1 /*- 2 * Copyright (c) 2003-2005 Nate Lawson (SDG) 3 * Copyright (c) 2001 Michael Smith 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include "opt_acpi.h" 32 #include <sys/param.h> 33 #include <sys/bus.h> 34 #include <sys/cpu.h> 35 #include <sys/kernel.h> 36 #include <sys/malloc.h> 37 #include <sys/module.h> 38 #include <sys/pcpu.h> 39 #include <sys/power.h> 40 #include <sys/proc.h> 41 #include <sys/sched.h> 42 #include <sys/sbuf.h> 43 #include <sys/smp.h> 44 45 #include <dev/pci/pcivar.h> 46 #include <machine/atomic.h> 47 #include <machine/bus.h> 48 #if defined(__amd64__) || defined(__i386__) 49 #include <machine/clock.h> 50 #include <machine/specialreg.h> 51 #include <machine/md_var.h> 52 #endif 53 #include <sys/rman.h> 54 55 #include <contrib/dev/acpica/include/acpi.h> 56 #include <contrib/dev/acpica/include/accommon.h> 57 58 #include <dev/acpica/acpivar.h> 59 60 /* 61 * Support for ACPI Processor devices, including C[1-3] sleep states. 62 */ 63 64 /* Hooks for the ACPI CA debugging infrastructure */ 65 #define _COMPONENT ACPI_PROCESSOR 66 ACPI_MODULE_NAME("PROCESSOR") 67 68 struct acpi_cx { 69 struct resource *p_lvlx; /* Register to read to enter state. */ 70 uint32_t type; /* C1-3 (C4 and up treated as C3). */ 71 uint32_t trans_lat; /* Transition latency (usec). */ 72 uint32_t power; /* Power consumed (mW). */ 73 int res_type; /* Resource type for p_lvlx. */ 74 int res_rid; /* Resource ID for p_lvlx. */ 75 bool do_mwait; 76 uint32_t mwait_hint; 77 bool mwait_hw_coord; 78 bool mwait_bm_avoidance; 79 }; 80 #define MAX_CX_STATES 8 81 82 struct acpi_cpu_softc { 83 device_t cpu_dev; 84 ACPI_HANDLE cpu_handle; 85 struct pcpu *cpu_pcpu; 86 uint32_t cpu_acpi_id; /* ACPI processor id */ 87 uint32_t cpu_p_blk; /* ACPI P_BLK location */ 88 uint32_t cpu_p_blk_len; /* P_BLK length (must be 6). */ 89 struct acpi_cx cpu_cx_states[MAX_CX_STATES]; 90 int cpu_cx_count; /* Number of valid Cx states. */ 91 int cpu_prev_sleep;/* Last idle sleep duration. */ 92 int cpu_features; /* Child driver supported features. */ 93 /* Runtime state. */ 94 int cpu_non_c2; /* Index of lowest non-C2 state. */ 95 int cpu_non_c3; /* Index of lowest non-C3 state. */ 96 u_int cpu_cx_stats[MAX_CX_STATES];/* Cx usage history. */ 97 /* Values for sysctl. */ 98 struct sysctl_ctx_list cpu_sysctl_ctx; 99 struct sysctl_oid *cpu_sysctl_tree; 100 int cpu_cx_lowest; 101 int cpu_cx_lowest_lim; 102 int cpu_disable_idle; /* Disable entry to idle function */ 103 char cpu_cx_supported[64]; 104 }; 105 106 struct acpi_cpu_device { 107 struct resource_list ad_rl; 108 }; 109 110 #define CPU_GET_REG(reg, width) \ 111 (bus_space_read_ ## width(rman_get_bustag((reg)), \ 112 rman_get_bushandle((reg)), 0)) 113 #define CPU_SET_REG(reg, width, val) \ 114 (bus_space_write_ ## width(rman_get_bustag((reg)), \ 115 rman_get_bushandle((reg)), 0, (val))) 116 117 #define PM_USEC(x) ((x) >> 2) /* ~4 clocks per usec (3.57955 Mhz) */ 118 119 #define ACPI_NOTIFY_CX_STATES 0x81 /* _CST changed. */ 120 121 #define CPU_QUIRK_NO_C3 (1<<0) /* C3-type states are not usable. */ 122 #define CPU_QUIRK_NO_BM_CTRL (1<<2) /* No bus mastering control. */ 123 124 #define PCI_VENDOR_INTEL 0x8086 125 #define PCI_DEVICE_82371AB_3 0x7113 /* PIIX4 chipset for quirks. */ 126 #define PCI_REVISION_A_STEP 0 127 #define PCI_REVISION_B_STEP 1 128 #define PCI_REVISION_4E 2 129 #define PCI_REVISION_4M 3 130 #define PIIX4_DEVACTB_REG 0x58 131 #define PIIX4_BRLD_EN_IRQ0 (1<<0) 132 #define PIIX4_BRLD_EN_IRQ (1<<1) 133 #define PIIX4_BRLD_EN_IRQ8 (1<<5) 134 #define PIIX4_STOP_BREAK_MASK (PIIX4_BRLD_EN_IRQ0 | PIIX4_BRLD_EN_IRQ | PIIX4_BRLD_EN_IRQ8) 135 #define PIIX4_PCNTRL_BST_EN (1<<10) 136 137 #define CST_FFH_VENDOR_INTEL 1 138 #define CST_FFH_INTEL_CL_C1IO 1 139 #define CST_FFH_INTEL_CL_MWAIT 2 140 #define CST_FFH_MWAIT_HW_COORD 0x0001 141 #define CST_FFH_MWAIT_BM_AVOID 0x0002 142 143 #define CPUDEV_DEVICE_ID "ACPI0007" 144 145 /* Allow users to ignore processor orders in MADT. */ 146 static int cpu_unordered; 147 SYSCTL_INT(_debug_acpi, OID_AUTO, cpu_unordered, CTLFLAG_RDTUN, 148 &cpu_unordered, 0, 149 "Do not use the MADT to match ACPI Processor objects to CPUs."); 150 151 /* Knob to disable acpi_cpu devices */ 152 bool acpi_cpu_disabled = false; 153 154 /* Platform hardware resource information. */ 155 static uint32_t cpu_smi_cmd; /* Value to write to SMI_CMD. */ 156 static uint8_t cpu_cst_cnt; /* Indicate we are _CST aware. */ 157 static int cpu_quirks; /* Indicate any hardware bugs. */ 158 159 /* Values for sysctl. */ 160 static struct sysctl_ctx_list cpu_sysctl_ctx; 161 static struct sysctl_oid *cpu_sysctl_tree; 162 static int cpu_cx_generic; 163 static int cpu_cx_lowest_lim; 164 165 static device_t *cpu_devices; 166 static int cpu_ndevices; 167 static struct acpi_cpu_softc **cpu_softc; 168 ACPI_SERIAL_DECL(cpu, "ACPI CPU"); 169 170 static int acpi_cpu_probe(device_t dev); 171 static int acpi_cpu_attach(device_t dev); 172 static int acpi_cpu_suspend(device_t dev); 173 static int acpi_cpu_resume(device_t dev); 174 static int acpi_pcpu_get_id(device_t dev, uint32_t *acpi_id, 175 uint32_t *cpu_id); 176 static struct resource_list *acpi_cpu_get_rlist(device_t dev, device_t child); 177 static device_t acpi_cpu_add_child(device_t dev, u_int order, const char *name, 178 int unit); 179 static int acpi_cpu_read_ivar(device_t dev, device_t child, int index, 180 uintptr_t *result); 181 static int acpi_cpu_shutdown(device_t dev); 182 static void acpi_cpu_cx_probe(struct acpi_cpu_softc *sc); 183 static void acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc); 184 static int acpi_cpu_cx_cst(struct acpi_cpu_softc *sc); 185 static void acpi_cpu_startup(void *arg); 186 static void acpi_cpu_startup_cx(struct acpi_cpu_softc *sc); 187 static void acpi_cpu_cx_list(struct acpi_cpu_softc *sc); 188 #if defined(__i386__) || defined(__amd64__) 189 static void acpi_cpu_idle(sbintime_t sbt); 190 #endif 191 static void acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context); 192 static void acpi_cpu_quirks(void); 193 static void acpi_cpu_quirks_piix4(void); 194 static int acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS); 195 static int acpi_cpu_usage_counters_sysctl(SYSCTL_HANDLER_ARGS); 196 static int acpi_cpu_set_cx_lowest(struct acpi_cpu_softc *sc); 197 static int acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS); 198 static int acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS); 199 #if defined(__i386__) || defined(__amd64__) 200 static int acpi_cpu_method_sysctl(SYSCTL_HANDLER_ARGS); 201 #endif 202 203 static device_method_t acpi_cpu_methods[] = { 204 /* Device interface */ 205 DEVMETHOD(device_probe, acpi_cpu_probe), 206 DEVMETHOD(device_attach, acpi_cpu_attach), 207 DEVMETHOD(device_detach, bus_generic_detach), 208 DEVMETHOD(device_shutdown, acpi_cpu_shutdown), 209 DEVMETHOD(device_suspend, acpi_cpu_suspend), 210 DEVMETHOD(device_resume, acpi_cpu_resume), 211 212 /* Bus interface */ 213 DEVMETHOD(bus_add_child, acpi_cpu_add_child), 214 DEVMETHOD(bus_read_ivar, acpi_cpu_read_ivar), 215 DEVMETHOD(bus_get_resource_list, acpi_cpu_get_rlist), 216 DEVMETHOD(bus_get_resource, bus_generic_rl_get_resource), 217 DEVMETHOD(bus_set_resource, bus_generic_rl_set_resource), 218 DEVMETHOD(bus_alloc_resource, bus_generic_rl_alloc_resource), 219 DEVMETHOD(bus_release_resource, bus_generic_rl_release_resource), 220 DEVMETHOD(bus_activate_resource, bus_generic_activate_resource), 221 DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource), 222 DEVMETHOD(bus_setup_intr, bus_generic_setup_intr), 223 DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr), 224 225 DEVMETHOD_END 226 }; 227 228 static driver_t acpi_cpu_driver = { 229 "cpu", 230 acpi_cpu_methods, 231 sizeof(struct acpi_cpu_softc), 232 }; 233 234 static devclass_t acpi_cpu_devclass; 235 DRIVER_MODULE(cpu, acpi, acpi_cpu_driver, acpi_cpu_devclass, 0, 0); 236 MODULE_DEPEND(cpu, acpi, 1, 1, 1); 237 238 static int 239 acpi_cpu_probe(device_t dev) 240 { 241 static char *cpudev_ids[] = { CPUDEV_DEVICE_ID, NULL }; 242 int acpi_id, cpu_id; 243 ACPI_BUFFER buf; 244 ACPI_HANDLE handle; 245 ACPI_OBJECT *obj; 246 ACPI_STATUS status; 247 ACPI_OBJECT_TYPE type; 248 249 if (acpi_disabled("cpu") || acpi_cpu_disabled) 250 return (ENXIO); 251 type = acpi_get_type(dev); 252 if (type != ACPI_TYPE_PROCESSOR && type != ACPI_TYPE_DEVICE) 253 return (ENXIO); 254 if (type == ACPI_TYPE_DEVICE && 255 ACPI_ID_PROBE(device_get_parent(dev), dev, cpudev_ids) == NULL) 256 return (ENXIO); 257 258 handle = acpi_get_handle(dev); 259 if (cpu_softc == NULL) 260 cpu_softc = malloc(sizeof(struct acpi_cpu_softc *) * 261 (mp_maxid + 1), M_TEMP /* XXX */, M_WAITOK | M_ZERO); 262 263 if (type == ACPI_TYPE_PROCESSOR) { 264 /* Get our Processor object. */ 265 buf.Pointer = NULL; 266 buf.Length = ACPI_ALLOCATE_BUFFER; 267 status = AcpiEvaluateObject(handle, NULL, NULL, &buf); 268 if (ACPI_FAILURE(status)) { 269 device_printf(dev, "probe failed to get Processor obj - %s\n", 270 AcpiFormatException(status)); 271 return (ENXIO); 272 } 273 obj = (ACPI_OBJECT *)buf.Pointer; 274 if (obj->Type != ACPI_TYPE_PROCESSOR) { 275 device_printf(dev, "Processor object has bad type %d\n", 276 obj->Type); 277 AcpiOsFree(obj); 278 return (ENXIO); 279 } 280 281 /* 282 * Find the processor associated with our unit. We could use the 283 * ProcId as a key, however, some boxes do not have the same values 284 * in their Processor object as the ProcId values in the MADT. 285 */ 286 acpi_id = obj->Processor.ProcId; 287 AcpiOsFree(obj); 288 } else { 289 status = acpi_GetInteger(handle, "_UID", &acpi_id); 290 if (ACPI_FAILURE(status)) { 291 device_printf(dev, "Device object has bad value - %s\n", 292 AcpiFormatException(status)); 293 return (ENXIO); 294 } 295 } 296 if (acpi_pcpu_get_id(dev, &acpi_id, &cpu_id) != 0) 297 return (ENXIO); 298 299 /* 300 * Check if we already probed this processor. We scan the bus twice 301 * so it's possible we've already seen this one. 302 */ 303 if (cpu_softc[cpu_id] != NULL) 304 return (ENXIO); 305 306 /* Mark this processor as in-use and save our derived id for attach. */ 307 cpu_softc[cpu_id] = (void *)1; 308 acpi_set_private(dev, (void*)(intptr_t)cpu_id); 309 device_set_desc(dev, "ACPI CPU"); 310 311 if (!bootverbose && device_get_unit(dev) != 0) { 312 device_quiet(dev); 313 device_quiet_children(dev); 314 } 315 316 return (0); 317 } 318 319 static int 320 acpi_cpu_attach(device_t dev) 321 { 322 ACPI_BUFFER buf; 323 ACPI_OBJECT arg, *obj; 324 ACPI_OBJECT_LIST arglist; 325 struct pcpu *pcpu_data; 326 struct acpi_cpu_softc *sc; 327 struct acpi_softc *acpi_sc; 328 ACPI_STATUS status; 329 u_int features; 330 int cpu_id, drv_count, i; 331 driver_t **drivers; 332 uint32_t cap_set[3]; 333 334 /* UUID needed by _OSC evaluation */ 335 static uint8_t cpu_oscuuid[16] = { 0x16, 0xA6, 0x77, 0x40, 0x0C, 0x29, 336 0xBE, 0x47, 0x9E, 0xBD, 0xD8, 0x70, 337 0x58, 0x71, 0x39, 0x53 }; 338 339 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 340 341 sc = device_get_softc(dev); 342 sc->cpu_dev = dev; 343 sc->cpu_handle = acpi_get_handle(dev); 344 cpu_id = (int)(intptr_t)acpi_get_private(dev); 345 cpu_softc[cpu_id] = sc; 346 pcpu_data = pcpu_find(cpu_id); 347 pcpu_data->pc_device = dev; 348 sc->cpu_pcpu = pcpu_data; 349 cpu_smi_cmd = AcpiGbl_FADT.SmiCommand; 350 cpu_cst_cnt = AcpiGbl_FADT.CstControl; 351 352 if (acpi_get_type(dev) == ACPI_TYPE_PROCESSOR) { 353 buf.Pointer = NULL; 354 buf.Length = ACPI_ALLOCATE_BUFFER; 355 status = AcpiEvaluateObject(sc->cpu_handle, NULL, NULL, &buf); 356 if (ACPI_FAILURE(status)) { 357 device_printf(dev, "attach failed to get Processor obj - %s\n", 358 AcpiFormatException(status)); 359 return (ENXIO); 360 } 361 obj = (ACPI_OBJECT *)buf.Pointer; 362 sc->cpu_p_blk = obj->Processor.PblkAddress; 363 sc->cpu_p_blk_len = obj->Processor.PblkLength; 364 sc->cpu_acpi_id = obj->Processor.ProcId; 365 AcpiOsFree(obj); 366 } else { 367 KASSERT(acpi_get_type(dev) == ACPI_TYPE_DEVICE, 368 ("Unexpected ACPI object")); 369 status = acpi_GetInteger(sc->cpu_handle, "_UID", &sc->cpu_acpi_id); 370 if (ACPI_FAILURE(status)) { 371 device_printf(dev, "Device object has bad value - %s\n", 372 AcpiFormatException(status)); 373 return (ENXIO); 374 } 375 sc->cpu_p_blk = 0; 376 sc->cpu_p_blk_len = 0; 377 } 378 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu%d: P_BLK at %#x/%d\n", 379 device_get_unit(dev), sc->cpu_p_blk, sc->cpu_p_blk_len)); 380 381 /* 382 * If this is the first cpu we attach, create and initialize the generic 383 * resources that will be used by all acpi cpu devices. 384 */ 385 if (device_get_unit(dev) == 0) { 386 /* Assume we won't be using generic Cx mode by default */ 387 cpu_cx_generic = FALSE; 388 389 /* Install hw.acpi.cpu sysctl tree */ 390 acpi_sc = acpi_device_get_parent_softc(dev); 391 sysctl_ctx_init(&cpu_sysctl_ctx); 392 cpu_sysctl_tree = SYSCTL_ADD_NODE(&cpu_sysctl_ctx, 393 SYSCTL_CHILDREN(acpi_sc->acpi_sysctl_tree), OID_AUTO, "cpu", 394 CTLFLAG_RD, 0, "node for CPU children"); 395 } 396 397 /* 398 * Before calling any CPU methods, collect child driver feature hints 399 * and notify ACPI of them. We support unified SMP power control 400 * so advertise this ourselves. Note this is not the same as independent 401 * SMP control where each CPU can have different settings. 402 */ 403 sc->cpu_features = ACPI_CAP_SMP_SAME | ACPI_CAP_SMP_SAME_C3 | 404 ACPI_CAP_C1_IO_HALT; 405 406 #if defined(__i386__) || defined(__amd64__) 407 /* 408 * Ask for MWAIT modes if not disabled and interrupts work 409 * reasonable with MWAIT. 410 */ 411 if (!acpi_disabled("mwait") && cpu_mwait_usable()) 412 sc->cpu_features |= ACPI_CAP_SMP_C1_NATIVE | ACPI_CAP_SMP_C3_NATIVE; 413 #endif 414 415 if (devclass_get_drivers(acpi_cpu_devclass, &drivers, &drv_count) == 0) { 416 for (i = 0; i < drv_count; i++) { 417 if (ACPI_GET_FEATURES(drivers[i], &features) == 0) 418 sc->cpu_features |= features; 419 } 420 free(drivers, M_TEMP); 421 } 422 423 /* 424 * CPU capabilities are specified in 425 * Intel Processor Vendor-Specific ACPI Interface Specification. 426 */ 427 if (sc->cpu_features) { 428 cap_set[1] = sc->cpu_features; 429 status = acpi_EvaluateOSC(sc->cpu_handle, cpu_oscuuid, 1, 2, cap_set, 430 cap_set, false); 431 if (ACPI_SUCCESS(status)) { 432 if (cap_set[0] != 0) 433 device_printf(dev, "_OSC returned status %#x\n", cap_set[0]); 434 } 435 else { 436 arglist.Pointer = &arg; 437 arglist.Count = 1; 438 arg.Type = ACPI_TYPE_BUFFER; 439 arg.Buffer.Length = sizeof(cap_set); 440 arg.Buffer.Pointer = (uint8_t *)cap_set; 441 cap_set[0] = 1; /* revision */ 442 cap_set[1] = 1; /* number of capabilities integers */ 443 cap_set[2] = sc->cpu_features; 444 AcpiEvaluateObject(sc->cpu_handle, "_PDC", &arglist, NULL); 445 } 446 } 447 448 /* Probe for Cx state support. */ 449 acpi_cpu_cx_probe(sc); 450 451 return (0); 452 } 453 454 static void 455 acpi_cpu_postattach(void *unused __unused) 456 { 457 device_t *devices; 458 int err; 459 int i, n; 460 int attached; 461 462 err = devclass_get_devices(acpi_cpu_devclass, &devices, &n); 463 if (err != 0) { 464 printf("devclass_get_devices(acpi_cpu_devclass) failed\n"); 465 return; 466 } 467 attached = 0; 468 for (i = 0; i < n; i++) 469 if (device_is_attached(devices[i]) && 470 device_get_driver(devices[i]) == &acpi_cpu_driver) 471 attached = 1; 472 for (i = 0; i < n; i++) 473 bus_generic_probe(devices[i]); 474 for (i = 0; i < n; i++) 475 bus_generic_attach(devices[i]); 476 free(devices, M_TEMP); 477 478 if (attached) { 479 #ifdef EARLY_AP_STARTUP 480 acpi_cpu_startup(NULL); 481 #else 482 /* Queue post cpu-probing task handler */ 483 AcpiOsExecute(OSL_NOTIFY_HANDLER, acpi_cpu_startup, NULL); 484 #endif 485 } 486 } 487 488 SYSINIT(acpi_cpu, SI_SUB_CONFIGURE, SI_ORDER_MIDDLE, 489 acpi_cpu_postattach, NULL); 490 491 static void 492 disable_idle(struct acpi_cpu_softc *sc) 493 { 494 cpuset_t cpuset; 495 496 CPU_SETOF(sc->cpu_pcpu->pc_cpuid, &cpuset); 497 sc->cpu_disable_idle = TRUE; 498 499 /* 500 * Ensure that the CPU is not in idle state or in acpi_cpu_idle(). 501 * Note that this code depends on the fact that the rendezvous IPI 502 * can not penetrate context where interrupts are disabled and acpi_cpu_idle 503 * is called and executed in such a context with interrupts being re-enabled 504 * right before return. 505 */ 506 smp_rendezvous_cpus(cpuset, smp_no_rendezvous_barrier, NULL, 507 smp_no_rendezvous_barrier, NULL); 508 } 509 510 static void 511 enable_idle(struct acpi_cpu_softc *sc) 512 { 513 514 sc->cpu_disable_idle = FALSE; 515 } 516 517 #if defined(__i386__) || defined(__amd64__) 518 static int 519 is_idle_disabled(struct acpi_cpu_softc *sc) 520 { 521 522 return (sc->cpu_disable_idle); 523 } 524 #endif 525 526 /* 527 * Disable any entry to the idle function during suspend and re-enable it 528 * during resume. 529 */ 530 static int 531 acpi_cpu_suspend(device_t dev) 532 { 533 int error; 534 535 error = bus_generic_suspend(dev); 536 if (error) 537 return (error); 538 disable_idle(device_get_softc(dev)); 539 return (0); 540 } 541 542 static int 543 acpi_cpu_resume(device_t dev) 544 { 545 546 enable_idle(device_get_softc(dev)); 547 return (bus_generic_resume(dev)); 548 } 549 550 /* 551 * Find the processor associated with a given ACPI ID. By default, 552 * use the MADT to map ACPI IDs to APIC IDs and use that to locate a 553 * processor. Some systems have inconsistent ASL and MADT however. 554 * For these systems the cpu_unordered tunable can be set in which 555 * case we assume that Processor objects are listed in the same order 556 * in both the MADT and ASL. 557 */ 558 static int 559 acpi_pcpu_get_id(device_t dev, uint32_t *acpi_id, uint32_t *cpu_id) 560 { 561 struct pcpu *pc; 562 uint32_t i, idx; 563 564 KASSERT(acpi_id != NULL, ("Null acpi_id")); 565 KASSERT(cpu_id != NULL, ("Null cpu_id")); 566 idx = device_get_unit(dev); 567 568 /* 569 * If pc_acpi_id for CPU 0 is not initialized (e.g. a non-APIC 570 * UP box) use the ACPI ID from the first processor we find. 571 */ 572 if (idx == 0 && mp_ncpus == 1) { 573 pc = pcpu_find(0); 574 if (pc->pc_acpi_id == 0xffffffff) 575 pc->pc_acpi_id = *acpi_id; 576 *cpu_id = 0; 577 return (0); 578 } 579 580 CPU_FOREACH(i) { 581 pc = pcpu_find(i); 582 KASSERT(pc != NULL, ("no pcpu data for %d", i)); 583 if (cpu_unordered) { 584 if (idx-- == 0) { 585 /* 586 * If pc_acpi_id doesn't match the ACPI ID from the 587 * ASL, prefer the MADT-derived value. 588 */ 589 if (pc->pc_acpi_id != *acpi_id) 590 *acpi_id = pc->pc_acpi_id; 591 *cpu_id = pc->pc_cpuid; 592 return (0); 593 } 594 } else { 595 if (pc->pc_acpi_id == *acpi_id) { 596 if (bootverbose) 597 device_printf(dev, 598 "Processor %s (ACPI ID %u) -> APIC ID %d\n", 599 acpi_name(acpi_get_handle(dev)), *acpi_id, 600 pc->pc_cpuid); 601 *cpu_id = pc->pc_cpuid; 602 return (0); 603 } 604 } 605 } 606 607 if (bootverbose) 608 printf("ACPI: Processor %s (ACPI ID %u) ignored\n", 609 acpi_name(acpi_get_handle(dev)), *acpi_id); 610 611 return (ESRCH); 612 } 613 614 static struct resource_list * 615 acpi_cpu_get_rlist(device_t dev, device_t child) 616 { 617 struct acpi_cpu_device *ad; 618 619 ad = device_get_ivars(child); 620 if (ad == NULL) 621 return (NULL); 622 return (&ad->ad_rl); 623 } 624 625 static device_t 626 acpi_cpu_add_child(device_t dev, u_int order, const char *name, int unit) 627 { 628 struct acpi_cpu_device *ad; 629 device_t child; 630 631 if ((ad = malloc(sizeof(*ad), M_TEMP, M_NOWAIT | M_ZERO)) == NULL) 632 return (NULL); 633 634 resource_list_init(&ad->ad_rl); 635 636 child = device_add_child_ordered(dev, order, name, unit); 637 if (child != NULL) 638 device_set_ivars(child, ad); 639 else 640 free(ad, M_TEMP); 641 return (child); 642 } 643 644 static int 645 acpi_cpu_read_ivar(device_t dev, device_t child, int index, uintptr_t *result) 646 { 647 struct acpi_cpu_softc *sc; 648 649 sc = device_get_softc(dev); 650 switch (index) { 651 case ACPI_IVAR_HANDLE: 652 *result = (uintptr_t)sc->cpu_handle; 653 break; 654 case CPU_IVAR_PCPU: 655 *result = (uintptr_t)sc->cpu_pcpu; 656 break; 657 #if defined(__amd64__) || defined(__i386__) 658 case CPU_IVAR_NOMINAL_MHZ: 659 if (tsc_is_invariant) { 660 *result = (uintptr_t)(atomic_load_acq_64(&tsc_freq) / 1000000); 661 break; 662 } 663 /* FALLTHROUGH */ 664 #endif 665 default: 666 return (ENOENT); 667 } 668 return (0); 669 } 670 671 static int 672 acpi_cpu_shutdown(device_t dev) 673 { 674 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 675 676 /* Allow children to shutdown first. */ 677 bus_generic_shutdown(dev); 678 679 /* 680 * Disable any entry to the idle function. 681 */ 682 disable_idle(device_get_softc(dev)); 683 684 /* 685 * CPU devices are not truly detached and remain referenced, 686 * so their resources are not freed. 687 */ 688 689 return_VALUE (0); 690 } 691 692 static void 693 acpi_cpu_cx_probe(struct acpi_cpu_softc *sc) 694 { 695 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 696 697 /* Use initial sleep value of 1 sec. to start with lowest idle state. */ 698 sc->cpu_prev_sleep = 1000000; 699 sc->cpu_cx_lowest = 0; 700 sc->cpu_cx_lowest_lim = 0; 701 702 /* 703 * Check for the ACPI 2.0 _CST sleep states object. If we can't find 704 * any, we'll revert to generic FADT/P_BLK Cx control method which will 705 * be handled by acpi_cpu_startup. We need to defer to after having 706 * probed all the cpus in the system before probing for generic Cx 707 * states as we may already have found cpus with valid _CST packages 708 */ 709 if (!cpu_cx_generic && acpi_cpu_cx_cst(sc) != 0) { 710 /* 711 * We were unable to find a _CST package for this cpu or there 712 * was an error parsing it. Switch back to generic mode. 713 */ 714 cpu_cx_generic = TRUE; 715 if (bootverbose) 716 device_printf(sc->cpu_dev, "switching to generic Cx mode\n"); 717 } 718 719 /* 720 * TODO: _CSD Package should be checked here. 721 */ 722 } 723 724 static void 725 acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc) 726 { 727 ACPI_GENERIC_ADDRESS gas; 728 struct acpi_cx *cx_ptr; 729 730 sc->cpu_cx_count = 0; 731 cx_ptr = sc->cpu_cx_states; 732 733 /* Use initial sleep value of 1 sec. to start with lowest idle state. */ 734 sc->cpu_prev_sleep = 1000000; 735 736 /* C1 has been required since just after ACPI 1.0 */ 737 cx_ptr->type = ACPI_STATE_C1; 738 cx_ptr->trans_lat = 0; 739 cx_ptr++; 740 sc->cpu_non_c2 = sc->cpu_cx_count; 741 sc->cpu_non_c3 = sc->cpu_cx_count; 742 sc->cpu_cx_count++; 743 744 /* 745 * The spec says P_BLK must be 6 bytes long. However, some systems 746 * use it to indicate a fractional set of features present so we 747 * take 5 as C2. Some may also have a value of 7 to indicate 748 * another C3 but most use _CST for this (as required) and having 749 * "only" C1-C3 is not a hardship. 750 */ 751 if (sc->cpu_p_blk_len < 5) 752 return; 753 754 /* Validate and allocate resources for C2 (P_LVL2). */ 755 gas.SpaceId = ACPI_ADR_SPACE_SYSTEM_IO; 756 gas.BitWidth = 8; 757 if (AcpiGbl_FADT.C2Latency <= 100) { 758 gas.Address = sc->cpu_p_blk + 4; 759 cx_ptr->res_rid = 0; 760 acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &cx_ptr->res_rid, 761 &gas, &cx_ptr->p_lvlx, RF_SHAREABLE); 762 if (cx_ptr->p_lvlx != NULL) { 763 cx_ptr->type = ACPI_STATE_C2; 764 cx_ptr->trans_lat = AcpiGbl_FADT.C2Latency; 765 cx_ptr++; 766 sc->cpu_non_c3 = sc->cpu_cx_count; 767 sc->cpu_cx_count++; 768 } 769 } 770 if (sc->cpu_p_blk_len < 6) 771 return; 772 773 /* Validate and allocate resources for C3 (P_LVL3). */ 774 if (AcpiGbl_FADT.C3Latency <= 1000 && !(cpu_quirks & CPU_QUIRK_NO_C3)) { 775 gas.Address = sc->cpu_p_blk + 5; 776 cx_ptr->res_rid = 1; 777 acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &cx_ptr->res_rid, 778 &gas, &cx_ptr->p_lvlx, RF_SHAREABLE); 779 if (cx_ptr->p_lvlx != NULL) { 780 cx_ptr->type = ACPI_STATE_C3; 781 cx_ptr->trans_lat = AcpiGbl_FADT.C3Latency; 782 cx_ptr++; 783 sc->cpu_cx_count++; 784 } 785 } 786 } 787 788 #if defined(__i386__) || defined(__amd64__) 789 static void 790 acpi_cpu_cx_cst_mwait(struct acpi_cx *cx_ptr, uint64_t address, int accsize) 791 { 792 793 cx_ptr->do_mwait = true; 794 cx_ptr->mwait_hint = address & 0xffffffff; 795 cx_ptr->mwait_hw_coord = (accsize & CST_FFH_MWAIT_HW_COORD) != 0; 796 cx_ptr->mwait_bm_avoidance = (accsize & CST_FFH_MWAIT_BM_AVOID) != 0; 797 } 798 #endif 799 800 static void 801 acpi_cpu_cx_cst_free_plvlx(device_t cpu_dev, struct acpi_cx *cx_ptr) 802 { 803 804 if (cx_ptr->p_lvlx == NULL) 805 return; 806 bus_release_resource(cpu_dev, cx_ptr->res_type, cx_ptr->res_rid, 807 cx_ptr->p_lvlx); 808 cx_ptr->p_lvlx = NULL; 809 } 810 811 /* 812 * Parse a _CST package and set up its Cx states. Since the _CST object 813 * can change dynamically, our notify handler may call this function 814 * to clean up and probe the new _CST package. 815 */ 816 static int 817 acpi_cpu_cx_cst(struct acpi_cpu_softc *sc) 818 { 819 struct acpi_cx *cx_ptr; 820 ACPI_STATUS status; 821 ACPI_BUFFER buf; 822 ACPI_OBJECT *top; 823 ACPI_OBJECT *pkg; 824 uint32_t count; 825 int i; 826 #if defined(__i386__) || defined(__amd64__) 827 uint64_t address; 828 int vendor, class, accsize; 829 #endif 830 831 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 832 833 buf.Pointer = NULL; 834 buf.Length = ACPI_ALLOCATE_BUFFER; 835 status = AcpiEvaluateObject(sc->cpu_handle, "_CST", NULL, &buf); 836 if (ACPI_FAILURE(status)) 837 return (ENXIO); 838 839 /* _CST is a package with a count and at least one Cx package. */ 840 top = (ACPI_OBJECT *)buf.Pointer; 841 if (!ACPI_PKG_VALID(top, 2) || acpi_PkgInt32(top, 0, &count) != 0) { 842 device_printf(sc->cpu_dev, "invalid _CST package\n"); 843 AcpiOsFree(buf.Pointer); 844 return (ENXIO); 845 } 846 if (count != top->Package.Count - 1) { 847 device_printf(sc->cpu_dev, "invalid _CST state count (%d != %d)\n", 848 count, top->Package.Count - 1); 849 count = top->Package.Count - 1; 850 } 851 if (count > MAX_CX_STATES) { 852 device_printf(sc->cpu_dev, "_CST has too many states (%d)\n", count); 853 count = MAX_CX_STATES; 854 } 855 856 sc->cpu_non_c2 = 0; 857 sc->cpu_non_c3 = 0; 858 sc->cpu_cx_count = 0; 859 cx_ptr = sc->cpu_cx_states; 860 861 /* 862 * C1 has been required since just after ACPI 1.0. 863 * Reserve the first slot for it. 864 */ 865 cx_ptr->type = ACPI_STATE_C0; 866 cx_ptr++; 867 sc->cpu_cx_count++; 868 869 /* Set up all valid states. */ 870 for (i = 0; i < count; i++) { 871 pkg = &top->Package.Elements[i + 1]; 872 if (!ACPI_PKG_VALID(pkg, 4) || 873 acpi_PkgInt32(pkg, 1, &cx_ptr->type) != 0 || 874 acpi_PkgInt32(pkg, 2, &cx_ptr->trans_lat) != 0 || 875 acpi_PkgInt32(pkg, 3, &cx_ptr->power) != 0) { 876 877 device_printf(sc->cpu_dev, "skipping invalid Cx state package\n"); 878 continue; 879 } 880 881 /* Validate the state to see if we should use it. */ 882 switch (cx_ptr->type) { 883 case ACPI_STATE_C1: 884 acpi_cpu_cx_cst_free_plvlx(sc->cpu_dev, cx_ptr); 885 #if defined(__i386__) || defined(__amd64__) 886 if (acpi_PkgFFH_IntelCpu(pkg, 0, &vendor, &class, &address, 887 &accsize) == 0 && vendor == CST_FFH_VENDOR_INTEL) { 888 if (class == CST_FFH_INTEL_CL_C1IO) { 889 /* C1 I/O then Halt */ 890 cx_ptr->res_rid = sc->cpu_cx_count; 891 bus_set_resource(sc->cpu_dev, SYS_RES_IOPORT, 892 cx_ptr->res_rid, address, 1); 893 cx_ptr->p_lvlx = bus_alloc_resource_any(sc->cpu_dev, 894 SYS_RES_IOPORT, &cx_ptr->res_rid, RF_ACTIVE | 895 RF_SHAREABLE); 896 if (cx_ptr->p_lvlx == NULL) { 897 bus_delete_resource(sc->cpu_dev, SYS_RES_IOPORT, 898 cx_ptr->res_rid); 899 device_printf(sc->cpu_dev, 900 "C1 I/O failed to allocate port %d, " 901 "degrading to C1 Halt", (int)address); 902 } 903 } else if (class == CST_FFH_INTEL_CL_MWAIT) { 904 acpi_cpu_cx_cst_mwait(cx_ptr, address, accsize); 905 } 906 } 907 #endif 908 if (sc->cpu_cx_states[0].type == ACPI_STATE_C0) { 909 /* This is the first C1 state. Use the reserved slot. */ 910 sc->cpu_cx_states[0] = *cx_ptr; 911 } else { 912 sc->cpu_non_c2 = sc->cpu_cx_count; 913 sc->cpu_non_c3 = sc->cpu_cx_count; 914 cx_ptr++; 915 sc->cpu_cx_count++; 916 } 917 continue; 918 case ACPI_STATE_C2: 919 sc->cpu_non_c3 = sc->cpu_cx_count; 920 break; 921 case ACPI_STATE_C3: 922 default: 923 if ((cpu_quirks & CPU_QUIRK_NO_C3) != 0) { 924 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 925 "acpi_cpu%d: C3[%d] not available.\n", 926 device_get_unit(sc->cpu_dev), i)); 927 continue; 928 } 929 break; 930 } 931 932 /* Free up any previous register. */ 933 acpi_cpu_cx_cst_free_plvlx(sc->cpu_dev, cx_ptr); 934 935 /* Allocate the control register for C2 or C3. */ 936 #if defined(__i386__) || defined(__amd64__) 937 if (acpi_PkgFFH_IntelCpu(pkg, 0, &vendor, &class, &address, 938 &accsize) == 0 && vendor == CST_FFH_VENDOR_INTEL && 939 class == CST_FFH_INTEL_CL_MWAIT) { 940 /* Native C State Instruction use (mwait) */ 941 acpi_cpu_cx_cst_mwait(cx_ptr, address, accsize); 942 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 943 "acpi_cpu%d: Got C%d/mwait - %d latency\n", 944 device_get_unit(sc->cpu_dev), cx_ptr->type, cx_ptr->trans_lat)); 945 cx_ptr++; 946 sc->cpu_cx_count++; 947 } else 948 #endif 949 { 950 cx_ptr->res_rid = sc->cpu_cx_count; 951 acpi_PkgGas(sc->cpu_dev, pkg, 0, &cx_ptr->res_type, 952 &cx_ptr->res_rid, &cx_ptr->p_lvlx, RF_SHAREABLE); 953 if (cx_ptr->p_lvlx) { 954 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 955 "acpi_cpu%d: Got C%d - %d latency\n", 956 device_get_unit(sc->cpu_dev), cx_ptr->type, 957 cx_ptr->trans_lat)); 958 cx_ptr++; 959 sc->cpu_cx_count++; 960 } 961 } 962 } 963 AcpiOsFree(buf.Pointer); 964 965 /* If C1 state was not found, we need one now. */ 966 cx_ptr = sc->cpu_cx_states; 967 if (cx_ptr->type == ACPI_STATE_C0) { 968 cx_ptr->type = ACPI_STATE_C1; 969 cx_ptr->trans_lat = 0; 970 } 971 972 return (0); 973 } 974 975 /* 976 * Call this *after* all CPUs have been attached. 977 */ 978 static void 979 acpi_cpu_startup(void *arg) 980 { 981 struct acpi_cpu_softc *sc; 982 int i; 983 984 /* Get set of CPU devices */ 985 devclass_get_devices(acpi_cpu_devclass, &cpu_devices, &cpu_ndevices); 986 987 /* 988 * Setup any quirks that might necessary now that we have probed 989 * all the CPUs 990 */ 991 acpi_cpu_quirks(); 992 993 if (cpu_cx_generic) { 994 /* 995 * We are using generic Cx mode, probe for available Cx states 996 * for all processors. 997 */ 998 for (i = 0; i < cpu_ndevices; i++) { 999 sc = device_get_softc(cpu_devices[i]); 1000 acpi_cpu_generic_cx_probe(sc); 1001 } 1002 } else { 1003 /* 1004 * We are using _CST mode, remove C3 state if necessary. 1005 * As we now know for sure that we will be using _CST mode 1006 * install our notify handler. 1007 */ 1008 for (i = 0; i < cpu_ndevices; i++) { 1009 sc = device_get_softc(cpu_devices[i]); 1010 if (cpu_quirks & CPU_QUIRK_NO_C3) { 1011 sc->cpu_cx_count = min(sc->cpu_cx_count, sc->cpu_non_c3 + 1); 1012 } 1013 AcpiInstallNotifyHandler(sc->cpu_handle, ACPI_DEVICE_NOTIFY, 1014 acpi_cpu_notify, sc); 1015 } 1016 } 1017 1018 /* Perform Cx final initialization. */ 1019 for (i = 0; i < cpu_ndevices; i++) { 1020 sc = device_get_softc(cpu_devices[i]); 1021 acpi_cpu_startup_cx(sc); 1022 } 1023 1024 /* Add a sysctl handler to handle global Cx lowest setting */ 1025 SYSCTL_ADD_PROC(&cpu_sysctl_ctx, SYSCTL_CHILDREN(cpu_sysctl_tree), 1026 OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW, 1027 NULL, 0, acpi_cpu_global_cx_lowest_sysctl, "A", 1028 "Global lowest Cx sleep state to use"); 1029 1030 /* Take over idling from cpu_idle_default(). */ 1031 cpu_cx_lowest_lim = 0; 1032 for (i = 0; i < cpu_ndevices; i++) { 1033 sc = device_get_softc(cpu_devices[i]); 1034 enable_idle(sc); 1035 } 1036 #if defined(__i386__) || defined(__amd64__) 1037 cpu_idle_hook = acpi_cpu_idle; 1038 #endif 1039 } 1040 1041 static void 1042 acpi_cpu_cx_list(struct acpi_cpu_softc *sc) 1043 { 1044 struct sbuf sb; 1045 int i; 1046 1047 /* 1048 * Set up the list of Cx states 1049 */ 1050 sbuf_new(&sb, sc->cpu_cx_supported, sizeof(sc->cpu_cx_supported), 1051 SBUF_FIXEDLEN); 1052 for (i = 0; i < sc->cpu_cx_count; i++) 1053 sbuf_printf(&sb, "C%d/%d/%d ", i + 1, sc->cpu_cx_states[i].type, 1054 sc->cpu_cx_states[i].trans_lat); 1055 sbuf_trim(&sb); 1056 sbuf_finish(&sb); 1057 } 1058 1059 static void 1060 acpi_cpu_startup_cx(struct acpi_cpu_softc *sc) 1061 { 1062 acpi_cpu_cx_list(sc); 1063 1064 SYSCTL_ADD_STRING(&sc->cpu_sysctl_ctx, 1065 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)), 1066 OID_AUTO, "cx_supported", CTLFLAG_RD, 1067 sc->cpu_cx_supported, 0, 1068 "Cx/microsecond values for supported Cx states"); 1069 SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx, 1070 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)), 1071 OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW, 1072 (void *)sc, 0, acpi_cpu_cx_lowest_sysctl, "A", 1073 "lowest Cx sleep state to use"); 1074 SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx, 1075 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)), 1076 OID_AUTO, "cx_usage", CTLTYPE_STRING | CTLFLAG_RD, 1077 (void *)sc, 0, acpi_cpu_usage_sysctl, "A", 1078 "percent usage for each Cx state"); 1079 SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx, 1080 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)), 1081 OID_AUTO, "cx_usage_counters", CTLTYPE_STRING | CTLFLAG_RD, 1082 (void *)sc, 0, acpi_cpu_usage_counters_sysctl, "A", 1083 "Cx sleep state counters"); 1084 #if defined(__i386__) || defined(__amd64__) 1085 SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx, 1086 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)), 1087 OID_AUTO, "cx_method", CTLTYPE_STRING | CTLFLAG_RD, 1088 (void *)sc, 0, acpi_cpu_method_sysctl, "A", 1089 "Cx entrance methods"); 1090 #endif 1091 1092 /* Signal platform that we can handle _CST notification. */ 1093 if (!cpu_cx_generic && cpu_cst_cnt != 0) { 1094 ACPI_LOCK(acpi); 1095 AcpiOsWritePort(cpu_smi_cmd, cpu_cst_cnt, 8); 1096 ACPI_UNLOCK(acpi); 1097 } 1098 } 1099 1100 #if defined(__i386__) || defined(__amd64__) 1101 /* 1102 * Idle the CPU in the lowest state possible. This function is called with 1103 * interrupts disabled. Note that once it re-enables interrupts, a task 1104 * switch can occur so do not access shared data (i.e. the softc) after 1105 * interrupts are re-enabled. 1106 */ 1107 static void 1108 acpi_cpu_idle(sbintime_t sbt) 1109 { 1110 struct acpi_cpu_softc *sc; 1111 struct acpi_cx *cx_next; 1112 uint64_t cputicks; 1113 uint32_t start_time, end_time; 1114 ACPI_STATUS status; 1115 int bm_active, cx_next_idx, i, us; 1116 1117 /* 1118 * Look up our CPU id to get our softc. If it's NULL, we'll use C1 1119 * since there is no ACPI processor object for this CPU. This occurs 1120 * for logical CPUs in the HTT case. 1121 */ 1122 sc = cpu_softc[PCPU_GET(cpuid)]; 1123 if (sc == NULL) { 1124 acpi_cpu_c1(); 1125 return; 1126 } 1127 1128 /* If disabled, take the safe path. */ 1129 if (is_idle_disabled(sc)) { 1130 acpi_cpu_c1(); 1131 return; 1132 } 1133 1134 /* Find the lowest state that has small enough latency. */ 1135 us = sc->cpu_prev_sleep; 1136 if (sbt >= 0 && us > (sbt >> 12)) 1137 us = (sbt >> 12); 1138 cx_next_idx = 0; 1139 if (cpu_disable_c2_sleep) 1140 i = min(sc->cpu_cx_lowest, sc->cpu_non_c2); 1141 else if (cpu_disable_c3_sleep) 1142 i = min(sc->cpu_cx_lowest, sc->cpu_non_c3); 1143 else 1144 i = sc->cpu_cx_lowest; 1145 for (; i >= 0; i--) { 1146 if (sc->cpu_cx_states[i].trans_lat * 3 <= us) { 1147 cx_next_idx = i; 1148 break; 1149 } 1150 } 1151 1152 /* 1153 * Check for bus master activity. If there was activity, clear 1154 * the bit and use the lowest non-C3 state. Note that the USB 1155 * driver polling for new devices keeps this bit set all the 1156 * time if USB is loaded. 1157 */ 1158 if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0 && 1159 cx_next_idx > sc->cpu_non_c3) { 1160 status = AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, &bm_active); 1161 if (ACPI_SUCCESS(status) && bm_active != 0) { 1162 AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, 1); 1163 cx_next_idx = sc->cpu_non_c3; 1164 } 1165 } 1166 1167 /* Select the next state and update statistics. */ 1168 cx_next = &sc->cpu_cx_states[cx_next_idx]; 1169 sc->cpu_cx_stats[cx_next_idx]++; 1170 KASSERT(cx_next->type != ACPI_STATE_C0, ("acpi_cpu_idle: C0 sleep")); 1171 1172 /* 1173 * Execute HLT (or equivalent) and wait for an interrupt. We can't 1174 * precisely calculate the time spent in C1 since the place we wake up 1175 * is an ISR. Assume we slept no more then half of quantum, unless 1176 * we are called inside critical section, delaying context switch. 1177 */ 1178 if (cx_next->type == ACPI_STATE_C1) { 1179 cputicks = cpu_ticks(); 1180 if (cx_next->p_lvlx != NULL) { 1181 /* C1 I/O then Halt */ 1182 CPU_GET_REG(cx_next->p_lvlx, 1); 1183 } 1184 if (cx_next->do_mwait) 1185 acpi_cpu_idle_mwait(cx_next->mwait_hint); 1186 else 1187 acpi_cpu_c1(); 1188 end_time = ((cpu_ticks() - cputicks) << 20) / cpu_tickrate(); 1189 if (curthread->td_critnest == 0) 1190 end_time = min(end_time, 500000 / hz); 1191 /* acpi_cpu_c1() returns with interrupts enabled. */ 1192 if (cx_next->do_mwait) 1193 ACPI_ENABLE_IRQS(); 1194 sc->cpu_prev_sleep = (sc->cpu_prev_sleep * 3 + end_time) / 4; 1195 return; 1196 } 1197 1198 /* 1199 * For C3, disable bus master arbitration and enable bus master wake 1200 * if BM control is available, otherwise flush the CPU cache. 1201 */ 1202 if (cx_next->type == ACPI_STATE_C3 || cx_next->mwait_bm_avoidance) { 1203 if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) { 1204 AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 1); 1205 AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 1); 1206 } else 1207 ACPI_FLUSH_CPU_CACHE(); 1208 } 1209 1210 /* 1211 * Read from P_LVLx to enter C2(+), checking time spent asleep. 1212 * Use the ACPI timer for measuring sleep time. Since we need to 1213 * get the time very close to the CPU start/stop clock logic, this 1214 * is the only reliable time source. 1215 */ 1216 if (cx_next->type == ACPI_STATE_C3) { 1217 AcpiGetTimer(&start_time); 1218 cputicks = 0; 1219 } else { 1220 start_time = 0; 1221 cputicks = cpu_ticks(); 1222 } 1223 if (cx_next->do_mwait) 1224 acpi_cpu_idle_mwait(cx_next->mwait_hint); 1225 else 1226 CPU_GET_REG(cx_next->p_lvlx, 1); 1227 1228 /* 1229 * Read the end time twice. Since it may take an arbitrary time 1230 * to enter the idle state, the first read may be executed before 1231 * the processor has stopped. Doing it again provides enough 1232 * margin that we are certain to have a correct value. 1233 */ 1234 AcpiGetTimer(&end_time); 1235 if (cx_next->type == ACPI_STATE_C3) { 1236 AcpiGetTimer(&end_time); 1237 AcpiGetTimerDuration(start_time, end_time, &end_time); 1238 } else 1239 end_time = ((cpu_ticks() - cputicks) << 20) / cpu_tickrate(); 1240 1241 /* Enable bus master arbitration and disable bus master wakeup. */ 1242 if ((cx_next->type == ACPI_STATE_C3 || cx_next->mwait_bm_avoidance) && 1243 (cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) { 1244 AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 0); 1245 AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0); 1246 } 1247 ACPI_ENABLE_IRQS(); 1248 1249 sc->cpu_prev_sleep = (sc->cpu_prev_sleep * 3 + PM_USEC(end_time)) / 4; 1250 } 1251 #endif 1252 1253 /* 1254 * Re-evaluate the _CST object when we are notified that it changed. 1255 */ 1256 static void 1257 acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context) 1258 { 1259 struct acpi_cpu_softc *sc = (struct acpi_cpu_softc *)context; 1260 1261 if (notify != ACPI_NOTIFY_CX_STATES) 1262 return; 1263 1264 /* 1265 * C-state data for target CPU is going to be in flux while we execute 1266 * acpi_cpu_cx_cst, so disable entering acpi_cpu_idle. 1267 * Also, it may happen that multiple ACPI taskqueues may concurrently 1268 * execute notifications for the same CPU. ACPI_SERIAL is used to 1269 * protect against that. 1270 */ 1271 ACPI_SERIAL_BEGIN(cpu); 1272 disable_idle(sc); 1273 1274 /* Update the list of Cx states. */ 1275 acpi_cpu_cx_cst(sc); 1276 acpi_cpu_cx_list(sc); 1277 acpi_cpu_set_cx_lowest(sc); 1278 1279 enable_idle(sc); 1280 ACPI_SERIAL_END(cpu); 1281 1282 acpi_UserNotify("PROCESSOR", sc->cpu_handle, notify); 1283 } 1284 1285 static void 1286 acpi_cpu_quirks(void) 1287 { 1288 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1289 1290 /* 1291 * Bus mastering arbitration control is needed to keep caches coherent 1292 * while sleeping in C3. If it's not present but a working flush cache 1293 * instruction is present, flush the caches before entering C3 instead. 1294 * Otherwise, just disable C3 completely. 1295 */ 1296 if (AcpiGbl_FADT.Pm2ControlBlock == 0 || 1297 AcpiGbl_FADT.Pm2ControlLength == 0) { 1298 if ((AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD) && 1299 (AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD_FLUSH) == 0) { 1300 cpu_quirks |= CPU_QUIRK_NO_BM_CTRL; 1301 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 1302 "acpi_cpu: no BM control, using flush cache method\n")); 1303 } else { 1304 cpu_quirks |= CPU_QUIRK_NO_C3; 1305 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 1306 "acpi_cpu: no BM control, C3 not available\n")); 1307 } 1308 } 1309 1310 /* 1311 * If we are using generic Cx mode, C3 on multiple CPUs requires using 1312 * the expensive flush cache instruction. 1313 */ 1314 if (cpu_cx_generic && mp_ncpus > 1) { 1315 cpu_quirks |= CPU_QUIRK_NO_BM_CTRL; 1316 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 1317 "acpi_cpu: SMP, using flush cache mode for C3\n")); 1318 } 1319 1320 /* Look for various quirks of the PIIX4 part. */ 1321 acpi_cpu_quirks_piix4(); 1322 } 1323 1324 static void 1325 acpi_cpu_quirks_piix4(void) 1326 { 1327 #ifdef __i386__ 1328 device_t acpi_dev; 1329 uint32_t val; 1330 ACPI_STATUS status; 1331 1332 acpi_dev = pci_find_device(PCI_VENDOR_INTEL, PCI_DEVICE_82371AB_3); 1333 if (acpi_dev != NULL) { 1334 switch (pci_get_revid(acpi_dev)) { 1335 /* 1336 * Disable C3 support for all PIIX4 chipsets. Some of these parts 1337 * do not report the BMIDE status to the BM status register and 1338 * others have a livelock bug if Type-F DMA is enabled. Linux 1339 * works around the BMIDE bug by reading the BM status directly 1340 * but we take the simpler approach of disabling C3 for these 1341 * parts. 1342 * 1343 * See erratum #18 ("C3 Power State/BMIDE and Type-F DMA 1344 * Livelock") from the January 2002 PIIX4 specification update. 1345 * Applies to all PIIX4 models. 1346 * 1347 * Also, make sure that all interrupts cause a "Stop Break" 1348 * event to exit from C2 state. 1349 * Also, BRLD_EN_BM (ACPI_BITREG_BUS_MASTER_RLD in ACPI-speak) 1350 * should be set to zero, otherwise it causes C2 to short-sleep. 1351 * PIIX4 doesn't properly support C3 and bus master activity 1352 * need not break out of C2. 1353 */ 1354 case PCI_REVISION_A_STEP: 1355 case PCI_REVISION_B_STEP: 1356 case PCI_REVISION_4E: 1357 case PCI_REVISION_4M: 1358 cpu_quirks |= CPU_QUIRK_NO_C3; 1359 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 1360 "acpi_cpu: working around PIIX4 bug, disabling C3\n")); 1361 1362 val = pci_read_config(acpi_dev, PIIX4_DEVACTB_REG, 4); 1363 if ((val & PIIX4_STOP_BREAK_MASK) != PIIX4_STOP_BREAK_MASK) { 1364 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 1365 "acpi_cpu: PIIX4: enabling IRQs to generate Stop Break\n")); 1366 val |= PIIX4_STOP_BREAK_MASK; 1367 pci_write_config(acpi_dev, PIIX4_DEVACTB_REG, val, 4); 1368 } 1369 status = AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_RLD, &val); 1370 if (ACPI_SUCCESS(status) && val != 0) { 1371 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 1372 "acpi_cpu: PIIX4: reset BRLD_EN_BM\n")); 1373 AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0); 1374 } 1375 break; 1376 default: 1377 break; 1378 } 1379 } 1380 #endif 1381 } 1382 1383 static int 1384 acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS) 1385 { 1386 struct acpi_cpu_softc *sc; 1387 struct sbuf sb; 1388 char buf[128]; 1389 int i; 1390 uintmax_t fract, sum, whole; 1391 1392 sc = (struct acpi_cpu_softc *) arg1; 1393 sum = 0; 1394 for (i = 0; i < sc->cpu_cx_count; i++) 1395 sum += sc->cpu_cx_stats[i]; 1396 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN); 1397 for (i = 0; i < sc->cpu_cx_count; i++) { 1398 if (sum > 0) { 1399 whole = (uintmax_t)sc->cpu_cx_stats[i] * 100; 1400 fract = (whole % sum) * 100; 1401 sbuf_printf(&sb, "%u.%02u%% ", (u_int)(whole / sum), 1402 (u_int)(fract / sum)); 1403 } else 1404 sbuf_printf(&sb, "0.00%% "); 1405 } 1406 sbuf_printf(&sb, "last %dus", sc->cpu_prev_sleep); 1407 sbuf_trim(&sb); 1408 sbuf_finish(&sb); 1409 sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req); 1410 sbuf_delete(&sb); 1411 1412 return (0); 1413 } 1414 1415 /* 1416 * XXX TODO: actually add support to count each entry/exit 1417 * from the Cx states. 1418 */ 1419 static int 1420 acpi_cpu_usage_counters_sysctl(SYSCTL_HANDLER_ARGS) 1421 { 1422 struct acpi_cpu_softc *sc; 1423 struct sbuf sb; 1424 char buf[128]; 1425 int i; 1426 1427 sc = (struct acpi_cpu_softc *) arg1; 1428 1429 /* Print out the raw counters */ 1430 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN); 1431 1432 for (i = 0; i < sc->cpu_cx_count; i++) { 1433 sbuf_printf(&sb, "%u ", sc->cpu_cx_stats[i]); 1434 } 1435 1436 sbuf_trim(&sb); 1437 sbuf_finish(&sb); 1438 sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req); 1439 sbuf_delete(&sb); 1440 1441 return (0); 1442 } 1443 1444 #if defined(__i386__) || defined(__amd64__) 1445 static int 1446 acpi_cpu_method_sysctl(SYSCTL_HANDLER_ARGS) 1447 { 1448 struct acpi_cpu_softc *sc; 1449 struct acpi_cx *cx; 1450 struct sbuf sb; 1451 char buf[128]; 1452 int i; 1453 1454 sc = (struct acpi_cpu_softc *)arg1; 1455 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN); 1456 for (i = 0; i < sc->cpu_cx_count; i++) { 1457 cx = &sc->cpu_cx_states[i]; 1458 sbuf_printf(&sb, "C%d/", i + 1); 1459 if (cx->do_mwait) { 1460 sbuf_cat(&sb, "mwait"); 1461 if (cx->mwait_hw_coord) 1462 sbuf_cat(&sb, "/hwc"); 1463 if (cx->mwait_bm_avoidance) 1464 sbuf_cat(&sb, "/bma"); 1465 } else if (cx->type == ACPI_STATE_C1) { 1466 sbuf_cat(&sb, "hlt"); 1467 } else { 1468 sbuf_cat(&sb, "io"); 1469 } 1470 if (cx->type == ACPI_STATE_C1 && cx->p_lvlx != NULL) 1471 sbuf_cat(&sb, "/iohlt"); 1472 sbuf_putc(&sb, ' '); 1473 } 1474 sbuf_trim(&sb); 1475 sbuf_finish(&sb); 1476 sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req); 1477 sbuf_delete(&sb); 1478 return (0); 1479 } 1480 #endif 1481 1482 static int 1483 acpi_cpu_set_cx_lowest(struct acpi_cpu_softc *sc) 1484 { 1485 int i; 1486 1487 ACPI_SERIAL_ASSERT(cpu); 1488 sc->cpu_cx_lowest = min(sc->cpu_cx_lowest_lim, sc->cpu_cx_count - 1); 1489 1490 /* If not disabling, cache the new lowest non-C3 state. */ 1491 sc->cpu_non_c3 = 0; 1492 for (i = sc->cpu_cx_lowest; i >= 0; i--) { 1493 if (sc->cpu_cx_states[i].type < ACPI_STATE_C3) { 1494 sc->cpu_non_c3 = i; 1495 break; 1496 } 1497 } 1498 1499 /* Reset the statistics counters. */ 1500 bzero(sc->cpu_cx_stats, sizeof(sc->cpu_cx_stats)); 1501 return (0); 1502 } 1503 1504 static int 1505 acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS) 1506 { 1507 struct acpi_cpu_softc *sc; 1508 char state[8]; 1509 int val, error; 1510 1511 sc = (struct acpi_cpu_softc *) arg1; 1512 snprintf(state, sizeof(state), "C%d", sc->cpu_cx_lowest_lim + 1); 1513 error = sysctl_handle_string(oidp, state, sizeof(state), req); 1514 if (error != 0 || req->newptr == NULL) 1515 return (error); 1516 if (strlen(state) < 2 || toupper(state[0]) != 'C') 1517 return (EINVAL); 1518 if (strcasecmp(state, "Cmax") == 0) 1519 val = MAX_CX_STATES; 1520 else { 1521 val = (int) strtol(state + 1, NULL, 10); 1522 if (val < 1 || val > MAX_CX_STATES) 1523 return (EINVAL); 1524 } 1525 1526 ACPI_SERIAL_BEGIN(cpu); 1527 sc->cpu_cx_lowest_lim = val - 1; 1528 acpi_cpu_set_cx_lowest(sc); 1529 ACPI_SERIAL_END(cpu); 1530 1531 return (0); 1532 } 1533 1534 static int 1535 acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS) 1536 { 1537 struct acpi_cpu_softc *sc; 1538 char state[8]; 1539 int val, error, i; 1540 1541 snprintf(state, sizeof(state), "C%d", cpu_cx_lowest_lim + 1); 1542 error = sysctl_handle_string(oidp, state, sizeof(state), req); 1543 if (error != 0 || req->newptr == NULL) 1544 return (error); 1545 if (strlen(state) < 2 || toupper(state[0]) != 'C') 1546 return (EINVAL); 1547 if (strcasecmp(state, "Cmax") == 0) 1548 val = MAX_CX_STATES; 1549 else { 1550 val = (int) strtol(state + 1, NULL, 10); 1551 if (val < 1 || val > MAX_CX_STATES) 1552 return (EINVAL); 1553 } 1554 1555 /* Update the new lowest useable Cx state for all CPUs. */ 1556 ACPI_SERIAL_BEGIN(cpu); 1557 cpu_cx_lowest_lim = val - 1; 1558 for (i = 0; i < cpu_ndevices; i++) { 1559 sc = device_get_softc(cpu_devices[i]); 1560 sc->cpu_cx_lowest_lim = cpu_cx_lowest_lim; 1561 acpi_cpu_set_cx_lowest(sc); 1562 } 1563 ACPI_SERIAL_END(cpu); 1564 1565 return (0); 1566 } 1567