1 /*- 2 * Copyright (c) 2003-2005 Nate Lawson (SDG) 3 * Copyright (c) 2001 Michael Smith 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 #include "opt_acpi.h" 30 #include <sys/param.h> 31 #include <sys/bus.h> 32 #include <sys/cpu.h> 33 #include <sys/kernel.h> 34 #include <sys/malloc.h> 35 #include <sys/module.h> 36 #include <sys/pcpu.h> 37 #include <sys/power.h> 38 #include <sys/proc.h> 39 #include <sys/sched.h> 40 #include <sys/sbuf.h> 41 #include <sys/smp.h> 42 43 #include <dev/pci/pcivar.h> 44 #include <machine/atomic.h> 45 #include <machine/bus.h> 46 #if defined(__amd64__) || defined(__i386__) 47 #include <machine/clock.h> 48 #include <machine/specialreg.h> 49 #include <machine/md_var.h> 50 #endif 51 #include <sys/rman.h> 52 53 #include <contrib/dev/acpica/include/acpi.h> 54 #include <contrib/dev/acpica/include/accommon.h> 55 56 #include <dev/acpica/acpivar.h> 57 58 /* 59 * Support for ACPI Processor devices, including C[1-3] sleep states. 60 */ 61 62 /* Hooks for the ACPI CA debugging infrastructure */ 63 #define _COMPONENT ACPI_PROCESSOR 64 ACPI_MODULE_NAME("PROCESSOR") 65 66 struct acpi_cx { 67 struct resource *p_lvlx; /* Register to read to enter state. */ 68 uint32_t type; /* C1-3 (C4 and up treated as C3). */ 69 uint32_t trans_lat; /* Transition latency (usec). */ 70 uint32_t power; /* Power consumed (mW). */ 71 int res_type; /* Resource type for p_lvlx. */ 72 int res_rid; /* Resource ID for p_lvlx. */ 73 bool do_mwait; 74 uint32_t mwait_hint; 75 bool mwait_hw_coord; 76 bool mwait_bm_avoidance; 77 }; 78 #define MAX_CX_STATES 8 79 80 struct acpi_cpu_softc { 81 device_t cpu_dev; 82 ACPI_HANDLE cpu_handle; 83 struct pcpu *cpu_pcpu; 84 uint32_t cpu_acpi_id; /* ACPI processor id */ 85 uint32_t cpu_p_blk; /* ACPI P_BLK location */ 86 uint32_t cpu_p_blk_len; /* P_BLK length (must be 6). */ 87 struct acpi_cx cpu_cx_states[MAX_CX_STATES]; 88 int cpu_cx_count; /* Number of valid Cx states. */ 89 int cpu_prev_sleep;/* Last idle sleep duration. */ 90 int cpu_features; /* Child driver supported features. */ 91 /* Runtime state. */ 92 int cpu_non_c2; /* Index of lowest non-C2 state. */ 93 int cpu_non_c3; /* Index of lowest non-C3 state. */ 94 u_int cpu_cx_stats[MAX_CX_STATES];/* Cx usage history. */ 95 /* Values for sysctl. */ 96 struct sysctl_ctx_list cpu_sysctl_ctx; 97 struct sysctl_oid *cpu_sysctl_tree; 98 int cpu_cx_lowest; 99 int cpu_cx_lowest_lim; 100 int cpu_disable_idle; /* Disable entry to idle function */ 101 char cpu_cx_supported[64]; 102 }; 103 104 struct acpi_cpu_device { 105 struct resource_list ad_rl; 106 }; 107 108 #define CPU_GET_REG(reg, width) \ 109 (bus_space_read_ ## width(rman_get_bustag((reg)), \ 110 rman_get_bushandle((reg)), 0)) 111 #define CPU_SET_REG(reg, width, val) \ 112 (bus_space_write_ ## width(rman_get_bustag((reg)), \ 113 rman_get_bushandle((reg)), 0, (val))) 114 115 #define ACPI_NOTIFY_CX_STATES 0x81 /* _CST changed. */ 116 117 #define CPU_QUIRK_NO_C3 (1<<0) /* C3-type states are not usable. */ 118 #define CPU_QUIRK_NO_BM_CTRL (1<<2) /* No bus mastering control. */ 119 120 #define PCI_VENDOR_INTEL 0x8086 121 #define PCI_DEVICE_82371AB_3 0x7113 /* PIIX4 chipset for quirks. */ 122 #define PCI_REVISION_A_STEP 0 123 #define PCI_REVISION_B_STEP 1 124 #define PCI_REVISION_4E 2 125 #define PCI_REVISION_4M 3 126 #define PIIX4_DEVACTB_REG 0x58 127 #define PIIX4_BRLD_EN_IRQ0 (1<<0) 128 #define PIIX4_BRLD_EN_IRQ (1<<1) 129 #define PIIX4_BRLD_EN_IRQ8 (1<<5) 130 #define PIIX4_STOP_BREAK_MASK (PIIX4_BRLD_EN_IRQ0 | PIIX4_BRLD_EN_IRQ | PIIX4_BRLD_EN_IRQ8) 131 #define PIIX4_PCNTRL_BST_EN (1<<10) 132 133 #define CST_FFH_VENDOR_INTEL 1 134 #define CST_FFH_VENDOR_AMD 2 135 #define CST_FFH_INTEL_CL_C1IO 1 136 #define CST_FFH_INTEL_CL_MWAIT 2 137 #define CST_FFH_MWAIT_HW_COORD 0x0001 138 #define CST_FFH_MWAIT_BM_AVOID 0x0002 139 140 #define CPUDEV_DEVICE_ID "ACPI0007" 141 142 /* Knob to disable acpi_cpu devices */ 143 bool acpi_cpu_disabled = false; 144 145 /* Platform hardware resource information. */ 146 static uint32_t cpu_smi_cmd; /* Value to write to SMI_CMD. */ 147 static uint8_t cpu_cst_cnt; /* Indicate we are _CST aware. */ 148 static int cpu_quirks; /* Indicate any hardware bugs. */ 149 150 /* Values for sysctl. */ 151 static struct sysctl_ctx_list cpu_sysctl_ctx; 152 static struct sysctl_oid *cpu_sysctl_tree; 153 static int cpu_cx_generic; 154 static int cpu_cx_lowest_lim; 155 #if defined(__i386__) || defined(__amd64__) 156 static bool cppc_notify; 157 #endif 158 159 static struct acpi_cpu_softc **cpu_softc; 160 ACPI_SERIAL_DECL(cpu, "ACPI CPU"); 161 162 static int acpi_cpu_probe(device_t dev); 163 static int acpi_cpu_attach(device_t dev); 164 static int acpi_cpu_suspend(device_t dev); 165 static int acpi_cpu_resume(device_t dev); 166 static int acpi_pcpu_get_id(device_t dev, uint32_t acpi_id, 167 u_int *cpu_id); 168 static struct resource_list *acpi_cpu_get_rlist(device_t dev, device_t child); 169 static device_t acpi_cpu_add_child(device_t dev, u_int order, const char *name, 170 int unit); 171 static int acpi_cpu_read_ivar(device_t dev, device_t child, int index, 172 uintptr_t *result); 173 static int acpi_cpu_shutdown(device_t dev); 174 static void acpi_cpu_cx_probe(struct acpi_cpu_softc *sc); 175 static void acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc); 176 static int acpi_cpu_cx_cst(struct acpi_cpu_softc *sc); 177 static void acpi_cpu_startup(void *arg); 178 static void acpi_cpu_startup_cx(struct acpi_cpu_softc *sc); 179 static void acpi_cpu_cx_list(struct acpi_cpu_softc *sc); 180 #if defined(__i386__) || defined(__amd64__) 181 static void acpi_cpu_idle(sbintime_t sbt); 182 #endif 183 static void acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context); 184 static void acpi_cpu_quirks(void); 185 static void acpi_cpu_quirks_piix4(void); 186 static int acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS); 187 static int acpi_cpu_usage_counters_sysctl(SYSCTL_HANDLER_ARGS); 188 static int acpi_cpu_set_cx_lowest(struct acpi_cpu_softc *sc); 189 static int acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS); 190 static int acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS); 191 #if defined(__i386__) || defined(__amd64__) 192 static int acpi_cpu_method_sysctl(SYSCTL_HANDLER_ARGS); 193 #endif 194 195 static device_method_t acpi_cpu_methods[] = { 196 /* Device interface */ 197 DEVMETHOD(device_probe, acpi_cpu_probe), 198 DEVMETHOD(device_attach, acpi_cpu_attach), 199 DEVMETHOD(device_detach, bus_generic_detach), 200 DEVMETHOD(device_shutdown, acpi_cpu_shutdown), 201 DEVMETHOD(device_suspend, acpi_cpu_suspend), 202 DEVMETHOD(device_resume, acpi_cpu_resume), 203 204 /* Bus interface */ 205 DEVMETHOD(bus_add_child, acpi_cpu_add_child), 206 DEVMETHOD(bus_read_ivar, acpi_cpu_read_ivar), 207 DEVMETHOD(bus_get_resource_list, acpi_cpu_get_rlist), 208 DEVMETHOD(bus_get_resource, bus_generic_rl_get_resource), 209 DEVMETHOD(bus_set_resource, bus_generic_rl_set_resource), 210 DEVMETHOD(bus_alloc_resource, bus_generic_rl_alloc_resource), 211 DEVMETHOD(bus_release_resource, bus_generic_rl_release_resource), 212 DEVMETHOD(bus_activate_resource, bus_generic_activate_resource), 213 DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource), 214 DEVMETHOD(bus_setup_intr, bus_generic_setup_intr), 215 DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr), 216 217 DEVMETHOD_END 218 }; 219 220 static driver_t acpi_cpu_driver = { 221 "cpu", 222 acpi_cpu_methods, 223 sizeof(struct acpi_cpu_softc), 224 }; 225 226 DRIVER_MODULE(cpu, acpi, acpi_cpu_driver, 0, 0); 227 MODULE_DEPEND(cpu, acpi, 1, 1, 1); 228 229 static int 230 acpi_cpu_probe(device_t dev) 231 { 232 static char *cpudev_ids[] = { CPUDEV_DEVICE_ID, NULL }; 233 int acpi_id, cpu_id; 234 ACPI_BUFFER buf; 235 ACPI_HANDLE handle; 236 ACPI_OBJECT *obj; 237 ACPI_STATUS status; 238 ACPI_OBJECT_TYPE type; 239 240 if (acpi_disabled("cpu") || acpi_cpu_disabled) 241 return (ENXIO); 242 type = acpi_get_type(dev); 243 if (type != ACPI_TYPE_PROCESSOR && type != ACPI_TYPE_DEVICE) 244 return (ENXIO); 245 if (type == ACPI_TYPE_DEVICE && 246 ACPI_ID_PROBE(device_get_parent(dev), dev, cpudev_ids, NULL) >= 0) 247 return (ENXIO); 248 249 handle = acpi_get_handle(dev); 250 if (cpu_softc == NULL) 251 cpu_softc = malloc(sizeof(struct acpi_cpu_softc *) * 252 (mp_maxid + 1), M_TEMP /* XXX */, M_WAITOK | M_ZERO); 253 254 if (type == ACPI_TYPE_PROCESSOR) { 255 /* Get our Processor object. */ 256 buf.Pointer = NULL; 257 buf.Length = ACPI_ALLOCATE_BUFFER; 258 status = AcpiEvaluateObject(handle, NULL, NULL, &buf); 259 if (ACPI_FAILURE(status)) { 260 device_printf(dev, "probe failed to get Processor obj - %s\n", 261 AcpiFormatException(status)); 262 return (ENXIO); 263 } 264 obj = (ACPI_OBJECT *)buf.Pointer; 265 if (obj->Type != ACPI_TYPE_PROCESSOR) { 266 device_printf(dev, "Processor object has bad type %d\n", 267 obj->Type); 268 AcpiOsFree(obj); 269 return (ENXIO); 270 } 271 272 /* 273 * Find the processor associated with our unit. We could use the 274 * ProcId as a key, however, some boxes do not have the same values 275 * in their Processor object as the ProcId values in the MADT. 276 */ 277 acpi_id = obj->Processor.ProcId; 278 AcpiOsFree(obj); 279 } else { 280 status = acpi_GetInteger(handle, "_UID", &acpi_id); 281 if (ACPI_FAILURE(status)) { 282 device_printf(dev, "Device object has bad value - %s\n", 283 AcpiFormatException(status)); 284 return (ENXIO); 285 } 286 } 287 if (acpi_pcpu_get_id(dev, acpi_id, &cpu_id) != 0) { 288 if (bootverbose && (type != ACPI_TYPE_PROCESSOR || acpi_id != 255)) 289 printf("ACPI: Processor %s (ACPI ID %u) ignored\n", 290 acpi_name(acpi_get_handle(dev)), acpi_id); 291 return (ENXIO); 292 } 293 294 if (device_set_unit(dev, cpu_id) != 0) 295 return (ENXIO); 296 297 device_set_desc(dev, "ACPI CPU"); 298 299 if (!bootverbose && device_get_unit(dev) != 0) { 300 device_quiet(dev); 301 device_quiet_children(dev); 302 } 303 304 return (BUS_PROBE_DEFAULT); 305 } 306 307 static int 308 acpi_cpu_attach(device_t dev) 309 { 310 ACPI_BUFFER buf; 311 ACPI_OBJECT arg, *obj; 312 ACPI_OBJECT_LIST arglist; 313 struct pcpu *pcpu_data; 314 struct acpi_cpu_softc *sc; 315 struct acpi_softc *acpi_sc; 316 ACPI_STATUS status; 317 u_int features; 318 int cpu_id, drv_count, i; 319 driver_t **drivers; 320 uint32_t cap_set[3]; 321 322 /* UUID needed by _OSC evaluation */ 323 static uint8_t cpu_oscuuid[16] = { 0x16, 0xA6, 0x77, 0x40, 0x0C, 0x29, 324 0xBE, 0x47, 0x9E, 0xBD, 0xD8, 0x70, 325 0x58, 0x71, 0x39, 0x53 }; 326 327 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 328 329 sc = device_get_softc(dev); 330 sc->cpu_dev = dev; 331 sc->cpu_handle = acpi_get_handle(dev); 332 cpu_id = device_get_unit(dev); 333 cpu_softc[cpu_id] = sc; 334 pcpu_data = pcpu_find(cpu_id); 335 pcpu_data->pc_device = dev; 336 sc->cpu_pcpu = pcpu_data; 337 cpu_smi_cmd = AcpiGbl_FADT.SmiCommand; 338 cpu_cst_cnt = AcpiGbl_FADT.CstControl; 339 340 if (acpi_get_type(dev) == ACPI_TYPE_PROCESSOR) { 341 buf.Pointer = NULL; 342 buf.Length = ACPI_ALLOCATE_BUFFER; 343 status = AcpiEvaluateObject(sc->cpu_handle, NULL, NULL, &buf); 344 if (ACPI_FAILURE(status)) { 345 device_printf(dev, "attach failed to get Processor obj - %s\n", 346 AcpiFormatException(status)); 347 return (ENXIO); 348 } 349 obj = (ACPI_OBJECT *)buf.Pointer; 350 sc->cpu_p_blk = obj->Processor.PblkAddress; 351 sc->cpu_p_blk_len = obj->Processor.PblkLength; 352 sc->cpu_acpi_id = obj->Processor.ProcId; 353 AcpiOsFree(obj); 354 } else { 355 KASSERT(acpi_get_type(dev) == ACPI_TYPE_DEVICE, 356 ("Unexpected ACPI object")); 357 status = acpi_GetInteger(sc->cpu_handle, "_UID", &sc->cpu_acpi_id); 358 if (ACPI_FAILURE(status)) { 359 device_printf(dev, "Device object has bad value - %s\n", 360 AcpiFormatException(status)); 361 return (ENXIO); 362 } 363 sc->cpu_p_blk = 0; 364 sc->cpu_p_blk_len = 0; 365 } 366 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu%d: P_BLK at %#x/%d\n", 367 device_get_unit(dev), sc->cpu_p_blk, sc->cpu_p_blk_len)); 368 369 /* 370 * If this is the first cpu we attach, create and initialize the generic 371 * resources that will be used by all acpi cpu devices. 372 */ 373 if (device_get_unit(dev) == 0) { 374 /* Assume we won't be using generic Cx mode by default */ 375 cpu_cx_generic = FALSE; 376 377 /* Install hw.acpi.cpu sysctl tree */ 378 acpi_sc = acpi_device_get_parent_softc(dev); 379 sysctl_ctx_init(&cpu_sysctl_ctx); 380 cpu_sysctl_tree = SYSCTL_ADD_NODE(&cpu_sysctl_ctx, 381 SYSCTL_CHILDREN(acpi_sc->acpi_sysctl_tree), OID_AUTO, "cpu", 382 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "node for CPU children"); 383 384 #if defined(__i386__) || defined(__amd64__) 385 /* Add sysctl handler to control registering for CPPC notifications */ 386 cppc_notify = 1; 387 SYSCTL_ADD_BOOL(&cpu_sysctl_ctx, SYSCTL_CHILDREN(cpu_sysctl_tree), 388 OID_AUTO, "cppc_notify", CTLFLAG_RDTUN | CTLFLAG_MPSAFE, 389 &cppc_notify, 0, "Register for CPPC Notifications"); 390 #endif 391 } 392 393 /* 394 * Before calling any CPU methods, collect child driver feature hints 395 * and notify ACPI of them. We support unified SMP power control 396 * so advertise this ourselves. Note this is not the same as independent 397 * SMP control where each CPU can have different settings. 398 */ 399 sc->cpu_features = ACPI_CAP_SMP_SAME | ACPI_CAP_SMP_SAME_C3 | 400 ACPI_CAP_C1_IO_HALT; 401 402 #if defined(__i386__) || defined(__amd64__) 403 /* 404 * Ask for MWAIT modes if not disabled and interrupts work 405 * reasonable with MWAIT. 406 */ 407 if (!acpi_disabled("mwait") && cpu_mwait_usable()) 408 sc->cpu_features |= ACPI_CAP_SMP_C1_NATIVE | ACPI_CAP_SMP_C3_NATIVE; 409 410 /* 411 * Work around a lingering SMM bug which leads to freezes when handling 412 * CPPC notifications. Tell the SMM we will handle any CPPC notifications. 413 */ 414 if ((cpu_power_eax & CPUTPM1_HWP_NOTIFICATION) && cppc_notify) 415 sc->cpu_features |= ACPI_CAP_INTR_CPPC; 416 #endif 417 418 if (devclass_get_drivers(device_get_devclass(dev), &drivers, 419 &drv_count) == 0) { 420 for (i = 0; i < drv_count; i++) { 421 if (ACPI_GET_FEATURES(drivers[i], &features) == 0) 422 sc->cpu_features |= features; 423 } 424 free(drivers, M_TEMP); 425 } 426 427 /* 428 * CPU capabilities are specified in 429 * Intel Processor Vendor-Specific ACPI Interface Specification. 430 */ 431 if (sc->cpu_features) { 432 cap_set[1] = sc->cpu_features; 433 status = acpi_EvaluateOSC(sc->cpu_handle, cpu_oscuuid, 1, 2, cap_set, 434 cap_set, false); 435 if (ACPI_SUCCESS(status)) { 436 if (cap_set[0] != 0) 437 device_printf(dev, "_OSC returned status %#x\n", cap_set[0]); 438 } 439 else { 440 arglist.Pointer = &arg; 441 arglist.Count = 1; 442 arg.Type = ACPI_TYPE_BUFFER; 443 arg.Buffer.Length = sizeof(cap_set); 444 arg.Buffer.Pointer = (uint8_t *)cap_set; 445 cap_set[0] = 1; /* revision */ 446 cap_set[1] = 1; /* number of capabilities integers */ 447 cap_set[2] = sc->cpu_features; 448 AcpiEvaluateObject(sc->cpu_handle, "_PDC", &arglist, NULL); 449 } 450 } 451 452 /* Probe for Cx state support. */ 453 acpi_cpu_cx_probe(sc); 454 455 return (0); 456 } 457 458 static void 459 acpi_cpu_postattach(void *unused __unused) 460 { 461 struct acpi_cpu_softc *sc; 462 int attached = 0, i; 463 464 if (cpu_softc == NULL) 465 return; 466 467 bus_topo_lock(); 468 CPU_FOREACH(i) { 469 if ((sc = cpu_softc[i]) != NULL) 470 bus_identify_children(sc->cpu_dev); 471 } 472 CPU_FOREACH(i) { 473 if ((sc = cpu_softc[i]) != NULL) { 474 bus_attach_children(sc->cpu_dev); 475 attached = 1; 476 } 477 } 478 bus_topo_unlock(); 479 480 if (attached) { 481 #ifdef EARLY_AP_STARTUP 482 acpi_cpu_startup(NULL); 483 #else 484 /* Queue post cpu-probing task handler */ 485 AcpiOsExecute(OSL_NOTIFY_HANDLER, acpi_cpu_startup, NULL); 486 #endif 487 } 488 } 489 490 SYSINIT(acpi_cpu, SI_SUB_CONFIGURE, SI_ORDER_MIDDLE, 491 acpi_cpu_postattach, NULL); 492 493 static void 494 disable_idle(struct acpi_cpu_softc *sc) 495 { 496 cpuset_t cpuset; 497 498 CPU_SETOF(sc->cpu_pcpu->pc_cpuid, &cpuset); 499 sc->cpu_disable_idle = TRUE; 500 501 /* 502 * Ensure that the CPU is not in idle state or in acpi_cpu_idle(). 503 * Note that this code depends on the fact that the rendezvous IPI 504 * can not penetrate context where interrupts are disabled and acpi_cpu_idle 505 * is called and executed in such a context with interrupts being re-enabled 506 * right before return. 507 */ 508 smp_rendezvous_cpus(cpuset, smp_no_rendezvous_barrier, NULL, 509 smp_no_rendezvous_barrier, NULL); 510 } 511 512 static void 513 enable_idle(struct acpi_cpu_softc *sc) 514 { 515 516 if (sc->cpu_cx_count > sc->cpu_non_c3 + 1 && 517 (cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) 518 AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 1); 519 sc->cpu_disable_idle = FALSE; 520 } 521 522 #if defined(__i386__) || defined(__amd64__) 523 static int 524 is_idle_disabled(struct acpi_cpu_softc *sc) 525 { 526 527 return (sc->cpu_disable_idle); 528 } 529 #endif 530 531 /* 532 * Disable any entry to the idle function during suspend and re-enable it 533 * during resume. 534 */ 535 static int 536 acpi_cpu_suspend(device_t dev) 537 { 538 int error; 539 540 error = bus_generic_suspend(dev); 541 if (error) 542 return (error); 543 disable_idle(device_get_softc(dev)); 544 return (0); 545 } 546 547 static int 548 acpi_cpu_resume(device_t dev) 549 { 550 551 enable_idle(device_get_softc(dev)); 552 return (bus_generic_resume(dev)); 553 } 554 555 /* 556 * Find the processor associated with a given ACPI ID. 557 */ 558 static int 559 acpi_pcpu_get_id(device_t dev, uint32_t acpi_id, u_int *cpu_id) 560 { 561 struct pcpu *pc; 562 u_int i; 563 564 CPU_FOREACH(i) { 565 pc = pcpu_find(i); 566 if (pc->pc_acpi_id == acpi_id) { 567 *cpu_id = pc->pc_cpuid; 568 return (0); 569 } 570 } 571 572 /* 573 * If pc_acpi_id for CPU 0 is not initialized (e.g. a non-APIC 574 * UP box) use the ACPI ID from the first processor we find. 575 */ 576 if (mp_ncpus == 1) { 577 pc = pcpu_find(0); 578 if (pc->pc_acpi_id == 0xffffffff) 579 pc->pc_acpi_id = acpi_id; 580 *cpu_id = 0; 581 return (0); 582 } 583 584 return (ESRCH); 585 } 586 587 static struct resource_list * 588 acpi_cpu_get_rlist(device_t dev, device_t child) 589 { 590 struct acpi_cpu_device *ad; 591 592 ad = device_get_ivars(child); 593 if (ad == NULL) 594 return (NULL); 595 return (&ad->ad_rl); 596 } 597 598 static device_t 599 acpi_cpu_add_child(device_t dev, u_int order, const char *name, int unit) 600 { 601 struct acpi_cpu_device *ad; 602 device_t child; 603 604 if ((ad = malloc(sizeof(*ad), M_TEMP, M_NOWAIT | M_ZERO)) == NULL) 605 return (NULL); 606 607 resource_list_init(&ad->ad_rl); 608 609 child = device_add_child_ordered(dev, order, name, unit); 610 if (child != NULL) 611 device_set_ivars(child, ad); 612 else 613 free(ad, M_TEMP); 614 return (child); 615 } 616 617 static int 618 acpi_cpu_read_ivar(device_t dev, device_t child, int index, uintptr_t *result) 619 { 620 struct acpi_cpu_softc *sc; 621 622 sc = device_get_softc(dev); 623 switch (index) { 624 case ACPI_IVAR_HANDLE: 625 *result = (uintptr_t)sc->cpu_handle; 626 break; 627 case CPU_IVAR_PCPU: 628 *result = (uintptr_t)sc->cpu_pcpu; 629 break; 630 #if defined(__amd64__) || defined(__i386__) 631 case CPU_IVAR_NOMINAL_MHZ: 632 if (tsc_is_invariant) { 633 *result = (uintptr_t)(atomic_load_acq_64(&tsc_freq) / 1000000); 634 break; 635 } 636 /* FALLTHROUGH */ 637 #endif 638 default: 639 return (ENOENT); 640 } 641 return (0); 642 } 643 644 static int 645 acpi_cpu_shutdown(device_t dev) 646 { 647 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 648 649 /* Allow children to shutdown first. */ 650 bus_generic_shutdown(dev); 651 652 /* 653 * Disable any entry to the idle function. 654 */ 655 disable_idle(device_get_softc(dev)); 656 657 /* 658 * CPU devices are not truly detached and remain referenced, 659 * so their resources are not freed. 660 */ 661 662 return_VALUE (0); 663 } 664 665 static void 666 acpi_cpu_cx_probe(struct acpi_cpu_softc *sc) 667 { 668 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 669 670 /* Use initial sleep value of 1 sec. to start with lowest idle state. */ 671 sc->cpu_prev_sleep = 1000000; 672 sc->cpu_cx_lowest = 0; 673 sc->cpu_cx_lowest_lim = 0; 674 675 /* 676 * Check for the ACPI 2.0 _CST sleep states object. If we can't find 677 * any, we'll revert to generic FADT/P_BLK Cx control method which will 678 * be handled by acpi_cpu_startup. We need to defer to after having 679 * probed all the cpus in the system before probing for generic Cx 680 * states as we may already have found cpus with valid _CST packages 681 */ 682 if (!cpu_cx_generic && acpi_cpu_cx_cst(sc) != 0) { 683 /* 684 * We were unable to find a _CST package for this cpu or there 685 * was an error parsing it. Switch back to generic mode. 686 */ 687 cpu_cx_generic = TRUE; 688 if (bootverbose) 689 device_printf(sc->cpu_dev, "switching to generic Cx mode\n"); 690 } 691 692 /* 693 * TODO: _CSD Package should be checked here. 694 */ 695 } 696 697 static void 698 acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc) 699 { 700 ACPI_GENERIC_ADDRESS gas; 701 struct acpi_cx *cx_ptr; 702 703 sc->cpu_cx_count = 0; 704 cx_ptr = sc->cpu_cx_states; 705 706 /* Use initial sleep value of 1 sec. to start with lowest idle state. */ 707 sc->cpu_prev_sleep = 1000000; 708 709 /* C1 has been required since just after ACPI 1.0 */ 710 cx_ptr->type = ACPI_STATE_C1; 711 cx_ptr->trans_lat = 0; 712 cx_ptr++; 713 sc->cpu_non_c2 = sc->cpu_cx_count; 714 sc->cpu_non_c3 = sc->cpu_cx_count; 715 sc->cpu_cx_count++; 716 717 /* 718 * The spec says P_BLK must be 6 bytes long. However, some systems 719 * use it to indicate a fractional set of features present so we 720 * take 5 as C2. Some may also have a value of 7 to indicate 721 * another C3 but most use _CST for this (as required) and having 722 * "only" C1-C3 is not a hardship. 723 */ 724 if (sc->cpu_p_blk_len < 5) 725 return; 726 727 /* Validate and allocate resources for C2 (P_LVL2). */ 728 gas.SpaceId = ACPI_ADR_SPACE_SYSTEM_IO; 729 gas.BitWidth = 8; 730 if (AcpiGbl_FADT.C2Latency <= 100) { 731 gas.Address = sc->cpu_p_blk + 4; 732 cx_ptr->res_rid = 0; 733 acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &cx_ptr->res_rid, 734 &gas, &cx_ptr->p_lvlx, RF_SHAREABLE); 735 if (cx_ptr->p_lvlx != NULL) { 736 cx_ptr->type = ACPI_STATE_C2; 737 cx_ptr->trans_lat = AcpiGbl_FADT.C2Latency; 738 cx_ptr++; 739 sc->cpu_non_c3 = sc->cpu_cx_count; 740 sc->cpu_cx_count++; 741 } 742 } 743 if (sc->cpu_p_blk_len < 6) 744 return; 745 746 /* Validate and allocate resources for C3 (P_LVL3). */ 747 if (AcpiGbl_FADT.C3Latency <= 1000 && !(cpu_quirks & CPU_QUIRK_NO_C3)) { 748 gas.Address = sc->cpu_p_blk + 5; 749 cx_ptr->res_rid = 1; 750 acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &cx_ptr->res_rid, 751 &gas, &cx_ptr->p_lvlx, RF_SHAREABLE); 752 if (cx_ptr->p_lvlx != NULL) { 753 cx_ptr->type = ACPI_STATE_C3; 754 cx_ptr->trans_lat = AcpiGbl_FADT.C3Latency; 755 cx_ptr++; 756 sc->cpu_cx_count++; 757 } 758 } 759 } 760 761 #if defined(__i386__) || defined(__amd64__) 762 static void 763 acpi_cpu_cx_cst_mwait(struct acpi_cx *cx_ptr, uint64_t address, int accsize) 764 { 765 766 cx_ptr->do_mwait = true; 767 cx_ptr->mwait_hint = address & 0xffffffff; 768 cx_ptr->mwait_hw_coord = (accsize & CST_FFH_MWAIT_HW_COORD) != 0; 769 cx_ptr->mwait_bm_avoidance = (accsize & CST_FFH_MWAIT_BM_AVOID) != 0; 770 } 771 #endif 772 773 static void 774 acpi_cpu_cx_cst_free_plvlx(device_t cpu_dev, struct acpi_cx *cx_ptr) 775 { 776 777 if (cx_ptr->p_lvlx == NULL) 778 return; 779 bus_release_resource(cpu_dev, cx_ptr->res_type, cx_ptr->res_rid, 780 cx_ptr->p_lvlx); 781 cx_ptr->p_lvlx = NULL; 782 } 783 784 /* 785 * Parse a _CST package and set up its Cx states. Since the _CST object 786 * can change dynamically, our notify handler may call this function 787 * to clean up and probe the new _CST package. 788 */ 789 static int 790 acpi_cpu_cx_cst(struct acpi_cpu_softc *sc) 791 { 792 struct acpi_cx *cx_ptr; 793 ACPI_STATUS status; 794 ACPI_BUFFER buf; 795 ACPI_OBJECT *top; 796 ACPI_OBJECT *pkg; 797 uint32_t count; 798 int i; 799 #if defined(__i386__) || defined(__amd64__) 800 uint64_t address; 801 int vendor, class, accsize; 802 #endif 803 804 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 805 806 buf.Pointer = NULL; 807 buf.Length = ACPI_ALLOCATE_BUFFER; 808 status = AcpiEvaluateObject(sc->cpu_handle, "_CST", NULL, &buf); 809 if (ACPI_FAILURE(status)) 810 return (ENXIO); 811 812 /* _CST is a package with a count and at least one Cx package. */ 813 top = (ACPI_OBJECT *)buf.Pointer; 814 if (!ACPI_PKG_VALID(top, 2) || acpi_PkgInt32(top, 0, &count) != 0) { 815 device_printf(sc->cpu_dev, "invalid _CST package\n"); 816 AcpiOsFree(buf.Pointer); 817 return (ENXIO); 818 } 819 if (count != top->Package.Count - 1) { 820 device_printf(sc->cpu_dev, "invalid _CST state count (%d != %d)\n", 821 count, top->Package.Count - 1); 822 count = top->Package.Count - 1; 823 } 824 if (count > MAX_CX_STATES) { 825 device_printf(sc->cpu_dev, "_CST has too many states (%d)\n", count); 826 count = MAX_CX_STATES; 827 } 828 829 sc->cpu_non_c2 = 0; 830 sc->cpu_non_c3 = 0; 831 sc->cpu_cx_count = 0; 832 cx_ptr = sc->cpu_cx_states; 833 834 /* 835 * C1 has been required since just after ACPI 1.0. 836 * Reserve the first slot for it. 837 */ 838 cx_ptr->type = ACPI_STATE_C0; 839 cx_ptr++; 840 sc->cpu_cx_count++; 841 842 /* Set up all valid states. */ 843 for (i = 0; i < count; i++) { 844 pkg = &top->Package.Elements[i + 1]; 845 if (!ACPI_PKG_VALID(pkg, 4) || 846 acpi_PkgInt32(pkg, 1, &cx_ptr->type) != 0 || 847 acpi_PkgInt32(pkg, 2, &cx_ptr->trans_lat) != 0 || 848 acpi_PkgInt32(pkg, 3, &cx_ptr->power) != 0) { 849 device_printf(sc->cpu_dev, "skipping invalid Cx state package\n"); 850 continue; 851 } 852 853 /* Validate the state to see if we should use it. */ 854 switch (cx_ptr->type) { 855 case ACPI_STATE_C1: 856 acpi_cpu_cx_cst_free_plvlx(sc->cpu_dev, cx_ptr); 857 #if defined(__i386__) || defined(__amd64__) 858 if (acpi_PkgFFH_IntelCpu(pkg, 0, &vendor, &class, &address, 859 &accsize) == 0 && 860 (vendor == CST_FFH_VENDOR_INTEL || vendor == CST_FFH_VENDOR_AMD)) { 861 if (class == CST_FFH_INTEL_CL_C1IO) { 862 /* C1 I/O then Halt */ 863 cx_ptr->res_rid = sc->cpu_cx_count; 864 bus_set_resource(sc->cpu_dev, SYS_RES_IOPORT, 865 cx_ptr->res_rid, address, 1); 866 cx_ptr->p_lvlx = bus_alloc_resource_any(sc->cpu_dev, 867 SYS_RES_IOPORT, &cx_ptr->res_rid, RF_ACTIVE | 868 RF_SHAREABLE); 869 if (cx_ptr->p_lvlx == NULL) { 870 bus_delete_resource(sc->cpu_dev, SYS_RES_IOPORT, 871 cx_ptr->res_rid); 872 device_printf(sc->cpu_dev, 873 "C1 I/O failed to allocate port %d, " 874 "degrading to C1 Halt", (int)address); 875 } 876 } else if (class == CST_FFH_INTEL_CL_MWAIT) { 877 if (vendor == CST_FFH_VENDOR_INTEL || 878 (vendor == CST_FFH_VENDOR_AMD && cpu_mon_mwait_edx != 0)) 879 acpi_cpu_cx_cst_mwait(cx_ptr, address, accsize); 880 } 881 } 882 #endif 883 if (sc->cpu_cx_states[0].type == ACPI_STATE_C0) { 884 /* This is the first C1 state. Use the reserved slot. */ 885 sc->cpu_cx_states[0] = *cx_ptr; 886 } else { 887 sc->cpu_non_c2 = sc->cpu_cx_count; 888 sc->cpu_non_c3 = sc->cpu_cx_count; 889 cx_ptr++; 890 sc->cpu_cx_count++; 891 } 892 continue; 893 case ACPI_STATE_C2: 894 sc->cpu_non_c3 = sc->cpu_cx_count; 895 break; 896 case ACPI_STATE_C3: 897 default: 898 if ((cpu_quirks & CPU_QUIRK_NO_C3) != 0) { 899 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 900 "acpi_cpu%d: C3[%d] not available.\n", 901 device_get_unit(sc->cpu_dev), i)); 902 continue; 903 } 904 break; 905 } 906 907 /* Free up any previous register. */ 908 acpi_cpu_cx_cst_free_plvlx(sc->cpu_dev, cx_ptr); 909 910 /* Allocate the control register for C2 or C3. */ 911 #if defined(__i386__) || defined(__amd64__) 912 if (acpi_PkgFFH_IntelCpu(pkg, 0, &vendor, &class, &address, 913 &accsize) == 0 && vendor == CST_FFH_VENDOR_INTEL && 914 class == CST_FFH_INTEL_CL_MWAIT) { 915 /* Native C State Instruction use (mwait) */ 916 acpi_cpu_cx_cst_mwait(cx_ptr, address, accsize); 917 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 918 "acpi_cpu%d: Got C%d/mwait - %d latency\n", 919 device_get_unit(sc->cpu_dev), cx_ptr->type, cx_ptr->trans_lat)); 920 cx_ptr++; 921 sc->cpu_cx_count++; 922 } else 923 #endif 924 { 925 cx_ptr->res_rid = sc->cpu_cx_count; 926 acpi_PkgGas(sc->cpu_dev, pkg, 0, &cx_ptr->res_type, 927 &cx_ptr->res_rid, &cx_ptr->p_lvlx, RF_SHAREABLE); 928 if (cx_ptr->p_lvlx) { 929 cx_ptr->do_mwait = false; 930 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 931 "acpi_cpu%d: Got C%d - %d latency\n", 932 device_get_unit(sc->cpu_dev), cx_ptr->type, 933 cx_ptr->trans_lat)); 934 cx_ptr++; 935 sc->cpu_cx_count++; 936 } 937 } 938 } 939 AcpiOsFree(buf.Pointer); 940 941 /* If C1 state was not found, we need one now. */ 942 cx_ptr = sc->cpu_cx_states; 943 if (cx_ptr->type == ACPI_STATE_C0) { 944 cx_ptr->type = ACPI_STATE_C1; 945 cx_ptr->trans_lat = 0; 946 } 947 948 return (0); 949 } 950 951 /* 952 * Call this *after* all CPUs have been attached. 953 */ 954 static void 955 acpi_cpu_startup(void *arg) 956 { 957 struct acpi_cpu_softc *sc; 958 int i; 959 960 /* 961 * Setup any quirks that might necessary now that we have probed 962 * all the CPUs 963 */ 964 acpi_cpu_quirks(); 965 966 if (cpu_cx_generic) { 967 /* 968 * We are using generic Cx mode, probe for available Cx states 969 * for all processors. 970 */ 971 CPU_FOREACH(i) { 972 if ((sc = cpu_softc[i]) != NULL) 973 acpi_cpu_generic_cx_probe(sc); 974 } 975 } else { 976 /* 977 * We are using _CST mode, remove C3 state if necessary. 978 * As we now know for sure that we will be using _CST mode 979 * install our notify handler. 980 */ 981 CPU_FOREACH(i) { 982 if ((sc = cpu_softc[i]) == NULL) 983 continue; 984 if (cpu_quirks & CPU_QUIRK_NO_C3) { 985 sc->cpu_cx_count = min(sc->cpu_cx_count, sc->cpu_non_c3 + 1); 986 } 987 AcpiInstallNotifyHandler(sc->cpu_handle, ACPI_DEVICE_NOTIFY, 988 acpi_cpu_notify, sc); 989 } 990 } 991 992 /* Perform Cx final initialization. */ 993 CPU_FOREACH(i) { 994 if ((sc = cpu_softc[i]) != NULL) 995 acpi_cpu_startup_cx(sc); 996 } 997 998 /* Add a sysctl handler to handle global Cx lowest setting */ 999 SYSCTL_ADD_PROC(&cpu_sysctl_ctx, SYSCTL_CHILDREN(cpu_sysctl_tree), 1000 OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, 1001 NULL, 0, acpi_cpu_global_cx_lowest_sysctl, "A", 1002 "Global lowest Cx sleep state to use"); 1003 1004 /* Take over idling from cpu_idle_default(). */ 1005 cpu_cx_lowest_lim = 0; 1006 CPU_FOREACH(i) { 1007 if ((sc = cpu_softc[i]) != NULL) 1008 enable_idle(sc); 1009 } 1010 #if defined(__i386__) || defined(__amd64__) 1011 cpu_idle_hook = acpi_cpu_idle; 1012 #endif 1013 } 1014 1015 static void 1016 acpi_cpu_cx_list(struct acpi_cpu_softc *sc) 1017 { 1018 struct sbuf sb; 1019 int i; 1020 1021 /* 1022 * Set up the list of Cx states 1023 */ 1024 sbuf_new(&sb, sc->cpu_cx_supported, sizeof(sc->cpu_cx_supported), 1025 SBUF_FIXEDLEN); 1026 for (i = 0; i < sc->cpu_cx_count; i++) 1027 sbuf_printf(&sb, "C%d/%d/%d ", i + 1, sc->cpu_cx_states[i].type, 1028 sc->cpu_cx_states[i].trans_lat); 1029 sbuf_trim(&sb); 1030 sbuf_finish(&sb); 1031 } 1032 1033 static void 1034 acpi_cpu_startup_cx(struct acpi_cpu_softc *sc) 1035 { 1036 acpi_cpu_cx_list(sc); 1037 1038 SYSCTL_ADD_STRING(&sc->cpu_sysctl_ctx, 1039 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)), 1040 OID_AUTO, "cx_supported", CTLFLAG_RD, 1041 sc->cpu_cx_supported, 0, 1042 "Cx/microsecond values for supported Cx states"); 1043 SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx, 1044 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)), OID_AUTO, 1045 "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, 1046 (void *)sc, 0, acpi_cpu_cx_lowest_sysctl, "A", 1047 "lowest Cx sleep state to use"); 1048 SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx, 1049 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)), OID_AUTO, 1050 "cx_usage", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 1051 (void *)sc, 0, acpi_cpu_usage_sysctl, "A", 1052 "percent usage for each Cx state"); 1053 SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx, 1054 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)), OID_AUTO, 1055 "cx_usage_counters", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 1056 (void *)sc, 0, acpi_cpu_usage_counters_sysctl, "A", 1057 "Cx sleep state counters"); 1058 #if defined(__i386__) || defined(__amd64__) 1059 SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx, 1060 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)), OID_AUTO, 1061 "cx_method", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 1062 (void *)sc, 0, acpi_cpu_method_sysctl, "A", "Cx entrance methods"); 1063 #endif 1064 1065 /* Signal platform that we can handle _CST notification. */ 1066 if (!cpu_cx_generic && cpu_cst_cnt != 0) { 1067 ACPI_LOCK(acpi); 1068 AcpiOsWritePort(cpu_smi_cmd, cpu_cst_cnt, 8); 1069 ACPI_UNLOCK(acpi); 1070 } 1071 } 1072 1073 #if defined(__i386__) || defined(__amd64__) 1074 /* 1075 * Idle the CPU in the lowest state possible. This function is called with 1076 * interrupts disabled. Note that once it re-enables interrupts, a task 1077 * switch can occur so do not access shared data (i.e. the softc) after 1078 * interrupts are re-enabled. 1079 */ 1080 static void 1081 acpi_cpu_idle(sbintime_t sbt) 1082 { 1083 struct acpi_cpu_softc *sc; 1084 struct acpi_cx *cx_next; 1085 uint64_t start_ticks, end_ticks; 1086 uint32_t start_time, end_time; 1087 ACPI_STATUS status; 1088 int bm_active, cx_next_idx, i, us; 1089 1090 /* 1091 * Look up our CPU id to get our softc. If it's NULL, we'll use C1 1092 * since there is no ACPI processor object for this CPU. This occurs 1093 * for logical CPUs in the HTT case. 1094 */ 1095 sc = cpu_softc[PCPU_GET(cpuid)]; 1096 if (sc == NULL) { 1097 acpi_cpu_c1(); 1098 return; 1099 } 1100 1101 /* If disabled, take the safe path. */ 1102 if (is_idle_disabled(sc)) { 1103 acpi_cpu_c1(); 1104 return; 1105 } 1106 1107 /* Find the lowest state that has small enough latency. */ 1108 us = sc->cpu_prev_sleep; 1109 if (sbt >= 0 && us > (sbt >> 12)) 1110 us = (sbt >> 12); 1111 cx_next_idx = 0; 1112 if (cpu_disable_c2_sleep) 1113 i = min(sc->cpu_cx_lowest, sc->cpu_non_c2); 1114 else if (cpu_disable_c3_sleep) 1115 i = min(sc->cpu_cx_lowest, sc->cpu_non_c3); 1116 else 1117 i = sc->cpu_cx_lowest; 1118 for (; i >= 0; i--) { 1119 if (sc->cpu_cx_states[i].trans_lat * 3 <= us) { 1120 cx_next_idx = i; 1121 break; 1122 } 1123 } 1124 1125 /* 1126 * Check for bus master activity. If there was activity, clear 1127 * the bit and use the lowest non-C3 state. Note that the USB 1128 * driver polling for new devices keeps this bit set all the 1129 * time if USB is loaded. 1130 */ 1131 cx_next = &sc->cpu_cx_states[cx_next_idx]; 1132 if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0 && 1133 cx_next_idx > sc->cpu_non_c3 && 1134 (!cx_next->do_mwait || cx_next->mwait_bm_avoidance)) { 1135 status = AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, &bm_active); 1136 if (ACPI_SUCCESS(status) && bm_active != 0) { 1137 AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, 1); 1138 cx_next_idx = sc->cpu_non_c3; 1139 cx_next = &sc->cpu_cx_states[cx_next_idx]; 1140 } 1141 } 1142 1143 /* Select the next state and update statistics. */ 1144 sc->cpu_cx_stats[cx_next_idx]++; 1145 KASSERT(cx_next->type != ACPI_STATE_C0, ("acpi_cpu_idle: C0 sleep")); 1146 1147 /* 1148 * Execute HLT (or equivalent) and wait for an interrupt. We can't 1149 * precisely calculate the time spent in C1 since the place we wake up 1150 * is an ISR. Assume we slept no more then half of quantum, unless 1151 * we are called inside critical section, delaying context switch. 1152 */ 1153 if (cx_next->type == ACPI_STATE_C1) { 1154 start_ticks = cpu_ticks(); 1155 if (cx_next->p_lvlx != NULL) { 1156 /* C1 I/O then Halt */ 1157 CPU_GET_REG(cx_next->p_lvlx, 1); 1158 } 1159 if (cx_next->do_mwait) 1160 acpi_cpu_idle_mwait(cx_next->mwait_hint); 1161 else 1162 acpi_cpu_c1(); 1163 end_ticks = cpu_ticks(); 1164 /* acpi_cpu_c1() returns with interrupts enabled. */ 1165 if (cx_next->do_mwait) 1166 ACPI_ENABLE_IRQS(); 1167 end_time = ((end_ticks - start_ticks) << 20) / cpu_tickrate(); 1168 if (!cx_next->do_mwait && curthread->td_critnest == 0) 1169 end_time = min(end_time, 500000 / hz); 1170 sc->cpu_prev_sleep = (sc->cpu_prev_sleep * 3 + end_time) / 4; 1171 return; 1172 } 1173 1174 /* 1175 * For C3, disable bus master arbitration if BM control is available. 1176 * CPU may have to wake up to handle it. Otherwise flush the CPU cache. 1177 */ 1178 if (cx_next->type == ACPI_STATE_C3) { 1179 if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) 1180 AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 1); 1181 else 1182 ACPI_FLUSH_CPU_CACHE(); 1183 } 1184 1185 /* 1186 * Read from P_LVLx to enter C2(+), checking time spent asleep. 1187 * Use the ACPI timer for measuring sleep time. Since we need to 1188 * get the time very close to the CPU start/stop clock logic, this 1189 * is the only reliable time source. 1190 */ 1191 if (cx_next->type == ACPI_STATE_C3) { 1192 AcpiGetTimer(&start_time); 1193 start_ticks = 0; 1194 } else { 1195 start_time = 0; 1196 start_ticks = cpu_ticks(); 1197 } 1198 if (cx_next->do_mwait) { 1199 acpi_cpu_idle_mwait(cx_next->mwait_hint); 1200 } else { 1201 CPU_GET_REG(cx_next->p_lvlx, 1); 1202 /* 1203 * Read the end time twice. Since it may take an arbitrary time 1204 * to enter the idle state, the first read may be executed before 1205 * the processor has stopped. Doing it again provides enough 1206 * margin that we are certain to have a correct value. 1207 */ 1208 AcpiGetTimer(&end_time); 1209 } 1210 1211 if (cx_next->type == ACPI_STATE_C3) 1212 AcpiGetTimer(&end_time); 1213 else 1214 end_ticks = cpu_ticks(); 1215 1216 /* Enable bus master arbitration. */ 1217 if (cx_next->type == ACPI_STATE_C3 && 1218 (cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) 1219 AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 0); 1220 ACPI_ENABLE_IRQS(); 1221 1222 if (cx_next->type == ACPI_STATE_C3) 1223 AcpiGetTimerDuration(start_time, end_time, &end_time); 1224 else 1225 end_time = ((end_ticks - start_ticks) << 20) / cpu_tickrate(); 1226 sc->cpu_prev_sleep = (sc->cpu_prev_sleep * 3 + end_time) / 4; 1227 } 1228 #endif 1229 1230 /* 1231 * Re-evaluate the _CST object when we are notified that it changed. 1232 */ 1233 static void 1234 acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context) 1235 { 1236 struct acpi_cpu_softc *sc = (struct acpi_cpu_softc *)context; 1237 1238 if (notify != ACPI_NOTIFY_CX_STATES) 1239 return; 1240 1241 /* 1242 * C-state data for target CPU is going to be in flux while we execute 1243 * acpi_cpu_cx_cst, so disable entering acpi_cpu_idle. 1244 * Also, it may happen that multiple ACPI taskqueues may concurrently 1245 * execute notifications for the same CPU. ACPI_SERIAL is used to 1246 * protect against that. 1247 */ 1248 ACPI_SERIAL_BEGIN(cpu); 1249 disable_idle(sc); 1250 1251 /* Update the list of Cx states. */ 1252 acpi_cpu_cx_cst(sc); 1253 acpi_cpu_cx_list(sc); 1254 acpi_cpu_set_cx_lowest(sc); 1255 1256 enable_idle(sc); 1257 ACPI_SERIAL_END(cpu); 1258 1259 acpi_UserNotify("PROCESSOR", sc->cpu_handle, notify); 1260 } 1261 1262 static void 1263 acpi_cpu_quirks(void) 1264 { 1265 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1266 1267 /* 1268 * Bus mastering arbitration control is needed to keep caches coherent 1269 * while sleeping in C3. If it's not present but a working flush cache 1270 * instruction is present, flush the caches before entering C3 instead. 1271 * Otherwise, just disable C3 completely. 1272 */ 1273 if (AcpiGbl_FADT.Pm2ControlBlock == 0 || 1274 AcpiGbl_FADT.Pm2ControlLength == 0) { 1275 if ((AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD) && 1276 (AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD_FLUSH) == 0) { 1277 cpu_quirks |= CPU_QUIRK_NO_BM_CTRL; 1278 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 1279 "acpi_cpu: no BM control, using flush cache method\n")); 1280 } else { 1281 cpu_quirks |= CPU_QUIRK_NO_C3; 1282 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 1283 "acpi_cpu: no BM control, C3 not available\n")); 1284 } 1285 } 1286 1287 /* 1288 * If we are using generic Cx mode, C3 on multiple CPUs requires using 1289 * the expensive flush cache instruction. 1290 */ 1291 if (cpu_cx_generic && mp_ncpus > 1) { 1292 cpu_quirks |= CPU_QUIRK_NO_BM_CTRL; 1293 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 1294 "acpi_cpu: SMP, using flush cache mode for C3\n")); 1295 } 1296 1297 /* Look for various quirks of the PIIX4 part. */ 1298 acpi_cpu_quirks_piix4(); 1299 } 1300 1301 static void 1302 acpi_cpu_quirks_piix4(void) 1303 { 1304 #ifdef __i386__ 1305 device_t acpi_dev; 1306 uint32_t val; 1307 ACPI_STATUS status; 1308 1309 acpi_dev = pci_find_device(PCI_VENDOR_INTEL, PCI_DEVICE_82371AB_3); 1310 if (acpi_dev != NULL) { 1311 switch (pci_get_revid(acpi_dev)) { 1312 /* 1313 * Disable C3 support for all PIIX4 chipsets. Some of these parts 1314 * do not report the BMIDE status to the BM status register and 1315 * others have a livelock bug if Type-F DMA is enabled. Linux 1316 * works around the BMIDE bug by reading the BM status directly 1317 * but we take the simpler approach of disabling C3 for these 1318 * parts. 1319 * 1320 * See erratum #18 ("C3 Power State/BMIDE and Type-F DMA 1321 * Livelock") from the January 2002 PIIX4 specification update. 1322 * Applies to all PIIX4 models. 1323 * 1324 * Also, make sure that all interrupts cause a "Stop Break" 1325 * event to exit from C2 state. 1326 * Also, BRLD_EN_BM (ACPI_BITREG_BUS_MASTER_RLD in ACPI-speak) 1327 * should be set to zero, otherwise it causes C2 to short-sleep. 1328 * PIIX4 doesn't properly support C3 and bus master activity 1329 * need not break out of C2. 1330 */ 1331 case PCI_REVISION_A_STEP: 1332 case PCI_REVISION_B_STEP: 1333 case PCI_REVISION_4E: 1334 case PCI_REVISION_4M: 1335 cpu_quirks |= CPU_QUIRK_NO_C3; 1336 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 1337 "acpi_cpu: working around PIIX4 bug, disabling C3\n")); 1338 1339 val = pci_read_config(acpi_dev, PIIX4_DEVACTB_REG, 4); 1340 if ((val & PIIX4_STOP_BREAK_MASK) != PIIX4_STOP_BREAK_MASK) { 1341 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 1342 "acpi_cpu: PIIX4: enabling IRQs to generate Stop Break\n")); 1343 val |= PIIX4_STOP_BREAK_MASK; 1344 pci_write_config(acpi_dev, PIIX4_DEVACTB_REG, val, 4); 1345 } 1346 status = AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_RLD, &val); 1347 if (ACPI_SUCCESS(status) && val != 0) { 1348 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 1349 "acpi_cpu: PIIX4: reset BRLD_EN_BM\n")); 1350 AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0); 1351 } 1352 break; 1353 default: 1354 break; 1355 } 1356 } 1357 #endif 1358 } 1359 1360 static int 1361 acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS) 1362 { 1363 struct acpi_cpu_softc *sc = (struct acpi_cpu_softc *)arg1; 1364 struct sbuf sb; 1365 char buf[128]; 1366 int error, i; 1367 uintmax_t fract, sum, whole; 1368 1369 sbuf_new_for_sysctl(&sb, buf, sizeof(buf), req); 1370 sum = 0; 1371 for (i = 0; i < sc->cpu_cx_count; i++) 1372 sum += sc->cpu_cx_stats[i]; 1373 for (i = 0; i < sc->cpu_cx_count; i++) { 1374 if (sum > 0) { 1375 whole = (uintmax_t)sc->cpu_cx_stats[i] * 100; 1376 fract = (whole % sum) * 100; 1377 sbuf_printf(&sb, "%u.%02u%% ", (u_int)(whole / sum), 1378 (u_int)(fract / sum)); 1379 } else 1380 sbuf_printf(&sb, "0.00%% "); 1381 } 1382 sbuf_printf(&sb, "last %dus", sc->cpu_prev_sleep); 1383 error = sbuf_finish(&sb); 1384 sbuf_delete(&sb); 1385 return (error); 1386 } 1387 1388 /* 1389 * XXX TODO: actually add support to count each entry/exit 1390 * from the Cx states. 1391 */ 1392 static int 1393 acpi_cpu_usage_counters_sysctl(SYSCTL_HANDLER_ARGS) 1394 { 1395 struct acpi_cpu_softc *sc = (struct acpi_cpu_softc *)arg1; 1396 struct sbuf sb; 1397 char buf[128]; 1398 int error, i; 1399 1400 sbuf_new_for_sysctl(&sb, buf, sizeof(buf), req); 1401 for (i = 0; i < sc->cpu_cx_count; i++) { 1402 if (i > 0) 1403 sbuf_putc(&sb, ' '); 1404 sbuf_printf(&sb, "%u", sc->cpu_cx_stats[i]); 1405 } 1406 error = sbuf_finish(&sb); 1407 sbuf_delete(&sb); 1408 return (error); 1409 } 1410 1411 #if defined(__i386__) || defined(__amd64__) 1412 static int 1413 acpi_cpu_method_sysctl(SYSCTL_HANDLER_ARGS) 1414 { 1415 struct acpi_cpu_softc *sc = (struct acpi_cpu_softc *)arg1; 1416 struct acpi_cx *cx; 1417 struct sbuf sb; 1418 char buf[128]; 1419 int error, i; 1420 1421 sbuf_new_for_sysctl(&sb, buf, sizeof(buf), req); 1422 for (i = 0; i < sc->cpu_cx_count; i++) { 1423 cx = &sc->cpu_cx_states[i]; 1424 if (i > 0) 1425 sbuf_putc(&sb, ' '); 1426 sbuf_printf(&sb, "C%d/", i + 1); 1427 if (cx->do_mwait) { 1428 sbuf_cat(&sb, "mwait"); 1429 if (cx->mwait_hw_coord) 1430 sbuf_cat(&sb, "/hwc"); 1431 if (cx->mwait_bm_avoidance) 1432 sbuf_cat(&sb, "/bma"); 1433 } else if (cx->type == ACPI_STATE_C1) { 1434 sbuf_cat(&sb, "hlt"); 1435 } else { 1436 sbuf_cat(&sb, "io"); 1437 } 1438 if (cx->type == ACPI_STATE_C1 && cx->p_lvlx != NULL) 1439 sbuf_cat(&sb, "/iohlt"); 1440 } 1441 error = sbuf_finish(&sb); 1442 sbuf_delete(&sb); 1443 return (error); 1444 } 1445 #endif 1446 1447 static int 1448 acpi_cpu_set_cx_lowest(struct acpi_cpu_softc *sc) 1449 { 1450 int i; 1451 1452 ACPI_SERIAL_ASSERT(cpu); 1453 sc->cpu_cx_lowest = min(sc->cpu_cx_lowest_lim, sc->cpu_cx_count - 1); 1454 1455 /* If not disabling, cache the new lowest non-C3 state. */ 1456 sc->cpu_non_c3 = 0; 1457 for (i = sc->cpu_cx_lowest; i >= 0; i--) { 1458 if (sc->cpu_cx_states[i].type < ACPI_STATE_C3) { 1459 sc->cpu_non_c3 = i; 1460 break; 1461 } 1462 } 1463 1464 /* Reset the statistics counters. */ 1465 bzero(sc->cpu_cx_stats, sizeof(sc->cpu_cx_stats)); 1466 return (0); 1467 } 1468 1469 static int 1470 acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS) 1471 { 1472 struct acpi_cpu_softc *sc; 1473 char state[8]; 1474 int val, error; 1475 1476 sc = (struct acpi_cpu_softc *) arg1; 1477 snprintf(state, sizeof(state), "C%d", sc->cpu_cx_lowest_lim + 1); 1478 error = sysctl_handle_string(oidp, state, sizeof(state), req); 1479 if (error != 0 || req->newptr == NULL) 1480 return (error); 1481 if (strlen(state) < 2 || toupper(state[0]) != 'C') 1482 return (EINVAL); 1483 if (strcasecmp(state, "Cmax") == 0) 1484 val = MAX_CX_STATES; 1485 else { 1486 val = (int) strtol(state + 1, NULL, 10); 1487 if (val < 1 || val > MAX_CX_STATES) 1488 return (EINVAL); 1489 } 1490 1491 ACPI_SERIAL_BEGIN(cpu); 1492 sc->cpu_cx_lowest_lim = val - 1; 1493 acpi_cpu_set_cx_lowest(sc); 1494 ACPI_SERIAL_END(cpu); 1495 1496 return (0); 1497 } 1498 1499 static int 1500 acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS) 1501 { 1502 struct acpi_cpu_softc *sc; 1503 char state[8]; 1504 int val, error, i; 1505 1506 snprintf(state, sizeof(state), "C%d", cpu_cx_lowest_lim + 1); 1507 error = sysctl_handle_string(oidp, state, sizeof(state), req); 1508 if (error != 0 || req->newptr == NULL) 1509 return (error); 1510 if (strlen(state) < 2 || toupper(state[0]) != 'C') 1511 return (EINVAL); 1512 if (strcasecmp(state, "Cmax") == 0) 1513 val = MAX_CX_STATES; 1514 else { 1515 val = (int) strtol(state + 1, NULL, 10); 1516 if (val < 1 || val > MAX_CX_STATES) 1517 return (EINVAL); 1518 } 1519 1520 /* Update the new lowest useable Cx state for all CPUs. */ 1521 ACPI_SERIAL_BEGIN(cpu); 1522 cpu_cx_lowest_lim = val - 1; 1523 CPU_FOREACH(i) { 1524 if ((sc = cpu_softc[i]) == NULL) 1525 continue; 1526 sc->cpu_cx_lowest_lim = cpu_cx_lowest_lim; 1527 acpi_cpu_set_cx_lowest(sc); 1528 } 1529 ACPI_SERIAL_END(cpu); 1530 1531 return (0); 1532 } 1533