1 /*- 2 * Copyright (c) 2008 Stanislav Sedov <stas@FreeBSD.org>. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 24 * 25 * Driver for Attansic Technology Corp. L2 FastEthernet adapter. 26 * 27 * This driver is heavily based on age(4) Attansic L1 driver by Pyun YongHyeon. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/systm.h> 35 #include <sys/bus.h> 36 #include <sys/endian.h> 37 #include <sys/kernel.h> 38 #include <sys/malloc.h> 39 #include <sys/mbuf.h> 40 #include <sys/rman.h> 41 #include <sys/module.h> 42 #include <sys/queue.h> 43 #include <sys/socket.h> 44 #include <sys/sockio.h> 45 #include <sys/sysctl.h> 46 #include <sys/taskqueue.h> 47 48 #include <net/bpf.h> 49 #include <net/if.h> 50 #include <net/if_arp.h> 51 #include <net/ethernet.h> 52 #include <net/if_dl.h> 53 #include <net/if_media.h> 54 #include <net/if_types.h> 55 #include <net/if_vlan_var.h> 56 57 #include <netinet/in.h> 58 #include <netinet/in_systm.h> 59 #include <netinet/ip.h> 60 #include <netinet/tcp.h> 61 62 #include <dev/mii/mii.h> 63 #include <dev/mii/miivar.h> 64 #include <dev/pci/pcireg.h> 65 #include <dev/pci/pcivar.h> 66 67 #include <machine/bus.h> 68 69 #include "miibus_if.h" 70 71 #include "if_aereg.h" 72 #include "if_aevar.h" 73 74 /* 75 * Devices supported by this driver. 76 */ 77 static struct ae_dev { 78 uint16_t vendorid; 79 uint16_t deviceid; 80 const char *name; 81 } ae_devs[] = { 82 { VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L2, 83 "Attansic Technology Corp, L2 FastEthernet" }, 84 }; 85 #define AE_DEVS_COUNT (sizeof(ae_devs) / sizeof(*ae_devs)) 86 87 static struct resource_spec ae_res_spec_mem[] = { 88 { SYS_RES_MEMORY, PCIR_BAR(0), RF_ACTIVE }, 89 { -1, 0, 0 } 90 }; 91 static struct resource_spec ae_res_spec_irq[] = { 92 { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE }, 93 { -1, 0, 0 } 94 }; 95 static struct resource_spec ae_res_spec_msi[] = { 96 { SYS_RES_IRQ, 1, RF_ACTIVE }, 97 { -1, 0, 0 } 98 }; 99 100 static int ae_probe(device_t dev); 101 static int ae_attach(device_t dev); 102 static void ae_pcie_init(ae_softc_t *sc); 103 static void ae_phy_reset(ae_softc_t *sc); 104 static void ae_phy_init(ae_softc_t *sc); 105 static int ae_reset(ae_softc_t *sc); 106 static void ae_init(void *arg); 107 static int ae_init_locked(ae_softc_t *sc); 108 static int ae_detach(device_t dev); 109 static int ae_miibus_readreg(device_t dev, int phy, int reg); 110 static int ae_miibus_writereg(device_t dev, int phy, int reg, int val); 111 static void ae_miibus_statchg(device_t dev); 112 static void ae_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr); 113 static int ae_mediachange(struct ifnet *ifp); 114 static void ae_retrieve_address(ae_softc_t *sc); 115 static void ae_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, 116 int error); 117 static int ae_alloc_rings(ae_softc_t *sc); 118 static void ae_dma_free(ae_softc_t *sc); 119 static int ae_shutdown(device_t dev); 120 static int ae_suspend(device_t dev); 121 static void ae_powersave_disable(ae_softc_t *sc); 122 static void ae_powersave_enable(ae_softc_t *sc); 123 static int ae_resume(device_t dev); 124 static unsigned int ae_tx_avail_size(ae_softc_t *sc); 125 static int ae_encap(ae_softc_t *sc, struct mbuf **m_head); 126 static void ae_start(struct ifnet *ifp); 127 static void ae_link_task(void *arg, int pending); 128 static void ae_stop_rxmac(ae_softc_t *sc); 129 static void ae_stop_txmac(ae_softc_t *sc); 130 static void ae_tx_task(void *arg, int pending); 131 static void ae_mac_config(ae_softc_t *sc); 132 static int ae_intr(void *arg); 133 static void ae_int_task(void *arg, int pending); 134 static void ae_tx_intr(ae_softc_t *sc); 135 static int ae_rxeof(ae_softc_t *sc, ae_rxd_t *rxd); 136 static void ae_rx_intr(ae_softc_t *sc); 137 static void ae_watchdog(ae_softc_t *sc); 138 static void ae_tick(void *arg); 139 static void ae_rxfilter(ae_softc_t *sc); 140 static void ae_rxvlan(ae_softc_t *sc); 141 static int ae_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data); 142 static void ae_stop(ae_softc_t *sc); 143 static int ae_check_eeprom_present(ae_softc_t *sc, int *vpdc); 144 static int ae_vpd_read_word(ae_softc_t *sc, int reg, uint32_t *word); 145 static int ae_get_vpd_eaddr(ae_softc_t *sc, uint32_t *eaddr); 146 static int ae_get_reg_eaddr(ae_softc_t *sc, uint32_t *eaddr); 147 static void ae_update_stats_rx(uint16_t flags, ae_stats_t *stats); 148 static void ae_update_stats_tx(uint16_t flags, ae_stats_t *stats); 149 static void ae_init_tunables(ae_softc_t *sc); 150 151 static device_method_t ae_methods[] = { 152 /* Device interface. */ 153 DEVMETHOD(device_probe, ae_probe), 154 DEVMETHOD(device_attach, ae_attach), 155 DEVMETHOD(device_detach, ae_detach), 156 DEVMETHOD(device_shutdown, ae_shutdown), 157 DEVMETHOD(device_suspend, ae_suspend), 158 DEVMETHOD(device_resume, ae_resume), 159 160 /* MII interface. */ 161 DEVMETHOD(miibus_readreg, ae_miibus_readreg), 162 DEVMETHOD(miibus_writereg, ae_miibus_writereg), 163 DEVMETHOD(miibus_statchg, ae_miibus_statchg), 164 165 { NULL, NULL } 166 }; 167 static driver_t ae_driver = { 168 "ae", 169 ae_methods, 170 sizeof(ae_softc_t) 171 }; 172 static devclass_t ae_devclass; 173 174 DRIVER_MODULE(ae, pci, ae_driver, ae_devclass, 0, 0); 175 DRIVER_MODULE(miibus, ae, miibus_driver, miibus_devclass, 0, 0); 176 MODULE_DEPEND(ae, pci, 1, 1, 1); 177 MODULE_DEPEND(ae, ether, 1, 1, 1); 178 MODULE_DEPEND(ae, miibus, 1, 1, 1); 179 180 /* 181 * Tunables. 182 */ 183 static int msi_disable = 0; 184 TUNABLE_INT("hw.ae.msi_disable", &msi_disable); 185 186 #define AE_READ_4(sc, reg) \ 187 bus_read_4((sc)->mem[0], (reg)) 188 #define AE_READ_2(sc, reg) \ 189 bus_read_2((sc)->mem[0], (reg)) 190 #define AE_READ_1(sc, reg) \ 191 bus_read_1((sc)->mem[0], (reg)) 192 #define AE_WRITE_4(sc, reg, val) \ 193 bus_write_4((sc)->mem[0], (reg), (val)) 194 #define AE_WRITE_2(sc, reg, val) \ 195 bus_write_2((sc)->mem[0], (reg), (val)) 196 #define AE_WRITE_1(sc, reg, val) \ 197 bus_write_1((sc)->mem[0], (reg), (val)) 198 #define AE_PHY_READ(sc, reg) \ 199 ae_miibus_readreg(sc->dev, 0, reg) 200 #define AE_PHY_WRITE(sc, reg, val) \ 201 ae_miibus_writereg(sc->dev, 0, reg, val) 202 #define AE_CHECK_EADDR_VALID(eaddr) \ 203 ((eaddr[0] == 0 && eaddr[1] == 0) || \ 204 (eaddr[0] == 0xffffffff && eaddr[1] == 0xffff)) 205 #define AE_RXD_VLAN(vtag) \ 206 (((vtag) >> 4) | (((vtag) & 0x07) << 13) | (((vtag) & 0x08) << 9)) 207 #define AE_TXD_VLAN(vtag) \ 208 (((vtag) << 4) | (((vtag) >> 13) & 0x07) | (((vtag) >> 9) & 0x08)) 209 210 /* 211 * ae statistics. 212 */ 213 #define STATS_ENTRY(node, desc, field) \ 214 { node, desc, offsetof(struct ae_stats, field) } 215 struct { 216 const char *node; 217 const char *desc; 218 intptr_t offset; 219 } ae_stats_tx[] = { 220 STATS_ENTRY("bcast", "broadcast frames", tx_bcast), 221 STATS_ENTRY("mcast", "multicast frames", tx_mcast), 222 STATS_ENTRY("pause", "PAUSE frames", tx_pause), 223 STATS_ENTRY("control", "control frames", tx_ctrl), 224 STATS_ENTRY("defers", "deferrals occuried", tx_defer), 225 STATS_ENTRY("exc_defers", "excessive deferrals occuried", tx_excdefer), 226 STATS_ENTRY("singlecols", "single collisions occuried", tx_singlecol), 227 STATS_ENTRY("multicols", "multiple collisions occuried", tx_multicol), 228 STATS_ENTRY("latecols", "late collisions occuried", tx_latecol), 229 STATS_ENTRY("aborts", "transmit aborts due collisions", tx_abortcol), 230 STATS_ENTRY("underruns", "Tx FIFO underruns", tx_underrun) 231 }, ae_stats_rx[] = { 232 STATS_ENTRY("bcast", "broadcast frames", rx_bcast), 233 STATS_ENTRY("mcast", "multicast frames", rx_mcast), 234 STATS_ENTRY("pause", "PAUSE frames", rx_pause), 235 STATS_ENTRY("control", "control frames", rx_ctrl), 236 STATS_ENTRY("crc_errors", "frames with CRC errors", rx_crcerr), 237 STATS_ENTRY("code_errors", "frames with invalid opcode", rx_codeerr), 238 STATS_ENTRY("runt", "runt frames", rx_runt), 239 STATS_ENTRY("frag", "fragmented frames", rx_frag), 240 STATS_ENTRY("align_errors", "frames with alignment errors", rx_align), 241 STATS_ENTRY("truncated", "frames truncated due to Rx FIFO inderrun", 242 rx_trunc) 243 }; 244 #define AE_STATS_RX_LEN (sizeof(ae_stats_rx) / sizeof(*ae_stats_rx)) 245 #define AE_STATS_TX_LEN (sizeof(ae_stats_tx) / sizeof(*ae_stats_tx)) 246 247 static int 248 ae_probe(device_t dev) 249 { 250 uint16_t deviceid, vendorid; 251 int i; 252 253 vendorid = pci_get_vendor(dev); 254 deviceid = pci_get_device(dev); 255 256 /* 257 * Search through the list of supported devs for matching one. 258 */ 259 for (i = 0; i < AE_DEVS_COUNT; i++) { 260 if (vendorid == ae_devs[i].vendorid && 261 deviceid == ae_devs[i].deviceid) { 262 device_set_desc(dev, ae_devs[i].name); 263 return (BUS_PROBE_DEFAULT); 264 } 265 } 266 return (ENXIO); 267 } 268 269 static int 270 ae_attach(device_t dev) 271 { 272 ae_softc_t *sc; 273 struct ifnet *ifp; 274 uint8_t chiprev; 275 uint32_t pcirev; 276 int nmsi, pmc; 277 int error; 278 279 sc = device_get_softc(dev); /* Automatically allocated and zeroed 280 on attach. */ 281 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__)); 282 sc->dev = dev; 283 284 /* 285 * Initialize mutexes and tasks. 286 */ 287 mtx_init(&sc->mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF); 288 callout_init_mtx(&sc->tick_ch, &sc->mtx, 0); 289 TASK_INIT(&sc->int_task, 0, ae_int_task, sc); 290 TASK_INIT(&sc->link_task, 0, ae_link_task, sc); 291 292 pci_enable_busmaster(dev); /* Enable bus mastering. */ 293 294 sc->spec_mem = ae_res_spec_mem; 295 296 /* 297 * Allocate memory-mapped registers. 298 */ 299 error = bus_alloc_resources(dev, sc->spec_mem, sc->mem); 300 if (error != 0) { 301 device_printf(dev, "could not allocate memory resources.\n"); 302 sc->spec_mem = NULL; 303 goto fail; 304 } 305 306 /* 307 * Retrieve PCI and chip revisions. 308 */ 309 pcirev = pci_get_revid(dev); 310 chiprev = (AE_READ_4(sc, AE_MASTER_REG) >> AE_MASTER_REVNUM_SHIFT) & 311 AE_MASTER_REVNUM_MASK; 312 if (bootverbose) { 313 device_printf(dev, "pci device revision: %#04x\n", pcirev); 314 device_printf(dev, "chip id: %#02x\n", chiprev); 315 } 316 nmsi = pci_msi_count(dev); 317 if (bootverbose) 318 device_printf(dev, "MSI count: %d.\n", nmsi); 319 320 /* 321 * Allocate interrupt resources. 322 */ 323 if (msi_disable == 0 && nmsi == 1) { 324 error = pci_alloc_msi(dev, &nmsi); 325 if (error == 0) { 326 device_printf(dev, "Using MSI messages.\n"); 327 sc->spec_irq = ae_res_spec_msi; 328 error = bus_alloc_resources(dev, sc->spec_irq, sc->irq); 329 if (error != 0) { 330 device_printf(dev, "MSI allocation failed.\n"); 331 sc->spec_irq = NULL; 332 pci_release_msi(dev); 333 } else { 334 sc->flags |= AE_FLAG_MSI; 335 } 336 } 337 } 338 if (sc->spec_irq == NULL) { 339 sc->spec_irq = ae_res_spec_irq; 340 error = bus_alloc_resources(dev, sc->spec_irq, sc->irq); 341 if (error != 0) { 342 device_printf(dev, "could not allocate IRQ resources.\n"); 343 sc->spec_irq = NULL; 344 goto fail; 345 } 346 } 347 348 ae_init_tunables(sc); 349 350 ae_phy_reset(sc); /* Reset PHY. */ 351 error = ae_reset(sc); /* Reset the controller itself. */ 352 if (error != 0) 353 goto fail; 354 355 ae_pcie_init(sc); 356 357 ae_retrieve_address(sc); /* Load MAC address. */ 358 359 error = ae_alloc_rings(sc); /* Allocate ring buffers. */ 360 if (error != 0) 361 goto fail; 362 363 /* Set default PHY address. */ 364 sc->phyaddr = AE_PHYADDR_DEFAULT; 365 366 ifp = sc->ifp = if_alloc(IFT_ETHER); 367 if (ifp == NULL) { 368 device_printf(dev, "could not allocate ifnet structure.\n"); 369 error = ENXIO; 370 } 371 372 ifp->if_softc = sc; 373 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 374 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 375 ifp->if_ioctl = ae_ioctl; 376 ifp->if_start = ae_start; 377 ifp->if_init = ae_init; 378 ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING; 379 ifp->if_hwassist = 0; 380 ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN; 381 IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen); 382 IFQ_SET_READY(&ifp->if_snd); 383 if (pci_find_extcap(dev, PCIY_PMG, &pmc) == 0) { 384 ifp->if_capabilities |= IFCAP_WOL_MAGIC; 385 sc->flags |= AE_FLAG_PMG; 386 } 387 ifp->if_capenable = ifp->if_capabilities; 388 389 /* 390 * Configure and attach MII bus. 391 */ 392 error = mii_phy_probe(dev, &sc->miibus, ae_mediachange, 393 ae_mediastatus); 394 if (error != 0) { 395 device_printf(dev, "no PHY found.\n"); 396 goto fail; 397 } 398 399 ether_ifattach(ifp, sc->eaddr); 400 /* Tell the upper layer(s) we support long frames. */ 401 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); 402 403 /* 404 * Create and run all helper tasks. 405 */ 406 TASK_INIT(&sc->tx_task, 1, ae_tx_task, ifp); 407 sc->tq = taskqueue_create_fast("ae_taskq", M_WAITOK, 408 taskqueue_thread_enqueue, &sc->tq); 409 if (sc->tq == NULL) { 410 device_printf(dev, "could not create taskqueue.\n"); 411 ether_ifdetach(ifp); 412 error = ENXIO; 413 goto fail; 414 } 415 taskqueue_start_threads(&sc->tq, 1, PI_NET, "%s taskq", 416 device_get_nameunit(sc->dev)); 417 418 /* 419 * Configure interrupt handlers. 420 */ 421 error = bus_setup_intr(dev, sc->irq[0], INTR_TYPE_NET | INTR_MPSAFE, 422 ae_intr, NULL, sc, &sc->intrhand); 423 if (error != 0) { 424 device_printf(dev, "could not set up interrupt handler.\n"); 425 taskqueue_free(sc->tq); 426 sc->tq = NULL; 427 ether_ifdetach(ifp); 428 goto fail; 429 } 430 431 fail: 432 if (error != 0) 433 ae_detach(dev); 434 435 return (error); 436 } 437 438 static void 439 ae_init_tunables(ae_softc_t *sc) 440 { 441 struct sysctl_ctx_list *ctx; 442 struct sysctl_oid *root, *stats, *stats_rx, *stats_tx; 443 struct ae_stats *ae_stats; 444 unsigned int i; 445 446 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__)); 447 ae_stats = &sc->stats; 448 449 ctx = device_get_sysctl_ctx(sc->dev); 450 root = device_get_sysctl_tree(sc->dev); 451 stats = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(root), OID_AUTO, "stats", 452 CTLFLAG_RD, NULL, "ae statistics"); 453 454 /* 455 * Receiver statistcics. 456 */ 457 stats_rx = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(stats), OID_AUTO, "rx", 458 CTLFLAG_RD, NULL, "Rx MAC statistics"); 459 for (i = 0; i < AE_STATS_RX_LEN; i++) 460 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(stats_rx), OID_AUTO, 461 ae_stats_rx[i].node, CTLFLAG_RD, (char *)ae_stats + 462 ae_stats_rx[i].offset, 0, ae_stats_rx[i].desc); 463 464 /* 465 * Receiver statistcics. 466 */ 467 stats_tx = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(stats), OID_AUTO, "tx", 468 CTLFLAG_RD, NULL, "Tx MAC statistics"); 469 for (i = 0; i < AE_STATS_TX_LEN; i++) 470 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(stats_tx), OID_AUTO, 471 ae_stats_tx[i].node, CTLFLAG_RD, (char *)ae_stats + 472 ae_stats_tx[i].offset, 0, ae_stats_tx[i].desc); 473 } 474 475 static void 476 ae_pcie_init(ae_softc_t *sc) 477 { 478 479 AE_WRITE_4(sc, AE_PCIE_LTSSM_TESTMODE_REG, AE_PCIE_LTSSM_TESTMODE_DEFAULT); 480 AE_WRITE_4(sc, AE_PCIE_DLL_TX_CTRL_REG, AE_PCIE_DLL_TX_CTRL_DEFAULT); 481 } 482 483 static void 484 ae_phy_reset(ae_softc_t *sc) 485 { 486 487 AE_WRITE_4(sc, AE_PHY_ENABLE_REG, AE_PHY_ENABLE); 488 DELAY(1000); /* XXX: pause(9) ? */ 489 } 490 491 static int 492 ae_reset(ae_softc_t *sc) 493 { 494 int i; 495 496 /* 497 * Issue a soft reset. 498 */ 499 AE_WRITE_4(sc, AE_MASTER_REG, AE_MASTER_SOFT_RESET); 500 bus_barrier(sc->mem[0], AE_MASTER_REG, 4, 501 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); 502 503 /* 504 * Wait for reset to complete. 505 */ 506 for (i = 0; i < AE_RESET_TIMEOUT; i++) { 507 if ((AE_READ_4(sc, AE_MASTER_REG) & AE_MASTER_SOFT_RESET) == 0) 508 break; 509 DELAY(10); 510 } 511 if (i == AE_RESET_TIMEOUT) { 512 device_printf(sc->dev, "reset timeout.\n"); 513 return (ENXIO); 514 } 515 516 /* 517 * Wait for everything to enter idle state. 518 */ 519 for (i = 0; i < AE_IDLE_TIMEOUT; i++) { 520 if (AE_READ_4(sc, AE_IDLE_REG) == 0) 521 break; 522 DELAY(100); 523 } 524 if (i == AE_IDLE_TIMEOUT) { 525 device_printf(sc->dev, "could not enter idle state.\n"); 526 return (ENXIO); 527 } 528 return (0); 529 } 530 531 static void 532 ae_init(void *arg) 533 { 534 ae_softc_t *sc; 535 536 sc = (ae_softc_t *)arg; 537 AE_LOCK(sc); 538 ae_init_locked(sc); 539 AE_UNLOCK(sc); 540 } 541 542 static void 543 ae_phy_init(ae_softc_t *sc) 544 { 545 546 /* 547 * Enable link status change interrupt. 548 * XXX magic numbers. 549 */ 550 #ifdef notyet 551 AE_PHY_WRITE(sc, 18, 0xc00); 552 #endif 553 } 554 555 static int 556 ae_init_locked(ae_softc_t *sc) 557 { 558 struct ifnet *ifp; 559 struct mii_data *mii; 560 uint8_t eaddr[ETHER_ADDR_LEN]; 561 uint32_t val; 562 bus_addr_t addr; 563 564 AE_LOCK_ASSERT(sc); 565 566 ifp = sc->ifp; 567 mii = device_get_softc(sc->miibus); 568 569 ae_stop(sc); 570 ae_reset(sc); 571 ae_pcie_init(sc); /* Initialize PCIE stuff. */ 572 ae_phy_init(sc); 573 ae_powersave_disable(sc); 574 575 /* 576 * Clear and disable interrupts. 577 */ 578 AE_WRITE_4(sc, AE_ISR_REG, 0xffffffff); 579 580 /* 581 * Set the MAC address. 582 */ 583 bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN); 584 val = eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]; 585 AE_WRITE_4(sc, AE_EADDR0_REG, val); 586 val = eaddr[0] << 8 | eaddr[1]; 587 AE_WRITE_4(sc, AE_EADDR1_REG, val); 588 589 /* 590 * Set ring buffers base addresses. 591 */ 592 addr = sc->dma_rxd_busaddr; 593 AE_WRITE_4(sc, AE_DESC_ADDR_HI_REG, BUS_ADDR_HI(addr)); 594 AE_WRITE_4(sc, AE_RXD_ADDR_LO_REG, BUS_ADDR_LO(addr)); 595 addr = sc->dma_txd_busaddr; 596 AE_WRITE_4(sc, AE_TXD_ADDR_LO_REG, BUS_ADDR_LO(addr)); 597 addr = sc->dma_txs_busaddr; 598 AE_WRITE_4(sc, AE_TXS_ADDR_LO_REG, BUS_ADDR_LO(addr)); 599 600 /* 601 * Configure ring buffers sizes. 602 */ 603 AE_WRITE_2(sc, AE_RXD_COUNT_REG, AE_RXD_COUNT_DEFAULT); 604 AE_WRITE_2(sc, AE_TXD_BUFSIZE_REG, AE_TXD_BUFSIZE_DEFAULT / 4); 605 AE_WRITE_2(sc, AE_TXS_COUNT_REG, AE_TXS_COUNT_DEFAULT); 606 607 /* 608 * Configure interframe gap parameters. 609 */ 610 val = ((AE_IFG_TXIPG_DEFAULT << AE_IFG_TXIPG_SHIFT) & 611 AE_IFG_TXIPG_MASK) | 612 ((AE_IFG_RXIPG_DEFAULT << AE_IFG_RXIPG_SHIFT) & 613 AE_IFG_RXIPG_MASK) | 614 ((AE_IFG_IPGR1_DEFAULT << AE_IFG_IPGR1_SHIFT) & 615 AE_IFG_IPGR1_MASK) | 616 ((AE_IFG_IPGR2_DEFAULT << AE_IFG_IPGR2_SHIFT) & 617 AE_IFG_IPGR2_MASK); 618 AE_WRITE_4(sc, AE_IFG_REG, val); 619 620 /* 621 * Configure half-duplex operation. 622 */ 623 val = ((AE_HDPX_LCOL_DEFAULT << AE_HDPX_LCOL_SHIFT) & 624 AE_HDPX_LCOL_MASK) | 625 ((AE_HDPX_RETRY_DEFAULT << AE_HDPX_RETRY_SHIFT) & 626 AE_HDPX_RETRY_MASK) | 627 ((AE_HDPX_ABEBT_DEFAULT << AE_HDPX_ABEBT_SHIFT) & 628 AE_HDPX_ABEBT_MASK) | 629 ((AE_HDPX_JAMIPG_DEFAULT << AE_HDPX_JAMIPG_SHIFT) & 630 AE_HDPX_JAMIPG_MASK) | AE_HDPX_EXC_EN; 631 AE_WRITE_4(sc, AE_HDPX_REG, val); 632 633 /* 634 * Configure interrupt moderate timer. 635 */ 636 AE_WRITE_2(sc, AE_IMT_REG, AE_IMT_DEFAULT); 637 val = AE_READ_4(sc, AE_MASTER_REG); 638 val |= AE_MASTER_IMT_EN; 639 AE_WRITE_4(sc, AE_MASTER_REG, val); 640 641 /* 642 * Configure interrupt clearing timer. 643 */ 644 AE_WRITE_2(sc, AE_ICT_REG, AE_ICT_DEFAULT); 645 646 /* 647 * Configure MTU. 648 */ 649 val = ifp->if_mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + 650 ETHER_CRC_LEN; 651 AE_WRITE_2(sc, AE_MTU_REG, val); 652 653 /* 654 * Configure cut-through threshold. 655 */ 656 AE_WRITE_4(sc, AE_CUT_THRESH_REG, AE_CUT_THRESH_DEFAULT); 657 658 /* 659 * Configure flow control. 660 */ 661 AE_WRITE_2(sc, AE_FLOW_THRESH_HI_REG, (AE_RXD_COUNT_DEFAULT / 8) * 7); 662 AE_WRITE_2(sc, AE_FLOW_THRESH_LO_REG, (AE_RXD_COUNT_MIN / 8) > 663 (AE_RXD_COUNT_DEFAULT / 12) ? (AE_RXD_COUNT_MIN / 8) : 664 (AE_RXD_COUNT_DEFAULT / 12)); 665 666 /* 667 * Init mailboxes. 668 */ 669 sc->txd_cur = sc->rxd_cur = 0; 670 sc->txs_ack = sc->txd_ack = 0; 671 sc->rxd_cur = 0; 672 AE_WRITE_2(sc, AE_MB_TXD_IDX_REG, sc->txd_cur); 673 AE_WRITE_2(sc, AE_MB_RXD_IDX_REG, sc->rxd_cur); 674 675 sc->tx_inproc = 0; /* Number of packets the chip processes now. */ 676 sc->flags |= AE_FLAG_TXAVAIL; /* Free Tx's available. */ 677 678 /* 679 * Enable DMA. 680 */ 681 AE_WRITE_1(sc, AE_DMAREAD_REG, AE_DMAREAD_EN); 682 AE_WRITE_1(sc, AE_DMAWRITE_REG, AE_DMAWRITE_EN); 683 684 /* 685 * Check if everything is OK. 686 */ 687 val = AE_READ_4(sc, AE_ISR_REG); 688 if ((val & AE_ISR_PHY_LINKDOWN) != 0) { 689 device_printf(sc->dev, "Initialization failed.\n"); 690 return (ENXIO); 691 } 692 693 /* 694 * Clear interrupt status. 695 */ 696 AE_WRITE_4(sc, AE_ISR_REG, 0x3fffffff); 697 AE_WRITE_4(sc, AE_ISR_REG, 0x0); 698 699 /* 700 * Enable interrupts. 701 */ 702 val = AE_READ_4(sc, AE_MASTER_REG); 703 AE_WRITE_4(sc, AE_MASTER_REG, val | AE_MASTER_MANUAL_INT); 704 AE_WRITE_4(sc, AE_IMR_REG, AE_IMR_DEFAULT); 705 706 /* 707 * Disable WOL. 708 */ 709 AE_WRITE_4(sc, AE_WOL_REG, 0); 710 711 /* 712 * Configure MAC. 713 */ 714 val = AE_MAC_TX_CRC_EN | AE_MAC_TX_AUTOPAD | 715 AE_MAC_FULL_DUPLEX | AE_MAC_CLK_PHY | 716 AE_MAC_TX_FLOW_EN | AE_MAC_RX_FLOW_EN | 717 ((AE_HALFBUF_DEFAULT << AE_HALFBUF_SHIFT) & AE_HALFBUF_MASK) | 718 ((AE_MAC_PREAMBLE_DEFAULT << AE_MAC_PREAMBLE_SHIFT) & 719 AE_MAC_PREAMBLE_MASK); 720 AE_WRITE_4(sc, AE_MAC_REG, val); 721 722 /* 723 * Configure Rx MAC. 724 */ 725 ae_rxfilter(sc); 726 ae_rxvlan(sc); 727 728 /* 729 * Enable Tx/Rx. 730 */ 731 val = AE_READ_4(sc, AE_MAC_REG); 732 AE_WRITE_4(sc, AE_MAC_REG, val | AE_MAC_TX_EN | AE_MAC_RX_EN); 733 734 sc->flags &= ~AE_FLAG_LINK; 735 mii_mediachg(mii); /* Switch to the current media. */ 736 737 callout_reset(&sc->tick_ch, hz, ae_tick, sc); 738 739 ifp->if_drv_flags |= IFF_DRV_RUNNING; 740 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 741 742 #ifdef AE_DEBUG 743 device_printf(sc->dev, "Initialization complete.\n"); 744 #endif 745 746 return (0); 747 } 748 749 static int 750 ae_detach(device_t dev) 751 { 752 struct ae_softc *sc; 753 struct ifnet *ifp; 754 755 sc = device_get_softc(dev); 756 KASSERT(sc != NULL, ("[ae: %d]: sc is NULL", __LINE__)); 757 ifp = sc->ifp; 758 if (device_is_attached(dev)) { 759 AE_LOCK(sc); 760 sc->flags |= AE_FLAG_DETACH; 761 ae_stop(sc); 762 AE_UNLOCK(sc); 763 callout_drain(&sc->tick_ch); 764 taskqueue_drain(sc->tq, &sc->int_task); 765 taskqueue_drain(sc->tq, &sc->tx_task); 766 taskqueue_drain(taskqueue_swi, &sc->link_task); 767 ether_ifdetach(ifp); 768 } 769 if (sc->tq != NULL) { 770 taskqueue_drain(sc->tq, &sc->int_task); 771 taskqueue_free(sc->tq); 772 sc->tq = NULL; 773 } 774 if (sc->miibus != NULL) { 775 device_delete_child(dev, sc->miibus); 776 sc->miibus = NULL; 777 } 778 bus_generic_detach(sc->dev); 779 ae_dma_free(sc); 780 if (sc->intrhand != NULL) { 781 bus_teardown_intr(dev, sc->irq[0], sc->intrhand); 782 sc->intrhand = NULL; 783 } 784 if (ifp != NULL) { 785 if_free(ifp); 786 sc->ifp = NULL; 787 } 788 if (sc->spec_irq != NULL) 789 bus_release_resources(dev, sc->spec_irq, sc->irq); 790 if (sc->spec_mem != NULL) 791 bus_release_resources(dev, sc->spec_mem, sc->mem); 792 if ((sc->flags & AE_FLAG_MSI) != 0) 793 pci_release_msi(dev); 794 mtx_destroy(&sc->mtx); 795 796 return (0); 797 } 798 799 static int 800 ae_miibus_readreg(device_t dev, int phy, int reg) 801 { 802 ae_softc_t *sc; 803 uint32_t val; 804 int i; 805 806 sc = device_get_softc(dev); 807 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__)); 808 809 /* 810 * Locking is done in upper layers. 811 */ 812 813 if (phy != sc->phyaddr) 814 return (0); 815 816 val = ((reg << AE_MDIO_REGADDR_SHIFT) & AE_MDIO_REGADDR_MASK) | 817 AE_MDIO_START | AE_MDIO_READ | AE_MDIO_SUP_PREAMBLE | 818 ((AE_MDIO_CLK_25_4 << AE_MDIO_CLK_SHIFT) & AE_MDIO_CLK_MASK); 819 AE_WRITE_4(sc, AE_MDIO_REG, val); 820 821 /* 822 * Wait for operation to complete. 823 */ 824 for (i = 0; i < AE_MDIO_TIMEOUT; i++) { 825 DELAY(2); 826 val = AE_READ_4(sc, AE_MDIO_REG); 827 if ((val & (AE_MDIO_START | AE_MDIO_BUSY)) == 0) 828 break; 829 } 830 if (i == AE_MDIO_TIMEOUT) { 831 device_printf(sc->dev, "phy read timeout: %d.\n", reg); 832 return (0); 833 } 834 return ((val << AE_MDIO_DATA_SHIFT) & AE_MDIO_DATA_MASK); 835 } 836 837 static int 838 ae_miibus_writereg(device_t dev, int phy, int reg, int val) 839 { 840 ae_softc_t *sc; 841 uint32_t aereg; 842 int i; 843 844 sc = device_get_softc(dev); 845 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__)); 846 847 /* 848 * Locking is done in upper layers. 849 */ 850 851 if (phy != sc->phyaddr) 852 return (0); 853 854 aereg = ((reg << AE_MDIO_REGADDR_SHIFT) & AE_MDIO_REGADDR_MASK) | 855 AE_MDIO_START | AE_MDIO_SUP_PREAMBLE | 856 ((AE_MDIO_CLK_25_4 << AE_MDIO_CLK_SHIFT) & AE_MDIO_CLK_MASK) | 857 ((val << AE_MDIO_DATA_SHIFT) & AE_MDIO_DATA_MASK); 858 AE_WRITE_4(sc, AE_MDIO_REG, aereg); 859 860 /* 861 * Wait for operation to complete. 862 */ 863 for (i = 0; i < AE_MDIO_TIMEOUT; i++) { 864 DELAY(2); 865 aereg = AE_READ_4(sc, AE_MDIO_REG); 866 if ((aereg & (AE_MDIO_START | AE_MDIO_BUSY)) == 0) 867 break; 868 } 869 if (i == AE_MDIO_TIMEOUT) { 870 device_printf(sc->dev, "phy write timeout: %d.\n", reg); 871 } 872 return (0); 873 } 874 875 static void 876 ae_miibus_statchg(device_t dev) 877 { 878 ae_softc_t *sc; 879 880 sc = device_get_softc(dev); 881 taskqueue_enqueue(taskqueue_swi, &sc->link_task); 882 } 883 884 static void 885 ae_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) 886 { 887 ae_softc_t *sc; 888 struct mii_data *mii; 889 890 sc = ifp->if_softc; 891 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__)); 892 893 AE_LOCK(sc); 894 mii = device_get_softc(sc->miibus); 895 mii_pollstat(mii); 896 ifmr->ifm_status = mii->mii_media_status; 897 ifmr->ifm_active = mii->mii_media_active; 898 AE_UNLOCK(sc); 899 } 900 901 static int 902 ae_mediachange(struct ifnet *ifp) 903 { 904 ae_softc_t *sc; 905 struct mii_data *mii; 906 struct mii_softc *mii_sc; 907 int error; 908 909 /* XXX: check IFF_UP ?? */ 910 sc = ifp->if_softc; 911 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__)); 912 AE_LOCK(sc); 913 mii = device_get_softc(sc->miibus); 914 if (mii->mii_instance != 0) { 915 LIST_FOREACH(mii_sc, &mii->mii_phys, mii_list) 916 mii_phy_reset(mii_sc); 917 } 918 error = mii_mediachg(mii); 919 AE_UNLOCK(sc); 920 921 return (error); 922 } 923 924 static int 925 ae_check_eeprom_present(ae_softc_t *sc, int *vpdc) 926 { 927 int error; 928 uint32_t val; 929 930 KASSERT(vpdc != NULL, ("[ae, %d]: vpdc is NULL!\n", __LINE__)); 931 932 /* 933 * Not sure why, but Linux does this. 934 */ 935 val = AE_READ_4(sc, AE_SPICTL_REG); 936 if ((val & AE_SPICTL_VPD_EN) != 0) { 937 val &= ~AE_SPICTL_VPD_EN; 938 AE_WRITE_4(sc, AE_SPICTL_REG, val); 939 } 940 error = pci_find_extcap(sc->dev, PCIY_VPD, vpdc); 941 return (error); 942 } 943 944 static int 945 ae_vpd_read_word(ae_softc_t *sc, int reg, uint32_t *word) 946 { 947 uint32_t val; 948 int i; 949 950 AE_WRITE_4(sc, AE_VPD_DATA_REG, 0); /* Clear register value. */ 951 952 /* 953 * VPD registers start at offset 0x100. Read them. 954 */ 955 val = 0x100 + reg * 4; 956 AE_WRITE_4(sc, AE_VPD_CAP_REG, (val << AE_VPD_CAP_ADDR_SHIFT) & 957 AE_VPD_CAP_ADDR_MASK); 958 for (i = 0; i < AE_VPD_TIMEOUT; i++) { 959 DELAY(2000); 960 val = AE_READ_4(sc, AE_VPD_CAP_REG); 961 if ((val & AE_VPD_CAP_DONE) != 0) 962 break; 963 } 964 if (i == AE_VPD_TIMEOUT) { 965 device_printf(sc->dev, "timeout reading VPD register %d.\n", 966 reg); 967 return (ETIMEDOUT); 968 } 969 *word = AE_READ_4(sc, AE_VPD_DATA_REG); 970 return (0); 971 } 972 973 static int 974 ae_get_vpd_eaddr(ae_softc_t *sc, uint32_t *eaddr) 975 { 976 uint32_t word, reg, val; 977 int error; 978 int found; 979 int vpdc; 980 int i; 981 982 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__)); 983 KASSERT(eaddr != NULL, ("[ae, %d]: eaddr is NULL", __LINE__)); 984 985 /* 986 * Check for EEPROM. 987 */ 988 error = ae_check_eeprom_present(sc, &vpdc); 989 if (error != 0) 990 return (error); 991 992 /* 993 * Read the VPD configuration space. 994 * Each register is prefixed with signature, 995 * so we can check if it is valid. 996 */ 997 for (i = 0, found = 0; i < AE_VPD_NREGS; i++) { 998 error = ae_vpd_read_word(sc, i, &word); 999 if (error != 0) 1000 break; 1001 1002 /* 1003 * Check signature. 1004 */ 1005 if ((word & AE_VPD_SIG_MASK) != AE_VPD_SIG) 1006 break; 1007 reg = word >> AE_VPD_REG_SHIFT; 1008 i++; /* Move to the next word. */ 1009 1010 if (reg != AE_EADDR0_REG && reg != AE_EADDR1_REG) 1011 continue; 1012 1013 error = ae_vpd_read_word(sc, i, &val); 1014 if (error != 0) 1015 break; 1016 if (reg == AE_EADDR0_REG) 1017 eaddr[0] = val; 1018 else 1019 eaddr[1] = val; 1020 found++; 1021 } 1022 1023 if (found < 2) 1024 return (ENOENT); 1025 1026 eaddr[1] &= 0xffff; /* Only last 2 bytes are used. */ 1027 if (AE_CHECK_EADDR_VALID(eaddr) != 0) { 1028 if (bootverbose) 1029 device_printf(sc->dev, 1030 "VPD ethernet address registers are invalid.\n"); 1031 return (EINVAL); 1032 } 1033 return (0); 1034 } 1035 1036 static int 1037 ae_get_reg_eaddr(ae_softc_t *sc, uint32_t *eaddr) 1038 { 1039 1040 /* 1041 * BIOS is supposed to set this. 1042 */ 1043 eaddr[0] = AE_READ_4(sc, AE_EADDR0_REG); 1044 eaddr[1] = AE_READ_4(sc, AE_EADDR1_REG); 1045 eaddr[1] &= 0xffff; /* Only last 2 bytes are used. */ 1046 1047 if (AE_CHECK_EADDR_VALID(eaddr) != 0) { 1048 if (bootverbose) 1049 device_printf(sc->dev, 1050 "Ethetnet address registers are invalid.\n"); 1051 return (EINVAL); 1052 } 1053 return (0); 1054 } 1055 1056 static void 1057 ae_retrieve_address(ae_softc_t *sc) 1058 { 1059 uint32_t eaddr[2] = {0, 0}; 1060 int error; 1061 1062 /* 1063 *Check for EEPROM. 1064 */ 1065 error = ae_get_vpd_eaddr(sc, eaddr); 1066 if (error != 0) 1067 error = ae_get_reg_eaddr(sc, eaddr); 1068 if (error != 0) { 1069 if (bootverbose) 1070 device_printf(sc->dev, 1071 "Generating random ethernet address.\n"); 1072 eaddr[0] = arc4random(); 1073 1074 /* 1075 * Set OUI to ASUSTek COMPUTER INC. 1076 */ 1077 sc->eaddr[0] = 0x02; /* U/L bit set. */ 1078 sc->eaddr[1] = 0x1f; 1079 sc->eaddr[2] = 0xc6; 1080 sc->eaddr[3] = (eaddr[0] >> 16) & 0xff; 1081 sc->eaddr[4] = (eaddr[0] >> 8) & 0xff; 1082 sc->eaddr[5] = (eaddr[0] >> 0) & 0xff; 1083 } else { 1084 sc->eaddr[0] = (eaddr[1] >> 8) & 0xff; 1085 sc->eaddr[1] = (eaddr[1] >> 0) & 0xff; 1086 sc->eaddr[2] = (eaddr[0] >> 24) & 0xff; 1087 sc->eaddr[3] = (eaddr[0] >> 16) & 0xff; 1088 sc->eaddr[4] = (eaddr[0] >> 8) & 0xff; 1089 sc->eaddr[5] = (eaddr[0] >> 0) & 0xff; 1090 } 1091 } 1092 1093 static void 1094 ae_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 1095 { 1096 bus_addr_t *addr = arg; 1097 1098 if (error != 0) 1099 return; 1100 KASSERT(nsegs == 1, ("[ae, %d]: %d segments instead of 1!", __LINE__, 1101 nsegs)); 1102 *addr = segs[0].ds_addr; 1103 } 1104 1105 static int 1106 ae_alloc_rings(ae_softc_t *sc) 1107 { 1108 bus_addr_t busaddr; 1109 int error; 1110 1111 /* 1112 * Create parent DMA tag. 1113 */ 1114 error = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1115 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, 1116 NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 0, 1117 BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL, 1118 &sc->dma_parent_tag); 1119 if (error != 0) { 1120 device_printf(sc->dev, "could not creare parent DMA tag.\n"); 1121 return (error); 1122 } 1123 1124 /* 1125 * Create DMA tag for TxD. 1126 */ 1127 error = bus_dma_tag_create(sc->dma_parent_tag, 1128 4, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, 1129 NULL, NULL, AE_TXD_BUFSIZE_DEFAULT, 1, 1130 AE_TXD_BUFSIZE_DEFAULT, 0, NULL, NULL, 1131 &sc->dma_txd_tag); 1132 if (error != 0) { 1133 device_printf(sc->dev, "could not creare TxD DMA tag.\n"); 1134 return (error); 1135 } 1136 1137 /* 1138 * Create DMA tag for TxS. 1139 */ 1140 error = bus_dma_tag_create(sc->dma_parent_tag, 1141 4, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, 1142 NULL, NULL, AE_TXS_COUNT_DEFAULT * 4, 1, 1143 AE_TXS_COUNT_DEFAULT * 4, 0, NULL, NULL, 1144 &sc->dma_txs_tag); 1145 if (error != 0) { 1146 device_printf(sc->dev, "could not creare TxS DMA tag.\n"); 1147 return (error); 1148 } 1149 1150 /* 1151 * Create DMA tag for RxD. 1152 */ 1153 error = bus_dma_tag_create(sc->dma_parent_tag, 1154 128, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, 1155 NULL, NULL, AE_RXD_COUNT_DEFAULT * 1536 + 120, 1, 1156 AE_RXD_COUNT_DEFAULT * 1536 + 120, 0, NULL, NULL, 1157 &sc->dma_rxd_tag); 1158 if (error != 0) { 1159 device_printf(sc->dev, "could not creare TxS DMA tag.\n"); 1160 return (error); 1161 } 1162 1163 /* 1164 * Allocate TxD DMA memory. 1165 */ 1166 error = bus_dmamem_alloc(sc->dma_txd_tag, (void **)&sc->txd_base, 1167 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 1168 &sc->dma_txd_map); 1169 if (error != 0) { 1170 device_printf(sc->dev, 1171 "could not allocate DMA memory for TxD ring.\n"); 1172 return (error); 1173 } 1174 error = bus_dmamap_load(sc->dma_txd_tag, sc->dma_txd_map, sc->txd_base, 1175 AE_TXD_BUFSIZE_DEFAULT, ae_dmamap_cb, &busaddr, BUS_DMA_NOWAIT); 1176 if (error != 0 || busaddr == 0) { 1177 device_printf(sc->dev, 1178 "could not load DMA map for TxD ring.\n"); 1179 return (error); 1180 } 1181 sc->dma_txd_busaddr = busaddr; 1182 1183 /* 1184 * Allocate TxS DMA memory. 1185 */ 1186 error = bus_dmamem_alloc(sc->dma_txs_tag, (void **)&sc->txs_base, 1187 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 1188 &sc->dma_txs_map); 1189 if (error != 0) { 1190 device_printf(sc->dev, 1191 "could not allocate DMA memory for TxS ring.\n"); 1192 return (error); 1193 } 1194 error = bus_dmamap_load(sc->dma_txs_tag, sc->dma_txs_map, sc->txs_base, 1195 AE_TXS_COUNT_DEFAULT * 4, ae_dmamap_cb, &busaddr, BUS_DMA_NOWAIT); 1196 if (error != 0 || busaddr == 0) { 1197 device_printf(sc->dev, 1198 "could not load DMA map for TxS ring.\n"); 1199 return (error); 1200 } 1201 sc->dma_txs_busaddr = busaddr; 1202 1203 /* 1204 * Allocate RxD DMA memory. 1205 */ 1206 error = bus_dmamem_alloc(sc->dma_rxd_tag, (void **)&sc->rxd_base_dma, 1207 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 1208 &sc->dma_rxd_map); 1209 if (error != 0) { 1210 device_printf(sc->dev, 1211 "could not allocate DMA memory for RxD ring.\n"); 1212 return (error); 1213 } 1214 error = bus_dmamap_load(sc->dma_rxd_tag, sc->dma_rxd_map, 1215 sc->rxd_base_dma, AE_RXD_COUNT_DEFAULT * 1536 + 120, ae_dmamap_cb, 1216 &busaddr, BUS_DMA_NOWAIT); 1217 if (error != 0 || busaddr == 0) { 1218 device_printf(sc->dev, 1219 "could not load DMA map for RxD ring.\n"); 1220 return (error); 1221 } 1222 sc->dma_rxd_busaddr = busaddr + 120; 1223 sc->rxd_base = (ae_rxd_t *)(sc->rxd_base_dma + 120); 1224 1225 return (0); 1226 } 1227 1228 static void 1229 ae_dma_free(ae_softc_t *sc) 1230 { 1231 1232 if (sc->dma_txd_tag != NULL) { 1233 if (sc->dma_txd_map != NULL) { 1234 bus_dmamap_unload(sc->dma_txd_tag, sc->dma_txd_map); 1235 if (sc->txd_base != NULL) 1236 bus_dmamem_free(sc->dma_txd_tag, sc->txd_base, 1237 sc->dma_txd_map); 1238 1239 } 1240 bus_dma_tag_destroy(sc->dma_txd_tag); 1241 sc->dma_txd_map = NULL; 1242 sc->dma_txd_tag = NULL; 1243 sc->txd_base = NULL; 1244 } 1245 if (sc->dma_txs_tag != NULL) { 1246 if (sc->dma_txs_map != NULL) { 1247 bus_dmamap_unload(sc->dma_txs_tag, sc->dma_txs_map); 1248 if (sc->txs_base != NULL) 1249 bus_dmamem_free(sc->dma_txs_tag, sc->txs_base, 1250 sc->dma_txs_map); 1251 1252 } 1253 bus_dma_tag_destroy(sc->dma_txs_tag); 1254 sc->dma_txs_map = NULL; 1255 sc->dma_txs_tag = NULL; 1256 sc->txs_base = NULL; 1257 } 1258 if (sc->dma_rxd_tag != NULL) { 1259 if (sc->dma_rxd_map != NULL) { 1260 bus_dmamap_unload(sc->dma_rxd_tag, sc->dma_rxd_map); 1261 if (sc->rxd_base_dma != NULL) 1262 bus_dmamem_free(sc->dma_rxd_tag, 1263 sc->rxd_base_dma, sc->dma_rxd_map); 1264 1265 } 1266 bus_dma_tag_destroy(sc->dma_rxd_tag); 1267 sc->dma_rxd_map = NULL; 1268 sc->dma_rxd_tag = NULL; 1269 sc->rxd_base_dma = NULL; 1270 } 1271 if (sc->dma_parent_tag != NULL) { 1272 bus_dma_tag_destroy(sc->dma_parent_tag); 1273 sc->dma_parent_tag = NULL; 1274 } 1275 } 1276 1277 static int 1278 ae_shutdown(device_t dev) 1279 { 1280 ae_softc_t *sc; 1281 int error; 1282 1283 sc = device_get_softc(dev); 1284 KASSERT(sc != NULL, ("[ae: %d]: sc is NULL", __LINE__)); 1285 1286 error = ae_suspend(dev); 1287 AE_LOCK(sc); 1288 ae_powersave_enable(sc); 1289 AE_UNLOCK(sc); 1290 return (error); 1291 } 1292 1293 static void 1294 ae_powersave_disable(ae_softc_t *sc) 1295 { 1296 uint32_t val; 1297 1298 AE_LOCK_ASSERT(sc); 1299 1300 AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 0); 1301 val = AE_PHY_READ(sc, AE_PHY_DBG_DATA); 1302 if (val & AE_PHY_DBG_POWERSAVE) { 1303 val &= ~AE_PHY_DBG_POWERSAVE; 1304 AE_PHY_WRITE(sc, AE_PHY_DBG_DATA, val); 1305 DELAY(1000); 1306 } 1307 } 1308 1309 static void 1310 ae_powersave_enable(ae_softc_t *sc) 1311 { 1312 uint32_t val; 1313 1314 AE_LOCK_ASSERT(sc); 1315 1316 /* 1317 * XXX magic numbers. 1318 */ 1319 AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 0); 1320 val = AE_PHY_READ(sc, AE_PHY_DBG_DATA); 1321 AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, val | 0x1000); 1322 AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 2); 1323 AE_PHY_WRITE(sc, AE_PHY_DBG_DATA, 0x3000); 1324 AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 3); 1325 AE_PHY_WRITE(sc, AE_PHY_DBG_DATA, 0); 1326 } 1327 1328 static void 1329 ae_pm_init(ae_softc_t *sc) 1330 { 1331 struct ifnet *ifp; 1332 uint32_t val; 1333 uint16_t pmstat; 1334 struct mii_data *mii; 1335 int pmc; 1336 1337 AE_LOCK_ASSERT(sc); 1338 1339 ifp = sc->ifp; 1340 if ((sc->flags & AE_FLAG_PMG) == 0) { 1341 /* Disable WOL entirely. */ 1342 AE_WRITE_4(sc, AE_WOL_REG, 0); 1343 return; 1344 } 1345 1346 /* 1347 * Configure WOL if enabled. 1348 */ 1349 if ((ifp->if_capenable & IFCAP_WOL) != 0) { 1350 mii = device_get_softc(sc->miibus); 1351 mii_pollstat(mii); 1352 if ((mii->mii_media_status & IFM_AVALID) != 0 && 1353 (mii->mii_media_status & IFM_ACTIVE) != 0) { 1354 AE_WRITE_4(sc, AE_WOL_REG, AE_WOL_MAGIC | \ 1355 AE_WOL_MAGIC_PME); 1356 1357 /* 1358 * Configure MAC. 1359 */ 1360 val = AE_MAC_RX_EN | AE_MAC_CLK_PHY | \ 1361 AE_MAC_TX_CRC_EN | AE_MAC_TX_AUTOPAD | \ 1362 ((AE_HALFBUF_DEFAULT << AE_HALFBUF_SHIFT) & \ 1363 AE_HALFBUF_MASK) | \ 1364 ((AE_MAC_PREAMBLE_DEFAULT << \ 1365 AE_MAC_PREAMBLE_SHIFT) & AE_MAC_PREAMBLE_MASK) | \ 1366 AE_MAC_BCAST_EN | AE_MAC_MCAST_EN; 1367 if ((IFM_OPTIONS(mii->mii_media_active) & \ 1368 IFM_FDX) != 0) 1369 val |= AE_MAC_FULL_DUPLEX; 1370 AE_WRITE_4(sc, AE_MAC_REG, val); 1371 1372 } else { /* No link. */ 1373 AE_WRITE_4(sc, AE_WOL_REG, AE_WOL_LNKCHG | \ 1374 AE_WOL_LNKCHG_PME); 1375 AE_WRITE_4(sc, AE_MAC_REG, 0); 1376 } 1377 } else { 1378 ae_powersave_enable(sc); 1379 } 1380 1381 /* 1382 * PCIE hacks. Magic numbers. 1383 */ 1384 val = AE_READ_4(sc, AE_PCIE_PHYMISC_REG); 1385 val |= AE_PCIE_PHYMISC_FORCE_RCV_DET; 1386 AE_WRITE_4(sc, AE_PCIE_PHYMISC_REG, val); 1387 val = AE_READ_4(sc, AE_PCIE_DLL_TX_CTRL_REG); 1388 val |= AE_PCIE_DLL_TX_CTRL_SEL_NOR_CLK; 1389 AE_WRITE_4(sc, AE_PCIE_DLL_TX_CTRL_REG, val); 1390 1391 /* 1392 * Configure PME. 1393 */ 1394 pci_find_extcap(sc->dev, PCIY_PMG, &pmc); 1395 pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2); 1396 pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE); 1397 if ((ifp->if_capenable & IFCAP_WOL) != 0) 1398 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE; 1399 pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2); 1400 } 1401 1402 static int 1403 ae_suspend(device_t dev) 1404 { 1405 ae_softc_t *sc; 1406 1407 sc = device_get_softc(dev); 1408 1409 AE_LOCK(sc); 1410 ae_stop(sc); 1411 ae_pm_init(sc); 1412 AE_UNLOCK(sc); 1413 1414 return (0); 1415 } 1416 1417 static int 1418 ae_resume(device_t dev) 1419 { 1420 ae_softc_t *sc; 1421 1422 sc = device_get_softc(dev); 1423 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__)); 1424 1425 AE_LOCK(sc); 1426 AE_READ_4(sc, AE_WOL_REG); /* Clear WOL status. */ 1427 if ((sc->ifp->if_flags & IFF_UP) != 0) 1428 ae_init_locked(sc); 1429 AE_UNLOCK(sc); 1430 1431 return (0); 1432 } 1433 1434 static unsigned int 1435 ae_tx_avail_size(ae_softc_t *sc) 1436 { 1437 unsigned int avail; 1438 1439 if (sc->txd_cur >= sc->txd_ack) 1440 avail = AE_TXD_BUFSIZE_DEFAULT - (sc->txd_cur - sc->txd_ack); 1441 else 1442 avail = sc->txd_ack - sc->txd_cur; 1443 1444 return (avail - 4); /* 4-byte header. */ 1445 } 1446 1447 static int 1448 ae_encap(ae_softc_t *sc, struct mbuf **m_head) 1449 { 1450 struct mbuf *m0; 1451 ae_txd_t *hdr; 1452 unsigned int to_end; 1453 uint16_t len; 1454 1455 AE_LOCK_ASSERT(sc); 1456 1457 m0 = *m_head; 1458 len = m0->m_pkthdr.len; 1459 1460 if ((sc->flags & AE_FLAG_TXAVAIL) == 0 || 1461 ae_tx_avail_size(sc) < len) { 1462 #ifdef AE_DEBUG 1463 if_printf(sc->ifp, "No free Tx available.\n"); 1464 #endif 1465 return ENOBUFS; 1466 } 1467 1468 hdr = (ae_txd_t *)(sc->txd_base + sc->txd_cur); 1469 bzero(hdr, sizeof(*hdr)); 1470 sc->txd_cur = (sc->txd_cur + 4) % AE_TXD_BUFSIZE_DEFAULT; /* Header 1471 size. */ 1472 to_end = AE_TXD_BUFSIZE_DEFAULT - sc->txd_cur; /* Space available to 1473 * the end of the ring 1474 */ 1475 if (to_end >= len) { 1476 m_copydata(m0, 0, len, (caddr_t)(sc->txd_base + sc->txd_cur)); 1477 } else { 1478 m_copydata(m0, 0, to_end, (caddr_t)(sc->txd_base + 1479 sc->txd_cur)); 1480 m_copydata(m0, to_end, len - to_end, (caddr_t)sc->txd_base); 1481 } 1482 1483 /* 1484 * Set TxD flags and parameters. 1485 */ 1486 if ((m0->m_flags & M_VLANTAG) != 0) { 1487 hdr->vlan = htole16(AE_TXD_VLAN(m0->m_pkthdr.ether_vtag)); 1488 hdr->len = htole16(len | AE_TXD_INSERT_VTAG); 1489 } else { 1490 hdr->len = htole16(len); 1491 } 1492 1493 /* 1494 * Set current TxD position and round up to a 4-byte boundary. 1495 */ 1496 sc->txd_cur = ((sc->txd_cur + len + 3) & ~3) % AE_TXD_BUFSIZE_DEFAULT; 1497 if (sc->txd_cur == sc->txd_ack) 1498 sc->flags &= ~AE_FLAG_TXAVAIL; 1499 #ifdef AE_DEBUG 1500 if_printf(sc->ifp, "New txd_cur = %d.\n", sc->txd_cur); 1501 #endif 1502 1503 /* 1504 * Update TxS position and check if there are empty TxS available. 1505 */ 1506 sc->txs_base[sc->txs_cur].flags &= ~htole16(AE_TXS_UPDATE); 1507 sc->txs_cur = (sc->txs_cur + 1) % AE_TXS_COUNT_DEFAULT; 1508 if (sc->txs_cur == sc->txs_ack) 1509 sc->flags &= ~AE_FLAG_TXAVAIL; 1510 1511 /* 1512 * Synchronize DMA memory. 1513 */ 1514 bus_dmamap_sync(sc->dma_txd_tag, sc->dma_txd_map, BUS_DMASYNC_PREREAD | 1515 BUS_DMASYNC_PREWRITE); 1516 bus_dmamap_sync(sc->dma_txs_tag, sc->dma_txs_map, 1517 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1518 1519 return (0); 1520 } 1521 1522 static void 1523 ae_start(struct ifnet *ifp) 1524 { 1525 ae_softc_t *sc; 1526 unsigned int count; 1527 struct mbuf *m0; 1528 int error; 1529 1530 sc = ifp->if_softc; 1531 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__)); 1532 AE_LOCK(sc); 1533 1534 #ifdef AE_DEBUG 1535 if_printf(ifp, "Start called.\n"); 1536 #endif 1537 1538 if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 1539 IFF_DRV_RUNNING || (sc->flags & AE_FLAG_LINK) == 0) { 1540 AE_UNLOCK(sc); 1541 return; 1542 } 1543 1544 count = 0; 1545 while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) { 1546 IFQ_DRV_DEQUEUE(&ifp->if_snd, m0); 1547 if (m0 == NULL) 1548 break; /* Nothing to do. */ 1549 1550 error = ae_encap(sc, &m0); 1551 if (error != 0) { 1552 if (m0 != NULL) { 1553 IFQ_DRV_PREPEND(&ifp->if_snd, m0); 1554 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1555 #ifdef AE_DEBUG 1556 if_printf(ifp, "Setting OACTIVE.\n"); 1557 #endif 1558 } 1559 break; 1560 } 1561 count++; 1562 sc->tx_inproc++; 1563 1564 /* Bounce a copy of the frame to BPF. */ 1565 ETHER_BPF_MTAP(ifp, m0); 1566 1567 m_freem(m0); 1568 } 1569 1570 if (count > 0) { /* Something was dequeued. */ 1571 AE_WRITE_2(sc, AE_MB_TXD_IDX_REG, sc->txd_cur / 4); 1572 sc->wd_timer = AE_TX_TIMEOUT; /* Load watchdog. */ 1573 #ifdef AE_DEBUG 1574 if_printf(ifp, "%d packets dequeued.\n", count); 1575 if_printf(ifp, "Tx pos now is %d.\n", sc->txd_cur); 1576 #endif 1577 } 1578 AE_UNLOCK(sc); 1579 } 1580 1581 static void 1582 ae_link_task(void *arg, int pending) 1583 { 1584 ae_softc_t *sc; 1585 struct mii_data *mii; 1586 struct ifnet *ifp; 1587 uint32_t val; 1588 1589 sc = (ae_softc_t *)arg; 1590 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__)); 1591 AE_LOCK(sc); 1592 1593 ifp = sc->ifp; 1594 mii = device_get_softc(sc->miibus); 1595 if (mii == NULL || ifp == NULL || 1596 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1597 AE_UNLOCK(sc); /* XXX: could happen? */ 1598 return; 1599 } 1600 1601 sc->flags &= ~AE_FLAG_LINK; 1602 if ((mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) == 1603 (IFM_AVALID | IFM_ACTIVE)) { 1604 switch(IFM_SUBTYPE(mii->mii_media_active)) { 1605 case IFM_10_T: 1606 case IFM_100_TX: 1607 sc->flags |= AE_FLAG_LINK; 1608 break; 1609 default: 1610 break; 1611 } 1612 } 1613 1614 /* 1615 * Stop Rx/Tx MACs. 1616 */ 1617 ae_stop_rxmac(sc); 1618 ae_stop_txmac(sc); 1619 1620 if ((sc->flags & AE_FLAG_LINK) != 0) { 1621 ae_mac_config(sc); 1622 1623 /* 1624 * Restart DMA engines. 1625 */ 1626 AE_WRITE_1(sc, AE_DMAREAD_REG, AE_DMAREAD_EN); 1627 AE_WRITE_1(sc, AE_DMAWRITE_REG, AE_DMAWRITE_EN); 1628 1629 /* 1630 * Enable Rx and Tx MACs. 1631 */ 1632 val = AE_READ_4(sc, AE_MAC_REG); 1633 val |= AE_MAC_TX_EN | AE_MAC_RX_EN; 1634 AE_WRITE_4(sc, AE_MAC_REG, val); 1635 } 1636 AE_UNLOCK(sc); 1637 } 1638 1639 static void 1640 ae_stop_rxmac(ae_softc_t *sc) 1641 { 1642 uint32_t val; 1643 int i; 1644 1645 AE_LOCK_ASSERT(sc); 1646 1647 /* 1648 * Stop Rx MAC engine. 1649 */ 1650 val = AE_READ_4(sc, AE_MAC_REG); 1651 if ((val & AE_MAC_RX_EN) != 0) { 1652 val &= ~AE_MAC_RX_EN; 1653 AE_WRITE_4(sc, AE_MAC_REG, val); 1654 } 1655 1656 /* 1657 * Stop Rx DMA engine. 1658 */ 1659 if (AE_READ_1(sc, AE_DMAWRITE_REG) == AE_DMAWRITE_EN) 1660 AE_WRITE_1(sc, AE_DMAWRITE_REG, 0); 1661 1662 /* 1663 * Wait for IDLE state. 1664 */ 1665 for (i = 0; i < AE_IDLE_TIMEOUT; i--) { 1666 val = AE_READ_4(sc, AE_IDLE_REG); 1667 if ((val & (AE_IDLE_RXMAC | AE_IDLE_DMAWRITE)) == 0) 1668 break; 1669 DELAY(100); 1670 } 1671 if (i == AE_IDLE_TIMEOUT) 1672 device_printf(sc->dev, "timed out while stopping Rx MAC.\n"); 1673 } 1674 1675 static void 1676 ae_stop_txmac(ae_softc_t *sc) 1677 { 1678 uint32_t val; 1679 int i; 1680 1681 AE_LOCK_ASSERT(sc); 1682 1683 /* 1684 * Stop Tx MAC engine. 1685 */ 1686 val = AE_READ_4(sc, AE_MAC_REG); 1687 if ((val & AE_MAC_TX_EN) != 0) { 1688 val &= ~AE_MAC_TX_EN; 1689 AE_WRITE_4(sc, AE_MAC_REG, val); 1690 } 1691 1692 /* 1693 * Stop Tx DMA engine. 1694 */ 1695 if (AE_READ_1(sc, AE_DMAREAD_REG) == AE_DMAREAD_EN) 1696 AE_WRITE_1(sc, AE_DMAREAD_REG, 0); 1697 1698 /* 1699 * Wait for IDLE state. 1700 */ 1701 for (i = 0; i < AE_IDLE_TIMEOUT; i--) { 1702 val = AE_READ_4(sc, AE_IDLE_REG); 1703 if ((val & (AE_IDLE_TXMAC | AE_IDLE_DMAREAD)) == 0) 1704 break; 1705 DELAY(100); 1706 } 1707 if (i == AE_IDLE_TIMEOUT) 1708 device_printf(sc->dev, "timed out while stopping Tx MAC.\n"); 1709 } 1710 1711 static void 1712 ae_tx_task(void *arg, int pending) 1713 { 1714 struct ifnet *ifp; 1715 1716 ifp = (struct ifnet *)arg; 1717 ae_start(ifp); 1718 } 1719 1720 static void 1721 ae_mac_config(ae_softc_t *sc) 1722 { 1723 struct mii_data *mii; 1724 uint32_t val; 1725 1726 AE_LOCK_ASSERT(sc); 1727 1728 mii = device_get_softc(sc->miibus); 1729 val = AE_READ_4(sc, AE_MAC_REG); 1730 val &= ~AE_MAC_FULL_DUPLEX; 1731 /* XXX disable AE_MAC_TX_FLOW_EN? */ 1732 1733 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) 1734 val |= AE_MAC_FULL_DUPLEX; 1735 1736 AE_WRITE_4(sc, AE_MAC_REG, val); 1737 } 1738 1739 static int 1740 ae_intr(void *arg) 1741 { 1742 ae_softc_t *sc; 1743 uint32_t val; 1744 1745 sc = (ae_softc_t *)arg; 1746 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__)); 1747 1748 val = AE_READ_4(sc, AE_ISR_REG); 1749 if (val == 0 || (val & AE_IMR_DEFAULT) == 0) 1750 return (FILTER_STRAY); 1751 1752 /* Disable interrupts. */ 1753 AE_WRITE_4(sc, AE_ISR_REG, AE_ISR_DISABLE); 1754 1755 /* Schedule interrupt processing. */ 1756 taskqueue_enqueue(sc->tq, &sc->int_task); 1757 1758 return (FILTER_HANDLED); 1759 } 1760 1761 static void 1762 ae_int_task(void *arg, int pending) 1763 { 1764 ae_softc_t *sc; 1765 struct ifnet *ifp; 1766 uint32_t val; 1767 1768 sc = (ae_softc_t *)arg; 1769 1770 AE_LOCK(sc); 1771 1772 ifp = sc->ifp; 1773 1774 val = AE_READ_4(sc, AE_ISR_REG); /* Read interrupt status. */ 1775 1776 /* 1777 * Clear interrupts and disable them. 1778 */ 1779 AE_WRITE_4(sc, AE_ISR_REG, val | AE_ISR_DISABLE); 1780 1781 #ifdef AE_DEBUG 1782 if_printf(ifp, "Interrupt received: 0x%08x\n", val); 1783 #endif 1784 1785 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 1786 if ((val & (AE_ISR_DMAR_TIMEOUT | AE_ISR_DMAW_TIMEOUT | 1787 AE_ISR_PHY_LINKDOWN)) != 0) { 1788 ae_init_locked(sc); 1789 } 1790 if ((val & AE_ISR_TX_EVENT) != 0) 1791 ae_tx_intr(sc); 1792 if ((val & AE_ISR_RX_EVENT) != 0) 1793 ae_rx_intr(sc); 1794 } 1795 1796 /* 1797 * Re-enable interrupts. 1798 */ 1799 AE_WRITE_4(sc, AE_ISR_REG, 0); 1800 1801 AE_UNLOCK(sc); 1802 } 1803 1804 static void 1805 ae_tx_intr(ae_softc_t *sc) 1806 { 1807 struct ifnet *ifp; 1808 ae_txd_t *txd; 1809 ae_txs_t *txs; 1810 uint16_t flags; 1811 1812 AE_LOCK_ASSERT(sc); 1813 1814 ifp = sc->ifp; 1815 1816 #ifdef AE_DEBUG 1817 if_printf(ifp, "Tx interrupt occuried.\n"); 1818 #endif 1819 1820 /* 1821 * Syncronize DMA buffers. 1822 */ 1823 bus_dmamap_sync(sc->dma_txd_tag, sc->dma_txd_map, 1824 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1825 bus_dmamap_sync(sc->dma_txs_tag, sc->dma_txs_map, 1826 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1827 1828 for (;;) { 1829 txs = sc->txs_base + sc->txs_ack; 1830 flags = le16toh(txs->flags); 1831 if ((flags & AE_TXS_UPDATE) == 0) 1832 break; 1833 txs->flags = htole16(flags & ~AE_TXS_UPDATE); 1834 /* Update stats. */ 1835 ae_update_stats_tx(flags, &sc->stats); 1836 1837 /* 1838 * Update TxS position. 1839 */ 1840 sc->txs_ack = (sc->txs_ack + 1) % AE_TXS_COUNT_DEFAULT; 1841 sc->flags |= AE_FLAG_TXAVAIL; 1842 1843 txd = (ae_txd_t *)(sc->txd_base + sc->txd_ack); 1844 if (txs->len != txd->len) 1845 device_printf(sc->dev, "Size mismatch: TxS:%d TxD:%d\n", 1846 le16toh(txs->len), le16toh(txd->len)); 1847 1848 /* 1849 * Move txd ack and align on 4-byte boundary. 1850 */ 1851 sc->txd_ack = ((sc->txd_ack + le16toh(txd->len) + 4 + 3) & ~3) % 1852 AE_TXD_BUFSIZE_DEFAULT; 1853 1854 if ((flags & AE_TXS_SUCCESS) != 0) 1855 ifp->if_opackets++; 1856 else 1857 ifp->if_oerrors++; 1858 1859 sc->tx_inproc--; 1860 1861 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1862 } 1863 1864 if (sc->tx_inproc < 0) { 1865 if_printf(ifp, "Received stray Tx interrupt(s).\n"); 1866 sc->tx_inproc = 0; 1867 } 1868 1869 if (sc->tx_inproc == 0) 1870 sc->wd_timer = 0; /* Unarm watchdog. */ 1871 1872 if ((sc->flags & AE_FLAG_TXAVAIL) != 0) { 1873 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1874 taskqueue_enqueue(sc->tq, &sc->tx_task); 1875 } 1876 1877 /* 1878 * Syncronize DMA buffers. 1879 */ 1880 bus_dmamap_sync(sc->dma_txd_tag, sc->dma_txd_map, 1881 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1882 bus_dmamap_sync(sc->dma_txs_tag, sc->dma_txs_map, 1883 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1884 } 1885 1886 static int 1887 ae_rxeof(ae_softc_t *sc, ae_rxd_t *rxd) 1888 { 1889 struct ifnet *ifp; 1890 struct mbuf *m; 1891 unsigned int size; 1892 uint16_t flags; 1893 1894 AE_LOCK_ASSERT(sc); 1895 1896 ifp = sc->ifp; 1897 flags = le16toh(rxd->flags); 1898 1899 #ifdef AE_DEBUG 1900 if_printf(ifp, "Rx interrupt occuried.\n"); 1901 #endif 1902 size = le16toh(rxd->len) - ETHER_CRC_LEN; 1903 if (size < (ETHER_MIN_LEN - ETHER_CRC_LEN - ETHER_VLAN_ENCAP_LEN)) { 1904 if_printf(ifp, "Runt frame received."); 1905 return (EIO); 1906 } 1907 1908 m = m_devget(&rxd->data[0], size, ETHER_ALIGN, ifp, NULL); 1909 if (m == NULL) 1910 return (ENOBUFS); 1911 1912 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 && 1913 (flags & AE_RXD_HAS_VLAN) != 0) { 1914 m->m_pkthdr.ether_vtag = AE_RXD_VLAN(le16toh(rxd->vlan)); 1915 m->m_flags |= M_VLANTAG; 1916 } 1917 1918 /* 1919 * Pass it through. 1920 */ 1921 AE_UNLOCK(sc); 1922 (*ifp->if_input)(ifp, m); 1923 AE_LOCK(sc); 1924 1925 return (0); 1926 } 1927 1928 static void 1929 ae_rx_intr(ae_softc_t *sc) 1930 { 1931 ae_rxd_t *rxd; 1932 struct ifnet *ifp; 1933 uint16_t flags; 1934 int error; 1935 1936 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL!", __LINE__)); 1937 1938 AE_LOCK_ASSERT(sc); 1939 1940 ifp = sc->ifp; 1941 1942 /* 1943 * Syncronize DMA buffers. 1944 */ 1945 bus_dmamap_sync(sc->dma_rxd_tag, sc->dma_rxd_map, 1946 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1947 1948 for (;;) { 1949 rxd = (ae_rxd_t *)(sc->rxd_base + sc->rxd_cur); 1950 flags = le16toh(rxd->flags); 1951 if ((flags & AE_RXD_UPDATE) == 0) 1952 break; 1953 rxd->flags = htole16(flags & ~AE_RXD_UPDATE); 1954 /* Update stats. */ 1955 ae_update_stats_rx(flags, &sc->stats); 1956 1957 /* 1958 * Update position index. 1959 */ 1960 sc->rxd_cur = (sc->rxd_cur + 1) % AE_RXD_COUNT_DEFAULT; 1961 1962 if ((flags & AE_RXD_SUCCESS) == 0) { 1963 ifp->if_ierrors++; 1964 continue; 1965 } 1966 error = ae_rxeof(sc, rxd); 1967 if (error != 0) { 1968 ifp->if_ierrors++; 1969 continue; 1970 } else { 1971 ifp->if_ipackets++; 1972 } 1973 } 1974 1975 /* 1976 * Update Rx index. 1977 */ 1978 AE_WRITE_2(sc, AE_MB_RXD_IDX_REG, sc->rxd_cur); 1979 } 1980 1981 static void 1982 ae_watchdog(ae_softc_t *sc) 1983 { 1984 struct ifnet *ifp; 1985 1986 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL!", __LINE__)); 1987 AE_LOCK_ASSERT(sc); 1988 ifp = sc->ifp; 1989 1990 if (sc->wd_timer == 0 || --sc->wd_timer != 0) 1991 return; /* Noting to do. */ 1992 1993 if ((sc->flags & AE_FLAG_LINK) == 0) 1994 if_printf(ifp, "watchdog timeout (missed link).\n"); 1995 else 1996 if_printf(ifp, "watchdog timeout - resetting.\n"); 1997 1998 ifp->if_oerrors++; 1999 ae_init_locked(sc); 2000 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 2001 taskqueue_enqueue(sc->tq, &sc->tx_task); 2002 } 2003 2004 static void 2005 ae_tick(void *arg) 2006 { 2007 ae_softc_t *sc; 2008 struct mii_data *mii; 2009 2010 sc = (ae_softc_t *)arg; 2011 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL!", __LINE__)); 2012 AE_LOCK_ASSERT(sc); 2013 2014 mii = device_get_softc(sc->miibus); 2015 mii_tick(mii); 2016 ae_watchdog(sc); /* Watchdog check. */ 2017 callout_reset(&sc->tick_ch, hz, ae_tick, sc); 2018 } 2019 2020 static void 2021 ae_rxvlan(ae_softc_t *sc) 2022 { 2023 struct ifnet *ifp; 2024 uint32_t val; 2025 2026 AE_LOCK_ASSERT(sc); 2027 ifp = sc->ifp; 2028 val = AE_READ_4(sc, AE_MAC_REG); 2029 val &= ~AE_MAC_RMVLAN_EN; 2030 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) 2031 val |= AE_MAC_RMVLAN_EN; 2032 AE_WRITE_4(sc, AE_MAC_REG, val); 2033 } 2034 2035 static void 2036 ae_rxfilter(ae_softc_t *sc) 2037 { 2038 struct ifnet *ifp; 2039 struct ifmultiaddr *ifma; 2040 uint32_t crc; 2041 uint32_t mchash[2]; 2042 uint32_t rxcfg; 2043 2044 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL!", __LINE__)); 2045 2046 AE_LOCK_ASSERT(sc); 2047 2048 ifp = sc->ifp; 2049 2050 rxcfg = AE_READ_4(sc, AE_MAC_REG); 2051 rxcfg &= ~(AE_MAC_MCAST_EN | AE_MAC_BCAST_EN | AE_MAC_PROMISC_EN); 2052 2053 if ((ifp->if_flags & IFF_BROADCAST) != 0) 2054 rxcfg |= AE_MAC_BCAST_EN; 2055 if ((ifp->if_flags & IFF_PROMISC) != 0) 2056 rxcfg |= AE_MAC_PROMISC_EN; 2057 if ((ifp->if_flags & IFF_ALLMULTI) != 0) 2058 rxcfg |= AE_MAC_MCAST_EN; 2059 2060 /* 2061 * Wipe old settings. 2062 */ 2063 AE_WRITE_4(sc, AE_REG_MHT0, 0); 2064 AE_WRITE_4(sc, AE_REG_MHT1, 0); 2065 if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) { 2066 AE_WRITE_4(sc, AE_REG_MHT0, 0xffffffff); 2067 AE_WRITE_4(sc, AE_REG_MHT1, 0xffffffff); 2068 AE_WRITE_4(sc, AE_MAC_REG, rxcfg); 2069 return; 2070 } 2071 2072 /* 2073 * Load multicast tables. 2074 */ 2075 bzero(mchash, sizeof(mchash)); 2076 IF_ADDR_LOCK(ifp); 2077 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2078 if (ifma->ifma_addr->sa_family != AF_LINK) 2079 continue; 2080 crc = ether_crc32_le(LLADDR((struct sockaddr_dl *) 2081 ifma->ifma_addr), ETHER_ADDR_LEN); 2082 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f); 2083 } 2084 IF_ADDR_UNLOCK(ifp); 2085 AE_WRITE_4(sc, AE_REG_MHT0, mchash[0]); 2086 AE_WRITE_4(sc, AE_REG_MHT1, mchash[1]); 2087 AE_WRITE_4(sc, AE_MAC_REG, rxcfg); 2088 } 2089 2090 static int 2091 ae_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 2092 { 2093 struct ae_softc *sc; 2094 struct ifreq *ifr; 2095 struct mii_data *mii; 2096 int error, mask; 2097 2098 sc = ifp->if_softc; 2099 ifr = (struct ifreq *)data; 2100 error = 0; 2101 2102 switch (cmd) { 2103 case SIOCSIFMTU: 2104 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU) 2105 error = EINVAL; 2106 else if (ifp->if_mtu != ifr->ifr_mtu) { 2107 AE_LOCK(sc); 2108 ifp->if_mtu = ifr->ifr_mtu; 2109 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 2110 ae_init_locked(sc); 2111 AE_UNLOCK(sc); 2112 } 2113 break; 2114 case SIOCSIFFLAGS: 2115 AE_LOCK(sc); 2116 if ((ifp->if_flags & IFF_UP) != 0) { 2117 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 2118 if (((ifp->if_flags ^ sc->if_flags) 2119 & (IFF_PROMISC | IFF_ALLMULTI)) != 0) 2120 ae_rxfilter(sc); 2121 } else { 2122 if ((sc->flags & AE_FLAG_DETACH) == 0) 2123 ae_init_locked(sc); 2124 } 2125 } else { 2126 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 2127 ae_stop(sc); 2128 } 2129 sc->if_flags = ifp->if_flags; 2130 AE_UNLOCK(sc); 2131 break; 2132 case SIOCADDMULTI: 2133 case SIOCDELMULTI: 2134 AE_LOCK(sc); 2135 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 2136 ae_rxfilter(sc); 2137 AE_UNLOCK(sc); 2138 break; 2139 case SIOCSIFMEDIA: 2140 case SIOCGIFMEDIA: 2141 mii = device_get_softc(sc->miibus); 2142 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd); 2143 break; 2144 case SIOCSIFCAP: 2145 AE_LOCK(sc); 2146 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 2147 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 && 2148 (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) { 2149 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; 2150 ae_rxvlan(sc); 2151 } 2152 VLAN_CAPABILITIES(ifp); 2153 AE_UNLOCK(sc); 2154 break; 2155 default: 2156 error = ether_ioctl(ifp, cmd, data); 2157 break; 2158 } 2159 return (error); 2160 } 2161 2162 static void 2163 ae_stop(ae_softc_t *sc) 2164 { 2165 struct ifnet *ifp; 2166 int i; 2167 2168 AE_LOCK_ASSERT(sc); 2169 2170 ifp = sc->ifp; 2171 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 2172 sc->flags &= ~AE_FLAG_LINK; 2173 sc->wd_timer = 0; /* Cancel watchdog. */ 2174 callout_stop(&sc->tick_ch); 2175 2176 /* 2177 * Clear and disable interrupts. 2178 */ 2179 AE_WRITE_4(sc, AE_IMR_REG, 0); 2180 AE_WRITE_4(sc, AE_ISR_REG, 0xffffffff); 2181 2182 /* 2183 * Stop Rx/Tx MACs. 2184 */ 2185 ae_stop_txmac(sc); 2186 ae_stop_rxmac(sc); 2187 2188 /* 2189 * Stop DMA engines. 2190 */ 2191 AE_WRITE_1(sc, AE_DMAREAD_REG, ~AE_DMAREAD_EN); 2192 AE_WRITE_1(sc, AE_DMAWRITE_REG, ~AE_DMAWRITE_EN); 2193 2194 /* 2195 * Wait for everything to enter idle state. 2196 */ 2197 for (i = 0; i < AE_IDLE_TIMEOUT; i++) { 2198 if (AE_READ_4(sc, AE_IDLE_REG) == 0) 2199 break; 2200 DELAY(100); 2201 } 2202 if (i == AE_IDLE_TIMEOUT) 2203 device_printf(sc->dev, "could not enter idle state in stop.\n"); 2204 } 2205 2206 static void 2207 ae_update_stats_tx(uint16_t flags, ae_stats_t *stats) 2208 { 2209 2210 if ((flags & AE_TXS_BCAST) != 0) 2211 stats->tx_bcast++; 2212 if ((flags & AE_TXS_MCAST) != 0) 2213 stats->tx_mcast++; 2214 if ((flags & AE_TXS_PAUSE) != 0) 2215 stats->tx_pause++; 2216 if ((flags & AE_TXS_CTRL) != 0) 2217 stats->tx_ctrl++; 2218 if ((flags & AE_TXS_DEFER) != 0) 2219 stats->tx_defer++; 2220 if ((flags & AE_TXS_EXCDEFER) != 0) 2221 stats->tx_excdefer++; 2222 if ((flags & AE_TXS_SINGLECOL) != 0) 2223 stats->tx_singlecol++; 2224 if ((flags & AE_TXS_MULTICOL) != 0) 2225 stats->tx_multicol++; 2226 if ((flags & AE_TXS_LATECOL) != 0) 2227 stats->tx_latecol++; 2228 if ((flags & AE_TXS_ABORTCOL) != 0) 2229 stats->tx_abortcol++; 2230 if ((flags & AE_TXS_UNDERRUN) != 0) 2231 stats->tx_underrun++; 2232 } 2233 2234 static void 2235 ae_update_stats_rx(uint16_t flags, ae_stats_t *stats) 2236 { 2237 2238 if ((flags & AE_RXD_BCAST) != 0) 2239 stats->rx_bcast++; 2240 if ((flags & AE_RXD_MCAST) != 0) 2241 stats->rx_mcast++; 2242 if ((flags & AE_RXD_PAUSE) != 0) 2243 stats->rx_pause++; 2244 if ((flags & AE_RXD_CTRL) != 0) 2245 stats->rx_ctrl++; 2246 if ((flags & AE_RXD_CRCERR) != 0) 2247 stats->rx_crcerr++; 2248 if ((flags & AE_RXD_CODEERR) != 0) 2249 stats->rx_codeerr++; 2250 if ((flags & AE_RXD_RUNT) != 0) 2251 stats->rx_runt++; 2252 if ((flags & AE_RXD_FRAG) != 0) 2253 stats->rx_frag++; 2254 if ((flags & AE_RXD_TRUNC) != 0) 2255 stats->rx_trunc++; 2256 if ((flags & AE_RXD_ALIGN) != 0) 2257 stats->rx_align++; 2258 } 2259