char	*name;
86 } ae_devs[] = {
87 	{ VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L2,
88 		"Attansic Technology Corp, L2 FastEthernet" },
89 };
90 #define	AE_DEVS_COUNT nitems(ae_devs)
91 
92 static struct resource_spec ae_res_spec_mem[] = {
93 	{ SYS_RES_MEMORY,       PCIR_BAR(0),    RF_ACTIVE },
94 	{ -1,			0,		0 }
95 };
96 static struct resource_spec ae_res_spec_irq[] = {
97 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
98 	{ -1,			0,		0 }
99 };
100 static struct resource_spec ae_res_spec_msi[] = {
101 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
102 	{ -1,			0,		0 }
103 };
104 
105 static int	ae_probe(device_t dev);
106 static int	ae_attach(device_t dev);
107 static void	ae_pcie_init(ae_softc_t *sc);
108 static void	ae_phy_reset(ae_softc_t *sc);
109 static void	ae_phy_init(ae_softc_t *sc);
110 static int	ae_reset(ae_softc_t *sc);
111 static void	ae_init(void *arg);
112 static int	ae_init_locked(ae_softc_t *sc);
113 static int	ae_detach(device_t dev);
114 static int	ae_miibus_readreg(device_t dev, int phy, int reg);
115 static int	ae_miibus_writereg(device_t dev, int phy, int reg, int val);
116 static void	ae_miibus_statchg(device_t dev);
117 static void	ae_mediastatus(if_t ifp, struct ifmediareq *ifmr);
118 static int	ae_mediachange(if_t ifp);
119 static void	ae_retrieve_address(ae_softc_t *sc);
120 static void	ae_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs,
121     int error);
122 static int	ae_alloc_rings(ae_softc_t *sc);
123 static void	ae_dma_free(ae_softc_t *sc);
124 static int	ae_shutdown(device_t dev);
125 static int	ae_suspend(device_t dev);
126 static void	ae_powersave_disable(ae_softc_t *sc);
127 static void	ae_powersave_enable(ae_softc_t *sc);
128 static int	ae_resume(device_t dev);
129 static unsigned int	ae_tx_avail_size(ae_softc_t *sc);
130 static int	ae_encap(ae_softc_t *sc, struct mbuf **m_head);
131 static void	ae_start(if_t ifp);
132 static void	ae_start_locked(if_t ifp);
133 static void	ae_link_task(void *arg, int pending);
134 static void	ae_stop_rxmac(ae_softc_t *sc);
135 static void	ae_stop_txmac(ae_softc_t *sc);
136 static void	ae_mac_config(ae_softc_t *sc);
137 static int	ae_intr(void *arg);
138 static void	ae_int_task(void *arg, int pending);
139 static void	ae_tx_intr(ae_softc_t *sc);
140 static void	ae_rxeof(ae_softc_t *sc, ae_rxd_t *rxd);
141 static void	ae_rx_intr(ae_softc_t *sc);
142 static void	ae_watchdog(ae_softc_t *sc);
143 static void	ae_tick(void *arg);
144 static void	ae_rxfilter(ae_softc_t *sc);
145 static void	ae_rxvlan(ae_softc_t *sc);
146 static int	ae_ioctl(if_t ifp, u_long cmd, caddr_t data);
147 static void	ae_stop(ae_softc_t *sc);
148 static int	ae_check_eeprom_present(ae_softc_t *sc, int *vpdc);
149 static int	ae_vpd_read_word(ae_softc_t *sc, int reg, uint32_t *word);
150 static int	ae_get_vpd_eaddr(ae_softc_t *sc, uint32_t *eaddr);
151 static int	ae_get_reg_eaddr(ae_softc_t *sc, uint32_t *eaddr);
152 static void	ae_update_stats_rx(uint16_t flags, ae_stats_t *stats);
153 static void	ae_update_stats_tx(uint16_t flags, ae_stats_t *stats);
154 static void	ae_init_tunables(ae_softc_t *sc);
155 
156 static device_method_t ae_methods[] = {
157 	/* Device interface. */
158 	DEVMETHOD(device_probe,		ae_probe),
159 	DEVMETHOD(device_attach,	ae_attach),
160 	DEVMETHOD(device_detach,	ae_detach),
161 	DEVMETHOD(device_shutdown,	ae_shutdown),
162 	DEVMETHOD(device_suspend,	ae_suspend),
163 	DEVMETHOD(device_resume,	ae_resume),
164 
165 	/* MII interface. */
166 	DEVMETHOD(miibus_readreg,	ae_miibus_readreg),
167 	DEVMETHOD(miibus_writereg,	ae_miibus_writereg),
168 	DEVMETHOD(miibus_statchg,	ae_miibus_statchg),
169 	{ NULL, NULL }
170 };
171 static driver_t ae_driver = {
172         "ae",
173         ae_methods,
174         sizeof(ae_softc_t)
175 };
176 
177 DRIVER_MODULE(ae, pci, ae_driver, 0, 0);
178 MODULE_PNP_INFO("U16:vendor;U16:device;D:#", pci, ae, ae_devs,
179     nitems(ae_devs));
180 DRIVER_MODULE(miibus, ae, miibus_driver, 0, 0);
181 MODULE_DEPEND(ae, pci, 1, 1, 1);
182 MODULE_DEPEND(ae, ether, 1, 1, 1);
183 MODULE_DEPEND(ae, miibus, 1, 1, 1);
184 
185 /*
186  * Tunables.
187  */
188 static int msi_disable = 0;
189 TUNABLE_INT("hw.ae.msi_disable", &msi_disable);
190 
191 #define	AE_READ_4(sc, reg) \
192 	bus_read_4((sc)->mem[0], (reg))
193 #define	AE_READ_2(sc, reg) \
194 	bus_read_2((sc)->mem[0], (reg))
195 #define	AE_READ_1(sc, reg) \
196 	bus_read_1((sc)->mem[0], (reg))
197 #define	AE_WRITE_4(sc, reg, val) \
198 	bus_write_4((sc)->mem[0], (reg), (val))
199 #define	AE_WRITE_2(sc, reg, val) \
200 	bus_write_2((sc)->mem[0], (reg), (val))
201 #define	AE_WRITE_1(sc, reg, val) \
202 	bus_write_1((sc)->mem[0], (reg), (val))
203 #define	AE_PHY_READ(sc, reg) \
204 	ae_miibus_readreg(sc->dev, 0, reg)
205 #define	AE_PHY_WRITE(sc, reg, val) \
206 	ae_miibus_writereg(sc->dev, 0, reg, val)
207 #define	AE_CHECK_EADDR_VALID(eaddr) \
208 	((eaddr[0] == 0 && eaddr[1] == 0) || \
209 	(eaddr[0] == 0xffffffff && eaddr[1] == 0xffff))
210 #define	AE_RXD_VLAN(vtag) \
211 	(((vtag) >> 4) | (((vtag) & 0x07) << 13) | (((vtag) & 0x08) << 9))
212 #define	AE_TXD_VLAN(vtag) \
213 	(((vtag) << 4) | (((vtag) >> 13) & 0x07) | (((vtag) >> 9) & 0x08))
214 
215 static int
216 ae_probe(device_t dev)
217 {
218 	uint16_t deviceid, vendorid;
219 	int i;
220 
221 	vendorid = pci_get_vendor(dev);
222 	deviceid = pci_get_device(dev);
223 
224 	/*
225 	 * Search through the list of supported devs for matching one.
226 	 */
227 	for (i = 0; i < AE_DEVS_COUNT; i++) {
228 		if (vendorid == ae_devs[i].vendorid &&
229 		    deviceid == ae_devs[i].deviceid) {
230 			device_set_desc(dev, ae_devs[i].name);
231 			return (BUS_PROBE_DEFAULT);
232 		}
233 	}
234 	return (ENXIO);
235 }
236 
237 static int
238 ae_attach(device_t dev)
239 {
240 	ae_softc_t *sc;
241 	if_t ifp;
242 	uint8_t chiprev;
243 	uint32_t pcirev;
244 	int nmsi, pmc;
245 	int error;
246 
247 	sc = device_get_softc(dev); /* Automatically allocated and zeroed
248 				       on attach. */
249 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
250 	sc->dev = dev;
251 
252 	/*
253 	 * Initialize mutexes and tasks.
254 	 */
255 	mtx_init(&sc->mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF);
256 	callout_init_mtx(&sc->tick_ch, &sc->mtx, 0);
257 	TASK_INIT(&sc->int_task, 0, ae_int_task, sc);
258 	TASK_INIT(&sc->link_task, 0, ae_link_task, sc);
259 
260 	pci_enable_busmaster(dev);		/* Enable bus mastering. */
261 
262 	sc->spec_mem = ae_res_spec_mem;
263 
264 	/*
265 	 * Allocate memory-mapped registers.
266 	 */
267 	error = bus_alloc_resources(dev, sc->spec_mem, sc->mem);
268 	if (error != 0) {
269 		device_printf(dev, "could not allocate memory resources.\n");
270 		sc->spec_mem = NULL;
271 		goto fail;
272 	}
273 
274 	/*
275 	 * Retrieve PCI and chip revisions.
276 	 */
277 	pcirev = pci_get_revid(dev);
278 	chiprev = (AE_READ_4(sc, AE_MASTER_REG) >> AE_MASTER_REVNUM_SHIFT) &
279 	    AE_MASTER_REVNUM_MASK;
280 	if (bootverbose) {
281 		device_printf(dev, "pci device revision: %#04x\n", pcirev);
282 		device_printf(dev, "chip id: %#02x\n", chiprev);
283 	}
284 	nmsi = pci_msi_count(dev);
285 	if (bootverbose)
286 		device_printf(dev, "MSI count: %d.\n", nmsi);
287 
288 	/*
289 	 * Allocate interrupt resources.
290 	 */
291 	if (msi_disable == 0 && nmsi == 1) {
292 		error = pci_alloc_msi(dev, &nmsi);
293 		if (error == 0) {
294 			device_printf(dev, "Using MSI messages.\n");
295 			sc->spec_irq = ae_res_spec_msi;
296 			error = bus_alloc_resources(dev, sc->spec_irq, sc->irq);
297 			if (error != 0) {
298 				device_printf(dev, "MSI allocation failed.\n");
299 				sc->spec_irq = NULL;
300 				pci_release_msi(dev);
301 			} else {
302 				sc->flags |= AE_FLAG_MSI;
303 			}
304 		}
305 	}
306 	if (sc->spec_irq == NULL) {
307 		sc->spec_irq = ae_res_spec_irq;
308 		error = bus_alloc_resources(dev, sc->spec_irq, sc->irq);
309 		if (error != 0) {
310 			device_printf(dev, "could not allocate IRQ resources.\n");
311 			sc->spec_irq = NULL;
312 			goto fail;
313 		}
314 	}
315 
316 	ae_init_tunables(sc);
317 
318 	ae_phy_reset(sc);		/* Reset PHY. */
319 	error = ae_reset(sc);		/* Reset the controller itself. */
320 	if (error != 0)
321 		goto fail;
322 
323 	ae_pcie_init(sc);
324 
325 	ae_retrieve_address(sc);	/* Load MAC address. */
326 
327 	error = ae_alloc_rings(sc);	/* Allocate ring buffers. */
328 	if (error != 0)
329 		goto fail;
330 
331 	ifp = sc->ifp = if_alloc(IFT_ETHER);
332 	if (ifp == NULL) {
333 		device_printf(dev, "could not allocate ifnet structure.\n");
334 		error = ENXIO;
335 		goto fail;
336 	}
337 
338 	if_setsoftc(ifp, sc);
339 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
340 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
341 	if_setioctlfn(ifp, ae_ioctl);
342 	if_setstartfn(ifp, ae_start);
343 	if_setinitfn(ifp, ae_init);
344 	if_setcapabilities(ifp, IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING);
345 	if_sethwassist(ifp, 0);
346 	if_setsendqlen(ifp, ifqmaxlen);
347 	if_setsendqready(ifp);
348 	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) {
349 		if_setcapabilitiesbit(ifp, IFCAP_WOL_MAGIC, 0);
350 		sc->flags |= AE_FLAG_PMG;
351 	}
352 	if_setcapenable(ifp, if_getcapabilities(ifp));
353 
354 	/*
355 	 * Configure and attach MII bus.
356 	 */
357 	error = mii_attach(dev, &sc->miibus, ifp, ae_mediachange,
358 	    ae_mediastatus, BMSR_DEFCAPMASK, AE_PHYADDR_DEFAULT,
359 	    MII_OFFSET_ANY, 0);
360 	if (error != 0) {
361 		device_printf(dev, "attaching PHYs failed\n");
362 		goto fail;
363 	}
364 
365 	ether_ifattach(ifp, sc->eaddr);
366 	/* Tell the upper layer(s) we support long frames. */
367 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
368 
369 	/*
370 	 * Create and run all helper tasks.
371 	 */
372 	sc->tq = taskqueue_create_fast("ae_taskq", M_WAITOK,
373             taskqueue_thread_enqueue, &sc->tq);
374 	if (sc->tq == NULL) {
375 		device_printf(dev, "could not create taskqueue.\n");
376 		ether_ifdetach(ifp);
377 		error = ENXIO;
378 		goto fail;
379 	}
380 	taskqueue_start_threads(&sc->tq, 1, PI_NET, "%s taskq",
381 	    device_get_nameunit(sc->dev));
382 
383 	/*
384 	 * Configure interrupt handlers.
385 	 */
386 	error = bus_setup_intr(dev, sc->irq[0], INTR_TYPE_NET | INTR_MPSAFE,
387 	    ae_intr, NULL, sc, &sc->intrhand);
388 	if (error != 0) {
389 		device_printf(dev, "could not set up interrupt handler.\n");
390 		taskqueue_free(sc->tq);
391 		sc->tq = NULL;
392 		ether_ifdetach(ifp);
393 		goto fail;
394 	}
395 
396 fail:
397 	if (error != 0)
398 		ae_detach(dev);
399 
400 	return (error);
401 }
402 
403 #define	AE_SYSCTL(stx, parent, name, desc, ptr)	\
404 	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, name, CTLFLAG_RD, ptr, 0, desc)
405 
406 static void
407 ae_init_tunables(ae_softc_t *sc)
408 {
409 	struct sysctl_ctx_list *ctx;
410 	struct sysctl_oid *root, *stats, *stats_rx, *stats_tx;
411 	struct ae_stats *ae_stats;
412 
413 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
414 	ae_stats = &sc->stats;
415 
416 	ctx = device_get_sysctl_ctx(sc->dev);
417 	root = device_get_sysctl_tree(sc->dev);
418 	stats = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(root), OID_AUTO, "stats",
419 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "ae statistics");
420 
421 	/*
422 	 * Receiver statistcics.
423 	 */
424 	stats_rx = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(stats), OID_AUTO, "rx",
425 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Rx MAC statistics");
426 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "bcast",
427 	    "broadcast frames", &ae_stats->rx_bcast);
428 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "mcast",
429 	    "multicast frames", &ae_stats->rx_mcast);
430 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "pause",
431 	    "PAUSE frames", &ae_stats->rx_pause);
432 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "control",
433 	    "control frames", &ae_stats->rx_ctrl);
434 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "crc_errors",
435 	    "frames with CRC errors", &ae_stats->rx_crcerr);
436 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "code_errors",
437 	    "frames with invalid opcode", &ae_stats->rx_codeerr);
438 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "runt",
439 	    "runt frames", &ae_stats->rx_runt);
440 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "frag",
441 	    "fragmented frames", &ae_stats->rx_frag);
442 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "align_errors",
443 	    "frames with alignment errors", &ae_stats->rx_align);
444 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "truncated",
445 	    "frames truncated due to Rx FIFO inderrun", &ae_stats->rx_trunc);
446 
447 	/*
448 	 * Receiver statistcics.
449 	 */
450 	stats_tx = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(stats), OID_AUTO, "tx",
451 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Tx MAC statistics");
452 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "bcast",
453 	    "broadcast frames", &ae_stats->tx_bcast);
454 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "mcast",
455 	    "multicast frames", &ae_stats->tx_mcast);
456 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "pause",
457 	    "PAUSE frames", &ae_stats->tx_pause);
458 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "control",
459 	    "control frames", &ae_stats->tx_ctrl);
460 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "defers",
461 	    "deferrals occuried", &ae_stats->tx_defer);
462 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "exc_defers",
463 	    "excessive deferrals occuried", &ae_stats->tx_excdefer);
464 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "singlecols",
465 	    "single collisions occuried", &ae_stats->tx_singlecol);
466 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "multicols",
467 	    "multiple collisions occuried", &ae_stats->tx_multicol);
468 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "latecols",
469 	    "late collisions occuried", &ae_stats->tx_latecol);
470 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "aborts",
471 	    "transmit aborts due collisions", &ae_stats->tx_abortcol);
472 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "underruns",
473 	    "Tx FIFO underruns", &ae_stats->tx_underrun);
474 }
475 
476 static void
477 ae_pcie_init(ae_softc_t *sc)
478 {
479 
480 	AE_WRITE_4(sc, AE_PCIE_LTSSM_TESTMODE_REG, AE_PCIE_LTSSM_TESTMODE_DEFAULT);
481 	AE_WRITE_4(sc, AE_PCIE_DLL_TX_CTRL_REG, AE_PCIE_DLL_TX_CTRL_DEFAULT);
482 }
483 
484 static void
485 ae_phy_reset(ae_softc_t *sc)
486 {
487 
488 	AE_WRITE_4(sc, AE_PHY_ENABLE_REG, AE_PHY_ENABLE);
489 	DELAY(1000);	/* XXX: pause(9) ? */
490 }
491 
492 static int
493 ae_reset(ae_softc_t *sc)
494 {
495 	int i;
496 
497 	/*
498 	 * Issue a soft reset.
499 	 */
500 	AE_WRITE_4(sc, AE_MASTER_REG, AE_MASTER_SOFT_RESET);
501 	bus_barrier(sc->mem[0], AE_MASTER_REG, 4,
502 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
503 
504 	/*
505 	 * Wait for reset to complete.
506 	 */
507 	for (i = 0; i < AE_RESET_TIMEOUT; i++) {
508 		if ((AE_READ_4(sc, AE_MASTER_REG) & AE_MASTER_SOFT_RESET) == 0)
509 			break;
510 		DELAY(10);
511 	}
512 	if (i == AE_RESET_TIMEOUT) {
513 		device_printf(sc->dev, "reset timeout.\n");
514 		return (ENXIO);
515 	}
516 
517 	/*
518 	 * Wait for everything to enter idle state.
519 	 */
520 	for (i = 0; i < AE_IDLE_TIMEOUT; i++) {
521 		if (AE_READ_4(sc, AE_IDLE_REG) == 0)
522 			break;
523 		DELAY(100);
524 	}
525 	if (i == AE_IDLE_TIMEOUT) {
526 		device_printf(sc->dev, "could not enter idle state.\n");
527 		return (ENXIO);
528 	}
529 	return (0);
530 }
531 
532 static void
533 ae_init(void *arg)
534 {
535 	ae_softc_t *sc;
536 
537 	sc = (ae_softc_t *)arg;
538 	AE_LOCK(sc);
539 	ae_init_locked(sc);
540 	AE_UNLOCK(sc);
541 }
542 
543 static void
544 ae_phy_init(ae_softc_t *sc)
545 {
546 
547 	/*
548 	 * Enable link status change interrupt.
549 	 * XXX magic numbers.
550 	 */
551 #ifdef notyet
552 	AE_PHY_WRITE(sc, 18, 0xc00);
553 #endif
554 }
555 
556 static int
557 ae_init_locked(ae_softc_t *sc)
558 {
559 	if_t ifp;
560 	struct mii_data *mii;
561 	uint8_t eaddr[ETHER_ADDR_LEN];
562 	uint32_t val;
563 	bus_addr_t addr;
564 
565 	AE_LOCK_ASSERT(sc);
566 
567 	ifp = sc->ifp;
568 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
569 		return (0);
570 	mii = device_get_softc(sc->miibus);
571 
572 	ae_stop(sc);
573 	ae_reset(sc);
574 	ae_pcie_init(sc);		/* Initialize PCIE stuff. */
575 	ae_phy_init(sc);
576 	ae_powersave_disable(sc);
577 
578 	/*
579 	 * Clear and disable interrupts.
580 	 */
581 	AE_WRITE_4(sc, AE_ISR_REG, 0xffffffff);
582 
583 	/*
584 	 * Set the MAC address.
585 	 */
586 	bcopy(if_getlladdr(ifp), eaddr, ETHER_ADDR_LEN);
587 	val = eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5];
588 	AE_WRITE_4(sc, AE_EADDR0_REG, val);
589 	val = eaddr[0] << 8 | eaddr[1];
590 	AE_WRITE_4(sc, AE_EADDR1_REG, val);
591 
592 	bzero(sc->rxd_base_dma, AE_RXD_COUNT_DEFAULT * 1536 + AE_RXD_PADDING);
593 	bzero(sc->txd_base, AE_TXD_BUFSIZE_DEFAULT);
594 	bzero(sc->txs_base, AE_TXS_COUNT_DEFAULT * 4);
595 	/*
596 	 * Set ring buffers base addresses.
597 	 */
598 	addr = sc->dma_rxd_busaddr;
599 	AE_WRITE_4(sc, AE_DESC_ADDR_HI_REG, BUS_ADDR_HI(addr));
600 	AE_WRITE_4(sc, AE_RXD_ADDR_LO_REG, BUS_ADDR_LO(addr));
601 	addr = sc->dma_txd_busaddr;
602 	AE_WRITE_4(sc, AE_TXD_ADDR_LO_REG, BUS_ADDR_LO(addr));
603 	addr = sc->dma_txs_busaddr;
604 	AE_WRITE_4(sc, AE_TXS_ADDR_LO_REG, BUS_ADDR_LO(addr));
605 
606 	/*
607 	 * Configure ring buffers sizes.
608 	 */
609 	AE_WRITE_2(sc, AE_RXD_COUNT_REG, AE_RXD_COUNT_DEFAULT);
610 	AE_WRITE_2(sc, AE_TXD_BUFSIZE_REG, AE_TXD_BUFSIZE_DEFAULT / 4);
611 	AE_WRITE_2(sc, AE_TXS_COUNT_REG, AE_TXS_COUNT_DEFAULT);
612 
613 	/*
614 	 * Configure interframe gap parameters.
615 	 */
616 	val = ((AE_IFG_TXIPG_DEFAULT << AE_IFG_TXIPG_SHIFT) &
617 	    AE_IFG_TXIPG_MASK) |
618 	    ((AE_IFG_RXIPG_DEFAULT << AE_IFG_RXIPG_SHIFT) &
619 	    AE_IFG_RXIPG_MASK) |
620 	    ((AE_IFG_IPGR1_DEFAULT << AE_IFG_IPGR1_SHIFT) &
621 	    AE_IFG_IPGR1_MASK) |
622 	    ((AE_IFG_IPGR2_DEFAULT << AE_IFG_IPGR2_SHIFT) &
623 	    AE_IFG_IPGR2_MASK);
624 	AE_WRITE_4(sc, AE_IFG_REG, val);
625 
626 	/*
627 	 * Configure half-duplex operation.
628 	 */
629 	val = ((AE_HDPX_LCOL_DEFAULT << AE_HDPX_LCOL_SHIFT) &
630 	    AE_HDPX_LCOL_MASK) |
631 	    ((AE_HDPX_RETRY_DEFAULT << AE_HDPX_RETRY_SHIFT) &
632 	    AE_HDPX_RETRY_MASK) |
633 	    ((AE_HDPX_ABEBT_DEFAULT << AE_HDPX_ABEBT_SHIFT) &
634 	    AE_HDPX_ABEBT_MASK) |
635 	    ((AE_HDPX_JAMIPG_DEFAULT << AE_HDPX_JAMIPG_SHIFT) &
636 	    AE_HDPX_JAMIPG_MASK) | AE_HDPX_EXC_EN;
637 	AE_WRITE_4(sc, AE_HDPX_REG, val);
638 
639 	/*
640 	 * Configure interrupt moderate timer.
641 	 */
642 	AE_WRITE_2(sc, AE_IMT_REG, AE_IMT_DEFAULT);
643 	val = AE_READ_4(sc, AE_MASTER_REG);
644 	val |= AE_MASTER_IMT_EN;
645 	AE_WRITE_4(sc, AE_MASTER_REG, val);
646 
647 	/*
648 	 * Configure interrupt clearing timer.
649 	 */
650 	AE_WRITE_2(sc, AE_ICT_REG, AE_ICT_DEFAULT);
651 
652 	/*
653 	 * Configure MTU.
654 	 */
655 	val = if_getmtu(ifp) + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
656 	    ETHER_CRC_LEN;
657 	AE_WRITE_2(sc, AE_MTU_REG, val);
658 
659 	/*
660 	 * Configure cut-through threshold.
661 	 */
662 	AE_WRITE_4(sc, AE_CUT_THRESH_REG, AE_CUT_THRESH_DEFAULT);
663 
664 	/*
665 	 * Configure flow control.
666 	 */
667 	AE_WRITE_2(sc, AE_FLOW_THRESH_HI_REG, (AE_RXD_COUNT_DEFAULT / 8) * 7);
668 	AE_WRITE_2(sc, AE_FLOW_THRESH_LO_REG, (AE_RXD_COUNT_MIN / 8) >
669 	    (AE_RXD_COUNT_DEFAULT / 12) ? (AE_RXD_COUNT_MIN / 8) :
670 	    (AE_RXD_COUNT_DEFAULT / 12));
671 
672 	/*
673 	 * Init mailboxes.
674 	 */
675 	sc->txd_cur = sc->rxd_cur = 0;
676 	sc->txs_ack = sc->txd_ack = 0;
677 	sc->rxd_cur = 0;
678 	AE_WRITE_2(sc, AE_MB_TXD_IDX_REG, sc->txd_cur);
679 	AE_WRITE_2(sc, AE_MB_RXD_IDX_REG, sc->rxd_cur);
680 
681 	sc->tx_inproc = 0;	/* Number of packets the chip processes now. */
682 	sc->flags |= AE_FLAG_TXAVAIL;	/* Free Tx's available. */
683 
684 	/*
685 	 * Enable DMA.
686 	 */
687 	AE_WRITE_1(sc, AE_DMAREAD_REG, AE_DMAREAD_EN);
688 	AE_WRITE_1(sc, AE_DMAWRITE_REG, AE_DMAWRITE_EN);
689 
690 	/*
691 	 * Check if everything is OK.
692 	 */
693 	val = AE_READ_4(sc, AE_ISR_REG);
694 	if ((val & AE_ISR_PHY_LINKDOWN) != 0) {
695 		device_printf(sc->dev, "Initialization failed.\n");
696 		return (ENXIO);
697 	}
698 
699 	/*
700 	 * Clear interrupt status.
701 	 */
702 	AE_WRITE_4(sc, AE_ISR_REG, 0x3fffffff);
703 	AE_WRITE_4(sc, AE_ISR_REG, 0x0);
704 
705 	/*
706 	 * Enable interrupts.
707 	 */
708 	val = AE_READ_4(sc, AE_MASTER_REG);
709 	AE_WRITE_4(sc, AE_MASTER_REG, val | AE_MASTER_MANUAL_INT);
710 	AE_WRITE_4(sc, AE_IMR_REG, AE_IMR_DEFAULT);
711 
712 	/*
713 	 * Disable WOL.
714 	 */
715 	AE_WRITE_4(sc, AE_WOL_REG, 0);
716 
717 	/*
718 	 * Configure MAC.
719 	 */
720 	val = AE_MAC_TX_CRC_EN | AE_MAC_TX_AUTOPAD |
721 	    AE_MAC_FULL_DUPLEX | AE_MAC_CLK_PHY |
722 	    AE_MAC_TX_FLOW_EN | AE_MAC_RX_FLOW_EN |
723 	    ((AE_HALFBUF_DEFAULT << AE_HALFBUF_SHIFT) & AE_HALFBUF_MASK) |
724 	    ((AE_MAC_PREAMBLE_DEFAULT << AE_MAC_PREAMBLE_SHIFT) &
725 	    AE_MAC_PREAMBLE_MASK);
726 	AE_WRITE_4(sc, AE_MAC_REG, val);
727 
728 	/*
729 	 * Configure Rx MAC.
730 	 */
731 	ae_rxfilter(sc);
732 	ae_rxvlan(sc);
733 
734 	/*
735 	 * Enable Tx/Rx.
736 	 */
737 	val = AE_READ_4(sc, AE_MAC_REG);
738 	AE_WRITE_4(sc, AE_MAC_REG, val | AE_MAC_TX_EN | AE_MAC_RX_EN);
739 
740 	sc->flags &= ~AE_FLAG_LINK;
741 	mii_mediachg(mii);	/* Switch to the current media. */
742 
743 	callout_reset(&sc->tick_ch, hz, ae_tick, sc);
744 
745 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
746 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
747 
748 #ifdef AE_DEBUG
749 	device_printf(sc->dev, "Initialization complete.\n");
750 #endif
751 
752 	return (0);
753 }
754 
755 static int
756 ae_detach(device_t dev)
757 {
758 	struct ae_softc *sc;
759 	if_t ifp;
760 
761 	sc = device_get_softc(dev);
762 	KASSERT(sc != NULL, ("[ae: %d]: sc is NULL", __LINE__));
763 	ifp = sc->ifp;
764 	if (device_is_attached(dev)) {
765 		AE_LOCK(sc);
766 		sc->flags |= AE_FLAG_DETACH;
767 		ae_stop(sc);
768 		AE_UNLOCK(sc);
769 		callout_drain(&sc->tick_ch);
770 		taskqueue_drain(sc->tq, &sc->int_task);
771 		taskqueue_drain(taskqueue_swi, &sc->link_task);
772 		ether_ifdetach(ifp);
773 	}
774 	if (sc->tq != NULL) {
775 		taskqueue_drain(sc->tq, &sc->int_task);
776 		taskqueue_free(sc->tq);
777 		sc->tq = NULL;
778 	}
779 	if (sc->miibus != NULL) {
780 		device_delete_child(dev, sc->miibus);
781 		sc->miibus = NULL;
782 	}
783 	bus_generic_detach(sc->dev);
784 	ae_dma_free(sc);
785 	if (sc->intrhand != NULL) {
786 		bus_teardown_intr(dev, sc->irq[0], sc->intrhand);
787 		sc->intrhand = NULL;
788 	}
789 	if (ifp != NULL) {
790 		if_free(ifp);
791 		sc->ifp = NULL;
792 	}
793 	if (sc->spec_irq != NULL)
794 		bus_release_resources(dev, sc->spec_irq, sc->irq);
795 	if (sc->spec_mem != NULL)
796 		bus_release_resources(dev, sc->spec_mem, sc->mem);
797 	if ((sc->flags & AE_FLAG_MSI) != 0)
798 		pci_release_msi(dev);
799 	mtx_destroy(&sc->mtx);
800 
801 	return (0);
802 }
803 
804 static int
805 ae_miibus_readreg(device_t dev, int phy, int reg)
806 {
807 	ae_softc_t *sc;
808 	uint32_t val;
809 	int i;
810 
811 	sc = device_get_softc(dev);
812 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
813 
814 	/*
815 	 * Locking is done in upper layers.
816 	 */
817 
818 	val = ((reg << AE_MDIO_REGADDR_SHIFT) & AE_MDIO_REGADDR_MASK) |
819 	    AE_MDIO_START | AE_MDIO_READ | AE_MDIO_SUP_PREAMBLE |
820 	    ((AE_MDIO_CLK_25_4 << AE_MDIO_CLK_SHIFT) & AE_MDIO_CLK_MASK);
821 	AE_WRITE_4(sc, AE_MDIO_REG, val);
822 
823 	/*
824 	 * Wait for operation to complete.
825 	 */
826 	for (i = 0; i < AE_MDIO_TIMEOUT; i++) {
827 		DELAY(2);
828 		val = AE_READ_4(sc, AE_MDIO_REG);
829 		if ((val & (AE_MDIO_START | AE_MDIO_BUSY)) == 0)
830 			break;
831 	}
832 	if (i == AE_MDIO_TIMEOUT) {
833 		device_printf(sc->dev, "phy read timeout: %d.\n", reg);
834 		return (0);
835 	}
836 	return ((val << AE_MDIO_DATA_SHIFT) & AE_MDIO_DATA_MASK);
837 }
838 
839 static int
840 ae_miibus_writereg(device_t dev, int phy, int reg, int val)
841 {
842 	ae_softc_t *sc;
843 	uint32_t aereg;
844 	int i;
845 
846 	sc = device_get_softc(dev);
847 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
848 
849 	/*
850 	 * Locking is done in upper layers.
851 	 */
852 
853 	aereg = ((reg << AE_MDIO_REGADDR_SHIFT) & AE_MDIO_REGADDR_MASK) |
854 	    AE_MDIO_START | AE_MDIO_SUP_PREAMBLE |
855 	    ((AE_MDIO_CLK_25_4 << AE_MDIO_CLK_SHIFT) & AE_MDIO_CLK_MASK) |
856 	    ((val << AE_MDIO_DATA_SHIFT) & AE_MDIO_DATA_MASK);
857 	AE_WRITE_4(sc, AE_MDIO_REG, aereg);
858 
859 	/*
860 	 * Wait for operation to complete.
861 	 */
862 	for (i = 0; i < AE_MDIO_TIMEOUT; i++) {
863 		DELAY(2);
864 		aereg = AE_READ_4(sc, AE_MDIO_REG);
865 		if ((aereg & (AE_MDIO_START | AE_MDIO_BUSY)) == 0)
866 			break;
867 	}
868 	if (i == AE_MDIO_TIMEOUT) {
869 		device_printf(sc->dev, "phy write timeout: %d.\n", reg);
870 	}
871 	return (0);
872 }
873 
874 static void
875 ae_miibus_statchg(device_t dev)
876 {
877 	ae_softc_t *sc;
878 
879 	sc = device_get_softc(dev);
880 	taskqueue_enqueue(taskqueue_swi, &sc->link_task);
881 }
882 
883 static void
884 ae_mediastatus(if_t ifp, struct ifmediareq *ifmr)
885 {
886 	ae_softc_t *sc;
887 	struct mii_data *mii;
888 
889 	sc = if_getsoftc(ifp);
890 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
891 
892 	AE_LOCK(sc);
893 	mii = device_get_softc(sc->miibus);
894 	mii_pollstat(mii);
895 	ifmr->ifm_status = mii->mii_media_status;
896 	ifmr->ifm_active = mii->mii_media_active;
897 	AE_UNLOCK(sc);
898 }
899 
900 static int
901 ae_mediachange(if_t ifp)
902 {
903 	ae_softc_t *sc;
904 	struct mii_data *mii;
905 	struct mii_softc *mii_sc;
906 	int error;
907 
908 	/* XXX: check IFF_UP ?? */
909 	sc = if_getsoftc(ifp);
910 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
911 	AE_LOCK(sc);
912 	mii = device_get_softc(sc->miibus);
913 	LIST_FOREACH(mii_sc, &mii->mii_phys, mii_list)
914 		PHY_RESET(mii_sc);
915 	error = mii_mediachg(mii);
916 	AE_UNLOCK(sc);
917 
918 	return (error);
919 }
920 
921 static int
922 ae_check_eeprom_present(ae_softc_t *sc, int *vpdc)
923 {
924 	int error;
925 	uint32_t val;
926 
927 	KASSERT(vpdc != NULL, ("[ae, %d]: vpdc is NULL!\n", __LINE__));
928 
929 	/*
930 	 * Not sure why, but Linux does this.
931 	 */
932 	val = AE_READ_4(sc, AE_SPICTL_REG);
933 	if ((val & AE_SPICTL_VPD_EN) != 0) {
934 		val &= ~AE_SPICTL_VPD_EN;
935 		AE_WRITE_4(sc, AE_SPICTL_REG, val);
936 	}
937 	error = pci_find_cap(sc->dev, PCIY_VPD, vpdc);
938 	return (error);
939 }
940 
941 static int
942 ae_vpd_read_word(ae_softc_t *sc, int reg, uint32_t *word)
943 {
944 	uint32_t val;
945 	int i;
946 
947 	AE_WRITE_4(sc, AE_VPD_DATA_REG, 0);	/* Clear register value. */
948 
949 	/*
950 	 * VPD registers start at offset 0x100. Read them.
951 	 */
952 	val = 0x100 + reg * 4;
953 	AE_WRITE_4(sc, AE_VPD_CAP_REG, (val << AE_VPD_CAP_ADDR_SHIFT) &
954 	    AE_VPD_CAP_ADDR_MASK);
955 	for (i = 0; i < AE_VPD_TIMEOUT; i++) {
956 		DELAY(2000);
957 		val = AE_READ_4(sc, AE_VPD_CAP_REG);
958 		if ((val & AE_VPD_CAP_DONE) != 0)
959 			break;
960 	}
961 	if (i == AE_VPD_TIMEOUT) {
962 		device_printf(sc->dev, "timeout reading VPD register %d.\n",
963 		    reg);
964 		return (ETIMEDOUT);
965 	}
966 	*word = AE_READ_4(sc, AE_VPD_DATA_REG);
967 	return (0);
968 }
969 
970 static int
971 ae_get_vpd_eaddr(ae_softc_t *sc, uint32_t *eaddr)
972 {
973 	uint32_t word, reg, val;
974 	int error;
975 	int found;
976 	int vpdc;
977 	int i;
978 
979 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
980 	KASSERT(eaddr != NULL, ("[ae, %d]: eaddr is NULL", __LINE__));
981 
982 	/*
983 	 * Check for EEPROM.
984 	 */
985 	error = ae_check_eeprom_present(sc, &vpdc);
986 	if (error != 0)
987 		return (error);
988 
989 	/*
990 	 * Read the VPD configuration space.
991 	 * Each register is prefixed with signature,
992 	 * so we can check if it is valid.
993 	 */
994 	for (i = 0, found = 0; i < AE_VPD_NREGS; i++) {
995 		error = ae_vpd_read_word(sc, i, &word);
996 		if (error != 0)
997 			break;
998 
999 		/*
1000 		 * Check signature.
1001 		 */
1002 		if ((word & AE_VPD_SIG_MASK) != AE_VPD_SIG)
1003 			break;
1004 		reg = word >> AE_VPD_REG_SHIFT;
1005 		i++;	/* Move to the next word. */
1006 
1007 		if (reg != AE_EADDR0_REG && reg != AE_EADDR1_REG)
1008 			continue;
1009 
1010 		error = ae_vpd_read_word(sc, i, &val);
1011 		if (error != 0)
1012 			break;
1013 		if (reg == AE_EADDR0_REG)
1014 			eaddr[0] = val;
1015 		else
1016 			eaddr[1] = val;
1017 		found++;
1018 	}
1019 
1020 	if (found < 2)
1021 		return (ENOENT);
1022 
1023 	eaddr[1] &= 0xffff;	/* Only last 2 bytes are used. */
1024 	if (AE_CHECK_EADDR_VALID(eaddr) != 0) {
1025 		if (bootverbose)
1026 			device_printf(sc->dev,
1027 			    "VPD ethernet address registers are invalid.\n");
1028 		return (EINVAL);
1029 	}
1030 	return (0);
1031 }
1032 
1033 static int
1034 ae_get_reg_eaddr(ae_softc_t *sc, uint32_t *eaddr)
1035 {
1036 
1037 	/*
1038 	 * BIOS is supposed to set this.
1039 	 */
1040 	eaddr[0] = AE_READ_4(sc, AE_EADDR0_REG);
1041 	eaddr[1] = AE_READ_4(sc, AE_EADDR1_REG);
1042 	eaddr[1] &= 0xffff;	/* Only last 2 bytes are used. */
1043 
1044 	if (AE_CHECK_EADDR_VALID(eaddr) != 0) {
1045 		if (bootverbose)
1046 			device_printf(sc->dev,
1047 			    "Ethernet address registers are invalid.\n");
1048 		return (EINVAL);
1049 	}
1050 	return (0);
1051 }
1052 
1053 static void
1054 ae_retrieve_address(ae_softc_t *sc)
1055 {
1056 	uint32_t eaddr[2] = {0, 0};
1057 	int error;
1058 
1059 	/*
1060 	 *Check for EEPROM.
1061 	 */
1062 	error = ae_get_vpd_eaddr(sc, eaddr);
1063 	if (error != 0)
1064 		error = ae_get_reg_eaddr(sc, eaddr);
1065 	if (error != 0) {
1066 		if (bootverbose)
1067 			device_printf(sc->dev,
1068 			    "Generating random ethernet address.\n");
1069 		eaddr[0] = arc4random();
1070 
1071 		/*
1072 		 * Set OUI to ASUSTek COMPUTER INC.
1073 		 */
1074 		sc->eaddr[0] = 0x02;	/* U/L bit set. */
1075 		sc->eaddr[1] = 0x1f;
1076 		sc->eaddr[2] = 0xc6;
1077 		sc->eaddr[3] = (eaddr[0] >> 16) & 0xff;
1078 		sc->eaddr[4] = (eaddr[0] >> 8) & 0xff;
1079 		sc->eaddr[5] = (eaddr[0] >> 0) & 0xff;
1080 	} else {
1081 		sc->eaddr[0] = (eaddr[1] >> 8) & 0xff;
1082 		sc->eaddr[1] = (eaddr[1] >> 0) & 0xff;
1083 		sc->eaddr[2] = (eaddr[0] >> 24) & 0xff;
1084 		sc->eaddr[3] = (eaddr[0] >> 16) & 0xff;
1085 		sc->eaddr[4] = (eaddr[0] >> 8) & 0xff;
1086 		sc->eaddr[5] = (eaddr[0] >> 0) & 0xff;
1087 	}
1088 }
1089 
1090 static void
1091 ae_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1092 {
1093 	bus_addr_t *addr = arg;
1094 
1095 	if (error != 0)
1096 		return;
1097 	KASSERT(nsegs == 1, ("[ae, %d]: %d segments instead of 1!", __LINE__,
1098 	    nsegs));
1099 	*addr = segs[0].ds_addr;
1100 }
1101 
1102 static int
1103 ae_alloc_rings(ae_softc_t *sc)
1104 {
1105 	bus_addr_t busaddr;
1106 	int error;
1107 
1108 	/*
1109 	 * Create parent DMA tag.
1110 	 */
1111 	error = bus_dma_tag_create(bus_get_dma_tag(sc->dev),
1112 	    1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
1113 	    NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 0,
1114 	    BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
1115 	    &sc->dma_parent_tag);
1116 	if (error != 0) {
1117 		device_printf(sc->dev, "could not creare parent DMA tag.\n");
1118 		return (error);
1119 	}
1120 
1121 	/*
1122 	 * Create DMA tag for TxD.
1123 	 */
1124 	error = bus_dma_tag_create(sc->dma_parent_tag,
1125 	    8, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1126 	    NULL, NULL, AE_TXD_BUFSIZE_DEFAULT, 1,
1127 	    AE_TXD_BUFSIZE_DEFAULT, 0, NULL, NULL,
1128 	    &sc->dma_txd_tag);
1129 	if (error != 0) {
1130 		device_printf(sc->dev, "could not creare TxD DMA tag.\n");
1131 		return (error);
1132 	}
1133 
1134 	/*
1135 	 * Create DMA tag for TxS.
1136 	 */
1137 	error = bus_dma_tag_create(sc->dma_parent_tag,
1138 	    8, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1139 	    NULL, NULL, AE_TXS_COUNT_DEFAULT * 4, 1,
1140 	    AE_TXS_COUNT_DEFAULT * 4, 0, NULL, NULL,
1141 	    &sc->dma_txs_tag);
1142 	if (error != 0) {
1143 		device_printf(sc->dev, "could not creare TxS DMA tag.\n");
1144 		return (error);
1145 	}
1146 
1147 	/*
1148 	 * Create DMA tag for RxD.
1149 	 */
1150 	error = bus_dma_tag_create(sc->dma_parent_tag,
1151 	    128, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1152 	    NULL, NULL, AE_RXD_COUNT_DEFAULT * 1536 + AE_RXD_PADDING, 1,
1153 	    AE_RXD_COUNT_DEFAULT * 1536 + AE_RXD_PADDING, 0, NULL, NULL,
1154 	    &sc->dma_rxd_tag);
1155 	if (error != 0) {
1156 		device_printf(sc->dev, "could not creare TxS DMA tag.\n");
1157 		return (error);
1158 	}
1159 
1160 	/*
1161 	 * Allocate TxD DMA memory.
1162 	 */
1163 	error = bus_dmamem_alloc(sc->dma_txd_tag, (void **)&sc->txd_base,
1164 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1165 	    &sc->dma_txd_map);
1166 	if (error != 0) {
1167 		device_printf(sc->dev,
1168 		    "could not allocate DMA memory for TxD ring.\n");
1169 		return (error);
1170 	}
1171 	error = bus_dmamap_load(sc->dma_txd_tag, sc->dma_txd_map, sc->txd_base,
1172 	    AE_TXD_BUFSIZE_DEFAULT, ae_dmamap_cb, &busaddr, BUS_DMA_NOWAIT);
1173 	if (error != 0 || busaddr == 0) {
1174 		device_printf(sc->dev,
1175 		    "could not load DMA map for TxD ring.\n");
1176 		return (error);
1177 	}
1178 	sc->dma_txd_busaddr = busaddr;
1179 
1180 	/*
1181 	 * Allocate TxS DMA memory.
1182 	 */
1183 	error = bus_dmamem_alloc(sc->dma_txs_tag, (void **)&sc->txs_base,
1184 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1185 	    &sc->dma_txs_map);
1186 	if (error != 0) {
1187 		device_printf(sc->dev,
1188 		    "could not allocate DMA memory for TxS ring.\n");
1189 		return (error);
1190 	}
1191 	error = bus_dmamap_load(sc->dma_txs_tag, sc->dma_txs_map, sc->txs_base,
1192 	    AE_TXS_COUNT_DEFAULT * 4, ae_dmamap_cb, &busaddr, BUS_DMA_NOWAIT);
1193 	if (error != 0 || busaddr == 0) {
1194 		device_printf(sc->dev,
1195 		    "could not load DMA map for TxS ring.\n");
1196 		return (error);
1197 	}
1198 	sc->dma_txs_busaddr = busaddr;
1199 
1200 	/*
1201 	 * Allocate RxD DMA memory.
1202 	 */
1203 	error = bus_dmamem_alloc(sc->dma_rxd_tag, (void **)&sc->rxd_base_dma,
1204 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1205 	    &sc->dma_rxd_map);
1206 	if (error != 0) {
1207 		device_printf(sc->dev,
1208 		    "could not allocate DMA memory for RxD ring.\n");
1209 		return (error);
1210 	}
1211 	error = bus_dmamap_load(sc->dma_rxd_tag, sc->dma_rxd_map,
1212 	    sc->rxd_base_dma, AE_RXD_COUNT_DEFAULT * 1536 + AE_RXD_PADDING,
1213 	    ae_dmamap_cb, &busaddr, BUS_DMA_NOWAIT);
1214 	if (error != 0 || busaddr == 0) {
1215 		device_printf(sc->dev,
1216 		    "could not load DMA map for RxD ring.\n");
1217 		return (error);
1218 	}
1219 	sc->dma_rxd_busaddr = busaddr + AE_RXD_PADDING;
1220 	sc->rxd_base = (ae_rxd_t *)(sc->rxd_base_dma + AE_RXD_PADDING);
1221 
1222 	return (0);
1223 }
1224 
1225 static void
1226 ae_dma_free(ae_softc_t *sc)
1227 {
1228 
1229 	if (sc->dma_txd_tag != NULL) {
1230 		if (sc->dma_txd_busaddr != 0)
1231 			bus_dmamap_unload(sc->dma_txd_tag, sc->dma_txd_map);
1232 		if (sc->txd_base != NULL)
1233 			bus_dmamem_free(sc->dma_txd_tag, sc->txd_base,
1234 			    sc->dma_txd_map);
1235 		bus_dma_tag_destroy(sc->dma_txd_tag);
1236 		sc->dma_txd_tag = NULL;
1237 		sc->txd_base = NULL;
1238 		sc->dma_txd_busaddr = 0;
1239 	}
1240 	if (sc->dma_txs_tag != NULL) {
1241 		if (sc->dma_txs_busaddr != 0)
1242 			bus_dmamap_unload(sc->dma_txs_tag, sc->dma_txs_map);
1243 		if (sc->txs_base != NULL)
1244 			bus_dmamem_free(sc->dma_txs_tag, sc->txs_base,
1245 			    sc->dma_txs_map);
1246 		bus_dma_tag_destroy(sc->dma_txs_tag);
1247 		sc->dma_txs_tag = NULL;
1248 		sc->txs_base = NULL;
1249 		sc->dma_txs_busaddr = 0;
1250 	}
1251 	if (sc->dma_rxd_tag != NULL) {
1252 		if (sc->dma_rxd_busaddr != 0)
1253 			bus_dmamap_unload(sc->dma_rxd_tag, sc->dma_rxd_map);
1254 		if (sc->rxd_base_dma != NULL)
1255 			bus_dmamem_free(sc->dma_rxd_tag, sc->rxd_base_dma,
1256 			    sc->dma_rxd_map);
1257 		bus_dma_tag_destroy(sc->dma_rxd_tag);
1258 		sc->dma_rxd_tag = NULL;
1259 		sc->rxd_base_dma = NULL;
1260 		sc->dma_rxd_busaddr = 0;
1261 	}
1262 	if (sc->dma_parent_tag != NULL) {
1263 		bus_dma_tag_destroy(sc->dma_parent_tag);
1264 		sc->dma_parent_tag = NULL;
1265 	}
1266 }
1267 
1268 static int
1269 ae_shutdown(device_t dev)
1270 {
1271 	ae_softc_t *sc;
1272 	int error;
1273 
1274 	sc = device_get_softc(dev);
1275 	KASSERT(sc != NULL, ("[ae: %d]: sc is NULL", __LINE__));
1276 
1277 	error = ae_suspend(dev);
1278 	AE_LOCK(sc);
1279 	ae_powersave_enable(sc);
1280 	AE_UNLOCK(sc);
1281 	return (error);
1282 }
1283 
1284 static void
1285 ae_powersave_disable(ae_softc_t *sc)
1286 {
1287 	uint32_t val;
1288 
1289 	AE_LOCK_ASSERT(sc);
1290 
1291 	AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 0);
1292 	val = AE_PHY_READ(sc, AE_PHY_DBG_DATA);
1293 	if (val & AE_PHY_DBG_POWERSAVE) {
1294 		val &= ~AE_PHY_DBG_POWERSAVE;
1295 		AE_PHY_WRITE(sc, AE_PHY_DBG_DATA, val);
1296 		DELAY(1000);
1297 	}
1298 }
1299 
1300 static void
1301 ae_powersave_enable(ae_softc_t *sc)
1302 {
1303 	uint32_t val;
1304 
1305 	AE_LOCK_ASSERT(sc);
1306 
1307 	/*
1308 	 * XXX magic numbers.
1309 	 */
1310 	AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 0);
1311 	val = AE_PHY_READ(sc, AE_PHY_DBG_DATA);
1312 	AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, val | 0x1000);
1313 	AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 2);
1314 	AE_PHY_WRITE(sc, AE_PHY_DBG_DATA, 0x3000);
1315 	AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 3);
1316 	AE_PHY_WRITE(sc, AE_PHY_DBG_DATA, 0);
1317 }
1318 
1319 static void
1320 ae_pm_init(ae_softc_t *sc)
1321 {
1322 	if_t ifp;
1323 	uint32_t val;
1324 	uint16_t pmstat;
1325 	struct mii_data *mii;
1326 	int pmc;
1327 
1328 	AE_LOCK_ASSERT(sc);
1329 
1330 	ifp = sc->ifp;
1331 	if ((sc->flags & AE_FLAG_PMG) == 0) {
1332 		/* Disable WOL entirely. */
1333 		AE_WRITE_4(sc, AE_WOL_REG, 0);
1334 		return;
1335 	}
1336 
1337 	/*
1338 	 * Configure WOL if enabled.
1339 	 */
1340 	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0) {
1341 		mii = device_get_softc(sc->miibus);
1342 		mii_pollstat(mii);
1343 		if ((mii->mii_media_status & IFM_AVALID) != 0 &&
1344 		    (mii->mii_media_status & IFM_ACTIVE) != 0) {
1345 			AE_WRITE_4(sc, AE_WOL_REG, AE_WOL_MAGIC | \
1346 			    AE_WOL_MAGIC_PME);
1347 
1348 			/*
1349 			 * Configure MAC.
1350 			 */
1351 			val = AE_MAC_RX_EN | AE_MAC_CLK_PHY | \
1352 			    AE_MAC_TX_CRC_EN | AE_MAC_TX_AUTOPAD | \
1353 			    ((AE_HALFBUF_DEFAULT << AE_HALFBUF_SHIFT) & \
1354 			    AE_HALFBUF_MASK) | \
1355 			    ((AE_MAC_PREAMBLE_DEFAULT << \
1356 			    AE_MAC_PREAMBLE_SHIFT) & AE_MAC_PREAMBLE_MASK) | \
1357 			    AE_MAC_BCAST_EN | AE_MAC_MCAST_EN;
1358 			if ((IFM_OPTIONS(mii->mii_media_active) & \
1359 			    IFM_FDX) != 0)
1360 				val |= AE_MAC_FULL_DUPLEX;
1361 			AE_WRITE_4(sc, AE_MAC_REG, val);
1362 
1363 		} else {	/* No link. */
1364 			AE_WRITE_4(sc, AE_WOL_REG, AE_WOL_LNKCHG | \
1365 			    AE_WOL_LNKCHG_PME);
1366 			AE_WRITE_4(sc, AE_MAC_REG, 0);
1367 		}
1368 	} else {
1369 		ae_powersave_enable(sc);
1370 	}
1371 
1372 	/*
1373 	 * PCIE hacks. Magic numbers.
1374 	 */
1375 	val = AE_READ_4(sc, AE_PCIE_PHYMISC_REG);
1376 	val |= AE_PCIE_PHYMISC_FORCE_RCV_DET;
1377 	AE_WRITE_4(sc, AE_PCIE_PHYMISC_REG, val);
1378 	val = AE_READ_4(sc, AE_PCIE_DLL_TX_CTRL_REG);
1379 	val |= AE_PCIE_DLL_TX_CTRL_SEL_NOR_CLK;
1380 	AE_WRITE_4(sc, AE_PCIE_DLL_TX_CTRL_REG, val);
1381 
1382 	/*
1383 	 * Configure PME.
1384 	 */
1385 	if (pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) {
1386 		pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
1387 		pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1388 		if ((if_getcapenable(ifp) & IFCAP_WOL) != 0)
1389 			pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1390 		pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1391 	}
1392 }
1393 
1394 static int
1395 ae_suspend(device_t dev)
1396 {
1397 	ae_softc_t *sc;
1398 
1399 	sc = device_get_softc(dev);
1400 
1401 	AE_LOCK(sc);
1402 	ae_stop(sc);
1403 	ae_pm_init(sc);
1404 	AE_UNLOCK(sc);
1405 
1406 	return (0);
1407 }
1408 
1409 static int
1410 ae_resume(device_t dev)
1411 {
1412 	ae_softc_t *sc;
1413 
1414 	sc = device_get_softc(dev);
1415 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
1416 
1417 	AE_LOCK(sc);
1418 	AE_READ_4(sc, AE_WOL_REG);	/* Clear WOL status. */
1419 	if ((if_getflags(sc->ifp) & IFF_UP) != 0)
1420 		ae_init_locked(sc);
1421 	AE_UNLOCK(sc);
1422 
1423 	return (0);
1424 }
1425 
1426 static unsigned int
1427 ae_tx_avail_size(ae_softc_t *sc)
1428 {
1429 	unsigned int avail;
1430 
1431 	if (sc->txd_cur >= sc->txd_ack)
1432 		avail = AE_TXD_BUFSIZE_DEFAULT - (sc->txd_cur - sc->txd_ack);
1433 	else
1434 		avail = sc->txd_ack - sc->txd_cur;
1435 
1436 	return (avail);
1437 }
1438 
1439 static int
1440 ae_encap(ae_softc_t *sc, struct mbuf **m_head)
1441 {
1442 	struct mbuf *m0;
1443 	ae_txd_t *hdr;
1444 	unsigned int to_end;
1445 	uint16_t len;
1446 
1447 	AE_LOCK_ASSERT(sc);
1448 
1449 	m0 = *m_head;
1450 	len = m0->m_pkthdr.len;
1451 
1452 	if ((sc->flags & AE_FLAG_TXAVAIL) == 0 ||
1453 	    len + sizeof(ae_txd_t) + 3 > ae_tx_avail_size(sc)) {
1454 #ifdef AE_DEBUG
1455 		if_printf(sc->ifp, "No free Tx available.\n");
1456 #endif
1457 		return ENOBUFS;
1458 	}
1459 
1460 	hdr = (ae_txd_t *)(sc->txd_base + sc->txd_cur);
1461 	bzero(hdr, sizeof(*hdr));
1462 	/* Skip header size. */
1463 	sc->txd_cur = (sc->txd_cur + sizeof(ae_txd_t)) % AE_TXD_BUFSIZE_DEFAULT;
1464 	/* Space available to the end of the ring */
1465 	to_end = AE_TXD_BUFSIZE_DEFAULT - sc->txd_cur;
1466 	if (to_end >= len) {
1467 		m_copydata(m0, 0, len, (caddr_t)(sc->txd_base + sc->txd_cur));
1468 	} else {
1469 		m_copydata(m0, 0, to_end, (caddr_t)(sc->txd_base +
1470 		    sc->txd_cur));
1471 		m_copydata(m0, to_end, len - to_end, (caddr_t)sc->txd_base);
1472 	}
1473 
1474 	/*
1475 	 * Set TxD flags and parameters.
1476 	 */
1477 	if ((m0->m_flags & M_VLANTAG) != 0) {
1478 		hdr->vlan = htole16(AE_TXD_VLAN(m0->m_pkthdr.ether_vtag));
1479 		hdr->len = htole16(len | AE_TXD_INSERT_VTAG);
1480 	} else {
1481 		hdr->len = htole16(len);
1482 	}
1483 
1484 	/*
1485 	 * Set current TxD position and round up to a 4-byte boundary.
1486 	 */
1487 	sc->txd_cur = ((sc->txd_cur + len + 3) & ~3) % AE_TXD_BUFSIZE_DEFAULT;
1488 	if (sc->txd_cur == sc->txd_ack)
1489 		sc->flags &= ~AE_FLAG_TXAVAIL;
1490 #ifdef AE_DEBUG
1491 	if_printf(sc->ifp, "New txd_cur = %d.\n", sc->txd_cur);
1492 #endif
1493 
1494 	/*
1495 	 * Update TxS position and check if there are empty TxS available.
1496 	 */
1497 	sc->txs_base[sc->txs_cur].flags &= ~htole16(AE_TXS_UPDATE);
1498 	sc->txs_cur = (sc->txs_cur + 1) % AE_TXS_COUNT_DEFAULT;
1499 	if (sc->txs_cur == sc->txs_ack)
1500 		sc->flags &= ~AE_FLAG_TXAVAIL;
1501 
1502 	/*
1503 	 * Synchronize DMA memory.
1504 	 */
1505 	bus_dmamap_sync(sc->dma_txd_tag, sc->dma_txd_map, BUS_DMASYNC_PREREAD |
1506 	    BUS_DMASYNC_PREWRITE);
1507 	bus_dmamap_sync(sc->dma_txs_tag, sc->dma_txs_map,
1508 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1509 
1510 	return (0);
1511 }
1512 
1513 static void
1514 ae_start(if_t ifp)
1515 {
1516 	ae_softc_t *sc;
1517 
1518 	sc = if_getsoftc(ifp);
1519 	AE_LOCK(sc);
1520 	ae_start_locked(ifp);
1521 	AE_UNLOCK(sc);
1522 }
1523 
1524 static void
1525 ae_start_locked(if_t ifp)
1526 {
1527 	ae_softc_t *sc;
1528 	unsigned int count;
1529 	struct mbuf *m0;
1530 	int error;
1531 
1532 	sc = if_getsoftc(ifp);
1533 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
1534 	AE_LOCK_ASSERT(sc);
1535 
1536 #ifdef AE_DEBUG
1537 	if_printf(ifp, "Start called.\n");
1538 #endif
1539 
1540 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1541 	    IFF_DRV_RUNNING || (sc->flags & AE_FLAG_LINK) == 0)
1542 		return;
1543 
1544 	count = 0;
1545 	while (!if_sendq_empty(ifp)) {
1546 		m0 = if_dequeue(ifp);
1547 		if (m0 == NULL)
1548 			break;	/* Nothing to do. */
1549 
1550 		error = ae_encap(sc, &m0);
1551 		if (error != 0) {
1552 			if (m0 != NULL) {
1553 				if_sendq_prepend(ifp, m0);
1554 				if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1555 #ifdef AE_DEBUG
1556 				if_printf(ifp, "Setting OACTIVE.\n");
1557 #endif
1558 			}
1559 			break;
1560 		}
1561 		count++;
1562 		sc->tx_inproc++;
1563 
1564 		/* Bounce a copy of the frame to BPF. */
1565 		ETHER_BPF_MTAP(ifp, m0);
1566 
1567 		m_freem(m0);
1568 	}
1569 
1570 	if (count > 0) {	/* Something was dequeued. */
1571 		AE_WRITE_2(sc, AE_MB_TXD_IDX_REG, sc->txd_cur / 4);
1572 		sc->wd_timer = AE_TX_TIMEOUT;	/* Load watchdog. */
1573 #ifdef AE_DEBUG
1574 		if_printf(ifp, "%d packets dequeued.\n", count);
1575 		if_printf(ifp, "Tx pos now is %d.\n", sc->txd_cur);
1576 #endif
1577 	}
1578 }
1579 
1580 static void
1581 ae_link_task(void *arg, int pending)
1582 {
1583 	ae_softc_t *sc;
1584 	struct mii_data *mii;
1585 	if_t ifp;
1586 	uint32_t val;
1587 
1588 	sc = (ae_softc_t *)arg;
1589 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
1590 	AE_LOCK(sc);
1591 
1592 	ifp = sc->ifp;
1593 	mii = device_get_softc(sc->miibus);
1594 	if (mii == NULL || ifp == NULL ||
1595 	    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
1596 		AE_UNLOCK(sc);	/* XXX: could happen? */
1597 		return;
1598 	}
1599 
1600 	sc->flags &= ~AE_FLAG_LINK;
1601 	if ((mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) ==
1602 	    (IFM_AVALID | IFM_ACTIVE)) {
1603 		switch(IFM_SUBTYPE(mii->mii_media_active)) {
1604 		case IFM_10_T:
1605 		case IFM_100_TX:
1606 			sc->flags |= AE_FLAG_LINK;
1607 			break;
1608 		default:
1609 			break;
1610 		}
1611 	}
1612 
1613 	/*
1614 	 * Stop Rx/Tx MACs.
1615 	 */
1616 	ae_stop_rxmac(sc);
1617 	ae_stop_txmac(sc);
1618 
1619 	if ((sc->flags & AE_FLAG_LINK) != 0) {
1620 		ae_mac_config(sc);
1621 
1622 		/*
1623 		 * Restart DMA engines.
1624 		 */
1625 		AE_WRITE_1(sc, AE_DMAREAD_REG, AE_DMAREAD_EN);
1626 		AE_WRITE_1(sc, AE_DMAWRITE_REG, AE_DMAWRITE_EN);
1627 
1628 		/*
1629 		 * Enable Rx and Tx MACs.
1630 		 */
1631 		val = AE_READ_4(sc, AE_MAC_REG);
1632 		val |= AE_MAC_TX_EN | AE_MAC_RX_EN;
1633 		AE_WRITE_4(sc, AE_MAC_REG, val);
1634 	}
1635 	AE_UNLOCK(sc);
1636 }
1637 
1638 static void
1639 ae_stop_rxmac(ae_softc_t *sc)
1640 {
1641 	uint32_t val;
1642 	int i;
1643 
1644 	AE_LOCK_ASSERT(sc);
1645 
1646 	/*
1647 	 * Stop Rx MAC engine.
1648 	 */
1649 	val = AE_READ_4(sc, AE_MAC_REG);
1650 	if ((val & AE_MAC_RX_EN) != 0) {
1651 		val &= ~AE_MAC_RX_EN;
1652 		AE_WRITE_4(sc, AE_MAC_REG, val);
1653 	}
1654 
1655 	/*
1656 	 * Stop Rx DMA engine.
1657 	 */
1658 	if (AE_READ_1(sc, AE_DMAWRITE_REG) == AE_DMAWRITE_EN)
1659 		AE_WRITE_1(sc, AE_DMAWRITE_REG, 0);
1660 
1661 	/*
1662 	 * Wait for IDLE state.
1663 	 */
1664 	for (i = 0; i < AE_IDLE_TIMEOUT; i++) {
1665 		val = AE_READ_4(sc, AE_IDLE_REG);
1666 		if ((val & (AE_IDLE_RXMAC | AE_IDLE_DMAWRITE)) == 0)
1667 			break;
1668 		DELAY(100);
1669 	}
1670 	if (i == AE_IDLE_TIMEOUT)
1671 		device_printf(sc->dev, "timed out while stopping Rx MAC.\n");
1672 }
1673 
1674 static void
1675 ae_stop_txmac(ae_softc_t *sc)
1676 {
1677 	uint32_t val;
1678 	int i;
1679 
1680 	AE_LOCK_ASSERT(sc);
1681 
1682 	/*
1683 	 * Stop Tx MAC engine.
1684 	 */
1685 	val = AE_READ_4(sc, AE_MAC_REG);
1686 	if ((val & AE_MAC_TX_EN) != 0) {
1687 		val &= ~AE_MAC_TX_EN;
1688 		AE_WRITE_4(sc, AE_MAC_REG, val);
1689 	}
1690 
1691 	/*
1692 	 * Stop Tx DMA engine.
1693 	 */
1694 	if (AE_READ_1(sc, AE_DMAREAD_REG) == AE_DMAREAD_EN)
1695 		AE_WRITE_1(sc, AE_DMAREAD_REG, 0);
1696 
1697 	/*
1698 	 * Wait for IDLE state.
1699 	 */
1700 	for (i = 0; i < AE_IDLE_TIMEOUT; i++) {
1701 		val = AE_READ_4(sc, AE_IDLE_REG);
1702 		if ((val & (AE_IDLE_TXMAC | AE_IDLE_DMAREAD)) == 0)
1703 			break;
1704 		DELAY(100);
1705 	}
1706 	if (i == AE_IDLE_TIMEOUT)
1707 		device_printf(sc->dev, "timed out while stopping Tx MAC.\n");
1708 }
1709 
1710 static void
1711 ae_mac_config(ae_softc_t *sc)
1712 {
1713 	struct mii_data *mii;
1714 	uint32_t val;
1715 
1716 	AE_LOCK_ASSERT(sc);
1717 
1718 	mii = device_get_softc(sc->miibus);
1719 	val = AE_READ_4(sc, AE_MAC_REG);
1720 	val &= ~AE_MAC_FULL_DUPLEX;
1721 	/* XXX disable AE_MAC_TX_FLOW_EN? */
1722 
1723 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
1724 		val |= AE_MAC_FULL_DUPLEX;
1725 
1726 	AE_WRITE_4(sc, AE_MAC_REG, val);
1727 }
1728 
1729 static int
1730 ae_intr(void *arg)
1731 {
1732 	ae_softc_t *sc;
1733 	uint32_t val;
1734 
1735 	sc = (ae_softc_t *)arg;
1736 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
1737 
1738 	val = AE_READ_4(sc, AE_ISR_REG);
1739 	if (val == 0 || (val & AE_IMR_DEFAULT) == 0)
1740 		return (FILTER_STRAY);
1741 
1742 	/* Disable interrupts. */
1743 	AE_WRITE_4(sc, AE_ISR_REG, AE_ISR_DISABLE);
1744 
1745 	/* Schedule interrupt processing. */
1746 	taskqueue_enqueue(sc->tq, &sc->int_task);
1747 
1748 	return (FILTER_HANDLED);
1749 }
1750 
1751 static void
1752 ae_int_task(void *arg, int pending)
1753 {
1754 	ae_softc_t *sc;
1755 	if_t ifp;
1756 	uint32_t val;
1757 
1758 	sc = (ae_softc_t *)arg;
1759 
1760 	AE_LOCK(sc);
1761 
1762 	ifp = sc->ifp;
1763 
1764 	val = AE_READ_4(sc, AE_ISR_REG);	/* Read interrupt status. */
1765 	if (val == 0) {
1766 		AE_UNLOCK(sc);
1767 		return;
1768 	}
1769 
1770 	/*
1771 	 * Clear interrupts and disable them.
1772 	 */
1773 	AE_WRITE_4(sc, AE_ISR_REG, val | AE_ISR_DISABLE);
1774 
1775 #ifdef AE_DEBUG
1776 	if_printf(ifp, "Interrupt received: 0x%08x\n", val);
1777 #endif
1778 
1779 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1780 		if ((val & (AE_ISR_DMAR_TIMEOUT | AE_ISR_DMAW_TIMEOUT |
1781 		    AE_ISR_PHY_LINKDOWN)) != 0) {
1782 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1783 			ae_init_locked(sc);
1784 			AE_UNLOCK(sc);
1785 			return;
1786 		}
1787 		if ((val & AE_ISR_TX_EVENT) != 0)
1788 			ae_tx_intr(sc);
1789 		if ((val & AE_ISR_RX_EVENT) != 0)
1790 			ae_rx_intr(sc);
1791 		/*
1792 		 * Re-enable interrupts.
1793 		 */
1794 		AE_WRITE_4(sc, AE_ISR_REG, 0);
1795 
1796 		if ((sc->flags & AE_FLAG_TXAVAIL) != 0) {
1797 			if (!if_sendq_empty(ifp))
1798 				ae_start_locked(ifp);
1799 		}
1800 	}
1801 
1802 	AE_UNLOCK(sc);
1803 }
1804 
1805 static void
1806 ae_tx_intr(ae_softc_t *sc)
1807 {
1808 	if_t ifp;
1809 	ae_txd_t *txd;
1810 	ae_txs_t *txs;
1811 	uint16_t flags;
1812 
1813 	AE_LOCK_ASSERT(sc);
1814 
1815 	ifp = sc->ifp;
1816 
1817 #ifdef AE_DEBUG
1818 	if_printf(ifp, "Tx interrupt occuried.\n");
1819 #endif
1820 
1821 	/*
1822 	 * Syncronize DMA buffers.
1823 	 */
1824 	bus_dmamap_sync(sc->dma_txd_tag, sc->dma_txd_map,
1825 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1826 	bus_dmamap_sync(sc->dma_txs_tag, sc->dma_txs_map,
1827 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1828 
1829 	for (;;) {
1830 		txs = sc->txs_base + sc->txs_ack;
1831 		flags = le16toh(txs->flags);
1832 		if ((flags & AE_TXS_UPDATE) == 0)
1833 			break;
1834 		txs->flags = htole16(flags & ~AE_TXS_UPDATE);
1835 		/* Update stats. */
1836 		ae_update_stats_tx(flags, &sc->stats);
1837 
1838 		/*
1839 		 * Update TxS position.
1840 		 */
1841 		sc->txs_ack = (sc->txs_ack + 1) % AE_TXS_COUNT_DEFAULT;
1842 		sc->flags |= AE_FLAG_TXAVAIL;
1843 
1844 		txd = (ae_txd_t *)(sc->txd_base + sc->txd_ack);
1845 		if (txs->len != txd->len)
1846 			device_printf(sc->dev, "Size mismatch: TxS:%d TxD:%d\n",
1847 			    le16toh(txs->len), le16toh(txd->len));
1848 
1849 		/*
1850 		 * Move txd ack and align on 4-byte boundary.
1851 		 */
1852 		sc->txd_ack = ((sc->txd_ack + le16toh(txd->len) +
1853 		    sizeof(ae_txs_t) + 3) & ~3) % AE_TXD_BUFSIZE_DEFAULT;
1854 
1855 		if ((flags & AE_TXS_SUCCESS) != 0)
1856 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1857 		else
1858 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1859 
1860 		sc->tx_inproc--;
1861 	}
1862 
1863 	if ((sc->flags & AE_FLAG_TXAVAIL) != 0)
1864 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1865 	if (sc->tx_inproc < 0) {
1866 		if_printf(ifp, "Received stray Tx interrupt(s).\n");
1867 		sc->tx_inproc = 0;
1868 	}
1869 
1870 	if (sc->tx_inproc == 0)
1871 		sc->wd_timer = 0;	/* Unarm watchdog. */
1872 
1873 	/*
1874 	 * Syncronize DMA buffers.
1875 	 */
1876 	bus_dmamap_sync(sc->dma_txd_tag, sc->dma_txd_map,
1877 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1878 	bus_dmamap_sync(sc->dma_txs_tag, sc->dma_txs_map,
1879 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1880 }
1881 
1882 static void
1883 ae_rxeof(ae_softc_t *sc, ae_rxd_t *rxd)
1884 {
1885 	if_t ifp;
1886 	struct mbuf *m;
1887 	unsigned int size;
1888 	uint16_t flags;
1889 
1890 	AE_LOCK_ASSERT(sc);
1891 
1892 	ifp = sc->ifp;
1893 	flags = le16toh(rxd->flags);
1894 
1895 #ifdef AE_DEBUG
1896 	if_printf(ifp, "Rx interrupt occuried.\n");
1897 #endif
1898 	size = le16toh(rxd->len) - ETHER_CRC_LEN;
1899 	if (size < (ETHER_MIN_LEN - ETHER_CRC_LEN - ETHER_VLAN_ENCAP_LEN)) {
1900 		if_printf(ifp, "Runt frame received.");
1901 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1902 		return;
1903 	}
1904 
1905 	m = m_devget(&rxd->data[0], size, ETHER_ALIGN, ifp, NULL);
1906 	if (m == NULL) {
1907 		if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1908 		return;
1909 	}
1910 
1911 	if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0 &&
1912 	    (flags & AE_RXD_HAS_VLAN) != 0) {
1913 		m->m_pkthdr.ether_vtag = AE_RXD_VLAN(le16toh(rxd->vlan));
1914 		m->m_flags |= M_VLANTAG;
1915 	}
1916 
1917 	if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1918 	/*
1919 	 * Pass it through.
1920 	 */
1921 	AE_UNLOCK(sc);
1922 	if_input(ifp, m);
1923 	AE_LOCK(sc);
1924 }
1925 
1926 static void
1927 ae_rx_intr(ae_softc_t *sc)
1928 {
1929 	ae_rxd_t *rxd;
1930 	if_t ifp;
1931 	uint16_t flags;
1932 	int count;
1933 
1934 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL!", __LINE__));
1935 
1936 	AE_LOCK_ASSERT(sc);
1937 
1938 	ifp = sc->ifp;
1939 
1940 	/*
1941 	 * Syncronize DMA buffers.
1942 	 */
1943 	bus_dmamap_sync(sc->dma_rxd_tag, sc->dma_rxd_map,
1944 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1945 
1946 	for (count = 0;; count++) {
1947 		rxd = (ae_rxd_t *)(sc->rxd_base + sc->rxd_cur);
1948 		flags = le16toh(rxd->flags);
1949 		if ((flags & AE_RXD_UPDATE) == 0)
1950 			break;
1951 		rxd->flags = htole16(flags & ~AE_RXD_UPDATE);
1952 		/* Update stats. */
1953 		ae_update_stats_rx(flags, &sc->stats);
1954 
1955 		/*
1956 		 * Update position index.
1957 		 */
1958 		sc->rxd_cur = (sc->rxd_cur + 1) % AE_RXD_COUNT_DEFAULT;
1959 
1960 		if ((flags & AE_RXD_SUCCESS) != 0)
1961 			ae_rxeof(sc, rxd);
1962 		else
1963 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1964 	}
1965 
1966 	if (count > 0) {
1967 		bus_dmamap_sync(sc->dma_rxd_tag, sc->dma_rxd_map,
1968 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1969 		/*
1970 		 * Update Rx index.
1971 		 */
1972 		AE_WRITE_2(sc, AE_MB_RXD_IDX_REG, sc->rxd_cur);
1973 	}
1974 }
1975 
1976 static void
1977 ae_watchdog(ae_softc_t *sc)
1978 {
1979 	if_t ifp;
1980 
1981 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL!", __LINE__));
1982 	AE_LOCK_ASSERT(sc);
1983 	ifp = sc->ifp;
1984 
1985 	if (sc->wd_timer == 0 || --sc->wd_timer != 0)
1986 		return;		/* Noting to do. */
1987 
1988 	if ((sc->flags & AE_FLAG_LINK) == 0)
1989 		if_printf(ifp, "watchdog timeout (missed link).\n");
1990 	else
1991 		if_printf(ifp, "watchdog timeout - resetting.\n");
1992 
1993 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1994 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1995 	ae_init_locked(sc);
1996 	if (!if_sendq_empty(ifp))
1997 		ae_start_locked(ifp);
1998 }
1999 
2000 static void
2001 ae_tick(void *arg)
2002 {
2003 	ae_softc_t *sc;
2004 	struct mii_data *mii;
2005 
2006 	sc = (ae_softc_t *)arg;
2007 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL!", __LINE__));
2008 	AE_LOCK_ASSERT(sc);
2009 
2010 	mii = device_get_softc(sc->miibus);
2011 	mii_tick(mii);
2012 	ae_watchdog(sc);	/* Watchdog check. */
2013 	callout_reset(&sc->tick_ch, hz, ae_tick, sc);
2014 }
2015 
2016 static void
2017 ae_rxvlan(ae_softc_t *sc)
2018 {
2019 	if_t ifp;
2020 	uint32_t val;
2021 
2022 	AE_LOCK_ASSERT(sc);
2023 	ifp = sc->ifp;
2024 	val = AE_READ_4(sc, AE_MAC_REG);
2025 	val &= ~AE_MAC_RMVLAN_EN;
2026 	if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0)
2027 		val |= AE_MAC_RMVLAN_EN;
2028 	AE_WRITE_4(sc, AE_MAC_REG, val);
2029 }
2030 
2031 static u_int
2032 ae_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
2033 {
2034 	uint32_t crc, *mchash = arg;
2035 
2036 	crc = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN);
2037 	mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2038 
2039 	return (1);
2040 }
2041 
2042 static void
2043 ae_rxfilter(ae_softc_t *sc)
2044 {
2045 	if_t ifp;
2046 	uint32_t mchash[2];
2047 	uint32_t rxcfg;
2048 
2049 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL!", __LINE__));
2050 
2051 	AE_LOCK_ASSERT(sc);
2052 
2053 	ifp = sc->ifp;
2054 
2055 	rxcfg = AE_READ_4(sc, AE_MAC_REG);
2056 	rxcfg &= ~(AE_MAC_MCAST_EN | AE_MAC_BCAST_EN | AE_MAC_PROMISC_EN);
2057 
2058 	if ((if_getflags(ifp) & IFF_BROADCAST) != 0)
2059 		rxcfg |= AE_MAC_BCAST_EN;
2060 	if ((if_getflags(ifp) & IFF_PROMISC) != 0)
2061 		rxcfg |= AE_MAC_PROMISC_EN;
2062 	if ((if_getflags(ifp) & IFF_ALLMULTI) != 0)
2063 		rxcfg |= AE_MAC_MCAST_EN;
2064 
2065 	/*
2066 	 * Wipe old settings.
2067 	 */
2068 	AE_WRITE_4(sc, AE_REG_MHT0, 0);
2069 	AE_WRITE_4(sc, AE_REG_MHT1, 0);
2070 	if ((if_getflags(ifp) & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
2071 		AE_WRITE_4(sc, AE_REG_MHT0, 0xffffffff);
2072 		AE_WRITE_4(sc, AE_REG_MHT1, 0xffffffff);
2073 		AE_WRITE_4(sc, AE_MAC_REG, rxcfg);
2074 		return;
2075 	}
2076 
2077 	/*
2078 	 * Load multicast tables.
2079 	 */
2080 	bzero(mchash, sizeof(mchash));
2081 	if_foreach_llmaddr(ifp, ae_hash_maddr, &mchash);
2082 	AE_WRITE_4(sc, AE_REG_MHT0, mchash[0]);
2083 	AE_WRITE_4(sc, AE_REG_MHT1, mchash[1]);
2084 	AE_WRITE_4(sc, AE_MAC_REG, rxcfg);
2085 }
2086 
2087 static int
2088 ae_ioctl(if_t ifp, u_long cmd, caddr_t data)
2089 {
2090 	struct ae_softc *sc;
2091 	struct ifreq *ifr;
2092 	struct mii_data *mii;
2093 	int error, mask;
2094 
2095 	sc = if_getsoftc(ifp);
2096 	ifr = (struct ifreq *)data;
2097 	error = 0;
2098 
2099 	switch (cmd) {
2100 	case SIOCSIFMTU:
2101 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU)
2102 			error = EINVAL;
2103 		else if (if_getmtu(ifp) != ifr->ifr_mtu) {
2104 			AE_LOCK(sc);
2105 			if_setmtu(ifp, ifr->ifr_mtu);
2106 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2107 				if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2108 				ae_init_locked(sc);
2109 			}
2110 			AE_UNLOCK(sc);
2111 		}
2112 		break;
2113 	case SIOCSIFFLAGS:
2114 		AE_LOCK(sc);
2115 		if ((if_getflags(ifp) & IFF_UP) != 0) {
2116 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2117 				if (((if_getflags(ifp) ^ sc->if_flags)
2118 				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2119 					ae_rxfilter(sc);
2120 			} else {
2121 				if ((sc->flags & AE_FLAG_DETACH) == 0)
2122 					ae_init_locked(sc);
2123 			}
2124 		} else {
2125 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2126 				ae_stop(sc);
2127 		}
2128 		sc->if_flags = if_getflags(ifp);
2129 		AE_UNLOCK(sc);
2130 		break;
2131 	case SIOCADDMULTI:
2132 	case SIOCDELMULTI:
2133 		AE_LOCK(sc);
2134 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2135 			ae_rxfilter(sc);
2136 		AE_UNLOCK(sc);
2137 		break;
2138 	case SIOCSIFMEDIA:
2139 	case SIOCGIFMEDIA:
2140 		mii = device_get_softc(sc->miibus);
2141 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
2142 		break;
2143 	case SIOCSIFCAP:
2144 		AE_LOCK(sc);
2145 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
2146 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2147 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
2148 			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
2149 			ae_rxvlan(sc);
2150 		}
2151 		VLAN_CAPABILITIES(ifp);
2152 		AE_UNLOCK(sc);
2153 		break;
2154 	default:
2155 		error = ether_ioctl(ifp, cmd, data);
2156 		break;
2157 	}
2158 	return (error);
2159 }
2160 
2161 static void
2162 ae_stop(ae_softc_t *sc)
2163 {
2164 	if_t ifp;
2165 	int i;
2166 
2167 	AE_LOCK_ASSERT(sc);
2168 
2169 	ifp = sc->ifp;
2170 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
2171 	sc->flags &= ~AE_FLAG_LINK;
2172 	sc->wd_timer = 0;	/* Cancel watchdog. */
2173 	callout_stop(&sc->tick_ch);
2174 
2175 	/*
2176 	 * Clear and disable interrupts.
2177 	 */
2178 	AE_WRITE_4(sc, AE_IMR_REG, 0);
2179 	AE_WRITE_4(sc, AE_ISR_REG, 0xffffffff);
2180 
2181 	/*
2182 	 * Stop Rx/Tx MACs.
2183 	 */
2184 	ae_stop_txmac(sc);
2185 	ae_stop_rxmac(sc);
2186 
2187 	/*
2188 	 * Stop DMA engines.
2189 	 */
2190 	AE_WRITE_1(sc, AE_DMAREAD_REG, ~AE_DMAREAD_EN);
2191 	AE_WRITE_1(sc, AE_DMAWRITE_REG, ~AE_DMAWRITE_EN);
2192 
2193 	/*
2194 	 * Wait for everything to enter idle state.
2195 	 */
2196 	for (i = 0; i < AE_IDLE_TIMEOUT; i++) {
2197 		if (AE_READ_4(sc, AE_IDLE_REG) == 0)
2198 			break;
2199 		DELAY(100);
2200 	}
2201 	if (i == AE_IDLE_TIMEOUT)
2202 		device_printf(sc->dev, "could not enter idle state in stop.\n");
2203 }
2204 
2205 static void
2206 ae_update_stats_tx(uint16_t flags, ae_stats_t *stats)
2207 {
2208 
2209 	if ((flags & AE_TXS_BCAST) != 0)
2210 		stats->tx_bcast++;
2211 	if ((flags & AE_TXS_MCAST) != 0)
2212 		stats->tx_mcast++;
2213 	if ((flags & AE_TXS_PAUSE) != 0)
2214 		stats->tx_pause++;
2215 	if ((flags & AE_TXS_CTRL) != 0)
2216 		stats->tx_ctrl++;
2217 	if ((flags & AE_TXS_DEFER) != 0)
2218 		stats->tx_defer++;
2219 	if ((flags & AE_TXS_EXCDEFER) != 0)
2220 		stats->tx_excdefer++;
2221 	if ((flags & AE_TXS_SINGLECOL) != 0)
2222 		stats->tx_singlecol++;
2223 	if ((flags & AE_TXS_MULTICOL) != 0)
2224 		stats->tx_multicol++;
2225 	if ((flags & AE_TXS_LATECOL) != 0)
2226 		stats->tx_latecol++;
2227 	if ((flags & AE_TXS_ABORTCOL) != 0)
2228 		stats->tx_abortcol++;
2229 	if ((flags & AE_TXS_UNDERRUN) != 0)
2230 		stats->tx_underrun++;
2231 }
2232 
2233 static void
2234 ae_update_stats_rx(uint16_t flags, ae_stats_t *stats)
2235 {
2236 
2237 	if ((flags & AE_RXD_BCAST) != 0)
2238 		stats->rx_bcast++;
2239 	if ((flags & AE_RXD_MCAST) != 0)
2240 		stats->rx_mcast++;
2241 	if ((flags & AE_RXD_PAUSE) != 0)
2242 		stats->rx_pause++;
2243 	if ((flags & AE_RXD_CTRL) != 0)
2244 		stats->rx_ctrl++;
2245 	if ((flags & AE_RXD_CRCERR) != 0)
2246 		stats->rx_crcerr++;
2247 	if ((flags & AE_RXD_CODEERR) != 0)
2248 		stats->rx_codeerr++;
2249 	if ((flags & AE_RXD_RUNT) != 0)
2250 		stats->rx_runt++;
2251 	if ((flags & AE_RXD_FRAG) != 0)
2252 		stats->rx_frag++;
2253 	if ((flags & AE_RXD_TRUNC) != 0)
2254 		stats->rx_trunc++;
2255 	if ((flags & AE_RXD_ALIGN) != 0)
2256 		stats->rx_align++;
2257 }
2258