xref: /freebsd/sys/dev/ae/if_ae.c (revision 3fc9e2c36555140de248a0b4def91bbfa44d7c2c)
1 /*-
2  * Copyright (c) 2008 Stanislav Sedov <stas@FreeBSD.org>.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  *
25  * Driver for Attansic Technology Corp. L2 FastEthernet adapter.
26  *
27  * This driver is heavily based on age(4) Attansic L1 driver by Pyun YongHyeon.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/bus.h>
36 #include <sys/endian.h>
37 #include <sys/kernel.h>
38 #include <sys/malloc.h>
39 #include <sys/mbuf.h>
40 #include <sys/rman.h>
41 #include <sys/module.h>
42 #include <sys/queue.h>
43 #include <sys/socket.h>
44 #include <sys/sockio.h>
45 #include <sys/sysctl.h>
46 #include <sys/taskqueue.h>
47 
48 #include <net/bpf.h>
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/ethernet.h>
52 #include <net/if_dl.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55 #include <net/if_vlan_var.h>
56 
57 #include <netinet/in.h>
58 #include <netinet/in_systm.h>
59 #include <netinet/ip.h>
60 #include <netinet/tcp.h>
61 
62 #include <dev/mii/mii.h>
63 #include <dev/mii/miivar.h>
64 #include <dev/pci/pcireg.h>
65 #include <dev/pci/pcivar.h>
66 
67 #include <machine/bus.h>
68 
69 #include "miibus_if.h"
70 
71 #include "if_aereg.h"
72 #include "if_aevar.h"
73 
74 /*
75  * Devices supported by this driver.
76  */
77 static struct ae_dev {
78 	uint16_t	vendorid;
79 	uint16_t	deviceid;
80 	const char	*name;
81 } ae_devs[] = {
82 	{ VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L2,
83 		"Attansic Technology Corp, L2 FastEthernet" },
84 };
85 #define	AE_DEVS_COUNT (sizeof(ae_devs) / sizeof(*ae_devs))
86 
87 static struct resource_spec ae_res_spec_mem[] = {
88 	{ SYS_RES_MEMORY,       PCIR_BAR(0),    RF_ACTIVE },
89 	{ -1,			0,		0 }
90 };
91 static struct resource_spec ae_res_spec_irq[] = {
92 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
93 	{ -1,			0,		0 }
94 };
95 static struct resource_spec ae_res_spec_msi[] = {
96 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
97 	{ -1,			0,		0 }
98 };
99 
100 static int	ae_probe(device_t dev);
101 static int	ae_attach(device_t dev);
102 static void	ae_pcie_init(ae_softc_t *sc);
103 static void	ae_phy_reset(ae_softc_t *sc);
104 static void	ae_phy_init(ae_softc_t *sc);
105 static int	ae_reset(ae_softc_t *sc);
106 static void	ae_init(void *arg);
107 static int	ae_init_locked(ae_softc_t *sc);
108 static int	ae_detach(device_t dev);
109 static int	ae_miibus_readreg(device_t dev, int phy, int reg);
110 static int	ae_miibus_writereg(device_t dev, int phy, int reg, int val);
111 static void	ae_miibus_statchg(device_t dev);
112 static void	ae_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr);
113 static int	ae_mediachange(struct ifnet *ifp);
114 static void	ae_retrieve_address(ae_softc_t *sc);
115 static void	ae_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs,
116     int error);
117 static int	ae_alloc_rings(ae_softc_t *sc);
118 static void	ae_dma_free(ae_softc_t *sc);
119 static int	ae_shutdown(device_t dev);
120 static int	ae_suspend(device_t dev);
121 static void	ae_powersave_disable(ae_softc_t *sc);
122 static void	ae_powersave_enable(ae_softc_t *sc);
123 static int	ae_resume(device_t dev);
124 static unsigned int	ae_tx_avail_size(ae_softc_t *sc);
125 static int	ae_encap(ae_softc_t *sc, struct mbuf **m_head);
126 static void	ae_start(struct ifnet *ifp);
127 static void	ae_start_locked(struct ifnet *ifp);
128 static void	ae_link_task(void *arg, int pending);
129 static void	ae_stop_rxmac(ae_softc_t *sc);
130 static void	ae_stop_txmac(ae_softc_t *sc);
131 static void	ae_mac_config(ae_softc_t *sc);
132 static int	ae_intr(void *arg);
133 static void	ae_int_task(void *arg, int pending);
134 static void	ae_tx_intr(ae_softc_t *sc);
135 static int	ae_rxeof(ae_softc_t *sc, ae_rxd_t *rxd);
136 static void	ae_rx_intr(ae_softc_t *sc);
137 static void	ae_watchdog(ae_softc_t *sc);
138 static void	ae_tick(void *arg);
139 static void	ae_rxfilter(ae_softc_t *sc);
140 static void	ae_rxvlan(ae_softc_t *sc);
141 static int	ae_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data);
142 static void	ae_stop(ae_softc_t *sc);
143 static int	ae_check_eeprom_present(ae_softc_t *sc, int *vpdc);
144 static int	ae_vpd_read_word(ae_softc_t *sc, int reg, uint32_t *word);
145 static int	ae_get_vpd_eaddr(ae_softc_t *sc, uint32_t *eaddr);
146 static int	ae_get_reg_eaddr(ae_softc_t *sc, uint32_t *eaddr);
147 static void	ae_update_stats_rx(uint16_t flags, ae_stats_t *stats);
148 static void	ae_update_stats_tx(uint16_t flags, ae_stats_t *stats);
149 static void	ae_init_tunables(ae_softc_t *sc);
150 
151 static device_method_t ae_methods[] = {
152 	/* Device interface. */
153 	DEVMETHOD(device_probe,		ae_probe),
154 	DEVMETHOD(device_attach,	ae_attach),
155 	DEVMETHOD(device_detach,	ae_detach),
156 	DEVMETHOD(device_shutdown,	ae_shutdown),
157 	DEVMETHOD(device_suspend,	ae_suspend),
158 	DEVMETHOD(device_resume,	ae_resume),
159 
160 	/* MII interface. */
161 	DEVMETHOD(miibus_readreg,	ae_miibus_readreg),
162 	DEVMETHOD(miibus_writereg,	ae_miibus_writereg),
163 	DEVMETHOD(miibus_statchg,	ae_miibus_statchg),
164 
165 	{ NULL, NULL }
166 };
167 static driver_t ae_driver = {
168         "ae",
169         ae_methods,
170         sizeof(ae_softc_t)
171 };
172 static devclass_t ae_devclass;
173 
174 DRIVER_MODULE(ae, pci, ae_driver, ae_devclass, 0, 0);
175 DRIVER_MODULE(miibus, ae, miibus_driver, miibus_devclass, 0, 0);
176 MODULE_DEPEND(ae, pci, 1, 1, 1);
177 MODULE_DEPEND(ae, ether, 1, 1, 1);
178 MODULE_DEPEND(ae, miibus, 1, 1, 1);
179 
180 /*
181  * Tunables.
182  */
183 static int msi_disable = 0;
184 TUNABLE_INT("hw.ae.msi_disable", &msi_disable);
185 
186 #define	AE_READ_4(sc, reg) \
187 	bus_read_4((sc)->mem[0], (reg))
188 #define	AE_READ_2(sc, reg) \
189 	bus_read_2((sc)->mem[0], (reg))
190 #define	AE_READ_1(sc, reg) \
191 	bus_read_1((sc)->mem[0], (reg))
192 #define	AE_WRITE_4(sc, reg, val) \
193 	bus_write_4((sc)->mem[0], (reg), (val))
194 #define	AE_WRITE_2(sc, reg, val) \
195 	bus_write_2((sc)->mem[0], (reg), (val))
196 #define	AE_WRITE_1(sc, reg, val) \
197 	bus_write_1((sc)->mem[0], (reg), (val))
198 #define	AE_PHY_READ(sc, reg) \
199 	ae_miibus_readreg(sc->dev, 0, reg)
200 #define	AE_PHY_WRITE(sc, reg, val) \
201 	ae_miibus_writereg(sc->dev, 0, reg, val)
202 #define	AE_CHECK_EADDR_VALID(eaddr) \
203 	((eaddr[0] == 0 && eaddr[1] == 0) || \
204 	(eaddr[0] == 0xffffffff && eaddr[1] == 0xffff))
205 #define	AE_RXD_VLAN(vtag) \
206 	(((vtag) >> 4) | (((vtag) & 0x07) << 13) | (((vtag) & 0x08) << 9))
207 #define	AE_TXD_VLAN(vtag) \
208 	(((vtag) << 4) | (((vtag) >> 13) & 0x07) | (((vtag) >> 9) & 0x08))
209 
210 static int
211 ae_probe(device_t dev)
212 {
213 	uint16_t deviceid, vendorid;
214 	int i;
215 
216 	vendorid = pci_get_vendor(dev);
217 	deviceid = pci_get_device(dev);
218 
219 	/*
220 	 * Search through the list of supported devs for matching one.
221 	 */
222 	for (i = 0; i < AE_DEVS_COUNT; i++) {
223 		if (vendorid == ae_devs[i].vendorid &&
224 		    deviceid == ae_devs[i].deviceid) {
225 			device_set_desc(dev, ae_devs[i].name);
226 			return (BUS_PROBE_DEFAULT);
227 		}
228 	}
229 	return (ENXIO);
230 }
231 
232 static int
233 ae_attach(device_t dev)
234 {
235 	ae_softc_t *sc;
236 	struct ifnet *ifp;
237 	uint8_t chiprev;
238 	uint32_t pcirev;
239 	int nmsi, pmc;
240 	int error;
241 
242 	sc = device_get_softc(dev); /* Automatically allocated and zeroed
243 				       on attach. */
244 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
245 	sc->dev = dev;
246 
247 	/*
248 	 * Initialize mutexes and tasks.
249 	 */
250 	mtx_init(&sc->mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF);
251 	callout_init_mtx(&sc->tick_ch, &sc->mtx, 0);
252 	TASK_INIT(&sc->int_task, 0, ae_int_task, sc);
253 	TASK_INIT(&sc->link_task, 0, ae_link_task, sc);
254 
255 	pci_enable_busmaster(dev);		/* Enable bus mastering. */
256 
257 	sc->spec_mem = ae_res_spec_mem;
258 
259 	/*
260 	 * Allocate memory-mapped registers.
261 	 */
262 	error = bus_alloc_resources(dev, sc->spec_mem, sc->mem);
263 	if (error != 0) {
264 		device_printf(dev, "could not allocate memory resources.\n");
265 		sc->spec_mem = NULL;
266 		goto fail;
267 	}
268 
269 	/*
270 	 * Retrieve PCI and chip revisions.
271 	 */
272 	pcirev = pci_get_revid(dev);
273 	chiprev = (AE_READ_4(sc, AE_MASTER_REG) >> AE_MASTER_REVNUM_SHIFT) &
274 	    AE_MASTER_REVNUM_MASK;
275 	if (bootverbose) {
276 		device_printf(dev, "pci device revision: %#04x\n", pcirev);
277 		device_printf(dev, "chip id: %#02x\n", chiprev);
278 	}
279 	nmsi = pci_msi_count(dev);
280 	if (bootverbose)
281 		device_printf(dev, "MSI count: %d.\n", nmsi);
282 
283 	/*
284 	 * Allocate interrupt resources.
285 	 */
286 	if (msi_disable == 0 && nmsi == 1) {
287 		error = pci_alloc_msi(dev, &nmsi);
288 		if (error == 0) {
289 			device_printf(dev, "Using MSI messages.\n");
290 			sc->spec_irq = ae_res_spec_msi;
291 			error = bus_alloc_resources(dev, sc->spec_irq, sc->irq);
292 			if (error != 0) {
293 				device_printf(dev, "MSI allocation failed.\n");
294 				sc->spec_irq = NULL;
295 				pci_release_msi(dev);
296 			} else {
297 				sc->flags |= AE_FLAG_MSI;
298 			}
299 		}
300 	}
301 	if (sc->spec_irq == NULL) {
302 		sc->spec_irq = ae_res_spec_irq;
303 		error = bus_alloc_resources(dev, sc->spec_irq, sc->irq);
304 		if (error != 0) {
305 			device_printf(dev, "could not allocate IRQ resources.\n");
306 			sc->spec_irq = NULL;
307 			goto fail;
308 		}
309 	}
310 
311 	ae_init_tunables(sc);
312 
313 	ae_phy_reset(sc);		/* Reset PHY. */
314 	error = ae_reset(sc);		/* Reset the controller itself. */
315 	if (error != 0)
316 		goto fail;
317 
318 	ae_pcie_init(sc);
319 
320 	ae_retrieve_address(sc);	/* Load MAC address. */
321 
322 	error = ae_alloc_rings(sc);	/* Allocate ring buffers. */
323 	if (error != 0)
324 		goto fail;
325 
326 	ifp = sc->ifp = if_alloc(IFT_ETHER);
327 	if (ifp == NULL) {
328 		device_printf(dev, "could not allocate ifnet structure.\n");
329 		error = ENXIO;
330 		goto fail;
331 	}
332 
333 	ifp->if_softc = sc;
334 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
335 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
336 	ifp->if_ioctl = ae_ioctl;
337 	ifp->if_start = ae_start;
338 	ifp->if_init = ae_init;
339 	ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
340 	ifp->if_hwassist = 0;
341 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
342 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
343 	IFQ_SET_READY(&ifp->if_snd);
344 	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) {
345 		ifp->if_capabilities |= IFCAP_WOL_MAGIC;
346 		sc->flags |= AE_FLAG_PMG;
347 	}
348 	ifp->if_capenable = ifp->if_capabilities;
349 
350 	/*
351 	 * Configure and attach MII bus.
352 	 */
353 	error = mii_attach(dev, &sc->miibus, ifp, ae_mediachange,
354 	    ae_mediastatus, BMSR_DEFCAPMASK, AE_PHYADDR_DEFAULT,
355 	    MII_OFFSET_ANY, 0);
356 	if (error != 0) {
357 		device_printf(dev, "attaching PHYs failed\n");
358 		goto fail;
359 	}
360 
361 	ether_ifattach(ifp, sc->eaddr);
362 	/* Tell the upper layer(s) we support long frames. */
363 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
364 
365 	/*
366 	 * Create and run all helper tasks.
367 	 */
368 	sc->tq = taskqueue_create_fast("ae_taskq", M_WAITOK,
369             taskqueue_thread_enqueue, &sc->tq);
370 	if (sc->tq == NULL) {
371 		device_printf(dev, "could not create taskqueue.\n");
372 		ether_ifdetach(ifp);
373 		error = ENXIO;
374 		goto fail;
375 	}
376 	taskqueue_start_threads(&sc->tq, 1, PI_NET, "%s taskq",
377 	    device_get_nameunit(sc->dev));
378 
379 	/*
380 	 * Configure interrupt handlers.
381 	 */
382 	error = bus_setup_intr(dev, sc->irq[0], INTR_TYPE_NET | INTR_MPSAFE,
383 	    ae_intr, NULL, sc, &sc->intrhand);
384 	if (error != 0) {
385 		device_printf(dev, "could not set up interrupt handler.\n");
386 		taskqueue_free(sc->tq);
387 		sc->tq = NULL;
388 		ether_ifdetach(ifp);
389 		goto fail;
390 	}
391 
392 fail:
393 	if (error != 0)
394 		ae_detach(dev);
395 
396 	return (error);
397 }
398 
399 #define	AE_SYSCTL(stx, parent, name, desc, ptr)	\
400 	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, name, CTLFLAG_RD, ptr, 0, desc)
401 
402 static void
403 ae_init_tunables(ae_softc_t *sc)
404 {
405 	struct sysctl_ctx_list *ctx;
406 	struct sysctl_oid *root, *stats, *stats_rx, *stats_tx;
407 	struct ae_stats *ae_stats;
408 
409 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
410 	ae_stats = &sc->stats;
411 
412 	ctx = device_get_sysctl_ctx(sc->dev);
413 	root = device_get_sysctl_tree(sc->dev);
414 	stats = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(root), OID_AUTO, "stats",
415 	    CTLFLAG_RD, NULL, "ae statistics");
416 
417 	/*
418 	 * Receiver statistcics.
419 	 */
420 	stats_rx = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(stats), OID_AUTO, "rx",
421 	    CTLFLAG_RD, NULL, "Rx MAC statistics");
422 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "bcast",
423 	    "broadcast frames", &ae_stats->rx_bcast);
424 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "mcast",
425 	    "multicast frames", &ae_stats->rx_mcast);
426 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "pause",
427 	    "PAUSE frames", &ae_stats->rx_pause);
428 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "control",
429 	    "control frames", &ae_stats->rx_ctrl);
430 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "crc_errors",
431 	    "frames with CRC errors", &ae_stats->rx_crcerr);
432 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "code_errors",
433 	    "frames with invalid opcode", &ae_stats->rx_codeerr);
434 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "runt",
435 	    "runt frames", &ae_stats->rx_runt);
436 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "frag",
437 	    "fragmented frames", &ae_stats->rx_frag);
438 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "align_errors",
439 	    "frames with alignment errors", &ae_stats->rx_align);
440 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "truncated",
441 	    "frames truncated due to Rx FIFO inderrun", &ae_stats->rx_trunc);
442 
443 	/*
444 	 * Receiver statistcics.
445 	 */
446 	stats_tx = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(stats), OID_AUTO, "tx",
447 	    CTLFLAG_RD, NULL, "Tx MAC statistics");
448 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "bcast",
449 	    "broadcast frames", &ae_stats->tx_bcast);
450 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "mcast",
451 	    "multicast frames", &ae_stats->tx_mcast);
452 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "pause",
453 	    "PAUSE frames", &ae_stats->tx_pause);
454 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "control",
455 	    "control frames", &ae_stats->tx_ctrl);
456 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "defers",
457 	    "deferrals occuried", &ae_stats->tx_defer);
458 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "exc_defers",
459 	    "excessive deferrals occuried", &ae_stats->tx_excdefer);
460 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "singlecols",
461 	    "single collisions occuried", &ae_stats->tx_singlecol);
462 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "multicols",
463 	    "multiple collisions occuried", &ae_stats->tx_multicol);
464 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "latecols",
465 	    "late collisions occuried", &ae_stats->tx_latecol);
466 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "aborts",
467 	    "transmit aborts due collisions", &ae_stats->tx_abortcol);
468 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "underruns",
469 	    "Tx FIFO underruns", &ae_stats->tx_underrun);
470 }
471 
472 static void
473 ae_pcie_init(ae_softc_t *sc)
474 {
475 
476 	AE_WRITE_4(sc, AE_PCIE_LTSSM_TESTMODE_REG, AE_PCIE_LTSSM_TESTMODE_DEFAULT);
477 	AE_WRITE_4(sc, AE_PCIE_DLL_TX_CTRL_REG, AE_PCIE_DLL_TX_CTRL_DEFAULT);
478 }
479 
480 static void
481 ae_phy_reset(ae_softc_t *sc)
482 {
483 
484 	AE_WRITE_4(sc, AE_PHY_ENABLE_REG, AE_PHY_ENABLE);
485 	DELAY(1000);	/* XXX: pause(9) ? */
486 }
487 
488 static int
489 ae_reset(ae_softc_t *sc)
490 {
491 	int i;
492 
493 	/*
494 	 * Issue a soft reset.
495 	 */
496 	AE_WRITE_4(sc, AE_MASTER_REG, AE_MASTER_SOFT_RESET);
497 	bus_barrier(sc->mem[0], AE_MASTER_REG, 4,
498 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
499 
500 	/*
501 	 * Wait for reset to complete.
502 	 */
503 	for (i = 0; i < AE_RESET_TIMEOUT; i++) {
504 		if ((AE_READ_4(sc, AE_MASTER_REG) & AE_MASTER_SOFT_RESET) == 0)
505 			break;
506 		DELAY(10);
507 	}
508 	if (i == AE_RESET_TIMEOUT) {
509 		device_printf(sc->dev, "reset timeout.\n");
510 		return (ENXIO);
511 	}
512 
513 	/*
514 	 * Wait for everything to enter idle state.
515 	 */
516 	for (i = 0; i < AE_IDLE_TIMEOUT; i++) {
517 		if (AE_READ_4(sc, AE_IDLE_REG) == 0)
518 			break;
519 		DELAY(100);
520 	}
521 	if (i == AE_IDLE_TIMEOUT) {
522 		device_printf(sc->dev, "could not enter idle state.\n");
523 		return (ENXIO);
524 	}
525 	return (0);
526 }
527 
528 static void
529 ae_init(void *arg)
530 {
531 	ae_softc_t *sc;
532 
533 	sc = (ae_softc_t *)arg;
534 	AE_LOCK(sc);
535 	ae_init_locked(sc);
536 	AE_UNLOCK(sc);
537 }
538 
539 static void
540 ae_phy_init(ae_softc_t *sc)
541 {
542 
543 	/*
544 	 * Enable link status change interrupt.
545 	 * XXX magic numbers.
546 	 */
547 #ifdef notyet
548 	AE_PHY_WRITE(sc, 18, 0xc00);
549 #endif
550 }
551 
552 static int
553 ae_init_locked(ae_softc_t *sc)
554 {
555 	struct ifnet *ifp;
556 	struct mii_data *mii;
557 	uint8_t eaddr[ETHER_ADDR_LEN];
558 	uint32_t val;
559 	bus_addr_t addr;
560 
561 	AE_LOCK_ASSERT(sc);
562 
563 	ifp = sc->ifp;
564 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
565 		return (0);
566 	mii = device_get_softc(sc->miibus);
567 
568 	ae_stop(sc);
569 	ae_reset(sc);
570 	ae_pcie_init(sc);		/* Initialize PCIE stuff. */
571 	ae_phy_init(sc);
572 	ae_powersave_disable(sc);
573 
574 	/*
575 	 * Clear and disable interrupts.
576 	 */
577 	AE_WRITE_4(sc, AE_ISR_REG, 0xffffffff);
578 
579 	/*
580 	 * Set the MAC address.
581 	 */
582 	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
583 	val = eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5];
584 	AE_WRITE_4(sc, AE_EADDR0_REG, val);
585 	val = eaddr[0] << 8 | eaddr[1];
586 	AE_WRITE_4(sc, AE_EADDR1_REG, val);
587 
588 	bzero(sc->rxd_base_dma, AE_RXD_COUNT_DEFAULT * 1536 + AE_RXD_PADDING);
589 	bzero(sc->txd_base, AE_TXD_BUFSIZE_DEFAULT);
590 	bzero(sc->txs_base, AE_TXS_COUNT_DEFAULT * 4);
591 	/*
592 	 * Set ring buffers base addresses.
593 	 */
594 	addr = sc->dma_rxd_busaddr;
595 	AE_WRITE_4(sc, AE_DESC_ADDR_HI_REG, BUS_ADDR_HI(addr));
596 	AE_WRITE_4(sc, AE_RXD_ADDR_LO_REG, BUS_ADDR_LO(addr));
597 	addr = sc->dma_txd_busaddr;
598 	AE_WRITE_4(sc, AE_TXD_ADDR_LO_REG, BUS_ADDR_LO(addr));
599 	addr = sc->dma_txs_busaddr;
600 	AE_WRITE_4(sc, AE_TXS_ADDR_LO_REG, BUS_ADDR_LO(addr));
601 
602 	/*
603 	 * Configure ring buffers sizes.
604 	 */
605 	AE_WRITE_2(sc, AE_RXD_COUNT_REG, AE_RXD_COUNT_DEFAULT);
606 	AE_WRITE_2(sc, AE_TXD_BUFSIZE_REG, AE_TXD_BUFSIZE_DEFAULT / 4);
607 	AE_WRITE_2(sc, AE_TXS_COUNT_REG, AE_TXS_COUNT_DEFAULT);
608 
609 	/*
610 	 * Configure interframe gap parameters.
611 	 */
612 	val = ((AE_IFG_TXIPG_DEFAULT << AE_IFG_TXIPG_SHIFT) &
613 	    AE_IFG_TXIPG_MASK) |
614 	    ((AE_IFG_RXIPG_DEFAULT << AE_IFG_RXIPG_SHIFT) &
615 	    AE_IFG_RXIPG_MASK) |
616 	    ((AE_IFG_IPGR1_DEFAULT << AE_IFG_IPGR1_SHIFT) &
617 	    AE_IFG_IPGR1_MASK) |
618 	    ((AE_IFG_IPGR2_DEFAULT << AE_IFG_IPGR2_SHIFT) &
619 	    AE_IFG_IPGR2_MASK);
620 	AE_WRITE_4(sc, AE_IFG_REG, val);
621 
622 	/*
623 	 * Configure half-duplex operation.
624 	 */
625 	val = ((AE_HDPX_LCOL_DEFAULT << AE_HDPX_LCOL_SHIFT) &
626 	    AE_HDPX_LCOL_MASK) |
627 	    ((AE_HDPX_RETRY_DEFAULT << AE_HDPX_RETRY_SHIFT) &
628 	    AE_HDPX_RETRY_MASK) |
629 	    ((AE_HDPX_ABEBT_DEFAULT << AE_HDPX_ABEBT_SHIFT) &
630 	    AE_HDPX_ABEBT_MASK) |
631 	    ((AE_HDPX_JAMIPG_DEFAULT << AE_HDPX_JAMIPG_SHIFT) &
632 	    AE_HDPX_JAMIPG_MASK) | AE_HDPX_EXC_EN;
633 	AE_WRITE_4(sc, AE_HDPX_REG, val);
634 
635 	/*
636 	 * Configure interrupt moderate timer.
637 	 */
638 	AE_WRITE_2(sc, AE_IMT_REG, AE_IMT_DEFAULT);
639 	val = AE_READ_4(sc, AE_MASTER_REG);
640 	val |= AE_MASTER_IMT_EN;
641 	AE_WRITE_4(sc, AE_MASTER_REG, val);
642 
643 	/*
644 	 * Configure interrupt clearing timer.
645 	 */
646 	AE_WRITE_2(sc, AE_ICT_REG, AE_ICT_DEFAULT);
647 
648 	/*
649 	 * Configure MTU.
650 	 */
651 	val = ifp->if_mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
652 	    ETHER_CRC_LEN;
653 	AE_WRITE_2(sc, AE_MTU_REG, val);
654 
655 	/*
656 	 * Configure cut-through threshold.
657 	 */
658 	AE_WRITE_4(sc, AE_CUT_THRESH_REG, AE_CUT_THRESH_DEFAULT);
659 
660 	/*
661 	 * Configure flow control.
662 	 */
663 	AE_WRITE_2(sc, AE_FLOW_THRESH_HI_REG, (AE_RXD_COUNT_DEFAULT / 8) * 7);
664 	AE_WRITE_2(sc, AE_FLOW_THRESH_LO_REG, (AE_RXD_COUNT_MIN / 8) >
665 	    (AE_RXD_COUNT_DEFAULT / 12) ? (AE_RXD_COUNT_MIN / 8) :
666 	    (AE_RXD_COUNT_DEFAULT / 12));
667 
668 	/*
669 	 * Init mailboxes.
670 	 */
671 	sc->txd_cur = sc->rxd_cur = 0;
672 	sc->txs_ack = sc->txd_ack = 0;
673 	sc->rxd_cur = 0;
674 	AE_WRITE_2(sc, AE_MB_TXD_IDX_REG, sc->txd_cur);
675 	AE_WRITE_2(sc, AE_MB_RXD_IDX_REG, sc->rxd_cur);
676 
677 	sc->tx_inproc = 0;	/* Number of packets the chip processes now. */
678 	sc->flags |= AE_FLAG_TXAVAIL;	/* Free Tx's available. */
679 
680 	/*
681 	 * Enable DMA.
682 	 */
683 	AE_WRITE_1(sc, AE_DMAREAD_REG, AE_DMAREAD_EN);
684 	AE_WRITE_1(sc, AE_DMAWRITE_REG, AE_DMAWRITE_EN);
685 
686 	/*
687 	 * Check if everything is OK.
688 	 */
689 	val = AE_READ_4(sc, AE_ISR_REG);
690 	if ((val & AE_ISR_PHY_LINKDOWN) != 0) {
691 		device_printf(sc->dev, "Initialization failed.\n");
692 		return (ENXIO);
693 	}
694 
695 	/*
696 	 * Clear interrupt status.
697 	 */
698 	AE_WRITE_4(sc, AE_ISR_REG, 0x3fffffff);
699 	AE_WRITE_4(sc, AE_ISR_REG, 0x0);
700 
701 	/*
702 	 * Enable interrupts.
703 	 */
704 	val = AE_READ_4(sc, AE_MASTER_REG);
705 	AE_WRITE_4(sc, AE_MASTER_REG, val | AE_MASTER_MANUAL_INT);
706 	AE_WRITE_4(sc, AE_IMR_REG, AE_IMR_DEFAULT);
707 
708 	/*
709 	 * Disable WOL.
710 	 */
711 	AE_WRITE_4(sc, AE_WOL_REG, 0);
712 
713 	/*
714 	 * Configure MAC.
715 	 */
716 	val = AE_MAC_TX_CRC_EN | AE_MAC_TX_AUTOPAD |
717 	    AE_MAC_FULL_DUPLEX | AE_MAC_CLK_PHY |
718 	    AE_MAC_TX_FLOW_EN | AE_MAC_RX_FLOW_EN |
719 	    ((AE_HALFBUF_DEFAULT << AE_HALFBUF_SHIFT) & AE_HALFBUF_MASK) |
720 	    ((AE_MAC_PREAMBLE_DEFAULT << AE_MAC_PREAMBLE_SHIFT) &
721 	    AE_MAC_PREAMBLE_MASK);
722 	AE_WRITE_4(sc, AE_MAC_REG, val);
723 
724 	/*
725 	 * Configure Rx MAC.
726 	 */
727 	ae_rxfilter(sc);
728 	ae_rxvlan(sc);
729 
730 	/*
731 	 * Enable Tx/Rx.
732 	 */
733 	val = AE_READ_4(sc, AE_MAC_REG);
734 	AE_WRITE_4(sc, AE_MAC_REG, val | AE_MAC_TX_EN | AE_MAC_RX_EN);
735 
736 	sc->flags &= ~AE_FLAG_LINK;
737 	mii_mediachg(mii);	/* Switch to the current media. */
738 
739 	callout_reset(&sc->tick_ch, hz, ae_tick, sc);
740 
741 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
742 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
743 
744 #ifdef AE_DEBUG
745 	device_printf(sc->dev, "Initialization complete.\n");
746 #endif
747 
748 	return (0);
749 }
750 
751 static int
752 ae_detach(device_t dev)
753 {
754 	struct ae_softc *sc;
755 	struct ifnet *ifp;
756 
757 	sc = device_get_softc(dev);
758 	KASSERT(sc != NULL, ("[ae: %d]: sc is NULL", __LINE__));
759 	ifp = sc->ifp;
760 	if (device_is_attached(dev)) {
761 		AE_LOCK(sc);
762 		sc->flags |= AE_FLAG_DETACH;
763 		ae_stop(sc);
764 		AE_UNLOCK(sc);
765 		callout_drain(&sc->tick_ch);
766 		taskqueue_drain(sc->tq, &sc->int_task);
767 		taskqueue_drain(taskqueue_swi, &sc->link_task);
768 		ether_ifdetach(ifp);
769 	}
770 	if (sc->tq != NULL) {
771 		taskqueue_drain(sc->tq, &sc->int_task);
772 		taskqueue_free(sc->tq);
773 		sc->tq = NULL;
774 	}
775 	if (sc->miibus != NULL) {
776 		device_delete_child(dev, sc->miibus);
777 		sc->miibus = NULL;
778 	}
779 	bus_generic_detach(sc->dev);
780 	ae_dma_free(sc);
781 	if (sc->intrhand != NULL) {
782 		bus_teardown_intr(dev, sc->irq[0], sc->intrhand);
783 		sc->intrhand = NULL;
784 	}
785 	if (ifp != NULL) {
786 		if_free(ifp);
787 		sc->ifp = NULL;
788 	}
789 	if (sc->spec_irq != NULL)
790 		bus_release_resources(dev, sc->spec_irq, sc->irq);
791 	if (sc->spec_mem != NULL)
792 		bus_release_resources(dev, sc->spec_mem, sc->mem);
793 	if ((sc->flags & AE_FLAG_MSI) != 0)
794 		pci_release_msi(dev);
795 	mtx_destroy(&sc->mtx);
796 
797 	return (0);
798 }
799 
800 static int
801 ae_miibus_readreg(device_t dev, int phy, int reg)
802 {
803 	ae_softc_t *sc;
804 	uint32_t val;
805 	int i;
806 
807 	sc = device_get_softc(dev);
808 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
809 
810 	/*
811 	 * Locking is done in upper layers.
812 	 */
813 
814 	val = ((reg << AE_MDIO_REGADDR_SHIFT) & AE_MDIO_REGADDR_MASK) |
815 	    AE_MDIO_START | AE_MDIO_READ | AE_MDIO_SUP_PREAMBLE |
816 	    ((AE_MDIO_CLK_25_4 << AE_MDIO_CLK_SHIFT) & AE_MDIO_CLK_MASK);
817 	AE_WRITE_4(sc, AE_MDIO_REG, val);
818 
819 	/*
820 	 * Wait for operation to complete.
821 	 */
822 	for (i = 0; i < AE_MDIO_TIMEOUT; i++) {
823 		DELAY(2);
824 		val = AE_READ_4(sc, AE_MDIO_REG);
825 		if ((val & (AE_MDIO_START | AE_MDIO_BUSY)) == 0)
826 			break;
827 	}
828 	if (i == AE_MDIO_TIMEOUT) {
829 		device_printf(sc->dev, "phy read timeout: %d.\n", reg);
830 		return (0);
831 	}
832 	return ((val << AE_MDIO_DATA_SHIFT) & AE_MDIO_DATA_MASK);
833 }
834 
835 static int
836 ae_miibus_writereg(device_t dev, int phy, int reg, int val)
837 {
838 	ae_softc_t *sc;
839 	uint32_t aereg;
840 	int i;
841 
842 	sc = device_get_softc(dev);
843 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
844 
845 	/*
846 	 * Locking is done in upper layers.
847 	 */
848 
849 	aereg = ((reg << AE_MDIO_REGADDR_SHIFT) & AE_MDIO_REGADDR_MASK) |
850 	    AE_MDIO_START | AE_MDIO_SUP_PREAMBLE |
851 	    ((AE_MDIO_CLK_25_4 << AE_MDIO_CLK_SHIFT) & AE_MDIO_CLK_MASK) |
852 	    ((val << AE_MDIO_DATA_SHIFT) & AE_MDIO_DATA_MASK);
853 	AE_WRITE_4(sc, AE_MDIO_REG, aereg);
854 
855 	/*
856 	 * Wait for operation to complete.
857 	 */
858 	for (i = 0; i < AE_MDIO_TIMEOUT; i++) {
859 		DELAY(2);
860 		aereg = AE_READ_4(sc, AE_MDIO_REG);
861 		if ((aereg & (AE_MDIO_START | AE_MDIO_BUSY)) == 0)
862 			break;
863 	}
864 	if (i == AE_MDIO_TIMEOUT) {
865 		device_printf(sc->dev, "phy write timeout: %d.\n", reg);
866 	}
867 	return (0);
868 }
869 
870 static void
871 ae_miibus_statchg(device_t dev)
872 {
873 	ae_softc_t *sc;
874 
875 	sc = device_get_softc(dev);
876 	taskqueue_enqueue(taskqueue_swi, &sc->link_task);
877 }
878 
879 static void
880 ae_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
881 {
882 	ae_softc_t *sc;
883 	struct mii_data *mii;
884 
885 	sc = ifp->if_softc;
886 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
887 
888 	AE_LOCK(sc);
889 	mii = device_get_softc(sc->miibus);
890 	mii_pollstat(mii);
891 	ifmr->ifm_status = mii->mii_media_status;
892 	ifmr->ifm_active = mii->mii_media_active;
893 	AE_UNLOCK(sc);
894 }
895 
896 static int
897 ae_mediachange(struct ifnet *ifp)
898 {
899 	ae_softc_t *sc;
900 	struct mii_data *mii;
901 	struct mii_softc *mii_sc;
902 	int error;
903 
904 	/* XXX: check IFF_UP ?? */
905 	sc = ifp->if_softc;
906 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
907 	AE_LOCK(sc);
908 	mii = device_get_softc(sc->miibus);
909 	LIST_FOREACH(mii_sc, &mii->mii_phys, mii_list)
910 		PHY_RESET(mii_sc);
911 	error = mii_mediachg(mii);
912 	AE_UNLOCK(sc);
913 
914 	return (error);
915 }
916 
917 static int
918 ae_check_eeprom_present(ae_softc_t *sc, int *vpdc)
919 {
920 	int error;
921 	uint32_t val;
922 
923 	KASSERT(vpdc != NULL, ("[ae, %d]: vpdc is NULL!\n", __LINE__));
924 
925 	/*
926 	 * Not sure why, but Linux does this.
927 	 */
928 	val = AE_READ_4(sc, AE_SPICTL_REG);
929 	if ((val & AE_SPICTL_VPD_EN) != 0) {
930 		val &= ~AE_SPICTL_VPD_EN;
931 		AE_WRITE_4(sc, AE_SPICTL_REG, val);
932 	}
933 	error = pci_find_cap(sc->dev, PCIY_VPD, vpdc);
934 	return (error);
935 }
936 
937 static int
938 ae_vpd_read_word(ae_softc_t *sc, int reg, uint32_t *word)
939 {
940 	uint32_t val;
941 	int i;
942 
943 	AE_WRITE_4(sc, AE_VPD_DATA_REG, 0);	/* Clear register value. */
944 
945 	/*
946 	 * VPD registers start at offset 0x100. Read them.
947 	 */
948 	val = 0x100 + reg * 4;
949 	AE_WRITE_4(sc, AE_VPD_CAP_REG, (val << AE_VPD_CAP_ADDR_SHIFT) &
950 	    AE_VPD_CAP_ADDR_MASK);
951 	for (i = 0; i < AE_VPD_TIMEOUT; i++) {
952 		DELAY(2000);
953 		val = AE_READ_4(sc, AE_VPD_CAP_REG);
954 		if ((val & AE_VPD_CAP_DONE) != 0)
955 			break;
956 	}
957 	if (i == AE_VPD_TIMEOUT) {
958 		device_printf(sc->dev, "timeout reading VPD register %d.\n",
959 		    reg);
960 		return (ETIMEDOUT);
961 	}
962 	*word = AE_READ_4(sc, AE_VPD_DATA_REG);
963 	return (0);
964 }
965 
966 static int
967 ae_get_vpd_eaddr(ae_softc_t *sc, uint32_t *eaddr)
968 {
969 	uint32_t word, reg, val;
970 	int error;
971 	int found;
972 	int vpdc;
973 	int i;
974 
975 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
976 	KASSERT(eaddr != NULL, ("[ae, %d]: eaddr is NULL", __LINE__));
977 
978 	/*
979 	 * Check for EEPROM.
980 	 */
981 	error = ae_check_eeprom_present(sc, &vpdc);
982 	if (error != 0)
983 		return (error);
984 
985 	/*
986 	 * Read the VPD configuration space.
987 	 * Each register is prefixed with signature,
988 	 * so we can check if it is valid.
989 	 */
990 	for (i = 0, found = 0; i < AE_VPD_NREGS; i++) {
991 		error = ae_vpd_read_word(sc, i, &word);
992 		if (error != 0)
993 			break;
994 
995 		/*
996 		 * Check signature.
997 		 */
998 		if ((word & AE_VPD_SIG_MASK) != AE_VPD_SIG)
999 			break;
1000 		reg = word >> AE_VPD_REG_SHIFT;
1001 		i++;	/* Move to the next word. */
1002 
1003 		if (reg != AE_EADDR0_REG && reg != AE_EADDR1_REG)
1004 			continue;
1005 
1006 		error = ae_vpd_read_word(sc, i, &val);
1007 		if (error != 0)
1008 			break;
1009 		if (reg == AE_EADDR0_REG)
1010 			eaddr[0] = val;
1011 		else
1012 			eaddr[1] = val;
1013 		found++;
1014 	}
1015 
1016 	if (found < 2)
1017 		return (ENOENT);
1018 
1019 	eaddr[1] &= 0xffff;	/* Only last 2 bytes are used. */
1020 	if (AE_CHECK_EADDR_VALID(eaddr) != 0) {
1021 		if (bootverbose)
1022 			device_printf(sc->dev,
1023 			    "VPD ethernet address registers are invalid.\n");
1024 		return (EINVAL);
1025 	}
1026 	return (0);
1027 }
1028 
1029 static int
1030 ae_get_reg_eaddr(ae_softc_t *sc, uint32_t *eaddr)
1031 {
1032 
1033 	/*
1034 	 * BIOS is supposed to set this.
1035 	 */
1036 	eaddr[0] = AE_READ_4(sc, AE_EADDR0_REG);
1037 	eaddr[1] = AE_READ_4(sc, AE_EADDR1_REG);
1038 	eaddr[1] &= 0xffff;	/* Only last 2 bytes are used. */
1039 
1040 	if (AE_CHECK_EADDR_VALID(eaddr) != 0) {
1041 		if (bootverbose)
1042 			device_printf(sc->dev,
1043 			    "Ethernet address registers are invalid.\n");
1044 		return (EINVAL);
1045 	}
1046 	return (0);
1047 }
1048 
1049 static void
1050 ae_retrieve_address(ae_softc_t *sc)
1051 {
1052 	uint32_t eaddr[2] = {0, 0};
1053 	int error;
1054 
1055 	/*
1056 	 *Check for EEPROM.
1057 	 */
1058 	error = ae_get_vpd_eaddr(sc, eaddr);
1059 	if (error != 0)
1060 		error = ae_get_reg_eaddr(sc, eaddr);
1061 	if (error != 0) {
1062 		if (bootverbose)
1063 			device_printf(sc->dev,
1064 			    "Generating random ethernet address.\n");
1065 		eaddr[0] = arc4random();
1066 
1067 		/*
1068 		 * Set OUI to ASUSTek COMPUTER INC.
1069 		 */
1070 		sc->eaddr[0] = 0x02;	/* U/L bit set. */
1071 		sc->eaddr[1] = 0x1f;
1072 		sc->eaddr[2] = 0xc6;
1073 		sc->eaddr[3] = (eaddr[0] >> 16) & 0xff;
1074 		sc->eaddr[4] = (eaddr[0] >> 8) & 0xff;
1075 		sc->eaddr[5] = (eaddr[0] >> 0) & 0xff;
1076 	} else {
1077 		sc->eaddr[0] = (eaddr[1] >> 8) & 0xff;
1078 		sc->eaddr[1] = (eaddr[1] >> 0) & 0xff;
1079 		sc->eaddr[2] = (eaddr[0] >> 24) & 0xff;
1080 		sc->eaddr[3] = (eaddr[0] >> 16) & 0xff;
1081 		sc->eaddr[4] = (eaddr[0] >> 8) & 0xff;
1082 		sc->eaddr[5] = (eaddr[0] >> 0) & 0xff;
1083 	}
1084 }
1085 
1086 static void
1087 ae_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1088 {
1089 	bus_addr_t *addr = arg;
1090 
1091 	if (error != 0)
1092 		return;
1093 	KASSERT(nsegs == 1, ("[ae, %d]: %d segments instead of 1!", __LINE__,
1094 	    nsegs));
1095 	*addr = segs[0].ds_addr;
1096 }
1097 
1098 static int
1099 ae_alloc_rings(ae_softc_t *sc)
1100 {
1101 	bus_addr_t busaddr;
1102 	int error;
1103 
1104 	/*
1105 	 * Create parent DMA tag.
1106 	 */
1107 	error = bus_dma_tag_create(bus_get_dma_tag(sc->dev),
1108 	    1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
1109 	    NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 0,
1110 	    BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
1111 	    &sc->dma_parent_tag);
1112 	if (error != 0) {
1113 		device_printf(sc->dev, "could not creare parent DMA tag.\n");
1114 		return (error);
1115 	}
1116 
1117 	/*
1118 	 * Create DMA tag for TxD.
1119 	 */
1120 	error = bus_dma_tag_create(sc->dma_parent_tag,
1121 	    8, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1122 	    NULL, NULL, AE_TXD_BUFSIZE_DEFAULT, 1,
1123 	    AE_TXD_BUFSIZE_DEFAULT, 0, NULL, NULL,
1124 	    &sc->dma_txd_tag);
1125 	if (error != 0) {
1126 		device_printf(sc->dev, "could not creare TxD DMA tag.\n");
1127 		return (error);
1128 	}
1129 
1130 	/*
1131 	 * Create DMA tag for TxS.
1132 	 */
1133 	error = bus_dma_tag_create(sc->dma_parent_tag,
1134 	    8, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1135 	    NULL, NULL, AE_TXS_COUNT_DEFAULT * 4, 1,
1136 	    AE_TXS_COUNT_DEFAULT * 4, 0, NULL, NULL,
1137 	    &sc->dma_txs_tag);
1138 	if (error != 0) {
1139 		device_printf(sc->dev, "could not creare TxS DMA tag.\n");
1140 		return (error);
1141 	}
1142 
1143 	/*
1144 	 * Create DMA tag for RxD.
1145 	 */
1146 	error = bus_dma_tag_create(sc->dma_parent_tag,
1147 	    128, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1148 	    NULL, NULL, AE_RXD_COUNT_DEFAULT * 1536 + AE_RXD_PADDING, 1,
1149 	    AE_RXD_COUNT_DEFAULT * 1536 + AE_RXD_PADDING, 0, NULL, NULL,
1150 	    &sc->dma_rxd_tag);
1151 	if (error != 0) {
1152 		device_printf(sc->dev, "could not creare TxS DMA tag.\n");
1153 		return (error);
1154 	}
1155 
1156 	/*
1157 	 * Allocate TxD DMA memory.
1158 	 */
1159 	error = bus_dmamem_alloc(sc->dma_txd_tag, (void **)&sc->txd_base,
1160 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1161 	    &sc->dma_txd_map);
1162 	if (error != 0) {
1163 		device_printf(sc->dev,
1164 		    "could not allocate DMA memory for TxD ring.\n");
1165 		return (error);
1166 	}
1167 	error = bus_dmamap_load(sc->dma_txd_tag, sc->dma_txd_map, sc->txd_base,
1168 	    AE_TXD_BUFSIZE_DEFAULT, ae_dmamap_cb, &busaddr, BUS_DMA_NOWAIT);
1169 	if (error != 0 || busaddr == 0) {
1170 		device_printf(sc->dev,
1171 		    "could not load DMA map for TxD ring.\n");
1172 		return (error);
1173 	}
1174 	sc->dma_txd_busaddr = busaddr;
1175 
1176 	/*
1177 	 * Allocate TxS DMA memory.
1178 	 */
1179 	error = bus_dmamem_alloc(sc->dma_txs_tag, (void **)&sc->txs_base,
1180 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1181 	    &sc->dma_txs_map);
1182 	if (error != 0) {
1183 		device_printf(sc->dev,
1184 		    "could not allocate DMA memory for TxS ring.\n");
1185 		return (error);
1186 	}
1187 	error = bus_dmamap_load(sc->dma_txs_tag, sc->dma_txs_map, sc->txs_base,
1188 	    AE_TXS_COUNT_DEFAULT * 4, ae_dmamap_cb, &busaddr, BUS_DMA_NOWAIT);
1189 	if (error != 0 || busaddr == 0) {
1190 		device_printf(sc->dev,
1191 		    "could not load DMA map for TxS ring.\n");
1192 		return (error);
1193 	}
1194 	sc->dma_txs_busaddr = busaddr;
1195 
1196 	/*
1197 	 * Allocate RxD DMA memory.
1198 	 */
1199 	error = bus_dmamem_alloc(sc->dma_rxd_tag, (void **)&sc->rxd_base_dma,
1200 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1201 	    &sc->dma_rxd_map);
1202 	if (error != 0) {
1203 		device_printf(sc->dev,
1204 		    "could not allocate DMA memory for RxD ring.\n");
1205 		return (error);
1206 	}
1207 	error = bus_dmamap_load(sc->dma_rxd_tag, sc->dma_rxd_map,
1208 	    sc->rxd_base_dma, AE_RXD_COUNT_DEFAULT * 1536 + AE_RXD_PADDING,
1209 	    ae_dmamap_cb, &busaddr, BUS_DMA_NOWAIT);
1210 	if (error != 0 || busaddr == 0) {
1211 		device_printf(sc->dev,
1212 		    "could not load DMA map for RxD ring.\n");
1213 		return (error);
1214 	}
1215 	sc->dma_rxd_busaddr = busaddr + AE_RXD_PADDING;
1216 	sc->rxd_base = (ae_rxd_t *)(sc->rxd_base_dma + AE_RXD_PADDING);
1217 
1218 	return (0);
1219 }
1220 
1221 static void
1222 ae_dma_free(ae_softc_t *sc)
1223 {
1224 
1225 	if (sc->dma_txd_tag != NULL) {
1226 		if (sc->dma_txd_map != NULL) {
1227 			bus_dmamap_unload(sc->dma_txd_tag, sc->dma_txd_map);
1228 			if (sc->txd_base != NULL)
1229 				bus_dmamem_free(sc->dma_txd_tag, sc->txd_base,
1230 				    sc->dma_txd_map);
1231 
1232 		}
1233 		bus_dma_tag_destroy(sc->dma_txd_tag);
1234 		sc->dma_txd_map = NULL;
1235 		sc->dma_txd_tag = NULL;
1236 		sc->txd_base = NULL;
1237 	}
1238 	if (sc->dma_txs_tag != NULL) {
1239 		if (sc->dma_txs_map != NULL) {
1240 			bus_dmamap_unload(sc->dma_txs_tag, sc->dma_txs_map);
1241 			if (sc->txs_base != NULL)
1242 				bus_dmamem_free(sc->dma_txs_tag, sc->txs_base,
1243 				    sc->dma_txs_map);
1244 
1245 		}
1246 		bus_dma_tag_destroy(sc->dma_txs_tag);
1247 		sc->dma_txs_map = NULL;
1248 		sc->dma_txs_tag = NULL;
1249 		sc->txs_base = NULL;
1250 	}
1251 	if (sc->dma_rxd_tag != NULL) {
1252 		if (sc->dma_rxd_map != NULL) {
1253 			bus_dmamap_unload(sc->dma_rxd_tag, sc->dma_rxd_map);
1254 			if (sc->rxd_base_dma != NULL)
1255 				bus_dmamem_free(sc->dma_rxd_tag,
1256 				    sc->rxd_base_dma, sc->dma_rxd_map);
1257 
1258 		}
1259 		bus_dma_tag_destroy(sc->dma_rxd_tag);
1260 		sc->dma_rxd_map = NULL;
1261 		sc->dma_rxd_tag = NULL;
1262 		sc->rxd_base_dma = NULL;
1263 	}
1264 	if (sc->dma_parent_tag != NULL) {
1265 		bus_dma_tag_destroy(sc->dma_parent_tag);
1266 		sc->dma_parent_tag = NULL;
1267 	}
1268 }
1269 
1270 static int
1271 ae_shutdown(device_t dev)
1272 {
1273 	ae_softc_t *sc;
1274 	int error;
1275 
1276 	sc = device_get_softc(dev);
1277 	KASSERT(sc != NULL, ("[ae: %d]: sc is NULL", __LINE__));
1278 
1279 	error = ae_suspend(dev);
1280 	AE_LOCK(sc);
1281 	ae_powersave_enable(sc);
1282 	AE_UNLOCK(sc);
1283 	return (error);
1284 }
1285 
1286 static void
1287 ae_powersave_disable(ae_softc_t *sc)
1288 {
1289 	uint32_t val;
1290 
1291 	AE_LOCK_ASSERT(sc);
1292 
1293 	AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 0);
1294 	val = AE_PHY_READ(sc, AE_PHY_DBG_DATA);
1295 	if (val & AE_PHY_DBG_POWERSAVE) {
1296 		val &= ~AE_PHY_DBG_POWERSAVE;
1297 		AE_PHY_WRITE(sc, AE_PHY_DBG_DATA, val);
1298 		DELAY(1000);
1299 	}
1300 }
1301 
1302 static void
1303 ae_powersave_enable(ae_softc_t *sc)
1304 {
1305 	uint32_t val;
1306 
1307 	AE_LOCK_ASSERT(sc);
1308 
1309 	/*
1310 	 * XXX magic numbers.
1311 	 */
1312 	AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 0);
1313 	val = AE_PHY_READ(sc, AE_PHY_DBG_DATA);
1314 	AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, val | 0x1000);
1315 	AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 2);
1316 	AE_PHY_WRITE(sc, AE_PHY_DBG_DATA, 0x3000);
1317 	AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 3);
1318 	AE_PHY_WRITE(sc, AE_PHY_DBG_DATA, 0);
1319 }
1320 
1321 static void
1322 ae_pm_init(ae_softc_t *sc)
1323 {
1324 	struct ifnet *ifp;
1325 	uint32_t val;
1326 	uint16_t pmstat;
1327 	struct mii_data *mii;
1328 	int pmc;
1329 
1330 	AE_LOCK_ASSERT(sc);
1331 
1332 	ifp = sc->ifp;
1333 	if ((sc->flags & AE_FLAG_PMG) == 0) {
1334 		/* Disable WOL entirely. */
1335 		AE_WRITE_4(sc, AE_WOL_REG, 0);
1336 		return;
1337 	}
1338 
1339 	/*
1340 	 * Configure WOL if enabled.
1341 	 */
1342 	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1343 		mii = device_get_softc(sc->miibus);
1344 		mii_pollstat(mii);
1345 		if ((mii->mii_media_status & IFM_AVALID) != 0 &&
1346 		    (mii->mii_media_status & IFM_ACTIVE) != 0) {
1347 			AE_WRITE_4(sc, AE_WOL_REG, AE_WOL_MAGIC | \
1348 			    AE_WOL_MAGIC_PME);
1349 
1350 			/*
1351 			 * Configure MAC.
1352 			 */
1353 			val = AE_MAC_RX_EN | AE_MAC_CLK_PHY | \
1354 			    AE_MAC_TX_CRC_EN | AE_MAC_TX_AUTOPAD | \
1355 			    ((AE_HALFBUF_DEFAULT << AE_HALFBUF_SHIFT) & \
1356 			    AE_HALFBUF_MASK) | \
1357 			    ((AE_MAC_PREAMBLE_DEFAULT << \
1358 			    AE_MAC_PREAMBLE_SHIFT) & AE_MAC_PREAMBLE_MASK) | \
1359 			    AE_MAC_BCAST_EN | AE_MAC_MCAST_EN;
1360 			if ((IFM_OPTIONS(mii->mii_media_active) & \
1361 			    IFM_FDX) != 0)
1362 				val |= AE_MAC_FULL_DUPLEX;
1363 			AE_WRITE_4(sc, AE_MAC_REG, val);
1364 
1365 		} else {	/* No link. */
1366 			AE_WRITE_4(sc, AE_WOL_REG, AE_WOL_LNKCHG | \
1367 			    AE_WOL_LNKCHG_PME);
1368 			AE_WRITE_4(sc, AE_MAC_REG, 0);
1369 		}
1370 	} else {
1371 		ae_powersave_enable(sc);
1372 	}
1373 
1374 	/*
1375 	 * PCIE hacks. Magic numbers.
1376 	 */
1377 	val = AE_READ_4(sc, AE_PCIE_PHYMISC_REG);
1378 	val |= AE_PCIE_PHYMISC_FORCE_RCV_DET;
1379 	AE_WRITE_4(sc, AE_PCIE_PHYMISC_REG, val);
1380 	val = AE_READ_4(sc, AE_PCIE_DLL_TX_CTRL_REG);
1381 	val |= AE_PCIE_DLL_TX_CTRL_SEL_NOR_CLK;
1382 	AE_WRITE_4(sc, AE_PCIE_DLL_TX_CTRL_REG, val);
1383 
1384 	/*
1385 	 * Configure PME.
1386 	 */
1387 	if (pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) {
1388 		pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
1389 		pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1390 		if ((ifp->if_capenable & IFCAP_WOL) != 0)
1391 			pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1392 		pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1393 	}
1394 }
1395 
1396 static int
1397 ae_suspend(device_t dev)
1398 {
1399 	ae_softc_t *sc;
1400 
1401 	sc = device_get_softc(dev);
1402 
1403 	AE_LOCK(sc);
1404 	ae_stop(sc);
1405 	ae_pm_init(sc);
1406 	AE_UNLOCK(sc);
1407 
1408 	return (0);
1409 }
1410 
1411 static int
1412 ae_resume(device_t dev)
1413 {
1414 	ae_softc_t *sc;
1415 
1416 	sc = device_get_softc(dev);
1417 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
1418 
1419 	AE_LOCK(sc);
1420 	AE_READ_4(sc, AE_WOL_REG);	/* Clear WOL status. */
1421 	if ((sc->ifp->if_flags & IFF_UP) != 0)
1422 		ae_init_locked(sc);
1423 	AE_UNLOCK(sc);
1424 
1425 	return (0);
1426 }
1427 
1428 static unsigned int
1429 ae_tx_avail_size(ae_softc_t *sc)
1430 {
1431 	unsigned int avail;
1432 
1433 	if (sc->txd_cur >= sc->txd_ack)
1434 		avail = AE_TXD_BUFSIZE_DEFAULT - (sc->txd_cur - sc->txd_ack);
1435 	else
1436 		avail = sc->txd_ack - sc->txd_cur;
1437 
1438 	return (avail);
1439 }
1440 
1441 static int
1442 ae_encap(ae_softc_t *sc, struct mbuf **m_head)
1443 {
1444 	struct mbuf *m0;
1445 	ae_txd_t *hdr;
1446 	unsigned int to_end;
1447 	uint16_t len;
1448 
1449 	AE_LOCK_ASSERT(sc);
1450 
1451 	m0 = *m_head;
1452 	len = m0->m_pkthdr.len;
1453 
1454 	if ((sc->flags & AE_FLAG_TXAVAIL) == 0 ||
1455 	    len + sizeof(ae_txd_t) + 3 > ae_tx_avail_size(sc)) {
1456 #ifdef AE_DEBUG
1457 		if_printf(sc->ifp, "No free Tx available.\n");
1458 #endif
1459 		return ENOBUFS;
1460 	}
1461 
1462 	hdr = (ae_txd_t *)(sc->txd_base + sc->txd_cur);
1463 	bzero(hdr, sizeof(*hdr));
1464 	/* Skip header size. */
1465 	sc->txd_cur = (sc->txd_cur + sizeof(ae_txd_t)) % AE_TXD_BUFSIZE_DEFAULT;
1466 	/* Space available to the end of the ring */
1467 	to_end = AE_TXD_BUFSIZE_DEFAULT - sc->txd_cur;
1468 	if (to_end >= len) {
1469 		m_copydata(m0, 0, len, (caddr_t)(sc->txd_base + sc->txd_cur));
1470 	} else {
1471 		m_copydata(m0, 0, to_end, (caddr_t)(sc->txd_base +
1472 		    sc->txd_cur));
1473 		m_copydata(m0, to_end, len - to_end, (caddr_t)sc->txd_base);
1474 	}
1475 
1476 	/*
1477 	 * Set TxD flags and parameters.
1478 	 */
1479 	if ((m0->m_flags & M_VLANTAG) != 0) {
1480 		hdr->vlan = htole16(AE_TXD_VLAN(m0->m_pkthdr.ether_vtag));
1481 		hdr->len = htole16(len | AE_TXD_INSERT_VTAG);
1482 	} else {
1483 		hdr->len = htole16(len);
1484 	}
1485 
1486 	/*
1487 	 * Set current TxD position and round up to a 4-byte boundary.
1488 	 */
1489 	sc->txd_cur = ((sc->txd_cur + len + 3) & ~3) % AE_TXD_BUFSIZE_DEFAULT;
1490 	if (sc->txd_cur == sc->txd_ack)
1491 		sc->flags &= ~AE_FLAG_TXAVAIL;
1492 #ifdef AE_DEBUG
1493 	if_printf(sc->ifp, "New txd_cur = %d.\n", sc->txd_cur);
1494 #endif
1495 
1496 	/*
1497 	 * Update TxS position and check if there are empty TxS available.
1498 	 */
1499 	sc->txs_base[sc->txs_cur].flags &= ~htole16(AE_TXS_UPDATE);
1500 	sc->txs_cur = (sc->txs_cur + 1) % AE_TXS_COUNT_DEFAULT;
1501 	if (sc->txs_cur == sc->txs_ack)
1502 		sc->flags &= ~AE_FLAG_TXAVAIL;
1503 
1504 	/*
1505 	 * Synchronize DMA memory.
1506 	 */
1507 	bus_dmamap_sync(sc->dma_txd_tag, sc->dma_txd_map, BUS_DMASYNC_PREREAD |
1508 	    BUS_DMASYNC_PREWRITE);
1509 	bus_dmamap_sync(sc->dma_txs_tag, sc->dma_txs_map,
1510 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1511 
1512 	return (0);
1513 }
1514 
1515 static void
1516 ae_start(struct ifnet *ifp)
1517 {
1518 	ae_softc_t *sc;
1519 
1520 	sc = ifp->if_softc;
1521 	AE_LOCK(sc);
1522 	ae_start_locked(ifp);
1523 	AE_UNLOCK(sc);
1524 }
1525 
1526 static void
1527 ae_start_locked(struct ifnet *ifp)
1528 {
1529 	ae_softc_t *sc;
1530 	unsigned int count;
1531 	struct mbuf *m0;
1532 	int error;
1533 
1534 	sc = ifp->if_softc;
1535 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
1536 	AE_LOCK_ASSERT(sc);
1537 
1538 #ifdef AE_DEBUG
1539 	if_printf(ifp, "Start called.\n");
1540 #endif
1541 
1542 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1543 	    IFF_DRV_RUNNING || (sc->flags & AE_FLAG_LINK) == 0)
1544 		return;
1545 
1546 	count = 0;
1547 	while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
1548 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
1549 		if (m0 == NULL)
1550 			break;	/* Nothing to do. */
1551 
1552 		error = ae_encap(sc, &m0);
1553 		if (error != 0) {
1554 			if (m0 != NULL) {
1555 				IFQ_DRV_PREPEND(&ifp->if_snd, m0);
1556 				ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1557 #ifdef AE_DEBUG
1558 				if_printf(ifp, "Setting OACTIVE.\n");
1559 #endif
1560 			}
1561 			break;
1562 		}
1563 		count++;
1564 		sc->tx_inproc++;
1565 
1566 		/* Bounce a copy of the frame to BPF. */
1567 		ETHER_BPF_MTAP(ifp, m0);
1568 
1569 		m_freem(m0);
1570 	}
1571 
1572 	if (count > 0) {	/* Something was dequeued. */
1573 		AE_WRITE_2(sc, AE_MB_TXD_IDX_REG, sc->txd_cur / 4);
1574 		sc->wd_timer = AE_TX_TIMEOUT;	/* Load watchdog. */
1575 #ifdef AE_DEBUG
1576 		if_printf(ifp, "%d packets dequeued.\n", count);
1577 		if_printf(ifp, "Tx pos now is %d.\n", sc->txd_cur);
1578 #endif
1579 	}
1580 }
1581 
1582 static void
1583 ae_link_task(void *arg, int pending)
1584 {
1585 	ae_softc_t *sc;
1586 	struct mii_data *mii;
1587 	struct ifnet *ifp;
1588 	uint32_t val;
1589 
1590 	sc = (ae_softc_t *)arg;
1591 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
1592 	AE_LOCK(sc);
1593 
1594 	ifp = sc->ifp;
1595 	mii = device_get_softc(sc->miibus);
1596 	if (mii == NULL || ifp == NULL ||
1597 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1598 		AE_UNLOCK(sc);	/* XXX: could happen? */
1599 		return;
1600 	}
1601 
1602 	sc->flags &= ~AE_FLAG_LINK;
1603 	if ((mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) ==
1604 	    (IFM_AVALID | IFM_ACTIVE)) {
1605 		switch(IFM_SUBTYPE(mii->mii_media_active)) {
1606 		case IFM_10_T:
1607 		case IFM_100_TX:
1608 			sc->flags |= AE_FLAG_LINK;
1609 			break;
1610 		default:
1611 			break;
1612 		}
1613 	}
1614 
1615 	/*
1616 	 * Stop Rx/Tx MACs.
1617 	 */
1618 	ae_stop_rxmac(sc);
1619 	ae_stop_txmac(sc);
1620 
1621 	if ((sc->flags & AE_FLAG_LINK) != 0) {
1622 		ae_mac_config(sc);
1623 
1624 		/*
1625 		 * Restart DMA engines.
1626 		 */
1627 		AE_WRITE_1(sc, AE_DMAREAD_REG, AE_DMAREAD_EN);
1628 		AE_WRITE_1(sc, AE_DMAWRITE_REG, AE_DMAWRITE_EN);
1629 
1630 		/*
1631 		 * Enable Rx and Tx MACs.
1632 		 */
1633 		val = AE_READ_4(sc, AE_MAC_REG);
1634 		val |= AE_MAC_TX_EN | AE_MAC_RX_EN;
1635 		AE_WRITE_4(sc, AE_MAC_REG, val);
1636 	}
1637 	AE_UNLOCK(sc);
1638 }
1639 
1640 static void
1641 ae_stop_rxmac(ae_softc_t *sc)
1642 {
1643 	uint32_t val;
1644 	int i;
1645 
1646 	AE_LOCK_ASSERT(sc);
1647 
1648 	/*
1649 	 * Stop Rx MAC engine.
1650 	 */
1651 	val = AE_READ_4(sc, AE_MAC_REG);
1652 	if ((val & AE_MAC_RX_EN) != 0) {
1653 		val &= ~AE_MAC_RX_EN;
1654 		AE_WRITE_4(sc, AE_MAC_REG, val);
1655 	}
1656 
1657 	/*
1658 	 * Stop Rx DMA engine.
1659 	 */
1660 	if (AE_READ_1(sc, AE_DMAWRITE_REG) == AE_DMAWRITE_EN)
1661 		AE_WRITE_1(sc, AE_DMAWRITE_REG, 0);
1662 
1663 	/*
1664 	 * Wait for IDLE state.
1665 	 */
1666 	for (i = 0; i < AE_IDLE_TIMEOUT; i--) {
1667 		val = AE_READ_4(sc, AE_IDLE_REG);
1668 		if ((val & (AE_IDLE_RXMAC | AE_IDLE_DMAWRITE)) == 0)
1669 			break;
1670 		DELAY(100);
1671 	}
1672 	if (i == AE_IDLE_TIMEOUT)
1673 		device_printf(sc->dev, "timed out while stopping Rx MAC.\n");
1674 }
1675 
1676 static void
1677 ae_stop_txmac(ae_softc_t *sc)
1678 {
1679 	uint32_t val;
1680 	int i;
1681 
1682 	AE_LOCK_ASSERT(sc);
1683 
1684 	/*
1685 	 * Stop Tx MAC engine.
1686 	 */
1687 	val = AE_READ_4(sc, AE_MAC_REG);
1688 	if ((val & AE_MAC_TX_EN) != 0) {
1689 		val &= ~AE_MAC_TX_EN;
1690 		AE_WRITE_4(sc, AE_MAC_REG, val);
1691 	}
1692 
1693 	/*
1694 	 * Stop Tx DMA engine.
1695 	 */
1696 	if (AE_READ_1(sc, AE_DMAREAD_REG) == AE_DMAREAD_EN)
1697 		AE_WRITE_1(sc, AE_DMAREAD_REG, 0);
1698 
1699 	/*
1700 	 * Wait for IDLE state.
1701 	 */
1702 	for (i = 0; i < AE_IDLE_TIMEOUT; i--) {
1703 		val = AE_READ_4(sc, AE_IDLE_REG);
1704 		if ((val & (AE_IDLE_TXMAC | AE_IDLE_DMAREAD)) == 0)
1705 			break;
1706 		DELAY(100);
1707 	}
1708 	if (i == AE_IDLE_TIMEOUT)
1709 		device_printf(sc->dev, "timed out while stopping Tx MAC.\n");
1710 }
1711 
1712 static void
1713 ae_mac_config(ae_softc_t *sc)
1714 {
1715 	struct mii_data *mii;
1716 	uint32_t val;
1717 
1718 	AE_LOCK_ASSERT(sc);
1719 
1720 	mii = device_get_softc(sc->miibus);
1721 	val = AE_READ_4(sc, AE_MAC_REG);
1722 	val &= ~AE_MAC_FULL_DUPLEX;
1723 	/* XXX disable AE_MAC_TX_FLOW_EN? */
1724 
1725 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
1726 		val |= AE_MAC_FULL_DUPLEX;
1727 
1728 	AE_WRITE_4(sc, AE_MAC_REG, val);
1729 }
1730 
1731 static int
1732 ae_intr(void *arg)
1733 {
1734 	ae_softc_t *sc;
1735 	uint32_t val;
1736 
1737 	sc = (ae_softc_t *)arg;
1738 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
1739 
1740 	val = AE_READ_4(sc, AE_ISR_REG);
1741 	if (val == 0 || (val & AE_IMR_DEFAULT) == 0)
1742 		return (FILTER_STRAY);
1743 
1744 	/* Disable interrupts. */
1745 	AE_WRITE_4(sc, AE_ISR_REG, AE_ISR_DISABLE);
1746 
1747 	/* Schedule interrupt processing. */
1748 	taskqueue_enqueue(sc->tq, &sc->int_task);
1749 
1750 	return (FILTER_HANDLED);
1751 }
1752 
1753 static void
1754 ae_int_task(void *arg, int pending)
1755 {
1756 	ae_softc_t *sc;
1757 	struct ifnet *ifp;
1758 	uint32_t val;
1759 
1760 	sc = (ae_softc_t *)arg;
1761 
1762 	AE_LOCK(sc);
1763 
1764 	ifp = sc->ifp;
1765 
1766 	val = AE_READ_4(sc, AE_ISR_REG);	/* Read interrupt status. */
1767 	if (val == 0) {
1768 		AE_UNLOCK(sc);
1769 		return;
1770 	}
1771 
1772 	/*
1773 	 * Clear interrupts and disable them.
1774 	 */
1775 	AE_WRITE_4(sc, AE_ISR_REG, val | AE_ISR_DISABLE);
1776 
1777 #ifdef AE_DEBUG
1778 	if_printf(ifp, "Interrupt received: 0x%08x\n", val);
1779 #endif
1780 
1781 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1782 		if ((val & (AE_ISR_DMAR_TIMEOUT | AE_ISR_DMAW_TIMEOUT |
1783 		    AE_ISR_PHY_LINKDOWN)) != 0) {
1784 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1785 			ae_init_locked(sc);
1786 			AE_UNLOCK(sc);
1787 			return;
1788 		}
1789 		if ((val & AE_ISR_TX_EVENT) != 0)
1790 			ae_tx_intr(sc);
1791 		if ((val & AE_ISR_RX_EVENT) != 0)
1792 			ae_rx_intr(sc);
1793 		/*
1794 		 * Re-enable interrupts.
1795 		 */
1796 		AE_WRITE_4(sc, AE_ISR_REG, 0);
1797 
1798 		if ((sc->flags & AE_FLAG_TXAVAIL) != 0) {
1799 			if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1800 				ae_start_locked(ifp);
1801 		}
1802 	}
1803 
1804 	AE_UNLOCK(sc);
1805 }
1806 
1807 static void
1808 ae_tx_intr(ae_softc_t *sc)
1809 {
1810 	struct ifnet *ifp;
1811 	ae_txd_t *txd;
1812 	ae_txs_t *txs;
1813 	uint16_t flags;
1814 
1815 	AE_LOCK_ASSERT(sc);
1816 
1817 	ifp = sc->ifp;
1818 
1819 #ifdef AE_DEBUG
1820 	if_printf(ifp, "Tx interrupt occuried.\n");
1821 #endif
1822 
1823 	/*
1824 	 * Syncronize DMA buffers.
1825 	 */
1826 	bus_dmamap_sync(sc->dma_txd_tag, sc->dma_txd_map,
1827 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1828 	bus_dmamap_sync(sc->dma_txs_tag, sc->dma_txs_map,
1829 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1830 
1831 	for (;;) {
1832 		txs = sc->txs_base + sc->txs_ack;
1833 		flags = le16toh(txs->flags);
1834 		if ((flags & AE_TXS_UPDATE) == 0)
1835 			break;
1836 		txs->flags = htole16(flags & ~AE_TXS_UPDATE);
1837 		/* Update stats. */
1838 		ae_update_stats_tx(flags, &sc->stats);
1839 
1840 		/*
1841 		 * Update TxS position.
1842 		 */
1843 		sc->txs_ack = (sc->txs_ack + 1) % AE_TXS_COUNT_DEFAULT;
1844 		sc->flags |= AE_FLAG_TXAVAIL;
1845 
1846 		txd = (ae_txd_t *)(sc->txd_base + sc->txd_ack);
1847 		if (txs->len != txd->len)
1848 			device_printf(sc->dev, "Size mismatch: TxS:%d TxD:%d\n",
1849 			    le16toh(txs->len), le16toh(txd->len));
1850 
1851 		/*
1852 		 * Move txd ack and align on 4-byte boundary.
1853 		 */
1854 		sc->txd_ack = ((sc->txd_ack + le16toh(txd->len) +
1855 		    sizeof(ae_txs_t) + 3) & ~3) % AE_TXD_BUFSIZE_DEFAULT;
1856 
1857 		if ((flags & AE_TXS_SUCCESS) != 0)
1858 			ifp->if_opackets++;
1859 		else
1860 			ifp->if_oerrors++;
1861 
1862 		sc->tx_inproc--;
1863 	}
1864 
1865 	if ((sc->flags & AE_FLAG_TXAVAIL) != 0)
1866 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1867 	if (sc->tx_inproc < 0) {
1868 		if_printf(ifp, "Received stray Tx interrupt(s).\n");
1869 		sc->tx_inproc = 0;
1870 	}
1871 
1872 	if (sc->tx_inproc == 0)
1873 		sc->wd_timer = 0;	/* Unarm watchdog. */
1874 
1875 	/*
1876 	 * Syncronize DMA buffers.
1877 	 */
1878 	bus_dmamap_sync(sc->dma_txd_tag, sc->dma_txd_map,
1879 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1880 	bus_dmamap_sync(sc->dma_txs_tag, sc->dma_txs_map,
1881 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1882 }
1883 
1884 static int
1885 ae_rxeof(ae_softc_t *sc, ae_rxd_t *rxd)
1886 {
1887 	struct ifnet *ifp;
1888 	struct mbuf *m;
1889 	unsigned int size;
1890 	uint16_t flags;
1891 
1892 	AE_LOCK_ASSERT(sc);
1893 
1894 	ifp = sc->ifp;
1895 	flags = le16toh(rxd->flags);
1896 
1897 #ifdef AE_DEBUG
1898 	if_printf(ifp, "Rx interrupt occuried.\n");
1899 #endif
1900 	size = le16toh(rxd->len) - ETHER_CRC_LEN;
1901 	if (size < (ETHER_MIN_LEN - ETHER_CRC_LEN - ETHER_VLAN_ENCAP_LEN)) {
1902 		if_printf(ifp, "Runt frame received.");
1903 		return (EIO);
1904 	}
1905 
1906 	m = m_devget(&rxd->data[0], size, ETHER_ALIGN, ifp, NULL);
1907 	if (m == NULL)
1908 		return (ENOBUFS);
1909 
1910 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
1911 	    (flags & AE_RXD_HAS_VLAN) != 0) {
1912 		m->m_pkthdr.ether_vtag = AE_RXD_VLAN(le16toh(rxd->vlan));
1913 		m->m_flags |= M_VLANTAG;
1914 	}
1915 
1916 	/*
1917 	 * Pass it through.
1918 	 */
1919 	AE_UNLOCK(sc);
1920 	(*ifp->if_input)(ifp, m);
1921 	AE_LOCK(sc);
1922 
1923 	return (0);
1924 }
1925 
1926 static void
1927 ae_rx_intr(ae_softc_t *sc)
1928 {
1929 	ae_rxd_t *rxd;
1930 	struct ifnet *ifp;
1931 	uint16_t flags;
1932 	int count, error;
1933 
1934 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL!", __LINE__));
1935 
1936 	AE_LOCK_ASSERT(sc);
1937 
1938 	ifp = sc->ifp;
1939 
1940 	/*
1941 	 * Syncronize DMA buffers.
1942 	 */
1943 	bus_dmamap_sync(sc->dma_rxd_tag, sc->dma_rxd_map,
1944 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1945 
1946 	for (count = 0;; count++) {
1947 		rxd = (ae_rxd_t *)(sc->rxd_base + sc->rxd_cur);
1948 		flags = le16toh(rxd->flags);
1949 		if ((flags & AE_RXD_UPDATE) == 0)
1950 			break;
1951 		rxd->flags = htole16(flags & ~AE_RXD_UPDATE);
1952 		/* Update stats. */
1953 		ae_update_stats_rx(flags, &sc->stats);
1954 
1955 		/*
1956 		 * Update position index.
1957 		 */
1958 		sc->rxd_cur = (sc->rxd_cur + 1) % AE_RXD_COUNT_DEFAULT;
1959 
1960 		if ((flags & AE_RXD_SUCCESS) == 0) {
1961 			ifp->if_ierrors++;
1962 			continue;
1963 		}
1964 		error = ae_rxeof(sc, rxd);
1965 		if (error != 0) {
1966 			ifp->if_ierrors++;
1967 			continue;
1968 		} else {
1969 			ifp->if_ipackets++;
1970 		}
1971 	}
1972 
1973 	if (count > 0) {
1974 		bus_dmamap_sync(sc->dma_rxd_tag, sc->dma_rxd_map,
1975 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1976 		/*
1977 		 * Update Rx index.
1978 		 */
1979 		AE_WRITE_2(sc, AE_MB_RXD_IDX_REG, sc->rxd_cur);
1980 	}
1981 }
1982 
1983 static void
1984 ae_watchdog(ae_softc_t *sc)
1985 {
1986 	struct ifnet *ifp;
1987 
1988 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL!", __LINE__));
1989 	AE_LOCK_ASSERT(sc);
1990 	ifp = sc->ifp;
1991 
1992 	if (sc->wd_timer == 0 || --sc->wd_timer != 0)
1993 		return;		/* Noting to do. */
1994 
1995 	if ((sc->flags & AE_FLAG_LINK) == 0)
1996 		if_printf(ifp, "watchdog timeout (missed link).\n");
1997 	else
1998 		if_printf(ifp, "watchdog timeout - resetting.\n");
1999 
2000 	ifp->if_oerrors++;
2001 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2002 	ae_init_locked(sc);
2003 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2004 		ae_start_locked(ifp);
2005 }
2006 
2007 static void
2008 ae_tick(void *arg)
2009 {
2010 	ae_softc_t *sc;
2011 	struct mii_data *mii;
2012 
2013 	sc = (ae_softc_t *)arg;
2014 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL!", __LINE__));
2015 	AE_LOCK_ASSERT(sc);
2016 
2017 	mii = device_get_softc(sc->miibus);
2018 	mii_tick(mii);
2019 	ae_watchdog(sc);	/* Watchdog check. */
2020 	callout_reset(&sc->tick_ch, hz, ae_tick, sc);
2021 }
2022 
2023 static void
2024 ae_rxvlan(ae_softc_t *sc)
2025 {
2026 	struct ifnet *ifp;
2027 	uint32_t val;
2028 
2029 	AE_LOCK_ASSERT(sc);
2030 	ifp = sc->ifp;
2031 	val = AE_READ_4(sc, AE_MAC_REG);
2032 	val &= ~AE_MAC_RMVLAN_EN;
2033 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2034 		val |= AE_MAC_RMVLAN_EN;
2035 	AE_WRITE_4(sc, AE_MAC_REG, val);
2036 }
2037 
2038 static void
2039 ae_rxfilter(ae_softc_t *sc)
2040 {
2041 	struct ifnet *ifp;
2042 	struct ifmultiaddr *ifma;
2043 	uint32_t crc;
2044 	uint32_t mchash[2];
2045 	uint32_t rxcfg;
2046 
2047 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL!", __LINE__));
2048 
2049 	AE_LOCK_ASSERT(sc);
2050 
2051 	ifp = sc->ifp;
2052 
2053 	rxcfg = AE_READ_4(sc, AE_MAC_REG);
2054 	rxcfg &= ~(AE_MAC_MCAST_EN | AE_MAC_BCAST_EN | AE_MAC_PROMISC_EN);
2055 
2056 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
2057 		rxcfg |= AE_MAC_BCAST_EN;
2058 	if ((ifp->if_flags & IFF_PROMISC) != 0)
2059 		rxcfg |= AE_MAC_PROMISC_EN;
2060 	if ((ifp->if_flags & IFF_ALLMULTI) != 0)
2061 		rxcfg |= AE_MAC_MCAST_EN;
2062 
2063 	/*
2064 	 * Wipe old settings.
2065 	 */
2066 	AE_WRITE_4(sc, AE_REG_MHT0, 0);
2067 	AE_WRITE_4(sc, AE_REG_MHT1, 0);
2068 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
2069 		AE_WRITE_4(sc, AE_REG_MHT0, 0xffffffff);
2070 		AE_WRITE_4(sc, AE_REG_MHT1, 0xffffffff);
2071 		AE_WRITE_4(sc, AE_MAC_REG, rxcfg);
2072 		return;
2073 	}
2074 
2075 	/*
2076 	 * Load multicast tables.
2077 	 */
2078 	bzero(mchash, sizeof(mchash));
2079 	if_maddr_rlock(ifp);
2080 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2081 		if (ifma->ifma_addr->sa_family != AF_LINK)
2082 			continue;
2083 		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
2084 			ifma->ifma_addr), ETHER_ADDR_LEN);
2085 		mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2086 	}
2087 	if_maddr_runlock(ifp);
2088 	AE_WRITE_4(sc, AE_REG_MHT0, mchash[0]);
2089 	AE_WRITE_4(sc, AE_REG_MHT1, mchash[1]);
2090 	AE_WRITE_4(sc, AE_MAC_REG, rxcfg);
2091 }
2092 
2093 static int
2094 ae_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2095 {
2096 	struct ae_softc *sc;
2097 	struct ifreq *ifr;
2098 	struct mii_data *mii;
2099 	int error, mask;
2100 
2101 	sc = ifp->if_softc;
2102 	ifr = (struct ifreq *)data;
2103 	error = 0;
2104 
2105 	switch (cmd) {
2106 	case SIOCSIFMTU:
2107 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU)
2108 			error = EINVAL;
2109 		else if (ifp->if_mtu != ifr->ifr_mtu) {
2110 			AE_LOCK(sc);
2111 			ifp->if_mtu = ifr->ifr_mtu;
2112 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2113 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2114 				ae_init_locked(sc);
2115 			}
2116 			AE_UNLOCK(sc);
2117 		}
2118 		break;
2119 	case SIOCSIFFLAGS:
2120 		AE_LOCK(sc);
2121 		if ((ifp->if_flags & IFF_UP) != 0) {
2122 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2123 				if (((ifp->if_flags ^ sc->if_flags)
2124 				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2125 					ae_rxfilter(sc);
2126 			} else {
2127 				if ((sc->flags & AE_FLAG_DETACH) == 0)
2128 					ae_init_locked(sc);
2129 			}
2130 		} else {
2131 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2132 				ae_stop(sc);
2133 		}
2134 		sc->if_flags = ifp->if_flags;
2135 		AE_UNLOCK(sc);
2136 		break;
2137 	case SIOCADDMULTI:
2138 	case SIOCDELMULTI:
2139 		AE_LOCK(sc);
2140 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2141 			ae_rxfilter(sc);
2142 		AE_UNLOCK(sc);
2143 		break;
2144 	case SIOCSIFMEDIA:
2145 	case SIOCGIFMEDIA:
2146 		mii = device_get_softc(sc->miibus);
2147 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
2148 		break;
2149 	case SIOCSIFCAP:
2150 		AE_LOCK(sc);
2151 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2152 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2153 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
2154 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2155 			ae_rxvlan(sc);
2156 		}
2157 		VLAN_CAPABILITIES(ifp);
2158 		AE_UNLOCK(sc);
2159 		break;
2160 	default:
2161 		error = ether_ioctl(ifp, cmd, data);
2162 		break;
2163 	}
2164 	return (error);
2165 }
2166 
2167 static void
2168 ae_stop(ae_softc_t *sc)
2169 {
2170 	struct ifnet *ifp;
2171 	int i;
2172 
2173 	AE_LOCK_ASSERT(sc);
2174 
2175 	ifp = sc->ifp;
2176 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2177 	sc->flags &= ~AE_FLAG_LINK;
2178 	sc->wd_timer = 0;	/* Cancel watchdog. */
2179 	callout_stop(&sc->tick_ch);
2180 
2181 	/*
2182 	 * Clear and disable interrupts.
2183 	 */
2184 	AE_WRITE_4(sc, AE_IMR_REG, 0);
2185 	AE_WRITE_4(sc, AE_ISR_REG, 0xffffffff);
2186 
2187 	/*
2188 	 * Stop Rx/Tx MACs.
2189 	 */
2190 	ae_stop_txmac(sc);
2191 	ae_stop_rxmac(sc);
2192 
2193 	/*
2194 	 * Stop DMA engines.
2195 	 */
2196 	AE_WRITE_1(sc, AE_DMAREAD_REG, ~AE_DMAREAD_EN);
2197 	AE_WRITE_1(sc, AE_DMAWRITE_REG, ~AE_DMAWRITE_EN);
2198 
2199 	/*
2200 	 * Wait for everything to enter idle state.
2201 	 */
2202 	for (i = 0; i < AE_IDLE_TIMEOUT; i++) {
2203 		if (AE_READ_4(sc, AE_IDLE_REG) == 0)
2204 			break;
2205 		DELAY(100);
2206 	}
2207 	if (i == AE_IDLE_TIMEOUT)
2208 		device_printf(sc->dev, "could not enter idle state in stop.\n");
2209 }
2210 
2211 static void
2212 ae_update_stats_tx(uint16_t flags, ae_stats_t *stats)
2213 {
2214 
2215 	if ((flags & AE_TXS_BCAST) != 0)
2216 		stats->tx_bcast++;
2217 	if ((flags & AE_TXS_MCAST) != 0)
2218 		stats->tx_mcast++;
2219 	if ((flags & AE_TXS_PAUSE) != 0)
2220 		stats->tx_pause++;
2221 	if ((flags & AE_TXS_CTRL) != 0)
2222 		stats->tx_ctrl++;
2223 	if ((flags & AE_TXS_DEFER) != 0)
2224 		stats->tx_defer++;
2225 	if ((flags & AE_TXS_EXCDEFER) != 0)
2226 		stats->tx_excdefer++;
2227 	if ((flags & AE_TXS_SINGLECOL) != 0)
2228 		stats->tx_singlecol++;
2229 	if ((flags & AE_TXS_MULTICOL) != 0)
2230 		stats->tx_multicol++;
2231 	if ((flags & AE_TXS_LATECOL) != 0)
2232 		stats->tx_latecol++;
2233 	if ((flags & AE_TXS_ABORTCOL) != 0)
2234 		stats->tx_abortcol++;
2235 	if ((flags & AE_TXS_UNDERRUN) != 0)
2236 		stats->tx_underrun++;
2237 }
2238 
2239 static void
2240 ae_update_stats_rx(uint16_t flags, ae_stats_t *stats)
2241 {
2242 
2243 	if ((flags & AE_RXD_BCAST) != 0)
2244 		stats->rx_bcast++;
2245 	if ((flags & AE_RXD_MCAST) != 0)
2246 		stats->rx_mcast++;
2247 	if ((flags & AE_RXD_PAUSE) != 0)
2248 		stats->rx_pause++;
2249 	if ((flags & AE_RXD_CTRL) != 0)
2250 		stats->rx_ctrl++;
2251 	if ((flags & AE_RXD_CRCERR) != 0)
2252 		stats->rx_crcerr++;
2253 	if ((flags & AE_RXD_CODEERR) != 0)
2254 		stats->rx_codeerr++;
2255 	if ((flags & AE_RXD_RUNT) != 0)
2256 		stats->rx_runt++;
2257 	if ((flags & AE_RXD_FRAG) != 0)
2258 		stats->rx_frag++;
2259 	if ((flags & AE_RXD_TRUNC) != 0)
2260 		stats->rx_trunc++;
2261 	if ((flags & AE_RXD_ALIGN) != 0)
2262 		stats->rx_align++;
2263 }
2264