xref: /freebsd/sys/dev/acpica/acpi_cpu.c (revision efe014e6b177ba1b0d70f7df751f5066d4eafe9b)
1 /*-
2  * Copyright (c) 2003-2005 Nate Lawson (SDG)
3  * Copyright (c) 2001 Michael Smith
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 #include "opt_acpi.h"
32 #include <sys/param.h>
33 #include <sys/bus.h>
34 #include <sys/cpu.h>
35 #include <sys/kernel.h>
36 #include <sys/malloc.h>
37 #include <sys/module.h>
38 #include <sys/pcpu.h>
39 #include <sys/power.h>
40 #include <sys/proc.h>
41 #include <sys/sched.h>
42 #include <sys/sbuf.h>
43 #include <sys/smp.h>
44 
45 #include <dev/pci/pcivar.h>
46 #include <machine/atomic.h>
47 #include <machine/bus.h>
48 #if defined(__amd64__) || defined(__i386__)
49 #include <machine/clock.h>
50 #include <machine/specialreg.h>
51 #include <machine/md_var.h>
52 #endif
53 #include <sys/rman.h>
54 
55 #include <contrib/dev/acpica/include/acpi.h>
56 #include <contrib/dev/acpica/include/accommon.h>
57 
58 #include <dev/acpica/acpivar.h>
59 
60 /*
61  * Support for ACPI Processor devices, including C[1-3] sleep states.
62  */
63 
64 /* Hooks for the ACPI CA debugging infrastructure */
65 #define _COMPONENT	ACPI_PROCESSOR
66 ACPI_MODULE_NAME("PROCESSOR")
67 
68 struct acpi_cx {
69     struct resource	*p_lvlx;	/* Register to read to enter state. */
70     uint32_t		 type;		/* C1-3 (C4 and up treated as C3). */
71     uint32_t		 trans_lat;	/* Transition latency (usec). */
72     uint32_t		 power;		/* Power consumed (mW). */
73     int			 res_type;	/* Resource type for p_lvlx. */
74     int			 res_rid;	/* Resource ID for p_lvlx. */
75     bool		 do_mwait;
76     uint32_t		 mwait_hint;
77     bool		 mwait_hw_coord;
78     bool		 mwait_bm_avoidance;
79 };
80 #define MAX_CX_STATES	 8
81 
82 struct acpi_cpu_softc {
83     device_t		 cpu_dev;
84     ACPI_HANDLE		 cpu_handle;
85     struct pcpu		*cpu_pcpu;
86     uint32_t		 cpu_acpi_id;	/* ACPI processor id */
87     uint32_t		 cpu_p_blk;	/* ACPI P_BLK location */
88     uint32_t		 cpu_p_blk_len;	/* P_BLK length (must be 6). */
89     struct acpi_cx	 cpu_cx_states[MAX_CX_STATES];
90     int			 cpu_cx_count;	/* Number of valid Cx states. */
91     int			 cpu_prev_sleep;/* Last idle sleep duration. */
92     int			 cpu_features;	/* Child driver supported features. */
93     /* Runtime state. */
94     int			 cpu_non_c2;	/* Index of lowest non-C2 state. */
95     int			 cpu_non_c3;	/* Index of lowest non-C3 state. */
96     u_int		 cpu_cx_stats[MAX_CX_STATES];/* Cx usage history. */
97     /* Values for sysctl. */
98     struct sysctl_ctx_list cpu_sysctl_ctx;
99     struct sysctl_oid	*cpu_sysctl_tree;
100     int			 cpu_cx_lowest;
101     int			 cpu_cx_lowest_lim;
102     int			 cpu_disable_idle; /* Disable entry to idle function */
103     char 		 cpu_cx_supported[64];
104 };
105 
106 struct acpi_cpu_device {
107     struct resource_list	ad_rl;
108 };
109 
110 #define CPU_GET_REG(reg, width) 					\
111     (bus_space_read_ ## width(rman_get_bustag((reg)), 			\
112 		      rman_get_bushandle((reg)), 0))
113 #define CPU_SET_REG(reg, width, val)					\
114     (bus_space_write_ ## width(rman_get_bustag((reg)), 			\
115 		       rman_get_bushandle((reg)), 0, (val)))
116 
117 #define ACPI_NOTIFY_CX_STATES	0x81	/* _CST changed. */
118 
119 #define CPU_QUIRK_NO_C3		(1<<0)	/* C3-type states are not usable. */
120 #define CPU_QUIRK_NO_BM_CTRL	(1<<2)	/* No bus mastering control. */
121 
122 #define PCI_VENDOR_INTEL	0x8086
123 #define PCI_DEVICE_82371AB_3	0x7113	/* PIIX4 chipset for quirks. */
124 #define PCI_REVISION_A_STEP	0
125 #define PCI_REVISION_B_STEP	1
126 #define PCI_REVISION_4E		2
127 #define PCI_REVISION_4M		3
128 #define PIIX4_DEVACTB_REG	0x58
129 #define PIIX4_BRLD_EN_IRQ0	(1<<0)
130 #define PIIX4_BRLD_EN_IRQ	(1<<1)
131 #define PIIX4_BRLD_EN_IRQ8	(1<<5)
132 #define PIIX4_STOP_BREAK_MASK	(PIIX4_BRLD_EN_IRQ0 | PIIX4_BRLD_EN_IRQ | PIIX4_BRLD_EN_IRQ8)
133 #define PIIX4_PCNTRL_BST_EN	(1<<10)
134 
135 #define	CST_FFH_VENDOR_INTEL	1
136 #define	CST_FFH_INTEL_CL_C1IO	1
137 #define	CST_FFH_INTEL_CL_MWAIT	2
138 #define	CST_FFH_MWAIT_HW_COORD	0x0001
139 #define	CST_FFH_MWAIT_BM_AVOID	0x0002
140 
141 #define	CPUDEV_DEVICE_ID	"ACPI0007"
142 
143 /* Allow users to ignore processor orders in MADT. */
144 static int cpu_unordered;
145 SYSCTL_INT(_debug_acpi, OID_AUTO, cpu_unordered, CTLFLAG_RDTUN,
146     &cpu_unordered, 0,
147     "Do not use the MADT to match ACPI Processor objects to CPUs.");
148 
149 /* Knob to disable acpi_cpu devices */
150 bool acpi_cpu_disabled = false;
151 
152 /* Platform hardware resource information. */
153 static uint32_t		 cpu_smi_cmd;	/* Value to write to SMI_CMD. */
154 static uint8_t		 cpu_cst_cnt;	/* Indicate we are _CST aware. */
155 static int		 cpu_quirks;	/* Indicate any hardware bugs. */
156 
157 /* Values for sysctl. */
158 static struct sysctl_ctx_list cpu_sysctl_ctx;
159 static struct sysctl_oid *cpu_sysctl_tree;
160 static int		 cpu_cx_generic;
161 static int		 cpu_cx_lowest_lim;
162 
163 static device_t		*cpu_devices;
164 static int		 cpu_ndevices;
165 static struct acpi_cpu_softc **cpu_softc;
166 ACPI_SERIAL_DECL(cpu, "ACPI CPU");
167 
168 static int	acpi_cpu_probe(device_t dev);
169 static int	acpi_cpu_attach(device_t dev);
170 static int	acpi_cpu_suspend(device_t dev);
171 static int	acpi_cpu_resume(device_t dev);
172 static int	acpi_pcpu_get_id(device_t dev, uint32_t *acpi_id,
173 		    uint32_t *cpu_id);
174 static struct resource_list *acpi_cpu_get_rlist(device_t dev, device_t child);
175 static device_t	acpi_cpu_add_child(device_t dev, u_int order, const char *name,
176 		    int unit);
177 static int	acpi_cpu_read_ivar(device_t dev, device_t child, int index,
178 		    uintptr_t *result);
179 static int	acpi_cpu_shutdown(device_t dev);
180 static void	acpi_cpu_cx_probe(struct acpi_cpu_softc *sc);
181 static void	acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc);
182 static int	acpi_cpu_cx_cst(struct acpi_cpu_softc *sc);
183 static void	acpi_cpu_startup(void *arg);
184 static void	acpi_cpu_startup_cx(struct acpi_cpu_softc *sc);
185 static void	acpi_cpu_cx_list(struct acpi_cpu_softc *sc);
186 #if defined(__i386__) || defined(__amd64__)
187 static void	acpi_cpu_idle(sbintime_t sbt);
188 #endif
189 static void	acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context);
190 static void	acpi_cpu_quirks(void);
191 static void	acpi_cpu_quirks_piix4(void);
192 static int	acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS);
193 static int	acpi_cpu_usage_counters_sysctl(SYSCTL_HANDLER_ARGS);
194 static int	acpi_cpu_set_cx_lowest(struct acpi_cpu_softc *sc);
195 static int	acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS);
196 static int	acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS);
197 #if defined(__i386__) || defined(__amd64__)
198 static int	acpi_cpu_method_sysctl(SYSCTL_HANDLER_ARGS);
199 #endif
200 
201 static device_method_t acpi_cpu_methods[] = {
202     /* Device interface */
203     DEVMETHOD(device_probe,	acpi_cpu_probe),
204     DEVMETHOD(device_attach,	acpi_cpu_attach),
205     DEVMETHOD(device_detach,	bus_generic_detach),
206     DEVMETHOD(device_shutdown,	acpi_cpu_shutdown),
207     DEVMETHOD(device_suspend,	acpi_cpu_suspend),
208     DEVMETHOD(device_resume,	acpi_cpu_resume),
209 
210     /* Bus interface */
211     DEVMETHOD(bus_add_child,	acpi_cpu_add_child),
212     DEVMETHOD(bus_read_ivar,	acpi_cpu_read_ivar),
213     DEVMETHOD(bus_get_resource_list, acpi_cpu_get_rlist),
214     DEVMETHOD(bus_get_resource,	bus_generic_rl_get_resource),
215     DEVMETHOD(bus_set_resource,	bus_generic_rl_set_resource),
216     DEVMETHOD(bus_alloc_resource, bus_generic_rl_alloc_resource),
217     DEVMETHOD(bus_release_resource, bus_generic_rl_release_resource),
218     DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
219     DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
220     DEVMETHOD(bus_setup_intr,	bus_generic_setup_intr),
221     DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr),
222 
223     DEVMETHOD_END
224 };
225 
226 static driver_t acpi_cpu_driver = {
227     "cpu",
228     acpi_cpu_methods,
229     sizeof(struct acpi_cpu_softc),
230 };
231 
232 static devclass_t acpi_cpu_devclass;
233 DRIVER_MODULE(cpu, acpi, acpi_cpu_driver, acpi_cpu_devclass, 0, 0);
234 MODULE_DEPEND(cpu, acpi, 1, 1, 1);
235 
236 static int
237 acpi_cpu_probe(device_t dev)
238 {
239     static char		   *cpudev_ids[] = { CPUDEV_DEVICE_ID, NULL };
240     int			   acpi_id, cpu_id;
241     ACPI_BUFFER		   buf;
242     ACPI_HANDLE		   handle;
243     ACPI_OBJECT		   *obj;
244     ACPI_STATUS		   status;
245     ACPI_OBJECT_TYPE	   type;
246 
247     if (acpi_disabled("cpu") || acpi_cpu_disabled)
248 	return (ENXIO);
249     type = acpi_get_type(dev);
250     if (type != ACPI_TYPE_PROCESSOR && type != ACPI_TYPE_DEVICE)
251 	return (ENXIO);
252     if (type == ACPI_TYPE_DEVICE &&
253 	ACPI_ID_PROBE(device_get_parent(dev), dev, cpudev_ids, NULL) >= 0)
254 	return (ENXIO);
255 
256     handle = acpi_get_handle(dev);
257     if (cpu_softc == NULL)
258 	cpu_softc = malloc(sizeof(struct acpi_cpu_softc *) *
259 	    (mp_maxid + 1), M_TEMP /* XXX */, M_WAITOK | M_ZERO);
260 
261     if (type == ACPI_TYPE_PROCESSOR) {
262 	/* Get our Processor object. */
263 	buf.Pointer = NULL;
264 	buf.Length = ACPI_ALLOCATE_BUFFER;
265 	status = AcpiEvaluateObject(handle, NULL, NULL, &buf);
266 	if (ACPI_FAILURE(status)) {
267 	    device_printf(dev, "probe failed to get Processor obj - %s\n",
268 		AcpiFormatException(status));
269 	    return (ENXIO);
270 	}
271 	obj = (ACPI_OBJECT *)buf.Pointer;
272 	if (obj->Type != ACPI_TYPE_PROCESSOR) {
273 	    device_printf(dev, "Processor object has bad type %d\n",
274 		obj->Type);
275 	    AcpiOsFree(obj);
276 	    return (ENXIO);
277 	}
278 
279 	/*
280 	 * Find the processor associated with our unit.  We could use the
281 	 * ProcId as a key, however, some boxes do not have the same values
282 	 * in their Processor object as the ProcId values in the MADT.
283 	 */
284 	acpi_id = obj->Processor.ProcId;
285 	AcpiOsFree(obj);
286     } else {
287 	status = acpi_GetInteger(handle, "_UID", &acpi_id);
288 	if (ACPI_FAILURE(status)) {
289 	    device_printf(dev, "Device object has bad value - %s\n",
290 		AcpiFormatException(status));
291 	    return (ENXIO);
292 	}
293     }
294     if (acpi_pcpu_get_id(dev, &acpi_id, &cpu_id) != 0)
295 	return (ENXIO);
296 
297     /*
298      * Check if we already probed this processor.  We scan the bus twice
299      * so it's possible we've already seen this one.
300      */
301     if (cpu_softc[cpu_id] != NULL)
302 	return (ENXIO);
303 
304     /* Mark this processor as in-use and save our derived id for attach. */
305     cpu_softc[cpu_id] = (void *)1;
306     acpi_set_private(dev, (void*)(intptr_t)cpu_id);
307     device_set_desc(dev, "ACPI CPU");
308 
309     if (!bootverbose && device_get_unit(dev) != 0) {
310 	    device_quiet(dev);
311 	    device_quiet_children(dev);
312     }
313 
314     return (0);
315 }
316 
317 static int
318 acpi_cpu_attach(device_t dev)
319 {
320     ACPI_BUFFER		   buf;
321     ACPI_OBJECT		   arg, *obj;
322     ACPI_OBJECT_LIST	   arglist;
323     struct pcpu		   *pcpu_data;
324     struct acpi_cpu_softc *sc;
325     struct acpi_softc	  *acpi_sc;
326     ACPI_STATUS		   status;
327     u_int		   features;
328     int			   cpu_id, drv_count, i;
329     driver_t 		  **drivers;
330     uint32_t		   cap_set[3];
331 
332     /* UUID needed by _OSC evaluation */
333     static uint8_t cpu_oscuuid[16] = { 0x16, 0xA6, 0x77, 0x40, 0x0C, 0x29,
334 				       0xBE, 0x47, 0x9E, 0xBD, 0xD8, 0x70,
335 				       0x58, 0x71, 0x39, 0x53 };
336 
337     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
338 
339     sc = device_get_softc(dev);
340     sc->cpu_dev = dev;
341     sc->cpu_handle = acpi_get_handle(dev);
342     cpu_id = (int)(intptr_t)acpi_get_private(dev);
343     cpu_softc[cpu_id] = sc;
344     pcpu_data = pcpu_find(cpu_id);
345     pcpu_data->pc_device = dev;
346     sc->cpu_pcpu = pcpu_data;
347     cpu_smi_cmd = AcpiGbl_FADT.SmiCommand;
348     cpu_cst_cnt = AcpiGbl_FADT.CstControl;
349 
350     if (acpi_get_type(dev) == ACPI_TYPE_PROCESSOR) {
351 	buf.Pointer = NULL;
352 	buf.Length = ACPI_ALLOCATE_BUFFER;
353 	status = AcpiEvaluateObject(sc->cpu_handle, NULL, NULL, &buf);
354 	if (ACPI_FAILURE(status)) {
355 	    device_printf(dev, "attach failed to get Processor obj - %s\n",
356 		AcpiFormatException(status));
357 	    return (ENXIO);
358 	}
359 	obj = (ACPI_OBJECT *)buf.Pointer;
360 	sc->cpu_p_blk = obj->Processor.PblkAddress;
361 	sc->cpu_p_blk_len = obj->Processor.PblkLength;
362 	sc->cpu_acpi_id = obj->Processor.ProcId;
363 	AcpiOsFree(obj);
364     } else {
365 	KASSERT(acpi_get_type(dev) == ACPI_TYPE_DEVICE,
366 	    ("Unexpected ACPI object"));
367 	status = acpi_GetInteger(sc->cpu_handle, "_UID", &sc->cpu_acpi_id);
368 	if (ACPI_FAILURE(status)) {
369 	    device_printf(dev, "Device object has bad value - %s\n",
370 		AcpiFormatException(status));
371 	    return (ENXIO);
372 	}
373 	sc->cpu_p_blk = 0;
374 	sc->cpu_p_blk_len = 0;
375     }
376     ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu%d: P_BLK at %#x/%d\n",
377 		     device_get_unit(dev), sc->cpu_p_blk, sc->cpu_p_blk_len));
378 
379     /*
380      * If this is the first cpu we attach, create and initialize the generic
381      * resources that will be used by all acpi cpu devices.
382      */
383     if (device_get_unit(dev) == 0) {
384 	/* Assume we won't be using generic Cx mode by default */
385 	cpu_cx_generic = FALSE;
386 
387 	/* Install hw.acpi.cpu sysctl tree */
388 	acpi_sc = acpi_device_get_parent_softc(dev);
389 	sysctl_ctx_init(&cpu_sysctl_ctx);
390 	cpu_sysctl_tree = SYSCTL_ADD_NODE(&cpu_sysctl_ctx,
391 	    SYSCTL_CHILDREN(acpi_sc->acpi_sysctl_tree), OID_AUTO, "cpu",
392 	    CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "node for CPU children");
393     }
394 
395     /*
396      * Before calling any CPU methods, collect child driver feature hints
397      * and notify ACPI of them.  We support unified SMP power control
398      * so advertise this ourselves.  Note this is not the same as independent
399      * SMP control where each CPU can have different settings.
400      */
401     sc->cpu_features = ACPI_CAP_SMP_SAME | ACPI_CAP_SMP_SAME_C3 |
402       ACPI_CAP_C1_IO_HALT;
403 
404 #if defined(__i386__) || defined(__amd64__)
405     /*
406      * Ask for MWAIT modes if not disabled and interrupts work
407      * reasonable with MWAIT.
408      */
409     if (!acpi_disabled("mwait") && cpu_mwait_usable())
410 	sc->cpu_features |= ACPI_CAP_SMP_C1_NATIVE | ACPI_CAP_SMP_C3_NATIVE;
411 #endif
412 
413     if (devclass_get_drivers(acpi_cpu_devclass, &drivers, &drv_count) == 0) {
414 	for (i = 0; i < drv_count; i++) {
415 	    if (ACPI_GET_FEATURES(drivers[i], &features) == 0)
416 		sc->cpu_features |= features;
417 	}
418 	free(drivers, M_TEMP);
419     }
420 
421     /*
422      * CPU capabilities are specified in
423      * Intel Processor Vendor-Specific ACPI Interface Specification.
424      */
425     if (sc->cpu_features) {
426 	cap_set[1] = sc->cpu_features;
427 	status = acpi_EvaluateOSC(sc->cpu_handle, cpu_oscuuid, 1, 2, cap_set,
428 	    cap_set, false);
429 	if (ACPI_SUCCESS(status)) {
430 	    if (cap_set[0] != 0)
431 		device_printf(dev, "_OSC returned status %#x\n", cap_set[0]);
432 	}
433 	else {
434 	    arglist.Pointer = &arg;
435 	    arglist.Count = 1;
436 	    arg.Type = ACPI_TYPE_BUFFER;
437 	    arg.Buffer.Length = sizeof(cap_set);
438 	    arg.Buffer.Pointer = (uint8_t *)cap_set;
439 	    cap_set[0] = 1; /* revision */
440 	    cap_set[1] = 1; /* number of capabilities integers */
441 	    cap_set[2] = sc->cpu_features;
442 	    AcpiEvaluateObject(sc->cpu_handle, "_PDC", &arglist, NULL);
443 	}
444     }
445 
446     /* Probe for Cx state support. */
447     acpi_cpu_cx_probe(sc);
448 
449     return (0);
450 }
451 
452 static void
453 acpi_cpu_postattach(void *unused __unused)
454 {
455     device_t *devices;
456     int err;
457     int i, n;
458     int attached;
459 
460     err = devclass_get_devices(acpi_cpu_devclass, &devices, &n);
461     if (err != 0) {
462 	printf("devclass_get_devices(acpi_cpu_devclass) failed\n");
463 	return;
464     }
465     attached = 0;
466     for (i = 0; i < n; i++)
467 	if (device_is_attached(devices[i]) &&
468 	    device_get_driver(devices[i]) == &acpi_cpu_driver)
469 	    attached = 1;
470     for (i = 0; i < n; i++)
471 	bus_generic_probe(devices[i]);
472     for (i = 0; i < n; i++)
473 	bus_generic_attach(devices[i]);
474     free(devices, M_TEMP);
475 
476     if (attached) {
477 #ifdef EARLY_AP_STARTUP
478 	acpi_cpu_startup(NULL);
479 #else
480 	/* Queue post cpu-probing task handler */
481 	AcpiOsExecute(OSL_NOTIFY_HANDLER, acpi_cpu_startup, NULL);
482 #endif
483     }
484 }
485 
486 SYSINIT(acpi_cpu, SI_SUB_CONFIGURE, SI_ORDER_MIDDLE,
487     acpi_cpu_postattach, NULL);
488 
489 static void
490 disable_idle(struct acpi_cpu_softc *sc)
491 {
492     cpuset_t cpuset;
493 
494     CPU_SETOF(sc->cpu_pcpu->pc_cpuid, &cpuset);
495     sc->cpu_disable_idle = TRUE;
496 
497     /*
498      * Ensure that the CPU is not in idle state or in acpi_cpu_idle().
499      * Note that this code depends on the fact that the rendezvous IPI
500      * can not penetrate context where interrupts are disabled and acpi_cpu_idle
501      * is called and executed in such a context with interrupts being re-enabled
502      * right before return.
503      */
504     smp_rendezvous_cpus(cpuset, smp_no_rendezvous_barrier, NULL,
505 	smp_no_rendezvous_barrier, NULL);
506 }
507 
508 static void
509 enable_idle(struct acpi_cpu_softc *sc)
510 {
511 
512     sc->cpu_disable_idle = FALSE;
513 }
514 
515 #if defined(__i386__) || defined(__amd64__)
516 static int
517 is_idle_disabled(struct acpi_cpu_softc *sc)
518 {
519 
520     return (sc->cpu_disable_idle);
521 }
522 #endif
523 
524 /*
525  * Disable any entry to the idle function during suspend and re-enable it
526  * during resume.
527  */
528 static int
529 acpi_cpu_suspend(device_t dev)
530 {
531     int error;
532 
533     error = bus_generic_suspend(dev);
534     if (error)
535 	return (error);
536     disable_idle(device_get_softc(dev));
537     return (0);
538 }
539 
540 static int
541 acpi_cpu_resume(device_t dev)
542 {
543 
544     enable_idle(device_get_softc(dev));
545     return (bus_generic_resume(dev));
546 }
547 
548 /*
549  * Find the processor associated with a given ACPI ID.  By default,
550  * use the MADT to map ACPI IDs to APIC IDs and use that to locate a
551  * processor.  Some systems have inconsistent ASL and MADT however.
552  * For these systems the cpu_unordered tunable can be set in which
553  * case we assume that Processor objects are listed in the same order
554  * in both the MADT and ASL.
555  */
556 static int
557 acpi_pcpu_get_id(device_t dev, uint32_t *acpi_id, uint32_t *cpu_id)
558 {
559     struct pcpu	*pc;
560     uint32_t	 i, idx;
561 
562     KASSERT(acpi_id != NULL, ("Null acpi_id"));
563     KASSERT(cpu_id != NULL, ("Null cpu_id"));
564     idx = device_get_unit(dev);
565 
566     /*
567      * If pc_acpi_id for CPU 0 is not initialized (e.g. a non-APIC
568      * UP box) use the ACPI ID from the first processor we find.
569      */
570     if (idx == 0 && mp_ncpus == 1) {
571 	pc = pcpu_find(0);
572 	if (pc->pc_acpi_id == 0xffffffff)
573 	    pc->pc_acpi_id = *acpi_id;
574 	*cpu_id = 0;
575 	return (0);
576     }
577 
578     CPU_FOREACH(i) {
579 	pc = pcpu_find(i);
580 	KASSERT(pc != NULL, ("no pcpu data for %d", i));
581 	if (cpu_unordered) {
582 	    if (idx-- == 0) {
583 		/*
584 		 * If pc_acpi_id doesn't match the ACPI ID from the
585 		 * ASL, prefer the MADT-derived value.
586 		 */
587 		if (pc->pc_acpi_id != *acpi_id)
588 		    *acpi_id = pc->pc_acpi_id;
589 		*cpu_id = pc->pc_cpuid;
590 		return (0);
591 	    }
592 	} else {
593 	    if (pc->pc_acpi_id == *acpi_id) {
594 		if (bootverbose)
595 		    device_printf(dev,
596 			"Processor %s (ACPI ID %u) -> APIC ID %d\n",
597 			acpi_name(acpi_get_handle(dev)), *acpi_id,
598 			pc->pc_cpuid);
599 		*cpu_id = pc->pc_cpuid;
600 		return (0);
601 	    }
602 	}
603     }
604 
605     if (bootverbose)
606 	printf("ACPI: Processor %s (ACPI ID %u) ignored\n",
607 	    acpi_name(acpi_get_handle(dev)), *acpi_id);
608 
609     return (ESRCH);
610 }
611 
612 static struct resource_list *
613 acpi_cpu_get_rlist(device_t dev, device_t child)
614 {
615     struct acpi_cpu_device *ad;
616 
617     ad = device_get_ivars(child);
618     if (ad == NULL)
619 	return (NULL);
620     return (&ad->ad_rl);
621 }
622 
623 static device_t
624 acpi_cpu_add_child(device_t dev, u_int order, const char *name, int unit)
625 {
626     struct acpi_cpu_device *ad;
627     device_t child;
628 
629     if ((ad = malloc(sizeof(*ad), M_TEMP, M_NOWAIT | M_ZERO)) == NULL)
630 	return (NULL);
631 
632     resource_list_init(&ad->ad_rl);
633 
634     child = device_add_child_ordered(dev, order, name, unit);
635     if (child != NULL)
636 	device_set_ivars(child, ad);
637     else
638 	free(ad, M_TEMP);
639     return (child);
640 }
641 
642 static int
643 acpi_cpu_read_ivar(device_t dev, device_t child, int index, uintptr_t *result)
644 {
645     struct acpi_cpu_softc *sc;
646 
647     sc = device_get_softc(dev);
648     switch (index) {
649     case ACPI_IVAR_HANDLE:
650 	*result = (uintptr_t)sc->cpu_handle;
651 	break;
652     case CPU_IVAR_PCPU:
653 	*result = (uintptr_t)sc->cpu_pcpu;
654 	break;
655 #if defined(__amd64__) || defined(__i386__)
656     case CPU_IVAR_NOMINAL_MHZ:
657 	if (tsc_is_invariant) {
658 	    *result = (uintptr_t)(atomic_load_acq_64(&tsc_freq) / 1000000);
659 	    break;
660 	}
661 	/* FALLTHROUGH */
662 #endif
663     default:
664 	return (ENOENT);
665     }
666     return (0);
667 }
668 
669 static int
670 acpi_cpu_shutdown(device_t dev)
671 {
672     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
673 
674     /* Allow children to shutdown first. */
675     bus_generic_shutdown(dev);
676 
677     /*
678      * Disable any entry to the idle function.
679      */
680     disable_idle(device_get_softc(dev));
681 
682     /*
683      * CPU devices are not truly detached and remain referenced,
684      * so their resources are not freed.
685      */
686 
687     return_VALUE (0);
688 }
689 
690 static void
691 acpi_cpu_cx_probe(struct acpi_cpu_softc *sc)
692 {
693     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
694 
695     /* Use initial sleep value of 1 sec. to start with lowest idle state. */
696     sc->cpu_prev_sleep = 1000000;
697     sc->cpu_cx_lowest = 0;
698     sc->cpu_cx_lowest_lim = 0;
699 
700     /*
701      * Check for the ACPI 2.0 _CST sleep states object. If we can't find
702      * any, we'll revert to generic FADT/P_BLK Cx control method which will
703      * be handled by acpi_cpu_startup. We need to defer to after having
704      * probed all the cpus in the system before probing for generic Cx
705      * states as we may already have found cpus with valid _CST packages
706      */
707     if (!cpu_cx_generic && acpi_cpu_cx_cst(sc) != 0) {
708 	/*
709 	 * We were unable to find a _CST package for this cpu or there
710 	 * was an error parsing it. Switch back to generic mode.
711 	 */
712 	cpu_cx_generic = TRUE;
713 	if (bootverbose)
714 	    device_printf(sc->cpu_dev, "switching to generic Cx mode\n");
715     }
716 
717     /*
718      * TODO: _CSD Package should be checked here.
719      */
720 }
721 
722 static void
723 acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc)
724 {
725     ACPI_GENERIC_ADDRESS	 gas;
726     struct acpi_cx		*cx_ptr;
727 
728     sc->cpu_cx_count = 0;
729     cx_ptr = sc->cpu_cx_states;
730 
731     /* Use initial sleep value of 1 sec. to start with lowest idle state. */
732     sc->cpu_prev_sleep = 1000000;
733 
734     /* C1 has been required since just after ACPI 1.0 */
735     cx_ptr->type = ACPI_STATE_C1;
736     cx_ptr->trans_lat = 0;
737     cx_ptr++;
738     sc->cpu_non_c2 = sc->cpu_cx_count;
739     sc->cpu_non_c3 = sc->cpu_cx_count;
740     sc->cpu_cx_count++;
741 
742     /*
743      * The spec says P_BLK must be 6 bytes long.  However, some systems
744      * use it to indicate a fractional set of features present so we
745      * take 5 as C2.  Some may also have a value of 7 to indicate
746      * another C3 but most use _CST for this (as required) and having
747      * "only" C1-C3 is not a hardship.
748      */
749     if (sc->cpu_p_blk_len < 5)
750 	return;
751 
752     /* Validate and allocate resources for C2 (P_LVL2). */
753     gas.SpaceId = ACPI_ADR_SPACE_SYSTEM_IO;
754     gas.BitWidth = 8;
755     if (AcpiGbl_FADT.C2Latency <= 100) {
756 	gas.Address = sc->cpu_p_blk + 4;
757 	cx_ptr->res_rid = 0;
758 	acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &cx_ptr->res_rid,
759 	    &gas, &cx_ptr->p_lvlx, RF_SHAREABLE);
760 	if (cx_ptr->p_lvlx != NULL) {
761 	    cx_ptr->type = ACPI_STATE_C2;
762 	    cx_ptr->trans_lat = AcpiGbl_FADT.C2Latency;
763 	    cx_ptr++;
764 	    sc->cpu_non_c3 = sc->cpu_cx_count;
765 	    sc->cpu_cx_count++;
766 	}
767     }
768     if (sc->cpu_p_blk_len < 6)
769 	return;
770 
771     /* Validate and allocate resources for C3 (P_LVL3). */
772     if (AcpiGbl_FADT.C3Latency <= 1000 && !(cpu_quirks & CPU_QUIRK_NO_C3)) {
773 	gas.Address = sc->cpu_p_blk + 5;
774 	cx_ptr->res_rid = 1;
775 	acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &cx_ptr->res_rid,
776 	    &gas, &cx_ptr->p_lvlx, RF_SHAREABLE);
777 	if (cx_ptr->p_lvlx != NULL) {
778 	    cx_ptr->type = ACPI_STATE_C3;
779 	    cx_ptr->trans_lat = AcpiGbl_FADT.C3Latency;
780 	    cx_ptr++;
781 	    sc->cpu_cx_count++;
782 	}
783     }
784 }
785 
786 #if defined(__i386__) || defined(__amd64__)
787 static void
788 acpi_cpu_cx_cst_mwait(struct acpi_cx *cx_ptr, uint64_t address, int accsize)
789 {
790 
791 	cx_ptr->do_mwait = true;
792 	cx_ptr->mwait_hint = address & 0xffffffff;
793 	cx_ptr->mwait_hw_coord = (accsize & CST_FFH_MWAIT_HW_COORD) != 0;
794 	cx_ptr->mwait_bm_avoidance = (accsize & CST_FFH_MWAIT_BM_AVOID) != 0;
795 }
796 #endif
797 
798 static void
799 acpi_cpu_cx_cst_free_plvlx(device_t cpu_dev, struct acpi_cx *cx_ptr)
800 {
801 
802 	if (cx_ptr->p_lvlx == NULL)
803 		return;
804 	bus_release_resource(cpu_dev, cx_ptr->res_type, cx_ptr->res_rid,
805 	    cx_ptr->p_lvlx);
806 	cx_ptr->p_lvlx = NULL;
807 }
808 
809 /*
810  * Parse a _CST package and set up its Cx states.  Since the _CST object
811  * can change dynamically, our notify handler may call this function
812  * to clean up and probe the new _CST package.
813  */
814 static int
815 acpi_cpu_cx_cst(struct acpi_cpu_softc *sc)
816 {
817     struct	 acpi_cx *cx_ptr;
818     ACPI_STATUS	 status;
819     ACPI_BUFFER	 buf;
820     ACPI_OBJECT	*top;
821     ACPI_OBJECT	*pkg;
822     uint32_t	 count;
823     int		 i;
824 #if defined(__i386__) || defined(__amd64__)
825     uint64_t	 address;
826     int		 vendor, class, accsize;
827 #endif
828 
829     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
830 
831     buf.Pointer = NULL;
832     buf.Length = ACPI_ALLOCATE_BUFFER;
833     status = AcpiEvaluateObject(sc->cpu_handle, "_CST", NULL, &buf);
834     if (ACPI_FAILURE(status))
835 	return (ENXIO);
836 
837     /* _CST is a package with a count and at least one Cx package. */
838     top = (ACPI_OBJECT *)buf.Pointer;
839     if (!ACPI_PKG_VALID(top, 2) || acpi_PkgInt32(top, 0, &count) != 0) {
840 	device_printf(sc->cpu_dev, "invalid _CST package\n");
841 	AcpiOsFree(buf.Pointer);
842 	return (ENXIO);
843     }
844     if (count != top->Package.Count - 1) {
845 	device_printf(sc->cpu_dev, "invalid _CST state count (%d != %d)\n",
846 	       count, top->Package.Count - 1);
847 	count = top->Package.Count - 1;
848     }
849     if (count > MAX_CX_STATES) {
850 	device_printf(sc->cpu_dev, "_CST has too many states (%d)\n", count);
851 	count = MAX_CX_STATES;
852     }
853 
854     sc->cpu_non_c2 = 0;
855     sc->cpu_non_c3 = 0;
856     sc->cpu_cx_count = 0;
857     cx_ptr = sc->cpu_cx_states;
858 
859     /*
860      * C1 has been required since just after ACPI 1.0.
861      * Reserve the first slot for it.
862      */
863     cx_ptr->type = ACPI_STATE_C0;
864     cx_ptr++;
865     sc->cpu_cx_count++;
866 
867     /* Set up all valid states. */
868     for (i = 0; i < count; i++) {
869 	pkg = &top->Package.Elements[i + 1];
870 	if (!ACPI_PKG_VALID(pkg, 4) ||
871 	    acpi_PkgInt32(pkg, 1, &cx_ptr->type) != 0 ||
872 	    acpi_PkgInt32(pkg, 2, &cx_ptr->trans_lat) != 0 ||
873 	    acpi_PkgInt32(pkg, 3, &cx_ptr->power) != 0) {
874 	    device_printf(sc->cpu_dev, "skipping invalid Cx state package\n");
875 	    continue;
876 	}
877 
878 	/* Validate the state to see if we should use it. */
879 	switch (cx_ptr->type) {
880 	case ACPI_STATE_C1:
881 	    acpi_cpu_cx_cst_free_plvlx(sc->cpu_dev, cx_ptr);
882 #if defined(__i386__) || defined(__amd64__)
883 	    if (acpi_PkgFFH_IntelCpu(pkg, 0, &vendor, &class, &address,
884 	      &accsize) == 0 && vendor == CST_FFH_VENDOR_INTEL) {
885 		if (class == CST_FFH_INTEL_CL_C1IO) {
886 		    /* C1 I/O then Halt */
887 		    cx_ptr->res_rid = sc->cpu_cx_count;
888 		    bus_set_resource(sc->cpu_dev, SYS_RES_IOPORT,
889 		      cx_ptr->res_rid, address, 1);
890 		    cx_ptr->p_lvlx = bus_alloc_resource_any(sc->cpu_dev,
891 		      SYS_RES_IOPORT, &cx_ptr->res_rid, RF_ACTIVE |
892 		      RF_SHAREABLE);
893 		    if (cx_ptr->p_lvlx == NULL) {
894 			bus_delete_resource(sc->cpu_dev, SYS_RES_IOPORT,
895 			  cx_ptr->res_rid);
896 			device_printf(sc->cpu_dev,
897 			  "C1 I/O failed to allocate port %d, "
898 			  "degrading to C1 Halt", (int)address);
899 		    }
900 		} else if (class == CST_FFH_INTEL_CL_MWAIT) {
901 		    acpi_cpu_cx_cst_mwait(cx_ptr, address, accsize);
902 		}
903 	    }
904 #endif
905 	    if (sc->cpu_cx_states[0].type == ACPI_STATE_C0) {
906 		/* This is the first C1 state.  Use the reserved slot. */
907 		sc->cpu_cx_states[0] = *cx_ptr;
908 	    } else {
909 		sc->cpu_non_c2 = sc->cpu_cx_count;
910 		sc->cpu_non_c3 = sc->cpu_cx_count;
911 		cx_ptr++;
912 		sc->cpu_cx_count++;
913 	    }
914 	    continue;
915 	case ACPI_STATE_C2:
916 	    sc->cpu_non_c3 = sc->cpu_cx_count;
917 	    break;
918 	case ACPI_STATE_C3:
919 	default:
920 	    if ((cpu_quirks & CPU_QUIRK_NO_C3) != 0) {
921 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
922 				 "acpi_cpu%d: C3[%d] not available.\n",
923 				 device_get_unit(sc->cpu_dev), i));
924 		continue;
925 	    }
926 	    break;
927 	}
928 
929 	/* Free up any previous register. */
930 	acpi_cpu_cx_cst_free_plvlx(sc->cpu_dev, cx_ptr);
931 
932 	/* Allocate the control register for C2 or C3. */
933 #if defined(__i386__) || defined(__amd64__)
934 	if (acpi_PkgFFH_IntelCpu(pkg, 0, &vendor, &class, &address,
935 	  &accsize) == 0 && vendor == CST_FFH_VENDOR_INTEL &&
936 	  class == CST_FFH_INTEL_CL_MWAIT) {
937 	    /* Native C State Instruction use (mwait) */
938 	    acpi_cpu_cx_cst_mwait(cx_ptr, address, accsize);
939 	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
940 	      "acpi_cpu%d: Got C%d/mwait - %d latency\n",
941 	      device_get_unit(sc->cpu_dev), cx_ptr->type, cx_ptr->trans_lat));
942 	    cx_ptr++;
943 	    sc->cpu_cx_count++;
944 	} else
945 #endif
946 	{
947 	    cx_ptr->res_rid = sc->cpu_cx_count;
948 	    acpi_PkgGas(sc->cpu_dev, pkg, 0, &cx_ptr->res_type,
949 		&cx_ptr->res_rid, &cx_ptr->p_lvlx, RF_SHAREABLE);
950 	    if (cx_ptr->p_lvlx) {
951 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
952 		     "acpi_cpu%d: Got C%d - %d latency\n",
953 		     device_get_unit(sc->cpu_dev), cx_ptr->type,
954 		     cx_ptr->trans_lat));
955 		cx_ptr++;
956 		sc->cpu_cx_count++;
957 	    }
958 	}
959     }
960     AcpiOsFree(buf.Pointer);
961 
962     /* If C1 state was not found, we need one now. */
963     cx_ptr = sc->cpu_cx_states;
964     if (cx_ptr->type == ACPI_STATE_C0) {
965 	cx_ptr->type = ACPI_STATE_C1;
966 	cx_ptr->trans_lat = 0;
967     }
968 
969     return (0);
970 }
971 
972 /*
973  * Call this *after* all CPUs have been attached.
974  */
975 static void
976 acpi_cpu_startup(void *arg)
977 {
978     struct acpi_cpu_softc *sc;
979     int i;
980 
981     /* Get set of CPU devices */
982     devclass_get_devices(acpi_cpu_devclass, &cpu_devices, &cpu_ndevices);
983 
984     /*
985      * Setup any quirks that might necessary now that we have probed
986      * all the CPUs
987      */
988     acpi_cpu_quirks();
989 
990     if (cpu_cx_generic) {
991 	/*
992 	 * We are using generic Cx mode, probe for available Cx states
993 	 * for all processors.
994 	 */
995 	for (i = 0; i < cpu_ndevices; i++) {
996 	    sc = device_get_softc(cpu_devices[i]);
997 	    acpi_cpu_generic_cx_probe(sc);
998 	}
999     } else {
1000 	/*
1001 	 * We are using _CST mode, remove C3 state if necessary.
1002 	 * As we now know for sure that we will be using _CST mode
1003 	 * install our notify handler.
1004 	 */
1005 	for (i = 0; i < cpu_ndevices; i++) {
1006 	    sc = device_get_softc(cpu_devices[i]);
1007 	    if (cpu_quirks & CPU_QUIRK_NO_C3) {
1008 		sc->cpu_cx_count = min(sc->cpu_cx_count, sc->cpu_non_c3 + 1);
1009 	    }
1010 	    AcpiInstallNotifyHandler(sc->cpu_handle, ACPI_DEVICE_NOTIFY,
1011 		acpi_cpu_notify, sc);
1012 	}
1013     }
1014 
1015     /* Perform Cx final initialization. */
1016     for (i = 0; i < cpu_ndevices; i++) {
1017 	sc = device_get_softc(cpu_devices[i]);
1018 	acpi_cpu_startup_cx(sc);
1019     }
1020 
1021     /* Add a sysctl handler to handle global Cx lowest setting */
1022     SYSCTL_ADD_PROC(&cpu_sysctl_ctx, SYSCTL_CHILDREN(cpu_sysctl_tree),
1023 	OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
1024 	NULL, 0, acpi_cpu_global_cx_lowest_sysctl, "A",
1025 	"Global lowest Cx sleep state to use");
1026 
1027     /* Take over idling from cpu_idle_default(). */
1028     cpu_cx_lowest_lim = 0;
1029     for (i = 0; i < cpu_ndevices; i++) {
1030 	sc = device_get_softc(cpu_devices[i]);
1031 	enable_idle(sc);
1032     }
1033 #if defined(__i386__) || defined(__amd64__)
1034     cpu_idle_hook = acpi_cpu_idle;
1035 #endif
1036 }
1037 
1038 static void
1039 acpi_cpu_cx_list(struct acpi_cpu_softc *sc)
1040 {
1041     struct sbuf sb;
1042     int i;
1043 
1044     /*
1045      * Set up the list of Cx states
1046      */
1047     sbuf_new(&sb, sc->cpu_cx_supported, sizeof(sc->cpu_cx_supported),
1048 	SBUF_FIXEDLEN);
1049     for (i = 0; i < sc->cpu_cx_count; i++)
1050 	sbuf_printf(&sb, "C%d/%d/%d ", i + 1, sc->cpu_cx_states[i].type,
1051 	    sc->cpu_cx_states[i].trans_lat);
1052     sbuf_trim(&sb);
1053     sbuf_finish(&sb);
1054 }
1055 
1056 static void
1057 acpi_cpu_startup_cx(struct acpi_cpu_softc *sc)
1058 {
1059     acpi_cpu_cx_list(sc);
1060 
1061     SYSCTL_ADD_STRING(&sc->cpu_sysctl_ctx,
1062 		      SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
1063 		      OID_AUTO, "cx_supported", CTLFLAG_RD,
1064 		      sc->cpu_cx_supported, 0,
1065 		      "Cx/microsecond values for supported Cx states");
1066     SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
1067         SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)), OID_AUTO,
1068 	"cx_lowest", CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
1069 	(void *)sc, 0, acpi_cpu_cx_lowest_sysctl, "A",
1070 	"lowest Cx sleep state to use");
1071     SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
1072         SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)), OID_AUTO,
1073 	"cx_usage", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
1074 	(void *)sc, 0, acpi_cpu_usage_sysctl, "A",
1075 	"percent usage for each Cx state");
1076     SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
1077         SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)), OID_AUTO,
1078 	"cx_usage_counters", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
1079 	(void *)sc, 0, acpi_cpu_usage_counters_sysctl, "A",
1080 	"Cx sleep state counters");
1081 #if defined(__i386__) || defined(__amd64__)
1082     SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
1083         SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)), OID_AUTO,
1084 	"cx_method", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
1085 	(void *)sc, 0, acpi_cpu_method_sysctl, "A", "Cx entrance methods");
1086 #endif
1087 
1088     /* Signal platform that we can handle _CST notification. */
1089     if (!cpu_cx_generic && cpu_cst_cnt != 0) {
1090 	ACPI_LOCK(acpi);
1091 	AcpiOsWritePort(cpu_smi_cmd, cpu_cst_cnt, 8);
1092 	ACPI_UNLOCK(acpi);
1093     }
1094 }
1095 
1096 #if defined(__i386__) || defined(__amd64__)
1097 /*
1098  * Idle the CPU in the lowest state possible.  This function is called with
1099  * interrupts disabled.  Note that once it re-enables interrupts, a task
1100  * switch can occur so do not access shared data (i.e. the softc) after
1101  * interrupts are re-enabled.
1102  */
1103 static void
1104 acpi_cpu_idle(sbintime_t sbt)
1105 {
1106     struct	acpi_cpu_softc *sc;
1107     struct	acpi_cx *cx_next;
1108     uint64_t	start_ticks, end_ticks;
1109     uint32_t	start_time, end_time;
1110     ACPI_STATUS	status;
1111     int		bm_active, cx_next_idx, i, us;
1112 
1113     /*
1114      * Look up our CPU id to get our softc.  If it's NULL, we'll use C1
1115      * since there is no ACPI processor object for this CPU.  This occurs
1116      * for logical CPUs in the HTT case.
1117      */
1118     sc = cpu_softc[PCPU_GET(cpuid)];
1119     if (sc == NULL) {
1120 	acpi_cpu_c1();
1121 	return;
1122     }
1123 
1124     /* If disabled, take the safe path. */
1125     if (is_idle_disabled(sc)) {
1126 	acpi_cpu_c1();
1127 	return;
1128     }
1129 
1130     /* Find the lowest state that has small enough latency. */
1131     us = sc->cpu_prev_sleep;
1132     if (sbt >= 0 && us > (sbt >> 12))
1133 	us = (sbt >> 12);
1134     cx_next_idx = 0;
1135     if (cpu_disable_c2_sleep)
1136 	i = min(sc->cpu_cx_lowest, sc->cpu_non_c2);
1137     else if (cpu_disable_c3_sleep)
1138 	i = min(sc->cpu_cx_lowest, sc->cpu_non_c3);
1139     else
1140 	i = sc->cpu_cx_lowest;
1141     for (; i >= 0; i--) {
1142 	if (sc->cpu_cx_states[i].trans_lat * 3 <= us) {
1143 	    cx_next_idx = i;
1144 	    break;
1145 	}
1146     }
1147 
1148     /*
1149      * Check for bus master activity.  If there was activity, clear
1150      * the bit and use the lowest non-C3 state.  Note that the USB
1151      * driver polling for new devices keeps this bit set all the
1152      * time if USB is loaded.
1153      */
1154     cx_next = &sc->cpu_cx_states[cx_next_idx];
1155     if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0 &&
1156 	cx_next_idx > sc->cpu_non_c3 &&
1157 	(!cx_next->do_mwait || cx_next->mwait_bm_avoidance)) {
1158 	status = AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, &bm_active);
1159 	if (ACPI_SUCCESS(status) && bm_active != 0) {
1160 	    AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, 1);
1161 	    cx_next_idx = sc->cpu_non_c3;
1162 	    cx_next = &sc->cpu_cx_states[cx_next_idx];
1163 	}
1164     }
1165 
1166     /* Select the next state and update statistics. */
1167     sc->cpu_cx_stats[cx_next_idx]++;
1168     KASSERT(cx_next->type != ACPI_STATE_C0, ("acpi_cpu_idle: C0 sleep"));
1169 
1170     /*
1171      * Execute HLT (or equivalent) and wait for an interrupt.  We can't
1172      * precisely calculate the time spent in C1 since the place we wake up
1173      * is an ISR.  Assume we slept no more then half of quantum, unless
1174      * we are called inside critical section, delaying context switch.
1175      */
1176     if (cx_next->type == ACPI_STATE_C1) {
1177 	start_ticks = cpu_ticks();
1178 	if (cx_next->p_lvlx != NULL) {
1179 	    /* C1 I/O then Halt */
1180 	    CPU_GET_REG(cx_next->p_lvlx, 1);
1181 	}
1182 	if (cx_next->do_mwait)
1183 	    acpi_cpu_idle_mwait(cx_next->mwait_hint);
1184 	else
1185 	    acpi_cpu_c1();
1186 	end_ticks = cpu_ticks();
1187 	/* acpi_cpu_c1() returns with interrupts enabled. */
1188 	if (cx_next->do_mwait)
1189 	    ACPI_ENABLE_IRQS();
1190 	end_time = ((end_ticks - start_ticks) << 20) / cpu_tickrate();
1191 	if (!cx_next->do_mwait && curthread->td_critnest == 0)
1192 		end_time = min(end_time, 500000 / hz);
1193 	sc->cpu_prev_sleep = (sc->cpu_prev_sleep * 3 + end_time) / 4;
1194 	return;
1195     }
1196 
1197     /*
1198      * For C3, disable bus master arbitration and enable bus master wake
1199      * if BM control is available, otherwise flush the CPU cache.
1200      */
1201     if (cx_next->type == ACPI_STATE_C3) {
1202 	if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
1203 	    AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 1);
1204 	    AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 1);
1205 	} else
1206 	    ACPI_FLUSH_CPU_CACHE();
1207     }
1208 
1209     /*
1210      * Read from P_LVLx to enter C2(+), checking time spent asleep.
1211      * Use the ACPI timer for measuring sleep time.  Since we need to
1212      * get the time very close to the CPU start/stop clock logic, this
1213      * is the only reliable time source.
1214      */
1215     if (cx_next->type == ACPI_STATE_C3) {
1216 	AcpiGetTimer(&start_time);
1217 	start_ticks = 0;
1218     } else {
1219 	start_time = 0;
1220 	start_ticks = cpu_ticks();
1221     }
1222     if (cx_next->do_mwait) {
1223 	acpi_cpu_idle_mwait(cx_next->mwait_hint);
1224     } else {
1225 	CPU_GET_REG(cx_next->p_lvlx, 1);
1226 	/*
1227 	 * Read the end time twice.  Since it may take an arbitrary time
1228 	 * to enter the idle state, the first read may be executed before
1229 	 * the processor has stopped.  Doing it again provides enough
1230 	 * margin that we are certain to have a correct value.
1231 	 */
1232 	AcpiGetTimer(&end_time);
1233     }
1234 
1235     if (cx_next->type == ACPI_STATE_C3)
1236 	AcpiGetTimer(&end_time);
1237     else
1238 	end_ticks = cpu_ticks();
1239 
1240     /* Enable bus master arbitration and disable bus master wakeup. */
1241     if (cx_next->type == ACPI_STATE_C3 &&
1242       (cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
1243 	AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 0);
1244 	AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0);
1245     }
1246     ACPI_ENABLE_IRQS();
1247 
1248     if (cx_next->type == ACPI_STATE_C3)
1249 	AcpiGetTimerDuration(start_time, end_time, &end_time);
1250     else
1251 	end_time = ((end_ticks - start_ticks) << 20) / cpu_tickrate();
1252     sc->cpu_prev_sleep = (sc->cpu_prev_sleep * 3 + end_time) / 4;
1253 }
1254 #endif
1255 
1256 /*
1257  * Re-evaluate the _CST object when we are notified that it changed.
1258  */
1259 static void
1260 acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context)
1261 {
1262     struct acpi_cpu_softc *sc = (struct acpi_cpu_softc *)context;
1263 
1264     if (notify != ACPI_NOTIFY_CX_STATES)
1265 	return;
1266 
1267     /*
1268      * C-state data for target CPU is going to be in flux while we execute
1269      * acpi_cpu_cx_cst, so disable entering acpi_cpu_idle.
1270      * Also, it may happen that multiple ACPI taskqueues may concurrently
1271      * execute notifications for the same CPU.  ACPI_SERIAL is used to
1272      * protect against that.
1273      */
1274     ACPI_SERIAL_BEGIN(cpu);
1275     disable_idle(sc);
1276 
1277     /* Update the list of Cx states. */
1278     acpi_cpu_cx_cst(sc);
1279     acpi_cpu_cx_list(sc);
1280     acpi_cpu_set_cx_lowest(sc);
1281 
1282     enable_idle(sc);
1283     ACPI_SERIAL_END(cpu);
1284 
1285     acpi_UserNotify("PROCESSOR", sc->cpu_handle, notify);
1286 }
1287 
1288 static void
1289 acpi_cpu_quirks(void)
1290 {
1291     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
1292 
1293     /*
1294      * Bus mastering arbitration control is needed to keep caches coherent
1295      * while sleeping in C3.  If it's not present but a working flush cache
1296      * instruction is present, flush the caches before entering C3 instead.
1297      * Otherwise, just disable C3 completely.
1298      */
1299     if (AcpiGbl_FADT.Pm2ControlBlock == 0 ||
1300 	AcpiGbl_FADT.Pm2ControlLength == 0) {
1301 	if ((AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD) &&
1302 	    (AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD_FLUSH) == 0) {
1303 	    cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
1304 	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1305 		"acpi_cpu: no BM control, using flush cache method\n"));
1306 	} else {
1307 	    cpu_quirks |= CPU_QUIRK_NO_C3;
1308 	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1309 		"acpi_cpu: no BM control, C3 not available\n"));
1310 	}
1311     }
1312 
1313     /*
1314      * If we are using generic Cx mode, C3 on multiple CPUs requires using
1315      * the expensive flush cache instruction.
1316      */
1317     if (cpu_cx_generic && mp_ncpus > 1) {
1318 	cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
1319 	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1320 	    "acpi_cpu: SMP, using flush cache mode for C3\n"));
1321     }
1322 
1323     /* Look for various quirks of the PIIX4 part. */
1324     acpi_cpu_quirks_piix4();
1325 }
1326 
1327 static void
1328 acpi_cpu_quirks_piix4(void)
1329 {
1330 #ifdef __i386__
1331     device_t acpi_dev;
1332     uint32_t val;
1333     ACPI_STATUS status;
1334 
1335     acpi_dev = pci_find_device(PCI_VENDOR_INTEL, PCI_DEVICE_82371AB_3);
1336     if (acpi_dev != NULL) {
1337 	switch (pci_get_revid(acpi_dev)) {
1338 	/*
1339 	 * Disable C3 support for all PIIX4 chipsets.  Some of these parts
1340 	 * do not report the BMIDE status to the BM status register and
1341 	 * others have a livelock bug if Type-F DMA is enabled.  Linux
1342 	 * works around the BMIDE bug by reading the BM status directly
1343 	 * but we take the simpler approach of disabling C3 for these
1344 	 * parts.
1345 	 *
1346 	 * See erratum #18 ("C3 Power State/BMIDE and Type-F DMA
1347 	 * Livelock") from the January 2002 PIIX4 specification update.
1348 	 * Applies to all PIIX4 models.
1349 	 *
1350 	 * Also, make sure that all interrupts cause a "Stop Break"
1351 	 * event to exit from C2 state.
1352 	 * Also, BRLD_EN_BM (ACPI_BITREG_BUS_MASTER_RLD in ACPI-speak)
1353 	 * should be set to zero, otherwise it causes C2 to short-sleep.
1354 	 * PIIX4 doesn't properly support C3 and bus master activity
1355 	 * need not break out of C2.
1356 	 */
1357 	case PCI_REVISION_A_STEP:
1358 	case PCI_REVISION_B_STEP:
1359 	case PCI_REVISION_4E:
1360 	case PCI_REVISION_4M:
1361 	    cpu_quirks |= CPU_QUIRK_NO_C3;
1362 	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1363 		"acpi_cpu: working around PIIX4 bug, disabling C3\n"));
1364 
1365 	    val = pci_read_config(acpi_dev, PIIX4_DEVACTB_REG, 4);
1366 	    if ((val & PIIX4_STOP_BREAK_MASK) != PIIX4_STOP_BREAK_MASK) {
1367 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1368 		    "acpi_cpu: PIIX4: enabling IRQs to generate Stop Break\n"));
1369 	    	val |= PIIX4_STOP_BREAK_MASK;
1370 		pci_write_config(acpi_dev, PIIX4_DEVACTB_REG, val, 4);
1371 	    }
1372 	    status = AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_RLD, &val);
1373 	    if (ACPI_SUCCESS(status) && val != 0) {
1374 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1375 		    "acpi_cpu: PIIX4: reset BRLD_EN_BM\n"));
1376 		AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0);
1377 	    }
1378 	    break;
1379 	default:
1380 	    break;
1381 	}
1382     }
1383 #endif
1384 }
1385 
1386 static int
1387 acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS)
1388 {
1389     struct acpi_cpu_softc *sc;
1390     struct sbuf	 sb;
1391     char	 buf[128];
1392     int		 i;
1393     uintmax_t	 fract, sum, whole;
1394 
1395     sc = (struct acpi_cpu_softc *) arg1;
1396     sum = 0;
1397     for (i = 0; i < sc->cpu_cx_count; i++)
1398 	sum += sc->cpu_cx_stats[i];
1399     sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
1400     for (i = 0; i < sc->cpu_cx_count; i++) {
1401 	if (sum > 0) {
1402 	    whole = (uintmax_t)sc->cpu_cx_stats[i] * 100;
1403 	    fract = (whole % sum) * 100;
1404 	    sbuf_printf(&sb, "%u.%02u%% ", (u_int)(whole / sum),
1405 		(u_int)(fract / sum));
1406 	} else
1407 	    sbuf_printf(&sb, "0.00%% ");
1408     }
1409     sbuf_printf(&sb, "last %dus", sc->cpu_prev_sleep);
1410     sbuf_trim(&sb);
1411     sbuf_finish(&sb);
1412     sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
1413     sbuf_delete(&sb);
1414 
1415     return (0);
1416 }
1417 
1418 /*
1419  * XXX TODO: actually add support to count each entry/exit
1420  * from the Cx states.
1421  */
1422 static int
1423 acpi_cpu_usage_counters_sysctl(SYSCTL_HANDLER_ARGS)
1424 {
1425     struct acpi_cpu_softc *sc;
1426     struct sbuf	 sb;
1427     char	 buf[128];
1428     int		 i;
1429 
1430     sc = (struct acpi_cpu_softc *) arg1;
1431 
1432     /* Print out the raw counters */
1433     sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
1434 
1435     for (i = 0; i < sc->cpu_cx_count; i++) {
1436         sbuf_printf(&sb, "%u ", sc->cpu_cx_stats[i]);
1437     }
1438 
1439     sbuf_trim(&sb);
1440     sbuf_finish(&sb);
1441     sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
1442     sbuf_delete(&sb);
1443 
1444     return (0);
1445 }
1446 
1447 #if defined(__i386__) || defined(__amd64__)
1448 static int
1449 acpi_cpu_method_sysctl(SYSCTL_HANDLER_ARGS)
1450 {
1451 	struct acpi_cpu_softc *sc;
1452 	struct acpi_cx *cx;
1453 	struct sbuf sb;
1454 	char buf[128];
1455 	int i;
1456 
1457 	sc = (struct acpi_cpu_softc *)arg1;
1458 	sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
1459 	for (i = 0; i < sc->cpu_cx_count; i++) {
1460 		cx = &sc->cpu_cx_states[i];
1461 		sbuf_printf(&sb, "C%d/", i + 1);
1462 		if (cx->do_mwait) {
1463 			sbuf_cat(&sb, "mwait");
1464 			if (cx->mwait_hw_coord)
1465 				sbuf_cat(&sb, "/hwc");
1466 			if (cx->mwait_bm_avoidance)
1467 				sbuf_cat(&sb, "/bma");
1468 		} else if (cx->type == ACPI_STATE_C1) {
1469 			sbuf_cat(&sb, "hlt");
1470 		} else {
1471 			sbuf_cat(&sb, "io");
1472 		}
1473 		if (cx->type == ACPI_STATE_C1 && cx->p_lvlx != NULL)
1474 			sbuf_cat(&sb, "/iohlt");
1475 		sbuf_putc(&sb, ' ');
1476 	}
1477 	sbuf_trim(&sb);
1478 	sbuf_finish(&sb);
1479 	sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
1480 	sbuf_delete(&sb);
1481 	return (0);
1482 }
1483 #endif
1484 
1485 static int
1486 acpi_cpu_set_cx_lowest(struct acpi_cpu_softc *sc)
1487 {
1488     int i;
1489 
1490     ACPI_SERIAL_ASSERT(cpu);
1491     sc->cpu_cx_lowest = min(sc->cpu_cx_lowest_lim, sc->cpu_cx_count - 1);
1492 
1493     /* If not disabling, cache the new lowest non-C3 state. */
1494     sc->cpu_non_c3 = 0;
1495     for (i = sc->cpu_cx_lowest; i >= 0; i--) {
1496 	if (sc->cpu_cx_states[i].type < ACPI_STATE_C3) {
1497 	    sc->cpu_non_c3 = i;
1498 	    break;
1499 	}
1500     }
1501 
1502     /* Reset the statistics counters. */
1503     bzero(sc->cpu_cx_stats, sizeof(sc->cpu_cx_stats));
1504     return (0);
1505 }
1506 
1507 static int
1508 acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)
1509 {
1510     struct	 acpi_cpu_softc *sc;
1511     char	 state[8];
1512     int		 val, error;
1513 
1514     sc = (struct acpi_cpu_softc *) arg1;
1515     snprintf(state, sizeof(state), "C%d", sc->cpu_cx_lowest_lim + 1);
1516     error = sysctl_handle_string(oidp, state, sizeof(state), req);
1517     if (error != 0 || req->newptr == NULL)
1518 	return (error);
1519     if (strlen(state) < 2 || toupper(state[0]) != 'C')
1520 	return (EINVAL);
1521     if (strcasecmp(state, "Cmax") == 0)
1522 	val = MAX_CX_STATES;
1523     else {
1524 	val = (int) strtol(state + 1, NULL, 10);
1525 	if (val < 1 || val > MAX_CX_STATES)
1526 	    return (EINVAL);
1527     }
1528 
1529     ACPI_SERIAL_BEGIN(cpu);
1530     sc->cpu_cx_lowest_lim = val - 1;
1531     acpi_cpu_set_cx_lowest(sc);
1532     ACPI_SERIAL_END(cpu);
1533 
1534     return (0);
1535 }
1536 
1537 static int
1538 acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)
1539 {
1540     struct	acpi_cpu_softc *sc;
1541     char	state[8];
1542     int		val, error, i;
1543 
1544     snprintf(state, sizeof(state), "C%d", cpu_cx_lowest_lim + 1);
1545     error = sysctl_handle_string(oidp, state, sizeof(state), req);
1546     if (error != 0 || req->newptr == NULL)
1547 	return (error);
1548     if (strlen(state) < 2 || toupper(state[0]) != 'C')
1549 	return (EINVAL);
1550     if (strcasecmp(state, "Cmax") == 0)
1551 	val = MAX_CX_STATES;
1552     else {
1553 	val = (int) strtol(state + 1, NULL, 10);
1554 	if (val < 1 || val > MAX_CX_STATES)
1555 	    return (EINVAL);
1556     }
1557 
1558     /* Update the new lowest useable Cx state for all CPUs. */
1559     ACPI_SERIAL_BEGIN(cpu);
1560     cpu_cx_lowest_lim = val - 1;
1561     for (i = 0; i < cpu_ndevices; i++) {
1562 	sc = device_get_softc(cpu_devices[i]);
1563 	sc->cpu_cx_lowest_lim = cpu_cx_lowest_lim;
1564 	acpi_cpu_set_cx_lowest(sc);
1565     }
1566     ACPI_SERIAL_END(cpu);
1567 
1568     return (0);
1569 }
1570