1 /*- 2 * Copyright (c) 2003-2005 Nate Lawson (SDG) 3 * Copyright (c) 2001 Michael Smith 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include "opt_acpi.h" 32 #include <sys/param.h> 33 #include <sys/bus.h> 34 #include <sys/cpu.h> 35 #include <sys/kernel.h> 36 #include <sys/malloc.h> 37 #include <sys/module.h> 38 #include <sys/pcpu.h> 39 #include <sys/power.h> 40 #include <sys/proc.h> 41 #include <sys/sbuf.h> 42 #include <sys/smp.h> 43 44 #include <dev/pci/pcivar.h> 45 #include <machine/atomic.h> 46 #include <machine/bus.h> 47 #include <sys/rman.h> 48 49 #include <contrib/dev/acpica/acpi.h> 50 #include <dev/acpica/acpivar.h> 51 52 /* 53 * Support for ACPI Processor devices, including C[1-3] sleep states. 54 * 55 * TODO: implement scans of all CPUs to be sure all Cx states are 56 * equivalent. 57 */ 58 59 /* Hooks for the ACPI CA debugging infrastructure */ 60 #define _COMPONENT ACPI_PROCESSOR 61 ACPI_MODULE_NAME("PROCESSOR") 62 63 struct acpi_cx { 64 struct resource *p_lvlx; /* Register to read to enter state. */ 65 uint32_t type; /* C1-3 (C4 and up treated as C3). */ 66 uint32_t trans_lat; /* Transition latency (usec). */ 67 uint32_t power; /* Power consumed (mW). */ 68 int res_type; /* Resource type for p_lvlx. */ 69 }; 70 #define MAX_CX_STATES 8 71 72 struct acpi_cpu_softc { 73 device_t cpu_dev; 74 ACPI_HANDLE cpu_handle; 75 struct pcpu *cpu_pcpu; 76 uint32_t cpu_acpi_id; /* ACPI processor id */ 77 uint32_t cpu_p_blk; /* ACPI P_BLK location */ 78 uint32_t cpu_p_blk_len; /* P_BLK length (must be 6). */ 79 struct acpi_cx cpu_cx_states[MAX_CX_STATES]; 80 int cpu_cx_count; /* Number of valid Cx states. */ 81 int cpu_prev_sleep;/* Last idle sleep duration. */ 82 int cpu_features; /* Child driver supported features. */ 83 }; 84 85 struct acpi_cpu_device { 86 struct resource_list ad_rl; 87 }; 88 89 #define CPU_GET_REG(reg, width) \ 90 (bus_space_read_ ## width(rman_get_bustag((reg)), \ 91 rman_get_bushandle((reg)), 0)) 92 #define CPU_SET_REG(reg, width, val) \ 93 (bus_space_write_ ## width(rman_get_bustag((reg)), \ 94 rman_get_bushandle((reg)), 0, (val))) 95 96 #define PM_USEC(x) ((x) >> 2) /* ~4 clocks per usec (3.57955 Mhz) */ 97 98 #define ACPI_NOTIFY_CX_STATES 0x81 /* _CST changed. */ 99 100 #define CPU_QUIRK_NO_C3 (1<<0) /* C3-type states are not usable. */ 101 #define CPU_QUIRK_NO_BM_CTRL (1<<2) /* No bus mastering control. */ 102 103 #define PCI_VENDOR_INTEL 0x8086 104 #define PCI_DEVICE_82371AB_3 0x7113 /* PIIX4 chipset for quirks. */ 105 #define PCI_REVISION_A_STEP 0 106 #define PCI_REVISION_B_STEP 1 107 #define PCI_REVISION_4E 2 108 #define PCI_REVISION_4M 3 109 110 /* Platform hardware resource information. */ 111 static uint32_t cpu_smi_cmd; /* Value to write to SMI_CMD. */ 112 static uint8_t cpu_cst_cnt; /* Indicate we are _CST aware. */ 113 static int cpu_rid; /* Driver-wide resource id. */ 114 static int cpu_quirks; /* Indicate any hardware bugs. */ 115 116 /* Runtime state. */ 117 static int cpu_cx_count; /* Number of valid states */ 118 static int cpu_non_c3; /* Index of lowest non-C3 state. */ 119 static int cpu_short_slp; /* Count of < 1us sleeps. */ 120 static u_int cpu_cx_stats[MAX_CX_STATES];/* Cx usage history. */ 121 122 /* Values for sysctl. */ 123 static struct sysctl_ctx_list acpi_cpu_sysctl_ctx; 124 static struct sysctl_oid *acpi_cpu_sysctl_tree; 125 static int cpu_cx_lowest; 126 static char cpu_cx_supported[64]; 127 128 static device_t *cpu_devices; 129 static int cpu_ndevices; 130 static struct acpi_cpu_softc **cpu_softc; 131 ACPI_SERIAL_DECL(cpu, "ACPI CPU"); 132 133 static int acpi_cpu_probe(device_t dev); 134 static int acpi_cpu_attach(device_t dev); 135 static int acpi_pcpu_get_id(uint32_t idx, uint32_t *acpi_id, 136 uint32_t *cpu_id); 137 static struct resource_list *acpi_cpu_get_rlist(device_t dev, device_t child); 138 static device_t acpi_cpu_add_child(device_t dev, int order, const char *name, 139 int unit); 140 static int acpi_cpu_read_ivar(device_t dev, device_t child, int index, 141 uintptr_t *result); 142 static int acpi_cpu_shutdown(device_t dev); 143 static int acpi_cpu_cx_probe(struct acpi_cpu_softc *sc); 144 static int acpi_cpu_cx_cst(struct acpi_cpu_softc *sc); 145 static void acpi_cpu_startup(void *arg); 146 static void acpi_cpu_startup_cx(void); 147 static void acpi_cpu_idle(void); 148 static void acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context); 149 static int acpi_cpu_quirks(struct acpi_cpu_softc *sc); 150 static int acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS); 151 static int acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS); 152 153 static device_method_t acpi_cpu_methods[] = { 154 /* Device interface */ 155 DEVMETHOD(device_probe, acpi_cpu_probe), 156 DEVMETHOD(device_attach, acpi_cpu_attach), 157 DEVMETHOD(device_detach, bus_generic_detach), 158 DEVMETHOD(device_shutdown, acpi_cpu_shutdown), 159 DEVMETHOD(device_suspend, bus_generic_suspend), 160 DEVMETHOD(device_resume, bus_generic_resume), 161 162 /* Bus interface */ 163 DEVMETHOD(bus_add_child, acpi_cpu_add_child), 164 DEVMETHOD(bus_read_ivar, acpi_cpu_read_ivar), 165 DEVMETHOD(bus_get_resource_list, acpi_cpu_get_rlist), 166 DEVMETHOD(bus_get_resource, bus_generic_rl_get_resource), 167 DEVMETHOD(bus_set_resource, bus_generic_rl_set_resource), 168 DEVMETHOD(bus_alloc_resource, bus_generic_rl_alloc_resource), 169 DEVMETHOD(bus_release_resource, bus_generic_rl_release_resource), 170 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 171 DEVMETHOD(bus_activate_resource, bus_generic_activate_resource), 172 DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource), 173 DEVMETHOD(bus_setup_intr, bus_generic_setup_intr), 174 DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr), 175 176 {0, 0} 177 }; 178 179 static driver_t acpi_cpu_driver = { 180 "cpu", 181 acpi_cpu_methods, 182 sizeof(struct acpi_cpu_softc), 183 }; 184 185 static devclass_t acpi_cpu_devclass; 186 DRIVER_MODULE(cpu, acpi, acpi_cpu_driver, acpi_cpu_devclass, 0, 0); 187 MODULE_DEPEND(cpu, acpi, 1, 1, 1); 188 189 static int 190 acpi_cpu_probe(device_t dev) 191 { 192 int acpi_id, cpu_id; 193 ACPI_BUFFER buf; 194 ACPI_HANDLE handle; 195 ACPI_OBJECT *obj; 196 ACPI_STATUS status; 197 198 if (acpi_disabled("cpu") || acpi_get_type(dev) != ACPI_TYPE_PROCESSOR) 199 return (ENXIO); 200 201 handle = acpi_get_handle(dev); 202 if (cpu_softc == NULL) 203 cpu_softc = malloc(sizeof(struct acpi_cpu_softc *) * 204 (mp_maxid + 1), M_TEMP /* XXX */, M_WAITOK | M_ZERO); 205 206 /* Get our Processor object. */ 207 buf.Pointer = NULL; 208 buf.Length = ACPI_ALLOCATE_BUFFER; 209 status = AcpiEvaluateObject(handle, NULL, NULL, &buf); 210 if (ACPI_FAILURE(status)) { 211 device_printf(dev, "probe failed to get Processor obj - %s\n", 212 AcpiFormatException(status)); 213 return (ENXIO); 214 } 215 obj = (ACPI_OBJECT *)buf.Pointer; 216 if (obj->Type != ACPI_TYPE_PROCESSOR) { 217 device_printf(dev, "Processor object has bad type %d\n", obj->Type); 218 AcpiOsFree(obj); 219 return (ENXIO); 220 } 221 222 /* 223 * Find the processor associated with our unit. We could use the 224 * ProcId as a key, however, some boxes do not have the same values 225 * in their Processor object as the ProcId values in the MADT. 226 */ 227 acpi_id = obj->Processor.ProcId; 228 AcpiOsFree(obj); 229 if (acpi_pcpu_get_id(device_get_unit(dev), &acpi_id, &cpu_id) != 0) 230 return (ENXIO); 231 232 /* 233 * Check if we already probed this processor. We scan the bus twice 234 * so it's possible we've already seen this one. 235 */ 236 if (cpu_softc[cpu_id] != NULL) 237 return (ENXIO); 238 239 /* Mark this processor as in-use and save our derived id for attach. */ 240 cpu_softc[cpu_id] = (void *)1; 241 acpi_set_magic(dev, cpu_id); 242 device_set_desc(dev, "ACPI CPU"); 243 244 return (0); 245 } 246 247 static int 248 acpi_cpu_attach(device_t dev) 249 { 250 ACPI_BUFFER buf; 251 ACPI_OBJECT arg, *obj; 252 ACPI_OBJECT_LIST arglist; 253 struct pcpu *pcpu_data; 254 struct acpi_cpu_softc *sc; 255 struct acpi_softc *acpi_sc; 256 ACPI_STATUS status; 257 u_int features; 258 int cpu_id, drv_count, i; 259 driver_t **drivers; 260 uint32_t cap_set[3]; 261 262 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 263 264 sc = device_get_softc(dev); 265 sc->cpu_dev = dev; 266 sc->cpu_handle = acpi_get_handle(dev); 267 cpu_id = acpi_get_magic(dev); 268 cpu_softc[cpu_id] = sc; 269 pcpu_data = pcpu_find(cpu_id); 270 pcpu_data->pc_device = dev; 271 sc->cpu_pcpu = pcpu_data; 272 cpu_smi_cmd = AcpiGbl_FADT->SmiCmd; 273 cpu_cst_cnt = AcpiGbl_FADT->CstCnt; 274 275 buf.Pointer = NULL; 276 buf.Length = ACPI_ALLOCATE_BUFFER; 277 status = AcpiEvaluateObject(sc->cpu_handle, NULL, NULL, &buf); 278 if (ACPI_FAILURE(status)) { 279 device_printf(dev, "attach failed to get Processor obj - %s\n", 280 AcpiFormatException(status)); 281 return (ENXIO); 282 } 283 obj = (ACPI_OBJECT *)buf.Pointer; 284 sc->cpu_p_blk = obj->Processor.PblkAddress; 285 sc->cpu_p_blk_len = obj->Processor.PblkLength; 286 sc->cpu_acpi_id = obj->Processor.ProcId; 287 AcpiOsFree(obj); 288 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu%d: P_BLK at %#x/%d\n", 289 device_get_unit(dev), sc->cpu_p_blk, sc->cpu_p_blk_len)); 290 291 acpi_sc = acpi_device_get_parent_softc(dev); 292 sysctl_ctx_init(&acpi_cpu_sysctl_ctx); 293 acpi_cpu_sysctl_tree = SYSCTL_ADD_NODE(&acpi_cpu_sysctl_ctx, 294 SYSCTL_CHILDREN(acpi_sc->acpi_sysctl_tree), OID_AUTO, "cpu", 295 CTLFLAG_RD, 0, ""); 296 297 /* 298 * Before calling any CPU methods, collect child driver feature hints 299 * and notify ACPI of them. We support unified SMP power control 300 * so advertise this ourselves. Note this is not the same as independent 301 * SMP control where each CPU can have different settings. 302 */ 303 sc->cpu_features = ACPI_CAP_SMP_SAME | ACPI_CAP_SMP_SAME_C3; 304 if (devclass_get_drivers(acpi_cpu_devclass, &drivers, &drv_count) == 0) { 305 for (i = 0; i < drv_count; i++) { 306 if (ACPI_GET_FEATURES(drivers[i], &features) == 0) 307 sc->cpu_features |= features; 308 } 309 free(drivers, M_TEMP); 310 } 311 312 /* 313 * CPU capabilities are specified as a buffer of 32-bit integers: 314 * revision, count, and one or more capabilities. The revision of 315 * "1" is not specified anywhere but seems to match Linux. We should 316 * also support _OSC here. 317 */ 318 if (sc->cpu_features) { 319 arglist.Pointer = &arg; 320 arglist.Count = 1; 321 arg.Type = ACPI_TYPE_BUFFER; 322 arg.Buffer.Length = sizeof(cap_set); 323 arg.Buffer.Pointer = (uint8_t *)cap_set; 324 cap_set[0] = 1; /* revision */ 325 cap_set[1] = 1; /* number of capabilities integers */ 326 cap_set[2] = sc->cpu_features; 327 AcpiEvaluateObject(sc->cpu_handle, "_PDC", &arglist, NULL); 328 } 329 330 /* 331 * Probe for Cx state support. If it isn't present, free up unused 332 * resources. 333 */ 334 if (acpi_cpu_cx_probe(sc) == 0) { 335 status = AcpiInstallNotifyHandler(sc->cpu_handle, ACPI_DEVICE_NOTIFY, 336 acpi_cpu_notify, sc); 337 if (device_get_unit(dev) == 0) 338 AcpiOsQueueForExecution(OSD_PRIORITY_LO, acpi_cpu_startup, NULL); 339 } else 340 sysctl_ctx_free(&acpi_cpu_sysctl_ctx); 341 342 /* Finally, call identify and probe/attach for child devices. */ 343 bus_generic_probe(dev); 344 bus_generic_attach(dev); 345 346 return (0); 347 } 348 349 /* 350 * Find the nth present CPU and return its pc_cpuid as well as set the 351 * pc_acpi_id from the most reliable source. 352 */ 353 static int 354 acpi_pcpu_get_id(uint32_t idx, uint32_t *acpi_id, uint32_t *cpu_id) 355 { 356 struct pcpu *pcpu_data; 357 uint32_t i; 358 359 KASSERT(acpi_id != NULL, ("Null acpi_id")); 360 KASSERT(cpu_id != NULL, ("Null cpu_id")); 361 for (i = 0; i <= mp_maxid; i++) { 362 if (CPU_ABSENT(i)) 363 continue; 364 pcpu_data = pcpu_find(i); 365 KASSERT(pcpu_data != NULL, ("no pcpu data for %d", i)); 366 if (idx-- == 0) { 367 /* 368 * If pc_acpi_id was not initialized (e.g., a non-APIC UP box) 369 * override it with the value from the ASL. Otherwise, if the 370 * two don't match, prefer the MADT-derived value. Finally, 371 * return the pc_cpuid to reference this processor. 372 */ 373 if (pcpu_data->pc_acpi_id == 0xffffffff) 374 pcpu_data->pc_acpi_id = *acpi_id; 375 else if (pcpu_data->pc_acpi_id != *acpi_id) 376 *acpi_id = pcpu_data->pc_acpi_id; 377 *cpu_id = pcpu_data->pc_cpuid; 378 return (0); 379 } 380 } 381 382 return (ESRCH); 383 } 384 385 static struct resource_list * 386 acpi_cpu_get_rlist(device_t dev, device_t child) 387 { 388 struct acpi_cpu_device *ad; 389 390 ad = device_get_ivars(child); 391 if (ad == NULL) 392 return (NULL); 393 return (&ad->ad_rl); 394 } 395 396 static device_t 397 acpi_cpu_add_child(device_t dev, int order, const char *name, int unit) 398 { 399 struct acpi_cpu_device *ad; 400 device_t child; 401 402 if ((ad = malloc(sizeof(*ad), M_TEMP, M_NOWAIT | M_ZERO)) == NULL) 403 return (NULL); 404 405 resource_list_init(&ad->ad_rl); 406 407 child = device_add_child_ordered(dev, order, name, unit); 408 if (child != NULL) 409 device_set_ivars(child, ad); 410 else 411 free(ad, M_TEMP); 412 return (child); 413 } 414 415 static int 416 acpi_cpu_read_ivar(device_t dev, device_t child, int index, uintptr_t *result) 417 { 418 struct acpi_cpu_softc *sc; 419 420 sc = device_get_softc(dev); 421 switch (index) { 422 case ACPI_IVAR_HANDLE: 423 *result = (uintptr_t)sc->cpu_handle; 424 break; 425 case CPU_IVAR_PCPU: 426 *result = (uintptr_t)sc->cpu_pcpu; 427 break; 428 default: 429 return (ENOENT); 430 } 431 return (0); 432 } 433 434 static int 435 acpi_cpu_shutdown(device_t dev) 436 { 437 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 438 439 /* Allow children to shutdown first. */ 440 bus_generic_shutdown(dev); 441 442 /* Disable any entry to the idle function. */ 443 cpu_cx_count = 0; 444 445 /* Signal and wait for all processors to exit acpi_cpu_idle(). */ 446 smp_rendezvous(NULL, NULL, NULL, NULL); 447 448 return_VALUE (0); 449 } 450 451 static int 452 acpi_cpu_cx_probe(struct acpi_cpu_softc *sc) 453 { 454 ACPI_GENERIC_ADDRESS gas; 455 struct acpi_cx *cx_ptr; 456 int error; 457 458 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 459 460 /* 461 * Bus mastering arbitration control is needed to keep caches coherent 462 * while sleeping in C3. If it's not present but a working flush cache 463 * instruction is present, flush the caches before entering C3 instead. 464 * Otherwise, just disable C3 completely. 465 */ 466 if (AcpiGbl_FADT->V1_Pm2CntBlk == 0 || AcpiGbl_FADT->Pm2CntLen == 0) { 467 if (AcpiGbl_FADT->WbInvd && AcpiGbl_FADT->WbInvdFlush == 0) { 468 cpu_quirks |= CPU_QUIRK_NO_BM_CTRL; 469 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 470 "acpi_cpu%d: no BM control, using flush cache method\n", 471 device_get_unit(sc->cpu_dev))); 472 } else { 473 cpu_quirks |= CPU_QUIRK_NO_C3; 474 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 475 "acpi_cpu%d: no BM control, C3 not available\n", 476 device_get_unit(sc->cpu_dev))); 477 } 478 } 479 480 /* 481 * First, check for the ACPI 2.0 _CST sleep states object. 482 * If not usable, fall back to the P_BLK's P_LVL2 and P_LVL3. 483 */ 484 sc->cpu_cx_count = 0; 485 error = acpi_cpu_cx_cst(sc); 486 if (error != 0) { 487 cx_ptr = sc->cpu_cx_states; 488 489 /* C1 has been required since just after ACPI 1.0 */ 490 cx_ptr->type = ACPI_STATE_C1; 491 cx_ptr->trans_lat = 0; 492 cpu_non_c3 = 0; 493 cx_ptr++; 494 sc->cpu_cx_count++; 495 496 /* 497 * The spec says P_BLK must be 6 bytes long. However, some systems 498 * use it to indicate a fractional set of features present so we 499 * take 5 as C2. Some may also have a value of 7 to indicate 500 * another C3 but most use _CST for this (as required) and having 501 * "only" C1-C3 is not a hardship. 502 */ 503 if (sc->cpu_p_blk_len < 5) 504 goto done; 505 506 /* Validate and allocate resources for C2 (P_LVL2). */ 507 gas.AddressSpaceId = ACPI_ADR_SPACE_SYSTEM_IO; 508 gas.RegisterBitWidth = 8; 509 if (AcpiGbl_FADT->Plvl2Lat <= 100) { 510 gas.Address = sc->cpu_p_blk + 4; 511 acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &cpu_rid, &gas, 512 &cx_ptr->p_lvlx); 513 if (cx_ptr->p_lvlx != NULL) { 514 cpu_rid++; 515 cx_ptr->type = ACPI_STATE_C2; 516 cx_ptr->trans_lat = AcpiGbl_FADT->Plvl2Lat; 517 cpu_non_c3 = 1; 518 cx_ptr++; 519 sc->cpu_cx_count++; 520 } 521 } 522 if (sc->cpu_p_blk_len < 6) 523 goto done; 524 525 /* Validate and allocate resources for C3 (P_LVL3). */ 526 if (AcpiGbl_FADT->Plvl3Lat <= 1000 && 527 (cpu_quirks & CPU_QUIRK_NO_C3) == 0) { 528 gas.Address = sc->cpu_p_blk + 5; 529 acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &cpu_rid, &gas, 530 &cx_ptr->p_lvlx); 531 if (cx_ptr->p_lvlx != NULL) { 532 cpu_rid++; 533 cx_ptr->type = ACPI_STATE_C3; 534 cx_ptr->trans_lat = AcpiGbl_FADT->Plvl3Lat; 535 cx_ptr++; 536 sc->cpu_cx_count++; 537 } 538 } 539 } 540 541 done: 542 /* If no valid registers were found, don't attach. */ 543 if (sc->cpu_cx_count == 0) 544 return (ENXIO); 545 546 /* Use initial sleep value of 1 sec. to start with lowest idle state. */ 547 sc->cpu_prev_sleep = 1000000; 548 549 return (0); 550 } 551 552 /* 553 * Parse a _CST package and set up its Cx states. Since the _CST object 554 * can change dynamically, our notify handler may call this function 555 * to clean up and probe the new _CST package. 556 */ 557 static int 558 acpi_cpu_cx_cst(struct acpi_cpu_softc *sc) 559 { 560 struct acpi_cx *cx_ptr; 561 ACPI_STATUS status; 562 ACPI_BUFFER buf; 563 ACPI_OBJECT *top; 564 ACPI_OBJECT *pkg; 565 uint32_t count; 566 int i; 567 568 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 569 570 buf.Pointer = NULL; 571 buf.Length = ACPI_ALLOCATE_BUFFER; 572 status = AcpiEvaluateObject(sc->cpu_handle, "_CST", NULL, &buf); 573 if (ACPI_FAILURE(status)) 574 return (ENXIO); 575 576 /* _CST is a package with a count and at least one Cx package. */ 577 top = (ACPI_OBJECT *)buf.Pointer; 578 if (!ACPI_PKG_VALID(top, 2) || acpi_PkgInt32(top, 0, &count) != 0) { 579 device_printf(sc->cpu_dev, "Invalid _CST package\n"); 580 AcpiOsFree(buf.Pointer); 581 return (ENXIO); 582 } 583 if (count != top->Package.Count - 1) { 584 device_printf(sc->cpu_dev, "Invalid _CST state count (%d != %d)\n", 585 count, top->Package.Count - 1); 586 count = top->Package.Count - 1; 587 } 588 if (count > MAX_CX_STATES) { 589 device_printf(sc->cpu_dev, "_CST has too many states (%d)\n", count); 590 count = MAX_CX_STATES; 591 } 592 593 /* Set up all valid states. */ 594 sc->cpu_cx_count = 0; 595 cx_ptr = sc->cpu_cx_states; 596 for (i = 0; i < count; i++) { 597 pkg = &top->Package.Elements[i + 1]; 598 if (!ACPI_PKG_VALID(pkg, 4) || 599 acpi_PkgInt32(pkg, 1, &cx_ptr->type) != 0 || 600 acpi_PkgInt32(pkg, 2, &cx_ptr->trans_lat) != 0 || 601 acpi_PkgInt32(pkg, 3, &cx_ptr->power) != 0) { 602 603 device_printf(sc->cpu_dev, "skipping invalid Cx state package\n"); 604 continue; 605 } 606 607 /* Validate the state to see if we should use it. */ 608 switch (cx_ptr->type) { 609 case ACPI_STATE_C1: 610 cpu_non_c3 = i; 611 cx_ptr++; 612 sc->cpu_cx_count++; 613 continue; 614 case ACPI_STATE_C2: 615 if (cx_ptr->trans_lat > 100) { 616 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 617 "acpi_cpu%d: C2[%d] not available.\n", 618 device_get_unit(sc->cpu_dev), i)); 619 continue; 620 } 621 cpu_non_c3 = i; 622 break; 623 case ACPI_STATE_C3: 624 default: 625 if (cx_ptr->trans_lat > 1000 || 626 (cpu_quirks & CPU_QUIRK_NO_C3) != 0) { 627 628 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 629 "acpi_cpu%d: C3[%d] not available.\n", 630 device_get_unit(sc->cpu_dev), i)); 631 continue; 632 } 633 break; 634 } 635 636 #ifdef notyet 637 /* Free up any previous register. */ 638 if (cx_ptr->p_lvlx != NULL) { 639 bus_release_resource(sc->cpu_dev, 0, 0, cx_ptr->p_lvlx); 640 cx_ptr->p_lvlx = NULL; 641 } 642 #endif 643 644 /* Allocate the control register for C2 or C3. */ 645 acpi_PkgGas(sc->cpu_dev, pkg, 0, &cx_ptr->res_type, &cpu_rid, 646 &cx_ptr->p_lvlx); 647 if (cx_ptr->p_lvlx) { 648 cpu_rid++; 649 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 650 "acpi_cpu%d: Got C%d - %d latency\n", 651 device_get_unit(sc->cpu_dev), cx_ptr->type, 652 cx_ptr->trans_lat)); 653 cx_ptr++; 654 sc->cpu_cx_count++; 655 } 656 } 657 AcpiOsFree(buf.Pointer); 658 659 return (0); 660 } 661 662 /* 663 * Call this *after* all CPUs have been attached. 664 */ 665 static void 666 acpi_cpu_startup(void *arg) 667 { 668 struct acpi_cpu_softc *sc; 669 int count, i; 670 671 /* Get set of CPU devices */ 672 devclass_get_devices(acpi_cpu_devclass, &cpu_devices, &cpu_ndevices); 673 674 /* Check for quirks via the first CPU device. */ 675 sc = device_get_softc(cpu_devices[0]); 676 acpi_cpu_quirks(sc); 677 678 /* 679 * Make sure all the processors' Cx counts match. We should probably 680 * also check the contents of each. However, no known systems have 681 * non-matching Cx counts so we'll deal with this later. 682 */ 683 count = MAX_CX_STATES; 684 for (i = 0; i < cpu_ndevices; i++) { 685 sc = device_get_softc(cpu_devices[i]); 686 count = min(sc->cpu_cx_count, count); 687 } 688 cpu_cx_count = count; 689 690 /* Perform Cx final initialization. */ 691 sc = device_get_softc(cpu_devices[0]); 692 if (cpu_cx_count > 0) 693 acpi_cpu_startup_cx(); 694 } 695 696 static void 697 acpi_cpu_startup_cx() 698 { 699 struct acpi_cpu_softc *sc; 700 struct sbuf sb; 701 int i; 702 703 /* 704 * Set up the list of Cx states, eliminating C3 states by truncating 705 * cpu_cx_count if quirks indicate C3 is not usable. 706 */ 707 sc = device_get_softc(cpu_devices[0]); 708 sbuf_new(&sb, cpu_cx_supported, sizeof(cpu_cx_supported), SBUF_FIXEDLEN); 709 for (i = 0; i < cpu_cx_count; i++) { 710 if ((cpu_quirks & CPU_QUIRK_NO_C3) == 0 || 711 sc->cpu_cx_states[i].type != ACPI_STATE_C3) 712 sbuf_printf(&sb, "C%d/%d ", i + 1, sc->cpu_cx_states[i].trans_lat); 713 else 714 cpu_cx_count = i; 715 } 716 sbuf_trim(&sb); 717 sbuf_finish(&sb); 718 SYSCTL_ADD_STRING(&acpi_cpu_sysctl_ctx, 719 SYSCTL_CHILDREN(acpi_cpu_sysctl_tree), 720 OID_AUTO, "cx_supported", CTLFLAG_RD, cpu_cx_supported, 721 0, "Cx/microsecond values for supported Cx states"); 722 SYSCTL_ADD_PROC(&acpi_cpu_sysctl_ctx, 723 SYSCTL_CHILDREN(acpi_cpu_sysctl_tree), 724 OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW, 725 NULL, 0, acpi_cpu_cx_lowest_sysctl, "A", 726 "lowest Cx sleep state to use"); 727 SYSCTL_ADD_PROC(&acpi_cpu_sysctl_ctx, 728 SYSCTL_CHILDREN(acpi_cpu_sysctl_tree), 729 OID_AUTO, "cx_usage", CTLTYPE_STRING | CTLFLAG_RD, 730 NULL, 0, acpi_cpu_usage_sysctl, "A", 731 "percent usage for each Cx state"); 732 733 #ifdef notyet 734 /* Signal platform that we can handle _CST notification. */ 735 if (cpu_cst_cnt != 0) { 736 ACPI_LOCK(acpi); 737 AcpiOsWritePort(cpu_smi_cmd, cpu_cst_cnt, 8); 738 ACPI_UNLOCK(acpi); 739 } 740 #endif 741 742 /* Take over idling from cpu_idle_default(). */ 743 cpu_idle_hook = acpi_cpu_idle; 744 } 745 746 /* 747 * Idle the CPU in the lowest state possible. This function is called with 748 * interrupts disabled. Note that once it re-enables interrupts, a task 749 * switch can occur so do not access shared data (i.e. the softc) after 750 * interrupts are re-enabled. 751 */ 752 static void 753 acpi_cpu_idle() 754 { 755 struct acpi_cpu_softc *sc; 756 struct acpi_cx *cx_next; 757 uint32_t start_time, end_time; 758 int bm_active, cx_next_idx, i; 759 760 /* If disabled, return immediately. */ 761 if (cpu_cx_count == 0) { 762 ACPI_ENABLE_IRQS(); 763 return; 764 } 765 766 /* 767 * Look up our CPU id to get our softc. If it's NULL, we'll use C1 768 * since there is no ACPI processor object for this CPU. This occurs 769 * for logical CPUs in the HTT case. 770 */ 771 sc = cpu_softc[PCPU_GET(cpuid)]; 772 if (sc == NULL) { 773 acpi_cpu_c1(); 774 return; 775 } 776 777 /* 778 * If we slept 100 us or more, use the lowest Cx state. Otherwise, 779 * find the lowest state that has a latency less than or equal to 780 * the length of our last sleep. 781 */ 782 cx_next_idx = cpu_cx_lowest; 783 if (sc->cpu_prev_sleep < 100) { 784 /* 785 * If we sleep too short all the time, this system may not implement 786 * C2/3 correctly (i.e. reads return immediately). In this case, 787 * back off and use the next higher level. 788 */ 789 if (sc->cpu_prev_sleep <= 1) { 790 cpu_short_slp++; 791 if (cpu_short_slp == 1000 && cpu_cx_lowest != 0) { 792 if (cpu_non_c3 == cpu_cx_lowest && cpu_non_c3 != 0) 793 cpu_non_c3--; 794 cpu_cx_lowest--; 795 cpu_short_slp = 0; 796 device_printf(sc->cpu_dev, 797 "too many short sleeps, backing off to C%d\n", 798 cpu_cx_lowest + 1); 799 } 800 } else 801 cpu_short_slp = 0; 802 803 for (i = cpu_cx_lowest; i >= 0; i--) 804 if (sc->cpu_cx_states[i].trans_lat <= sc->cpu_prev_sleep) { 805 cx_next_idx = i; 806 break; 807 } 808 } 809 810 /* 811 * Check for bus master activity. If there was activity, clear 812 * the bit and use the lowest non-C3 state. Note that the USB 813 * driver polling for new devices keeps this bit set all the 814 * time if USB is loaded. 815 */ 816 if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) { 817 AcpiGetRegister(ACPI_BITREG_BUS_MASTER_STATUS, &bm_active, 818 ACPI_MTX_DO_NOT_LOCK); 819 if (bm_active != 0) { 820 AcpiSetRegister(ACPI_BITREG_BUS_MASTER_STATUS, 1, 821 ACPI_MTX_DO_NOT_LOCK); 822 cx_next_idx = min(cx_next_idx, cpu_non_c3); 823 } 824 } 825 826 /* Select the next state and update statistics. */ 827 cx_next = &sc->cpu_cx_states[cx_next_idx]; 828 cpu_cx_stats[cx_next_idx]++; 829 KASSERT(cx_next->type != ACPI_STATE_C0, ("acpi_cpu_idle: C0 sleep")); 830 831 /* 832 * Execute HLT (or equivalent) and wait for an interrupt. We can't 833 * calculate the time spent in C1 since the place we wake up is an 834 * ISR. Assume we slept one quantum and return. 835 */ 836 if (cx_next->type == ACPI_STATE_C1) { 837 sc->cpu_prev_sleep = 1000000 / hz; 838 acpi_cpu_c1(); 839 return; 840 } 841 842 /* 843 * For C3, disable bus master arbitration and enable bus master wake 844 * if BM control is available, otherwise flush the CPU cache. 845 */ 846 if (cx_next->type == ACPI_STATE_C3) { 847 if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) { 848 AcpiSetRegister(ACPI_BITREG_ARB_DISABLE, 1, ACPI_MTX_DO_NOT_LOCK); 849 AcpiSetRegister(ACPI_BITREG_BUS_MASTER_RLD, 1, 850 ACPI_MTX_DO_NOT_LOCK); 851 } else 852 ACPI_FLUSH_CPU_CACHE(); 853 } 854 855 /* 856 * Read from P_LVLx to enter C2(+), checking time spent asleep. 857 * Use the ACPI timer for measuring sleep time. Since we need to 858 * get the time very close to the CPU start/stop clock logic, this 859 * is the only reliable time source. 860 */ 861 AcpiHwLowLevelRead(32, &start_time, &AcpiGbl_FADT->XPmTmrBlk); 862 CPU_GET_REG(cx_next->p_lvlx, 1); 863 864 /* 865 * Read the end time twice. Since it may take an arbitrary time 866 * to enter the idle state, the first read may be executed before 867 * the processor has stopped. Doing it again provides enough 868 * margin that we are certain to have a correct value. 869 */ 870 AcpiHwLowLevelRead(32, &end_time, &AcpiGbl_FADT->XPmTmrBlk); 871 AcpiHwLowLevelRead(32, &end_time, &AcpiGbl_FADT->XPmTmrBlk); 872 873 /* Enable bus master arbitration and disable bus master wakeup. */ 874 if (cx_next->type == ACPI_STATE_C3 && 875 (cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) { 876 AcpiSetRegister(ACPI_BITREG_ARB_DISABLE, 0, ACPI_MTX_DO_NOT_LOCK); 877 AcpiSetRegister(ACPI_BITREG_BUS_MASTER_RLD, 0, ACPI_MTX_DO_NOT_LOCK); 878 } 879 ACPI_ENABLE_IRQS(); 880 881 /* Find the actual time asleep in microseconds, minus overhead. */ 882 end_time = acpi_TimerDelta(end_time, start_time); 883 sc->cpu_prev_sleep = PM_USEC(end_time) - cx_next->trans_lat; 884 } 885 886 /* 887 * Re-evaluate the _CST object when we are notified that it changed. 888 * 889 * XXX Re-evaluation disabled until locking is done. 890 */ 891 static void 892 acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context) 893 { 894 struct acpi_cpu_softc *sc = (struct acpi_cpu_softc *)context; 895 896 if (notify != ACPI_NOTIFY_CX_STATES) 897 return; 898 899 device_printf(sc->cpu_dev, "Cx states changed\n"); 900 /* acpi_cpu_cx_cst(sc); */ 901 } 902 903 static int 904 acpi_cpu_quirks(struct acpi_cpu_softc *sc) 905 { 906 device_t acpi_dev; 907 908 /* 909 * C3 on multiple CPUs requires using the expensive flush cache 910 * instruction. 911 */ 912 if (mp_ncpus > 1) 913 cpu_quirks |= CPU_QUIRK_NO_BM_CTRL; 914 915 /* Look for various quirks of the PIIX4 part. */ 916 acpi_dev = pci_find_device(PCI_VENDOR_INTEL, PCI_DEVICE_82371AB_3); 917 if (acpi_dev != NULL) { 918 switch (pci_get_revid(acpi_dev)) { 919 /* 920 * Disable C3 support for all PIIX4 chipsets. Some of these parts 921 * do not report the BMIDE status to the BM status register and 922 * others have a livelock bug if Type-F DMA is enabled. Linux 923 * works around the BMIDE bug by reading the BM status directly 924 * but we take the simpler approach of disabling C3 for these 925 * parts. 926 * 927 * See erratum #18 ("C3 Power State/BMIDE and Type-F DMA 928 * Livelock") from the January 2002 PIIX4 specification update. 929 * Applies to all PIIX4 models. 930 */ 931 case PCI_REVISION_4E: 932 case PCI_REVISION_4M: 933 cpu_quirks |= CPU_QUIRK_NO_C3; 934 break; 935 default: 936 break; 937 } 938 } 939 940 return (0); 941 } 942 943 static int 944 acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS) 945 { 946 struct sbuf sb; 947 char buf[128]; 948 int i; 949 uintmax_t fract, sum, whole; 950 951 sum = 0; 952 for (i = 0; i < cpu_cx_count; i++) 953 sum += cpu_cx_stats[i]; 954 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN); 955 for (i = 0; i < cpu_cx_count; i++) { 956 if (sum > 0) { 957 whole = (uintmax_t)cpu_cx_stats[i] * 100; 958 fract = (whole % sum) * 100; 959 sbuf_printf(&sb, "%u.%02u%% ", (u_int)(whole / sum), 960 (u_int)(fract / sum)); 961 } else 962 sbuf_printf(&sb, "0%% "); 963 } 964 sbuf_trim(&sb); 965 sbuf_finish(&sb); 966 sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req); 967 sbuf_delete(&sb); 968 969 return (0); 970 } 971 972 static int 973 acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS) 974 { 975 struct acpi_cpu_softc *sc; 976 char state[8]; 977 int val, error, i; 978 979 sc = device_get_softc(cpu_devices[0]); 980 snprintf(state, sizeof(state), "C%d", cpu_cx_lowest + 1); 981 error = sysctl_handle_string(oidp, state, sizeof(state), req); 982 if (error != 0 || req->newptr == NULL) 983 return (error); 984 if (strlen(state) < 2 || toupper(state[0]) != 'C') 985 return (EINVAL); 986 val = (int) strtol(state + 1, NULL, 10) - 1; 987 if (val < 0 || val > cpu_cx_count - 1) 988 return (EINVAL); 989 990 ACPI_SERIAL_BEGIN(cpu); 991 cpu_cx_lowest = val; 992 993 /* If not disabling, cache the new lowest non-C3 state. */ 994 cpu_non_c3 = 0; 995 for (i = cpu_cx_lowest; i >= 0; i--) { 996 if (sc->cpu_cx_states[i].type < ACPI_STATE_C3) { 997 cpu_non_c3 = i; 998 break; 999 } 1000 } 1001 1002 /* Reset the statistics counters. */ 1003 bzero(cpu_cx_stats, sizeof(cpu_cx_stats)); 1004 ACPI_SERIAL_END(cpu); 1005 1006 return (0); 1007 } 1008