1 /*- 2 * Copyright (c) 2003 Nate Lawson (SDG) 3 * Copyright (c) 2001 Michael Smith 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include "opt_acpi.h" 32 #include <sys/param.h> 33 #include <sys/bus.h> 34 #include <sys/kernel.h> 35 #include <sys/malloc.h> 36 #include <sys/pcpu.h> 37 #include <sys/power.h> 38 #include <sys/proc.h> 39 #include <sys/sbuf.h> 40 #include <sys/smp.h> 41 42 #include <dev/pci/pcivar.h> 43 #include <machine/atomic.h> 44 #include <machine/bus.h> 45 #ifdef __ia64__ 46 #include <machine/pal.h> 47 #endif 48 #include <sys/rman.h> 49 50 #include "acpi.h" 51 #include <dev/acpica/acpivar.h> 52 53 /* 54 * Support for ACPI Processor devices, including ACPI 2.0 throttling 55 * and C[1-3] sleep states. 56 * 57 * TODO: implement scans of all CPUs to be sure all Cx states are 58 * equivalent. 59 */ 60 61 /* Hooks for the ACPI CA debugging infrastructure */ 62 #define _COMPONENT ACPI_PROCESSOR 63 ACPI_MODULE_NAME("PROCESSOR") 64 65 struct acpi_cx { 66 struct resource *p_lvlx; /* Register to read to enter state. */ 67 uint32_t type; /* C1-3 (C4 and up treated as C3). */ 68 uint32_t trans_lat; /* Transition latency (usec). */ 69 uint32_t power; /* Power consumed (mW). */ 70 }; 71 #define MAX_CX_STATES 8 72 73 struct acpi_cx_stats { 74 int long_slp; /* Count of sleeps >= trans_lat. */ 75 int short_slp; /* Count of sleeps < trans_lat. */ 76 }; 77 78 struct acpi_cpu_softc { 79 device_t cpu_dev; 80 ACPI_HANDLE cpu_handle; 81 uint32_t acpi_id; /* ACPI processor id */ 82 uint32_t cpu_p_blk; /* ACPI P_BLK location */ 83 uint32_t cpu_p_blk_len; /* P_BLK length (must be 6). */ 84 struct resource *cpu_p_cnt; /* Throttling control register */ 85 struct acpi_cx cpu_cx_states[MAX_CX_STATES]; 86 int cpu_cx_count; /* Number of valid Cx states. */ 87 }; 88 89 #define CPU_GET_REG(reg, width) \ 90 (bus_space_read_ ## width(rman_get_bustag((reg)), \ 91 rman_get_bushandle((reg)), 0)) 92 #define CPU_SET_REG(reg, width, val) \ 93 (bus_space_write_ ## width(rman_get_bustag((reg)), \ 94 rman_get_bushandle((reg)), 0, (val))) 95 96 /* 97 * Speeds are stored in counts, from 1 to CPU_MAX_SPEED, and 98 * reported to the user in tenths of a percent. 99 */ 100 static uint32_t cpu_duty_offset; 101 static uint32_t cpu_duty_width; 102 #define CPU_MAX_SPEED (1 << cpu_duty_width) 103 #define CPU_SPEED_PERCENT(x) ((1000 * (x)) / CPU_MAX_SPEED) 104 #define CPU_SPEED_PRINTABLE(x) (CPU_SPEED_PERCENT(x) / 10), \ 105 (CPU_SPEED_PERCENT(x) % 10) 106 #define CPU_P_CNT_THT_EN (1<<4) 107 #define PM_USEC(x) ((x) >> 2) /* ~4 clocks per usec (3.57955 Mhz) */ 108 109 #define ACPI_CPU_NOTIFY_PERF_STATES 0x80 /* _PSS changed. */ 110 #define ACPI_CPU_NOTIFY_CX_STATES 0x81 /* _CST changed. */ 111 112 #define CPU_QUIRK_NO_C3 0x0001 /* C3-type states are not usable. */ 113 #define CPU_QUIRK_NO_THROTTLE 0x0002 /* Throttling is not usable. */ 114 115 #define PCI_VENDOR_INTEL 0x8086 116 #define PCI_DEVICE_82371AB_3 0x7113 /* PIIX4 chipset for quirks. */ 117 #define PCI_REVISION_A_STEP 0 118 #define PCI_REVISION_B_STEP 1 119 #define PCI_REVISION_4E 2 120 #define PCI_REVISION_4M 3 121 122 /* Platform hardware resource information. */ 123 static uint32_t cpu_smi_cmd; /* Value to write to SMI_CMD. */ 124 static uint8_t cpu_pstate_cnt;/* Register to take over throttling. */ 125 static uint8_t cpu_cst_cnt; /* Indicate we are _CST aware. */ 126 static uint32_t cpu_rid; /* Driver-wide resource id. */ 127 static uint32_t cpu_quirks; /* Indicate any hardware bugs. */ 128 129 /* Runtime state. */ 130 static int cpu_cx_count; /* Number of valid states */ 131 static uint32_t cpu_cx_next; /* State to use for next sleep. */ 132 static uint32_t cpu_non_c3; /* Index of lowest non-C3 state. */ 133 static struct acpi_cx_stats cpu_cx_stats[MAX_CX_STATES]; 134 static int cpu_idle_busy; /* Count of CPUs in acpi_cpu_idle. */ 135 136 /* Values for sysctl. */ 137 static uint32_t cpu_throttle_state; 138 static uint32_t cpu_throttle_max; 139 static int cpu_cx_lowest; 140 static char cpu_cx_supported[64]; 141 142 static device_t *cpu_devices; 143 static int cpu_ndevices; 144 static struct acpi_cpu_softc **cpu_softc; 145 146 static struct sysctl_ctx_list acpi_cpu_sysctl_ctx; 147 static struct sysctl_oid *acpi_cpu_sysctl_tree; 148 149 static int acpi_cpu_probe(device_t dev); 150 static int acpi_cpu_attach(device_t dev); 151 static int acpi_pcpu_get_id(uint32_t idx, uint32_t *acpi_id, 152 uint32_t *cpu_id); 153 static int acpi_cpu_shutdown(device_t dev); 154 static int acpi_cpu_throttle_probe(struct acpi_cpu_softc *sc); 155 static int acpi_cpu_cx_probe(struct acpi_cpu_softc *sc); 156 static int acpi_cpu_cx_cst(struct acpi_cpu_softc *sc); 157 static void acpi_cpu_startup(void *arg); 158 static void acpi_cpu_startup_throttling(void); 159 static void acpi_cpu_startup_cx(void); 160 static void acpi_cpu_throttle_set(uint32_t speed); 161 static void acpi_cpu_idle(void); 162 static void acpi_cpu_c1(void); 163 static void acpi_pm_ticksub(uint32_t *end, const uint32_t *start); 164 static void acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context); 165 static int acpi_cpu_quirks(struct acpi_cpu_softc *sc); 166 static int acpi_cpu_throttle_sysctl(SYSCTL_HANDLER_ARGS); 167 static int acpi_cpu_history_sysctl(SYSCTL_HANDLER_ARGS); 168 static int acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS); 169 170 static device_method_t acpi_cpu_methods[] = { 171 /* Device interface */ 172 DEVMETHOD(device_probe, acpi_cpu_probe), 173 DEVMETHOD(device_attach, acpi_cpu_attach), 174 DEVMETHOD(device_shutdown, acpi_cpu_shutdown), 175 176 {0, 0} 177 }; 178 179 static driver_t acpi_cpu_driver = { 180 "acpi_cpu", 181 acpi_cpu_methods, 182 sizeof(struct acpi_cpu_softc), 183 }; 184 185 static devclass_t acpi_cpu_devclass; 186 DRIVER_MODULE(acpi_cpu, acpi, acpi_cpu_driver, acpi_cpu_devclass, 0, 0); 187 188 static int 189 acpi_cpu_probe(device_t dev) 190 { 191 if (!acpi_disabled("cpu") && acpi_get_type(dev) == ACPI_TYPE_PROCESSOR) { 192 device_set_desc(dev, "CPU"); 193 if (cpu_softc == NULL) 194 cpu_softc = malloc(sizeof(struct acpi_cpu_softc *) * 195 (mp_maxid + 1), M_TEMP /* XXX */, M_WAITOK | M_ZERO); 196 return (0); 197 } 198 199 return (ENXIO); 200 } 201 202 static int 203 acpi_cpu_attach(device_t dev) 204 { 205 struct acpi_cpu_softc *sc; 206 struct acpi_softc *acpi_sc; 207 ACPI_OBJECT pobj; 208 ACPI_BUFFER buf; 209 ACPI_STATUS status; 210 int thr_ret, cx_ret, cpu_id; 211 212 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 213 214 ACPI_ASSERTLOCK; 215 216 sc = device_get_softc(dev); 217 sc->cpu_dev = dev; 218 sc->cpu_handle = acpi_get_handle(dev); 219 220 /* Get our Processor object. */ 221 buf.Pointer = &pobj; 222 buf.Length = sizeof(pobj); 223 status = AcpiEvaluateObject(sc->cpu_handle, NULL, NULL, &buf); 224 if (ACPI_FAILURE(status)) { 225 device_printf(dev, "Couldn't get Processor object - %s\n", 226 AcpiFormatException(status)); 227 return_VALUE (ENXIO); 228 } 229 if (pobj.Type != ACPI_TYPE_PROCESSOR) { 230 device_printf(dev, "Processor object has bad type %d\n", pobj.Type); 231 return_VALUE (ENXIO); 232 } 233 234 /* 235 * Find the processor associated with our unit. We could use the 236 * ProcId as a key, however, some boxes do not have the same values 237 * in their Processor object as the ProcId values in the MADT. 238 */ 239 sc->acpi_id = pobj.Processor.ProcId; 240 if (acpi_pcpu_get_id(device_get_unit(dev), &sc->acpi_id, &cpu_id) != 0) 241 return_VALUE (ENXIO); 242 243 /* 244 * Check if we already probed this processor. We scan the bus twice 245 * so it's possible we've already seen this one. 246 */ 247 if (cpu_softc[cpu_id] != NULL) 248 return (ENXIO); 249 cpu_softc[cpu_id] = sc; 250 251 /* Get various global values from the Processor object. */ 252 sc->cpu_p_blk = pobj.Processor.PblkAddress; 253 sc->cpu_p_blk_len = pobj.Processor.PblkLength; 254 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu%d: P_BLK at %#x/%d\n", 255 device_get_unit(dev), sc->cpu_p_blk, sc->cpu_p_blk_len)); 256 257 acpi_sc = acpi_device_get_parent_softc(dev); 258 sysctl_ctx_init(&acpi_cpu_sysctl_ctx); 259 acpi_cpu_sysctl_tree = SYSCTL_ADD_NODE(&acpi_cpu_sysctl_ctx, 260 SYSCTL_CHILDREN(acpi_sc->acpi_sysctl_tree), 261 OID_AUTO, "cpu", CTLFLAG_RD, 0, ""); 262 263 /* If this is the first device probed, check for quirks. */ 264 if (device_get_unit(dev) == 0) 265 acpi_cpu_quirks(sc); 266 267 /* 268 * Probe for throttling and Cx state support. 269 * If none of these is present, free up unused resources. 270 */ 271 thr_ret = acpi_cpu_throttle_probe(sc); 272 cx_ret = acpi_cpu_cx_probe(sc); 273 if (thr_ret == 0 || cx_ret == 0) { 274 status = AcpiInstallNotifyHandler(sc->cpu_handle, ACPI_DEVICE_NOTIFY, 275 acpi_cpu_notify, sc); 276 if (device_get_unit(dev) == 0) 277 AcpiOsQueueForExecution(OSD_PRIORITY_LO, acpi_cpu_startup, NULL); 278 } else { 279 sysctl_ctx_free(&acpi_cpu_sysctl_ctx); 280 } 281 282 return_VALUE (0); 283 } 284 285 /* 286 * Find the nth present CPU and return its pc_cpuid as well as set the 287 * pc_acpi_id from the most reliable source. 288 */ 289 static int 290 acpi_pcpu_get_id(uint32_t idx, uint32_t *acpi_id, uint32_t *cpu_id) 291 { 292 struct pcpu *pcpu_data; 293 uint32_t i; 294 295 KASSERT(acpi_id != NULL, ("Null acpi_id")); 296 KASSERT(cpu_id != NULL, ("Null cpu_id")); 297 for (i = 0; i <= mp_maxid; i++) { 298 if (CPU_ABSENT(i)) 299 continue; 300 pcpu_data = pcpu_find(i); 301 KASSERT(pcpu_data != NULL, ("no pcpu data for %d", i)); 302 if (idx-- == 0) { 303 /* 304 * If pc_acpi_id was not initialized (e.g., a non-APIC UP box) 305 * override it with the value from the ASL. Otherwise, if the 306 * two don't match, prefer the MADT-derived value. Finally, 307 * return the pc_cpuid to reference this processor. 308 */ 309 if (pcpu_data->pc_acpi_id == 0xffffffff) 310 pcpu_data->pc_acpi_id = *acpi_id; 311 else if (pcpu_data->pc_acpi_id != *acpi_id) 312 *acpi_id = pcpu_data->pc_acpi_id; 313 *cpu_id = pcpu_data->pc_cpuid; 314 return (0); 315 } 316 } 317 318 return (ESRCH); 319 } 320 321 static int 322 acpi_cpu_shutdown(device_t dev) 323 { 324 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 325 326 /* Disable any entry to the idle function. */ 327 cpu_cx_count = 0; 328 329 /* Wait for all processors to exit acpi_cpu_idle(). */ 330 smp_rendezvous(NULL, NULL, NULL, NULL); 331 while (cpu_idle_busy > 0) 332 DELAY(1); 333 334 return_VALUE (0); 335 } 336 337 static int 338 acpi_cpu_throttle_probe(struct acpi_cpu_softc *sc) 339 { 340 uint32_t duty_end; 341 ACPI_BUFFER buf; 342 ACPI_OBJECT obj; 343 ACPI_GENERIC_ADDRESS gas; 344 ACPI_STATUS status; 345 346 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 347 348 ACPI_ASSERTLOCK; 349 350 /* Get throttling parameters from the FADT. 0 means not supported. */ 351 if (device_get_unit(sc->cpu_dev) == 0) { 352 cpu_smi_cmd = AcpiGbl_FADT->SmiCmd; 353 cpu_pstate_cnt = AcpiGbl_FADT->PstateCnt; 354 cpu_cst_cnt = AcpiGbl_FADT->CstCnt; 355 cpu_duty_offset = AcpiGbl_FADT->DutyOffset; 356 cpu_duty_width = AcpiGbl_FADT->DutyWidth; 357 } 358 if (cpu_duty_width == 0 || (cpu_quirks & CPU_QUIRK_NO_THROTTLE) != 0) 359 return (ENXIO); 360 361 /* Validate the duty offset/width. */ 362 duty_end = cpu_duty_offset + cpu_duty_width - 1; 363 if (duty_end > 31) { 364 device_printf(sc->cpu_dev, "CLK_VAL field overflows P_CNT register\n"); 365 return (ENXIO); 366 } 367 if (cpu_duty_offset <= 4 && duty_end >= 4) { 368 device_printf(sc->cpu_dev, "CLK_VAL field overlaps THT_EN bit\n"); 369 return (ENXIO); 370 } 371 372 /* 373 * If not present, fall back to using the processor's P_BLK to find 374 * the P_CNT register. 375 * 376 * Note that some systems seem to duplicate the P_BLK pointer 377 * across multiple CPUs, so not getting the resource is not fatal. 378 */ 379 buf.Pointer = &obj; 380 buf.Length = sizeof(obj); 381 status = AcpiEvaluateObject(sc->cpu_handle, "_PTC", NULL, &buf); 382 if (ACPI_SUCCESS(status)) { 383 if (obj.Buffer.Length < sizeof(ACPI_GENERIC_ADDRESS) + 3) { 384 device_printf(sc->cpu_dev, "_PTC buffer too small\n"); 385 return (ENXIO); 386 } 387 memcpy(&gas, obj.Buffer.Pointer + 3, sizeof(gas)); 388 sc->cpu_p_cnt = acpi_bus_alloc_gas(sc->cpu_dev, &cpu_rid, &gas); 389 if (sc->cpu_p_cnt != NULL) { 390 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu%d: P_CNT from _PTC\n", 391 device_get_unit(sc->cpu_dev))); 392 } 393 } 394 395 /* If _PTC not present or other failure, try the P_BLK. */ 396 if (sc->cpu_p_cnt == NULL) { 397 /* 398 * The spec says P_BLK must be 6 bytes long. However, some 399 * systems use it to indicate a fractional set of features 400 * present so we take anything >= 4. 401 */ 402 if (sc->cpu_p_blk_len < 4) 403 return (ENXIO); 404 gas.Address = sc->cpu_p_blk; 405 gas.AddressSpaceId = ACPI_ADR_SPACE_SYSTEM_IO; 406 gas.RegisterBitWidth = 32; 407 sc->cpu_p_cnt = acpi_bus_alloc_gas(sc->cpu_dev, &cpu_rid, &gas); 408 if (sc->cpu_p_cnt != NULL) { 409 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu%d: P_CNT from P_BLK\n", 410 device_get_unit(sc->cpu_dev))); 411 } else { 412 device_printf(sc->cpu_dev, "Failed to attach throttling P_CNT\n"); 413 return (ENXIO); 414 } 415 } 416 cpu_rid++; 417 418 return (0); 419 } 420 421 static int 422 acpi_cpu_cx_probe(struct acpi_cpu_softc *sc) 423 { 424 ACPI_GENERIC_ADDRESS gas; 425 struct acpi_cx *cx_ptr; 426 int error; 427 428 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 429 430 /* Bus mastering arbitration control is needed for C3. */ 431 if (AcpiGbl_FADT->V1_Pm2CntBlk == 0 || AcpiGbl_FADT->Pm2CntLen == 0) { 432 cpu_quirks |= CPU_QUIRK_NO_C3; 433 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 434 "acpi_cpu%d: No BM control, C3 disabled\n", 435 device_get_unit(sc->cpu_dev))); 436 } 437 438 /* 439 * First, check for the ACPI 2.0 _CST sleep states object. 440 * If not usable, fall back to the P_BLK's P_LVL2 and P_LVL3. 441 */ 442 sc->cpu_cx_count = 0; 443 error = acpi_cpu_cx_cst(sc); 444 if (error != 0) { 445 cx_ptr = sc->cpu_cx_states; 446 447 /* C1 has been required since just after ACPI 1.0 */ 448 cx_ptr->type = ACPI_STATE_C1; 449 cx_ptr->trans_lat = 0; 450 cpu_non_c3 = 0; 451 cx_ptr++; 452 sc->cpu_cx_count++; 453 454 /* 455 * The spec says P_BLK must be 6 bytes long. However, some systems 456 * use it to indicate a fractional set of features present so we 457 * take 5 as C2. Some may also have a value of 7 to indicate 458 * another C3 but most use _CST for this (as required) and having 459 * "only" C1-C3 is not a hardship. 460 */ 461 if (sc->cpu_p_blk_len < 5) 462 goto done; 463 464 /* Validate and allocate resources for C2 (P_LVL2). */ 465 gas.AddressSpaceId = ACPI_ADR_SPACE_SYSTEM_IO; 466 gas.RegisterBitWidth = 8; 467 if (AcpiGbl_FADT->Plvl2Lat <= 100) { 468 gas.Address = sc->cpu_p_blk + 4; 469 cx_ptr->p_lvlx = acpi_bus_alloc_gas(sc->cpu_dev, &cpu_rid, &gas); 470 if (cx_ptr->p_lvlx != NULL) { 471 cpu_rid++; 472 cx_ptr->type = ACPI_STATE_C2; 473 cx_ptr->trans_lat = AcpiGbl_FADT->Plvl2Lat; 474 cpu_non_c3 = 1; 475 cx_ptr++; 476 sc->cpu_cx_count++; 477 } 478 } 479 if (sc->cpu_p_blk_len < 6) 480 goto done; 481 482 /* Validate and allocate resources for C3 (P_LVL3). */ 483 if (AcpiGbl_FADT->Plvl3Lat <= 1000 && 484 (cpu_quirks & CPU_QUIRK_NO_C3) == 0) { 485 486 gas.Address = sc->cpu_p_blk + 5; 487 cx_ptr->p_lvlx = acpi_bus_alloc_gas(sc->cpu_dev, &cpu_rid, &gas); 488 if (cx_ptr->p_lvlx != NULL) { 489 cpu_rid++; 490 cx_ptr->type = ACPI_STATE_C3; 491 cx_ptr->trans_lat = AcpiGbl_FADT->Plvl3Lat; 492 cx_ptr++; 493 sc->cpu_cx_count++; 494 } 495 } 496 } 497 498 done: 499 /* If no valid registers were found, don't attach. */ 500 if (sc->cpu_cx_count == 0) 501 return (ENXIO); 502 503 return (0); 504 } 505 506 /* 507 * Parse a _CST package and set up its Cx states. Since the _CST object 508 * can change dynamically, our notify handler may call this function 509 * to clean up and probe the new _CST package. 510 */ 511 static int 512 acpi_cpu_cx_cst(struct acpi_cpu_softc *sc) 513 { 514 struct acpi_cx *cx_ptr; 515 ACPI_STATUS status; 516 ACPI_BUFFER buf; 517 ACPI_OBJECT *top; 518 ACPI_OBJECT *pkg; 519 uint32_t count; 520 int i; 521 522 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 523 524 buf.Pointer = NULL; 525 buf.Length = ACPI_ALLOCATE_BUFFER; 526 status = AcpiEvaluateObject(sc->cpu_handle, "_CST", NULL, &buf); 527 if (ACPI_FAILURE(status)) 528 return (ENXIO); 529 530 /* _CST is a package with a count and at least one Cx package. */ 531 top = (ACPI_OBJECT *)buf.Pointer; 532 if (!ACPI_PKG_VALID(top, 2) || acpi_PkgInt32(top, 0, &count) != 0) { 533 device_printf(sc->cpu_dev, "Invalid _CST package\n"); 534 AcpiOsFree(buf.Pointer); 535 return (ENXIO); 536 } 537 if (count != top->Package.Count - 1) { 538 device_printf(sc->cpu_dev, "Invalid _CST state count (%d != %d)\n", 539 count, top->Package.Count - 1); 540 count = top->Package.Count - 1; 541 } 542 if (count > MAX_CX_STATES) { 543 device_printf(sc->cpu_dev, "_CST has too many states (%d)\n", count); 544 count = MAX_CX_STATES; 545 } 546 547 /* Set up all valid states. */ 548 sc->cpu_cx_count = 0; 549 cx_ptr = sc->cpu_cx_states; 550 for (i = 0; i < count; i++) { 551 pkg = &top->Package.Elements[i + 1]; 552 if (!ACPI_PKG_VALID(pkg, 4) || 553 acpi_PkgInt32(pkg, 1, &cx_ptr->type) != 0 || 554 acpi_PkgInt32(pkg, 2, &cx_ptr->trans_lat) != 0 || 555 acpi_PkgInt32(pkg, 3, &cx_ptr->power) != 0) { 556 557 device_printf(sc->cpu_dev, "Skipping invalid Cx state package\n"); 558 continue; 559 } 560 561 /* Validate the state to see if we should use it. */ 562 switch (cx_ptr->type) { 563 case ACPI_STATE_C1: 564 cpu_non_c3 = i; 565 cx_ptr++; 566 sc->cpu_cx_count++; 567 continue; 568 case ACPI_STATE_C2: 569 if (cx_ptr->trans_lat > 100) { 570 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 571 "acpi_cpu%d: C2[%d] not available.\n", 572 device_get_unit(sc->cpu_dev), i)); 573 continue; 574 } 575 cpu_non_c3 = i; 576 break; 577 case ACPI_STATE_C3: 578 default: 579 if (cx_ptr->trans_lat > 1000 || 580 (cpu_quirks & CPU_QUIRK_NO_C3) != 0) { 581 582 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 583 "acpi_cpu%d: C3[%d] not available.\n", 584 device_get_unit(sc->cpu_dev), i)); 585 continue; 586 } 587 break; 588 } 589 590 #ifdef notyet 591 /* Free up any previous register. */ 592 if (cx_ptr->p_lvlx != NULL) { 593 bus_release_resource(sc->cpu_dev, 0, 0, cx_ptr->p_lvlx); 594 cx_ptr->p_lvlx = NULL; 595 } 596 #endif 597 598 /* Allocate the control register for C2 or C3. */ 599 acpi_PkgGas(sc->cpu_dev, pkg, 0, &cpu_rid, &cx_ptr->p_lvlx); 600 if (cx_ptr->p_lvlx != NULL) { 601 cpu_rid++; 602 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 603 "acpi_cpu%d: Got C%d - %d latency\n", 604 device_get_unit(sc->cpu_dev), cx_ptr->type, 605 cx_ptr->trans_lat)); 606 cx_ptr++; 607 sc->cpu_cx_count++; 608 } 609 } 610 AcpiOsFree(buf.Pointer); 611 612 return (0); 613 } 614 615 /* 616 * Call this *after* all CPUs have been attached. 617 */ 618 static void 619 acpi_cpu_startup(void *arg) 620 { 621 struct acpi_cpu_softc *sc; 622 int count, i; 623 624 /* Get set of CPU devices */ 625 devclass_get_devices(acpi_cpu_devclass, &cpu_devices, &cpu_ndevices); 626 627 /* 628 * Make sure all the processors' Cx counts match. We should probably 629 * also check the contents of each. However, no known systems have 630 * non-matching Cx counts so we'll deal with this later. 631 */ 632 count = MAX_CX_STATES; 633 for (i = 0; i < cpu_ndevices; i++) { 634 sc = device_get_softc(cpu_devices[i]); 635 count = min(sc->cpu_cx_count, count); 636 } 637 cpu_cx_count = count; 638 639 /* Perform throttling and Cx final initialization. */ 640 sc = device_get_softc(cpu_devices[0]); 641 if (sc->cpu_p_cnt != NULL) 642 acpi_cpu_startup_throttling(); 643 if (cpu_cx_count > 0) 644 acpi_cpu_startup_cx(); 645 } 646 647 /* 648 * Takes the ACPI lock to avoid fighting anyone over the SMI command 649 * port. 650 */ 651 static void 652 acpi_cpu_startup_throttling() 653 { 654 ACPI_LOCK_DECL; 655 656 /* Initialise throttling states */ 657 cpu_throttle_max = CPU_MAX_SPEED; 658 cpu_throttle_state = CPU_MAX_SPEED; 659 660 SYSCTL_ADD_INT(&acpi_cpu_sysctl_ctx, 661 SYSCTL_CHILDREN(acpi_cpu_sysctl_tree), 662 OID_AUTO, "throttle_max", CTLFLAG_RD, 663 &cpu_throttle_max, 0, "maximum CPU speed"); 664 SYSCTL_ADD_PROC(&acpi_cpu_sysctl_ctx, 665 SYSCTL_CHILDREN(acpi_cpu_sysctl_tree), 666 OID_AUTO, "throttle_state", 667 CTLTYPE_INT | CTLFLAG_RW, &cpu_throttle_state, 668 0, acpi_cpu_throttle_sysctl, "I", "current CPU speed"); 669 670 /* If ACPI 2.0+, signal platform that we are taking over throttling. */ 671 ACPI_LOCK; 672 if (cpu_pstate_cnt != 0) 673 AcpiOsWritePort(cpu_smi_cmd, cpu_pstate_cnt, 8); 674 675 /* Set initial speed to maximum. */ 676 acpi_cpu_throttle_set(cpu_throttle_max); 677 ACPI_UNLOCK; 678 679 printf("acpi_cpu: throttling enabled, %d steps (100%% to %d.%d%%), " 680 "currently %d.%d%%\n", CPU_MAX_SPEED, CPU_SPEED_PRINTABLE(1), 681 CPU_SPEED_PRINTABLE(cpu_throttle_state)); 682 } 683 684 static void 685 acpi_cpu_startup_cx() 686 { 687 struct acpi_cpu_softc *sc; 688 struct sbuf sb; 689 int i; 690 ACPI_LOCK_DECL; 691 692 sc = device_get_softc(cpu_devices[0]); 693 sbuf_new(&sb, cpu_cx_supported, sizeof(cpu_cx_supported), SBUF_FIXEDLEN); 694 for (i = 0; i < cpu_cx_count; i++) { 695 sbuf_printf(&sb, "C%d/%d ", sc->cpu_cx_states[i].type, 696 sc->cpu_cx_states[i].trans_lat); 697 } 698 sbuf_trim(&sb); 699 sbuf_finish(&sb); 700 SYSCTL_ADD_STRING(&acpi_cpu_sysctl_ctx, 701 SYSCTL_CHILDREN(acpi_cpu_sysctl_tree), 702 OID_AUTO, "cx_supported", CTLFLAG_RD, cpu_cx_supported, 703 0, "Cx/microsecond values for supported Cx states"); 704 SYSCTL_ADD_PROC(&acpi_cpu_sysctl_ctx, 705 SYSCTL_CHILDREN(acpi_cpu_sysctl_tree), 706 OID_AUTO, "cx_lowest", CTLTYPE_INT | CTLFLAG_RW, 707 NULL, 0, acpi_cpu_cx_lowest_sysctl, "I", 708 "lowest Cx sleep state to use"); 709 SYSCTL_ADD_PROC(&acpi_cpu_sysctl_ctx, 710 SYSCTL_CHILDREN(acpi_cpu_sysctl_tree), 711 OID_AUTO, "cx_history", CTLTYPE_STRING | CTLFLAG_RD, 712 NULL, 0, acpi_cpu_history_sysctl, "A", 713 "count of full sleeps for Cx state / short sleeps"); 714 715 #ifdef notyet 716 /* Signal platform that we can handle _CST notification. */ 717 if (cpu_cst_cnt != 0) { 718 ACPI_LOCK; 719 AcpiOsWritePort(cpu_smi_cmd, cpu_cst_cnt, 8); 720 ACPI_UNLOCK; 721 } 722 #endif 723 724 /* Take over idling from cpu_idle_default(). */ 725 cpu_cx_next = cpu_cx_lowest; 726 cpu_idle_hook = acpi_cpu_idle; 727 } 728 729 /* 730 * Set CPUs to the new state. 731 * 732 * Must be called with the ACPI lock held. 733 */ 734 static void 735 acpi_cpu_throttle_set(uint32_t speed) 736 { 737 struct acpi_cpu_softc *sc; 738 int i; 739 uint32_t p_cnt, clk_val; 740 741 ACPI_ASSERTLOCK; 742 743 /* Iterate over processors */ 744 for (i = 0; i < cpu_ndevices; i++) { 745 sc = device_get_softc(cpu_devices[i]); 746 if (sc->cpu_p_cnt == NULL) 747 continue; 748 749 /* Get the current P_CNT value and disable throttling */ 750 p_cnt = CPU_GET_REG(sc->cpu_p_cnt, 4); 751 p_cnt &= ~CPU_P_CNT_THT_EN; 752 CPU_SET_REG(sc->cpu_p_cnt, 4, p_cnt); 753 754 /* If we're at maximum speed, that's all */ 755 if (speed < CPU_MAX_SPEED) { 756 /* Mask the old CLK_VAL off and or-in the new value */ 757 clk_val = (CPU_MAX_SPEED - 1) << cpu_duty_offset; 758 p_cnt &= ~clk_val; 759 p_cnt |= (speed << cpu_duty_offset); 760 761 /* Write the new P_CNT value and then enable throttling */ 762 CPU_SET_REG(sc->cpu_p_cnt, 4, p_cnt); 763 p_cnt |= CPU_P_CNT_THT_EN; 764 CPU_SET_REG(sc->cpu_p_cnt, 4, p_cnt); 765 } 766 ACPI_VPRINT(sc->cpu_dev, acpi_device_get_parent_softc(sc->cpu_dev), 767 "set speed to %d.%d%%\n", CPU_SPEED_PRINTABLE(speed)); 768 } 769 cpu_throttle_state = speed; 770 } 771 772 /* 773 * Idle the CPU in the lowest state possible. 774 * This function is called with interrupts disabled. 775 */ 776 static void 777 acpi_cpu_idle() 778 { 779 struct acpi_cpu_softc *sc; 780 struct acpi_cx *cx_next; 781 uint32_t start_time, end_time; 782 int bm_active, i, asleep; 783 784 /* If disabled, return immediately. */ 785 if (cpu_cx_count == 0) { 786 ACPI_ENABLE_IRQS(); 787 return; 788 } 789 790 /* 791 * Look up our CPU id to get our softc. If it's NULL, we'll use C1 792 * since there is no ACPI processor object for this CPU. This occurs 793 * for logical CPUs in the HTT case. 794 */ 795 sc = cpu_softc[PCPU_GET(cpuid)]; 796 if (sc == NULL) { 797 acpi_cpu_c1(); 798 return; 799 } 800 801 /* Record that a CPU is in the idle function. */ 802 atomic_add_int(&cpu_idle_busy, 1); 803 804 /* 805 * Check for bus master activity. If there was activity, clear 806 * the bit and use the lowest non-C3 state. Note that the USB 807 * driver polling for new devices keeps this bit set all the 808 * time if USB is enabled. 809 */ 810 AcpiGetRegister(ACPI_BITREG_BUS_MASTER_STATUS, &bm_active, 811 ACPI_MTX_DO_NOT_LOCK); 812 if (bm_active != 0) { 813 AcpiSetRegister(ACPI_BITREG_BUS_MASTER_STATUS, 1, 814 ACPI_MTX_DO_NOT_LOCK); 815 cpu_cx_next = min(cpu_cx_next, cpu_non_c3); 816 } 817 818 /* Perform the actual sleep based on the Cx-specific semantics. */ 819 cx_next = &sc->cpu_cx_states[cpu_cx_next]; 820 switch (cx_next->type) { 821 case ACPI_STATE_C0: 822 panic("acpi_cpu_idle: attempting to sleep in C0"); 823 /* NOTREACHED */ 824 case ACPI_STATE_C1: 825 /* Execute HLT (or equivalent) and wait for an interrupt. */ 826 acpi_cpu_c1(); 827 828 /* 829 * We can't calculate the time spent in C1 since the place we 830 * wake up is an ISR. Use a constant time of 1 ms. 831 */ 832 start_time = 0; 833 end_time = 1000; 834 break; 835 case ACPI_STATE_C2: 836 /* 837 * Read from P_LVLx to enter C2, checking time spent asleep. 838 * Use the ACPI timer for measuring sleep time. Since we need to 839 * get the time very close to the CPU start/stop clock logic, this 840 * is the only reliable time source. 841 */ 842 AcpiHwLowLevelRead(32, &start_time, &AcpiGbl_FADT->XPmTmrBlk); 843 CPU_GET_REG(cx_next->p_lvlx, 1); 844 845 /* 846 * Read the end time twice. Since it may take an arbitrary time 847 * to enter the idle state, the first read may be executed before 848 * the processor has stopped. Doing it again provides enough 849 * margin that we are certain to have a correct value. 850 */ 851 AcpiHwLowLevelRead(32, &end_time, &AcpiGbl_FADT->XPmTmrBlk); 852 AcpiHwLowLevelRead(32, &end_time, &AcpiGbl_FADT->XPmTmrBlk); 853 ACPI_ENABLE_IRQS(); 854 break; 855 case ACPI_STATE_C3: 856 default: 857 /* Disable bus master arbitration and enable bus master wakeup. */ 858 AcpiSetRegister(ACPI_BITREG_ARB_DISABLE, 1, ACPI_MTX_DO_NOT_LOCK); 859 AcpiSetRegister(ACPI_BITREG_BUS_MASTER_RLD, 1, ACPI_MTX_DO_NOT_LOCK); 860 861 /* Read from P_LVLx to enter C3, checking time spent asleep. */ 862 AcpiHwLowLevelRead(32, &start_time, &AcpiGbl_FADT->XPmTmrBlk); 863 CPU_GET_REG(cx_next->p_lvlx, 1); 864 865 /* Read the end time twice. See comment for C2 above. */ 866 AcpiHwLowLevelRead(32, &end_time, &AcpiGbl_FADT->XPmTmrBlk); 867 AcpiHwLowLevelRead(32, &end_time, &AcpiGbl_FADT->XPmTmrBlk); 868 869 /* Enable bus master arbitration and disable bus master wakeup. */ 870 AcpiSetRegister(ACPI_BITREG_ARB_DISABLE, 0, ACPI_MTX_DO_NOT_LOCK); 871 AcpiSetRegister(ACPI_BITREG_BUS_MASTER_RLD, 0, ACPI_MTX_DO_NOT_LOCK); 872 ACPI_ENABLE_IRQS(); 873 break; 874 } 875 876 /* Find the actual time asleep in microseconds, minus overhead. */ 877 acpi_pm_ticksub(&end_time, &start_time); 878 asleep = PM_USEC(end_time) - cx_next->trans_lat; 879 880 /* Record statistics */ 881 if (asleep < cx_next->trans_lat) 882 cpu_cx_stats[cpu_cx_next].short_slp++; 883 else 884 cpu_cx_stats[cpu_cx_next].long_slp++; 885 886 /* 887 * If we slept 100 us or more, use the lowest Cx state. 888 * Otherwise, find the lowest state that has a latency less than 889 * or equal to the length of our last sleep. 890 */ 891 if (asleep >= 100) 892 cpu_cx_next = cpu_cx_lowest; 893 else { 894 for (i = cpu_cx_lowest; i >= 0; i--) { 895 if (sc->cpu_cx_states[i].trans_lat <= asleep) { 896 cpu_cx_next = i; 897 break; 898 } 899 } 900 } 901 902 /* Decrement reference count checked by acpi_cpu_shutdown(). */ 903 atomic_subtract_int(&cpu_idle_busy, 1); 904 } 905 906 /* Put the CPU in C1 in a machine-dependant way. */ 907 static void 908 acpi_cpu_c1() 909 { 910 #ifdef __ia64__ 911 ia64_call_pal_static(PAL_HALT_LIGHT, 0, 0, 0); 912 #else 913 __asm __volatile("sti; hlt"); 914 #endif 915 } 916 917 /* Find the difference between two PM tick counts. */ 918 static void 919 acpi_pm_ticksub(uint32_t *end, const uint32_t *start) 920 { 921 if (*end >= *start) 922 *end = *end - *start; 923 else if (AcpiGbl_FADT->TmrValExt == 0) 924 *end = (((0x00FFFFFF - *start) + *end + 1) & 0x00FFFFFF); 925 else 926 *end = ((0xFFFFFFFF - *start) + *end + 1); 927 } 928 929 /* 930 * Re-evaluate the _PSS and _CST objects when we are notified that they 931 * have changed. 932 * 933 * XXX Re-evaluation disabled until locking is done. 934 */ 935 static void 936 acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context) 937 { 938 struct acpi_cpu_softc *sc = (struct acpi_cpu_softc *)context; 939 940 switch (notify) { 941 case ACPI_CPU_NOTIFY_PERF_STATES: 942 device_printf(sc->cpu_dev, "Performance states changed\n"); 943 /* acpi_cpu_px_available(sc); */ 944 break; 945 case ACPI_CPU_NOTIFY_CX_STATES: 946 device_printf(sc->cpu_dev, "Cx states changed\n"); 947 /* acpi_cpu_cx_cst(sc); */ 948 break; 949 default: 950 device_printf(sc->cpu_dev, "Unknown notify %#x\n", notify); 951 break; 952 } 953 } 954 955 static int 956 acpi_cpu_quirks(struct acpi_cpu_softc *sc) 957 { 958 959 /* 960 * C3 is not supported on multiple CPUs since this would require 961 * flushing all caches which is currently too expensive. 962 */ 963 if (mp_ncpus > 1) 964 cpu_quirks |= CPU_QUIRK_NO_C3; 965 966 #ifdef notyet 967 /* Look for various quirks of the PIIX4 part. */ 968 acpi_dev = pci_find_device(PCI_VENDOR_INTEL, PCI_DEVICE_82371AB_3); 969 if (acpi_dev != NULL) { 970 switch (pci_get_revid(acpi_dev)) { 971 /* 972 * Disable throttling control on PIIX4 A and B-step. 973 * See specification changes #13 ("Manual Throttle Duty Cycle") 974 * and #14 ("Enabling and Disabling Manual Throttle"), plus 975 * erratum #5 ("STPCLK# Deassertion Time") from the January 976 * 2002 PIIX4 specification update. Note that few (if any) 977 * mobile systems ever used this part. 978 */ 979 case PCI_REVISION_A_STEP: 980 case PCI_REVISION_B_STEP: 981 cpu_quirks |= CPU_QUIRK_NO_THROTTLE; 982 /* FALLTHROUGH */ 983 /* 984 * Disable C3 support for all PIIX4 chipsets. Some of these parts 985 * do not report the BMIDE status to the BM status register and 986 * others have a livelock bug if Type-F DMA is enabled. Linux 987 * works around the BMIDE bug by reading the BM status directly 988 * but we take the simpler approach of disabling C3 for these 989 * parts. 990 * 991 * See erratum #18 ("C3 Power State/BMIDE and Type-F DMA 992 * Livelock") from the January 2002 PIIX4 specification update. 993 * Applies to all PIIX4 models. 994 */ 995 case PCI_REVISION_4E: 996 case PCI_REVISION_4M: 997 cpu_quirks |= CPU_QUIRK_NO_C3; 998 break; 999 default: 1000 break; 1001 } 1002 } 1003 #endif 1004 1005 return (0); 1006 } 1007 1008 /* Handle changes in the CPU throttling setting. */ 1009 static int 1010 acpi_cpu_throttle_sysctl(SYSCTL_HANDLER_ARGS) 1011 { 1012 uint32_t *argp; 1013 uint32_t arg; 1014 int error; 1015 ACPI_LOCK_DECL; 1016 1017 argp = (uint32_t *)oidp->oid_arg1; 1018 arg = *argp; 1019 error = sysctl_handle_int(oidp, &arg, 0, req); 1020 1021 /* Error or no new value */ 1022 if (error != 0 || req->newptr == NULL) 1023 return (error); 1024 if (arg < 1 || arg > cpu_throttle_max) 1025 return (EINVAL); 1026 1027 /* If throttling changed, notify the BIOS of the new rate. */ 1028 ACPI_LOCK; 1029 if (*argp != arg) { 1030 *argp = arg; 1031 acpi_cpu_throttle_set(arg); 1032 } 1033 ACPI_UNLOCK; 1034 1035 return (0); 1036 } 1037 1038 static int 1039 acpi_cpu_history_sysctl(SYSCTL_HANDLER_ARGS) 1040 { 1041 struct sbuf sb; 1042 char buf[128]; 1043 int i; 1044 1045 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN); 1046 for (i = 0; i < cpu_cx_count; i++) { 1047 sbuf_printf(&sb, "%u/%u ", cpu_cx_stats[i].long_slp, 1048 cpu_cx_stats[i].short_slp); 1049 } 1050 sbuf_trim(&sb); 1051 sbuf_finish(&sb); 1052 sysctl_handle_string(oidp, sbuf_data(&sb), 0, req); 1053 1054 return (0); 1055 } 1056 1057 static int 1058 acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS) 1059 { 1060 struct acpi_cpu_softc *sc; 1061 int val, error, i; 1062 1063 sc = device_get_softc(cpu_devices[0]); 1064 val = cpu_cx_lowest; 1065 error = sysctl_handle_int(oidp, &val, 0, req); 1066 if (error != 0 || req->newptr == NULL) 1067 return (error); 1068 if (val < 0 || val > cpu_cx_count - 1) 1069 return (EINVAL); 1070 1071 /* Use the new value for the next idle slice. */ 1072 cpu_cx_lowest = val; 1073 cpu_cx_next = val; 1074 1075 /* If not disabling, cache the new lowest non-C3 state. */ 1076 cpu_non_c3 = 0; 1077 for (i = cpu_cx_lowest; i >= 0; i--) { 1078 if (sc->cpu_cx_states[i].type < ACPI_STATE_C3) { 1079 cpu_non_c3 = i; 1080 break; 1081 } 1082 } 1083 1084 /* Reset the statistics counters. */ 1085 memset(cpu_cx_stats, 0, sizeof(cpu_cx_stats)); 1086 1087 return (0); 1088 } 1089