xref: /freebsd/sys/dev/ae/if_ae.c (revision 3a56015a2f5d630910177fa79a522bb95511ccf7)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2008 Stanislav Sedov <stas@FreeBSD.org>.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  *
27  * Driver for Attansic Technology Corp. L2 FastEthernet adapter.
28  *
29  * This driver is heavily based on age(4) Attansic L1 driver by Pyun YongHyeon.
30  */
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/bus.h>
35 #include <sys/endian.h>
36 #include <sys/kernel.h>
37 #include <sys/lock.h>
38 #include <sys/malloc.h>
39 #include <sys/mbuf.h>
40 #include <sys/mutex.h>
41 #include <sys/rman.h>
42 #include <sys/module.h>
43 #include <sys/queue.h>
44 #include <sys/socket.h>
45 #include <sys/sockio.h>
46 #include <sys/sysctl.h>
47 #include <sys/taskqueue.h>
48 
49 #include <net/bpf.h>
50 #include <net/if.h>
51 #include <net/if_var.h>
52 #include <net/if_arp.h>
53 #include <net/ethernet.h>
54 #include <net/if_dl.h>
55 #include <net/if_media.h>
56 #include <net/if_types.h>
57 #include <net/if_vlan_var.h>
58 
59 #include <netinet/in.h>
60 #include <netinet/in_systm.h>
61 #include <netinet/ip.h>
62 #include <netinet/tcp.h>
63 
64 #include <dev/mii/mii.h>
65 #include <dev/mii/miivar.h>
66 #include <dev/pci/pcireg.h>
67 #include <dev/pci/pcivar.h>
68 
69 #include <machine/bus.h>
70 
71 #include "miibus_if.h"
72 
73 #include "if_aereg.h"
74 #include "if_aevar.h"
75 
76 /*
77  * Devices supported by this driver.
78  */
79 static struct ae_dev {
80 	uint16_t	vendorid;
81 	uint16_t	deviceid;
82 	const char	*name;
83 } ae_devs[] = {
84 	{ VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L2,
85 		"Attansic Technology Corp, L2 FastEthernet" },
86 };
87 #define	AE_DEVS_COUNT nitems(ae_devs)
88 
89 static struct resource_spec ae_res_spec_mem[] = {
90 	{ SYS_RES_MEMORY,       PCIR_BAR(0),    RF_ACTIVE },
91 	{ -1,			0,		0 }
92 };
93 static struct resource_spec ae_res_spec_irq[] = {
94 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
95 	{ -1,			0,		0 }
96 };
97 static struct resource_spec ae_res_spec_msi[] = {
98 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
99 	{ -1,			0,		0 }
100 };
101 
102 static int	ae_probe(device_t dev);
103 static int	ae_attach(device_t dev);
104 static void	ae_pcie_init(ae_softc_t *sc);
105 static void	ae_phy_reset(ae_softc_t *sc);
106 static void	ae_phy_init(ae_softc_t *sc);
107 static int	ae_reset(ae_softc_t *sc);
108 static void	ae_init(void *arg);
109 static int	ae_init_locked(ae_softc_t *sc);
110 static int	ae_detach(device_t dev);
111 static int	ae_miibus_readreg(device_t dev, int phy, int reg);
112 static int	ae_miibus_writereg(device_t dev, int phy, int reg, int val);
113 static void	ae_miibus_statchg(device_t dev);
114 static void	ae_mediastatus(if_t ifp, struct ifmediareq *ifmr);
115 static int	ae_mediachange(if_t ifp);
116 static void	ae_retrieve_address(ae_softc_t *sc);
117 static void	ae_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs,
118     int error);
119 static int	ae_alloc_rings(ae_softc_t *sc);
120 static void	ae_dma_free(ae_softc_t *sc);
121 static int	ae_shutdown(device_t dev);
122 static int	ae_suspend(device_t dev);
123 static void	ae_powersave_disable(ae_softc_t *sc);
124 static void	ae_powersave_enable(ae_softc_t *sc);
125 static int	ae_resume(device_t dev);
126 static unsigned int	ae_tx_avail_size(ae_softc_t *sc);
127 static int	ae_encap(ae_softc_t *sc, struct mbuf **m_head);
128 static void	ae_start(if_t ifp);
129 static void	ae_start_locked(if_t ifp);
130 static void	ae_link_task(void *arg, int pending);
131 static void	ae_stop_rxmac(ae_softc_t *sc);
132 static void	ae_stop_txmac(ae_softc_t *sc);
133 static void	ae_mac_config(ae_softc_t *sc);
134 static int	ae_intr(void *arg);
135 static void	ae_int_task(void *arg, int pending);
136 static void	ae_tx_intr(ae_softc_t *sc);
137 static void	ae_rxeof(ae_softc_t *sc, ae_rxd_t *rxd);
138 static void	ae_rx_intr(ae_softc_t *sc);
139 static void	ae_watchdog(ae_softc_t *sc);
140 static void	ae_tick(void *arg);
141 static void	ae_rxfilter(ae_softc_t *sc);
142 static void	ae_rxvlan(ae_softc_t *sc);
143 static int	ae_ioctl(if_t ifp, u_long cmd, caddr_t data);
144 static void	ae_stop(ae_softc_t *sc);
145 static int	ae_check_eeprom_present(ae_softc_t *sc, int *vpdc);
146 static int	ae_vpd_read_word(ae_softc_t *sc, int reg, uint32_t *word);
147 static int	ae_get_vpd_eaddr(ae_softc_t *sc, uint32_t *eaddr);
148 static int	ae_get_reg_eaddr(ae_softc_t *sc, uint32_t *eaddr);
149 static void	ae_update_stats_rx(uint16_t flags, ae_stats_t *stats);
150 static void	ae_update_stats_tx(uint16_t flags, ae_stats_t *stats);
151 static void	ae_init_tunables(ae_softc_t *sc);
152 
153 static device_method_t ae_methods[] = {
154 	/* Device interface. */
155 	DEVMETHOD(device_probe,		ae_probe),
156 	DEVMETHOD(device_attach,	ae_attach),
157 	DEVMETHOD(device_detach,	ae_detach),
158 	DEVMETHOD(device_shutdown,	ae_shutdown),
159 	DEVMETHOD(device_suspend,	ae_suspend),
160 	DEVMETHOD(device_resume,	ae_resume),
161 
162 	/* MII interface. */
163 	DEVMETHOD(miibus_readreg,	ae_miibus_readreg),
164 	DEVMETHOD(miibus_writereg,	ae_miibus_writereg),
165 	DEVMETHOD(miibus_statchg,	ae_miibus_statchg),
166 	{ NULL, NULL }
167 };
168 static driver_t ae_driver = {
169         "ae",
170         ae_methods,
171         sizeof(ae_softc_t)
172 };
173 
174 DRIVER_MODULE(ae, pci, ae_driver, 0, 0);
175 MODULE_PNP_INFO("U16:vendor;U16:device;D:#", pci, ae, ae_devs,
176     nitems(ae_devs));
177 DRIVER_MODULE(miibus, ae, miibus_driver, 0, 0);
178 MODULE_DEPEND(ae, pci, 1, 1, 1);
179 MODULE_DEPEND(ae, ether, 1, 1, 1);
180 MODULE_DEPEND(ae, miibus, 1, 1, 1);
181 
182 /*
183  * Tunables.
184  */
185 static int msi_disable = 0;
186 TUNABLE_INT("hw.ae.msi_disable", &msi_disable);
187 
188 #define	AE_READ_4(sc, reg) \
189 	bus_read_4((sc)->mem[0], (reg))
190 #define	AE_READ_2(sc, reg) \
191 	bus_read_2((sc)->mem[0], (reg))
192 #define	AE_READ_1(sc, reg) \
193 	bus_read_1((sc)->mem[0], (reg))
194 #define	AE_WRITE_4(sc, reg, val) \
195 	bus_write_4((sc)->mem[0], (reg), (val))
196 #define	AE_WRITE_2(sc, reg, val) \
197 	bus_write_2((sc)->mem[0], (reg), (val))
198 #define	AE_WRITE_1(sc, reg, val) \
199 	bus_write_1((sc)->mem[0], (reg), (val))
200 #define	AE_PHY_READ(sc, reg) \
201 	ae_miibus_readreg(sc->dev, 0, reg)
202 #define	AE_PHY_WRITE(sc, reg, val) \
203 	ae_miibus_writereg(sc->dev, 0, reg, val)
204 #define	AE_CHECK_EADDR_VALID(eaddr) \
205 	((eaddr[0] == 0 && eaddr[1] == 0) || \
206 	(eaddr[0] == 0xffffffff && eaddr[1] == 0xffff))
207 #define	AE_RXD_VLAN(vtag) \
208 	(((vtag) >> 4) | (((vtag) & 0x07) << 13) | (((vtag) & 0x08) << 9))
209 #define	AE_TXD_VLAN(vtag) \
210 	(((vtag) << 4) | (((vtag) >> 13) & 0x07) | (((vtag) >> 9) & 0x08))
211 
212 static int
213 ae_probe(device_t dev)
214 {
215 	uint16_t deviceid, vendorid;
216 	int i;
217 
218 	vendorid = pci_get_vendor(dev);
219 	deviceid = pci_get_device(dev);
220 
221 	/*
222 	 * Search through the list of supported devs for matching one.
223 	 */
224 	for (i = 0; i < AE_DEVS_COUNT; i++) {
225 		if (vendorid == ae_devs[i].vendorid &&
226 		    deviceid == ae_devs[i].deviceid) {
227 			device_set_desc(dev, ae_devs[i].name);
228 			return (BUS_PROBE_DEFAULT);
229 		}
230 	}
231 	return (ENXIO);
232 }
233 
234 static int
235 ae_attach(device_t dev)
236 {
237 	ae_softc_t *sc;
238 	if_t ifp;
239 	uint8_t chiprev;
240 	uint32_t pcirev;
241 	int nmsi, pmc;
242 	int error;
243 
244 	sc = device_get_softc(dev); /* Automatically allocated and zeroed
245 				       on attach. */
246 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
247 	sc->dev = dev;
248 
249 	/*
250 	 * Initialize mutexes and tasks.
251 	 */
252 	mtx_init(&sc->mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF);
253 	callout_init_mtx(&sc->tick_ch, &sc->mtx, 0);
254 	TASK_INIT(&sc->int_task, 0, ae_int_task, sc);
255 	TASK_INIT(&sc->link_task, 0, ae_link_task, sc);
256 
257 	pci_enable_busmaster(dev);		/* Enable bus mastering. */
258 
259 	sc->spec_mem = ae_res_spec_mem;
260 
261 	/*
262 	 * Allocate memory-mapped registers.
263 	 */
264 	error = bus_alloc_resources(dev, sc->spec_mem, sc->mem);
265 	if (error != 0) {
266 		device_printf(dev, "could not allocate memory resources.\n");
267 		sc->spec_mem = NULL;
268 		goto fail;
269 	}
270 
271 	/*
272 	 * Retrieve PCI and chip revisions.
273 	 */
274 	pcirev = pci_get_revid(dev);
275 	chiprev = (AE_READ_4(sc, AE_MASTER_REG) >> AE_MASTER_REVNUM_SHIFT) &
276 	    AE_MASTER_REVNUM_MASK;
277 	if (bootverbose) {
278 		device_printf(dev, "pci device revision: %#04x\n", pcirev);
279 		device_printf(dev, "chip id: %#02x\n", chiprev);
280 	}
281 	nmsi = pci_msi_count(dev);
282 	if (bootverbose)
283 		device_printf(dev, "MSI count: %d.\n", nmsi);
284 
285 	/*
286 	 * Allocate interrupt resources.
287 	 */
288 	if (msi_disable == 0 && nmsi == 1) {
289 		error = pci_alloc_msi(dev, &nmsi);
290 		if (error == 0) {
291 			device_printf(dev, "Using MSI messages.\n");
292 			sc->spec_irq = ae_res_spec_msi;
293 			error = bus_alloc_resources(dev, sc->spec_irq, sc->irq);
294 			if (error != 0) {
295 				device_printf(dev, "MSI allocation failed.\n");
296 				sc->spec_irq = NULL;
297 				pci_release_msi(dev);
298 			} else {
299 				sc->flags |= AE_FLAG_MSI;
300 			}
301 		}
302 	}
303 	if (sc->spec_irq == NULL) {
304 		sc->spec_irq = ae_res_spec_irq;
305 		error = bus_alloc_resources(dev, sc->spec_irq, sc->irq);
306 		if (error != 0) {
307 			device_printf(dev, "could not allocate IRQ resources.\n");
308 			sc->spec_irq = NULL;
309 			goto fail;
310 		}
311 	}
312 
313 	ae_init_tunables(sc);
314 
315 	ae_phy_reset(sc);		/* Reset PHY. */
316 	error = ae_reset(sc);		/* Reset the controller itself. */
317 	if (error != 0)
318 		goto fail;
319 
320 	ae_pcie_init(sc);
321 
322 	ae_retrieve_address(sc);	/* Load MAC address. */
323 
324 	error = ae_alloc_rings(sc);	/* Allocate ring buffers. */
325 	if (error != 0)
326 		goto fail;
327 
328 	ifp = sc->ifp = if_alloc(IFT_ETHER);
329 	if_setsoftc(ifp, sc);
330 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
331 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
332 	if_setioctlfn(ifp, ae_ioctl);
333 	if_setstartfn(ifp, ae_start);
334 	if_setinitfn(ifp, ae_init);
335 	if_setcapabilities(ifp, IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING);
336 	if_sethwassist(ifp, 0);
337 	if_setsendqlen(ifp, ifqmaxlen);
338 	if_setsendqready(ifp);
339 	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) {
340 		if_setcapabilitiesbit(ifp, IFCAP_WOL_MAGIC, 0);
341 		sc->flags |= AE_FLAG_PMG;
342 	}
343 	if_setcapenable(ifp, if_getcapabilities(ifp));
344 
345 	/*
346 	 * Configure and attach MII bus.
347 	 */
348 	error = mii_attach(dev, &sc->miibus, ifp, ae_mediachange,
349 	    ae_mediastatus, BMSR_DEFCAPMASK, AE_PHYADDR_DEFAULT,
350 	    MII_OFFSET_ANY, 0);
351 	if (error != 0) {
352 		device_printf(dev, "attaching PHYs failed\n");
353 		goto fail;
354 	}
355 
356 	ether_ifattach(ifp, sc->eaddr);
357 	/* Tell the upper layer(s) we support long frames. */
358 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
359 
360 	/*
361 	 * Create and run all helper tasks.
362 	 */
363 	sc->tq = taskqueue_create_fast("ae_taskq", M_WAITOK,
364             taskqueue_thread_enqueue, &sc->tq);
365 	taskqueue_start_threads(&sc->tq, 1, PI_NET, "%s taskq",
366 	    device_get_nameunit(sc->dev));
367 
368 	/*
369 	 * Configure interrupt handlers.
370 	 */
371 	error = bus_setup_intr(dev, sc->irq[0], INTR_TYPE_NET | INTR_MPSAFE,
372 	    ae_intr, NULL, sc, &sc->intrhand);
373 	if (error != 0) {
374 		device_printf(dev, "could not set up interrupt handler.\n");
375 		taskqueue_free(sc->tq);
376 		sc->tq = NULL;
377 		ether_ifdetach(ifp);
378 		goto fail;
379 	}
380 
381 fail:
382 	if (error != 0)
383 		ae_detach(dev);
384 
385 	return (error);
386 }
387 
388 #define	AE_SYSCTL(stx, parent, name, desc, ptr)	\
389 	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, name, CTLFLAG_RD, ptr, 0, desc)
390 
391 static void
392 ae_init_tunables(ae_softc_t *sc)
393 {
394 	struct sysctl_ctx_list *ctx;
395 	struct sysctl_oid *root, *stats, *stats_rx, *stats_tx;
396 	struct ae_stats *ae_stats;
397 
398 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
399 	ae_stats = &sc->stats;
400 
401 	ctx = device_get_sysctl_ctx(sc->dev);
402 	root = device_get_sysctl_tree(sc->dev);
403 	stats = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(root), OID_AUTO, "stats",
404 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "ae statistics");
405 
406 	/*
407 	 * Receiver statistcics.
408 	 */
409 	stats_rx = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(stats), OID_AUTO, "rx",
410 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Rx MAC statistics");
411 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "bcast",
412 	    "broadcast frames", &ae_stats->rx_bcast);
413 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "mcast",
414 	    "multicast frames", &ae_stats->rx_mcast);
415 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "pause",
416 	    "PAUSE frames", &ae_stats->rx_pause);
417 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "control",
418 	    "control frames", &ae_stats->rx_ctrl);
419 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "crc_errors",
420 	    "frames with CRC errors", &ae_stats->rx_crcerr);
421 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "code_errors",
422 	    "frames with invalid opcode", &ae_stats->rx_codeerr);
423 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "runt",
424 	    "runt frames", &ae_stats->rx_runt);
425 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "frag",
426 	    "fragmented frames", &ae_stats->rx_frag);
427 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "align_errors",
428 	    "frames with alignment errors", &ae_stats->rx_align);
429 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "truncated",
430 	    "frames truncated due to Rx FIFO inderrun", &ae_stats->rx_trunc);
431 
432 	/*
433 	 * Receiver statistcics.
434 	 */
435 	stats_tx = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(stats), OID_AUTO, "tx",
436 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Tx MAC statistics");
437 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "bcast",
438 	    "broadcast frames", &ae_stats->tx_bcast);
439 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "mcast",
440 	    "multicast frames", &ae_stats->tx_mcast);
441 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "pause",
442 	    "PAUSE frames", &ae_stats->tx_pause);
443 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "control",
444 	    "control frames", &ae_stats->tx_ctrl);
445 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "defers",
446 	    "deferrals occuried", &ae_stats->tx_defer);
447 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "exc_defers",
448 	    "excessive deferrals occuried", &ae_stats->tx_excdefer);
449 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "singlecols",
450 	    "single collisions occuried", &ae_stats->tx_singlecol);
451 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "multicols",
452 	    "multiple collisions occuried", &ae_stats->tx_multicol);
453 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "latecols",
454 	    "late collisions occuried", &ae_stats->tx_latecol);
455 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "aborts",
456 	    "transmit aborts due collisions", &ae_stats->tx_abortcol);
457 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "underruns",
458 	    "Tx FIFO underruns", &ae_stats->tx_underrun);
459 }
460 
461 static void
462 ae_pcie_init(ae_softc_t *sc)
463 {
464 
465 	AE_WRITE_4(sc, AE_PCIE_LTSSM_TESTMODE_REG, AE_PCIE_LTSSM_TESTMODE_DEFAULT);
466 	AE_WRITE_4(sc, AE_PCIE_DLL_TX_CTRL_REG, AE_PCIE_DLL_TX_CTRL_DEFAULT);
467 }
468 
469 static void
470 ae_phy_reset(ae_softc_t *sc)
471 {
472 
473 	AE_WRITE_4(sc, AE_PHY_ENABLE_REG, AE_PHY_ENABLE);
474 	DELAY(1000);	/* XXX: pause(9) ? */
475 }
476 
477 static int
478 ae_reset(ae_softc_t *sc)
479 {
480 	int i;
481 
482 	/*
483 	 * Issue a soft reset.
484 	 */
485 	AE_WRITE_4(sc, AE_MASTER_REG, AE_MASTER_SOFT_RESET);
486 	bus_barrier(sc->mem[0], AE_MASTER_REG, 4,
487 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
488 
489 	/*
490 	 * Wait for reset to complete.
491 	 */
492 	for (i = 0; i < AE_RESET_TIMEOUT; i++) {
493 		if ((AE_READ_4(sc, AE_MASTER_REG) & AE_MASTER_SOFT_RESET) == 0)
494 			break;
495 		DELAY(10);
496 	}
497 	if (i == AE_RESET_TIMEOUT) {
498 		device_printf(sc->dev, "reset timeout.\n");
499 		return (ENXIO);
500 	}
501 
502 	/*
503 	 * Wait for everything to enter idle state.
504 	 */
505 	for (i = 0; i < AE_IDLE_TIMEOUT; i++) {
506 		if (AE_READ_4(sc, AE_IDLE_REG) == 0)
507 			break;
508 		DELAY(100);
509 	}
510 	if (i == AE_IDLE_TIMEOUT) {
511 		device_printf(sc->dev, "could not enter idle state.\n");
512 		return (ENXIO);
513 	}
514 	return (0);
515 }
516 
517 static void
518 ae_init(void *arg)
519 {
520 	ae_softc_t *sc;
521 
522 	sc = (ae_softc_t *)arg;
523 	AE_LOCK(sc);
524 	ae_init_locked(sc);
525 	AE_UNLOCK(sc);
526 }
527 
528 static void
529 ae_phy_init(ae_softc_t *sc)
530 {
531 
532 	/*
533 	 * Enable link status change interrupt.
534 	 * XXX magic numbers.
535 	 */
536 #ifdef notyet
537 	AE_PHY_WRITE(sc, 18, 0xc00);
538 #endif
539 }
540 
541 static int
542 ae_init_locked(ae_softc_t *sc)
543 {
544 	if_t ifp;
545 	struct mii_data *mii;
546 	uint8_t eaddr[ETHER_ADDR_LEN];
547 	uint32_t val;
548 	bus_addr_t addr;
549 
550 	AE_LOCK_ASSERT(sc);
551 
552 	ifp = sc->ifp;
553 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
554 		return (0);
555 	mii = device_get_softc(sc->miibus);
556 
557 	ae_stop(sc);
558 	ae_reset(sc);
559 	ae_pcie_init(sc);		/* Initialize PCIE stuff. */
560 	ae_phy_init(sc);
561 	ae_powersave_disable(sc);
562 
563 	/*
564 	 * Clear and disable interrupts.
565 	 */
566 	AE_WRITE_4(sc, AE_ISR_REG, 0xffffffff);
567 
568 	/*
569 	 * Set the MAC address.
570 	 */
571 	bcopy(if_getlladdr(ifp), eaddr, ETHER_ADDR_LEN);
572 	val = eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5];
573 	AE_WRITE_4(sc, AE_EADDR0_REG, val);
574 	val = eaddr[0] << 8 | eaddr[1];
575 	AE_WRITE_4(sc, AE_EADDR1_REG, val);
576 
577 	bzero(sc->rxd_base_dma, AE_RXD_COUNT_DEFAULT * 1536 + AE_RXD_PADDING);
578 	bzero(sc->txd_base, AE_TXD_BUFSIZE_DEFAULT);
579 	bzero(sc->txs_base, AE_TXS_COUNT_DEFAULT * 4);
580 	/*
581 	 * Set ring buffers base addresses.
582 	 */
583 	addr = sc->dma_rxd_busaddr;
584 	AE_WRITE_4(sc, AE_DESC_ADDR_HI_REG, BUS_ADDR_HI(addr));
585 	AE_WRITE_4(sc, AE_RXD_ADDR_LO_REG, BUS_ADDR_LO(addr));
586 	addr = sc->dma_txd_busaddr;
587 	AE_WRITE_4(sc, AE_TXD_ADDR_LO_REG, BUS_ADDR_LO(addr));
588 	addr = sc->dma_txs_busaddr;
589 	AE_WRITE_4(sc, AE_TXS_ADDR_LO_REG, BUS_ADDR_LO(addr));
590 
591 	/*
592 	 * Configure ring buffers sizes.
593 	 */
594 	AE_WRITE_2(sc, AE_RXD_COUNT_REG, AE_RXD_COUNT_DEFAULT);
595 	AE_WRITE_2(sc, AE_TXD_BUFSIZE_REG, AE_TXD_BUFSIZE_DEFAULT / 4);
596 	AE_WRITE_2(sc, AE_TXS_COUNT_REG, AE_TXS_COUNT_DEFAULT);
597 
598 	/*
599 	 * Configure interframe gap parameters.
600 	 */
601 	val = ((AE_IFG_TXIPG_DEFAULT << AE_IFG_TXIPG_SHIFT) &
602 	    AE_IFG_TXIPG_MASK) |
603 	    ((AE_IFG_RXIPG_DEFAULT << AE_IFG_RXIPG_SHIFT) &
604 	    AE_IFG_RXIPG_MASK) |
605 	    ((AE_IFG_IPGR1_DEFAULT << AE_IFG_IPGR1_SHIFT) &
606 	    AE_IFG_IPGR1_MASK) |
607 	    ((AE_IFG_IPGR2_DEFAULT << AE_IFG_IPGR2_SHIFT) &
608 	    AE_IFG_IPGR2_MASK);
609 	AE_WRITE_4(sc, AE_IFG_REG, val);
610 
611 	/*
612 	 * Configure half-duplex operation.
613 	 */
614 	val = ((AE_HDPX_LCOL_DEFAULT << AE_HDPX_LCOL_SHIFT) &
615 	    AE_HDPX_LCOL_MASK) |
616 	    ((AE_HDPX_RETRY_DEFAULT << AE_HDPX_RETRY_SHIFT) &
617 	    AE_HDPX_RETRY_MASK) |
618 	    ((AE_HDPX_ABEBT_DEFAULT << AE_HDPX_ABEBT_SHIFT) &
619 	    AE_HDPX_ABEBT_MASK) |
620 	    ((AE_HDPX_JAMIPG_DEFAULT << AE_HDPX_JAMIPG_SHIFT) &
621 	    AE_HDPX_JAMIPG_MASK) | AE_HDPX_EXC_EN;
622 	AE_WRITE_4(sc, AE_HDPX_REG, val);
623 
624 	/*
625 	 * Configure interrupt moderate timer.
626 	 */
627 	AE_WRITE_2(sc, AE_IMT_REG, AE_IMT_DEFAULT);
628 	val = AE_READ_4(sc, AE_MASTER_REG);
629 	val |= AE_MASTER_IMT_EN;
630 	AE_WRITE_4(sc, AE_MASTER_REG, val);
631 
632 	/*
633 	 * Configure interrupt clearing timer.
634 	 */
635 	AE_WRITE_2(sc, AE_ICT_REG, AE_ICT_DEFAULT);
636 
637 	/*
638 	 * Configure MTU.
639 	 */
640 	val = if_getmtu(ifp) + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
641 	    ETHER_CRC_LEN;
642 	AE_WRITE_2(sc, AE_MTU_REG, val);
643 
644 	/*
645 	 * Configure cut-through threshold.
646 	 */
647 	AE_WRITE_4(sc, AE_CUT_THRESH_REG, AE_CUT_THRESH_DEFAULT);
648 
649 	/*
650 	 * Configure flow control.
651 	 */
652 	AE_WRITE_2(sc, AE_FLOW_THRESH_HI_REG, (AE_RXD_COUNT_DEFAULT / 8) * 7);
653 	AE_WRITE_2(sc, AE_FLOW_THRESH_LO_REG, (AE_RXD_COUNT_MIN / 8) >
654 	    (AE_RXD_COUNT_DEFAULT / 12) ? (AE_RXD_COUNT_MIN / 8) :
655 	    (AE_RXD_COUNT_DEFAULT / 12));
656 
657 	/*
658 	 * Init mailboxes.
659 	 */
660 	sc->txd_cur = sc->rxd_cur = 0;
661 	sc->txs_ack = sc->txd_ack = 0;
662 	sc->rxd_cur = 0;
663 	AE_WRITE_2(sc, AE_MB_TXD_IDX_REG, sc->txd_cur);
664 	AE_WRITE_2(sc, AE_MB_RXD_IDX_REG, sc->rxd_cur);
665 
666 	sc->tx_inproc = 0;	/* Number of packets the chip processes now. */
667 	sc->flags |= AE_FLAG_TXAVAIL;	/* Free Tx's available. */
668 
669 	/*
670 	 * Enable DMA.
671 	 */
672 	AE_WRITE_1(sc, AE_DMAREAD_REG, AE_DMAREAD_EN);
673 	AE_WRITE_1(sc, AE_DMAWRITE_REG, AE_DMAWRITE_EN);
674 
675 	/*
676 	 * Check if everything is OK.
677 	 */
678 	val = AE_READ_4(sc, AE_ISR_REG);
679 	if ((val & AE_ISR_PHY_LINKDOWN) != 0) {
680 		device_printf(sc->dev, "Initialization failed.\n");
681 		return (ENXIO);
682 	}
683 
684 	/*
685 	 * Clear interrupt status.
686 	 */
687 	AE_WRITE_4(sc, AE_ISR_REG, 0x3fffffff);
688 	AE_WRITE_4(sc, AE_ISR_REG, 0x0);
689 
690 	/*
691 	 * Enable interrupts.
692 	 */
693 	val = AE_READ_4(sc, AE_MASTER_REG);
694 	AE_WRITE_4(sc, AE_MASTER_REG, val | AE_MASTER_MANUAL_INT);
695 	AE_WRITE_4(sc, AE_IMR_REG, AE_IMR_DEFAULT);
696 
697 	/*
698 	 * Disable WOL.
699 	 */
700 	AE_WRITE_4(sc, AE_WOL_REG, 0);
701 
702 	/*
703 	 * Configure MAC.
704 	 */
705 	val = AE_MAC_TX_CRC_EN | AE_MAC_TX_AUTOPAD |
706 	    AE_MAC_FULL_DUPLEX | AE_MAC_CLK_PHY |
707 	    AE_MAC_TX_FLOW_EN | AE_MAC_RX_FLOW_EN |
708 	    ((AE_HALFBUF_DEFAULT << AE_HALFBUF_SHIFT) & AE_HALFBUF_MASK) |
709 	    ((AE_MAC_PREAMBLE_DEFAULT << AE_MAC_PREAMBLE_SHIFT) &
710 	    AE_MAC_PREAMBLE_MASK);
711 	AE_WRITE_4(sc, AE_MAC_REG, val);
712 
713 	/*
714 	 * Configure Rx MAC.
715 	 */
716 	ae_rxfilter(sc);
717 	ae_rxvlan(sc);
718 
719 	/*
720 	 * Enable Tx/Rx.
721 	 */
722 	val = AE_READ_4(sc, AE_MAC_REG);
723 	AE_WRITE_4(sc, AE_MAC_REG, val | AE_MAC_TX_EN | AE_MAC_RX_EN);
724 
725 	sc->flags &= ~AE_FLAG_LINK;
726 	mii_mediachg(mii);	/* Switch to the current media. */
727 
728 	callout_reset(&sc->tick_ch, hz, ae_tick, sc);
729 
730 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
731 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
732 
733 #ifdef AE_DEBUG
734 	device_printf(sc->dev, "Initialization complete.\n");
735 #endif
736 
737 	return (0);
738 }
739 
740 static int
741 ae_detach(device_t dev)
742 {
743 	struct ae_softc *sc;
744 	if_t ifp;
745 
746 	sc = device_get_softc(dev);
747 	KASSERT(sc != NULL, ("[ae: %d]: sc is NULL", __LINE__));
748 	ifp = sc->ifp;
749 	if (device_is_attached(dev)) {
750 		AE_LOCK(sc);
751 		sc->flags |= AE_FLAG_DETACH;
752 		ae_stop(sc);
753 		AE_UNLOCK(sc);
754 		callout_drain(&sc->tick_ch);
755 		taskqueue_drain(sc->tq, &sc->int_task);
756 		taskqueue_drain(taskqueue_swi, &sc->link_task);
757 		ether_ifdetach(ifp);
758 	}
759 	if (sc->tq != NULL) {
760 		taskqueue_drain(sc->tq, &sc->int_task);
761 		taskqueue_free(sc->tq);
762 		sc->tq = NULL;
763 	}
764 	if (sc->miibus != NULL) {
765 		device_delete_child(dev, sc->miibus);
766 		sc->miibus = NULL;
767 	}
768 	bus_generic_detach(sc->dev);
769 	ae_dma_free(sc);
770 	if (sc->intrhand != NULL) {
771 		bus_teardown_intr(dev, sc->irq[0], sc->intrhand);
772 		sc->intrhand = NULL;
773 	}
774 	if (ifp != NULL) {
775 		if_free(ifp);
776 		sc->ifp = NULL;
777 	}
778 	if (sc->spec_irq != NULL)
779 		bus_release_resources(dev, sc->spec_irq, sc->irq);
780 	if (sc->spec_mem != NULL)
781 		bus_release_resources(dev, sc->spec_mem, sc->mem);
782 	if ((sc->flags & AE_FLAG_MSI) != 0)
783 		pci_release_msi(dev);
784 	mtx_destroy(&sc->mtx);
785 
786 	return (0);
787 }
788 
789 static int
790 ae_miibus_readreg(device_t dev, int phy, int reg)
791 {
792 	ae_softc_t *sc;
793 	uint32_t val;
794 	int i;
795 
796 	sc = device_get_softc(dev);
797 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
798 
799 	/*
800 	 * Locking is done in upper layers.
801 	 */
802 
803 	val = ((reg << AE_MDIO_REGADDR_SHIFT) & AE_MDIO_REGADDR_MASK) |
804 	    AE_MDIO_START | AE_MDIO_READ | AE_MDIO_SUP_PREAMBLE |
805 	    ((AE_MDIO_CLK_25_4 << AE_MDIO_CLK_SHIFT) & AE_MDIO_CLK_MASK);
806 	AE_WRITE_4(sc, AE_MDIO_REG, val);
807 
808 	/*
809 	 * Wait for operation to complete.
810 	 */
811 	for (i = 0; i < AE_MDIO_TIMEOUT; i++) {
812 		DELAY(2);
813 		val = AE_READ_4(sc, AE_MDIO_REG);
814 		if ((val & (AE_MDIO_START | AE_MDIO_BUSY)) == 0)
815 			break;
816 	}
817 	if (i == AE_MDIO_TIMEOUT) {
818 		device_printf(sc->dev, "phy read timeout: %d.\n", reg);
819 		return (0);
820 	}
821 	return ((val << AE_MDIO_DATA_SHIFT) & AE_MDIO_DATA_MASK);
822 }
823 
824 static int
825 ae_miibus_writereg(device_t dev, int phy, int reg, int val)
826 {
827 	ae_softc_t *sc;
828 	uint32_t aereg;
829 	int i;
830 
831 	sc = device_get_softc(dev);
832 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
833 
834 	/*
835 	 * Locking is done in upper layers.
836 	 */
837 
838 	aereg = ((reg << AE_MDIO_REGADDR_SHIFT) & AE_MDIO_REGADDR_MASK) |
839 	    AE_MDIO_START | AE_MDIO_SUP_PREAMBLE |
840 	    ((AE_MDIO_CLK_25_4 << AE_MDIO_CLK_SHIFT) & AE_MDIO_CLK_MASK) |
841 	    ((val << AE_MDIO_DATA_SHIFT) & AE_MDIO_DATA_MASK);
842 	AE_WRITE_4(sc, AE_MDIO_REG, aereg);
843 
844 	/*
845 	 * Wait for operation to complete.
846 	 */
847 	for (i = 0; i < AE_MDIO_TIMEOUT; i++) {
848 		DELAY(2);
849 		aereg = AE_READ_4(sc, AE_MDIO_REG);
850 		if ((aereg & (AE_MDIO_START | AE_MDIO_BUSY)) == 0)
851 			break;
852 	}
853 	if (i == AE_MDIO_TIMEOUT) {
854 		device_printf(sc->dev, "phy write timeout: %d.\n", reg);
855 	}
856 	return (0);
857 }
858 
859 static void
860 ae_miibus_statchg(device_t dev)
861 {
862 	ae_softc_t *sc;
863 
864 	sc = device_get_softc(dev);
865 	taskqueue_enqueue(taskqueue_swi, &sc->link_task);
866 }
867 
868 static void
869 ae_mediastatus(if_t ifp, struct ifmediareq *ifmr)
870 {
871 	ae_softc_t *sc;
872 	struct mii_data *mii;
873 
874 	sc = if_getsoftc(ifp);
875 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
876 
877 	AE_LOCK(sc);
878 	mii = device_get_softc(sc->miibus);
879 	mii_pollstat(mii);
880 	ifmr->ifm_status = mii->mii_media_status;
881 	ifmr->ifm_active = mii->mii_media_active;
882 	AE_UNLOCK(sc);
883 }
884 
885 static int
886 ae_mediachange(if_t ifp)
887 {
888 	ae_softc_t *sc;
889 	struct mii_data *mii;
890 	struct mii_softc *mii_sc;
891 	int error;
892 
893 	/* XXX: check IFF_UP ?? */
894 	sc = if_getsoftc(ifp);
895 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
896 	AE_LOCK(sc);
897 	mii = device_get_softc(sc->miibus);
898 	LIST_FOREACH(mii_sc, &mii->mii_phys, mii_list)
899 		PHY_RESET(mii_sc);
900 	error = mii_mediachg(mii);
901 	AE_UNLOCK(sc);
902 
903 	return (error);
904 }
905 
906 static int
907 ae_check_eeprom_present(ae_softc_t *sc, int *vpdc)
908 {
909 	int error;
910 	uint32_t val;
911 
912 	KASSERT(vpdc != NULL, ("[ae, %d]: vpdc is NULL!\n", __LINE__));
913 
914 	/*
915 	 * Not sure why, but Linux does this.
916 	 */
917 	val = AE_READ_4(sc, AE_SPICTL_REG);
918 	if ((val & AE_SPICTL_VPD_EN) != 0) {
919 		val &= ~AE_SPICTL_VPD_EN;
920 		AE_WRITE_4(sc, AE_SPICTL_REG, val);
921 	}
922 	error = pci_find_cap(sc->dev, PCIY_VPD, vpdc);
923 	return (error);
924 }
925 
926 static int
927 ae_vpd_read_word(ae_softc_t *sc, int reg, uint32_t *word)
928 {
929 	uint32_t val;
930 	int i;
931 
932 	AE_WRITE_4(sc, AE_VPD_DATA_REG, 0);	/* Clear register value. */
933 
934 	/*
935 	 * VPD registers start at offset 0x100. Read them.
936 	 */
937 	val = 0x100 + reg * 4;
938 	AE_WRITE_4(sc, AE_VPD_CAP_REG, (val << AE_VPD_CAP_ADDR_SHIFT) &
939 	    AE_VPD_CAP_ADDR_MASK);
940 	for (i = 0; i < AE_VPD_TIMEOUT; i++) {
941 		DELAY(2000);
942 		val = AE_READ_4(sc, AE_VPD_CAP_REG);
943 		if ((val & AE_VPD_CAP_DONE) != 0)
944 			break;
945 	}
946 	if (i == AE_VPD_TIMEOUT) {
947 		device_printf(sc->dev, "timeout reading VPD register %d.\n",
948 		    reg);
949 		return (ETIMEDOUT);
950 	}
951 	*word = AE_READ_4(sc, AE_VPD_DATA_REG);
952 	return (0);
953 }
954 
955 static int
956 ae_get_vpd_eaddr(ae_softc_t *sc, uint32_t *eaddr)
957 {
958 	uint32_t word, reg, val;
959 	int error;
960 	int found;
961 	int vpdc;
962 	int i;
963 
964 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
965 	KASSERT(eaddr != NULL, ("[ae, %d]: eaddr is NULL", __LINE__));
966 
967 	/*
968 	 * Check for EEPROM.
969 	 */
970 	error = ae_check_eeprom_present(sc, &vpdc);
971 	if (error != 0)
972 		return (error);
973 
974 	/*
975 	 * Read the VPD configuration space.
976 	 * Each register is prefixed with signature,
977 	 * so we can check if it is valid.
978 	 */
979 	for (i = 0, found = 0; i < AE_VPD_NREGS; i++) {
980 		error = ae_vpd_read_word(sc, i, &word);
981 		if (error != 0)
982 			break;
983 
984 		/*
985 		 * Check signature.
986 		 */
987 		if ((word & AE_VPD_SIG_MASK) != AE_VPD_SIG)
988 			break;
989 		reg = word >> AE_VPD_REG_SHIFT;
990 		i++;	/* Move to the next word. */
991 
992 		if (reg != AE_EADDR0_REG && reg != AE_EADDR1_REG)
993 			continue;
994 
995 		error = ae_vpd_read_word(sc, i, &val);
996 		if (error != 0)
997 			break;
998 		if (reg == AE_EADDR0_REG)
999 			eaddr[0] = val;
1000 		else
1001 			eaddr[1] = val;
1002 		found++;
1003 	}
1004 
1005 	if (found < 2)
1006 		return (ENOENT);
1007 
1008 	eaddr[1] &= 0xffff;	/* Only last 2 bytes are used. */
1009 	if (AE_CHECK_EADDR_VALID(eaddr) != 0) {
1010 		if (bootverbose)
1011 			device_printf(sc->dev,
1012 			    "VPD ethernet address registers are invalid.\n");
1013 		return (EINVAL);
1014 	}
1015 	return (0);
1016 }
1017 
1018 static int
1019 ae_get_reg_eaddr(ae_softc_t *sc, uint32_t *eaddr)
1020 {
1021 
1022 	/*
1023 	 * BIOS is supposed to set this.
1024 	 */
1025 	eaddr[0] = AE_READ_4(sc, AE_EADDR0_REG);
1026 	eaddr[1] = AE_READ_4(sc, AE_EADDR1_REG);
1027 	eaddr[1] &= 0xffff;	/* Only last 2 bytes are used. */
1028 
1029 	if (AE_CHECK_EADDR_VALID(eaddr) != 0) {
1030 		if (bootverbose)
1031 			device_printf(sc->dev,
1032 			    "Ethernet address registers are invalid.\n");
1033 		return (EINVAL);
1034 	}
1035 	return (0);
1036 }
1037 
1038 static void
1039 ae_retrieve_address(ae_softc_t *sc)
1040 {
1041 	uint32_t eaddr[2] = {0, 0};
1042 	int error;
1043 
1044 	/*
1045 	 *Check for EEPROM.
1046 	 */
1047 	error = ae_get_vpd_eaddr(sc, eaddr);
1048 	if (error != 0)
1049 		error = ae_get_reg_eaddr(sc, eaddr);
1050 	if (error != 0) {
1051 		if (bootverbose)
1052 			device_printf(sc->dev,
1053 			    "Generating random ethernet address.\n");
1054 		eaddr[0] = arc4random();
1055 
1056 		/*
1057 		 * Set OUI to ASUSTek COMPUTER INC.
1058 		 */
1059 		sc->eaddr[0] = 0x02;	/* U/L bit set. */
1060 		sc->eaddr[1] = 0x1f;
1061 		sc->eaddr[2] = 0xc6;
1062 		sc->eaddr[3] = (eaddr[0] >> 16) & 0xff;
1063 		sc->eaddr[4] = (eaddr[0] >> 8) & 0xff;
1064 		sc->eaddr[5] = (eaddr[0] >> 0) & 0xff;
1065 	} else {
1066 		sc->eaddr[0] = (eaddr[1] >> 8) & 0xff;
1067 		sc->eaddr[1] = (eaddr[1] >> 0) & 0xff;
1068 		sc->eaddr[2] = (eaddr[0] >> 24) & 0xff;
1069 		sc->eaddr[3] = (eaddr[0] >> 16) & 0xff;
1070 		sc->eaddr[4] = (eaddr[0] >> 8) & 0xff;
1071 		sc->eaddr[5] = (eaddr[0] >> 0) & 0xff;
1072 	}
1073 }
1074 
1075 static void
1076 ae_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1077 {
1078 	bus_addr_t *addr = arg;
1079 
1080 	if (error != 0)
1081 		return;
1082 	KASSERT(nsegs == 1, ("[ae, %d]: %d segments instead of 1!", __LINE__,
1083 	    nsegs));
1084 	*addr = segs[0].ds_addr;
1085 }
1086 
1087 static int
1088 ae_alloc_rings(ae_softc_t *sc)
1089 {
1090 	bus_addr_t busaddr;
1091 	int error;
1092 
1093 	/*
1094 	 * Create parent DMA tag.
1095 	 */
1096 	error = bus_dma_tag_create(bus_get_dma_tag(sc->dev),
1097 	    1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
1098 	    NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 0,
1099 	    BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
1100 	    &sc->dma_parent_tag);
1101 	if (error != 0) {
1102 		device_printf(sc->dev, "could not creare parent DMA tag.\n");
1103 		return (error);
1104 	}
1105 
1106 	/*
1107 	 * Create DMA tag for TxD.
1108 	 */
1109 	error = bus_dma_tag_create(sc->dma_parent_tag,
1110 	    8, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1111 	    NULL, NULL, AE_TXD_BUFSIZE_DEFAULT, 1,
1112 	    AE_TXD_BUFSIZE_DEFAULT, 0, NULL, NULL,
1113 	    &sc->dma_txd_tag);
1114 	if (error != 0) {
1115 		device_printf(sc->dev, "could not creare TxD DMA tag.\n");
1116 		return (error);
1117 	}
1118 
1119 	/*
1120 	 * Create DMA tag for TxS.
1121 	 */
1122 	error = bus_dma_tag_create(sc->dma_parent_tag,
1123 	    8, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1124 	    NULL, NULL, AE_TXS_COUNT_DEFAULT * 4, 1,
1125 	    AE_TXS_COUNT_DEFAULT * 4, 0, NULL, NULL,
1126 	    &sc->dma_txs_tag);
1127 	if (error != 0) {
1128 		device_printf(sc->dev, "could not creare TxS DMA tag.\n");
1129 		return (error);
1130 	}
1131 
1132 	/*
1133 	 * Create DMA tag for RxD.
1134 	 */
1135 	error = bus_dma_tag_create(sc->dma_parent_tag,
1136 	    128, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1137 	    NULL, NULL, AE_RXD_COUNT_DEFAULT * 1536 + AE_RXD_PADDING, 1,
1138 	    AE_RXD_COUNT_DEFAULT * 1536 + AE_RXD_PADDING, 0, NULL, NULL,
1139 	    &sc->dma_rxd_tag);
1140 	if (error != 0) {
1141 		device_printf(sc->dev, "could not creare TxS DMA tag.\n");
1142 		return (error);
1143 	}
1144 
1145 	/*
1146 	 * Allocate TxD DMA memory.
1147 	 */
1148 	error = bus_dmamem_alloc(sc->dma_txd_tag, (void **)&sc->txd_base,
1149 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1150 	    &sc->dma_txd_map);
1151 	if (error != 0) {
1152 		device_printf(sc->dev,
1153 		    "could not allocate DMA memory for TxD ring.\n");
1154 		return (error);
1155 	}
1156 	error = bus_dmamap_load(sc->dma_txd_tag, sc->dma_txd_map, sc->txd_base,
1157 	    AE_TXD_BUFSIZE_DEFAULT, ae_dmamap_cb, &busaddr, BUS_DMA_NOWAIT);
1158 	if (error != 0 || busaddr == 0) {
1159 		device_printf(sc->dev,
1160 		    "could not load DMA map for TxD ring.\n");
1161 		return (error);
1162 	}
1163 	sc->dma_txd_busaddr = busaddr;
1164 
1165 	/*
1166 	 * Allocate TxS DMA memory.
1167 	 */
1168 	error = bus_dmamem_alloc(sc->dma_txs_tag, (void **)&sc->txs_base,
1169 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1170 	    &sc->dma_txs_map);
1171 	if (error != 0) {
1172 		device_printf(sc->dev,
1173 		    "could not allocate DMA memory for TxS ring.\n");
1174 		return (error);
1175 	}
1176 	error = bus_dmamap_load(sc->dma_txs_tag, sc->dma_txs_map, sc->txs_base,
1177 	    AE_TXS_COUNT_DEFAULT * 4, ae_dmamap_cb, &busaddr, BUS_DMA_NOWAIT);
1178 	if (error != 0 || busaddr == 0) {
1179 		device_printf(sc->dev,
1180 		    "could not load DMA map for TxS ring.\n");
1181 		return (error);
1182 	}
1183 	sc->dma_txs_busaddr = busaddr;
1184 
1185 	/*
1186 	 * Allocate RxD DMA memory.
1187 	 */
1188 	error = bus_dmamem_alloc(sc->dma_rxd_tag, (void **)&sc->rxd_base_dma,
1189 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1190 	    &sc->dma_rxd_map);
1191 	if (error != 0) {
1192 		device_printf(sc->dev,
1193 		    "could not allocate DMA memory for RxD ring.\n");
1194 		return (error);
1195 	}
1196 	error = bus_dmamap_load(sc->dma_rxd_tag, sc->dma_rxd_map,
1197 	    sc->rxd_base_dma, AE_RXD_COUNT_DEFAULT * 1536 + AE_RXD_PADDING,
1198 	    ae_dmamap_cb, &busaddr, BUS_DMA_NOWAIT);
1199 	if (error != 0 || busaddr == 0) {
1200 		device_printf(sc->dev,
1201 		    "could not load DMA map for RxD ring.\n");
1202 		return (error);
1203 	}
1204 	sc->dma_rxd_busaddr = busaddr + AE_RXD_PADDING;
1205 	sc->rxd_base = (ae_rxd_t *)(sc->rxd_base_dma + AE_RXD_PADDING);
1206 
1207 	return (0);
1208 }
1209 
1210 static void
1211 ae_dma_free(ae_softc_t *sc)
1212 {
1213 
1214 	if (sc->dma_txd_tag != NULL) {
1215 		if (sc->dma_txd_busaddr != 0)
1216 			bus_dmamap_unload(sc->dma_txd_tag, sc->dma_txd_map);
1217 		if (sc->txd_base != NULL)
1218 			bus_dmamem_free(sc->dma_txd_tag, sc->txd_base,
1219 			    sc->dma_txd_map);
1220 		bus_dma_tag_destroy(sc->dma_txd_tag);
1221 		sc->dma_txd_tag = NULL;
1222 		sc->txd_base = NULL;
1223 		sc->dma_txd_busaddr = 0;
1224 	}
1225 	if (sc->dma_txs_tag != NULL) {
1226 		if (sc->dma_txs_busaddr != 0)
1227 			bus_dmamap_unload(sc->dma_txs_tag, sc->dma_txs_map);
1228 		if (sc->txs_base != NULL)
1229 			bus_dmamem_free(sc->dma_txs_tag, sc->txs_base,
1230 			    sc->dma_txs_map);
1231 		bus_dma_tag_destroy(sc->dma_txs_tag);
1232 		sc->dma_txs_tag = NULL;
1233 		sc->txs_base = NULL;
1234 		sc->dma_txs_busaddr = 0;
1235 	}
1236 	if (sc->dma_rxd_tag != NULL) {
1237 		if (sc->dma_rxd_busaddr != 0)
1238 			bus_dmamap_unload(sc->dma_rxd_tag, sc->dma_rxd_map);
1239 		if (sc->rxd_base_dma != NULL)
1240 			bus_dmamem_free(sc->dma_rxd_tag, sc->rxd_base_dma,
1241 			    sc->dma_rxd_map);
1242 		bus_dma_tag_destroy(sc->dma_rxd_tag);
1243 		sc->dma_rxd_tag = NULL;
1244 		sc->rxd_base_dma = NULL;
1245 		sc->dma_rxd_busaddr = 0;
1246 	}
1247 	if (sc->dma_parent_tag != NULL) {
1248 		bus_dma_tag_destroy(sc->dma_parent_tag);
1249 		sc->dma_parent_tag = NULL;
1250 	}
1251 }
1252 
1253 static int
1254 ae_shutdown(device_t dev)
1255 {
1256 	ae_softc_t *sc;
1257 	int error;
1258 
1259 	sc = device_get_softc(dev);
1260 	KASSERT(sc != NULL, ("[ae: %d]: sc is NULL", __LINE__));
1261 
1262 	error = ae_suspend(dev);
1263 	AE_LOCK(sc);
1264 	ae_powersave_enable(sc);
1265 	AE_UNLOCK(sc);
1266 	return (error);
1267 }
1268 
1269 static void
1270 ae_powersave_disable(ae_softc_t *sc)
1271 {
1272 	uint32_t val;
1273 
1274 	AE_LOCK_ASSERT(sc);
1275 
1276 	AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 0);
1277 	val = AE_PHY_READ(sc, AE_PHY_DBG_DATA);
1278 	if (val & AE_PHY_DBG_POWERSAVE) {
1279 		val &= ~AE_PHY_DBG_POWERSAVE;
1280 		AE_PHY_WRITE(sc, AE_PHY_DBG_DATA, val);
1281 		DELAY(1000);
1282 	}
1283 }
1284 
1285 static void
1286 ae_powersave_enable(ae_softc_t *sc)
1287 {
1288 	uint32_t val;
1289 
1290 	AE_LOCK_ASSERT(sc);
1291 
1292 	/*
1293 	 * XXX magic numbers.
1294 	 */
1295 	AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 0);
1296 	val = AE_PHY_READ(sc, AE_PHY_DBG_DATA);
1297 	AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, val | 0x1000);
1298 	AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 2);
1299 	AE_PHY_WRITE(sc, AE_PHY_DBG_DATA, 0x3000);
1300 	AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 3);
1301 	AE_PHY_WRITE(sc, AE_PHY_DBG_DATA, 0);
1302 }
1303 
1304 static void
1305 ae_pm_init(ae_softc_t *sc)
1306 {
1307 	if_t ifp;
1308 	uint32_t val;
1309 	uint16_t pmstat;
1310 	struct mii_data *mii;
1311 	int pmc;
1312 
1313 	AE_LOCK_ASSERT(sc);
1314 
1315 	ifp = sc->ifp;
1316 	if ((sc->flags & AE_FLAG_PMG) == 0) {
1317 		/* Disable WOL entirely. */
1318 		AE_WRITE_4(sc, AE_WOL_REG, 0);
1319 		return;
1320 	}
1321 
1322 	/*
1323 	 * Configure WOL if enabled.
1324 	 */
1325 	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0) {
1326 		mii = device_get_softc(sc->miibus);
1327 		mii_pollstat(mii);
1328 		if ((mii->mii_media_status & IFM_AVALID) != 0 &&
1329 		    (mii->mii_media_status & IFM_ACTIVE) != 0) {
1330 			AE_WRITE_4(sc, AE_WOL_REG, AE_WOL_MAGIC | \
1331 			    AE_WOL_MAGIC_PME);
1332 
1333 			/*
1334 			 * Configure MAC.
1335 			 */
1336 			val = AE_MAC_RX_EN | AE_MAC_CLK_PHY | \
1337 			    AE_MAC_TX_CRC_EN | AE_MAC_TX_AUTOPAD | \
1338 			    ((AE_HALFBUF_DEFAULT << AE_HALFBUF_SHIFT) & \
1339 			    AE_HALFBUF_MASK) | \
1340 			    ((AE_MAC_PREAMBLE_DEFAULT << \
1341 			    AE_MAC_PREAMBLE_SHIFT) & AE_MAC_PREAMBLE_MASK) | \
1342 			    AE_MAC_BCAST_EN | AE_MAC_MCAST_EN;
1343 			if ((IFM_OPTIONS(mii->mii_media_active) & \
1344 			    IFM_FDX) != 0)
1345 				val |= AE_MAC_FULL_DUPLEX;
1346 			AE_WRITE_4(sc, AE_MAC_REG, val);
1347 
1348 		} else {	/* No link. */
1349 			AE_WRITE_4(sc, AE_WOL_REG, AE_WOL_LNKCHG | \
1350 			    AE_WOL_LNKCHG_PME);
1351 			AE_WRITE_4(sc, AE_MAC_REG, 0);
1352 		}
1353 	} else {
1354 		ae_powersave_enable(sc);
1355 	}
1356 
1357 	/*
1358 	 * PCIE hacks. Magic numbers.
1359 	 */
1360 	val = AE_READ_4(sc, AE_PCIE_PHYMISC_REG);
1361 	val |= AE_PCIE_PHYMISC_FORCE_RCV_DET;
1362 	AE_WRITE_4(sc, AE_PCIE_PHYMISC_REG, val);
1363 	val = AE_READ_4(sc, AE_PCIE_DLL_TX_CTRL_REG);
1364 	val |= AE_PCIE_DLL_TX_CTRL_SEL_NOR_CLK;
1365 	AE_WRITE_4(sc, AE_PCIE_DLL_TX_CTRL_REG, val);
1366 
1367 	/*
1368 	 * Configure PME.
1369 	 */
1370 	if (pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) {
1371 		pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
1372 		pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1373 		if ((if_getcapenable(ifp) & IFCAP_WOL) != 0)
1374 			pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1375 		pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1376 	}
1377 }
1378 
1379 static int
1380 ae_suspend(device_t dev)
1381 {
1382 	ae_softc_t *sc;
1383 
1384 	sc = device_get_softc(dev);
1385 
1386 	AE_LOCK(sc);
1387 	ae_stop(sc);
1388 	ae_pm_init(sc);
1389 	AE_UNLOCK(sc);
1390 
1391 	return (0);
1392 }
1393 
1394 static int
1395 ae_resume(device_t dev)
1396 {
1397 	ae_softc_t *sc;
1398 
1399 	sc = device_get_softc(dev);
1400 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
1401 
1402 	AE_LOCK(sc);
1403 	AE_READ_4(sc, AE_WOL_REG);	/* Clear WOL status. */
1404 	if ((if_getflags(sc->ifp) & IFF_UP) != 0)
1405 		ae_init_locked(sc);
1406 	AE_UNLOCK(sc);
1407 
1408 	return (0);
1409 }
1410 
1411 static unsigned int
1412 ae_tx_avail_size(ae_softc_t *sc)
1413 {
1414 	unsigned int avail;
1415 
1416 	if (sc->txd_cur >= sc->txd_ack)
1417 		avail = AE_TXD_BUFSIZE_DEFAULT - (sc->txd_cur - sc->txd_ack);
1418 	else
1419 		avail = sc->txd_ack - sc->txd_cur;
1420 
1421 	return (avail);
1422 }
1423 
1424 static int
1425 ae_encap(ae_softc_t *sc, struct mbuf **m_head)
1426 {
1427 	struct mbuf *m0;
1428 	ae_txd_t *hdr;
1429 	unsigned int to_end;
1430 	uint16_t len;
1431 
1432 	AE_LOCK_ASSERT(sc);
1433 
1434 	m0 = *m_head;
1435 	len = m0->m_pkthdr.len;
1436 
1437 	if ((sc->flags & AE_FLAG_TXAVAIL) == 0 ||
1438 	    len + sizeof(ae_txd_t) + 3 > ae_tx_avail_size(sc)) {
1439 #ifdef AE_DEBUG
1440 		if_printf(sc->ifp, "No free Tx available.\n");
1441 #endif
1442 		return ENOBUFS;
1443 	}
1444 
1445 	hdr = (ae_txd_t *)(sc->txd_base + sc->txd_cur);
1446 	bzero(hdr, sizeof(*hdr));
1447 	/* Skip header size. */
1448 	sc->txd_cur = (sc->txd_cur + sizeof(ae_txd_t)) % AE_TXD_BUFSIZE_DEFAULT;
1449 	/* Space available to the end of the ring */
1450 	to_end = AE_TXD_BUFSIZE_DEFAULT - sc->txd_cur;
1451 	if (to_end >= len) {
1452 		m_copydata(m0, 0, len, (caddr_t)(sc->txd_base + sc->txd_cur));
1453 	} else {
1454 		m_copydata(m0, 0, to_end, (caddr_t)(sc->txd_base +
1455 		    sc->txd_cur));
1456 		m_copydata(m0, to_end, len - to_end, (caddr_t)sc->txd_base);
1457 	}
1458 
1459 	/*
1460 	 * Set TxD flags and parameters.
1461 	 */
1462 	if ((m0->m_flags & M_VLANTAG) != 0) {
1463 		hdr->vlan = htole16(AE_TXD_VLAN(m0->m_pkthdr.ether_vtag));
1464 		hdr->len = htole16(len | AE_TXD_INSERT_VTAG);
1465 	} else {
1466 		hdr->len = htole16(len);
1467 	}
1468 
1469 	/*
1470 	 * Set current TxD position and round up to a 4-byte boundary.
1471 	 */
1472 	sc->txd_cur = ((sc->txd_cur + len + 3) & ~3) % AE_TXD_BUFSIZE_DEFAULT;
1473 	if (sc->txd_cur == sc->txd_ack)
1474 		sc->flags &= ~AE_FLAG_TXAVAIL;
1475 #ifdef AE_DEBUG
1476 	if_printf(sc->ifp, "New txd_cur = %d.\n", sc->txd_cur);
1477 #endif
1478 
1479 	/*
1480 	 * Update TxS position and check if there are empty TxS available.
1481 	 */
1482 	sc->txs_base[sc->txs_cur].flags &= ~htole16(AE_TXS_UPDATE);
1483 	sc->txs_cur = (sc->txs_cur + 1) % AE_TXS_COUNT_DEFAULT;
1484 	if (sc->txs_cur == sc->txs_ack)
1485 		sc->flags &= ~AE_FLAG_TXAVAIL;
1486 
1487 	/*
1488 	 * Synchronize DMA memory.
1489 	 */
1490 	bus_dmamap_sync(sc->dma_txd_tag, sc->dma_txd_map, BUS_DMASYNC_PREREAD |
1491 	    BUS_DMASYNC_PREWRITE);
1492 	bus_dmamap_sync(sc->dma_txs_tag, sc->dma_txs_map,
1493 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1494 
1495 	return (0);
1496 }
1497 
1498 static void
1499 ae_start(if_t ifp)
1500 {
1501 	ae_softc_t *sc;
1502 
1503 	sc = if_getsoftc(ifp);
1504 	AE_LOCK(sc);
1505 	ae_start_locked(ifp);
1506 	AE_UNLOCK(sc);
1507 }
1508 
1509 static void
1510 ae_start_locked(if_t ifp)
1511 {
1512 	ae_softc_t *sc;
1513 	unsigned int count;
1514 	struct mbuf *m0;
1515 	int error;
1516 
1517 	sc = if_getsoftc(ifp);
1518 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
1519 	AE_LOCK_ASSERT(sc);
1520 
1521 #ifdef AE_DEBUG
1522 	if_printf(ifp, "Start called.\n");
1523 #endif
1524 
1525 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1526 	    IFF_DRV_RUNNING || (sc->flags & AE_FLAG_LINK) == 0)
1527 		return;
1528 
1529 	count = 0;
1530 	while (!if_sendq_empty(ifp)) {
1531 		m0 = if_dequeue(ifp);
1532 		if (m0 == NULL)
1533 			break;	/* Nothing to do. */
1534 
1535 		error = ae_encap(sc, &m0);
1536 		if (error != 0) {
1537 			if (m0 != NULL) {
1538 				if_sendq_prepend(ifp, m0);
1539 				if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1540 #ifdef AE_DEBUG
1541 				if_printf(ifp, "Setting OACTIVE.\n");
1542 #endif
1543 			}
1544 			break;
1545 		}
1546 		count++;
1547 		sc->tx_inproc++;
1548 
1549 		/* Bounce a copy of the frame to BPF. */
1550 		ETHER_BPF_MTAP(ifp, m0);
1551 
1552 		m_freem(m0);
1553 	}
1554 
1555 	if (count > 0) {	/* Something was dequeued. */
1556 		AE_WRITE_2(sc, AE_MB_TXD_IDX_REG, sc->txd_cur / 4);
1557 		sc->wd_timer = AE_TX_TIMEOUT;	/* Load watchdog. */
1558 #ifdef AE_DEBUG
1559 		if_printf(ifp, "%d packets dequeued.\n", count);
1560 		if_printf(ifp, "Tx pos now is %d.\n", sc->txd_cur);
1561 #endif
1562 	}
1563 }
1564 
1565 static void
1566 ae_link_task(void *arg, int pending)
1567 {
1568 	ae_softc_t *sc;
1569 	struct mii_data *mii;
1570 	if_t ifp;
1571 	uint32_t val;
1572 
1573 	sc = (ae_softc_t *)arg;
1574 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
1575 	AE_LOCK(sc);
1576 
1577 	ifp = sc->ifp;
1578 	mii = device_get_softc(sc->miibus);
1579 	if (mii == NULL || ifp == NULL ||
1580 	    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
1581 		AE_UNLOCK(sc);	/* XXX: could happen? */
1582 		return;
1583 	}
1584 
1585 	sc->flags &= ~AE_FLAG_LINK;
1586 	if ((mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) ==
1587 	    (IFM_AVALID | IFM_ACTIVE)) {
1588 		switch(IFM_SUBTYPE(mii->mii_media_active)) {
1589 		case IFM_10_T:
1590 		case IFM_100_TX:
1591 			sc->flags |= AE_FLAG_LINK;
1592 			break;
1593 		default:
1594 			break;
1595 		}
1596 	}
1597 
1598 	/*
1599 	 * Stop Rx/Tx MACs.
1600 	 */
1601 	ae_stop_rxmac(sc);
1602 	ae_stop_txmac(sc);
1603 
1604 	if ((sc->flags & AE_FLAG_LINK) != 0) {
1605 		ae_mac_config(sc);
1606 
1607 		/*
1608 		 * Restart DMA engines.
1609 		 */
1610 		AE_WRITE_1(sc, AE_DMAREAD_REG, AE_DMAREAD_EN);
1611 		AE_WRITE_1(sc, AE_DMAWRITE_REG, AE_DMAWRITE_EN);
1612 
1613 		/*
1614 		 * Enable Rx and Tx MACs.
1615 		 */
1616 		val = AE_READ_4(sc, AE_MAC_REG);
1617 		val |= AE_MAC_TX_EN | AE_MAC_RX_EN;
1618 		AE_WRITE_4(sc, AE_MAC_REG, val);
1619 	}
1620 	AE_UNLOCK(sc);
1621 }
1622 
1623 static void
1624 ae_stop_rxmac(ae_softc_t *sc)
1625 {
1626 	uint32_t val;
1627 	int i;
1628 
1629 	AE_LOCK_ASSERT(sc);
1630 
1631 	/*
1632 	 * Stop Rx MAC engine.
1633 	 */
1634 	val = AE_READ_4(sc, AE_MAC_REG);
1635 	if ((val & AE_MAC_RX_EN) != 0) {
1636 		val &= ~AE_MAC_RX_EN;
1637 		AE_WRITE_4(sc, AE_MAC_REG, val);
1638 	}
1639 
1640 	/*
1641 	 * Stop Rx DMA engine.
1642 	 */
1643 	if (AE_READ_1(sc, AE_DMAWRITE_REG) == AE_DMAWRITE_EN)
1644 		AE_WRITE_1(sc, AE_DMAWRITE_REG, 0);
1645 
1646 	/*
1647 	 * Wait for IDLE state.
1648 	 */
1649 	for (i = 0; i < AE_IDLE_TIMEOUT; i++) {
1650 		val = AE_READ_4(sc, AE_IDLE_REG);
1651 		if ((val & (AE_IDLE_RXMAC | AE_IDLE_DMAWRITE)) == 0)
1652 			break;
1653 		DELAY(100);
1654 	}
1655 	if (i == AE_IDLE_TIMEOUT)
1656 		device_printf(sc->dev, "timed out while stopping Rx MAC.\n");
1657 }
1658 
1659 static void
1660 ae_stop_txmac(ae_softc_t *sc)
1661 {
1662 	uint32_t val;
1663 	int i;
1664 
1665 	AE_LOCK_ASSERT(sc);
1666 
1667 	/*
1668 	 * Stop Tx MAC engine.
1669 	 */
1670 	val = AE_READ_4(sc, AE_MAC_REG);
1671 	if ((val & AE_MAC_TX_EN) != 0) {
1672 		val &= ~AE_MAC_TX_EN;
1673 		AE_WRITE_4(sc, AE_MAC_REG, val);
1674 	}
1675 
1676 	/*
1677 	 * Stop Tx DMA engine.
1678 	 */
1679 	if (AE_READ_1(sc, AE_DMAREAD_REG) == AE_DMAREAD_EN)
1680 		AE_WRITE_1(sc, AE_DMAREAD_REG, 0);
1681 
1682 	/*
1683 	 * Wait for IDLE state.
1684 	 */
1685 	for (i = 0; i < AE_IDLE_TIMEOUT; i++) {
1686 		val = AE_READ_4(sc, AE_IDLE_REG);
1687 		if ((val & (AE_IDLE_TXMAC | AE_IDLE_DMAREAD)) == 0)
1688 			break;
1689 		DELAY(100);
1690 	}
1691 	if (i == AE_IDLE_TIMEOUT)
1692 		device_printf(sc->dev, "timed out while stopping Tx MAC.\n");
1693 }
1694 
1695 static void
1696 ae_mac_config(ae_softc_t *sc)
1697 {
1698 	struct mii_data *mii;
1699 	uint32_t val;
1700 
1701 	AE_LOCK_ASSERT(sc);
1702 
1703 	mii = device_get_softc(sc->miibus);
1704 	val = AE_READ_4(sc, AE_MAC_REG);
1705 	val &= ~AE_MAC_FULL_DUPLEX;
1706 	/* XXX disable AE_MAC_TX_FLOW_EN? */
1707 
1708 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
1709 		val |= AE_MAC_FULL_DUPLEX;
1710 
1711 	AE_WRITE_4(sc, AE_MAC_REG, val);
1712 }
1713 
1714 static int
1715 ae_intr(void *arg)
1716 {
1717 	ae_softc_t *sc;
1718 	uint32_t val;
1719 
1720 	sc = (ae_softc_t *)arg;
1721 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
1722 
1723 	val = AE_READ_4(sc, AE_ISR_REG);
1724 	if (val == 0 || (val & AE_IMR_DEFAULT) == 0)
1725 		return (FILTER_STRAY);
1726 
1727 	/* Disable interrupts. */
1728 	AE_WRITE_4(sc, AE_ISR_REG, AE_ISR_DISABLE);
1729 
1730 	/* Schedule interrupt processing. */
1731 	taskqueue_enqueue(sc->tq, &sc->int_task);
1732 
1733 	return (FILTER_HANDLED);
1734 }
1735 
1736 static void
1737 ae_int_task(void *arg, int pending)
1738 {
1739 	ae_softc_t *sc;
1740 	if_t ifp;
1741 	uint32_t val;
1742 
1743 	sc = (ae_softc_t *)arg;
1744 
1745 	AE_LOCK(sc);
1746 
1747 	ifp = sc->ifp;
1748 
1749 	val = AE_READ_4(sc, AE_ISR_REG);	/* Read interrupt status. */
1750 	if (val == 0) {
1751 		AE_UNLOCK(sc);
1752 		return;
1753 	}
1754 
1755 	/*
1756 	 * Clear interrupts and disable them.
1757 	 */
1758 	AE_WRITE_4(sc, AE_ISR_REG, val | AE_ISR_DISABLE);
1759 
1760 #ifdef AE_DEBUG
1761 	if_printf(ifp, "Interrupt received: 0x%08x\n", val);
1762 #endif
1763 
1764 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1765 		if ((val & (AE_ISR_DMAR_TIMEOUT | AE_ISR_DMAW_TIMEOUT |
1766 		    AE_ISR_PHY_LINKDOWN)) != 0) {
1767 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1768 			ae_init_locked(sc);
1769 			AE_UNLOCK(sc);
1770 			return;
1771 		}
1772 		if ((val & AE_ISR_TX_EVENT) != 0)
1773 			ae_tx_intr(sc);
1774 		if ((val & AE_ISR_RX_EVENT) != 0)
1775 			ae_rx_intr(sc);
1776 		/*
1777 		 * Re-enable interrupts.
1778 		 */
1779 		AE_WRITE_4(sc, AE_ISR_REG, 0);
1780 
1781 		if ((sc->flags & AE_FLAG_TXAVAIL) != 0) {
1782 			if (!if_sendq_empty(ifp))
1783 				ae_start_locked(ifp);
1784 		}
1785 	}
1786 
1787 	AE_UNLOCK(sc);
1788 }
1789 
1790 static void
1791 ae_tx_intr(ae_softc_t *sc)
1792 {
1793 	if_t ifp;
1794 	ae_txd_t *txd;
1795 	ae_txs_t *txs;
1796 	uint16_t flags;
1797 
1798 	AE_LOCK_ASSERT(sc);
1799 
1800 	ifp = sc->ifp;
1801 
1802 #ifdef AE_DEBUG
1803 	if_printf(ifp, "Tx interrupt occuried.\n");
1804 #endif
1805 
1806 	/*
1807 	 * Syncronize DMA buffers.
1808 	 */
1809 	bus_dmamap_sync(sc->dma_txd_tag, sc->dma_txd_map,
1810 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1811 	bus_dmamap_sync(sc->dma_txs_tag, sc->dma_txs_map,
1812 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1813 
1814 	for (;;) {
1815 		txs = sc->txs_base + sc->txs_ack;
1816 		flags = le16toh(txs->flags);
1817 		if ((flags & AE_TXS_UPDATE) == 0)
1818 			break;
1819 		txs->flags = htole16(flags & ~AE_TXS_UPDATE);
1820 		/* Update stats. */
1821 		ae_update_stats_tx(flags, &sc->stats);
1822 
1823 		/*
1824 		 * Update TxS position.
1825 		 */
1826 		sc->txs_ack = (sc->txs_ack + 1) % AE_TXS_COUNT_DEFAULT;
1827 		sc->flags |= AE_FLAG_TXAVAIL;
1828 
1829 		txd = (ae_txd_t *)(sc->txd_base + sc->txd_ack);
1830 		if (txs->len != txd->len)
1831 			device_printf(sc->dev, "Size mismatch: TxS:%d TxD:%d\n",
1832 			    le16toh(txs->len), le16toh(txd->len));
1833 
1834 		/*
1835 		 * Move txd ack and align on 4-byte boundary.
1836 		 */
1837 		sc->txd_ack = ((sc->txd_ack + le16toh(txd->len) +
1838 		    sizeof(ae_txs_t) + 3) & ~3) % AE_TXD_BUFSIZE_DEFAULT;
1839 
1840 		if ((flags & AE_TXS_SUCCESS) != 0)
1841 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1842 		else
1843 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1844 
1845 		sc->tx_inproc--;
1846 	}
1847 
1848 	if ((sc->flags & AE_FLAG_TXAVAIL) != 0)
1849 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1850 	if (sc->tx_inproc < 0) {
1851 		if_printf(ifp, "Received stray Tx interrupt(s).\n");
1852 		sc->tx_inproc = 0;
1853 	}
1854 
1855 	if (sc->tx_inproc == 0)
1856 		sc->wd_timer = 0;	/* Unarm watchdog. */
1857 
1858 	/*
1859 	 * Syncronize DMA buffers.
1860 	 */
1861 	bus_dmamap_sync(sc->dma_txd_tag, sc->dma_txd_map,
1862 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1863 	bus_dmamap_sync(sc->dma_txs_tag, sc->dma_txs_map,
1864 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1865 }
1866 
1867 static void
1868 ae_rxeof(ae_softc_t *sc, ae_rxd_t *rxd)
1869 {
1870 	if_t ifp;
1871 	struct mbuf *m;
1872 	unsigned int size;
1873 	uint16_t flags;
1874 
1875 	AE_LOCK_ASSERT(sc);
1876 
1877 	ifp = sc->ifp;
1878 	flags = le16toh(rxd->flags);
1879 
1880 #ifdef AE_DEBUG
1881 	if_printf(ifp, "Rx interrupt occuried.\n");
1882 #endif
1883 	size = le16toh(rxd->len) - ETHER_CRC_LEN;
1884 	if (size < (ETHER_MIN_LEN - ETHER_CRC_LEN - ETHER_VLAN_ENCAP_LEN)) {
1885 		if_printf(ifp, "Runt frame received.");
1886 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1887 		return;
1888 	}
1889 
1890 	m = m_devget(&rxd->data[0], size, ETHER_ALIGN, ifp, NULL);
1891 	if (m == NULL) {
1892 		if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1893 		return;
1894 	}
1895 
1896 	if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0 &&
1897 	    (flags & AE_RXD_HAS_VLAN) != 0) {
1898 		m->m_pkthdr.ether_vtag = AE_RXD_VLAN(le16toh(rxd->vlan));
1899 		m->m_flags |= M_VLANTAG;
1900 	}
1901 
1902 	if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1903 	/*
1904 	 * Pass it through.
1905 	 */
1906 	AE_UNLOCK(sc);
1907 	if_input(ifp, m);
1908 	AE_LOCK(sc);
1909 }
1910 
1911 static void
1912 ae_rx_intr(ae_softc_t *sc)
1913 {
1914 	ae_rxd_t *rxd;
1915 	if_t ifp;
1916 	uint16_t flags;
1917 	int count;
1918 
1919 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL!", __LINE__));
1920 
1921 	AE_LOCK_ASSERT(sc);
1922 
1923 	ifp = sc->ifp;
1924 
1925 	/*
1926 	 * Syncronize DMA buffers.
1927 	 */
1928 	bus_dmamap_sync(sc->dma_rxd_tag, sc->dma_rxd_map,
1929 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1930 
1931 	for (count = 0;; count++) {
1932 		rxd = (ae_rxd_t *)(sc->rxd_base + sc->rxd_cur);
1933 		flags = le16toh(rxd->flags);
1934 		if ((flags & AE_RXD_UPDATE) == 0)
1935 			break;
1936 		rxd->flags = htole16(flags & ~AE_RXD_UPDATE);
1937 		/* Update stats. */
1938 		ae_update_stats_rx(flags, &sc->stats);
1939 
1940 		/*
1941 		 * Update position index.
1942 		 */
1943 		sc->rxd_cur = (sc->rxd_cur + 1) % AE_RXD_COUNT_DEFAULT;
1944 
1945 		if ((flags & AE_RXD_SUCCESS) != 0)
1946 			ae_rxeof(sc, rxd);
1947 		else
1948 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1949 	}
1950 
1951 	if (count > 0) {
1952 		bus_dmamap_sync(sc->dma_rxd_tag, sc->dma_rxd_map,
1953 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1954 		/*
1955 		 * Update Rx index.
1956 		 */
1957 		AE_WRITE_2(sc, AE_MB_RXD_IDX_REG, sc->rxd_cur);
1958 	}
1959 }
1960 
1961 static void
1962 ae_watchdog(ae_softc_t *sc)
1963 {
1964 	if_t ifp;
1965 
1966 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL!", __LINE__));
1967 	AE_LOCK_ASSERT(sc);
1968 	ifp = sc->ifp;
1969 
1970 	if (sc->wd_timer == 0 || --sc->wd_timer != 0)
1971 		return;		/* Noting to do. */
1972 
1973 	if ((sc->flags & AE_FLAG_LINK) == 0)
1974 		if_printf(ifp, "watchdog timeout (missed link).\n");
1975 	else
1976 		if_printf(ifp, "watchdog timeout - resetting.\n");
1977 
1978 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1979 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1980 	ae_init_locked(sc);
1981 	if (!if_sendq_empty(ifp))
1982 		ae_start_locked(ifp);
1983 }
1984 
1985 static void
1986 ae_tick(void *arg)
1987 {
1988 	ae_softc_t *sc;
1989 	struct mii_data *mii;
1990 
1991 	sc = (ae_softc_t *)arg;
1992 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL!", __LINE__));
1993 	AE_LOCK_ASSERT(sc);
1994 
1995 	mii = device_get_softc(sc->miibus);
1996 	mii_tick(mii);
1997 	ae_watchdog(sc);	/* Watchdog check. */
1998 	callout_reset(&sc->tick_ch, hz, ae_tick, sc);
1999 }
2000 
2001 static void
2002 ae_rxvlan(ae_softc_t *sc)
2003 {
2004 	if_t ifp;
2005 	uint32_t val;
2006 
2007 	AE_LOCK_ASSERT(sc);
2008 	ifp = sc->ifp;
2009 	val = AE_READ_4(sc, AE_MAC_REG);
2010 	val &= ~AE_MAC_RMVLAN_EN;
2011 	if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0)
2012 		val |= AE_MAC_RMVLAN_EN;
2013 	AE_WRITE_4(sc, AE_MAC_REG, val);
2014 }
2015 
2016 static u_int
2017 ae_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
2018 {
2019 	uint32_t crc, *mchash = arg;
2020 
2021 	crc = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN);
2022 	mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2023 
2024 	return (1);
2025 }
2026 
2027 static void
2028 ae_rxfilter(ae_softc_t *sc)
2029 {
2030 	if_t ifp;
2031 	uint32_t mchash[2];
2032 	uint32_t rxcfg;
2033 
2034 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL!", __LINE__));
2035 
2036 	AE_LOCK_ASSERT(sc);
2037 
2038 	ifp = sc->ifp;
2039 
2040 	rxcfg = AE_READ_4(sc, AE_MAC_REG);
2041 	rxcfg &= ~(AE_MAC_MCAST_EN | AE_MAC_BCAST_EN | AE_MAC_PROMISC_EN);
2042 
2043 	if ((if_getflags(ifp) & IFF_BROADCAST) != 0)
2044 		rxcfg |= AE_MAC_BCAST_EN;
2045 	if ((if_getflags(ifp) & IFF_PROMISC) != 0)
2046 		rxcfg |= AE_MAC_PROMISC_EN;
2047 	if ((if_getflags(ifp) & IFF_ALLMULTI) != 0)
2048 		rxcfg |= AE_MAC_MCAST_EN;
2049 
2050 	/*
2051 	 * Wipe old settings.
2052 	 */
2053 	AE_WRITE_4(sc, AE_REG_MHT0, 0);
2054 	AE_WRITE_4(sc, AE_REG_MHT1, 0);
2055 	if ((if_getflags(ifp) & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
2056 		AE_WRITE_4(sc, AE_REG_MHT0, 0xffffffff);
2057 		AE_WRITE_4(sc, AE_REG_MHT1, 0xffffffff);
2058 		AE_WRITE_4(sc, AE_MAC_REG, rxcfg);
2059 		return;
2060 	}
2061 
2062 	/*
2063 	 * Load multicast tables.
2064 	 */
2065 	bzero(mchash, sizeof(mchash));
2066 	if_foreach_llmaddr(ifp, ae_hash_maddr, &mchash);
2067 	AE_WRITE_4(sc, AE_REG_MHT0, mchash[0]);
2068 	AE_WRITE_4(sc, AE_REG_MHT1, mchash[1]);
2069 	AE_WRITE_4(sc, AE_MAC_REG, rxcfg);
2070 }
2071 
2072 static int
2073 ae_ioctl(if_t ifp, u_long cmd, caddr_t data)
2074 {
2075 	struct ae_softc *sc;
2076 	struct ifreq *ifr;
2077 	struct mii_data *mii;
2078 	int error, mask;
2079 
2080 	sc = if_getsoftc(ifp);
2081 	ifr = (struct ifreq *)data;
2082 	error = 0;
2083 
2084 	switch (cmd) {
2085 	case SIOCSIFMTU:
2086 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU)
2087 			error = EINVAL;
2088 		else if (if_getmtu(ifp) != ifr->ifr_mtu) {
2089 			AE_LOCK(sc);
2090 			if_setmtu(ifp, ifr->ifr_mtu);
2091 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2092 				if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2093 				ae_init_locked(sc);
2094 			}
2095 			AE_UNLOCK(sc);
2096 		}
2097 		break;
2098 	case SIOCSIFFLAGS:
2099 		AE_LOCK(sc);
2100 		if ((if_getflags(ifp) & IFF_UP) != 0) {
2101 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2102 				if (((if_getflags(ifp) ^ sc->if_flags)
2103 				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2104 					ae_rxfilter(sc);
2105 			} else {
2106 				if ((sc->flags & AE_FLAG_DETACH) == 0)
2107 					ae_init_locked(sc);
2108 			}
2109 		} else {
2110 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2111 				ae_stop(sc);
2112 		}
2113 		sc->if_flags = if_getflags(ifp);
2114 		AE_UNLOCK(sc);
2115 		break;
2116 	case SIOCADDMULTI:
2117 	case SIOCDELMULTI:
2118 		AE_LOCK(sc);
2119 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2120 			ae_rxfilter(sc);
2121 		AE_UNLOCK(sc);
2122 		break;
2123 	case SIOCSIFMEDIA:
2124 	case SIOCGIFMEDIA:
2125 		mii = device_get_softc(sc->miibus);
2126 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
2127 		break;
2128 	case SIOCSIFCAP:
2129 		AE_LOCK(sc);
2130 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
2131 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2132 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
2133 			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
2134 			ae_rxvlan(sc);
2135 		}
2136 		VLAN_CAPABILITIES(ifp);
2137 		AE_UNLOCK(sc);
2138 		break;
2139 	default:
2140 		error = ether_ioctl(ifp, cmd, data);
2141 		break;
2142 	}
2143 	return (error);
2144 }
2145 
2146 static void
2147 ae_stop(ae_softc_t *sc)
2148 {
2149 	if_t ifp;
2150 	int i;
2151 
2152 	AE_LOCK_ASSERT(sc);
2153 
2154 	ifp = sc->ifp;
2155 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
2156 	sc->flags &= ~AE_FLAG_LINK;
2157 	sc->wd_timer = 0;	/* Cancel watchdog. */
2158 	callout_stop(&sc->tick_ch);
2159 
2160 	/*
2161 	 * Clear and disable interrupts.
2162 	 */
2163 	AE_WRITE_4(sc, AE_IMR_REG, 0);
2164 	AE_WRITE_4(sc, AE_ISR_REG, 0xffffffff);
2165 
2166 	/*
2167 	 * Stop Rx/Tx MACs.
2168 	 */
2169 	ae_stop_txmac(sc);
2170 	ae_stop_rxmac(sc);
2171 
2172 	/*
2173 	 * Stop DMA engines.
2174 	 */
2175 	AE_WRITE_1(sc, AE_DMAREAD_REG, ~AE_DMAREAD_EN);
2176 	AE_WRITE_1(sc, AE_DMAWRITE_REG, ~AE_DMAWRITE_EN);
2177 
2178 	/*
2179 	 * Wait for everything to enter idle state.
2180 	 */
2181 	for (i = 0; i < AE_IDLE_TIMEOUT; i++) {
2182 		if (AE_READ_4(sc, AE_IDLE_REG) == 0)
2183 			break;
2184 		DELAY(100);
2185 	}
2186 	if (i == AE_IDLE_TIMEOUT)
2187 		device_printf(sc->dev, "could not enter idle state in stop.\n");
2188 }
2189 
2190 static void
2191 ae_update_stats_tx(uint16_t flags, ae_stats_t *stats)
2192 {
2193 
2194 	if ((flags & AE_TXS_BCAST) != 0)
2195 		stats->tx_bcast++;
2196 	if ((flags & AE_TXS_MCAST) != 0)
2197 		stats->tx_mcast++;
2198 	if ((flags & AE_TXS_PAUSE) != 0)
2199 		stats->tx_pause++;
2200 	if ((flags & AE_TXS_CTRL) != 0)
2201 		stats->tx_ctrl++;
2202 	if ((flags & AE_TXS_DEFER) != 0)
2203 		stats->tx_defer++;
2204 	if ((flags & AE_TXS_EXCDEFER) != 0)
2205 		stats->tx_excdefer++;
2206 	if ((flags & AE_TXS_SINGLECOL) != 0)
2207 		stats->tx_singlecol++;
2208 	if ((flags & AE_TXS_MULTICOL) != 0)
2209 		stats->tx_multicol++;
2210 	if ((flags & AE_TXS_LATECOL) != 0)
2211 		stats->tx_latecol++;
2212 	if ((flags & AE_TXS_ABORTCOL) != 0)
2213 		stats->tx_abortcol++;
2214 	if ((flags & AE_TXS_UNDERRUN) != 0)
2215 		stats->tx_underrun++;
2216 }
2217 
2218 static void
2219 ae_update_stats_rx(uint16_t flags, ae_stats_t *stats)
2220 {
2221 
2222 	if ((flags & AE_RXD_BCAST) != 0)
2223 		stats->rx_bcast++;
2224 	if ((flags & AE_RXD_MCAST) != 0)
2225 		stats->rx_mcast++;
2226 	if ((flags & AE_RXD_PAUSE) != 0)
2227 		stats->rx_pause++;
2228 	if ((flags & AE_RXD_CTRL) != 0)
2229 		stats->rx_ctrl++;
2230 	if ((flags & AE_RXD_CRCERR) != 0)
2231 		stats->rx_crcerr++;
2232 	if ((flags & AE_RXD_CODEERR) != 0)
2233 		stats->rx_codeerr++;
2234 	if ((flags & AE_RXD_RUNT) != 0)
2235 		stats->rx_runt++;
2236 	if ((flags & AE_RXD_FRAG) != 0)
2237 		stats->rx_frag++;
2238 	if ((flags & AE_RXD_TRUNC) != 0)
2239 		stats->rx_trunc++;
2240 	if ((flags & AE_RXD_ALIGN) != 0)
2241 		stats->rx_align++;
2242 }
2243