xref: /freebsd/sys/dev/acpica/acpi_cpu.c (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 /*-
2  * Copyright (c) 2003-2005 Nate Lawson (SDG)
3  * Copyright (c) 2001 Michael Smith
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 #include "opt_acpi.h"
30 #include <sys/param.h>
31 #include <sys/bus.h>
32 #include <sys/cpu.h>
33 #include <sys/kernel.h>
34 #include <sys/malloc.h>
35 #include <sys/module.h>
36 #include <sys/pcpu.h>
37 #include <sys/power.h>
38 #include <sys/proc.h>
39 #include <sys/sched.h>
40 #include <sys/sbuf.h>
41 #include <sys/smp.h>
42 
43 #include <dev/pci/pcivar.h>
44 #include <machine/atomic.h>
45 #include <machine/bus.h>
46 #if defined(__amd64__) || defined(__i386__)
47 #include <machine/clock.h>
48 #include <machine/specialreg.h>
49 #include <machine/md_var.h>
50 #endif
51 #include <sys/rman.h>
52 
53 #include <contrib/dev/acpica/include/acpi.h>
54 #include <contrib/dev/acpica/include/accommon.h>
55 
56 #include <dev/acpica/acpivar.h>
57 
58 /*
59  * Support for ACPI Processor devices, including C[1-3] sleep states.
60  */
61 
62 /* Hooks for the ACPI CA debugging infrastructure */
63 #define _COMPONENT	ACPI_PROCESSOR
64 ACPI_MODULE_NAME("PROCESSOR")
65 
66 struct acpi_cx {
67     struct resource	*p_lvlx;	/* Register to read to enter state. */
68     uint32_t		 type;		/* C1-3 (C4 and up treated as C3). */
69     uint32_t		 trans_lat;	/* Transition latency (usec). */
70     uint32_t		 power;		/* Power consumed (mW). */
71     int			 res_type;	/* Resource type for p_lvlx. */
72     int			 res_rid;	/* Resource ID for p_lvlx. */
73     bool		 do_mwait;
74     uint32_t		 mwait_hint;
75     bool		 mwait_hw_coord;
76     bool		 mwait_bm_avoidance;
77 };
78 #define MAX_CX_STATES	 8
79 
80 struct acpi_cpu_softc {
81     device_t		 cpu_dev;
82     ACPI_HANDLE		 cpu_handle;
83     struct pcpu		*cpu_pcpu;
84     uint32_t		 cpu_acpi_id;	/* ACPI processor id */
85     uint32_t		 cpu_p_blk;	/* ACPI P_BLK location */
86     uint32_t		 cpu_p_blk_len;	/* P_BLK length (must be 6). */
87     struct acpi_cx	 cpu_cx_states[MAX_CX_STATES];
88     int			 cpu_cx_count;	/* Number of valid Cx states. */
89     int			 cpu_prev_sleep;/* Last idle sleep duration. */
90     int			 cpu_features;	/* Child driver supported features. */
91     /* Runtime state. */
92     int			 cpu_non_c2;	/* Index of lowest non-C2 state. */
93     int			 cpu_non_c3;	/* Index of lowest non-C3 state. */
94     u_int		 cpu_cx_stats[MAX_CX_STATES];/* Cx usage history. */
95     /* Values for sysctl. */
96     struct sysctl_ctx_list cpu_sysctl_ctx;
97     struct sysctl_oid	*cpu_sysctl_tree;
98     int			 cpu_cx_lowest;
99     int			 cpu_cx_lowest_lim;
100     int			 cpu_disable_idle; /* Disable entry to idle function */
101     char 		 cpu_cx_supported[64];
102 };
103 
104 struct acpi_cpu_device {
105     struct resource_list	ad_rl;
106 };
107 
108 #define CPU_GET_REG(reg, width) 					\
109     (bus_space_read_ ## width(rman_get_bustag((reg)), 			\
110 		      rman_get_bushandle((reg)), 0))
111 #define CPU_SET_REG(reg, width, val)					\
112     (bus_space_write_ ## width(rman_get_bustag((reg)), 			\
113 		       rman_get_bushandle((reg)), 0, (val)))
114 
115 #define ACPI_NOTIFY_CX_STATES	0x81	/* _CST changed. */
116 
117 #define CPU_QUIRK_NO_C3		(1<<0)	/* C3-type states are not usable. */
118 #define CPU_QUIRK_NO_BM_CTRL	(1<<2)	/* No bus mastering control. */
119 
120 #define PCI_VENDOR_INTEL	0x8086
121 #define PCI_DEVICE_82371AB_3	0x7113	/* PIIX4 chipset for quirks. */
122 #define PCI_REVISION_A_STEP	0
123 #define PCI_REVISION_B_STEP	1
124 #define PCI_REVISION_4E		2
125 #define PCI_REVISION_4M		3
126 #define PIIX4_DEVACTB_REG	0x58
127 #define PIIX4_BRLD_EN_IRQ0	(1<<0)
128 #define PIIX4_BRLD_EN_IRQ	(1<<1)
129 #define PIIX4_BRLD_EN_IRQ8	(1<<5)
130 #define PIIX4_STOP_BREAK_MASK	(PIIX4_BRLD_EN_IRQ0 | PIIX4_BRLD_EN_IRQ | PIIX4_BRLD_EN_IRQ8)
131 #define PIIX4_PCNTRL_BST_EN	(1<<10)
132 
133 #define	CST_FFH_VENDOR_INTEL	1
134 #define	CST_FFH_VENDOR_AMD	2
135 #define	CST_FFH_INTEL_CL_C1IO	1
136 #define	CST_FFH_INTEL_CL_MWAIT	2
137 #define	CST_FFH_MWAIT_HW_COORD	0x0001
138 #define	CST_FFH_MWAIT_BM_AVOID	0x0002
139 
140 #define	CPUDEV_DEVICE_ID	"ACPI0007"
141 
142 /* Knob to disable acpi_cpu devices */
143 bool acpi_cpu_disabled = false;
144 
145 /* Platform hardware resource information. */
146 static uint32_t		 cpu_smi_cmd;	/* Value to write to SMI_CMD. */
147 static uint8_t		 cpu_cst_cnt;	/* Indicate we are _CST aware. */
148 static int		 cpu_quirks;	/* Indicate any hardware bugs. */
149 
150 /* Values for sysctl. */
151 static struct sysctl_ctx_list cpu_sysctl_ctx;
152 static struct sysctl_oid *cpu_sysctl_tree;
153 static int		 cpu_cx_generic;
154 static int		 cpu_cx_lowest_lim;
155 #if defined(__i386__) || defined(__amd64__)
156 static bool		 cppc_notify;
157 #endif
158 
159 static struct acpi_cpu_softc **cpu_softc;
160 ACPI_SERIAL_DECL(cpu, "ACPI CPU");
161 
162 static int	acpi_cpu_probe(device_t dev);
163 static int	acpi_cpu_attach(device_t dev);
164 static int	acpi_cpu_suspend(device_t dev);
165 static int	acpi_cpu_resume(device_t dev);
166 static int	acpi_pcpu_get_id(device_t dev, uint32_t acpi_id,
167 		    u_int *cpu_id);
168 static struct resource_list *acpi_cpu_get_rlist(device_t dev, device_t child);
169 static device_t	acpi_cpu_add_child(device_t dev, u_int order, const char *name,
170 		    int unit);
171 static int	acpi_cpu_read_ivar(device_t dev, device_t child, int index,
172 		    uintptr_t *result);
173 static int	acpi_cpu_shutdown(device_t dev);
174 static void	acpi_cpu_cx_probe(struct acpi_cpu_softc *sc);
175 static void	acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc);
176 static int	acpi_cpu_cx_cst(struct acpi_cpu_softc *sc);
177 static void	acpi_cpu_startup(void *arg);
178 static void	acpi_cpu_startup_cx(struct acpi_cpu_softc *sc);
179 static void	acpi_cpu_cx_list(struct acpi_cpu_softc *sc);
180 #if defined(__i386__) || defined(__amd64__)
181 static void	acpi_cpu_idle(sbintime_t sbt);
182 #endif
183 static void	acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context);
184 static void	acpi_cpu_quirks(void);
185 static void	acpi_cpu_quirks_piix4(void);
186 static int	acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS);
187 static int	acpi_cpu_usage_counters_sysctl(SYSCTL_HANDLER_ARGS);
188 static int	acpi_cpu_set_cx_lowest(struct acpi_cpu_softc *sc);
189 static int	acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS);
190 static int	acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS);
191 #if defined(__i386__) || defined(__amd64__)
192 static int	acpi_cpu_method_sysctl(SYSCTL_HANDLER_ARGS);
193 #endif
194 
195 static device_method_t acpi_cpu_methods[] = {
196     /* Device interface */
197     DEVMETHOD(device_probe,	acpi_cpu_probe),
198     DEVMETHOD(device_attach,	acpi_cpu_attach),
199     DEVMETHOD(device_detach,	bus_generic_detach),
200     DEVMETHOD(device_shutdown,	acpi_cpu_shutdown),
201     DEVMETHOD(device_suspend,	acpi_cpu_suspend),
202     DEVMETHOD(device_resume,	acpi_cpu_resume),
203 
204     /* Bus interface */
205     DEVMETHOD(bus_add_child,	acpi_cpu_add_child),
206     DEVMETHOD(bus_read_ivar,	acpi_cpu_read_ivar),
207     DEVMETHOD(bus_get_resource_list, acpi_cpu_get_rlist),
208     DEVMETHOD(bus_get_resource,	bus_generic_rl_get_resource),
209     DEVMETHOD(bus_set_resource,	bus_generic_rl_set_resource),
210     DEVMETHOD(bus_alloc_resource, bus_generic_rl_alloc_resource),
211     DEVMETHOD(bus_release_resource, bus_generic_rl_release_resource),
212     DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
213     DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
214     DEVMETHOD(bus_setup_intr,	bus_generic_setup_intr),
215     DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr),
216 
217     DEVMETHOD_END
218 };
219 
220 static driver_t acpi_cpu_driver = {
221     "cpu",
222     acpi_cpu_methods,
223     sizeof(struct acpi_cpu_softc),
224 };
225 
226 DRIVER_MODULE(cpu, acpi, acpi_cpu_driver, 0, 0);
227 MODULE_DEPEND(cpu, acpi, 1, 1, 1);
228 
229 static int
230 acpi_cpu_probe(device_t dev)
231 {
232     static char		   *cpudev_ids[] = { CPUDEV_DEVICE_ID, NULL };
233     int			   acpi_id, cpu_id;
234     ACPI_BUFFER		   buf;
235     ACPI_HANDLE		   handle;
236     ACPI_OBJECT		   *obj;
237     ACPI_STATUS		   status;
238     ACPI_OBJECT_TYPE	   type;
239 
240     if (acpi_disabled("cpu") || acpi_cpu_disabled)
241 	return (ENXIO);
242     type = acpi_get_type(dev);
243     if (type != ACPI_TYPE_PROCESSOR && type != ACPI_TYPE_DEVICE)
244 	return (ENXIO);
245     if (type == ACPI_TYPE_DEVICE &&
246 	ACPI_ID_PROBE(device_get_parent(dev), dev, cpudev_ids, NULL) >= 0)
247 	return (ENXIO);
248 
249     handle = acpi_get_handle(dev);
250     if (cpu_softc == NULL)
251 	cpu_softc = malloc(sizeof(struct acpi_cpu_softc *) *
252 	    (mp_maxid + 1), M_TEMP /* XXX */, M_WAITOK | M_ZERO);
253 
254     if (type == ACPI_TYPE_PROCESSOR) {
255 	/* Get our Processor object. */
256 	buf.Pointer = NULL;
257 	buf.Length = ACPI_ALLOCATE_BUFFER;
258 	status = AcpiEvaluateObject(handle, NULL, NULL, &buf);
259 	if (ACPI_FAILURE(status)) {
260 	    device_printf(dev, "probe failed to get Processor obj - %s\n",
261 		AcpiFormatException(status));
262 	    return (ENXIO);
263 	}
264 	obj = (ACPI_OBJECT *)buf.Pointer;
265 	if (obj->Type != ACPI_TYPE_PROCESSOR) {
266 	    device_printf(dev, "Processor object has bad type %d\n",
267 		obj->Type);
268 	    AcpiOsFree(obj);
269 	    return (ENXIO);
270 	}
271 
272 	/*
273 	 * Find the processor associated with our unit.  We could use the
274 	 * ProcId as a key, however, some boxes do not have the same values
275 	 * in their Processor object as the ProcId values in the MADT.
276 	 */
277 	acpi_id = obj->Processor.ProcId;
278 	AcpiOsFree(obj);
279     } else {
280 	status = acpi_GetInteger(handle, "_UID", &acpi_id);
281 	if (ACPI_FAILURE(status)) {
282 	    device_printf(dev, "Device object has bad value - %s\n",
283 		AcpiFormatException(status));
284 	    return (ENXIO);
285 	}
286     }
287     if (acpi_pcpu_get_id(dev, acpi_id, &cpu_id) != 0) {
288 	if (bootverbose && (type != ACPI_TYPE_PROCESSOR || acpi_id != 255))
289 	    printf("ACPI: Processor %s (ACPI ID %u) ignored\n",
290 		acpi_name(acpi_get_handle(dev)), acpi_id);
291 	return (ENXIO);
292     }
293 
294     if (device_set_unit(dev, cpu_id) != 0)
295 	return (ENXIO);
296 
297     device_set_desc(dev, "ACPI CPU");
298 
299     if (!bootverbose && device_get_unit(dev) != 0) {
300 	    device_quiet(dev);
301 	    device_quiet_children(dev);
302     }
303 
304     return (BUS_PROBE_DEFAULT);
305 }
306 
307 static int
308 acpi_cpu_attach(device_t dev)
309 {
310     ACPI_BUFFER		   buf;
311     ACPI_OBJECT		   arg, *obj;
312     ACPI_OBJECT_LIST	   arglist;
313     struct pcpu		   *pcpu_data;
314     struct acpi_cpu_softc *sc;
315     struct acpi_softc	  *acpi_sc;
316     ACPI_STATUS		   status;
317     u_int		   features;
318     int			   cpu_id, drv_count, i;
319     driver_t 		  **drivers;
320     uint32_t		   cap_set[3];
321 
322     /* UUID needed by _OSC evaluation */
323     static uint8_t cpu_oscuuid[16] = { 0x16, 0xA6, 0x77, 0x40, 0x0C, 0x29,
324 				       0xBE, 0x47, 0x9E, 0xBD, 0xD8, 0x70,
325 				       0x58, 0x71, 0x39, 0x53 };
326 
327     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
328 
329     sc = device_get_softc(dev);
330     sc->cpu_dev = dev;
331     sc->cpu_handle = acpi_get_handle(dev);
332     cpu_id = device_get_unit(dev);
333     cpu_softc[cpu_id] = sc;
334     pcpu_data = pcpu_find(cpu_id);
335     pcpu_data->pc_device = dev;
336     sc->cpu_pcpu = pcpu_data;
337     cpu_smi_cmd = AcpiGbl_FADT.SmiCommand;
338     cpu_cst_cnt = AcpiGbl_FADT.CstControl;
339 
340     if (acpi_get_type(dev) == ACPI_TYPE_PROCESSOR) {
341 	buf.Pointer = NULL;
342 	buf.Length = ACPI_ALLOCATE_BUFFER;
343 	status = AcpiEvaluateObject(sc->cpu_handle, NULL, NULL, &buf);
344 	if (ACPI_FAILURE(status)) {
345 	    device_printf(dev, "attach failed to get Processor obj - %s\n",
346 		AcpiFormatException(status));
347 	    return (ENXIO);
348 	}
349 	obj = (ACPI_OBJECT *)buf.Pointer;
350 	sc->cpu_p_blk = obj->Processor.PblkAddress;
351 	sc->cpu_p_blk_len = obj->Processor.PblkLength;
352 	sc->cpu_acpi_id = obj->Processor.ProcId;
353 	AcpiOsFree(obj);
354     } else {
355 	KASSERT(acpi_get_type(dev) == ACPI_TYPE_DEVICE,
356 	    ("Unexpected ACPI object"));
357 	status = acpi_GetInteger(sc->cpu_handle, "_UID", &sc->cpu_acpi_id);
358 	if (ACPI_FAILURE(status)) {
359 	    device_printf(dev, "Device object has bad value - %s\n",
360 		AcpiFormatException(status));
361 	    return (ENXIO);
362 	}
363 	sc->cpu_p_blk = 0;
364 	sc->cpu_p_blk_len = 0;
365     }
366     ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu%d: P_BLK at %#x/%d\n",
367 		     device_get_unit(dev), sc->cpu_p_blk, sc->cpu_p_blk_len));
368 
369     /*
370      * If this is the first cpu we attach, create and initialize the generic
371      * resources that will be used by all acpi cpu devices.
372      */
373     if (device_get_unit(dev) == 0) {
374 	/* Assume we won't be using generic Cx mode by default */
375 	cpu_cx_generic = FALSE;
376 
377 	/* Install hw.acpi.cpu sysctl tree */
378 	acpi_sc = acpi_device_get_parent_softc(dev);
379 	sysctl_ctx_init(&cpu_sysctl_ctx);
380 	cpu_sysctl_tree = SYSCTL_ADD_NODE(&cpu_sysctl_ctx,
381 	    SYSCTL_CHILDREN(acpi_sc->acpi_sysctl_tree), OID_AUTO, "cpu",
382 	    CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "node for CPU children");
383 
384 #if defined(__i386__) || defined(__amd64__)
385 	/* Add sysctl handler to control registering for CPPC notifications */
386 	cppc_notify = 1;
387 	SYSCTL_ADD_BOOL(&cpu_sysctl_ctx, SYSCTL_CHILDREN(cpu_sysctl_tree),
388 	    OID_AUTO, "cppc_notify", CTLFLAG_RDTUN | CTLFLAG_MPSAFE,
389 	    &cppc_notify, 0, "Register for CPPC Notifications");
390 #endif
391     }
392 
393     /*
394      * Before calling any CPU methods, collect child driver feature hints
395      * and notify ACPI of them.  We support unified SMP power control
396      * so advertise this ourselves.  Note this is not the same as independent
397      * SMP control where each CPU can have different settings.
398      */
399     sc->cpu_features = ACPI_CAP_SMP_SAME | ACPI_CAP_SMP_SAME_C3 |
400       ACPI_CAP_C1_IO_HALT;
401 
402 #if defined(__i386__) || defined(__amd64__)
403     /*
404      * Ask for MWAIT modes if not disabled and interrupts work
405      * reasonable with MWAIT.
406      */
407     if (!acpi_disabled("mwait") && cpu_mwait_usable())
408 	sc->cpu_features |= ACPI_CAP_SMP_C1_NATIVE | ACPI_CAP_SMP_C3_NATIVE;
409 
410     /*
411      * Work around a lingering SMM bug which leads to freezes when handling
412      * CPPC notifications. Tell the SMM we will handle any CPPC notifications.
413      */
414     if ((cpu_power_eax & CPUTPM1_HWP_NOTIFICATION) && cppc_notify)
415 	    sc->cpu_features |= ACPI_CAP_INTR_CPPC;
416 #endif
417 
418     if (devclass_get_drivers(device_get_devclass(dev), &drivers,
419 	&drv_count) == 0) {
420 	for (i = 0; i < drv_count; i++) {
421 	    if (ACPI_GET_FEATURES(drivers[i], &features) == 0)
422 		sc->cpu_features |= features;
423 	}
424 	free(drivers, M_TEMP);
425     }
426 
427     /*
428      * CPU capabilities are specified in
429      * Intel Processor Vendor-Specific ACPI Interface Specification.
430      */
431     if (sc->cpu_features) {
432 	cap_set[1] = sc->cpu_features;
433 	status = acpi_EvaluateOSC(sc->cpu_handle, cpu_oscuuid, 1, 2, cap_set,
434 	    cap_set, false);
435 	if (ACPI_SUCCESS(status)) {
436 	    if (cap_set[0] != 0)
437 		device_printf(dev, "_OSC returned status %#x\n", cap_set[0]);
438 	}
439 	else {
440 	    arglist.Pointer = &arg;
441 	    arglist.Count = 1;
442 	    arg.Type = ACPI_TYPE_BUFFER;
443 	    arg.Buffer.Length = sizeof(cap_set);
444 	    arg.Buffer.Pointer = (uint8_t *)cap_set;
445 	    cap_set[0] = 1; /* revision */
446 	    cap_set[1] = 1; /* number of capabilities integers */
447 	    cap_set[2] = sc->cpu_features;
448 	    AcpiEvaluateObject(sc->cpu_handle, "_PDC", &arglist, NULL);
449 	}
450     }
451 
452     /* Probe for Cx state support. */
453     acpi_cpu_cx_probe(sc);
454 
455     return (0);
456 }
457 
458 static void
459 acpi_cpu_postattach(void *unused __unused)
460 {
461     struct acpi_cpu_softc *sc;
462     int attached = 0, i;
463 
464     if (cpu_softc == NULL)
465 	return;
466 
467     bus_topo_lock();
468     CPU_FOREACH(i) {
469 	if ((sc = cpu_softc[i]) != NULL)
470 		bus_identify_children(sc->cpu_dev);
471     }
472     CPU_FOREACH(i) {
473 	if ((sc = cpu_softc[i]) != NULL) {
474 		bus_attach_children(sc->cpu_dev);
475 		attached = 1;
476 	}
477     }
478     bus_topo_unlock();
479 
480     if (attached) {
481 #ifdef EARLY_AP_STARTUP
482 	acpi_cpu_startup(NULL);
483 #else
484 	/* Queue post cpu-probing task handler */
485 	AcpiOsExecute(OSL_NOTIFY_HANDLER, acpi_cpu_startup, NULL);
486 #endif
487     }
488 }
489 
490 SYSINIT(acpi_cpu, SI_SUB_CONFIGURE, SI_ORDER_MIDDLE,
491     acpi_cpu_postattach, NULL);
492 
493 static void
494 disable_idle(struct acpi_cpu_softc *sc)
495 {
496     cpuset_t cpuset;
497 
498     CPU_SETOF(sc->cpu_pcpu->pc_cpuid, &cpuset);
499     sc->cpu_disable_idle = TRUE;
500 
501     /*
502      * Ensure that the CPU is not in idle state or in acpi_cpu_idle().
503      * Note that this code depends on the fact that the rendezvous IPI
504      * can not penetrate context where interrupts are disabled and acpi_cpu_idle
505      * is called and executed in such a context with interrupts being re-enabled
506      * right before return.
507      */
508     smp_rendezvous_cpus(cpuset, smp_no_rendezvous_barrier, NULL,
509 	smp_no_rendezvous_barrier, NULL);
510 }
511 
512 static void
513 enable_idle(struct acpi_cpu_softc *sc)
514 {
515 
516     if (sc->cpu_cx_count > sc->cpu_non_c3 + 1 &&
517 	(cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0)
518 	    AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 1);
519     sc->cpu_disable_idle = FALSE;
520 }
521 
522 #if defined(__i386__) || defined(__amd64__)
523 static int
524 is_idle_disabled(struct acpi_cpu_softc *sc)
525 {
526 
527     return (sc->cpu_disable_idle);
528 }
529 #endif
530 
531 /*
532  * Disable any entry to the idle function during suspend and re-enable it
533  * during resume.
534  */
535 static int
536 acpi_cpu_suspend(device_t dev)
537 {
538     int error;
539 
540     error = bus_generic_suspend(dev);
541     if (error)
542 	return (error);
543     disable_idle(device_get_softc(dev));
544     return (0);
545 }
546 
547 static int
548 acpi_cpu_resume(device_t dev)
549 {
550 
551     enable_idle(device_get_softc(dev));
552     return (bus_generic_resume(dev));
553 }
554 
555 /*
556  * Find the processor associated with a given ACPI ID.
557  */
558 static int
559 acpi_pcpu_get_id(device_t dev, uint32_t acpi_id, u_int *cpu_id)
560 {
561     struct pcpu	*pc;
562     u_int	 i;
563 
564     CPU_FOREACH(i) {
565 	pc = pcpu_find(i);
566 	if (pc->pc_acpi_id == acpi_id) {
567 	    *cpu_id = pc->pc_cpuid;
568 	    return (0);
569 	}
570     }
571 
572     /*
573      * If pc_acpi_id for CPU 0 is not initialized (e.g. a non-APIC
574      * UP box) use the ACPI ID from the first processor we find.
575      */
576     if (mp_ncpus == 1) {
577 	pc = pcpu_find(0);
578 	if (pc->pc_acpi_id == 0xffffffff)
579 	    pc->pc_acpi_id = acpi_id;
580 	*cpu_id = 0;
581 	return (0);
582     }
583 
584     return (ESRCH);
585 }
586 
587 static struct resource_list *
588 acpi_cpu_get_rlist(device_t dev, device_t child)
589 {
590     struct acpi_cpu_device *ad;
591 
592     ad = device_get_ivars(child);
593     if (ad == NULL)
594 	return (NULL);
595     return (&ad->ad_rl);
596 }
597 
598 static device_t
599 acpi_cpu_add_child(device_t dev, u_int order, const char *name, int unit)
600 {
601     struct acpi_cpu_device *ad;
602     device_t child;
603 
604     if ((ad = malloc(sizeof(*ad), M_TEMP, M_NOWAIT | M_ZERO)) == NULL)
605 	return (NULL);
606 
607     resource_list_init(&ad->ad_rl);
608 
609     child = device_add_child_ordered(dev, order, name, unit);
610     if (child != NULL)
611 	device_set_ivars(child, ad);
612     else
613 	free(ad, M_TEMP);
614     return (child);
615 }
616 
617 static int
618 acpi_cpu_read_ivar(device_t dev, device_t child, int index, uintptr_t *result)
619 {
620     struct acpi_cpu_softc *sc;
621 
622     sc = device_get_softc(dev);
623     switch (index) {
624     case ACPI_IVAR_HANDLE:
625 	*result = (uintptr_t)sc->cpu_handle;
626 	break;
627     case CPU_IVAR_PCPU:
628 	*result = (uintptr_t)sc->cpu_pcpu;
629 	break;
630 #if defined(__amd64__) || defined(__i386__)
631     case CPU_IVAR_NOMINAL_MHZ:
632 	if (tsc_is_invariant) {
633 	    *result = (uintptr_t)(atomic_load_acq_64(&tsc_freq) / 1000000);
634 	    break;
635 	}
636 	/* FALLTHROUGH */
637 #endif
638     default:
639 	return (ENOENT);
640     }
641     return (0);
642 }
643 
644 static int
645 acpi_cpu_shutdown(device_t dev)
646 {
647     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
648 
649     /* Allow children to shutdown first. */
650     bus_generic_shutdown(dev);
651 
652     /*
653      * Disable any entry to the idle function.
654      */
655     disable_idle(device_get_softc(dev));
656 
657     /*
658      * CPU devices are not truly detached and remain referenced,
659      * so their resources are not freed.
660      */
661 
662     return_VALUE (0);
663 }
664 
665 static void
666 acpi_cpu_cx_probe(struct acpi_cpu_softc *sc)
667 {
668     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
669 
670     /* Use initial sleep value of 1 sec. to start with lowest idle state. */
671     sc->cpu_prev_sleep = 1000000;
672     sc->cpu_cx_lowest = 0;
673     sc->cpu_cx_lowest_lim = 0;
674 
675     /*
676      * Check for the ACPI 2.0 _CST sleep states object. If we can't find
677      * any, we'll revert to generic FADT/P_BLK Cx control method which will
678      * be handled by acpi_cpu_startup. We need to defer to after having
679      * probed all the cpus in the system before probing for generic Cx
680      * states as we may already have found cpus with valid _CST packages
681      */
682     if (!cpu_cx_generic && acpi_cpu_cx_cst(sc) != 0) {
683 	/*
684 	 * We were unable to find a _CST package for this cpu or there
685 	 * was an error parsing it. Switch back to generic mode.
686 	 */
687 	cpu_cx_generic = TRUE;
688 	if (bootverbose)
689 	    device_printf(sc->cpu_dev, "switching to generic Cx mode\n");
690     }
691 
692     /*
693      * TODO: _CSD Package should be checked here.
694      */
695 }
696 
697 static void
698 acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc)
699 {
700     ACPI_GENERIC_ADDRESS	 gas;
701     struct acpi_cx		*cx_ptr;
702 
703     sc->cpu_cx_count = 0;
704     cx_ptr = sc->cpu_cx_states;
705 
706     /* Use initial sleep value of 1 sec. to start with lowest idle state. */
707     sc->cpu_prev_sleep = 1000000;
708 
709     /* C1 has been required since just after ACPI 1.0 */
710     cx_ptr->type = ACPI_STATE_C1;
711     cx_ptr->trans_lat = 0;
712     cx_ptr++;
713     sc->cpu_non_c2 = sc->cpu_cx_count;
714     sc->cpu_non_c3 = sc->cpu_cx_count;
715     sc->cpu_cx_count++;
716 
717     /*
718      * The spec says P_BLK must be 6 bytes long.  However, some systems
719      * use it to indicate a fractional set of features present so we
720      * take 5 as C2.  Some may also have a value of 7 to indicate
721      * another C3 but most use _CST for this (as required) and having
722      * "only" C1-C3 is not a hardship.
723      */
724     if (sc->cpu_p_blk_len < 5)
725 	return;
726 
727     /* Validate and allocate resources for C2 (P_LVL2). */
728     gas.SpaceId = ACPI_ADR_SPACE_SYSTEM_IO;
729     gas.BitWidth = 8;
730     if (AcpiGbl_FADT.C2Latency <= 100) {
731 	gas.Address = sc->cpu_p_blk + 4;
732 	cx_ptr->res_rid = 0;
733 	acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &cx_ptr->res_rid,
734 	    &gas, &cx_ptr->p_lvlx, RF_SHAREABLE);
735 	if (cx_ptr->p_lvlx != NULL) {
736 	    cx_ptr->type = ACPI_STATE_C2;
737 	    cx_ptr->trans_lat = AcpiGbl_FADT.C2Latency;
738 	    cx_ptr++;
739 	    sc->cpu_non_c3 = sc->cpu_cx_count;
740 	    sc->cpu_cx_count++;
741 	}
742     }
743     if (sc->cpu_p_blk_len < 6)
744 	return;
745 
746     /* Validate and allocate resources for C3 (P_LVL3). */
747     if (AcpiGbl_FADT.C3Latency <= 1000 && !(cpu_quirks & CPU_QUIRK_NO_C3)) {
748 	gas.Address = sc->cpu_p_blk + 5;
749 	cx_ptr->res_rid = 1;
750 	acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &cx_ptr->res_rid,
751 	    &gas, &cx_ptr->p_lvlx, RF_SHAREABLE);
752 	if (cx_ptr->p_lvlx != NULL) {
753 	    cx_ptr->type = ACPI_STATE_C3;
754 	    cx_ptr->trans_lat = AcpiGbl_FADT.C3Latency;
755 	    cx_ptr++;
756 	    sc->cpu_cx_count++;
757 	}
758     }
759 }
760 
761 #if defined(__i386__) || defined(__amd64__)
762 static void
763 acpi_cpu_cx_cst_mwait(struct acpi_cx *cx_ptr, uint64_t address, int accsize)
764 {
765 
766 	cx_ptr->do_mwait = true;
767 	cx_ptr->mwait_hint = address & 0xffffffff;
768 	cx_ptr->mwait_hw_coord = (accsize & CST_FFH_MWAIT_HW_COORD) != 0;
769 	cx_ptr->mwait_bm_avoidance = (accsize & CST_FFH_MWAIT_BM_AVOID) != 0;
770 }
771 #endif
772 
773 static void
774 acpi_cpu_cx_cst_free_plvlx(device_t cpu_dev, struct acpi_cx *cx_ptr)
775 {
776 
777 	if (cx_ptr->p_lvlx == NULL)
778 		return;
779 	bus_release_resource(cpu_dev, cx_ptr->res_type, cx_ptr->res_rid,
780 	    cx_ptr->p_lvlx);
781 	cx_ptr->p_lvlx = NULL;
782 }
783 
784 /*
785  * Parse a _CST package and set up its Cx states.  Since the _CST object
786  * can change dynamically, our notify handler may call this function
787  * to clean up and probe the new _CST package.
788  */
789 static int
790 acpi_cpu_cx_cst(struct acpi_cpu_softc *sc)
791 {
792     struct	 acpi_cx *cx_ptr;
793     ACPI_STATUS	 status;
794     ACPI_BUFFER	 buf;
795     ACPI_OBJECT	*top;
796     ACPI_OBJECT	*pkg;
797     uint32_t	 count;
798     int		 i;
799 #if defined(__i386__) || defined(__amd64__)
800     uint64_t	 address;
801     int		 vendor, class, accsize;
802 #endif
803 
804     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
805 
806     buf.Pointer = NULL;
807     buf.Length = ACPI_ALLOCATE_BUFFER;
808     status = AcpiEvaluateObject(sc->cpu_handle, "_CST", NULL, &buf);
809     if (ACPI_FAILURE(status))
810 	return (ENXIO);
811 
812     /* _CST is a package with a count and at least one Cx package. */
813     top = (ACPI_OBJECT *)buf.Pointer;
814     if (!ACPI_PKG_VALID(top, 2) || acpi_PkgInt32(top, 0, &count) != 0) {
815 	device_printf(sc->cpu_dev, "invalid _CST package\n");
816 	AcpiOsFree(buf.Pointer);
817 	return (ENXIO);
818     }
819     if (count != top->Package.Count - 1) {
820 	device_printf(sc->cpu_dev, "invalid _CST state count (%d != %d)\n",
821 	       count, top->Package.Count - 1);
822 	count = top->Package.Count - 1;
823     }
824     if (count > MAX_CX_STATES) {
825 	device_printf(sc->cpu_dev, "_CST has too many states (%d)\n", count);
826 	count = MAX_CX_STATES;
827     }
828 
829     sc->cpu_non_c2 = 0;
830     sc->cpu_non_c3 = 0;
831     sc->cpu_cx_count = 0;
832     cx_ptr = sc->cpu_cx_states;
833 
834     /*
835      * C1 has been required since just after ACPI 1.0.
836      * Reserve the first slot for it.
837      */
838     cx_ptr->type = ACPI_STATE_C0;
839     cx_ptr++;
840     sc->cpu_cx_count++;
841 
842     /* Set up all valid states. */
843     for (i = 0; i < count; i++) {
844 	pkg = &top->Package.Elements[i + 1];
845 	if (!ACPI_PKG_VALID(pkg, 4) ||
846 	    acpi_PkgInt32(pkg, 1, &cx_ptr->type) != 0 ||
847 	    acpi_PkgInt32(pkg, 2, &cx_ptr->trans_lat) != 0 ||
848 	    acpi_PkgInt32(pkg, 3, &cx_ptr->power) != 0) {
849 	    device_printf(sc->cpu_dev, "skipping invalid Cx state package\n");
850 	    continue;
851 	}
852 
853 	/* Validate the state to see if we should use it. */
854 	switch (cx_ptr->type) {
855 	case ACPI_STATE_C1:
856 	    acpi_cpu_cx_cst_free_plvlx(sc->cpu_dev, cx_ptr);
857 #if defined(__i386__) || defined(__amd64__)
858 	    if (acpi_PkgFFH_IntelCpu(pkg, 0, &vendor, &class, &address,
859 	      &accsize) == 0 &&
860 		(vendor == CST_FFH_VENDOR_INTEL || vendor == CST_FFH_VENDOR_AMD)) {
861 		if (class == CST_FFH_INTEL_CL_C1IO) {
862 		    /* C1 I/O then Halt */
863 		    cx_ptr->res_rid = sc->cpu_cx_count;
864 		    bus_set_resource(sc->cpu_dev, SYS_RES_IOPORT,
865 		      cx_ptr->res_rid, address, 1);
866 		    cx_ptr->p_lvlx = bus_alloc_resource_any(sc->cpu_dev,
867 		      SYS_RES_IOPORT, &cx_ptr->res_rid, RF_ACTIVE |
868 		      RF_SHAREABLE);
869 		    if (cx_ptr->p_lvlx == NULL) {
870 			bus_delete_resource(sc->cpu_dev, SYS_RES_IOPORT,
871 			  cx_ptr->res_rid);
872 			device_printf(sc->cpu_dev,
873 			  "C1 I/O failed to allocate port %d, "
874 			  "degrading to C1 Halt", (int)address);
875 		    }
876 		} else if (class == CST_FFH_INTEL_CL_MWAIT) {
877 		    if (vendor == CST_FFH_VENDOR_INTEL ||
878 			(vendor == CST_FFH_VENDOR_AMD && cpu_mon_mwait_edx != 0))
879 		        acpi_cpu_cx_cst_mwait(cx_ptr, address, accsize);
880 		}
881 	    }
882 #endif
883 	    if (sc->cpu_cx_states[0].type == ACPI_STATE_C0) {
884 		/* This is the first C1 state.  Use the reserved slot. */
885 		sc->cpu_cx_states[0] = *cx_ptr;
886 	    } else {
887 		sc->cpu_non_c2 = sc->cpu_cx_count;
888 		sc->cpu_non_c3 = sc->cpu_cx_count;
889 		cx_ptr++;
890 		sc->cpu_cx_count++;
891 	    }
892 	    continue;
893 	case ACPI_STATE_C2:
894 	    sc->cpu_non_c3 = sc->cpu_cx_count;
895 	    break;
896 	case ACPI_STATE_C3:
897 	default:
898 	    if ((cpu_quirks & CPU_QUIRK_NO_C3) != 0) {
899 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
900 				 "acpi_cpu%d: C3[%d] not available.\n",
901 				 device_get_unit(sc->cpu_dev), i));
902 		continue;
903 	    }
904 	    break;
905 	}
906 
907 	/* Free up any previous register. */
908 	acpi_cpu_cx_cst_free_plvlx(sc->cpu_dev, cx_ptr);
909 
910 	/* Allocate the control register for C2 or C3. */
911 #if defined(__i386__) || defined(__amd64__)
912 	if (acpi_PkgFFH_IntelCpu(pkg, 0, &vendor, &class, &address,
913 	  &accsize) == 0 && vendor == CST_FFH_VENDOR_INTEL &&
914 	  class == CST_FFH_INTEL_CL_MWAIT) {
915 	    /* Native C State Instruction use (mwait) */
916 	    acpi_cpu_cx_cst_mwait(cx_ptr, address, accsize);
917 	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
918 	      "acpi_cpu%d: Got C%d/mwait - %d latency\n",
919 	      device_get_unit(sc->cpu_dev), cx_ptr->type, cx_ptr->trans_lat));
920 	    cx_ptr++;
921 	    sc->cpu_cx_count++;
922 	} else
923 #endif
924 	{
925 	    cx_ptr->res_rid = sc->cpu_cx_count;
926 	    acpi_PkgGas(sc->cpu_dev, pkg, 0, &cx_ptr->res_type,
927 		&cx_ptr->res_rid, &cx_ptr->p_lvlx, RF_SHAREABLE);
928 	    if (cx_ptr->p_lvlx) {
929 		cx_ptr->do_mwait = false;
930 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
931 		     "acpi_cpu%d: Got C%d - %d latency\n",
932 		     device_get_unit(sc->cpu_dev), cx_ptr->type,
933 		     cx_ptr->trans_lat));
934 		cx_ptr++;
935 		sc->cpu_cx_count++;
936 	    }
937 	}
938     }
939     AcpiOsFree(buf.Pointer);
940 
941     /* If C1 state was not found, we need one now. */
942     cx_ptr = sc->cpu_cx_states;
943     if (cx_ptr->type == ACPI_STATE_C0) {
944 	cx_ptr->type = ACPI_STATE_C1;
945 	cx_ptr->trans_lat = 0;
946     }
947 
948     return (0);
949 }
950 
951 /*
952  * Call this *after* all CPUs have been attached.
953  */
954 static void
955 acpi_cpu_startup(void *arg)
956 {
957     struct acpi_cpu_softc *sc;
958     int i;
959 
960     /*
961      * Setup any quirks that might necessary now that we have probed
962      * all the CPUs
963      */
964     acpi_cpu_quirks();
965 
966     if (cpu_cx_generic) {
967 	/*
968 	 * We are using generic Cx mode, probe for available Cx states
969 	 * for all processors.
970 	 */
971 	CPU_FOREACH(i) {
972 	    if ((sc = cpu_softc[i]) != NULL)
973 		acpi_cpu_generic_cx_probe(sc);
974 	}
975     } else {
976 	/*
977 	 * We are using _CST mode, remove C3 state if necessary.
978 	 * As we now know for sure that we will be using _CST mode
979 	 * install our notify handler.
980 	 */
981 	CPU_FOREACH(i) {
982 	    if ((sc = cpu_softc[i]) == NULL)
983 		continue;
984 	    if (cpu_quirks & CPU_QUIRK_NO_C3) {
985 		sc->cpu_cx_count = min(sc->cpu_cx_count, sc->cpu_non_c3 + 1);
986 	    }
987 	    AcpiInstallNotifyHandler(sc->cpu_handle, ACPI_DEVICE_NOTIFY,
988 		acpi_cpu_notify, sc);
989 	}
990     }
991 
992     /* Perform Cx final initialization. */
993     CPU_FOREACH(i) {
994 	if ((sc = cpu_softc[i]) != NULL)
995 	    acpi_cpu_startup_cx(sc);
996     }
997 
998     /* Add a sysctl handler to handle global Cx lowest setting */
999     SYSCTL_ADD_PROC(&cpu_sysctl_ctx, SYSCTL_CHILDREN(cpu_sysctl_tree),
1000 	OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
1001 	NULL, 0, acpi_cpu_global_cx_lowest_sysctl, "A",
1002 	"Global lowest Cx sleep state to use");
1003 
1004     /* Take over idling from cpu_idle_default(). */
1005     cpu_cx_lowest_lim = 0;
1006     CPU_FOREACH(i) {
1007 	if ((sc = cpu_softc[i]) != NULL)
1008 	    enable_idle(sc);
1009     }
1010 #if defined(__i386__) || defined(__amd64__)
1011     cpu_idle_hook = acpi_cpu_idle;
1012 #endif
1013 }
1014 
1015 static void
1016 acpi_cpu_cx_list(struct acpi_cpu_softc *sc)
1017 {
1018     struct sbuf sb;
1019     int i;
1020 
1021     /*
1022      * Set up the list of Cx states
1023      */
1024     sbuf_new(&sb, sc->cpu_cx_supported, sizeof(sc->cpu_cx_supported),
1025 	SBUF_FIXEDLEN);
1026     for (i = 0; i < sc->cpu_cx_count; i++)
1027 	sbuf_printf(&sb, "C%d/%d/%d ", i + 1, sc->cpu_cx_states[i].type,
1028 	    sc->cpu_cx_states[i].trans_lat);
1029     sbuf_trim(&sb);
1030     sbuf_finish(&sb);
1031 }
1032 
1033 static void
1034 acpi_cpu_startup_cx(struct acpi_cpu_softc *sc)
1035 {
1036     acpi_cpu_cx_list(sc);
1037 
1038     SYSCTL_ADD_STRING(&sc->cpu_sysctl_ctx,
1039 		      SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
1040 		      OID_AUTO, "cx_supported", CTLFLAG_RD,
1041 		      sc->cpu_cx_supported, 0,
1042 		      "Cx/microsecond values for supported Cx states");
1043     SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
1044         SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)), OID_AUTO,
1045 	"cx_lowest", CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
1046 	(void *)sc, 0, acpi_cpu_cx_lowest_sysctl, "A",
1047 	"lowest Cx sleep state to use");
1048     SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
1049         SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)), OID_AUTO,
1050 	"cx_usage", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
1051 	(void *)sc, 0, acpi_cpu_usage_sysctl, "A",
1052 	"percent usage for each Cx state");
1053     SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
1054         SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)), OID_AUTO,
1055 	"cx_usage_counters", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
1056 	(void *)sc, 0, acpi_cpu_usage_counters_sysctl, "A",
1057 	"Cx sleep state counters");
1058 #if defined(__i386__) || defined(__amd64__)
1059     SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
1060         SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)), OID_AUTO,
1061 	"cx_method", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
1062 	(void *)sc, 0, acpi_cpu_method_sysctl, "A", "Cx entrance methods");
1063 #endif
1064 
1065     /* Signal platform that we can handle _CST notification. */
1066     if (!cpu_cx_generic && cpu_cst_cnt != 0) {
1067 	ACPI_LOCK(acpi);
1068 	AcpiOsWritePort(cpu_smi_cmd, cpu_cst_cnt, 8);
1069 	ACPI_UNLOCK(acpi);
1070     }
1071 }
1072 
1073 #if defined(__i386__) || defined(__amd64__)
1074 /*
1075  * Idle the CPU in the lowest state possible.  This function is called with
1076  * interrupts disabled.  Note that once it re-enables interrupts, a task
1077  * switch can occur so do not access shared data (i.e. the softc) after
1078  * interrupts are re-enabled.
1079  */
1080 static void
1081 acpi_cpu_idle(sbintime_t sbt)
1082 {
1083     struct	acpi_cpu_softc *sc;
1084     struct	acpi_cx *cx_next;
1085     uint64_t	start_ticks, end_ticks;
1086     uint32_t	start_time, end_time;
1087     ACPI_STATUS	status;
1088     int		bm_active, cx_next_idx, i, us;
1089 
1090     /*
1091      * Look up our CPU id to get our softc.  If it's NULL, we'll use C1
1092      * since there is no ACPI processor object for this CPU.  This occurs
1093      * for logical CPUs in the HTT case.
1094      */
1095     sc = cpu_softc[PCPU_GET(cpuid)];
1096     if (sc == NULL) {
1097 	acpi_cpu_c1();
1098 	return;
1099     }
1100 
1101     /* If disabled, take the safe path. */
1102     if (is_idle_disabled(sc)) {
1103 	acpi_cpu_c1();
1104 	return;
1105     }
1106 
1107     /* Find the lowest state that has small enough latency. */
1108     us = sc->cpu_prev_sleep;
1109     if (sbt >= 0 && us > (sbt >> 12))
1110 	us = (sbt >> 12);
1111     cx_next_idx = 0;
1112     if (cpu_disable_c2_sleep)
1113 	i = min(sc->cpu_cx_lowest, sc->cpu_non_c2);
1114     else if (cpu_disable_c3_sleep)
1115 	i = min(sc->cpu_cx_lowest, sc->cpu_non_c3);
1116     else
1117 	i = sc->cpu_cx_lowest;
1118     for (; i >= 0; i--) {
1119 	if (sc->cpu_cx_states[i].trans_lat * 3 <= us) {
1120 	    cx_next_idx = i;
1121 	    break;
1122 	}
1123     }
1124 
1125     /*
1126      * Check for bus master activity.  If there was activity, clear
1127      * the bit and use the lowest non-C3 state.  Note that the USB
1128      * driver polling for new devices keeps this bit set all the
1129      * time if USB is loaded.
1130      */
1131     cx_next = &sc->cpu_cx_states[cx_next_idx];
1132     if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0 &&
1133 	cx_next_idx > sc->cpu_non_c3 &&
1134 	(!cx_next->do_mwait || cx_next->mwait_bm_avoidance)) {
1135 	status = AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, &bm_active);
1136 	if (ACPI_SUCCESS(status) && bm_active != 0) {
1137 	    AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, 1);
1138 	    cx_next_idx = sc->cpu_non_c3;
1139 	    cx_next = &sc->cpu_cx_states[cx_next_idx];
1140 	}
1141     }
1142 
1143     /* Select the next state and update statistics. */
1144     sc->cpu_cx_stats[cx_next_idx]++;
1145     KASSERT(cx_next->type != ACPI_STATE_C0, ("acpi_cpu_idle: C0 sleep"));
1146 
1147     /*
1148      * Execute HLT (or equivalent) and wait for an interrupt.  We can't
1149      * precisely calculate the time spent in C1 since the place we wake up
1150      * is an ISR.  Assume we slept no more then half of quantum, unless
1151      * we are called inside critical section, delaying context switch.
1152      */
1153     if (cx_next->type == ACPI_STATE_C1) {
1154 	start_ticks = cpu_ticks();
1155 	if (cx_next->p_lvlx != NULL) {
1156 	    /* C1 I/O then Halt */
1157 	    CPU_GET_REG(cx_next->p_lvlx, 1);
1158 	}
1159 	if (cx_next->do_mwait)
1160 	    acpi_cpu_idle_mwait(cx_next->mwait_hint);
1161 	else
1162 	    acpi_cpu_c1();
1163 	end_ticks = cpu_ticks();
1164 	/* acpi_cpu_c1() returns with interrupts enabled. */
1165 	if (cx_next->do_mwait)
1166 	    ACPI_ENABLE_IRQS();
1167 	end_time = ((end_ticks - start_ticks) << 20) / cpu_tickrate();
1168 	if (!cx_next->do_mwait && curthread->td_critnest == 0)
1169 		end_time = min(end_time, 500000 / hz);
1170 	sc->cpu_prev_sleep = (sc->cpu_prev_sleep * 3 + end_time) / 4;
1171 	return;
1172     }
1173 
1174     /*
1175      * For C3, disable bus master arbitration if BM control is available.
1176      * CPU may have to wake up to handle it. Otherwise flush the CPU cache.
1177      */
1178     if (cx_next->type == ACPI_STATE_C3) {
1179 	if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0)
1180 	    AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 1);
1181 	else
1182 	    ACPI_FLUSH_CPU_CACHE();
1183     }
1184 
1185     /*
1186      * Read from P_LVLx to enter C2(+), checking time spent asleep.
1187      * Use the ACPI timer for measuring sleep time.  Since we need to
1188      * get the time very close to the CPU start/stop clock logic, this
1189      * is the only reliable time source.
1190      */
1191     if (cx_next->type == ACPI_STATE_C3) {
1192 	AcpiGetTimer(&start_time);
1193 	start_ticks = 0;
1194     } else {
1195 	start_time = 0;
1196 	start_ticks = cpu_ticks();
1197     }
1198     if (cx_next->do_mwait) {
1199 	acpi_cpu_idle_mwait(cx_next->mwait_hint);
1200     } else {
1201 	CPU_GET_REG(cx_next->p_lvlx, 1);
1202 	/*
1203 	 * Read the end time twice.  Since it may take an arbitrary time
1204 	 * to enter the idle state, the first read may be executed before
1205 	 * the processor has stopped.  Doing it again provides enough
1206 	 * margin that we are certain to have a correct value.
1207 	 */
1208 	AcpiGetTimer(&end_time);
1209     }
1210 
1211     if (cx_next->type == ACPI_STATE_C3)
1212 	AcpiGetTimer(&end_time);
1213     else
1214 	end_ticks = cpu_ticks();
1215 
1216     /* Enable bus master arbitration. */
1217     if (cx_next->type == ACPI_STATE_C3 &&
1218       (cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0)
1219 	AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 0);
1220     ACPI_ENABLE_IRQS();
1221 
1222     if (cx_next->type == ACPI_STATE_C3)
1223 	AcpiGetTimerDuration(start_time, end_time, &end_time);
1224     else
1225 	end_time = ((end_ticks - start_ticks) << 20) / cpu_tickrate();
1226     sc->cpu_prev_sleep = (sc->cpu_prev_sleep * 3 + end_time) / 4;
1227 }
1228 #endif
1229 
1230 /*
1231  * Re-evaluate the _CST object when we are notified that it changed.
1232  */
1233 static void
1234 acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context)
1235 {
1236     struct acpi_cpu_softc *sc = (struct acpi_cpu_softc *)context;
1237 
1238     if (notify != ACPI_NOTIFY_CX_STATES)
1239 	return;
1240 
1241     /*
1242      * C-state data for target CPU is going to be in flux while we execute
1243      * acpi_cpu_cx_cst, so disable entering acpi_cpu_idle.
1244      * Also, it may happen that multiple ACPI taskqueues may concurrently
1245      * execute notifications for the same CPU.  ACPI_SERIAL is used to
1246      * protect against that.
1247      */
1248     ACPI_SERIAL_BEGIN(cpu);
1249     disable_idle(sc);
1250 
1251     /* Update the list of Cx states. */
1252     acpi_cpu_cx_cst(sc);
1253     acpi_cpu_cx_list(sc);
1254     acpi_cpu_set_cx_lowest(sc);
1255 
1256     enable_idle(sc);
1257     ACPI_SERIAL_END(cpu);
1258 
1259     acpi_UserNotify("PROCESSOR", sc->cpu_handle, notify);
1260 }
1261 
1262 static void
1263 acpi_cpu_quirks(void)
1264 {
1265     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
1266 
1267     /*
1268      * Bus mastering arbitration control is needed to keep caches coherent
1269      * while sleeping in C3.  If it's not present but a working flush cache
1270      * instruction is present, flush the caches before entering C3 instead.
1271      * Otherwise, just disable C3 completely.
1272      */
1273     if (AcpiGbl_FADT.Pm2ControlBlock == 0 ||
1274 	AcpiGbl_FADT.Pm2ControlLength == 0) {
1275 	if ((AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD) &&
1276 	    (AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD_FLUSH) == 0) {
1277 	    cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
1278 	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1279 		"acpi_cpu: no BM control, using flush cache method\n"));
1280 	} else {
1281 	    cpu_quirks |= CPU_QUIRK_NO_C3;
1282 	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1283 		"acpi_cpu: no BM control, C3 not available\n"));
1284 	}
1285     }
1286 
1287     /*
1288      * If we are using generic Cx mode, C3 on multiple CPUs requires using
1289      * the expensive flush cache instruction.
1290      */
1291     if (cpu_cx_generic && mp_ncpus > 1) {
1292 	cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
1293 	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1294 	    "acpi_cpu: SMP, using flush cache mode for C3\n"));
1295     }
1296 
1297     /* Look for various quirks of the PIIX4 part. */
1298     acpi_cpu_quirks_piix4();
1299 }
1300 
1301 static void
1302 acpi_cpu_quirks_piix4(void)
1303 {
1304 #ifdef __i386__
1305     device_t acpi_dev;
1306     uint32_t val;
1307     ACPI_STATUS status;
1308 
1309     acpi_dev = pci_find_device(PCI_VENDOR_INTEL, PCI_DEVICE_82371AB_3);
1310     if (acpi_dev != NULL) {
1311 	switch (pci_get_revid(acpi_dev)) {
1312 	/*
1313 	 * Disable C3 support for all PIIX4 chipsets.  Some of these parts
1314 	 * do not report the BMIDE status to the BM status register and
1315 	 * others have a livelock bug if Type-F DMA is enabled.  Linux
1316 	 * works around the BMIDE bug by reading the BM status directly
1317 	 * but we take the simpler approach of disabling C3 for these
1318 	 * parts.
1319 	 *
1320 	 * See erratum #18 ("C3 Power State/BMIDE and Type-F DMA
1321 	 * Livelock") from the January 2002 PIIX4 specification update.
1322 	 * Applies to all PIIX4 models.
1323 	 *
1324 	 * Also, make sure that all interrupts cause a "Stop Break"
1325 	 * event to exit from C2 state.
1326 	 * Also, BRLD_EN_BM (ACPI_BITREG_BUS_MASTER_RLD in ACPI-speak)
1327 	 * should be set to zero, otherwise it causes C2 to short-sleep.
1328 	 * PIIX4 doesn't properly support C3 and bus master activity
1329 	 * need not break out of C2.
1330 	 */
1331 	case PCI_REVISION_A_STEP:
1332 	case PCI_REVISION_B_STEP:
1333 	case PCI_REVISION_4E:
1334 	case PCI_REVISION_4M:
1335 	    cpu_quirks |= CPU_QUIRK_NO_C3;
1336 	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1337 		"acpi_cpu: working around PIIX4 bug, disabling C3\n"));
1338 
1339 	    val = pci_read_config(acpi_dev, PIIX4_DEVACTB_REG, 4);
1340 	    if ((val & PIIX4_STOP_BREAK_MASK) != PIIX4_STOP_BREAK_MASK) {
1341 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1342 		    "acpi_cpu: PIIX4: enabling IRQs to generate Stop Break\n"));
1343 	    	val |= PIIX4_STOP_BREAK_MASK;
1344 		pci_write_config(acpi_dev, PIIX4_DEVACTB_REG, val, 4);
1345 	    }
1346 	    status = AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_RLD, &val);
1347 	    if (ACPI_SUCCESS(status) && val != 0) {
1348 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1349 		    "acpi_cpu: PIIX4: reset BRLD_EN_BM\n"));
1350 		AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0);
1351 	    }
1352 	    break;
1353 	default:
1354 	    break;
1355 	}
1356     }
1357 #endif
1358 }
1359 
1360 static int
1361 acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS)
1362 {
1363 	struct acpi_cpu_softc *sc = (struct acpi_cpu_softc *)arg1;
1364 	struct sbuf	 sb;
1365 	char		 buf[128];
1366 	int		 error, i;
1367 	uintmax_t	 fract, sum, whole;
1368 
1369 	sbuf_new_for_sysctl(&sb, buf, sizeof(buf), req);
1370 	sum = 0;
1371 	for (i = 0; i < sc->cpu_cx_count; i++)
1372 		sum += sc->cpu_cx_stats[i];
1373 	for (i = 0; i < sc->cpu_cx_count; i++) {
1374 		if (sum > 0) {
1375 			whole = (uintmax_t)sc->cpu_cx_stats[i] * 100;
1376 			fract = (whole % sum) * 100;
1377 			sbuf_printf(&sb, "%u.%02u%% ", (u_int)(whole / sum),
1378 			    (u_int)(fract / sum));
1379 		} else
1380 			sbuf_printf(&sb, "0.00%% ");
1381 	}
1382 	sbuf_printf(&sb, "last %dus", sc->cpu_prev_sleep);
1383 	error = sbuf_finish(&sb);
1384 	sbuf_delete(&sb);
1385 	return (error);
1386 }
1387 
1388 /*
1389  * XXX TODO: actually add support to count each entry/exit
1390  * from the Cx states.
1391  */
1392 static int
1393 acpi_cpu_usage_counters_sysctl(SYSCTL_HANDLER_ARGS)
1394 {
1395 	struct acpi_cpu_softc *sc = (struct acpi_cpu_softc *)arg1;
1396 	struct sbuf	 sb;
1397 	char		 buf[128];
1398 	int		 error, i;
1399 
1400 	sbuf_new_for_sysctl(&sb, buf, sizeof(buf), req);
1401 	for (i = 0; i < sc->cpu_cx_count; i++) {
1402 		if (i > 0)
1403 			sbuf_putc(&sb, ' ');
1404 		sbuf_printf(&sb, "%u", sc->cpu_cx_stats[i]);
1405 	}
1406 	error = sbuf_finish(&sb);
1407 	sbuf_delete(&sb);
1408 	return (error);
1409 }
1410 
1411 #if defined(__i386__) || defined(__amd64__)
1412 static int
1413 acpi_cpu_method_sysctl(SYSCTL_HANDLER_ARGS)
1414 {
1415 	struct acpi_cpu_softc *sc = (struct acpi_cpu_softc *)arg1;
1416 	struct acpi_cx *cx;
1417 	struct sbuf sb;
1418 	char buf[128];
1419 	int error, i;
1420 
1421 	sbuf_new_for_sysctl(&sb, buf, sizeof(buf), req);
1422 	for (i = 0; i < sc->cpu_cx_count; i++) {
1423 		cx = &sc->cpu_cx_states[i];
1424 		if (i > 0)
1425 			sbuf_putc(&sb, ' ');
1426 		sbuf_printf(&sb, "C%d/", i + 1);
1427 		if (cx->do_mwait) {
1428 			sbuf_cat(&sb, "mwait");
1429 			if (cx->mwait_hw_coord)
1430 				sbuf_cat(&sb, "/hwc");
1431 			if (cx->mwait_bm_avoidance)
1432 				sbuf_cat(&sb, "/bma");
1433 		} else if (cx->type == ACPI_STATE_C1) {
1434 			sbuf_cat(&sb, "hlt");
1435 		} else {
1436 			sbuf_cat(&sb, "io");
1437 		}
1438 		if (cx->type == ACPI_STATE_C1 && cx->p_lvlx != NULL)
1439 			sbuf_cat(&sb, "/iohlt");
1440 	}
1441 	error = sbuf_finish(&sb);
1442 	sbuf_delete(&sb);
1443 	return (error);
1444 }
1445 #endif
1446 
1447 static int
1448 acpi_cpu_set_cx_lowest(struct acpi_cpu_softc *sc)
1449 {
1450     int i;
1451 
1452     ACPI_SERIAL_ASSERT(cpu);
1453     sc->cpu_cx_lowest = min(sc->cpu_cx_lowest_lim, sc->cpu_cx_count - 1);
1454 
1455     /* If not disabling, cache the new lowest non-C3 state. */
1456     sc->cpu_non_c3 = 0;
1457     for (i = sc->cpu_cx_lowest; i >= 0; i--) {
1458 	if (sc->cpu_cx_states[i].type < ACPI_STATE_C3) {
1459 	    sc->cpu_non_c3 = i;
1460 	    break;
1461 	}
1462     }
1463 
1464     /* Reset the statistics counters. */
1465     bzero(sc->cpu_cx_stats, sizeof(sc->cpu_cx_stats));
1466     return (0);
1467 }
1468 
1469 static int
1470 acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)
1471 {
1472     struct	 acpi_cpu_softc *sc;
1473     char	 state[8];
1474     int		 val, error;
1475 
1476     sc = (struct acpi_cpu_softc *) arg1;
1477     snprintf(state, sizeof(state), "C%d", sc->cpu_cx_lowest_lim + 1);
1478     error = sysctl_handle_string(oidp, state, sizeof(state), req);
1479     if (error != 0 || req->newptr == NULL)
1480 	return (error);
1481     if (strlen(state) < 2 || toupper(state[0]) != 'C')
1482 	return (EINVAL);
1483     if (strcasecmp(state, "Cmax") == 0)
1484 	val = MAX_CX_STATES;
1485     else {
1486 	val = (int) strtol(state + 1, NULL, 10);
1487 	if (val < 1 || val > MAX_CX_STATES)
1488 	    return (EINVAL);
1489     }
1490 
1491     ACPI_SERIAL_BEGIN(cpu);
1492     sc->cpu_cx_lowest_lim = val - 1;
1493     acpi_cpu_set_cx_lowest(sc);
1494     ACPI_SERIAL_END(cpu);
1495 
1496     return (0);
1497 }
1498 
1499 static int
1500 acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)
1501 {
1502     struct	acpi_cpu_softc *sc;
1503     char	state[8];
1504     int		val, error, i;
1505 
1506     snprintf(state, sizeof(state), "C%d", cpu_cx_lowest_lim + 1);
1507     error = sysctl_handle_string(oidp, state, sizeof(state), req);
1508     if (error != 0 || req->newptr == NULL)
1509 	return (error);
1510     if (strlen(state) < 2 || toupper(state[0]) != 'C')
1511 	return (EINVAL);
1512     if (strcasecmp(state, "Cmax") == 0)
1513 	val = MAX_CX_STATES;
1514     else {
1515 	val = (int) strtol(state + 1, NULL, 10);
1516 	if (val < 1 || val > MAX_CX_STATES)
1517 	    return (EINVAL);
1518     }
1519 
1520     /* Update the new lowest useable Cx state for all CPUs. */
1521     ACPI_SERIAL_BEGIN(cpu);
1522     cpu_cx_lowest_lim = val - 1;
1523     CPU_FOREACH(i) {
1524 	if ((sc = cpu_softc[i]) == NULL)
1525 	    continue;
1526 	sc->cpu_cx_lowest_lim = cpu_cx_lowest_lim;
1527 	acpi_cpu_set_cx_lowest(sc);
1528     }
1529     ACPI_SERIAL_END(cpu);
1530 
1531     return (0);
1532 }
1533