xref: /freebsd/sys/dev/acpica/acpi_hpet.c (revision b5a3a89c50671a1ad29e7c43fe15e7b16feac239)
1 /*-
2  * Copyright (c) 2005 Poul-Henning Kamp
3  * Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 #include "opt_acpi.h"
32 
33 #if defined(__amd64__)
34 #define	DEV_APIC
35 #else
36 #include "opt_apic.h"
37 #endif
38 #include <sys/param.h>
39 #include <sys/conf.h>
40 #include <sys/bus.h>
41 #include <sys/kernel.h>
42 #include <sys/module.h>
43 #include <sys/proc.h>
44 #include <sys/rman.h>
45 #include <sys/mman.h>
46 #include <sys/time.h>
47 #include <sys/smp.h>
48 #include <sys/sysctl.h>
49 #include <sys/timeet.h>
50 #include <sys/timetc.h>
51 #include <sys/vdso.h>
52 
53 #include <contrib/dev/acpica/include/acpi.h>
54 #include <contrib/dev/acpica/include/accommon.h>
55 
56 #include <dev/acpica/acpivar.h>
57 #include <dev/acpica/acpi_hpet.h>
58 
59 #ifdef DEV_APIC
60 #include "pcib_if.h"
61 #endif
62 
63 #define HPET_VENDID_AMD		0x4353
64 #define HPET_VENDID_AMD2	0x1022
65 #define HPET_VENDID_HYGON	0x1d94
66 #define HPET_VENDID_INTEL	0x8086
67 #define HPET_VENDID_NVIDIA	0x10de
68 #define HPET_VENDID_SW		0x1166
69 
70 ACPI_SERIAL_DECL(hpet, "ACPI HPET support");
71 
72 /* ACPI CA debugging */
73 #define _COMPONENT	ACPI_TIMER
74 ACPI_MODULE_NAME("HPET")
75 
76 struct hpet_softc {
77 	device_t		dev;
78 	int			mem_rid;
79 	int			intr_rid;
80 	int			irq;
81 	int			useirq;
82 	int			legacy_route;
83 	int			per_cpu;
84 	uint32_t		allowed_irqs;
85 	struct resource		*mem_res;
86 	struct resource		*intr_res;
87 	void			*intr_handle;
88 	ACPI_HANDLE		handle;
89 	uint32_t		acpi_uid;
90 	uint64_t		freq;
91 	uint32_t		caps;
92 	struct timecounter	tc;
93 	struct hpet_timer {
94 		struct eventtimer	et;
95 		struct hpet_softc	*sc;
96 		int			num;
97 		int			mode;
98 #define	TIMER_STOPPED	0
99 #define	TIMER_PERIODIC	1
100 #define	TIMER_ONESHOT	2
101 		int			intr_rid;
102 		int			irq;
103 		int			pcpu_cpu;
104 		int			pcpu_misrouted;
105 		int			pcpu_master;
106 		int			pcpu_slaves[MAXCPU];
107 		struct resource		*intr_res;
108 		void			*intr_handle;
109 		uint32_t		caps;
110 		uint32_t		vectors;
111 		uint32_t		div;
112 		uint32_t		next;
113 		char			name[8];
114 	} 			t[32];
115 	int			num_timers;
116 	struct cdev		*pdev;
117 	int			mmap_allow;
118 	int			mmap_allow_write;
119 };
120 
121 static d_open_t hpet_open;
122 static d_mmap_t hpet_mmap;
123 
124 static struct cdevsw hpet_cdevsw = {
125 	.d_version =	D_VERSION,
126 	.d_name =	"hpet",
127 	.d_open =	hpet_open,
128 	.d_mmap =	hpet_mmap,
129 };
130 
131 static u_int hpet_get_timecount(struct timecounter *tc);
132 static void hpet_test(struct hpet_softc *sc);
133 
134 static char *hpet_ids[] = { "PNP0103", NULL };
135 
136 /* Knob to disable acpi_hpet device */
137 bool acpi_hpet_disabled = false;
138 
139 static u_int
140 hpet_get_timecount(struct timecounter *tc)
141 {
142 	struct hpet_softc *sc;
143 
144 	sc = tc->tc_priv;
145 	return (bus_read_4(sc->mem_res, HPET_MAIN_COUNTER));
146 }
147 
148 uint32_t
149 hpet_vdso_timehands(struct vdso_timehands *vdso_th, struct timecounter *tc)
150 {
151 	struct hpet_softc *sc;
152 
153 	sc = tc->tc_priv;
154 	vdso_th->th_algo = VDSO_TH_ALGO_X86_HPET;
155 	vdso_th->th_x86_shift = 0;
156 	vdso_th->th_x86_hpet_idx = device_get_unit(sc->dev);
157 	vdso_th->th_x86_pvc_last_systime = 0;
158 	vdso_th->th_x86_pvc_stable_mask = 0;
159 	bzero(vdso_th->th_res, sizeof(vdso_th->th_res));
160 	return (sc->mmap_allow != 0);
161 }
162 
163 #ifdef COMPAT_FREEBSD32
164 uint32_t
165 hpet_vdso_timehands32(struct vdso_timehands32 *vdso_th32,
166     struct timecounter *tc)
167 {
168 	struct hpet_softc *sc;
169 
170 	sc = tc->tc_priv;
171 	vdso_th32->th_algo = VDSO_TH_ALGO_X86_HPET;
172 	vdso_th32->th_x86_shift = 0;
173 	vdso_th32->th_x86_hpet_idx = device_get_unit(sc->dev);
174 	vdso_th32->th_x86_pvc_last_systime = 0;
175 	vdso_th32->th_x86_pvc_stable_mask = 0;
176 	bzero(vdso_th32->th_res, sizeof(vdso_th32->th_res));
177 	return (sc->mmap_allow != 0);
178 }
179 #endif
180 
181 static void
182 hpet_enable(struct hpet_softc *sc)
183 {
184 	uint32_t val;
185 
186 	val = bus_read_4(sc->mem_res, HPET_CONFIG);
187 	if (sc->legacy_route)
188 		val |= HPET_CNF_LEG_RT;
189 	else
190 		val &= ~HPET_CNF_LEG_RT;
191 	val |= HPET_CNF_ENABLE;
192 	bus_write_4(sc->mem_res, HPET_CONFIG, val);
193 }
194 
195 static void
196 hpet_disable(struct hpet_softc *sc)
197 {
198 	uint32_t val;
199 
200 	val = bus_read_4(sc->mem_res, HPET_CONFIG);
201 	val &= ~HPET_CNF_ENABLE;
202 	bus_write_4(sc->mem_res, HPET_CONFIG, val);
203 }
204 
205 static int
206 hpet_start(struct eventtimer *et, sbintime_t first, sbintime_t period)
207 {
208 	struct hpet_timer *mt = (struct hpet_timer *)et->et_priv;
209 	struct hpet_timer *t;
210 	struct hpet_softc *sc = mt->sc;
211 	uint32_t fdiv, now;
212 
213 	t = (mt->pcpu_master < 0) ? mt : &sc->t[mt->pcpu_slaves[curcpu]];
214 	if (period != 0) {
215 		t->mode = TIMER_PERIODIC;
216 		t->div = (sc->freq * period) >> 32;
217 	} else {
218 		t->mode = TIMER_ONESHOT;
219 		t->div = 0;
220 	}
221 	if (first != 0)
222 		fdiv = (sc->freq * first) >> 32;
223 	else
224 		fdiv = t->div;
225 	if (t->irq < 0)
226 		bus_write_4(sc->mem_res, HPET_ISR, 1 << t->num);
227 	t->caps |= HPET_TCNF_INT_ENB;
228 	now = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER);
229 restart:
230 	t->next = now + fdiv;
231 	if (t->mode == TIMER_PERIODIC && (t->caps & HPET_TCAP_PER_INT)) {
232 		t->caps |= HPET_TCNF_TYPE;
233 		bus_write_4(sc->mem_res, HPET_TIMER_CAP_CNF(t->num),
234 		    t->caps | HPET_TCNF_VAL_SET);
235 		bus_write_4(sc->mem_res, HPET_TIMER_COMPARATOR(t->num),
236 		    t->next);
237 		bus_write_4(sc->mem_res, HPET_TIMER_COMPARATOR(t->num),
238 		    t->div);
239 	} else {
240 		t->caps &= ~HPET_TCNF_TYPE;
241 		bus_write_4(sc->mem_res, HPET_TIMER_CAP_CNF(t->num),
242 		    t->caps);
243 		bus_write_4(sc->mem_res, HPET_TIMER_COMPARATOR(t->num),
244 		    t->next);
245 	}
246 	now = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER);
247 	if ((int32_t)(now - t->next + HPET_MIN_CYCLES) >= 0) {
248 		fdiv *= 2;
249 		goto restart;
250 	}
251 	return (0);
252 }
253 
254 static int
255 hpet_stop(struct eventtimer *et)
256 {
257 	struct hpet_timer *mt = (struct hpet_timer *)et->et_priv;
258 	struct hpet_timer *t;
259 	struct hpet_softc *sc = mt->sc;
260 
261 	t = (mt->pcpu_master < 0) ? mt : &sc->t[mt->pcpu_slaves[curcpu]];
262 	t->mode = TIMER_STOPPED;
263 	t->caps &= ~(HPET_TCNF_INT_ENB | HPET_TCNF_TYPE);
264 	bus_write_4(sc->mem_res, HPET_TIMER_CAP_CNF(t->num), t->caps);
265 	return (0);
266 }
267 
268 static int
269 hpet_intr_single(void *arg)
270 {
271 	struct hpet_timer *t = (struct hpet_timer *)arg;
272 	struct hpet_timer *mt;
273 	struct hpet_softc *sc = t->sc;
274 	uint32_t now;
275 
276 	if (t->mode == TIMER_STOPPED)
277 		return (FILTER_STRAY);
278 	/* Check that per-CPU timer interrupt reached right CPU. */
279 	if (t->pcpu_cpu >= 0 && t->pcpu_cpu != curcpu) {
280 		if ((++t->pcpu_misrouted) % 32 == 0) {
281 			printf("HPET interrupt routed to the wrong CPU"
282 			    " (timer %d CPU %d -> %d)!\n",
283 			    t->num, t->pcpu_cpu, curcpu);
284 		}
285 
286 		/*
287 		 * Reload timer, hoping that next time may be more lucky
288 		 * (system will manage proper interrupt binding).
289 		 */
290 		if ((t->mode == TIMER_PERIODIC &&
291 		    (t->caps & HPET_TCAP_PER_INT) == 0) ||
292 		    t->mode == TIMER_ONESHOT) {
293 			t->next = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER) +
294 			    sc->freq / 8;
295 			bus_write_4(sc->mem_res, HPET_TIMER_COMPARATOR(t->num),
296 			    t->next);
297 		}
298 		return (FILTER_HANDLED);
299 	}
300 	if (t->mode == TIMER_PERIODIC &&
301 	    (t->caps & HPET_TCAP_PER_INT) == 0) {
302 		t->next += t->div;
303 		now = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER);
304 		if ((int32_t)((now + t->div / 2) - t->next) > 0)
305 			t->next = now + t->div / 2;
306 		bus_write_4(sc->mem_res,
307 		    HPET_TIMER_COMPARATOR(t->num), t->next);
308 	} else if (t->mode == TIMER_ONESHOT)
309 		t->mode = TIMER_STOPPED;
310 	mt = (t->pcpu_master < 0) ? t : &sc->t[t->pcpu_master];
311 	if (mt->et.et_active)
312 		mt->et.et_event_cb(&mt->et, mt->et.et_arg);
313 	return (FILTER_HANDLED);
314 }
315 
316 static int
317 hpet_intr(void *arg)
318 {
319 	struct hpet_softc *sc = (struct hpet_softc *)arg;
320 	int i;
321 	uint32_t val;
322 
323 	val = bus_read_4(sc->mem_res, HPET_ISR);
324 	if (val) {
325 		bus_write_4(sc->mem_res, HPET_ISR, val);
326 		val &= sc->useirq;
327 		for (i = 0; i < sc->num_timers; i++) {
328 			if ((val & (1 << i)) == 0)
329 				continue;
330 			hpet_intr_single(&sc->t[i]);
331 		}
332 		return (FILTER_HANDLED);
333 	}
334 	return (FILTER_STRAY);
335 }
336 
337 uint32_t
338 hpet_get_uid(device_t dev)
339 {
340 	struct hpet_softc *sc;
341 
342 	sc = device_get_softc(dev);
343 	return (sc->acpi_uid);
344 }
345 
346 static ACPI_STATUS
347 hpet_find(ACPI_HANDLE handle, UINT32 level, void *context,
348     void **status)
349 {
350 	char 		**ids;
351 	uint32_t	id = (uint32_t)(uintptr_t)context;
352 	uint32_t	uid = 0;
353 
354 	for (ids = hpet_ids; *ids != NULL; ids++) {
355 		if (acpi_MatchHid(handle, *ids))
356 		        break;
357 	}
358 	if (*ids == NULL)
359 		return (AE_OK);
360 	if (ACPI_FAILURE(acpi_GetInteger(handle, "_UID", &uid)) ||
361 	    id == uid)
362 		*status = acpi_get_device(handle);
363 	return (AE_OK);
364 }
365 
366 /*
367  * Find an existing IRQ resource that matches the requested IRQ range
368  * and return its RID.  If one is not found, use a new RID.
369  */
370 static int
371 hpet_find_irq_rid(device_t dev, u_long start, u_long end)
372 {
373 	rman_res_t irq;
374 	int error, rid;
375 
376 	for (rid = 0;; rid++) {
377 		error = bus_get_resource(dev, SYS_RES_IRQ, rid, &irq, NULL);
378 		if (error != 0 || (start <= irq && irq <= end))
379 			return (rid);
380 	}
381 }
382 
383 static int
384 hpet_open(struct cdev *cdev, int oflags, int devtype, struct thread *td)
385 {
386 	struct hpet_softc *sc;
387 
388 	sc = cdev->si_drv1;
389 	if (!sc->mmap_allow)
390 		return (EPERM);
391 	else
392 		return (0);
393 }
394 
395 static int
396 hpet_mmap(struct cdev *cdev, vm_ooffset_t offset, vm_paddr_t *paddr,
397     int nprot, vm_memattr_t *memattr)
398 {
399 	struct hpet_softc *sc;
400 
401 	sc = cdev->si_drv1;
402 	if (offset >= rman_get_size(sc->mem_res))
403 		return (EINVAL);
404 	if (!sc->mmap_allow_write && (nprot & PROT_WRITE))
405 		return (EPERM);
406 	*paddr = rman_get_start(sc->mem_res) + offset;
407 	*memattr = VM_MEMATTR_UNCACHEABLE;
408 
409 	return (0);
410 }
411 
412 /* Discover the HPET via the ACPI table of the same name. */
413 static void
414 hpet_identify(driver_t *driver, device_t parent)
415 {
416 	ACPI_TABLE_HPET *hpet;
417 	ACPI_STATUS	status;
418 	device_t	child;
419 	int		i;
420 
421 	/* Only one HPET device can be added. */
422 	if (devclass_get_device(devclass_find("hpet"), 0))
423 		return;
424 	for (i = 1; ; i++) {
425 		/* Search for HPET table. */
426 		status = AcpiGetTable(ACPI_SIG_HPET, i, (ACPI_TABLE_HEADER **)&hpet);
427 		if (ACPI_FAILURE(status))
428 			return;
429 		/* Search for HPET device with same ID. */
430 		child = NULL;
431 		AcpiWalkNamespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
432 		    100, hpet_find, NULL, (void *)(uintptr_t)hpet->Sequence,
433 		    (void *)&child);
434 		/* If found - let it be probed in normal way. */
435 		if (child) {
436 			if (bus_get_resource(child, SYS_RES_MEMORY, 0,
437 			    NULL, NULL) != 0)
438 				bus_set_resource(child, SYS_RES_MEMORY, 0,
439 				    hpet->Address.Address, HPET_MEM_WIDTH);
440 			continue;
441 		}
442 		/* If not - create it from table info. */
443 		child = BUS_ADD_CHILD(parent, 2, "hpet", 0);
444 		if (child == NULL) {
445 			printf("%s: can't add child\n", __func__);
446 			continue;
447 		}
448 		bus_set_resource(child, SYS_RES_MEMORY, 0, hpet->Address.Address,
449 		    HPET_MEM_WIDTH);
450 	}
451 }
452 
453 static int
454 hpet_probe(device_t dev)
455 {
456 	int rv;
457 
458 	ACPI_FUNCTION_TRACE((char *)(uintptr_t) __func__);
459 	if (acpi_disabled("hpet") || acpi_hpet_disabled)
460 		return (ENXIO);
461 	if (acpi_get_handle(dev) != NULL)
462 		rv = ACPI_ID_PROBE(device_get_parent(dev), dev, hpet_ids, NULL);
463 	else
464 		rv = 0;
465 	if (rv <= 0)
466 		device_set_desc(dev, "High Precision Event Timer");
467 	return (rv);
468 }
469 
470 static int
471 hpet_attach(device_t dev)
472 {
473 	struct hpet_softc *sc;
474 	struct hpet_timer *t;
475 	struct make_dev_args mda;
476 	int i, j, num_msi, num_timers, num_percpu_et, num_percpu_t, cur_cpu;
477 	int pcpu_master, error;
478 	rman_res_t hpet_region_size;
479 	static int maxhpetet = 0;
480 	uint32_t val, val2, cvectors, dvectors;
481 	uint16_t vendor, rev;
482 
483 	ACPI_FUNCTION_TRACE((char *)(uintptr_t) __func__);
484 
485 	sc = device_get_softc(dev);
486 	sc->dev = dev;
487 	sc->handle = acpi_get_handle(dev);
488 
489 	sc->mem_rid = 0;
490 	sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
491 	    RF_ACTIVE);
492 	if (sc->mem_res == NULL)
493 		return (ENOMEM);
494 
495 	hpet_region_size = rman_get_size(sc->mem_res);
496 	/* Validate that the region is big enough for the control registers. */
497 	if (hpet_region_size < HPET_MEM_MIN_WIDTH) {
498 		device_printf(dev, "memory region width %jd too small\n",
499 		    hpet_region_size);
500 		bus_free_resource(dev, SYS_RES_MEMORY, sc->mem_res);
501 		return (ENXIO);
502 	}
503 
504 	/* Be sure timer is enabled. */
505 	hpet_enable(sc);
506 
507 	/* Read basic statistics about the timer. */
508 	val = bus_read_4(sc->mem_res, HPET_PERIOD);
509 	if (val == 0) {
510 		device_printf(dev, "invalid period\n");
511 		hpet_disable(sc);
512 		bus_free_resource(dev, SYS_RES_MEMORY, sc->mem_res);
513 		return (ENXIO);
514 	}
515 
516 	sc->freq = (1000000000000000LL + val / 2) / val;
517 	sc->caps = bus_read_4(sc->mem_res, HPET_CAPABILITIES);
518 	vendor = (sc->caps & HPET_CAP_VENDOR_ID) >> 16;
519 	rev = sc->caps & HPET_CAP_REV_ID;
520 	num_timers = 1 + ((sc->caps & HPET_CAP_NUM_TIM) >> 8);
521 	/*
522 	 * ATI/AMD violates IA-PC HPET (High Precision Event Timers)
523 	 * Specification and provides an off by one number
524 	 * of timers/comparators.
525 	 * Additionally, they use unregistered value in VENDOR_ID field.
526 	 */
527 	if (vendor == HPET_VENDID_AMD && rev < 0x10 && num_timers > 0)
528 		num_timers--;
529 	/*
530 	 * Now validate that the region is big enough to address all counters.
531 	 */
532 	if (hpet_region_size < HPET_TIMER_CAP_CNF(num_timers)) {
533 		device_printf(dev,
534 		    "memory region width %jd too small for %d timers\n",
535 		    hpet_region_size, num_timers);
536 		hpet_disable(sc);
537 		bus_free_resource(dev, SYS_RES_MEMORY, sc->mem_res);
538 		return (ENXIO);
539 	}
540 
541 	sc->num_timers = num_timers;
542 	if (bootverbose) {
543 		device_printf(dev,
544 		    "vendor 0x%x, rev 0x%x, %jdHz%s, %d timers,%s\n",
545 		    vendor, rev, sc->freq,
546 		    (sc->caps & HPET_CAP_COUNT_SIZE) ? " 64bit" : "",
547 		    num_timers,
548 		    (sc->caps & HPET_CAP_LEG_RT) ? " legacy route" : "");
549 	}
550 	for (i = 0; i < num_timers; i++) {
551 		t = &sc->t[i];
552 		t->sc = sc;
553 		t->num = i;
554 		t->mode = TIMER_STOPPED;
555 		t->intr_rid = -1;
556 		t->irq = -1;
557 		t->pcpu_cpu = -1;
558 		t->pcpu_misrouted = 0;
559 		t->pcpu_master = -1;
560 		t->caps = bus_read_4(sc->mem_res, HPET_TIMER_CAP_CNF(i));
561 		t->vectors = bus_read_4(sc->mem_res, HPET_TIMER_CAP_CNF(i) + 4);
562 		if (bootverbose) {
563 			device_printf(dev,
564 			    " t%d: irqs 0x%08x (%d)%s%s%s\n", i,
565 			    t->vectors, (t->caps & HPET_TCNF_INT_ROUTE) >> 9,
566 			    (t->caps & HPET_TCAP_FSB_INT_DEL) ? ", MSI" : "",
567 			    (t->caps & HPET_TCAP_SIZE) ? ", 64bit" : "",
568 			    (t->caps & HPET_TCAP_PER_INT) ? ", periodic" : "");
569 		}
570 	}
571 	if (testenv("debug.acpi.hpet_test"))
572 		hpet_test(sc);
573 	/*
574 	 * Don't attach if the timer never increments.  Since the spec
575 	 * requires it to be at least 10 MHz, it has to change in 1 us.
576 	 */
577 	val = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER);
578 	DELAY(1);
579 	val2 = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER);
580 	if (val == val2) {
581 		device_printf(dev, "HPET never increments, disabling\n");
582 		hpet_disable(sc);
583 		bus_free_resource(dev, SYS_RES_MEMORY, sc->mem_res);
584 		return (ENXIO);
585 	}
586 	/* Announce first HPET as timecounter. */
587 	if (device_get_unit(dev) == 0) {
588 		sc->tc.tc_get_timecount = hpet_get_timecount,
589 		sc->tc.tc_counter_mask = ~0u,
590 		sc->tc.tc_name = "HPET",
591 		sc->tc.tc_quality = 950,
592 		sc->tc.tc_frequency = sc->freq;
593 		sc->tc.tc_priv = sc;
594 		sc->tc.tc_fill_vdso_timehands = hpet_vdso_timehands;
595 #ifdef COMPAT_FREEBSD32
596 		sc->tc.tc_fill_vdso_timehands32 = hpet_vdso_timehands32;
597 #endif
598 		tc_init(&sc->tc);
599 	}
600 	/* If not disabled - setup and announce event timers. */
601 	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
602 	     "clock", &i) == 0 && i == 0)
603 	        return (0);
604 
605 	/* Check whether we can and want legacy routing. */
606 	sc->legacy_route = 0;
607 	resource_int_value(device_get_name(dev), device_get_unit(dev),
608 	     "legacy_route", &sc->legacy_route);
609 	if ((sc->caps & HPET_CAP_LEG_RT) == 0)
610 		sc->legacy_route = 0;
611 	if (sc->legacy_route) {
612 		sc->t[0].vectors = 0;
613 		sc->t[1].vectors = 0;
614 	}
615 
616 	/* Check what IRQs we want use. */
617 	/* By default allow any PCI IRQs. */
618 	sc->allowed_irqs = 0xffff0000;
619 	/*
620 	 * HPETs in AMD chipsets before SB800 have problems with IRQs >= 16
621 	 * Lower are also not always working for different reasons.
622 	 * SB800 fixed it, but seems do not implements level triggering
623 	 * properly, that makes it very unreliable - it freezes after any
624 	 * interrupt loss. Avoid legacy IRQs for AMD.
625 	 */
626 	if (vendor == HPET_VENDID_AMD || vendor == HPET_VENDID_AMD2 ||
627 	    vendor == HPET_VENDID_HYGON)
628 		sc->allowed_irqs = 0x00000000;
629 	/*
630 	 * NVidia MCP5x chipsets have number of unexplained interrupt
631 	 * problems. For some reason, using HPET interrupts breaks HDA sound.
632 	 */
633 	if (vendor == HPET_VENDID_NVIDIA && rev <= 0x01)
634 		sc->allowed_irqs = 0x00000000;
635 	/*
636 	 * ServerWorks HT1000 reported to have problems with IRQs >= 16.
637 	 * Lower IRQs are working, but allowed mask is not set correctly.
638 	 * Legacy_route mode works fine.
639 	 */
640 	if (vendor == HPET_VENDID_SW && rev <= 0x01)
641 		sc->allowed_irqs = 0x00000000;
642 	/*
643 	 * Neither QEMU nor VirtualBox report supported IRQs correctly.
644 	 * The only way to use HPET there is to specify IRQs manually
645 	 * and/or use legacy_route. Legacy_route mode works on both.
646 	 */
647 	if (vm_guest)
648 		sc->allowed_irqs = 0x00000000;
649 	/* Let user override. */
650 	resource_int_value(device_get_name(dev), device_get_unit(dev),
651 	     "allowed_irqs", &sc->allowed_irqs);
652 
653 	/* Get how much per-CPU timers we should try to provide. */
654 	sc->per_cpu = 1;
655 	resource_int_value(device_get_name(dev), device_get_unit(dev),
656 	     "per_cpu", &sc->per_cpu);
657 
658 	num_msi = 0;
659 	sc->useirq = 0;
660 	/* Find IRQ vectors for all timers. */
661 	cvectors = sc->allowed_irqs & 0xffff0000;
662 	dvectors = sc->allowed_irqs & 0x0000ffff;
663 	if (sc->legacy_route)
664 		dvectors &= 0x0000fefe;
665 	for (i = 0; i < num_timers; i++) {
666 		t = &sc->t[i];
667 		if (sc->legacy_route && i < 2)
668 			t->irq = (i == 0) ? 0 : 8;
669 #ifdef DEV_APIC
670 		else if (t->caps & HPET_TCAP_FSB_INT_DEL) {
671 			if ((j = PCIB_ALLOC_MSIX(
672 			    device_get_parent(device_get_parent(dev)), dev,
673 			    &t->irq))) {
674 				device_printf(dev,
675 				    "Can't allocate interrupt for t%d: %d\n",
676 				    i, j);
677 			}
678 		}
679 #endif
680 		else if (dvectors & t->vectors) {
681 			t->irq = ffs(dvectors & t->vectors) - 1;
682 			dvectors &= ~(1 << t->irq);
683 		}
684 		if (t->irq >= 0) {
685 			t->intr_rid = hpet_find_irq_rid(dev, t->irq, t->irq);
686 			t->intr_res = bus_alloc_resource(dev, SYS_RES_IRQ,
687 			    &t->intr_rid, t->irq, t->irq, 1, RF_ACTIVE);
688 			if (t->intr_res == NULL) {
689 				t->irq = -1;
690 				device_printf(dev,
691 				    "Can't map interrupt for t%d.\n", i);
692 			} else if (bus_setup_intr(dev, t->intr_res,
693 			    INTR_TYPE_CLK, hpet_intr_single, NULL, t,
694 			    &t->intr_handle) != 0) {
695 				t->irq = -1;
696 				device_printf(dev,
697 				    "Can't setup interrupt for t%d.\n", i);
698 			} else {
699 				bus_describe_intr(dev, t->intr_res,
700 				    t->intr_handle, "t%d", i);
701 				num_msi++;
702 			}
703 		}
704 		if (t->irq < 0 && (cvectors & t->vectors) != 0) {
705 			cvectors &= t->vectors;
706 			sc->useirq |= (1 << i);
707 		}
708 	}
709 	if (sc->legacy_route && sc->t[0].irq < 0 && sc->t[1].irq < 0)
710 		sc->legacy_route = 0;
711 	if (sc->legacy_route)
712 		hpet_enable(sc);
713 	/* Group timers for per-CPU operation. */
714 	num_percpu_et = min(num_msi / mp_ncpus, sc->per_cpu);
715 	num_percpu_t = num_percpu_et * mp_ncpus;
716 	pcpu_master = 0;
717 	cur_cpu = CPU_FIRST();
718 	for (i = 0; i < num_timers; i++) {
719 		t = &sc->t[i];
720 		if (t->irq >= 0 && num_percpu_t > 0) {
721 			if (cur_cpu == CPU_FIRST())
722 				pcpu_master = i;
723 			t->pcpu_cpu = cur_cpu;
724 			t->pcpu_master = pcpu_master;
725 			sc->t[pcpu_master].
726 			    pcpu_slaves[cur_cpu] = i;
727 			bus_bind_intr(dev, t->intr_res, cur_cpu);
728 			cur_cpu = CPU_NEXT(cur_cpu);
729 			num_percpu_t--;
730 		} else if (t->irq >= 0)
731 			bus_bind_intr(dev, t->intr_res, CPU_FIRST());
732 	}
733 	bus_write_4(sc->mem_res, HPET_ISR, 0xffffffff);
734 	sc->irq = -1;
735 	/* If at least one timer needs legacy IRQ - set it up. */
736 	if (sc->useirq) {
737 		j = i = fls(cvectors) - 1;
738 		while (j > 0 && (cvectors & (1 << (j - 1))) != 0)
739 			j--;
740 		sc->intr_rid = hpet_find_irq_rid(dev, j, i);
741 		sc->intr_res = bus_alloc_resource(dev, SYS_RES_IRQ,
742 		    &sc->intr_rid, j, i, 1, RF_SHAREABLE | RF_ACTIVE);
743 		if (sc->intr_res == NULL)
744 			device_printf(dev, "Can't map interrupt.\n");
745 		else if (bus_setup_intr(dev, sc->intr_res, INTR_TYPE_CLK,
746 		    hpet_intr, NULL, sc, &sc->intr_handle) != 0) {
747 			device_printf(dev, "Can't setup interrupt.\n");
748 		} else {
749 			sc->irq = rman_get_start(sc->intr_res);
750 			/* Bind IRQ to BSP to avoid live migration. */
751 			bus_bind_intr(dev, sc->intr_res, CPU_FIRST());
752 		}
753 	}
754 	/* Program and announce event timers. */
755 	for (i = 0; i < num_timers; i++) {
756 		t = &sc->t[i];
757 		t->caps &= ~(HPET_TCNF_FSB_EN | HPET_TCNF_INT_ROUTE);
758 		t->caps &= ~(HPET_TCNF_VAL_SET | HPET_TCNF_INT_ENB);
759 		t->caps &= ~(HPET_TCNF_INT_TYPE);
760 		t->caps |= HPET_TCNF_32MODE;
761 		if (t->irq >= 0 && sc->legacy_route && i < 2) {
762 			/* Legacy route doesn't need more configuration. */
763 		} else
764 #ifdef DEV_APIC
765 		if ((t->caps & HPET_TCAP_FSB_INT_DEL) && t->irq >= 0) {
766 			uint64_t addr;
767 			uint32_t data;
768 
769 			if (PCIB_MAP_MSI(
770 			    device_get_parent(device_get_parent(dev)), dev,
771 			    t->irq, &addr, &data) == 0) {
772 				bus_write_4(sc->mem_res,
773 				    HPET_TIMER_FSB_ADDR(i), addr);
774 				bus_write_4(sc->mem_res,
775 				    HPET_TIMER_FSB_VAL(i), data);
776 				t->caps |= HPET_TCNF_FSB_EN;
777 			} else
778 				t->irq = -2;
779 		} else
780 #endif
781 		if (t->irq >= 0)
782 			t->caps |= (t->irq << 9);
783 		else if (sc->irq >= 0 && (t->vectors & (1 << sc->irq)))
784 			t->caps |= (sc->irq << 9) | HPET_TCNF_INT_TYPE;
785 		bus_write_4(sc->mem_res, HPET_TIMER_CAP_CNF(i), t->caps);
786 		/* Skip event timers without set up IRQ. */
787 		if (t->irq < 0 &&
788 		    (sc->irq < 0 || (t->vectors & (1 << sc->irq)) == 0))
789 			continue;
790 		/* Announce the reset. */
791 		if (maxhpetet == 0)
792 			t->et.et_name = "HPET";
793 		else {
794 			sprintf(t->name, "HPET%d", maxhpetet);
795 			t->et.et_name = t->name;
796 		}
797 		t->et.et_flags = ET_FLAGS_PERIODIC | ET_FLAGS_ONESHOT;
798 		t->et.et_quality = 450;
799 		if (t->pcpu_master >= 0) {
800 			t->et.et_flags |= ET_FLAGS_PERCPU;
801 			t->et.et_quality += 100;
802 		} else if (mp_ncpus >= 8)
803 			t->et.et_quality -= 100;
804 		if ((t->caps & HPET_TCAP_PER_INT) == 0)
805 			t->et.et_quality -= 10;
806 		t->et.et_frequency = sc->freq;
807 		t->et.et_min_period =
808 		    ((uint64_t)(HPET_MIN_CYCLES * 2) << 32) / sc->freq;
809 		t->et.et_max_period = (0xfffffffeLLU << 32) / sc->freq;
810 		t->et.et_start = hpet_start;
811 		t->et.et_stop = hpet_stop;
812 		t->et.et_priv = &sc->t[i];
813 		if (t->pcpu_master < 0 || t->pcpu_master == i) {
814 			et_register(&t->et);
815 			maxhpetet++;
816 		}
817 	}
818 	acpi_GetInteger(sc->handle, "_UID", &sc->acpi_uid);
819 
820 	make_dev_args_init(&mda);
821 	mda.mda_devsw = &hpet_cdevsw;
822 	mda.mda_uid = UID_ROOT;
823 	mda.mda_gid = GID_WHEEL;
824 	mda.mda_mode = 0644;
825 	mda.mda_si_drv1 = sc;
826 	error = make_dev_s(&mda, &sc->pdev, "hpet%d", device_get_unit(dev));
827 	if (error == 0) {
828 		sc->mmap_allow = 1;
829 		TUNABLE_INT_FETCH("hw.acpi.hpet.mmap_allow",
830 		    &sc->mmap_allow);
831 		sc->mmap_allow_write = 0;
832 		TUNABLE_INT_FETCH("hw.acpi.hpet.mmap_allow_write",
833 		    &sc->mmap_allow_write);
834 		SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
835 		    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
836 		    OID_AUTO, "mmap_allow",
837 		    CTLFLAG_RW, &sc->mmap_allow, 0,
838 		    "Allow userland to memory map HPET");
839 		SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
840 		    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
841 		    OID_AUTO, "mmap_allow_write",
842 		    CTLFLAG_RW, &sc->mmap_allow_write, 0,
843 		    "Allow userland write to the HPET register space");
844 	} else {
845 		device_printf(dev, "could not create /dev/hpet%d, error %d\n",
846 		    device_get_unit(dev), error);
847 	}
848 
849 	return (0);
850 }
851 
852 static int
853 hpet_detach(device_t dev)
854 {
855 	ACPI_FUNCTION_TRACE((char *)(uintptr_t) __func__);
856 
857 	/* XXX Without a tc_remove() function, we can't detach. */
858 	return (EBUSY);
859 }
860 
861 static int
862 hpet_suspend(device_t dev)
863 {
864 //	struct hpet_softc *sc;
865 
866 	/*
867 	 * Disable the timer during suspend.  The timer will not lose
868 	 * its state in S1 or S2, but we are required to disable
869 	 * it.
870 	 */
871 //	sc = device_get_softc(dev);
872 //	hpet_disable(sc);
873 
874 	return (0);
875 }
876 
877 static int
878 hpet_resume(device_t dev)
879 {
880 	struct hpet_softc *sc;
881 	struct hpet_timer *t;
882 	int i;
883 
884 	/* Re-enable the timer after a resume to keep the clock advancing. */
885 	sc = device_get_softc(dev);
886 	hpet_enable(sc);
887 	/* Restart event timers that were running on suspend. */
888 	for (i = 0; i < sc->num_timers; i++) {
889 		t = &sc->t[i];
890 #ifdef DEV_APIC
891 		if (t->irq >= 0 && (sc->legacy_route == 0 || i >= 2)) {
892 			uint64_t addr;
893 			uint32_t data;
894 
895 			if (PCIB_MAP_MSI(
896 			    device_get_parent(device_get_parent(dev)), dev,
897 			    t->irq, &addr, &data) == 0) {
898 				bus_write_4(sc->mem_res,
899 				    HPET_TIMER_FSB_ADDR(i), addr);
900 				bus_write_4(sc->mem_res,
901 				    HPET_TIMER_FSB_VAL(i), data);
902 			}
903 		}
904 #endif
905 		if (t->mode == TIMER_STOPPED)
906 			continue;
907 		t->next = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER);
908 		if (t->mode == TIMER_PERIODIC &&
909 		    (t->caps & HPET_TCAP_PER_INT) != 0) {
910 			t->caps |= HPET_TCNF_TYPE;
911 			t->next += t->div;
912 			bus_write_4(sc->mem_res, HPET_TIMER_CAP_CNF(t->num),
913 			    t->caps | HPET_TCNF_VAL_SET);
914 			bus_write_4(sc->mem_res, HPET_TIMER_COMPARATOR(t->num),
915 			    t->next);
916 			bus_read_4(sc->mem_res, HPET_TIMER_COMPARATOR(t->num));
917 			bus_write_4(sc->mem_res, HPET_TIMER_COMPARATOR(t->num),
918 			    t->div);
919 		} else {
920 			t->next += sc->freq / 1024;
921 			bus_write_4(sc->mem_res, HPET_TIMER_COMPARATOR(t->num),
922 			    t->next);
923 		}
924 		bus_write_4(sc->mem_res, HPET_ISR, 1 << t->num);
925 		bus_write_4(sc->mem_res, HPET_TIMER_CAP_CNF(t->num), t->caps);
926 	}
927 	return (0);
928 }
929 
930 /* Print some basic latency/rate information to assist in debugging. */
931 static void
932 hpet_test(struct hpet_softc *sc)
933 {
934 	int i;
935 	uint32_t u1, u2;
936 	struct bintime b0, b1, b2;
937 	struct timespec ts;
938 
939 	binuptime(&b0);
940 	binuptime(&b0);
941 	binuptime(&b1);
942 	u1 = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER);
943 	for (i = 1; i < 1000; i++)
944 		u2 = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER);
945 	binuptime(&b2);
946 	u2 = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER);
947 
948 	bintime_sub(&b2, &b1);
949 	bintime_sub(&b1, &b0);
950 	bintime_sub(&b2, &b1);
951 	bintime2timespec(&b2, &ts);
952 
953 	device_printf(sc->dev, "%ld.%09ld: %u ... %u = %u\n",
954 	    (long)ts.tv_sec, ts.tv_nsec, u1, u2, u2 - u1);
955 
956 	device_printf(sc->dev, "time per call: %ld ns\n", ts.tv_nsec / 1000);
957 }
958 
959 #ifdef DEV_APIC
960 static int
961 hpet_remap_intr(device_t dev, device_t child, u_int irq)
962 {
963 	struct hpet_softc *sc = device_get_softc(dev);
964 	struct hpet_timer *t;
965 	uint64_t addr;
966 	uint32_t data;
967 	int error, i;
968 
969 	for (i = 0; i < sc->num_timers; i++) {
970 		t = &sc->t[i];
971 		if (t->irq != irq)
972 			continue;
973 		error = PCIB_MAP_MSI(
974 		    device_get_parent(device_get_parent(dev)), dev,
975 		    irq, &addr, &data);
976 		if (error)
977 			return (error);
978 		hpet_disable(sc); /* Stop timer to avoid interrupt loss. */
979 		bus_write_4(sc->mem_res, HPET_TIMER_FSB_ADDR(i), addr);
980 		bus_write_4(sc->mem_res, HPET_TIMER_FSB_VAL(i), data);
981 		hpet_enable(sc);
982 		return (0);
983 	}
984 	return (ENOENT);
985 }
986 #endif
987 
988 static device_method_t hpet_methods[] = {
989 	/* Device interface */
990 	DEVMETHOD(device_identify, hpet_identify),
991 	DEVMETHOD(device_probe, hpet_probe),
992 	DEVMETHOD(device_attach, hpet_attach),
993 	DEVMETHOD(device_detach, hpet_detach),
994 	DEVMETHOD(device_suspend, hpet_suspend),
995 	DEVMETHOD(device_resume, hpet_resume),
996 
997 #ifdef DEV_APIC
998 	DEVMETHOD(bus_remap_intr, hpet_remap_intr),
999 #endif
1000 
1001 	DEVMETHOD_END
1002 };
1003 
1004 static driver_t	hpet_driver = {
1005 	"hpet",
1006 	hpet_methods,
1007 	sizeof(struct hpet_softc),
1008 };
1009 
1010 DRIVER_MODULE(hpet, acpi, hpet_driver, 0, 0);
1011 MODULE_DEPEND(hpet, acpi, 1, 1, 1);
1012