1 /*- 2 * Copyright (c) 2003-2005 Nate Lawson (SDG) 3 * Copyright (c) 2001 Michael Smith 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include "opt_acpi.h" 32 #include <sys/param.h> 33 #include <sys/bus.h> 34 #include <sys/cpu.h> 35 #include <sys/kernel.h> 36 #include <sys/malloc.h> 37 #include <sys/module.h> 38 #include <sys/pcpu.h> 39 #include <sys/power.h> 40 #include <sys/proc.h> 41 #include <sys/sbuf.h> 42 #include <sys/smp.h> 43 44 #include <dev/pci/pcivar.h> 45 #include <machine/atomic.h> 46 #include <machine/bus.h> 47 #if defined(__amd64__) || defined(__i386__) 48 #include <machine/clock.h> 49 #endif 50 #include <sys/rman.h> 51 52 #include <contrib/dev/acpica/include/acpi.h> 53 #include <contrib/dev/acpica/include/accommon.h> 54 55 #include <dev/acpica/acpivar.h> 56 57 /* 58 * Support for ACPI Processor devices, including C[1-3] sleep states. 59 */ 60 61 /* Hooks for the ACPI CA debugging infrastructure */ 62 #define _COMPONENT ACPI_PROCESSOR 63 ACPI_MODULE_NAME("PROCESSOR") 64 65 struct acpi_cx { 66 struct resource *p_lvlx; /* Register to read to enter state. */ 67 uint32_t type; /* C1-3 (C4 and up treated as C3). */ 68 uint32_t trans_lat; /* Transition latency (usec). */ 69 uint32_t power; /* Power consumed (mW). */ 70 int res_type; /* Resource type for p_lvlx. */ 71 }; 72 #define MAX_CX_STATES 8 73 74 struct acpi_cpu_softc { 75 device_t cpu_dev; 76 ACPI_HANDLE cpu_handle; 77 struct pcpu *cpu_pcpu; 78 uint32_t cpu_acpi_id; /* ACPI processor id */ 79 uint32_t cpu_p_blk; /* ACPI P_BLK location */ 80 uint32_t cpu_p_blk_len; /* P_BLK length (must be 6). */ 81 struct acpi_cx cpu_cx_states[MAX_CX_STATES]; 82 int cpu_cx_count; /* Number of valid Cx states. */ 83 int cpu_prev_sleep;/* Last idle sleep duration. */ 84 int cpu_features; /* Child driver supported features. */ 85 /* Runtime state. */ 86 int cpu_non_c3; /* Index of lowest non-C3 state. */ 87 u_int cpu_cx_stats[MAX_CX_STATES];/* Cx usage history. */ 88 /* Values for sysctl. */ 89 struct sysctl_ctx_list cpu_sysctl_ctx; 90 struct sysctl_oid *cpu_sysctl_tree; 91 int cpu_cx_lowest; 92 char cpu_cx_supported[64]; 93 int cpu_rid; 94 }; 95 96 struct acpi_cpu_device { 97 struct resource_list ad_rl; 98 }; 99 100 #define CPU_GET_REG(reg, width) \ 101 (bus_space_read_ ## width(rman_get_bustag((reg)), \ 102 rman_get_bushandle((reg)), 0)) 103 #define CPU_SET_REG(reg, width, val) \ 104 (bus_space_write_ ## width(rman_get_bustag((reg)), \ 105 rman_get_bushandle((reg)), 0, (val))) 106 107 #define PM_USEC(x) ((x) >> 2) /* ~4 clocks per usec (3.57955 Mhz) */ 108 109 #define ACPI_NOTIFY_CX_STATES 0x81 /* _CST changed. */ 110 111 #define CPU_QUIRK_NO_C3 (1<<0) /* C3-type states are not usable. */ 112 #define CPU_QUIRK_NO_BM_CTRL (1<<2) /* No bus mastering control. */ 113 114 #define PCI_VENDOR_INTEL 0x8086 115 #define PCI_DEVICE_82371AB_3 0x7113 /* PIIX4 chipset for quirks. */ 116 #define PCI_REVISION_A_STEP 0 117 #define PCI_REVISION_B_STEP 1 118 #define PCI_REVISION_4E 2 119 #define PCI_REVISION_4M 3 120 #define PIIX4_DEVACTB_REG 0x58 121 #define PIIX4_BRLD_EN_IRQ0 (1<<0) 122 #define PIIX4_BRLD_EN_IRQ (1<<1) 123 #define PIIX4_BRLD_EN_IRQ8 (1<<5) 124 #define PIIX4_STOP_BREAK_MASK (PIIX4_BRLD_EN_IRQ0 | PIIX4_BRLD_EN_IRQ | PIIX4_BRLD_EN_IRQ8) 125 #define PIIX4_PCNTRL_BST_EN (1<<10) 126 127 /* Platform hardware resource information. */ 128 static uint32_t cpu_smi_cmd; /* Value to write to SMI_CMD. */ 129 static uint8_t cpu_cst_cnt; /* Indicate we are _CST aware. */ 130 static int cpu_quirks; /* Indicate any hardware bugs. */ 131 132 /* Runtime state. */ 133 static int cpu_disable_idle; /* Disable entry to idle function */ 134 static int cpu_cx_count; /* Number of valid Cx states */ 135 136 /* Values for sysctl. */ 137 static struct sysctl_ctx_list cpu_sysctl_ctx; 138 static struct sysctl_oid *cpu_sysctl_tree; 139 static int cpu_cx_generic; 140 static int cpu_cx_lowest; 141 142 static device_t *cpu_devices; 143 static int cpu_ndevices; 144 static struct acpi_cpu_softc **cpu_softc; 145 ACPI_SERIAL_DECL(cpu, "ACPI CPU"); 146 147 static int acpi_cpu_probe(device_t dev); 148 static int acpi_cpu_attach(device_t dev); 149 static int acpi_cpu_suspend(device_t dev); 150 static int acpi_cpu_resume(device_t dev); 151 static int acpi_pcpu_get_id(uint32_t idx, uint32_t *acpi_id, 152 uint32_t *cpu_id); 153 static struct resource_list *acpi_cpu_get_rlist(device_t dev, device_t child); 154 static device_t acpi_cpu_add_child(device_t dev, u_int order, const char *name, 155 int unit); 156 static int acpi_cpu_read_ivar(device_t dev, device_t child, int index, 157 uintptr_t *result); 158 static int acpi_cpu_shutdown(device_t dev); 159 static void acpi_cpu_cx_probe(struct acpi_cpu_softc *sc); 160 static void acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc); 161 static int acpi_cpu_cx_cst(struct acpi_cpu_softc *sc); 162 static void acpi_cpu_startup(void *arg); 163 static void acpi_cpu_startup_cx(struct acpi_cpu_softc *sc); 164 static void acpi_cpu_cx_list(struct acpi_cpu_softc *sc); 165 static void acpi_cpu_idle(void); 166 static void acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context); 167 static int acpi_cpu_quirks(void); 168 static int acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS); 169 static int acpi_cpu_set_cx_lowest(struct acpi_cpu_softc *sc, int val); 170 static int acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS); 171 static int acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS); 172 173 static device_method_t acpi_cpu_methods[] = { 174 /* Device interface */ 175 DEVMETHOD(device_probe, acpi_cpu_probe), 176 DEVMETHOD(device_attach, acpi_cpu_attach), 177 DEVMETHOD(device_detach, bus_generic_detach), 178 DEVMETHOD(device_shutdown, acpi_cpu_shutdown), 179 DEVMETHOD(device_suspend, acpi_cpu_suspend), 180 DEVMETHOD(device_resume, acpi_cpu_resume), 181 182 /* Bus interface */ 183 DEVMETHOD(bus_add_child, acpi_cpu_add_child), 184 DEVMETHOD(bus_read_ivar, acpi_cpu_read_ivar), 185 DEVMETHOD(bus_get_resource_list, acpi_cpu_get_rlist), 186 DEVMETHOD(bus_get_resource, bus_generic_rl_get_resource), 187 DEVMETHOD(bus_set_resource, bus_generic_rl_set_resource), 188 DEVMETHOD(bus_alloc_resource, bus_generic_rl_alloc_resource), 189 DEVMETHOD(bus_release_resource, bus_generic_rl_release_resource), 190 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 191 DEVMETHOD(bus_activate_resource, bus_generic_activate_resource), 192 DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource), 193 DEVMETHOD(bus_setup_intr, bus_generic_setup_intr), 194 DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr), 195 196 {0, 0} 197 }; 198 199 static driver_t acpi_cpu_driver = { 200 "cpu", 201 acpi_cpu_methods, 202 sizeof(struct acpi_cpu_softc), 203 }; 204 205 static devclass_t acpi_cpu_devclass; 206 DRIVER_MODULE(cpu, acpi, acpi_cpu_driver, acpi_cpu_devclass, 0, 0); 207 MODULE_DEPEND(cpu, acpi, 1, 1, 1); 208 209 static int 210 acpi_cpu_probe(device_t dev) 211 { 212 int acpi_id, cpu_id; 213 ACPI_BUFFER buf; 214 ACPI_HANDLE handle; 215 ACPI_OBJECT *obj; 216 ACPI_STATUS status; 217 218 if (acpi_disabled("cpu") || acpi_get_type(dev) != ACPI_TYPE_PROCESSOR) 219 return (ENXIO); 220 221 handle = acpi_get_handle(dev); 222 if (cpu_softc == NULL) 223 cpu_softc = malloc(sizeof(struct acpi_cpu_softc *) * 224 (mp_maxid + 1), M_TEMP /* XXX */, M_WAITOK | M_ZERO); 225 226 /* Get our Processor object. */ 227 buf.Pointer = NULL; 228 buf.Length = ACPI_ALLOCATE_BUFFER; 229 status = AcpiEvaluateObject(handle, NULL, NULL, &buf); 230 if (ACPI_FAILURE(status)) { 231 device_printf(dev, "probe failed to get Processor obj - %s\n", 232 AcpiFormatException(status)); 233 return (ENXIO); 234 } 235 obj = (ACPI_OBJECT *)buf.Pointer; 236 if (obj->Type != ACPI_TYPE_PROCESSOR) { 237 device_printf(dev, "Processor object has bad type %d\n", obj->Type); 238 AcpiOsFree(obj); 239 return (ENXIO); 240 } 241 242 /* 243 * Find the processor associated with our unit. We could use the 244 * ProcId as a key, however, some boxes do not have the same values 245 * in their Processor object as the ProcId values in the MADT. 246 */ 247 acpi_id = obj->Processor.ProcId; 248 AcpiOsFree(obj); 249 if (acpi_pcpu_get_id(device_get_unit(dev), &acpi_id, &cpu_id) != 0) 250 return (ENXIO); 251 252 /* 253 * Check if we already probed this processor. We scan the bus twice 254 * so it's possible we've already seen this one. 255 */ 256 if (cpu_softc[cpu_id] != NULL) 257 return (ENXIO); 258 259 /* Mark this processor as in-use and save our derived id for attach. */ 260 cpu_softc[cpu_id] = (void *)1; 261 acpi_set_private(dev, (void*)(intptr_t)cpu_id); 262 device_set_desc(dev, "ACPI CPU"); 263 264 return (0); 265 } 266 267 static int 268 acpi_cpu_attach(device_t dev) 269 { 270 ACPI_BUFFER buf; 271 ACPI_OBJECT arg[4], *obj; 272 ACPI_OBJECT_LIST arglist; 273 struct pcpu *pcpu_data; 274 struct acpi_cpu_softc *sc; 275 struct acpi_softc *acpi_sc; 276 ACPI_STATUS status; 277 u_int features; 278 int cpu_id, drv_count, i; 279 driver_t **drivers; 280 uint32_t cap_set[3]; 281 282 /* UUID needed by _OSC evaluation */ 283 static uint8_t cpu_oscuuid[16] = { 0x16, 0xA6, 0x77, 0x40, 0x0C, 0x29, 284 0xBE, 0x47, 0x9E, 0xBD, 0xD8, 0x70, 285 0x58, 0x71, 0x39, 0x53 }; 286 287 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 288 289 sc = device_get_softc(dev); 290 sc->cpu_dev = dev; 291 sc->cpu_handle = acpi_get_handle(dev); 292 cpu_id = (int)(intptr_t)acpi_get_private(dev); 293 cpu_softc[cpu_id] = sc; 294 pcpu_data = pcpu_find(cpu_id); 295 pcpu_data->pc_device = dev; 296 sc->cpu_pcpu = pcpu_data; 297 cpu_smi_cmd = AcpiGbl_FADT.SmiCommand; 298 cpu_cst_cnt = AcpiGbl_FADT.CstControl; 299 300 buf.Pointer = NULL; 301 buf.Length = ACPI_ALLOCATE_BUFFER; 302 status = AcpiEvaluateObject(sc->cpu_handle, NULL, NULL, &buf); 303 if (ACPI_FAILURE(status)) { 304 device_printf(dev, "attach failed to get Processor obj - %s\n", 305 AcpiFormatException(status)); 306 return (ENXIO); 307 } 308 obj = (ACPI_OBJECT *)buf.Pointer; 309 sc->cpu_p_blk = obj->Processor.PblkAddress; 310 sc->cpu_p_blk_len = obj->Processor.PblkLength; 311 sc->cpu_acpi_id = obj->Processor.ProcId; 312 AcpiOsFree(obj); 313 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu%d: P_BLK at %#x/%d\n", 314 device_get_unit(dev), sc->cpu_p_blk, sc->cpu_p_blk_len)); 315 316 /* 317 * If this is the first cpu we attach, create and initialize the generic 318 * resources that will be used by all acpi cpu devices. 319 */ 320 if (device_get_unit(dev) == 0) { 321 /* Assume we won't be using generic Cx mode by default */ 322 cpu_cx_generic = FALSE; 323 324 /* Install hw.acpi.cpu sysctl tree */ 325 acpi_sc = acpi_device_get_parent_softc(dev); 326 sysctl_ctx_init(&cpu_sysctl_ctx); 327 cpu_sysctl_tree = SYSCTL_ADD_NODE(&cpu_sysctl_ctx, 328 SYSCTL_CHILDREN(acpi_sc->acpi_sysctl_tree), OID_AUTO, "cpu", 329 CTLFLAG_RD, 0, "node for CPU children"); 330 331 /* Queue post cpu-probing task handler */ 332 AcpiOsExecute(OSL_NOTIFY_HANDLER, acpi_cpu_startup, NULL); 333 } 334 335 /* 336 * Before calling any CPU methods, collect child driver feature hints 337 * and notify ACPI of them. We support unified SMP power control 338 * so advertise this ourselves. Note this is not the same as independent 339 * SMP control where each CPU can have different settings. 340 */ 341 sc->cpu_features = ACPI_CAP_SMP_SAME | ACPI_CAP_SMP_SAME_C3; 342 if (devclass_get_drivers(acpi_cpu_devclass, &drivers, &drv_count) == 0) { 343 for (i = 0; i < drv_count; i++) { 344 if (ACPI_GET_FEATURES(drivers[i], &features) == 0) 345 sc->cpu_features |= features; 346 } 347 free(drivers, M_TEMP); 348 } 349 350 /* 351 * CPU capabilities are specified in 352 * Intel Processor Vendor-Specific ACPI Interface Specification. 353 */ 354 if (sc->cpu_features) { 355 arglist.Pointer = arg; 356 arglist.Count = 4; 357 arg[0].Type = ACPI_TYPE_BUFFER; 358 arg[0].Buffer.Length = sizeof(cpu_oscuuid); 359 arg[0].Buffer.Pointer = cpu_oscuuid; /* UUID */ 360 arg[1].Type = ACPI_TYPE_INTEGER; 361 arg[1].Integer.Value = 1; /* revision */ 362 arg[2].Type = ACPI_TYPE_INTEGER; 363 arg[2].Integer.Value = 1; /* count */ 364 arg[3].Type = ACPI_TYPE_BUFFER; 365 arg[3].Buffer.Length = sizeof(cap_set); /* Capabilities buffer */ 366 arg[3].Buffer.Pointer = (uint8_t *)cap_set; 367 cap_set[0] = 0; /* status */ 368 cap_set[1] = sc->cpu_features; 369 status = AcpiEvaluateObject(sc->cpu_handle, "_OSC", &arglist, NULL); 370 if (ACPI_SUCCESS(status)) { 371 if (cap_set[0] != 0) 372 device_printf(dev, "_OSC returned status %#x\n", cap_set[0]); 373 } 374 else { 375 arglist.Pointer = arg; 376 arglist.Count = 1; 377 arg[0].Type = ACPI_TYPE_BUFFER; 378 arg[0].Buffer.Length = sizeof(cap_set); 379 arg[0].Buffer.Pointer = (uint8_t *)cap_set; 380 cap_set[0] = 1; /* revision */ 381 cap_set[1] = 1; /* number of capabilities integers */ 382 cap_set[2] = sc->cpu_features; 383 AcpiEvaluateObject(sc->cpu_handle, "_PDC", &arglist, NULL); 384 } 385 } 386 387 /* Probe for Cx state support. */ 388 acpi_cpu_cx_probe(sc); 389 390 return (0); 391 } 392 393 static void 394 acpi_cpu_postattach(void *unused __unused) 395 { 396 device_t *devices; 397 int err; 398 int i, n; 399 400 err = devclass_get_devices(acpi_cpu_devclass, &devices, &n); 401 if (err != 0) { 402 printf("devclass_get_devices(acpi_cpu_devclass) failed\n"); 403 return; 404 } 405 for (i = 0; i < n; i++) 406 bus_generic_probe(devices[i]); 407 for (i = 0; i < n; i++) 408 bus_generic_attach(devices[i]); 409 free(devices, M_TEMP); 410 } 411 412 SYSINIT(acpi_cpu, SI_SUB_CONFIGURE, SI_ORDER_MIDDLE, 413 acpi_cpu_postattach, NULL); 414 415 /* 416 * Disable any entry to the idle function during suspend and re-enable it 417 * during resume. 418 */ 419 static int 420 acpi_cpu_suspend(device_t dev) 421 { 422 int error; 423 424 error = bus_generic_suspend(dev); 425 if (error) 426 return (error); 427 cpu_disable_idle = TRUE; 428 return (0); 429 } 430 431 static int 432 acpi_cpu_resume(device_t dev) 433 { 434 435 cpu_disable_idle = FALSE; 436 return (bus_generic_resume(dev)); 437 } 438 439 /* 440 * Find the nth present CPU and return its pc_cpuid as well as set the 441 * pc_acpi_id from the most reliable source. 442 */ 443 static int 444 acpi_pcpu_get_id(uint32_t idx, uint32_t *acpi_id, uint32_t *cpu_id) 445 { 446 struct pcpu *pcpu_data; 447 uint32_t i; 448 449 KASSERT(acpi_id != NULL, ("Null acpi_id")); 450 KASSERT(cpu_id != NULL, ("Null cpu_id")); 451 CPU_FOREACH(i) { 452 pcpu_data = pcpu_find(i); 453 KASSERT(pcpu_data != NULL, ("no pcpu data for %d", i)); 454 if (idx-- == 0) { 455 /* 456 * If pc_acpi_id was not initialized (e.g., a non-APIC UP box) 457 * override it with the value from the ASL. Otherwise, if the 458 * two don't match, prefer the MADT-derived value. Finally, 459 * return the pc_cpuid to reference this processor. 460 */ 461 if (pcpu_data->pc_acpi_id == 0xffffffff) 462 pcpu_data->pc_acpi_id = *acpi_id; 463 else if (pcpu_data->pc_acpi_id != *acpi_id) 464 *acpi_id = pcpu_data->pc_acpi_id; 465 *cpu_id = pcpu_data->pc_cpuid; 466 return (0); 467 } 468 } 469 470 return (ESRCH); 471 } 472 473 static struct resource_list * 474 acpi_cpu_get_rlist(device_t dev, device_t child) 475 { 476 struct acpi_cpu_device *ad; 477 478 ad = device_get_ivars(child); 479 if (ad == NULL) 480 return (NULL); 481 return (&ad->ad_rl); 482 } 483 484 static device_t 485 acpi_cpu_add_child(device_t dev, u_int order, const char *name, int unit) 486 { 487 struct acpi_cpu_device *ad; 488 device_t child; 489 490 if ((ad = malloc(sizeof(*ad), M_TEMP, M_NOWAIT | M_ZERO)) == NULL) 491 return (NULL); 492 493 resource_list_init(&ad->ad_rl); 494 495 child = device_add_child_ordered(dev, order, name, unit); 496 if (child != NULL) 497 device_set_ivars(child, ad); 498 else 499 free(ad, M_TEMP); 500 return (child); 501 } 502 503 static int 504 acpi_cpu_read_ivar(device_t dev, device_t child, int index, uintptr_t *result) 505 { 506 struct acpi_cpu_softc *sc; 507 508 sc = device_get_softc(dev); 509 switch (index) { 510 case ACPI_IVAR_HANDLE: 511 *result = (uintptr_t)sc->cpu_handle; 512 break; 513 case CPU_IVAR_PCPU: 514 *result = (uintptr_t)sc->cpu_pcpu; 515 break; 516 #if defined(__amd64__) || defined(__i386__) 517 case CPU_IVAR_NOMINAL_MHZ: 518 if (tsc_is_invariant) { 519 *result = (uintptr_t)(atomic_load_acq_64(&tsc_freq) / 1000000); 520 break; 521 } 522 /* FALLTHROUGH */ 523 #endif 524 default: 525 return (ENOENT); 526 } 527 return (0); 528 } 529 530 static int 531 acpi_cpu_shutdown(device_t dev) 532 { 533 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 534 535 /* Allow children to shutdown first. */ 536 bus_generic_shutdown(dev); 537 538 /* 539 * Disable any entry to the idle function. There is a small race where 540 * an idle thread have passed this check but not gone to sleep. This 541 * is ok since device_shutdown() does not free the softc, otherwise 542 * we'd have to be sure all threads were evicted before returning. 543 */ 544 cpu_disable_idle = TRUE; 545 546 return_VALUE (0); 547 } 548 549 static void 550 acpi_cpu_cx_probe(struct acpi_cpu_softc *sc) 551 { 552 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 553 554 /* Use initial sleep value of 1 sec. to start with lowest idle state. */ 555 sc->cpu_prev_sleep = 1000000; 556 sc->cpu_cx_lowest = 0; 557 558 /* 559 * Check for the ACPI 2.0 _CST sleep states object. If we can't find 560 * any, we'll revert to generic FADT/P_BLK Cx control method which will 561 * be handled by acpi_cpu_startup. We need to defer to after having 562 * probed all the cpus in the system before probing for generic Cx 563 * states as we may already have found cpus with valid _CST packages 564 */ 565 if (!cpu_cx_generic && acpi_cpu_cx_cst(sc) != 0) { 566 /* 567 * We were unable to find a _CST package for this cpu or there 568 * was an error parsing it. Switch back to generic mode. 569 */ 570 cpu_cx_generic = TRUE; 571 if (bootverbose) 572 device_printf(sc->cpu_dev, "switching to generic Cx mode\n"); 573 } 574 575 /* 576 * TODO: _CSD Package should be checked here. 577 */ 578 } 579 580 static void 581 acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc) 582 { 583 ACPI_GENERIC_ADDRESS gas; 584 struct acpi_cx *cx_ptr; 585 586 sc->cpu_cx_count = 0; 587 cx_ptr = sc->cpu_cx_states; 588 589 /* Use initial sleep value of 1 sec. to start with lowest idle state. */ 590 sc->cpu_prev_sleep = 1000000; 591 592 /* C1 has been required since just after ACPI 1.0 */ 593 cx_ptr->type = ACPI_STATE_C1; 594 cx_ptr->trans_lat = 0; 595 cx_ptr++; 596 sc->cpu_cx_count++; 597 598 /* 599 * The spec says P_BLK must be 6 bytes long. However, some systems 600 * use it to indicate a fractional set of features present so we 601 * take 5 as C2. Some may also have a value of 7 to indicate 602 * another C3 but most use _CST for this (as required) and having 603 * "only" C1-C3 is not a hardship. 604 */ 605 if (sc->cpu_p_blk_len < 5) 606 return; 607 608 /* Validate and allocate resources for C2 (P_LVL2). */ 609 gas.SpaceId = ACPI_ADR_SPACE_SYSTEM_IO; 610 gas.BitWidth = 8; 611 if (AcpiGbl_FADT.C2Latency <= 100) { 612 gas.Address = sc->cpu_p_blk + 4; 613 acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &sc->cpu_rid, 614 &gas, &cx_ptr->p_lvlx, RF_SHAREABLE); 615 if (cx_ptr->p_lvlx != NULL) { 616 sc->cpu_rid++; 617 cx_ptr->type = ACPI_STATE_C2; 618 cx_ptr->trans_lat = AcpiGbl_FADT.C2Latency; 619 cx_ptr++; 620 sc->cpu_cx_count++; 621 } 622 } 623 if (sc->cpu_p_blk_len < 6) 624 return; 625 626 /* Validate and allocate resources for C3 (P_LVL3). */ 627 if (AcpiGbl_FADT.C3Latency <= 1000 && !(cpu_quirks & CPU_QUIRK_NO_C3)) { 628 gas.Address = sc->cpu_p_blk + 5; 629 acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &sc->cpu_rid, &gas, 630 &cx_ptr->p_lvlx, RF_SHAREABLE); 631 if (cx_ptr->p_lvlx != NULL) { 632 sc->cpu_rid++; 633 cx_ptr->type = ACPI_STATE_C3; 634 cx_ptr->trans_lat = AcpiGbl_FADT.C3Latency; 635 cx_ptr++; 636 sc->cpu_cx_count++; 637 } 638 } 639 } 640 641 /* 642 * Parse a _CST package and set up its Cx states. Since the _CST object 643 * can change dynamically, our notify handler may call this function 644 * to clean up and probe the new _CST package. 645 */ 646 static int 647 acpi_cpu_cx_cst(struct acpi_cpu_softc *sc) 648 { 649 struct acpi_cx *cx_ptr; 650 ACPI_STATUS status; 651 ACPI_BUFFER buf; 652 ACPI_OBJECT *top; 653 ACPI_OBJECT *pkg; 654 uint32_t count; 655 int i; 656 657 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 658 659 buf.Pointer = NULL; 660 buf.Length = ACPI_ALLOCATE_BUFFER; 661 status = AcpiEvaluateObject(sc->cpu_handle, "_CST", NULL, &buf); 662 if (ACPI_FAILURE(status)) 663 return (ENXIO); 664 665 /* _CST is a package with a count and at least one Cx package. */ 666 top = (ACPI_OBJECT *)buf.Pointer; 667 if (!ACPI_PKG_VALID(top, 2) || acpi_PkgInt32(top, 0, &count) != 0) { 668 device_printf(sc->cpu_dev, "invalid _CST package\n"); 669 AcpiOsFree(buf.Pointer); 670 return (ENXIO); 671 } 672 if (count != top->Package.Count - 1) { 673 device_printf(sc->cpu_dev, "invalid _CST state count (%d != %d)\n", 674 count, top->Package.Count - 1); 675 count = top->Package.Count - 1; 676 } 677 if (count > MAX_CX_STATES) { 678 device_printf(sc->cpu_dev, "_CST has too many states (%d)\n", count); 679 count = MAX_CX_STATES; 680 } 681 682 sc->cpu_non_c3 = 0; 683 sc->cpu_cx_count = 0; 684 cx_ptr = sc->cpu_cx_states; 685 686 /* 687 * C1 has been required since just after ACPI 1.0. 688 * Reserve the first slot for it. 689 */ 690 cx_ptr->type = ACPI_STATE_C0; 691 cx_ptr++; 692 sc->cpu_cx_count++; 693 694 /* Set up all valid states. */ 695 for (i = 0; i < count; i++) { 696 pkg = &top->Package.Elements[i + 1]; 697 if (!ACPI_PKG_VALID(pkg, 4) || 698 acpi_PkgInt32(pkg, 1, &cx_ptr->type) != 0 || 699 acpi_PkgInt32(pkg, 2, &cx_ptr->trans_lat) != 0 || 700 acpi_PkgInt32(pkg, 3, &cx_ptr->power) != 0) { 701 702 device_printf(sc->cpu_dev, "skipping invalid Cx state package\n"); 703 continue; 704 } 705 706 /* Validate the state to see if we should use it. */ 707 switch (cx_ptr->type) { 708 case ACPI_STATE_C1: 709 if (sc->cpu_cx_states[0].type == ACPI_STATE_C0) { 710 /* This is the first C1 state. Use the reserved slot. */ 711 sc->cpu_cx_states[0] = *cx_ptr; 712 } else { 713 sc->cpu_non_c3 = i; 714 cx_ptr++; 715 sc->cpu_cx_count++; 716 } 717 continue; 718 case ACPI_STATE_C2: 719 sc->cpu_non_c3 = i; 720 break; 721 case ACPI_STATE_C3: 722 default: 723 if ((cpu_quirks & CPU_QUIRK_NO_C3) != 0) { 724 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 725 "acpi_cpu%d: C3[%d] not available.\n", 726 device_get_unit(sc->cpu_dev), i)); 727 continue; 728 } 729 break; 730 } 731 732 #ifdef notyet 733 /* Free up any previous register. */ 734 if (cx_ptr->p_lvlx != NULL) { 735 bus_release_resource(sc->cpu_dev, 0, 0, cx_ptr->p_lvlx); 736 cx_ptr->p_lvlx = NULL; 737 } 738 #endif 739 740 /* Allocate the control register for C2 or C3. */ 741 acpi_PkgGas(sc->cpu_dev, pkg, 0, &cx_ptr->res_type, &sc->cpu_rid, 742 &cx_ptr->p_lvlx, RF_SHAREABLE); 743 if (cx_ptr->p_lvlx) { 744 sc->cpu_rid++; 745 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 746 "acpi_cpu%d: Got C%d - %d latency\n", 747 device_get_unit(sc->cpu_dev), cx_ptr->type, 748 cx_ptr->trans_lat)); 749 cx_ptr++; 750 sc->cpu_cx_count++; 751 } 752 } 753 AcpiOsFree(buf.Pointer); 754 755 /* If C1 state was not found, we need one now. */ 756 cx_ptr = sc->cpu_cx_states; 757 if (cx_ptr->type == ACPI_STATE_C0) { 758 cx_ptr->type = ACPI_STATE_C1; 759 cx_ptr->trans_lat = 0; 760 } 761 762 return (0); 763 } 764 765 /* 766 * Call this *after* all CPUs have been attached. 767 */ 768 static void 769 acpi_cpu_startup(void *arg) 770 { 771 struct acpi_cpu_softc *sc; 772 int i; 773 774 /* Get set of CPU devices */ 775 devclass_get_devices(acpi_cpu_devclass, &cpu_devices, &cpu_ndevices); 776 777 /* 778 * Setup any quirks that might necessary now that we have probed 779 * all the CPUs 780 */ 781 acpi_cpu_quirks(); 782 783 cpu_cx_count = 0; 784 if (cpu_cx_generic) { 785 /* 786 * We are using generic Cx mode, probe for available Cx states 787 * for all processors. 788 */ 789 for (i = 0; i < cpu_ndevices; i++) { 790 sc = device_get_softc(cpu_devices[i]); 791 acpi_cpu_generic_cx_probe(sc); 792 if (sc->cpu_cx_count > cpu_cx_count) 793 cpu_cx_count = sc->cpu_cx_count; 794 } 795 796 /* 797 * Find the highest Cx state common to all CPUs 798 * in the system, taking quirks into account. 799 */ 800 for (i = 0; i < cpu_ndevices; i++) { 801 sc = device_get_softc(cpu_devices[i]); 802 if (sc->cpu_cx_count < cpu_cx_count) 803 cpu_cx_count = sc->cpu_cx_count; 804 } 805 } else { 806 /* 807 * We are using _CST mode, remove C3 state if necessary. 808 * Update the largest Cx state supported in the global cpu_cx_count. 809 * It will be used in the global Cx sysctl handler. 810 * As we now know for sure that we will be using _CST mode 811 * install our notify handler. 812 */ 813 for (i = 0; i < cpu_ndevices; i++) { 814 sc = device_get_softc(cpu_devices[i]); 815 if (cpu_quirks & CPU_QUIRK_NO_C3) { 816 sc->cpu_cx_count = sc->cpu_non_c3 + 1; 817 } 818 if (sc->cpu_cx_count > cpu_cx_count) 819 cpu_cx_count = sc->cpu_cx_count; 820 AcpiInstallNotifyHandler(sc->cpu_handle, ACPI_DEVICE_NOTIFY, 821 acpi_cpu_notify, sc); 822 } 823 } 824 825 /* Perform Cx final initialization. */ 826 for (i = 0; i < cpu_ndevices; i++) { 827 sc = device_get_softc(cpu_devices[i]); 828 acpi_cpu_startup_cx(sc); 829 } 830 831 /* Add a sysctl handler to handle global Cx lowest setting */ 832 SYSCTL_ADD_PROC(&cpu_sysctl_ctx, SYSCTL_CHILDREN(cpu_sysctl_tree), 833 OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW, 834 NULL, 0, acpi_cpu_global_cx_lowest_sysctl, "A", 835 "Global lowest Cx sleep state to use"); 836 837 /* Take over idling from cpu_idle_default(). */ 838 cpu_cx_lowest = 0; 839 cpu_disable_idle = FALSE; 840 cpu_idle_hook = acpi_cpu_idle; 841 } 842 843 static void 844 acpi_cpu_cx_list(struct acpi_cpu_softc *sc) 845 { 846 struct sbuf sb; 847 int i; 848 849 /* 850 * Set up the list of Cx states 851 */ 852 sc->cpu_non_c3 = 0; 853 sbuf_new(&sb, sc->cpu_cx_supported, sizeof(sc->cpu_cx_supported), 854 SBUF_FIXEDLEN); 855 for (i = 0; i < sc->cpu_cx_count; i++) { 856 sbuf_printf(&sb, "C%d/%d ", i + 1, sc->cpu_cx_states[i].trans_lat); 857 if (sc->cpu_cx_states[i].type < ACPI_STATE_C3) 858 sc->cpu_non_c3 = i; 859 } 860 sbuf_trim(&sb); 861 sbuf_finish(&sb); 862 } 863 864 static void 865 acpi_cpu_startup_cx(struct acpi_cpu_softc *sc) 866 { 867 acpi_cpu_cx_list(sc); 868 869 SYSCTL_ADD_STRING(&sc->cpu_sysctl_ctx, 870 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)), 871 OID_AUTO, "cx_supported", CTLFLAG_RD, 872 sc->cpu_cx_supported, 0, 873 "Cx/microsecond values for supported Cx states"); 874 SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx, 875 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)), 876 OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW, 877 (void *)sc, 0, acpi_cpu_cx_lowest_sysctl, "A", 878 "lowest Cx sleep state to use"); 879 SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx, 880 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)), 881 OID_AUTO, "cx_usage", CTLTYPE_STRING | CTLFLAG_RD, 882 (void *)sc, 0, acpi_cpu_usage_sysctl, "A", 883 "percent usage for each Cx state"); 884 885 #ifdef notyet 886 /* Signal platform that we can handle _CST notification. */ 887 if (!cpu_cx_generic && cpu_cst_cnt != 0) { 888 ACPI_LOCK(acpi); 889 AcpiOsWritePort(cpu_smi_cmd, cpu_cst_cnt, 8); 890 ACPI_UNLOCK(acpi); 891 } 892 #endif 893 } 894 895 /* 896 * Idle the CPU in the lowest state possible. This function is called with 897 * interrupts disabled. Note that once it re-enables interrupts, a task 898 * switch can occur so do not access shared data (i.e. the softc) after 899 * interrupts are re-enabled. 900 */ 901 static void 902 acpi_cpu_idle() 903 { 904 struct acpi_cpu_softc *sc; 905 struct acpi_cx *cx_next; 906 uint32_t start_time, end_time; 907 int bm_active, cx_next_idx, i; 908 909 /* If disabled, return immediately. */ 910 if (cpu_disable_idle) { 911 ACPI_ENABLE_IRQS(); 912 return; 913 } 914 915 /* 916 * Look up our CPU id to get our softc. If it's NULL, we'll use C1 917 * since there is no ACPI processor object for this CPU. This occurs 918 * for logical CPUs in the HTT case. 919 */ 920 sc = cpu_softc[PCPU_GET(cpuid)]; 921 if (sc == NULL) { 922 acpi_cpu_c1(); 923 return; 924 } 925 926 /* Find the lowest state that has small enough latency. */ 927 cx_next_idx = 0; 928 #ifndef __ia64__ 929 if (cpu_disable_deep_sleep) 930 i = min(sc->cpu_cx_lowest, sc->cpu_non_c3); 931 else 932 #endif 933 i = sc->cpu_cx_lowest; 934 for (; i >= 0; i--) { 935 if (sc->cpu_cx_states[i].trans_lat * 3 <= sc->cpu_prev_sleep) { 936 cx_next_idx = i; 937 break; 938 } 939 } 940 941 /* 942 * Check for bus master activity. If there was activity, clear 943 * the bit and use the lowest non-C3 state. Note that the USB 944 * driver polling for new devices keeps this bit set all the 945 * time if USB is loaded. 946 */ 947 if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) { 948 AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, &bm_active); 949 if (bm_active != 0) { 950 AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, 1); 951 cx_next_idx = min(cx_next_idx, sc->cpu_non_c3); 952 } 953 } 954 955 /* Select the next state and update statistics. */ 956 cx_next = &sc->cpu_cx_states[cx_next_idx]; 957 sc->cpu_cx_stats[cx_next_idx]++; 958 KASSERT(cx_next->type != ACPI_STATE_C0, ("acpi_cpu_idle: C0 sleep")); 959 960 /* 961 * Execute HLT (or equivalent) and wait for an interrupt. We can't 962 * precisely calculate the time spent in C1 since the place we wake up 963 * is an ISR. Assume we slept no more then half of quantum, unless 964 * we are called inside critical section, delaying context switch. 965 */ 966 if (cx_next->type == ACPI_STATE_C1) { 967 AcpiHwRead(&start_time, &AcpiGbl_FADT.XPmTimerBlock); 968 acpi_cpu_c1(); 969 AcpiHwRead(&end_time, &AcpiGbl_FADT.XPmTimerBlock); 970 end_time = PM_USEC(acpi_TimerDelta(end_time, start_time)); 971 if (curthread->td_critnest == 0) 972 end_time = min(end_time, 500000 / hz); 973 sc->cpu_prev_sleep = (sc->cpu_prev_sleep * 3 + end_time) / 4; 974 return; 975 } 976 977 /* 978 * For C3, disable bus master arbitration and enable bus master wake 979 * if BM control is available, otherwise flush the CPU cache. 980 */ 981 if (cx_next->type == ACPI_STATE_C3) { 982 if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) { 983 AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 1); 984 AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 1); 985 } else 986 ACPI_FLUSH_CPU_CACHE(); 987 } 988 989 /* 990 * Read from P_LVLx to enter C2(+), checking time spent asleep. 991 * Use the ACPI timer for measuring sleep time. Since we need to 992 * get the time very close to the CPU start/stop clock logic, this 993 * is the only reliable time source. 994 */ 995 AcpiHwRead(&start_time, &AcpiGbl_FADT.XPmTimerBlock); 996 CPU_GET_REG(cx_next->p_lvlx, 1); 997 998 /* 999 * Read the end time twice. Since it may take an arbitrary time 1000 * to enter the idle state, the first read may be executed before 1001 * the processor has stopped. Doing it again provides enough 1002 * margin that we are certain to have a correct value. 1003 */ 1004 AcpiHwRead(&end_time, &AcpiGbl_FADT.XPmTimerBlock); 1005 AcpiHwRead(&end_time, &AcpiGbl_FADT.XPmTimerBlock); 1006 1007 /* Enable bus master arbitration and disable bus master wakeup. */ 1008 if (cx_next->type == ACPI_STATE_C3 && 1009 (cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) { 1010 AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 0); 1011 AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0); 1012 } 1013 ACPI_ENABLE_IRQS(); 1014 1015 /* Find the actual time asleep in microseconds. */ 1016 end_time = acpi_TimerDelta(end_time, start_time); 1017 sc->cpu_prev_sleep = (sc->cpu_prev_sleep * 3 + PM_USEC(end_time)) / 4; 1018 } 1019 1020 /* 1021 * Re-evaluate the _CST object when we are notified that it changed. 1022 * 1023 * XXX Re-evaluation disabled until locking is done. 1024 */ 1025 static void 1026 acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context) 1027 { 1028 struct acpi_cpu_softc *sc = (struct acpi_cpu_softc *)context; 1029 struct acpi_cpu_softc *isc; 1030 int i; 1031 1032 if (notify != ACPI_NOTIFY_CX_STATES) 1033 return; 1034 1035 /* Update the list of Cx states. */ 1036 acpi_cpu_cx_cst(sc); 1037 acpi_cpu_cx_list(sc); 1038 1039 /* Update the new lowest useable Cx state for all CPUs. */ 1040 ACPI_SERIAL_BEGIN(cpu); 1041 cpu_cx_count = 0; 1042 for (i = 0; i < cpu_ndevices; i++) { 1043 isc = device_get_softc(cpu_devices[i]); 1044 if (isc->cpu_cx_count > cpu_cx_count) 1045 cpu_cx_count = isc->cpu_cx_count; 1046 } 1047 if (sc->cpu_cx_lowest < cpu_cx_lowest) 1048 acpi_cpu_set_cx_lowest(sc, min(cpu_cx_lowest, sc->cpu_cx_count - 1)); 1049 ACPI_SERIAL_END(cpu); 1050 } 1051 1052 static int 1053 acpi_cpu_quirks(void) 1054 { 1055 device_t acpi_dev; 1056 uint32_t val; 1057 1058 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1059 1060 /* 1061 * Bus mastering arbitration control is needed to keep caches coherent 1062 * while sleeping in C3. If it's not present but a working flush cache 1063 * instruction is present, flush the caches before entering C3 instead. 1064 * Otherwise, just disable C3 completely. 1065 */ 1066 if (AcpiGbl_FADT.Pm2ControlBlock == 0 || 1067 AcpiGbl_FADT.Pm2ControlLength == 0) { 1068 if ((AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD) && 1069 (AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD_FLUSH) == 0) { 1070 cpu_quirks |= CPU_QUIRK_NO_BM_CTRL; 1071 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 1072 "acpi_cpu: no BM control, using flush cache method\n")); 1073 } else { 1074 cpu_quirks |= CPU_QUIRK_NO_C3; 1075 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 1076 "acpi_cpu: no BM control, C3 not available\n")); 1077 } 1078 } 1079 1080 /* 1081 * If we are using generic Cx mode, C3 on multiple CPUs requires using 1082 * the expensive flush cache instruction. 1083 */ 1084 if (cpu_cx_generic && mp_ncpus > 1) { 1085 cpu_quirks |= CPU_QUIRK_NO_BM_CTRL; 1086 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 1087 "acpi_cpu: SMP, using flush cache mode for C3\n")); 1088 } 1089 1090 /* Look for various quirks of the PIIX4 part. */ 1091 acpi_dev = pci_find_device(PCI_VENDOR_INTEL, PCI_DEVICE_82371AB_3); 1092 if (acpi_dev != NULL) { 1093 switch (pci_get_revid(acpi_dev)) { 1094 /* 1095 * Disable C3 support for all PIIX4 chipsets. Some of these parts 1096 * do not report the BMIDE status to the BM status register and 1097 * others have a livelock bug if Type-F DMA is enabled. Linux 1098 * works around the BMIDE bug by reading the BM status directly 1099 * but we take the simpler approach of disabling C3 for these 1100 * parts. 1101 * 1102 * See erratum #18 ("C3 Power State/BMIDE and Type-F DMA 1103 * Livelock") from the January 2002 PIIX4 specification update. 1104 * Applies to all PIIX4 models. 1105 * 1106 * Also, make sure that all interrupts cause a "Stop Break" 1107 * event to exit from C2 state. 1108 * Also, BRLD_EN_BM (ACPI_BITREG_BUS_MASTER_RLD in ACPI-speak) 1109 * should be set to zero, otherwise it causes C2 to short-sleep. 1110 * PIIX4 doesn't properly support C3 and bus master activity 1111 * need not break out of C2. 1112 */ 1113 case PCI_REVISION_A_STEP: 1114 case PCI_REVISION_B_STEP: 1115 case PCI_REVISION_4E: 1116 case PCI_REVISION_4M: 1117 cpu_quirks |= CPU_QUIRK_NO_C3; 1118 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 1119 "acpi_cpu: working around PIIX4 bug, disabling C3\n")); 1120 1121 val = pci_read_config(acpi_dev, PIIX4_DEVACTB_REG, 4); 1122 if ((val & PIIX4_STOP_BREAK_MASK) != PIIX4_STOP_BREAK_MASK) { 1123 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 1124 "acpi_cpu: PIIX4: enabling IRQs to generate Stop Break\n")); 1125 val |= PIIX4_STOP_BREAK_MASK; 1126 pci_write_config(acpi_dev, PIIX4_DEVACTB_REG, val, 4); 1127 } 1128 AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_RLD, &val); 1129 if (val) { 1130 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 1131 "acpi_cpu: PIIX4: reset BRLD_EN_BM\n")); 1132 AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0); 1133 } 1134 break; 1135 default: 1136 break; 1137 } 1138 } 1139 1140 return (0); 1141 } 1142 1143 static int 1144 acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS) 1145 { 1146 struct acpi_cpu_softc *sc; 1147 struct sbuf sb; 1148 char buf[128]; 1149 int i; 1150 uintmax_t fract, sum, whole; 1151 1152 sc = (struct acpi_cpu_softc *) arg1; 1153 sum = 0; 1154 for (i = 0; i < sc->cpu_cx_count; i++) 1155 sum += sc->cpu_cx_stats[i]; 1156 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN); 1157 for (i = 0; i < sc->cpu_cx_count; i++) { 1158 if (sum > 0) { 1159 whole = (uintmax_t)sc->cpu_cx_stats[i] * 100; 1160 fract = (whole % sum) * 100; 1161 sbuf_printf(&sb, "%u.%02u%% ", (u_int)(whole / sum), 1162 (u_int)(fract / sum)); 1163 } else 1164 sbuf_printf(&sb, "0.00%% "); 1165 } 1166 sbuf_printf(&sb, "last %dus", sc->cpu_prev_sleep); 1167 sbuf_trim(&sb); 1168 sbuf_finish(&sb); 1169 sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req); 1170 sbuf_delete(&sb); 1171 1172 return (0); 1173 } 1174 1175 static int 1176 acpi_cpu_set_cx_lowest(struct acpi_cpu_softc *sc, int val) 1177 { 1178 int i; 1179 1180 ACPI_SERIAL_ASSERT(cpu); 1181 sc->cpu_cx_lowest = val; 1182 1183 /* If not disabling, cache the new lowest non-C3 state. */ 1184 sc->cpu_non_c3 = 0; 1185 for (i = sc->cpu_cx_lowest; i >= 0; i--) { 1186 if (sc->cpu_cx_states[i].type < ACPI_STATE_C3) { 1187 sc->cpu_non_c3 = i; 1188 break; 1189 } 1190 } 1191 1192 /* Reset the statistics counters. */ 1193 bzero(sc->cpu_cx_stats, sizeof(sc->cpu_cx_stats)); 1194 return (0); 1195 } 1196 1197 static int 1198 acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS) 1199 { 1200 struct acpi_cpu_softc *sc; 1201 char state[8]; 1202 int val, error; 1203 1204 sc = (struct acpi_cpu_softc *) arg1; 1205 snprintf(state, sizeof(state), "C%d", sc->cpu_cx_lowest + 1); 1206 error = sysctl_handle_string(oidp, state, sizeof(state), req); 1207 if (error != 0 || req->newptr == NULL) 1208 return (error); 1209 if (strlen(state) < 2 || toupper(state[0]) != 'C') 1210 return (EINVAL); 1211 val = (int) strtol(state + 1, NULL, 10) - 1; 1212 if (val < 0 || val > sc->cpu_cx_count - 1) 1213 return (EINVAL); 1214 1215 ACPI_SERIAL_BEGIN(cpu); 1216 acpi_cpu_set_cx_lowest(sc, val); 1217 ACPI_SERIAL_END(cpu); 1218 1219 return (0); 1220 } 1221 1222 static int 1223 acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS) 1224 { 1225 struct acpi_cpu_softc *sc; 1226 char state[8]; 1227 int val, error, i; 1228 1229 snprintf(state, sizeof(state), "C%d", cpu_cx_lowest + 1); 1230 error = sysctl_handle_string(oidp, state, sizeof(state), req); 1231 if (error != 0 || req->newptr == NULL) 1232 return (error); 1233 if (strlen(state) < 2 || toupper(state[0]) != 'C') 1234 return (EINVAL); 1235 val = (int) strtol(state + 1, NULL, 10) - 1; 1236 if (val < 0 || val > cpu_cx_count - 1) 1237 return (EINVAL); 1238 cpu_cx_lowest = val; 1239 1240 /* Update the new lowest useable Cx state for all CPUs. */ 1241 ACPI_SERIAL_BEGIN(cpu); 1242 for (i = 0; i < cpu_ndevices; i++) { 1243 sc = device_get_softc(cpu_devices[i]); 1244 acpi_cpu_set_cx_lowest(sc, min(val, sc->cpu_cx_count - 1)); 1245 } 1246 ACPI_SERIAL_END(cpu); 1247 1248 return (0); 1249 } 1250