1 /*- 2 * Copyright (c) 2008 Stanislav Sedov <stas@FreeBSD.org>. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 24 * 25 * Driver for Attansic Technology Corp. L2 FastEthernet adapter. 26 * 27 * This driver is heavily based on age(4) Attansic L1 driver by Pyun YongHyeon. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/systm.h> 35 #include <sys/bus.h> 36 #include <sys/endian.h> 37 #include <sys/kernel.h> 38 #include <sys/malloc.h> 39 #include <sys/mbuf.h> 40 #include <sys/rman.h> 41 #include <sys/module.h> 42 #include <sys/queue.h> 43 #include <sys/socket.h> 44 #include <sys/sockio.h> 45 #include <sys/sysctl.h> 46 #include <sys/taskqueue.h> 47 48 #include <net/bpf.h> 49 #include <net/if.h> 50 #include <net/if_arp.h> 51 #include <net/ethernet.h> 52 #include <net/if_dl.h> 53 #include <net/if_media.h> 54 #include <net/if_types.h> 55 #include <net/if_vlan_var.h> 56 57 #include <netinet/in.h> 58 #include <netinet/in_systm.h> 59 #include <netinet/ip.h> 60 #include <netinet/tcp.h> 61 62 #include <dev/mii/mii.h> 63 #include <dev/mii/miivar.h> 64 #include <dev/pci/pcireg.h> 65 #include <dev/pci/pcivar.h> 66 67 #include <machine/bus.h> 68 69 #include "miibus_if.h" 70 71 #include "if_aereg.h" 72 #include "if_aevar.h" 73 74 /* 75 * Devices supported by this driver. 76 */ 77 static struct ae_dev { 78 uint16_t vendorid; 79 uint16_t deviceid; 80 const char *name; 81 } ae_devs[] = { 82 { VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L2, 83 "Attansic Technology Corp, L2 FastEthernet" }, 84 }; 85 #define AE_DEVS_COUNT (sizeof(ae_devs) / sizeof(*ae_devs)) 86 87 static struct resource_spec ae_res_spec_mem[] = { 88 { SYS_RES_MEMORY, PCIR_BAR(0), RF_ACTIVE }, 89 { -1, 0, 0 } 90 }; 91 static struct resource_spec ae_res_spec_irq[] = { 92 { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE }, 93 { -1, 0, 0 } 94 }; 95 static struct resource_spec ae_res_spec_msi[] = { 96 { SYS_RES_IRQ, 1, RF_ACTIVE }, 97 { -1, 0, 0 } 98 }; 99 100 static int ae_probe(device_t dev); 101 static int ae_attach(device_t dev); 102 static void ae_pcie_init(ae_softc_t *sc); 103 static void ae_phy_reset(ae_softc_t *sc); 104 static void ae_phy_init(ae_softc_t *sc); 105 static int ae_reset(ae_softc_t *sc); 106 static void ae_init(void *arg); 107 static int ae_init_locked(ae_softc_t *sc); 108 static int ae_detach(device_t dev); 109 static int ae_miibus_readreg(device_t dev, int phy, int reg); 110 static int ae_miibus_writereg(device_t dev, int phy, int reg, int val); 111 static void ae_miibus_statchg(device_t dev); 112 static void ae_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr); 113 static int ae_mediachange(struct ifnet *ifp); 114 static void ae_retrieve_address(ae_softc_t *sc); 115 static void ae_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, 116 int error); 117 static int ae_alloc_rings(ae_softc_t *sc); 118 static void ae_dma_free(ae_softc_t *sc); 119 static int ae_shutdown(device_t dev); 120 static int ae_suspend(device_t dev); 121 static void ae_powersave_disable(ae_softc_t *sc); 122 static void ae_powersave_enable(ae_softc_t *sc); 123 static int ae_resume(device_t dev); 124 static unsigned int ae_tx_avail_size(ae_softc_t *sc); 125 static int ae_encap(ae_softc_t *sc, struct mbuf **m_head); 126 static void ae_start(struct ifnet *ifp); 127 static void ae_start_locked(struct ifnet *ifp); 128 static void ae_link_task(void *arg, int pending); 129 static void ae_stop_rxmac(ae_softc_t *sc); 130 static void ae_stop_txmac(ae_softc_t *sc); 131 static void ae_mac_config(ae_softc_t *sc); 132 static int ae_intr(void *arg); 133 static void ae_int_task(void *arg, int pending); 134 static void ae_tx_intr(ae_softc_t *sc); 135 static int ae_rxeof(ae_softc_t *sc, ae_rxd_t *rxd); 136 static void ae_rx_intr(ae_softc_t *sc); 137 static void ae_watchdog(ae_softc_t *sc); 138 static void ae_tick(void *arg); 139 static void ae_rxfilter(ae_softc_t *sc); 140 static void ae_rxvlan(ae_softc_t *sc); 141 static int ae_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data); 142 static void ae_stop(ae_softc_t *sc); 143 static int ae_check_eeprom_present(ae_softc_t *sc, int *vpdc); 144 static int ae_vpd_read_word(ae_softc_t *sc, int reg, uint32_t *word); 145 static int ae_get_vpd_eaddr(ae_softc_t *sc, uint32_t *eaddr); 146 static int ae_get_reg_eaddr(ae_softc_t *sc, uint32_t *eaddr); 147 static void ae_update_stats_rx(uint16_t flags, ae_stats_t *stats); 148 static void ae_update_stats_tx(uint16_t flags, ae_stats_t *stats); 149 static void ae_init_tunables(ae_softc_t *sc); 150 151 static device_method_t ae_methods[] = { 152 /* Device interface. */ 153 DEVMETHOD(device_probe, ae_probe), 154 DEVMETHOD(device_attach, ae_attach), 155 DEVMETHOD(device_detach, ae_detach), 156 DEVMETHOD(device_shutdown, ae_shutdown), 157 DEVMETHOD(device_suspend, ae_suspend), 158 DEVMETHOD(device_resume, ae_resume), 159 160 /* MII interface. */ 161 DEVMETHOD(miibus_readreg, ae_miibus_readreg), 162 DEVMETHOD(miibus_writereg, ae_miibus_writereg), 163 DEVMETHOD(miibus_statchg, ae_miibus_statchg), 164 165 { NULL, NULL } 166 }; 167 static driver_t ae_driver = { 168 "ae", 169 ae_methods, 170 sizeof(ae_softc_t) 171 }; 172 static devclass_t ae_devclass; 173 174 DRIVER_MODULE(ae, pci, ae_driver, ae_devclass, 0, 0); 175 DRIVER_MODULE(miibus, ae, miibus_driver, miibus_devclass, 0, 0); 176 MODULE_DEPEND(ae, pci, 1, 1, 1); 177 MODULE_DEPEND(ae, ether, 1, 1, 1); 178 MODULE_DEPEND(ae, miibus, 1, 1, 1); 179 180 /* 181 * Tunables. 182 */ 183 static int msi_disable = 0; 184 TUNABLE_INT("hw.ae.msi_disable", &msi_disable); 185 186 #define AE_READ_4(sc, reg) \ 187 bus_read_4((sc)->mem[0], (reg)) 188 #define AE_READ_2(sc, reg) \ 189 bus_read_2((sc)->mem[0], (reg)) 190 #define AE_READ_1(sc, reg) \ 191 bus_read_1((sc)->mem[0], (reg)) 192 #define AE_WRITE_4(sc, reg, val) \ 193 bus_write_4((sc)->mem[0], (reg), (val)) 194 #define AE_WRITE_2(sc, reg, val) \ 195 bus_write_2((sc)->mem[0], (reg), (val)) 196 #define AE_WRITE_1(sc, reg, val) \ 197 bus_write_1((sc)->mem[0], (reg), (val)) 198 #define AE_PHY_READ(sc, reg) \ 199 ae_miibus_readreg(sc->dev, 0, reg) 200 #define AE_PHY_WRITE(sc, reg, val) \ 201 ae_miibus_writereg(sc->dev, 0, reg, val) 202 #define AE_CHECK_EADDR_VALID(eaddr) \ 203 ((eaddr[0] == 0 && eaddr[1] == 0) || \ 204 (eaddr[0] == 0xffffffff && eaddr[1] == 0xffff)) 205 #define AE_RXD_VLAN(vtag) \ 206 (((vtag) >> 4) | (((vtag) & 0x07) << 13) | (((vtag) & 0x08) << 9)) 207 #define AE_TXD_VLAN(vtag) \ 208 (((vtag) << 4) | (((vtag) >> 13) & 0x07) | (((vtag) >> 9) & 0x08)) 209 210 static int 211 ae_probe(device_t dev) 212 { 213 uint16_t deviceid, vendorid; 214 int i; 215 216 vendorid = pci_get_vendor(dev); 217 deviceid = pci_get_device(dev); 218 219 /* 220 * Search through the list of supported devs for matching one. 221 */ 222 for (i = 0; i < AE_DEVS_COUNT; i++) { 223 if (vendorid == ae_devs[i].vendorid && 224 deviceid == ae_devs[i].deviceid) { 225 device_set_desc(dev, ae_devs[i].name); 226 return (BUS_PROBE_DEFAULT); 227 } 228 } 229 return (ENXIO); 230 } 231 232 static int 233 ae_attach(device_t dev) 234 { 235 ae_softc_t *sc; 236 struct ifnet *ifp; 237 uint8_t chiprev; 238 uint32_t pcirev; 239 int nmsi, pmc; 240 int error; 241 242 sc = device_get_softc(dev); /* Automatically allocated and zeroed 243 on attach. */ 244 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__)); 245 sc->dev = dev; 246 247 /* 248 * Initialize mutexes and tasks. 249 */ 250 mtx_init(&sc->mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF); 251 callout_init_mtx(&sc->tick_ch, &sc->mtx, 0); 252 TASK_INIT(&sc->int_task, 0, ae_int_task, sc); 253 TASK_INIT(&sc->link_task, 0, ae_link_task, sc); 254 255 pci_enable_busmaster(dev); /* Enable bus mastering. */ 256 257 sc->spec_mem = ae_res_spec_mem; 258 259 /* 260 * Allocate memory-mapped registers. 261 */ 262 error = bus_alloc_resources(dev, sc->spec_mem, sc->mem); 263 if (error != 0) { 264 device_printf(dev, "could not allocate memory resources.\n"); 265 sc->spec_mem = NULL; 266 goto fail; 267 } 268 269 /* 270 * Retrieve PCI and chip revisions. 271 */ 272 pcirev = pci_get_revid(dev); 273 chiprev = (AE_READ_4(sc, AE_MASTER_REG) >> AE_MASTER_REVNUM_SHIFT) & 274 AE_MASTER_REVNUM_MASK; 275 if (bootverbose) { 276 device_printf(dev, "pci device revision: %#04x\n", pcirev); 277 device_printf(dev, "chip id: %#02x\n", chiprev); 278 } 279 nmsi = pci_msi_count(dev); 280 if (bootverbose) 281 device_printf(dev, "MSI count: %d.\n", nmsi); 282 283 /* 284 * Allocate interrupt resources. 285 */ 286 if (msi_disable == 0 && nmsi == 1) { 287 error = pci_alloc_msi(dev, &nmsi); 288 if (error == 0) { 289 device_printf(dev, "Using MSI messages.\n"); 290 sc->spec_irq = ae_res_spec_msi; 291 error = bus_alloc_resources(dev, sc->spec_irq, sc->irq); 292 if (error != 0) { 293 device_printf(dev, "MSI allocation failed.\n"); 294 sc->spec_irq = NULL; 295 pci_release_msi(dev); 296 } else { 297 sc->flags |= AE_FLAG_MSI; 298 } 299 } 300 } 301 if (sc->spec_irq == NULL) { 302 sc->spec_irq = ae_res_spec_irq; 303 error = bus_alloc_resources(dev, sc->spec_irq, sc->irq); 304 if (error != 0) { 305 device_printf(dev, "could not allocate IRQ resources.\n"); 306 sc->spec_irq = NULL; 307 goto fail; 308 } 309 } 310 311 ae_init_tunables(sc); 312 313 ae_phy_reset(sc); /* Reset PHY. */ 314 error = ae_reset(sc); /* Reset the controller itself. */ 315 if (error != 0) 316 goto fail; 317 318 ae_pcie_init(sc); 319 320 ae_retrieve_address(sc); /* Load MAC address. */ 321 322 error = ae_alloc_rings(sc); /* Allocate ring buffers. */ 323 if (error != 0) 324 goto fail; 325 326 ifp = sc->ifp = if_alloc(IFT_ETHER); 327 if (ifp == NULL) { 328 device_printf(dev, "could not allocate ifnet structure.\n"); 329 error = ENXIO; 330 goto fail; 331 } 332 333 ifp->if_softc = sc; 334 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 335 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 336 ifp->if_ioctl = ae_ioctl; 337 ifp->if_start = ae_start; 338 ifp->if_init = ae_init; 339 ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING; 340 ifp->if_hwassist = 0; 341 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 342 IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen); 343 IFQ_SET_READY(&ifp->if_snd); 344 if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) { 345 ifp->if_capabilities |= IFCAP_WOL_MAGIC; 346 sc->flags |= AE_FLAG_PMG; 347 } 348 ifp->if_capenable = ifp->if_capabilities; 349 350 /* 351 * Configure and attach MII bus. 352 */ 353 error = mii_attach(dev, &sc->miibus, ifp, ae_mediachange, 354 ae_mediastatus, BMSR_DEFCAPMASK, AE_PHYADDR_DEFAULT, 355 MII_OFFSET_ANY, 0); 356 if (error != 0) { 357 device_printf(dev, "attaching PHYs failed\n"); 358 goto fail; 359 } 360 361 ether_ifattach(ifp, sc->eaddr); 362 /* Tell the upper layer(s) we support long frames. */ 363 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); 364 365 /* 366 * Create and run all helper tasks. 367 */ 368 sc->tq = taskqueue_create_fast("ae_taskq", M_WAITOK, 369 taskqueue_thread_enqueue, &sc->tq); 370 if (sc->tq == NULL) { 371 device_printf(dev, "could not create taskqueue.\n"); 372 ether_ifdetach(ifp); 373 error = ENXIO; 374 goto fail; 375 } 376 taskqueue_start_threads(&sc->tq, 1, PI_NET, "%s taskq", 377 device_get_nameunit(sc->dev)); 378 379 /* 380 * Configure interrupt handlers. 381 */ 382 error = bus_setup_intr(dev, sc->irq[0], INTR_TYPE_NET | INTR_MPSAFE, 383 ae_intr, NULL, sc, &sc->intrhand); 384 if (error != 0) { 385 device_printf(dev, "could not set up interrupt handler.\n"); 386 taskqueue_free(sc->tq); 387 sc->tq = NULL; 388 ether_ifdetach(ifp); 389 goto fail; 390 } 391 392 fail: 393 if (error != 0) 394 ae_detach(dev); 395 396 return (error); 397 } 398 399 #define AE_SYSCTL(stx, parent, name, desc, ptr) \ 400 SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, name, CTLFLAG_RD, ptr, 0, desc) 401 402 static void 403 ae_init_tunables(ae_softc_t *sc) 404 { 405 struct sysctl_ctx_list *ctx; 406 struct sysctl_oid *root, *stats, *stats_rx, *stats_tx; 407 struct ae_stats *ae_stats; 408 409 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__)); 410 ae_stats = &sc->stats; 411 412 ctx = device_get_sysctl_ctx(sc->dev); 413 root = device_get_sysctl_tree(sc->dev); 414 stats = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(root), OID_AUTO, "stats", 415 CTLFLAG_RD, NULL, "ae statistics"); 416 417 /* 418 * Receiver statistcics. 419 */ 420 stats_rx = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(stats), OID_AUTO, "rx", 421 CTLFLAG_RD, NULL, "Rx MAC statistics"); 422 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "bcast", 423 "broadcast frames", &ae_stats->rx_bcast); 424 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "mcast", 425 "multicast frames", &ae_stats->rx_mcast); 426 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "pause", 427 "PAUSE frames", &ae_stats->rx_pause); 428 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "control", 429 "control frames", &ae_stats->rx_ctrl); 430 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "crc_errors", 431 "frames with CRC errors", &ae_stats->rx_crcerr); 432 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "code_errors", 433 "frames with invalid opcode", &ae_stats->rx_codeerr); 434 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "runt", 435 "runt frames", &ae_stats->rx_runt); 436 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "frag", 437 "fragmented frames", &ae_stats->rx_frag); 438 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "align_errors", 439 "frames with alignment errors", &ae_stats->rx_align); 440 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "truncated", 441 "frames truncated due to Rx FIFO inderrun", &ae_stats->rx_trunc); 442 443 /* 444 * Receiver statistcics. 445 */ 446 stats_tx = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(stats), OID_AUTO, "tx", 447 CTLFLAG_RD, NULL, "Tx MAC statistics"); 448 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "bcast", 449 "broadcast frames", &ae_stats->tx_bcast); 450 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "mcast", 451 "multicast frames", &ae_stats->tx_mcast); 452 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "pause", 453 "PAUSE frames", &ae_stats->tx_pause); 454 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "control", 455 "control frames", &ae_stats->tx_ctrl); 456 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "defers", 457 "deferrals occuried", &ae_stats->tx_defer); 458 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "exc_defers", 459 "excessive deferrals occuried", &ae_stats->tx_excdefer); 460 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "singlecols", 461 "single collisions occuried", &ae_stats->tx_singlecol); 462 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "multicols", 463 "multiple collisions occuried", &ae_stats->tx_multicol); 464 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "latecols", 465 "late collisions occuried", &ae_stats->tx_latecol); 466 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "aborts", 467 "transmit aborts due collisions", &ae_stats->tx_abortcol); 468 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "underruns", 469 "Tx FIFO underruns", &ae_stats->tx_underrun); 470 } 471 472 static void 473 ae_pcie_init(ae_softc_t *sc) 474 { 475 476 AE_WRITE_4(sc, AE_PCIE_LTSSM_TESTMODE_REG, AE_PCIE_LTSSM_TESTMODE_DEFAULT); 477 AE_WRITE_4(sc, AE_PCIE_DLL_TX_CTRL_REG, AE_PCIE_DLL_TX_CTRL_DEFAULT); 478 } 479 480 static void 481 ae_phy_reset(ae_softc_t *sc) 482 { 483 484 AE_WRITE_4(sc, AE_PHY_ENABLE_REG, AE_PHY_ENABLE); 485 DELAY(1000); /* XXX: pause(9) ? */ 486 } 487 488 static int 489 ae_reset(ae_softc_t *sc) 490 { 491 int i; 492 493 /* 494 * Issue a soft reset. 495 */ 496 AE_WRITE_4(sc, AE_MASTER_REG, AE_MASTER_SOFT_RESET); 497 bus_barrier(sc->mem[0], AE_MASTER_REG, 4, 498 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); 499 500 /* 501 * Wait for reset to complete. 502 */ 503 for (i = 0; i < AE_RESET_TIMEOUT; i++) { 504 if ((AE_READ_4(sc, AE_MASTER_REG) & AE_MASTER_SOFT_RESET) == 0) 505 break; 506 DELAY(10); 507 } 508 if (i == AE_RESET_TIMEOUT) { 509 device_printf(sc->dev, "reset timeout.\n"); 510 return (ENXIO); 511 } 512 513 /* 514 * Wait for everything to enter idle state. 515 */ 516 for (i = 0; i < AE_IDLE_TIMEOUT; i++) { 517 if (AE_READ_4(sc, AE_IDLE_REG) == 0) 518 break; 519 DELAY(100); 520 } 521 if (i == AE_IDLE_TIMEOUT) { 522 device_printf(sc->dev, "could not enter idle state.\n"); 523 return (ENXIO); 524 } 525 return (0); 526 } 527 528 static void 529 ae_init(void *arg) 530 { 531 ae_softc_t *sc; 532 533 sc = (ae_softc_t *)arg; 534 AE_LOCK(sc); 535 ae_init_locked(sc); 536 AE_UNLOCK(sc); 537 } 538 539 static void 540 ae_phy_init(ae_softc_t *sc) 541 { 542 543 /* 544 * Enable link status change interrupt. 545 * XXX magic numbers. 546 */ 547 #ifdef notyet 548 AE_PHY_WRITE(sc, 18, 0xc00); 549 #endif 550 } 551 552 static int 553 ae_init_locked(ae_softc_t *sc) 554 { 555 struct ifnet *ifp; 556 struct mii_data *mii; 557 uint8_t eaddr[ETHER_ADDR_LEN]; 558 uint32_t val; 559 bus_addr_t addr; 560 561 AE_LOCK_ASSERT(sc); 562 563 ifp = sc->ifp; 564 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 565 return (0); 566 mii = device_get_softc(sc->miibus); 567 568 ae_stop(sc); 569 ae_reset(sc); 570 ae_pcie_init(sc); /* Initialize PCIE stuff. */ 571 ae_phy_init(sc); 572 ae_powersave_disable(sc); 573 574 /* 575 * Clear and disable interrupts. 576 */ 577 AE_WRITE_4(sc, AE_ISR_REG, 0xffffffff); 578 579 /* 580 * Set the MAC address. 581 */ 582 bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN); 583 val = eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]; 584 AE_WRITE_4(sc, AE_EADDR0_REG, val); 585 val = eaddr[0] << 8 | eaddr[1]; 586 AE_WRITE_4(sc, AE_EADDR1_REG, val); 587 588 bzero(sc->rxd_base_dma, AE_RXD_COUNT_DEFAULT * 1536 + AE_RXD_PADDING); 589 bzero(sc->txd_base, AE_TXD_BUFSIZE_DEFAULT); 590 bzero(sc->txs_base, AE_TXS_COUNT_DEFAULT * 4); 591 /* 592 * Set ring buffers base addresses. 593 */ 594 addr = sc->dma_rxd_busaddr; 595 AE_WRITE_4(sc, AE_DESC_ADDR_HI_REG, BUS_ADDR_HI(addr)); 596 AE_WRITE_4(sc, AE_RXD_ADDR_LO_REG, BUS_ADDR_LO(addr)); 597 addr = sc->dma_txd_busaddr; 598 AE_WRITE_4(sc, AE_TXD_ADDR_LO_REG, BUS_ADDR_LO(addr)); 599 addr = sc->dma_txs_busaddr; 600 AE_WRITE_4(sc, AE_TXS_ADDR_LO_REG, BUS_ADDR_LO(addr)); 601 602 /* 603 * Configure ring buffers sizes. 604 */ 605 AE_WRITE_2(sc, AE_RXD_COUNT_REG, AE_RXD_COUNT_DEFAULT); 606 AE_WRITE_2(sc, AE_TXD_BUFSIZE_REG, AE_TXD_BUFSIZE_DEFAULT / 4); 607 AE_WRITE_2(sc, AE_TXS_COUNT_REG, AE_TXS_COUNT_DEFAULT); 608 609 /* 610 * Configure interframe gap parameters. 611 */ 612 val = ((AE_IFG_TXIPG_DEFAULT << AE_IFG_TXIPG_SHIFT) & 613 AE_IFG_TXIPG_MASK) | 614 ((AE_IFG_RXIPG_DEFAULT << AE_IFG_RXIPG_SHIFT) & 615 AE_IFG_RXIPG_MASK) | 616 ((AE_IFG_IPGR1_DEFAULT << AE_IFG_IPGR1_SHIFT) & 617 AE_IFG_IPGR1_MASK) | 618 ((AE_IFG_IPGR2_DEFAULT << AE_IFG_IPGR2_SHIFT) & 619 AE_IFG_IPGR2_MASK); 620 AE_WRITE_4(sc, AE_IFG_REG, val); 621 622 /* 623 * Configure half-duplex operation. 624 */ 625 val = ((AE_HDPX_LCOL_DEFAULT << AE_HDPX_LCOL_SHIFT) & 626 AE_HDPX_LCOL_MASK) | 627 ((AE_HDPX_RETRY_DEFAULT << AE_HDPX_RETRY_SHIFT) & 628 AE_HDPX_RETRY_MASK) | 629 ((AE_HDPX_ABEBT_DEFAULT << AE_HDPX_ABEBT_SHIFT) & 630 AE_HDPX_ABEBT_MASK) | 631 ((AE_HDPX_JAMIPG_DEFAULT << AE_HDPX_JAMIPG_SHIFT) & 632 AE_HDPX_JAMIPG_MASK) | AE_HDPX_EXC_EN; 633 AE_WRITE_4(sc, AE_HDPX_REG, val); 634 635 /* 636 * Configure interrupt moderate timer. 637 */ 638 AE_WRITE_2(sc, AE_IMT_REG, AE_IMT_DEFAULT); 639 val = AE_READ_4(sc, AE_MASTER_REG); 640 val |= AE_MASTER_IMT_EN; 641 AE_WRITE_4(sc, AE_MASTER_REG, val); 642 643 /* 644 * Configure interrupt clearing timer. 645 */ 646 AE_WRITE_2(sc, AE_ICT_REG, AE_ICT_DEFAULT); 647 648 /* 649 * Configure MTU. 650 */ 651 val = ifp->if_mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + 652 ETHER_CRC_LEN; 653 AE_WRITE_2(sc, AE_MTU_REG, val); 654 655 /* 656 * Configure cut-through threshold. 657 */ 658 AE_WRITE_4(sc, AE_CUT_THRESH_REG, AE_CUT_THRESH_DEFAULT); 659 660 /* 661 * Configure flow control. 662 */ 663 AE_WRITE_2(sc, AE_FLOW_THRESH_HI_REG, (AE_RXD_COUNT_DEFAULT / 8) * 7); 664 AE_WRITE_2(sc, AE_FLOW_THRESH_LO_REG, (AE_RXD_COUNT_MIN / 8) > 665 (AE_RXD_COUNT_DEFAULT / 12) ? (AE_RXD_COUNT_MIN / 8) : 666 (AE_RXD_COUNT_DEFAULT / 12)); 667 668 /* 669 * Init mailboxes. 670 */ 671 sc->txd_cur = sc->rxd_cur = 0; 672 sc->txs_ack = sc->txd_ack = 0; 673 sc->rxd_cur = 0; 674 AE_WRITE_2(sc, AE_MB_TXD_IDX_REG, sc->txd_cur); 675 AE_WRITE_2(sc, AE_MB_RXD_IDX_REG, sc->rxd_cur); 676 677 sc->tx_inproc = 0; /* Number of packets the chip processes now. */ 678 sc->flags |= AE_FLAG_TXAVAIL; /* Free Tx's available. */ 679 680 /* 681 * Enable DMA. 682 */ 683 AE_WRITE_1(sc, AE_DMAREAD_REG, AE_DMAREAD_EN); 684 AE_WRITE_1(sc, AE_DMAWRITE_REG, AE_DMAWRITE_EN); 685 686 /* 687 * Check if everything is OK. 688 */ 689 val = AE_READ_4(sc, AE_ISR_REG); 690 if ((val & AE_ISR_PHY_LINKDOWN) != 0) { 691 device_printf(sc->dev, "Initialization failed.\n"); 692 return (ENXIO); 693 } 694 695 /* 696 * Clear interrupt status. 697 */ 698 AE_WRITE_4(sc, AE_ISR_REG, 0x3fffffff); 699 AE_WRITE_4(sc, AE_ISR_REG, 0x0); 700 701 /* 702 * Enable interrupts. 703 */ 704 val = AE_READ_4(sc, AE_MASTER_REG); 705 AE_WRITE_4(sc, AE_MASTER_REG, val | AE_MASTER_MANUAL_INT); 706 AE_WRITE_4(sc, AE_IMR_REG, AE_IMR_DEFAULT); 707 708 /* 709 * Disable WOL. 710 */ 711 AE_WRITE_4(sc, AE_WOL_REG, 0); 712 713 /* 714 * Configure MAC. 715 */ 716 val = AE_MAC_TX_CRC_EN | AE_MAC_TX_AUTOPAD | 717 AE_MAC_FULL_DUPLEX | AE_MAC_CLK_PHY | 718 AE_MAC_TX_FLOW_EN | AE_MAC_RX_FLOW_EN | 719 ((AE_HALFBUF_DEFAULT << AE_HALFBUF_SHIFT) & AE_HALFBUF_MASK) | 720 ((AE_MAC_PREAMBLE_DEFAULT << AE_MAC_PREAMBLE_SHIFT) & 721 AE_MAC_PREAMBLE_MASK); 722 AE_WRITE_4(sc, AE_MAC_REG, val); 723 724 /* 725 * Configure Rx MAC. 726 */ 727 ae_rxfilter(sc); 728 ae_rxvlan(sc); 729 730 /* 731 * Enable Tx/Rx. 732 */ 733 val = AE_READ_4(sc, AE_MAC_REG); 734 AE_WRITE_4(sc, AE_MAC_REG, val | AE_MAC_TX_EN | AE_MAC_RX_EN); 735 736 sc->flags &= ~AE_FLAG_LINK; 737 mii_mediachg(mii); /* Switch to the current media. */ 738 739 callout_reset(&sc->tick_ch, hz, ae_tick, sc); 740 741 ifp->if_drv_flags |= IFF_DRV_RUNNING; 742 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 743 744 #ifdef AE_DEBUG 745 device_printf(sc->dev, "Initialization complete.\n"); 746 #endif 747 748 return (0); 749 } 750 751 static int 752 ae_detach(device_t dev) 753 { 754 struct ae_softc *sc; 755 struct ifnet *ifp; 756 757 sc = device_get_softc(dev); 758 KASSERT(sc != NULL, ("[ae: %d]: sc is NULL", __LINE__)); 759 ifp = sc->ifp; 760 if (device_is_attached(dev)) { 761 AE_LOCK(sc); 762 sc->flags |= AE_FLAG_DETACH; 763 ae_stop(sc); 764 AE_UNLOCK(sc); 765 callout_drain(&sc->tick_ch); 766 taskqueue_drain(sc->tq, &sc->int_task); 767 taskqueue_drain(taskqueue_swi, &sc->link_task); 768 ether_ifdetach(ifp); 769 } 770 if (sc->tq != NULL) { 771 taskqueue_drain(sc->tq, &sc->int_task); 772 taskqueue_free(sc->tq); 773 sc->tq = NULL; 774 } 775 if (sc->miibus != NULL) { 776 device_delete_child(dev, sc->miibus); 777 sc->miibus = NULL; 778 } 779 bus_generic_detach(sc->dev); 780 ae_dma_free(sc); 781 if (sc->intrhand != NULL) { 782 bus_teardown_intr(dev, sc->irq[0], sc->intrhand); 783 sc->intrhand = NULL; 784 } 785 if (ifp != NULL) { 786 if_free(ifp); 787 sc->ifp = NULL; 788 } 789 if (sc->spec_irq != NULL) 790 bus_release_resources(dev, sc->spec_irq, sc->irq); 791 if (sc->spec_mem != NULL) 792 bus_release_resources(dev, sc->spec_mem, sc->mem); 793 if ((sc->flags & AE_FLAG_MSI) != 0) 794 pci_release_msi(dev); 795 mtx_destroy(&sc->mtx); 796 797 return (0); 798 } 799 800 static int 801 ae_miibus_readreg(device_t dev, int phy, int reg) 802 { 803 ae_softc_t *sc; 804 uint32_t val; 805 int i; 806 807 sc = device_get_softc(dev); 808 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__)); 809 810 /* 811 * Locking is done in upper layers. 812 */ 813 814 val = ((reg << AE_MDIO_REGADDR_SHIFT) & AE_MDIO_REGADDR_MASK) | 815 AE_MDIO_START | AE_MDIO_READ | AE_MDIO_SUP_PREAMBLE | 816 ((AE_MDIO_CLK_25_4 << AE_MDIO_CLK_SHIFT) & AE_MDIO_CLK_MASK); 817 AE_WRITE_4(sc, AE_MDIO_REG, val); 818 819 /* 820 * Wait for operation to complete. 821 */ 822 for (i = 0; i < AE_MDIO_TIMEOUT; i++) { 823 DELAY(2); 824 val = AE_READ_4(sc, AE_MDIO_REG); 825 if ((val & (AE_MDIO_START | AE_MDIO_BUSY)) == 0) 826 break; 827 } 828 if (i == AE_MDIO_TIMEOUT) { 829 device_printf(sc->dev, "phy read timeout: %d.\n", reg); 830 return (0); 831 } 832 return ((val << AE_MDIO_DATA_SHIFT) & AE_MDIO_DATA_MASK); 833 } 834 835 static int 836 ae_miibus_writereg(device_t dev, int phy, int reg, int val) 837 { 838 ae_softc_t *sc; 839 uint32_t aereg; 840 int i; 841 842 sc = device_get_softc(dev); 843 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__)); 844 845 /* 846 * Locking is done in upper layers. 847 */ 848 849 aereg = ((reg << AE_MDIO_REGADDR_SHIFT) & AE_MDIO_REGADDR_MASK) | 850 AE_MDIO_START | AE_MDIO_SUP_PREAMBLE | 851 ((AE_MDIO_CLK_25_4 << AE_MDIO_CLK_SHIFT) & AE_MDIO_CLK_MASK) | 852 ((val << AE_MDIO_DATA_SHIFT) & AE_MDIO_DATA_MASK); 853 AE_WRITE_4(sc, AE_MDIO_REG, aereg); 854 855 /* 856 * Wait for operation to complete. 857 */ 858 for (i = 0; i < AE_MDIO_TIMEOUT; i++) { 859 DELAY(2); 860 aereg = AE_READ_4(sc, AE_MDIO_REG); 861 if ((aereg & (AE_MDIO_START | AE_MDIO_BUSY)) == 0) 862 break; 863 } 864 if (i == AE_MDIO_TIMEOUT) { 865 device_printf(sc->dev, "phy write timeout: %d.\n", reg); 866 } 867 return (0); 868 } 869 870 static void 871 ae_miibus_statchg(device_t dev) 872 { 873 ae_softc_t *sc; 874 875 sc = device_get_softc(dev); 876 taskqueue_enqueue(taskqueue_swi, &sc->link_task); 877 } 878 879 static void 880 ae_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) 881 { 882 ae_softc_t *sc; 883 struct mii_data *mii; 884 885 sc = ifp->if_softc; 886 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__)); 887 888 AE_LOCK(sc); 889 mii = device_get_softc(sc->miibus); 890 mii_pollstat(mii); 891 ifmr->ifm_status = mii->mii_media_status; 892 ifmr->ifm_active = mii->mii_media_active; 893 AE_UNLOCK(sc); 894 } 895 896 static int 897 ae_mediachange(struct ifnet *ifp) 898 { 899 ae_softc_t *sc; 900 struct mii_data *mii; 901 struct mii_softc *mii_sc; 902 int error; 903 904 /* XXX: check IFF_UP ?? */ 905 sc = ifp->if_softc; 906 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__)); 907 AE_LOCK(sc); 908 mii = device_get_softc(sc->miibus); 909 LIST_FOREACH(mii_sc, &mii->mii_phys, mii_list) 910 PHY_RESET(mii_sc); 911 error = mii_mediachg(mii); 912 AE_UNLOCK(sc); 913 914 return (error); 915 } 916 917 static int 918 ae_check_eeprom_present(ae_softc_t *sc, int *vpdc) 919 { 920 int error; 921 uint32_t val; 922 923 KASSERT(vpdc != NULL, ("[ae, %d]: vpdc is NULL!\n", __LINE__)); 924 925 /* 926 * Not sure why, but Linux does this. 927 */ 928 val = AE_READ_4(sc, AE_SPICTL_REG); 929 if ((val & AE_SPICTL_VPD_EN) != 0) { 930 val &= ~AE_SPICTL_VPD_EN; 931 AE_WRITE_4(sc, AE_SPICTL_REG, val); 932 } 933 error = pci_find_cap(sc->dev, PCIY_VPD, vpdc); 934 return (error); 935 } 936 937 static int 938 ae_vpd_read_word(ae_softc_t *sc, int reg, uint32_t *word) 939 { 940 uint32_t val; 941 int i; 942 943 AE_WRITE_4(sc, AE_VPD_DATA_REG, 0); /* Clear register value. */ 944 945 /* 946 * VPD registers start at offset 0x100. Read them. 947 */ 948 val = 0x100 + reg * 4; 949 AE_WRITE_4(sc, AE_VPD_CAP_REG, (val << AE_VPD_CAP_ADDR_SHIFT) & 950 AE_VPD_CAP_ADDR_MASK); 951 for (i = 0; i < AE_VPD_TIMEOUT; i++) { 952 DELAY(2000); 953 val = AE_READ_4(sc, AE_VPD_CAP_REG); 954 if ((val & AE_VPD_CAP_DONE) != 0) 955 break; 956 } 957 if (i == AE_VPD_TIMEOUT) { 958 device_printf(sc->dev, "timeout reading VPD register %d.\n", 959 reg); 960 return (ETIMEDOUT); 961 } 962 *word = AE_READ_4(sc, AE_VPD_DATA_REG); 963 return (0); 964 } 965 966 static int 967 ae_get_vpd_eaddr(ae_softc_t *sc, uint32_t *eaddr) 968 { 969 uint32_t word, reg, val; 970 int error; 971 int found; 972 int vpdc; 973 int i; 974 975 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__)); 976 KASSERT(eaddr != NULL, ("[ae, %d]: eaddr is NULL", __LINE__)); 977 978 /* 979 * Check for EEPROM. 980 */ 981 error = ae_check_eeprom_present(sc, &vpdc); 982 if (error != 0) 983 return (error); 984 985 /* 986 * Read the VPD configuration space. 987 * Each register is prefixed with signature, 988 * so we can check if it is valid. 989 */ 990 for (i = 0, found = 0; i < AE_VPD_NREGS; i++) { 991 error = ae_vpd_read_word(sc, i, &word); 992 if (error != 0) 993 break; 994 995 /* 996 * Check signature. 997 */ 998 if ((word & AE_VPD_SIG_MASK) != AE_VPD_SIG) 999 break; 1000 reg = word >> AE_VPD_REG_SHIFT; 1001 i++; /* Move to the next word. */ 1002 1003 if (reg != AE_EADDR0_REG && reg != AE_EADDR1_REG) 1004 continue; 1005 1006 error = ae_vpd_read_word(sc, i, &val); 1007 if (error != 0) 1008 break; 1009 if (reg == AE_EADDR0_REG) 1010 eaddr[0] = val; 1011 else 1012 eaddr[1] = val; 1013 found++; 1014 } 1015 1016 if (found < 2) 1017 return (ENOENT); 1018 1019 eaddr[1] &= 0xffff; /* Only last 2 bytes are used. */ 1020 if (AE_CHECK_EADDR_VALID(eaddr) != 0) { 1021 if (bootverbose) 1022 device_printf(sc->dev, 1023 "VPD ethernet address registers are invalid.\n"); 1024 return (EINVAL); 1025 } 1026 return (0); 1027 } 1028 1029 static int 1030 ae_get_reg_eaddr(ae_softc_t *sc, uint32_t *eaddr) 1031 { 1032 1033 /* 1034 * BIOS is supposed to set this. 1035 */ 1036 eaddr[0] = AE_READ_4(sc, AE_EADDR0_REG); 1037 eaddr[1] = AE_READ_4(sc, AE_EADDR1_REG); 1038 eaddr[1] &= 0xffff; /* Only last 2 bytes are used. */ 1039 1040 if (AE_CHECK_EADDR_VALID(eaddr) != 0) { 1041 if (bootverbose) 1042 device_printf(sc->dev, 1043 "Ethernet address registers are invalid.\n"); 1044 return (EINVAL); 1045 } 1046 return (0); 1047 } 1048 1049 static void 1050 ae_retrieve_address(ae_softc_t *sc) 1051 { 1052 uint32_t eaddr[2] = {0, 0}; 1053 int error; 1054 1055 /* 1056 *Check for EEPROM. 1057 */ 1058 error = ae_get_vpd_eaddr(sc, eaddr); 1059 if (error != 0) 1060 error = ae_get_reg_eaddr(sc, eaddr); 1061 if (error != 0) { 1062 if (bootverbose) 1063 device_printf(sc->dev, 1064 "Generating random ethernet address.\n"); 1065 eaddr[0] = arc4random(); 1066 1067 /* 1068 * Set OUI to ASUSTek COMPUTER INC. 1069 */ 1070 sc->eaddr[0] = 0x02; /* U/L bit set. */ 1071 sc->eaddr[1] = 0x1f; 1072 sc->eaddr[2] = 0xc6; 1073 sc->eaddr[3] = (eaddr[0] >> 16) & 0xff; 1074 sc->eaddr[4] = (eaddr[0] >> 8) & 0xff; 1075 sc->eaddr[5] = (eaddr[0] >> 0) & 0xff; 1076 } else { 1077 sc->eaddr[0] = (eaddr[1] >> 8) & 0xff; 1078 sc->eaddr[1] = (eaddr[1] >> 0) & 0xff; 1079 sc->eaddr[2] = (eaddr[0] >> 24) & 0xff; 1080 sc->eaddr[3] = (eaddr[0] >> 16) & 0xff; 1081 sc->eaddr[4] = (eaddr[0] >> 8) & 0xff; 1082 sc->eaddr[5] = (eaddr[0] >> 0) & 0xff; 1083 } 1084 } 1085 1086 static void 1087 ae_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 1088 { 1089 bus_addr_t *addr = arg; 1090 1091 if (error != 0) 1092 return; 1093 KASSERT(nsegs == 1, ("[ae, %d]: %d segments instead of 1!", __LINE__, 1094 nsegs)); 1095 *addr = segs[0].ds_addr; 1096 } 1097 1098 static int 1099 ae_alloc_rings(ae_softc_t *sc) 1100 { 1101 bus_addr_t busaddr; 1102 int error; 1103 1104 /* 1105 * Create parent DMA tag. 1106 */ 1107 error = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1108 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, 1109 NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 0, 1110 BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL, 1111 &sc->dma_parent_tag); 1112 if (error != 0) { 1113 device_printf(sc->dev, "could not creare parent DMA tag.\n"); 1114 return (error); 1115 } 1116 1117 /* 1118 * Create DMA tag for TxD. 1119 */ 1120 error = bus_dma_tag_create(sc->dma_parent_tag, 1121 8, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, 1122 NULL, NULL, AE_TXD_BUFSIZE_DEFAULT, 1, 1123 AE_TXD_BUFSIZE_DEFAULT, 0, NULL, NULL, 1124 &sc->dma_txd_tag); 1125 if (error != 0) { 1126 device_printf(sc->dev, "could not creare TxD DMA tag.\n"); 1127 return (error); 1128 } 1129 1130 /* 1131 * Create DMA tag for TxS. 1132 */ 1133 error = bus_dma_tag_create(sc->dma_parent_tag, 1134 8, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, 1135 NULL, NULL, AE_TXS_COUNT_DEFAULT * 4, 1, 1136 AE_TXS_COUNT_DEFAULT * 4, 0, NULL, NULL, 1137 &sc->dma_txs_tag); 1138 if (error != 0) { 1139 device_printf(sc->dev, "could not creare TxS DMA tag.\n"); 1140 return (error); 1141 } 1142 1143 /* 1144 * Create DMA tag for RxD. 1145 */ 1146 error = bus_dma_tag_create(sc->dma_parent_tag, 1147 128, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, 1148 NULL, NULL, AE_RXD_COUNT_DEFAULT * 1536 + AE_RXD_PADDING, 1, 1149 AE_RXD_COUNT_DEFAULT * 1536 + AE_RXD_PADDING, 0, NULL, NULL, 1150 &sc->dma_rxd_tag); 1151 if (error != 0) { 1152 device_printf(sc->dev, "could not creare TxS DMA tag.\n"); 1153 return (error); 1154 } 1155 1156 /* 1157 * Allocate TxD DMA memory. 1158 */ 1159 error = bus_dmamem_alloc(sc->dma_txd_tag, (void **)&sc->txd_base, 1160 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 1161 &sc->dma_txd_map); 1162 if (error != 0) { 1163 device_printf(sc->dev, 1164 "could not allocate DMA memory for TxD ring.\n"); 1165 return (error); 1166 } 1167 error = bus_dmamap_load(sc->dma_txd_tag, sc->dma_txd_map, sc->txd_base, 1168 AE_TXD_BUFSIZE_DEFAULT, ae_dmamap_cb, &busaddr, BUS_DMA_NOWAIT); 1169 if (error != 0 || busaddr == 0) { 1170 device_printf(sc->dev, 1171 "could not load DMA map for TxD ring.\n"); 1172 return (error); 1173 } 1174 sc->dma_txd_busaddr = busaddr; 1175 1176 /* 1177 * Allocate TxS DMA memory. 1178 */ 1179 error = bus_dmamem_alloc(sc->dma_txs_tag, (void **)&sc->txs_base, 1180 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 1181 &sc->dma_txs_map); 1182 if (error != 0) { 1183 device_printf(sc->dev, 1184 "could not allocate DMA memory for TxS ring.\n"); 1185 return (error); 1186 } 1187 error = bus_dmamap_load(sc->dma_txs_tag, sc->dma_txs_map, sc->txs_base, 1188 AE_TXS_COUNT_DEFAULT * 4, ae_dmamap_cb, &busaddr, BUS_DMA_NOWAIT); 1189 if (error != 0 || busaddr == 0) { 1190 device_printf(sc->dev, 1191 "could not load DMA map for TxS ring.\n"); 1192 return (error); 1193 } 1194 sc->dma_txs_busaddr = busaddr; 1195 1196 /* 1197 * Allocate RxD DMA memory. 1198 */ 1199 error = bus_dmamem_alloc(sc->dma_rxd_tag, (void **)&sc->rxd_base_dma, 1200 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 1201 &sc->dma_rxd_map); 1202 if (error != 0) { 1203 device_printf(sc->dev, 1204 "could not allocate DMA memory for RxD ring.\n"); 1205 return (error); 1206 } 1207 error = bus_dmamap_load(sc->dma_rxd_tag, sc->dma_rxd_map, 1208 sc->rxd_base_dma, AE_RXD_COUNT_DEFAULT * 1536 + AE_RXD_PADDING, 1209 ae_dmamap_cb, &busaddr, BUS_DMA_NOWAIT); 1210 if (error != 0 || busaddr == 0) { 1211 device_printf(sc->dev, 1212 "could not load DMA map for RxD ring.\n"); 1213 return (error); 1214 } 1215 sc->dma_rxd_busaddr = busaddr + AE_RXD_PADDING; 1216 sc->rxd_base = (ae_rxd_t *)(sc->rxd_base_dma + AE_RXD_PADDING); 1217 1218 return (0); 1219 } 1220 1221 static void 1222 ae_dma_free(ae_softc_t *sc) 1223 { 1224 1225 if (sc->dma_txd_tag != NULL) { 1226 if (sc->dma_txd_map != NULL) { 1227 bus_dmamap_unload(sc->dma_txd_tag, sc->dma_txd_map); 1228 if (sc->txd_base != NULL) 1229 bus_dmamem_free(sc->dma_txd_tag, sc->txd_base, 1230 sc->dma_txd_map); 1231 1232 } 1233 bus_dma_tag_destroy(sc->dma_txd_tag); 1234 sc->dma_txd_map = NULL; 1235 sc->dma_txd_tag = NULL; 1236 sc->txd_base = NULL; 1237 } 1238 if (sc->dma_txs_tag != NULL) { 1239 if (sc->dma_txs_map != NULL) { 1240 bus_dmamap_unload(sc->dma_txs_tag, sc->dma_txs_map); 1241 if (sc->txs_base != NULL) 1242 bus_dmamem_free(sc->dma_txs_tag, sc->txs_base, 1243 sc->dma_txs_map); 1244 1245 } 1246 bus_dma_tag_destroy(sc->dma_txs_tag); 1247 sc->dma_txs_map = NULL; 1248 sc->dma_txs_tag = NULL; 1249 sc->txs_base = NULL; 1250 } 1251 if (sc->dma_rxd_tag != NULL) { 1252 if (sc->dma_rxd_map != NULL) { 1253 bus_dmamap_unload(sc->dma_rxd_tag, sc->dma_rxd_map); 1254 if (sc->rxd_base_dma != NULL) 1255 bus_dmamem_free(sc->dma_rxd_tag, 1256 sc->rxd_base_dma, sc->dma_rxd_map); 1257 1258 } 1259 bus_dma_tag_destroy(sc->dma_rxd_tag); 1260 sc->dma_rxd_map = NULL; 1261 sc->dma_rxd_tag = NULL; 1262 sc->rxd_base_dma = NULL; 1263 } 1264 if (sc->dma_parent_tag != NULL) { 1265 bus_dma_tag_destroy(sc->dma_parent_tag); 1266 sc->dma_parent_tag = NULL; 1267 } 1268 } 1269 1270 static int 1271 ae_shutdown(device_t dev) 1272 { 1273 ae_softc_t *sc; 1274 int error; 1275 1276 sc = device_get_softc(dev); 1277 KASSERT(sc != NULL, ("[ae: %d]: sc is NULL", __LINE__)); 1278 1279 error = ae_suspend(dev); 1280 AE_LOCK(sc); 1281 ae_powersave_enable(sc); 1282 AE_UNLOCK(sc); 1283 return (error); 1284 } 1285 1286 static void 1287 ae_powersave_disable(ae_softc_t *sc) 1288 { 1289 uint32_t val; 1290 1291 AE_LOCK_ASSERT(sc); 1292 1293 AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 0); 1294 val = AE_PHY_READ(sc, AE_PHY_DBG_DATA); 1295 if (val & AE_PHY_DBG_POWERSAVE) { 1296 val &= ~AE_PHY_DBG_POWERSAVE; 1297 AE_PHY_WRITE(sc, AE_PHY_DBG_DATA, val); 1298 DELAY(1000); 1299 } 1300 } 1301 1302 static void 1303 ae_powersave_enable(ae_softc_t *sc) 1304 { 1305 uint32_t val; 1306 1307 AE_LOCK_ASSERT(sc); 1308 1309 /* 1310 * XXX magic numbers. 1311 */ 1312 AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 0); 1313 val = AE_PHY_READ(sc, AE_PHY_DBG_DATA); 1314 AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, val | 0x1000); 1315 AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 2); 1316 AE_PHY_WRITE(sc, AE_PHY_DBG_DATA, 0x3000); 1317 AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 3); 1318 AE_PHY_WRITE(sc, AE_PHY_DBG_DATA, 0); 1319 } 1320 1321 static void 1322 ae_pm_init(ae_softc_t *sc) 1323 { 1324 struct ifnet *ifp; 1325 uint32_t val; 1326 uint16_t pmstat; 1327 struct mii_data *mii; 1328 int pmc; 1329 1330 AE_LOCK_ASSERT(sc); 1331 1332 ifp = sc->ifp; 1333 if ((sc->flags & AE_FLAG_PMG) == 0) { 1334 /* Disable WOL entirely. */ 1335 AE_WRITE_4(sc, AE_WOL_REG, 0); 1336 return; 1337 } 1338 1339 /* 1340 * Configure WOL if enabled. 1341 */ 1342 if ((ifp->if_capenable & IFCAP_WOL) != 0) { 1343 mii = device_get_softc(sc->miibus); 1344 mii_pollstat(mii); 1345 if ((mii->mii_media_status & IFM_AVALID) != 0 && 1346 (mii->mii_media_status & IFM_ACTIVE) != 0) { 1347 AE_WRITE_4(sc, AE_WOL_REG, AE_WOL_MAGIC | \ 1348 AE_WOL_MAGIC_PME); 1349 1350 /* 1351 * Configure MAC. 1352 */ 1353 val = AE_MAC_RX_EN | AE_MAC_CLK_PHY | \ 1354 AE_MAC_TX_CRC_EN | AE_MAC_TX_AUTOPAD | \ 1355 ((AE_HALFBUF_DEFAULT << AE_HALFBUF_SHIFT) & \ 1356 AE_HALFBUF_MASK) | \ 1357 ((AE_MAC_PREAMBLE_DEFAULT << \ 1358 AE_MAC_PREAMBLE_SHIFT) & AE_MAC_PREAMBLE_MASK) | \ 1359 AE_MAC_BCAST_EN | AE_MAC_MCAST_EN; 1360 if ((IFM_OPTIONS(mii->mii_media_active) & \ 1361 IFM_FDX) != 0) 1362 val |= AE_MAC_FULL_DUPLEX; 1363 AE_WRITE_4(sc, AE_MAC_REG, val); 1364 1365 } else { /* No link. */ 1366 AE_WRITE_4(sc, AE_WOL_REG, AE_WOL_LNKCHG | \ 1367 AE_WOL_LNKCHG_PME); 1368 AE_WRITE_4(sc, AE_MAC_REG, 0); 1369 } 1370 } else { 1371 ae_powersave_enable(sc); 1372 } 1373 1374 /* 1375 * PCIE hacks. Magic numbers. 1376 */ 1377 val = AE_READ_4(sc, AE_PCIE_PHYMISC_REG); 1378 val |= AE_PCIE_PHYMISC_FORCE_RCV_DET; 1379 AE_WRITE_4(sc, AE_PCIE_PHYMISC_REG, val); 1380 val = AE_READ_4(sc, AE_PCIE_DLL_TX_CTRL_REG); 1381 val |= AE_PCIE_DLL_TX_CTRL_SEL_NOR_CLK; 1382 AE_WRITE_4(sc, AE_PCIE_DLL_TX_CTRL_REG, val); 1383 1384 /* 1385 * Configure PME. 1386 */ 1387 if (pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) { 1388 pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2); 1389 pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE); 1390 if ((ifp->if_capenable & IFCAP_WOL) != 0) 1391 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE; 1392 pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2); 1393 } 1394 } 1395 1396 static int 1397 ae_suspend(device_t dev) 1398 { 1399 ae_softc_t *sc; 1400 1401 sc = device_get_softc(dev); 1402 1403 AE_LOCK(sc); 1404 ae_stop(sc); 1405 ae_pm_init(sc); 1406 AE_UNLOCK(sc); 1407 1408 return (0); 1409 } 1410 1411 static int 1412 ae_resume(device_t dev) 1413 { 1414 ae_softc_t *sc; 1415 1416 sc = device_get_softc(dev); 1417 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__)); 1418 1419 AE_LOCK(sc); 1420 AE_READ_4(sc, AE_WOL_REG); /* Clear WOL status. */ 1421 if ((sc->ifp->if_flags & IFF_UP) != 0) 1422 ae_init_locked(sc); 1423 AE_UNLOCK(sc); 1424 1425 return (0); 1426 } 1427 1428 static unsigned int 1429 ae_tx_avail_size(ae_softc_t *sc) 1430 { 1431 unsigned int avail; 1432 1433 if (sc->txd_cur >= sc->txd_ack) 1434 avail = AE_TXD_BUFSIZE_DEFAULT - (sc->txd_cur - sc->txd_ack); 1435 else 1436 avail = sc->txd_ack - sc->txd_cur; 1437 1438 return (avail); 1439 } 1440 1441 static int 1442 ae_encap(ae_softc_t *sc, struct mbuf **m_head) 1443 { 1444 struct mbuf *m0; 1445 ae_txd_t *hdr; 1446 unsigned int to_end; 1447 uint16_t len; 1448 1449 AE_LOCK_ASSERT(sc); 1450 1451 m0 = *m_head; 1452 len = m0->m_pkthdr.len; 1453 1454 if ((sc->flags & AE_FLAG_TXAVAIL) == 0 || 1455 len + sizeof(ae_txd_t) + 3 > ae_tx_avail_size(sc)) { 1456 #ifdef AE_DEBUG 1457 if_printf(sc->ifp, "No free Tx available.\n"); 1458 #endif 1459 return ENOBUFS; 1460 } 1461 1462 hdr = (ae_txd_t *)(sc->txd_base + sc->txd_cur); 1463 bzero(hdr, sizeof(*hdr)); 1464 /* Skip header size. */ 1465 sc->txd_cur = (sc->txd_cur + sizeof(ae_txd_t)) % AE_TXD_BUFSIZE_DEFAULT; 1466 /* Space available to the end of the ring */ 1467 to_end = AE_TXD_BUFSIZE_DEFAULT - sc->txd_cur; 1468 if (to_end >= len) { 1469 m_copydata(m0, 0, len, (caddr_t)(sc->txd_base + sc->txd_cur)); 1470 } else { 1471 m_copydata(m0, 0, to_end, (caddr_t)(sc->txd_base + 1472 sc->txd_cur)); 1473 m_copydata(m0, to_end, len - to_end, (caddr_t)sc->txd_base); 1474 } 1475 1476 /* 1477 * Set TxD flags and parameters. 1478 */ 1479 if ((m0->m_flags & M_VLANTAG) != 0) { 1480 hdr->vlan = htole16(AE_TXD_VLAN(m0->m_pkthdr.ether_vtag)); 1481 hdr->len = htole16(len | AE_TXD_INSERT_VTAG); 1482 } else { 1483 hdr->len = htole16(len); 1484 } 1485 1486 /* 1487 * Set current TxD position and round up to a 4-byte boundary. 1488 */ 1489 sc->txd_cur = ((sc->txd_cur + len + 3) & ~3) % AE_TXD_BUFSIZE_DEFAULT; 1490 if (sc->txd_cur == sc->txd_ack) 1491 sc->flags &= ~AE_FLAG_TXAVAIL; 1492 #ifdef AE_DEBUG 1493 if_printf(sc->ifp, "New txd_cur = %d.\n", sc->txd_cur); 1494 #endif 1495 1496 /* 1497 * Update TxS position and check if there are empty TxS available. 1498 */ 1499 sc->txs_base[sc->txs_cur].flags &= ~htole16(AE_TXS_UPDATE); 1500 sc->txs_cur = (sc->txs_cur + 1) % AE_TXS_COUNT_DEFAULT; 1501 if (sc->txs_cur == sc->txs_ack) 1502 sc->flags &= ~AE_FLAG_TXAVAIL; 1503 1504 /* 1505 * Synchronize DMA memory. 1506 */ 1507 bus_dmamap_sync(sc->dma_txd_tag, sc->dma_txd_map, BUS_DMASYNC_PREREAD | 1508 BUS_DMASYNC_PREWRITE); 1509 bus_dmamap_sync(sc->dma_txs_tag, sc->dma_txs_map, 1510 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1511 1512 return (0); 1513 } 1514 1515 static void 1516 ae_start(struct ifnet *ifp) 1517 { 1518 ae_softc_t *sc; 1519 1520 sc = ifp->if_softc; 1521 AE_LOCK(sc); 1522 ae_start_locked(ifp); 1523 AE_UNLOCK(sc); 1524 } 1525 1526 static void 1527 ae_start_locked(struct ifnet *ifp) 1528 { 1529 ae_softc_t *sc; 1530 unsigned int count; 1531 struct mbuf *m0; 1532 int error; 1533 1534 sc = ifp->if_softc; 1535 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__)); 1536 AE_LOCK_ASSERT(sc); 1537 1538 #ifdef AE_DEBUG 1539 if_printf(ifp, "Start called.\n"); 1540 #endif 1541 1542 if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 1543 IFF_DRV_RUNNING || (sc->flags & AE_FLAG_LINK) == 0) 1544 return; 1545 1546 count = 0; 1547 while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) { 1548 IFQ_DRV_DEQUEUE(&ifp->if_snd, m0); 1549 if (m0 == NULL) 1550 break; /* Nothing to do. */ 1551 1552 error = ae_encap(sc, &m0); 1553 if (error != 0) { 1554 if (m0 != NULL) { 1555 IFQ_DRV_PREPEND(&ifp->if_snd, m0); 1556 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1557 #ifdef AE_DEBUG 1558 if_printf(ifp, "Setting OACTIVE.\n"); 1559 #endif 1560 } 1561 break; 1562 } 1563 count++; 1564 sc->tx_inproc++; 1565 1566 /* Bounce a copy of the frame to BPF. */ 1567 ETHER_BPF_MTAP(ifp, m0); 1568 1569 m_freem(m0); 1570 } 1571 1572 if (count > 0) { /* Something was dequeued. */ 1573 AE_WRITE_2(sc, AE_MB_TXD_IDX_REG, sc->txd_cur / 4); 1574 sc->wd_timer = AE_TX_TIMEOUT; /* Load watchdog. */ 1575 #ifdef AE_DEBUG 1576 if_printf(ifp, "%d packets dequeued.\n", count); 1577 if_printf(ifp, "Tx pos now is %d.\n", sc->txd_cur); 1578 #endif 1579 } 1580 } 1581 1582 static void 1583 ae_link_task(void *arg, int pending) 1584 { 1585 ae_softc_t *sc; 1586 struct mii_data *mii; 1587 struct ifnet *ifp; 1588 uint32_t val; 1589 1590 sc = (ae_softc_t *)arg; 1591 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__)); 1592 AE_LOCK(sc); 1593 1594 ifp = sc->ifp; 1595 mii = device_get_softc(sc->miibus); 1596 if (mii == NULL || ifp == NULL || 1597 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1598 AE_UNLOCK(sc); /* XXX: could happen? */ 1599 return; 1600 } 1601 1602 sc->flags &= ~AE_FLAG_LINK; 1603 if ((mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) == 1604 (IFM_AVALID | IFM_ACTIVE)) { 1605 switch(IFM_SUBTYPE(mii->mii_media_active)) { 1606 case IFM_10_T: 1607 case IFM_100_TX: 1608 sc->flags |= AE_FLAG_LINK; 1609 break; 1610 default: 1611 break; 1612 } 1613 } 1614 1615 /* 1616 * Stop Rx/Tx MACs. 1617 */ 1618 ae_stop_rxmac(sc); 1619 ae_stop_txmac(sc); 1620 1621 if ((sc->flags & AE_FLAG_LINK) != 0) { 1622 ae_mac_config(sc); 1623 1624 /* 1625 * Restart DMA engines. 1626 */ 1627 AE_WRITE_1(sc, AE_DMAREAD_REG, AE_DMAREAD_EN); 1628 AE_WRITE_1(sc, AE_DMAWRITE_REG, AE_DMAWRITE_EN); 1629 1630 /* 1631 * Enable Rx and Tx MACs. 1632 */ 1633 val = AE_READ_4(sc, AE_MAC_REG); 1634 val |= AE_MAC_TX_EN | AE_MAC_RX_EN; 1635 AE_WRITE_4(sc, AE_MAC_REG, val); 1636 } 1637 AE_UNLOCK(sc); 1638 } 1639 1640 static void 1641 ae_stop_rxmac(ae_softc_t *sc) 1642 { 1643 uint32_t val; 1644 int i; 1645 1646 AE_LOCK_ASSERT(sc); 1647 1648 /* 1649 * Stop Rx MAC engine. 1650 */ 1651 val = AE_READ_4(sc, AE_MAC_REG); 1652 if ((val & AE_MAC_RX_EN) != 0) { 1653 val &= ~AE_MAC_RX_EN; 1654 AE_WRITE_4(sc, AE_MAC_REG, val); 1655 } 1656 1657 /* 1658 * Stop Rx DMA engine. 1659 */ 1660 if (AE_READ_1(sc, AE_DMAWRITE_REG) == AE_DMAWRITE_EN) 1661 AE_WRITE_1(sc, AE_DMAWRITE_REG, 0); 1662 1663 /* 1664 * Wait for IDLE state. 1665 */ 1666 for (i = 0; i < AE_IDLE_TIMEOUT; i--) { 1667 val = AE_READ_4(sc, AE_IDLE_REG); 1668 if ((val & (AE_IDLE_RXMAC | AE_IDLE_DMAWRITE)) == 0) 1669 break; 1670 DELAY(100); 1671 } 1672 if (i == AE_IDLE_TIMEOUT) 1673 device_printf(sc->dev, "timed out while stopping Rx MAC.\n"); 1674 } 1675 1676 static void 1677 ae_stop_txmac(ae_softc_t *sc) 1678 { 1679 uint32_t val; 1680 int i; 1681 1682 AE_LOCK_ASSERT(sc); 1683 1684 /* 1685 * Stop Tx MAC engine. 1686 */ 1687 val = AE_READ_4(sc, AE_MAC_REG); 1688 if ((val & AE_MAC_TX_EN) != 0) { 1689 val &= ~AE_MAC_TX_EN; 1690 AE_WRITE_4(sc, AE_MAC_REG, val); 1691 } 1692 1693 /* 1694 * Stop Tx DMA engine. 1695 */ 1696 if (AE_READ_1(sc, AE_DMAREAD_REG) == AE_DMAREAD_EN) 1697 AE_WRITE_1(sc, AE_DMAREAD_REG, 0); 1698 1699 /* 1700 * Wait for IDLE state. 1701 */ 1702 for (i = 0; i < AE_IDLE_TIMEOUT; i--) { 1703 val = AE_READ_4(sc, AE_IDLE_REG); 1704 if ((val & (AE_IDLE_TXMAC | AE_IDLE_DMAREAD)) == 0) 1705 break; 1706 DELAY(100); 1707 } 1708 if (i == AE_IDLE_TIMEOUT) 1709 device_printf(sc->dev, "timed out while stopping Tx MAC.\n"); 1710 } 1711 1712 static void 1713 ae_mac_config(ae_softc_t *sc) 1714 { 1715 struct mii_data *mii; 1716 uint32_t val; 1717 1718 AE_LOCK_ASSERT(sc); 1719 1720 mii = device_get_softc(sc->miibus); 1721 val = AE_READ_4(sc, AE_MAC_REG); 1722 val &= ~AE_MAC_FULL_DUPLEX; 1723 /* XXX disable AE_MAC_TX_FLOW_EN? */ 1724 1725 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) 1726 val |= AE_MAC_FULL_DUPLEX; 1727 1728 AE_WRITE_4(sc, AE_MAC_REG, val); 1729 } 1730 1731 static int 1732 ae_intr(void *arg) 1733 { 1734 ae_softc_t *sc; 1735 uint32_t val; 1736 1737 sc = (ae_softc_t *)arg; 1738 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__)); 1739 1740 val = AE_READ_4(sc, AE_ISR_REG); 1741 if (val == 0 || (val & AE_IMR_DEFAULT) == 0) 1742 return (FILTER_STRAY); 1743 1744 /* Disable interrupts. */ 1745 AE_WRITE_4(sc, AE_ISR_REG, AE_ISR_DISABLE); 1746 1747 /* Schedule interrupt processing. */ 1748 taskqueue_enqueue(sc->tq, &sc->int_task); 1749 1750 return (FILTER_HANDLED); 1751 } 1752 1753 static void 1754 ae_int_task(void *arg, int pending) 1755 { 1756 ae_softc_t *sc; 1757 struct ifnet *ifp; 1758 uint32_t val; 1759 1760 sc = (ae_softc_t *)arg; 1761 1762 AE_LOCK(sc); 1763 1764 ifp = sc->ifp; 1765 1766 val = AE_READ_4(sc, AE_ISR_REG); /* Read interrupt status. */ 1767 if (val == 0) { 1768 AE_UNLOCK(sc); 1769 return; 1770 } 1771 1772 /* 1773 * Clear interrupts and disable them. 1774 */ 1775 AE_WRITE_4(sc, AE_ISR_REG, val | AE_ISR_DISABLE); 1776 1777 #ifdef AE_DEBUG 1778 if_printf(ifp, "Interrupt received: 0x%08x\n", val); 1779 #endif 1780 1781 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 1782 if ((val & (AE_ISR_DMAR_TIMEOUT | AE_ISR_DMAW_TIMEOUT | 1783 AE_ISR_PHY_LINKDOWN)) != 0) { 1784 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1785 ae_init_locked(sc); 1786 AE_UNLOCK(sc); 1787 return; 1788 } 1789 if ((val & AE_ISR_TX_EVENT) != 0) 1790 ae_tx_intr(sc); 1791 if ((val & AE_ISR_RX_EVENT) != 0) 1792 ae_rx_intr(sc); 1793 /* 1794 * Re-enable interrupts. 1795 */ 1796 AE_WRITE_4(sc, AE_ISR_REG, 0); 1797 1798 if ((sc->flags & AE_FLAG_TXAVAIL) != 0) { 1799 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1800 ae_start_locked(ifp); 1801 } 1802 } 1803 1804 AE_UNLOCK(sc); 1805 } 1806 1807 static void 1808 ae_tx_intr(ae_softc_t *sc) 1809 { 1810 struct ifnet *ifp; 1811 ae_txd_t *txd; 1812 ae_txs_t *txs; 1813 uint16_t flags; 1814 1815 AE_LOCK_ASSERT(sc); 1816 1817 ifp = sc->ifp; 1818 1819 #ifdef AE_DEBUG 1820 if_printf(ifp, "Tx interrupt occuried.\n"); 1821 #endif 1822 1823 /* 1824 * Syncronize DMA buffers. 1825 */ 1826 bus_dmamap_sync(sc->dma_txd_tag, sc->dma_txd_map, 1827 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1828 bus_dmamap_sync(sc->dma_txs_tag, sc->dma_txs_map, 1829 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1830 1831 for (;;) { 1832 txs = sc->txs_base + sc->txs_ack; 1833 flags = le16toh(txs->flags); 1834 if ((flags & AE_TXS_UPDATE) == 0) 1835 break; 1836 txs->flags = htole16(flags & ~AE_TXS_UPDATE); 1837 /* Update stats. */ 1838 ae_update_stats_tx(flags, &sc->stats); 1839 1840 /* 1841 * Update TxS position. 1842 */ 1843 sc->txs_ack = (sc->txs_ack + 1) % AE_TXS_COUNT_DEFAULT; 1844 sc->flags |= AE_FLAG_TXAVAIL; 1845 1846 txd = (ae_txd_t *)(sc->txd_base + sc->txd_ack); 1847 if (txs->len != txd->len) 1848 device_printf(sc->dev, "Size mismatch: TxS:%d TxD:%d\n", 1849 le16toh(txs->len), le16toh(txd->len)); 1850 1851 /* 1852 * Move txd ack and align on 4-byte boundary. 1853 */ 1854 sc->txd_ack = ((sc->txd_ack + le16toh(txd->len) + 1855 sizeof(ae_txs_t) + 3) & ~3) % AE_TXD_BUFSIZE_DEFAULT; 1856 1857 if ((flags & AE_TXS_SUCCESS) != 0) 1858 ifp->if_opackets++; 1859 else 1860 ifp->if_oerrors++; 1861 1862 sc->tx_inproc--; 1863 } 1864 1865 if ((sc->flags & AE_FLAG_TXAVAIL) != 0) 1866 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1867 if (sc->tx_inproc < 0) { 1868 if_printf(ifp, "Received stray Tx interrupt(s).\n"); 1869 sc->tx_inproc = 0; 1870 } 1871 1872 if (sc->tx_inproc == 0) 1873 sc->wd_timer = 0; /* Unarm watchdog. */ 1874 1875 /* 1876 * Syncronize DMA buffers. 1877 */ 1878 bus_dmamap_sync(sc->dma_txd_tag, sc->dma_txd_map, 1879 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1880 bus_dmamap_sync(sc->dma_txs_tag, sc->dma_txs_map, 1881 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1882 } 1883 1884 static int 1885 ae_rxeof(ae_softc_t *sc, ae_rxd_t *rxd) 1886 { 1887 struct ifnet *ifp; 1888 struct mbuf *m; 1889 unsigned int size; 1890 uint16_t flags; 1891 1892 AE_LOCK_ASSERT(sc); 1893 1894 ifp = sc->ifp; 1895 flags = le16toh(rxd->flags); 1896 1897 #ifdef AE_DEBUG 1898 if_printf(ifp, "Rx interrupt occuried.\n"); 1899 #endif 1900 size = le16toh(rxd->len) - ETHER_CRC_LEN; 1901 if (size < (ETHER_MIN_LEN - ETHER_CRC_LEN - ETHER_VLAN_ENCAP_LEN)) { 1902 if_printf(ifp, "Runt frame received."); 1903 return (EIO); 1904 } 1905 1906 m = m_devget(&rxd->data[0], size, ETHER_ALIGN, ifp, NULL); 1907 if (m == NULL) 1908 return (ENOBUFS); 1909 1910 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 && 1911 (flags & AE_RXD_HAS_VLAN) != 0) { 1912 m->m_pkthdr.ether_vtag = AE_RXD_VLAN(le16toh(rxd->vlan)); 1913 m->m_flags |= M_VLANTAG; 1914 } 1915 1916 /* 1917 * Pass it through. 1918 */ 1919 AE_UNLOCK(sc); 1920 (*ifp->if_input)(ifp, m); 1921 AE_LOCK(sc); 1922 1923 return (0); 1924 } 1925 1926 static void 1927 ae_rx_intr(ae_softc_t *sc) 1928 { 1929 ae_rxd_t *rxd; 1930 struct ifnet *ifp; 1931 uint16_t flags; 1932 int count, error; 1933 1934 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL!", __LINE__)); 1935 1936 AE_LOCK_ASSERT(sc); 1937 1938 ifp = sc->ifp; 1939 1940 /* 1941 * Syncronize DMA buffers. 1942 */ 1943 bus_dmamap_sync(sc->dma_rxd_tag, sc->dma_rxd_map, 1944 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1945 1946 for (count = 0;; count++) { 1947 rxd = (ae_rxd_t *)(sc->rxd_base + sc->rxd_cur); 1948 flags = le16toh(rxd->flags); 1949 if ((flags & AE_RXD_UPDATE) == 0) 1950 break; 1951 rxd->flags = htole16(flags & ~AE_RXD_UPDATE); 1952 /* Update stats. */ 1953 ae_update_stats_rx(flags, &sc->stats); 1954 1955 /* 1956 * Update position index. 1957 */ 1958 sc->rxd_cur = (sc->rxd_cur + 1) % AE_RXD_COUNT_DEFAULT; 1959 1960 if ((flags & AE_RXD_SUCCESS) == 0) { 1961 ifp->if_ierrors++; 1962 continue; 1963 } 1964 error = ae_rxeof(sc, rxd); 1965 if (error != 0) { 1966 ifp->if_ierrors++; 1967 continue; 1968 } else { 1969 ifp->if_ipackets++; 1970 } 1971 } 1972 1973 if (count > 0) { 1974 bus_dmamap_sync(sc->dma_rxd_tag, sc->dma_rxd_map, 1975 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1976 /* 1977 * Update Rx index. 1978 */ 1979 AE_WRITE_2(sc, AE_MB_RXD_IDX_REG, sc->rxd_cur); 1980 } 1981 } 1982 1983 static void 1984 ae_watchdog(ae_softc_t *sc) 1985 { 1986 struct ifnet *ifp; 1987 1988 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL!", __LINE__)); 1989 AE_LOCK_ASSERT(sc); 1990 ifp = sc->ifp; 1991 1992 if (sc->wd_timer == 0 || --sc->wd_timer != 0) 1993 return; /* Noting to do. */ 1994 1995 if ((sc->flags & AE_FLAG_LINK) == 0) 1996 if_printf(ifp, "watchdog timeout (missed link).\n"); 1997 else 1998 if_printf(ifp, "watchdog timeout - resetting.\n"); 1999 2000 ifp->if_oerrors++; 2001 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2002 ae_init_locked(sc); 2003 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 2004 ae_start_locked(ifp); 2005 } 2006 2007 static void 2008 ae_tick(void *arg) 2009 { 2010 ae_softc_t *sc; 2011 struct mii_data *mii; 2012 2013 sc = (ae_softc_t *)arg; 2014 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL!", __LINE__)); 2015 AE_LOCK_ASSERT(sc); 2016 2017 mii = device_get_softc(sc->miibus); 2018 mii_tick(mii); 2019 ae_watchdog(sc); /* Watchdog check. */ 2020 callout_reset(&sc->tick_ch, hz, ae_tick, sc); 2021 } 2022 2023 static void 2024 ae_rxvlan(ae_softc_t *sc) 2025 { 2026 struct ifnet *ifp; 2027 uint32_t val; 2028 2029 AE_LOCK_ASSERT(sc); 2030 ifp = sc->ifp; 2031 val = AE_READ_4(sc, AE_MAC_REG); 2032 val &= ~AE_MAC_RMVLAN_EN; 2033 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) 2034 val |= AE_MAC_RMVLAN_EN; 2035 AE_WRITE_4(sc, AE_MAC_REG, val); 2036 } 2037 2038 static void 2039 ae_rxfilter(ae_softc_t *sc) 2040 { 2041 struct ifnet *ifp; 2042 struct ifmultiaddr *ifma; 2043 uint32_t crc; 2044 uint32_t mchash[2]; 2045 uint32_t rxcfg; 2046 2047 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL!", __LINE__)); 2048 2049 AE_LOCK_ASSERT(sc); 2050 2051 ifp = sc->ifp; 2052 2053 rxcfg = AE_READ_4(sc, AE_MAC_REG); 2054 rxcfg &= ~(AE_MAC_MCAST_EN | AE_MAC_BCAST_EN | AE_MAC_PROMISC_EN); 2055 2056 if ((ifp->if_flags & IFF_BROADCAST) != 0) 2057 rxcfg |= AE_MAC_BCAST_EN; 2058 if ((ifp->if_flags & IFF_PROMISC) != 0) 2059 rxcfg |= AE_MAC_PROMISC_EN; 2060 if ((ifp->if_flags & IFF_ALLMULTI) != 0) 2061 rxcfg |= AE_MAC_MCAST_EN; 2062 2063 /* 2064 * Wipe old settings. 2065 */ 2066 AE_WRITE_4(sc, AE_REG_MHT0, 0); 2067 AE_WRITE_4(sc, AE_REG_MHT1, 0); 2068 if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) { 2069 AE_WRITE_4(sc, AE_REG_MHT0, 0xffffffff); 2070 AE_WRITE_4(sc, AE_REG_MHT1, 0xffffffff); 2071 AE_WRITE_4(sc, AE_MAC_REG, rxcfg); 2072 return; 2073 } 2074 2075 /* 2076 * Load multicast tables. 2077 */ 2078 bzero(mchash, sizeof(mchash)); 2079 if_maddr_rlock(ifp); 2080 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2081 if (ifma->ifma_addr->sa_family != AF_LINK) 2082 continue; 2083 crc = ether_crc32_be(LLADDR((struct sockaddr_dl *) 2084 ifma->ifma_addr), ETHER_ADDR_LEN); 2085 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f); 2086 } 2087 if_maddr_runlock(ifp); 2088 AE_WRITE_4(sc, AE_REG_MHT0, mchash[0]); 2089 AE_WRITE_4(sc, AE_REG_MHT1, mchash[1]); 2090 AE_WRITE_4(sc, AE_MAC_REG, rxcfg); 2091 } 2092 2093 static int 2094 ae_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 2095 { 2096 struct ae_softc *sc; 2097 struct ifreq *ifr; 2098 struct mii_data *mii; 2099 int error, mask; 2100 2101 sc = ifp->if_softc; 2102 ifr = (struct ifreq *)data; 2103 error = 0; 2104 2105 switch (cmd) { 2106 case SIOCSIFMTU: 2107 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU) 2108 error = EINVAL; 2109 else if (ifp->if_mtu != ifr->ifr_mtu) { 2110 AE_LOCK(sc); 2111 ifp->if_mtu = ifr->ifr_mtu; 2112 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 2113 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2114 ae_init_locked(sc); 2115 } 2116 AE_UNLOCK(sc); 2117 } 2118 break; 2119 case SIOCSIFFLAGS: 2120 AE_LOCK(sc); 2121 if ((ifp->if_flags & IFF_UP) != 0) { 2122 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 2123 if (((ifp->if_flags ^ sc->if_flags) 2124 & (IFF_PROMISC | IFF_ALLMULTI)) != 0) 2125 ae_rxfilter(sc); 2126 } else { 2127 if ((sc->flags & AE_FLAG_DETACH) == 0) 2128 ae_init_locked(sc); 2129 } 2130 } else { 2131 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 2132 ae_stop(sc); 2133 } 2134 sc->if_flags = ifp->if_flags; 2135 AE_UNLOCK(sc); 2136 break; 2137 case SIOCADDMULTI: 2138 case SIOCDELMULTI: 2139 AE_LOCK(sc); 2140 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 2141 ae_rxfilter(sc); 2142 AE_UNLOCK(sc); 2143 break; 2144 case SIOCSIFMEDIA: 2145 case SIOCGIFMEDIA: 2146 mii = device_get_softc(sc->miibus); 2147 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd); 2148 break; 2149 case SIOCSIFCAP: 2150 AE_LOCK(sc); 2151 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 2152 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 && 2153 (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) { 2154 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; 2155 ae_rxvlan(sc); 2156 } 2157 VLAN_CAPABILITIES(ifp); 2158 AE_UNLOCK(sc); 2159 break; 2160 default: 2161 error = ether_ioctl(ifp, cmd, data); 2162 break; 2163 } 2164 return (error); 2165 } 2166 2167 static void 2168 ae_stop(ae_softc_t *sc) 2169 { 2170 struct ifnet *ifp; 2171 int i; 2172 2173 AE_LOCK_ASSERT(sc); 2174 2175 ifp = sc->ifp; 2176 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 2177 sc->flags &= ~AE_FLAG_LINK; 2178 sc->wd_timer = 0; /* Cancel watchdog. */ 2179 callout_stop(&sc->tick_ch); 2180 2181 /* 2182 * Clear and disable interrupts. 2183 */ 2184 AE_WRITE_4(sc, AE_IMR_REG, 0); 2185 AE_WRITE_4(sc, AE_ISR_REG, 0xffffffff); 2186 2187 /* 2188 * Stop Rx/Tx MACs. 2189 */ 2190 ae_stop_txmac(sc); 2191 ae_stop_rxmac(sc); 2192 2193 /* 2194 * Stop DMA engines. 2195 */ 2196 AE_WRITE_1(sc, AE_DMAREAD_REG, ~AE_DMAREAD_EN); 2197 AE_WRITE_1(sc, AE_DMAWRITE_REG, ~AE_DMAWRITE_EN); 2198 2199 /* 2200 * Wait for everything to enter idle state. 2201 */ 2202 for (i = 0; i < AE_IDLE_TIMEOUT; i++) { 2203 if (AE_READ_4(sc, AE_IDLE_REG) == 0) 2204 break; 2205 DELAY(100); 2206 } 2207 if (i == AE_IDLE_TIMEOUT) 2208 device_printf(sc->dev, "could not enter idle state in stop.\n"); 2209 } 2210 2211 static void 2212 ae_update_stats_tx(uint16_t flags, ae_stats_t *stats) 2213 { 2214 2215 if ((flags & AE_TXS_BCAST) != 0) 2216 stats->tx_bcast++; 2217 if ((flags & AE_TXS_MCAST) != 0) 2218 stats->tx_mcast++; 2219 if ((flags & AE_TXS_PAUSE) != 0) 2220 stats->tx_pause++; 2221 if ((flags & AE_TXS_CTRL) != 0) 2222 stats->tx_ctrl++; 2223 if ((flags & AE_TXS_DEFER) != 0) 2224 stats->tx_defer++; 2225 if ((flags & AE_TXS_EXCDEFER) != 0) 2226 stats->tx_excdefer++; 2227 if ((flags & AE_TXS_SINGLECOL) != 0) 2228 stats->tx_singlecol++; 2229 if ((flags & AE_TXS_MULTICOL) != 0) 2230 stats->tx_multicol++; 2231 if ((flags & AE_TXS_LATECOL) != 0) 2232 stats->tx_latecol++; 2233 if ((flags & AE_TXS_ABORTCOL) != 0) 2234 stats->tx_abortcol++; 2235 if ((flags & AE_TXS_UNDERRUN) != 0) 2236 stats->tx_underrun++; 2237 } 2238 2239 static void 2240 ae_update_stats_rx(uint16_t flags, ae_stats_t *stats) 2241 { 2242 2243 if ((flags & AE_RXD_BCAST) != 0) 2244 stats->rx_bcast++; 2245 if ((flags & AE_RXD_MCAST) != 0) 2246 stats->rx_mcast++; 2247 if ((flags & AE_RXD_PAUSE) != 0) 2248 stats->rx_pause++; 2249 if ((flags & AE_RXD_CTRL) != 0) 2250 stats->rx_ctrl++; 2251 if ((flags & AE_RXD_CRCERR) != 0) 2252 stats->rx_crcerr++; 2253 if ((flags & AE_RXD_CODEERR) != 0) 2254 stats->rx_codeerr++; 2255 if ((flags & AE_RXD_RUNT) != 0) 2256 stats->rx_runt++; 2257 if ((flags & AE_RXD_FRAG) != 0) 2258 stats->rx_frag++; 2259 if ((flags & AE_RXD_TRUNC) != 0) 2260 stats->rx_trunc++; 2261 if ((flags & AE_RXD_ALIGN) != 0) 2262 stats->rx_align++; 2263 } 2264