xref: /freebsd/sys/dev/acpica/acpi_cpu.c (revision 0e97acdf58fe27b09c4824a474b0344daf997c5f)
1 /*-
2  * Copyright (c) 2003-2005 Nate Lawson (SDG)
3  * Copyright (c) 2001 Michael Smith
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 #include "opt_acpi.h"
32 #include <sys/param.h>
33 #include <sys/bus.h>
34 #include <sys/cpu.h>
35 #include <sys/kernel.h>
36 #include <sys/malloc.h>
37 #include <sys/module.h>
38 #include <sys/pcpu.h>
39 #include <sys/power.h>
40 #include <sys/proc.h>
41 #include <sys/sched.h>
42 #include <sys/sbuf.h>
43 #include <sys/smp.h>
44 
45 #include <dev/pci/pcivar.h>
46 #include <machine/atomic.h>
47 #include <machine/bus.h>
48 #if defined(__amd64__) || defined(__i386__)
49 #include <machine/clock.h>
50 #endif
51 #include <sys/rman.h>
52 
53 #include <contrib/dev/acpica/include/acpi.h>
54 #include <contrib/dev/acpica/include/accommon.h>
55 
56 #include <dev/acpica/acpivar.h>
57 
58 /*
59  * Support for ACPI Processor devices, including C[1-3] sleep states.
60  */
61 
62 /* Hooks for the ACPI CA debugging infrastructure */
63 #define _COMPONENT	ACPI_PROCESSOR
64 ACPI_MODULE_NAME("PROCESSOR")
65 
66 struct acpi_cx {
67     struct resource	*p_lvlx;	/* Register to read to enter state. */
68     uint32_t		 type;		/* C1-3 (C4 and up treated as C3). */
69     uint32_t		 trans_lat;	/* Transition latency (usec). */
70     uint32_t		 power;		/* Power consumed (mW). */
71     int			 res_type;	/* Resource type for p_lvlx. */
72     int			 res_rid;	/* Resource ID for p_lvlx. */
73 };
74 #define MAX_CX_STATES	 8
75 
76 struct acpi_cpu_softc {
77     device_t		 cpu_dev;
78     ACPI_HANDLE		 cpu_handle;
79     struct pcpu		*cpu_pcpu;
80     uint32_t		 cpu_acpi_id;	/* ACPI processor id */
81     uint32_t		 cpu_p_blk;	/* ACPI P_BLK location */
82     uint32_t		 cpu_p_blk_len;	/* P_BLK length (must be 6). */
83     struct acpi_cx	 cpu_cx_states[MAX_CX_STATES];
84     int			 cpu_cx_count;	/* Number of valid Cx states. */
85     int			 cpu_prev_sleep;/* Last idle sleep duration. */
86     int			 cpu_features;	/* Child driver supported features. */
87     /* Runtime state. */
88     int			 cpu_non_c3;	/* Index of lowest non-C3 state. */
89     u_int		 cpu_cx_stats[MAX_CX_STATES];/* Cx usage history. */
90     /* Values for sysctl. */
91     struct sysctl_ctx_list cpu_sysctl_ctx;
92     struct sysctl_oid	*cpu_sysctl_tree;
93     int			 cpu_cx_lowest;
94     int			 cpu_cx_lowest_lim;
95     int			 cpu_disable_idle; /* Disable entry to idle function */
96     char 		 cpu_cx_supported[64];
97 };
98 
99 struct acpi_cpu_device {
100     struct resource_list	ad_rl;
101 };
102 
103 #define CPU_GET_REG(reg, width) 					\
104     (bus_space_read_ ## width(rman_get_bustag((reg)), 			\
105 		      rman_get_bushandle((reg)), 0))
106 #define CPU_SET_REG(reg, width, val)					\
107     (bus_space_write_ ## width(rman_get_bustag((reg)), 			\
108 		       rman_get_bushandle((reg)), 0, (val)))
109 
110 #define PM_USEC(x)	 ((x) >> 2)	/* ~4 clocks per usec (3.57955 Mhz) */
111 
112 #define ACPI_NOTIFY_CX_STATES	0x81	/* _CST changed. */
113 
114 #define CPU_QUIRK_NO_C3		(1<<0)	/* C3-type states are not usable. */
115 #define CPU_QUIRK_NO_BM_CTRL	(1<<2)	/* No bus mastering control. */
116 
117 #define PCI_VENDOR_INTEL	0x8086
118 #define PCI_DEVICE_82371AB_3	0x7113	/* PIIX4 chipset for quirks. */
119 #define PCI_REVISION_A_STEP	0
120 #define PCI_REVISION_B_STEP	1
121 #define PCI_REVISION_4E		2
122 #define PCI_REVISION_4M		3
123 #define PIIX4_DEVACTB_REG	0x58
124 #define PIIX4_BRLD_EN_IRQ0	(1<<0)
125 #define PIIX4_BRLD_EN_IRQ	(1<<1)
126 #define PIIX4_BRLD_EN_IRQ8	(1<<5)
127 #define PIIX4_STOP_BREAK_MASK	(PIIX4_BRLD_EN_IRQ0 | PIIX4_BRLD_EN_IRQ | PIIX4_BRLD_EN_IRQ8)
128 #define PIIX4_PCNTRL_BST_EN	(1<<10)
129 
130 /* Allow users to ignore processor orders in MADT. */
131 static int cpu_unordered;
132 SYSCTL_INT(_debug_acpi, OID_AUTO, cpu_unordered, CTLFLAG_RDTUN,
133     &cpu_unordered, 0,
134     "Do not use the MADT to match ACPI Processor objects to CPUs.");
135 
136 /* Knob to disable acpi_cpu devices */
137 bool acpi_cpu_disabled = false;
138 
139 /* Platform hardware resource information. */
140 static uint32_t		 cpu_smi_cmd;	/* Value to write to SMI_CMD. */
141 static uint8_t		 cpu_cst_cnt;	/* Indicate we are _CST aware. */
142 static int		 cpu_quirks;	/* Indicate any hardware bugs. */
143 
144 /* Values for sysctl. */
145 static struct sysctl_ctx_list cpu_sysctl_ctx;
146 static struct sysctl_oid *cpu_sysctl_tree;
147 static int		 cpu_cx_generic;
148 static int		 cpu_cx_lowest_lim;
149 
150 static device_t		*cpu_devices;
151 static int		 cpu_ndevices;
152 static struct acpi_cpu_softc **cpu_softc;
153 ACPI_SERIAL_DECL(cpu, "ACPI CPU");
154 
155 static int	acpi_cpu_probe(device_t dev);
156 static int	acpi_cpu_attach(device_t dev);
157 static int	acpi_cpu_suspend(device_t dev);
158 static int	acpi_cpu_resume(device_t dev);
159 static int	acpi_pcpu_get_id(device_t dev, uint32_t *acpi_id,
160 		    uint32_t *cpu_id);
161 static struct resource_list *acpi_cpu_get_rlist(device_t dev, device_t child);
162 static device_t	acpi_cpu_add_child(device_t dev, u_int order, const char *name,
163 		    int unit);
164 static int	acpi_cpu_read_ivar(device_t dev, device_t child, int index,
165 		    uintptr_t *result);
166 static int	acpi_cpu_shutdown(device_t dev);
167 static void	acpi_cpu_cx_probe(struct acpi_cpu_softc *sc);
168 static void	acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc);
169 static int	acpi_cpu_cx_cst(struct acpi_cpu_softc *sc);
170 static void	acpi_cpu_startup(void *arg);
171 static void	acpi_cpu_startup_cx(struct acpi_cpu_softc *sc);
172 static void	acpi_cpu_cx_list(struct acpi_cpu_softc *sc);
173 static void	acpi_cpu_idle(sbintime_t sbt);
174 static void	acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context);
175 static int	acpi_cpu_quirks(void);
176 static int	acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS);
177 static int	acpi_cpu_usage_counters_sysctl(SYSCTL_HANDLER_ARGS);
178 static int	acpi_cpu_set_cx_lowest(struct acpi_cpu_softc *sc);
179 static int	acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS);
180 static int	acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS);
181 
182 static device_method_t acpi_cpu_methods[] = {
183     /* Device interface */
184     DEVMETHOD(device_probe,	acpi_cpu_probe),
185     DEVMETHOD(device_attach,	acpi_cpu_attach),
186     DEVMETHOD(device_detach,	bus_generic_detach),
187     DEVMETHOD(device_shutdown,	acpi_cpu_shutdown),
188     DEVMETHOD(device_suspend,	acpi_cpu_suspend),
189     DEVMETHOD(device_resume,	acpi_cpu_resume),
190 
191     /* Bus interface */
192     DEVMETHOD(bus_add_child,	acpi_cpu_add_child),
193     DEVMETHOD(bus_read_ivar,	acpi_cpu_read_ivar),
194     DEVMETHOD(bus_get_resource_list, acpi_cpu_get_rlist),
195     DEVMETHOD(bus_get_resource,	bus_generic_rl_get_resource),
196     DEVMETHOD(bus_set_resource,	bus_generic_rl_set_resource),
197     DEVMETHOD(bus_alloc_resource, bus_generic_rl_alloc_resource),
198     DEVMETHOD(bus_release_resource, bus_generic_rl_release_resource),
199     DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
200     DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
201     DEVMETHOD(bus_setup_intr,	bus_generic_setup_intr),
202     DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr),
203 
204     DEVMETHOD_END
205 };
206 
207 static driver_t acpi_cpu_driver = {
208     "cpu",
209     acpi_cpu_methods,
210     sizeof(struct acpi_cpu_softc),
211 };
212 
213 static devclass_t acpi_cpu_devclass;
214 DRIVER_MODULE(cpu, acpi, acpi_cpu_driver, acpi_cpu_devclass, 0, 0);
215 MODULE_DEPEND(cpu, acpi, 1, 1, 1);
216 
217 static int
218 acpi_cpu_probe(device_t dev)
219 {
220     int			   acpi_id, cpu_id;
221     ACPI_BUFFER		   buf;
222     ACPI_HANDLE		   handle;
223     ACPI_OBJECT		   *obj;
224     ACPI_STATUS		   status;
225 
226     if (acpi_disabled("cpu") || acpi_get_type(dev) != ACPI_TYPE_PROCESSOR ||
227 	    acpi_cpu_disabled)
228 	return (ENXIO);
229 
230     handle = acpi_get_handle(dev);
231     if (cpu_softc == NULL)
232 	cpu_softc = malloc(sizeof(struct acpi_cpu_softc *) *
233 	    (mp_maxid + 1), M_TEMP /* XXX */, M_WAITOK | M_ZERO);
234 
235     /* Get our Processor object. */
236     buf.Pointer = NULL;
237     buf.Length = ACPI_ALLOCATE_BUFFER;
238     status = AcpiEvaluateObject(handle, NULL, NULL, &buf);
239     if (ACPI_FAILURE(status)) {
240 	device_printf(dev, "probe failed to get Processor obj - %s\n",
241 		      AcpiFormatException(status));
242 	return (ENXIO);
243     }
244     obj = (ACPI_OBJECT *)buf.Pointer;
245     if (obj->Type != ACPI_TYPE_PROCESSOR) {
246 	device_printf(dev, "Processor object has bad type %d\n", obj->Type);
247 	AcpiOsFree(obj);
248 	return (ENXIO);
249     }
250 
251     /*
252      * Find the processor associated with our unit.  We could use the
253      * ProcId as a key, however, some boxes do not have the same values
254      * in their Processor object as the ProcId values in the MADT.
255      */
256     acpi_id = obj->Processor.ProcId;
257     AcpiOsFree(obj);
258     if (acpi_pcpu_get_id(dev, &acpi_id, &cpu_id) != 0)
259 	return (ENXIO);
260 
261     /*
262      * Check if we already probed this processor.  We scan the bus twice
263      * so it's possible we've already seen this one.
264      */
265     if (cpu_softc[cpu_id] != NULL)
266 	return (ENXIO);
267 
268     /* Mark this processor as in-use and save our derived id for attach. */
269     cpu_softc[cpu_id] = (void *)1;
270     acpi_set_private(dev, (void*)(intptr_t)cpu_id);
271     device_set_desc(dev, "ACPI CPU");
272 
273     return (0);
274 }
275 
276 static int
277 acpi_cpu_attach(device_t dev)
278 {
279     ACPI_BUFFER		   buf;
280     ACPI_OBJECT		   arg[4], *obj;
281     ACPI_OBJECT_LIST	   arglist;
282     struct pcpu		   *pcpu_data;
283     struct acpi_cpu_softc *sc;
284     struct acpi_softc	  *acpi_sc;
285     ACPI_STATUS		   status;
286     u_int		   features;
287     int			   cpu_id, drv_count, i;
288     driver_t 		  **drivers;
289     uint32_t		   cap_set[3];
290 
291     /* UUID needed by _OSC evaluation */
292     static uint8_t cpu_oscuuid[16] = { 0x16, 0xA6, 0x77, 0x40, 0x0C, 0x29,
293 				       0xBE, 0x47, 0x9E, 0xBD, 0xD8, 0x70,
294 				       0x58, 0x71, 0x39, 0x53 };
295 
296     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
297 
298     sc = device_get_softc(dev);
299     sc->cpu_dev = dev;
300     sc->cpu_handle = acpi_get_handle(dev);
301     cpu_id = (int)(intptr_t)acpi_get_private(dev);
302     cpu_softc[cpu_id] = sc;
303     pcpu_data = pcpu_find(cpu_id);
304     pcpu_data->pc_device = dev;
305     sc->cpu_pcpu = pcpu_data;
306     cpu_smi_cmd = AcpiGbl_FADT.SmiCommand;
307     cpu_cst_cnt = AcpiGbl_FADT.CstControl;
308 
309     buf.Pointer = NULL;
310     buf.Length = ACPI_ALLOCATE_BUFFER;
311     status = AcpiEvaluateObject(sc->cpu_handle, NULL, NULL, &buf);
312     if (ACPI_FAILURE(status)) {
313 	device_printf(dev, "attach failed to get Processor obj - %s\n",
314 		      AcpiFormatException(status));
315 	return (ENXIO);
316     }
317     obj = (ACPI_OBJECT *)buf.Pointer;
318     sc->cpu_p_blk = obj->Processor.PblkAddress;
319     sc->cpu_p_blk_len = obj->Processor.PblkLength;
320     sc->cpu_acpi_id = obj->Processor.ProcId;
321     AcpiOsFree(obj);
322     ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu%d: P_BLK at %#x/%d\n",
323 		     device_get_unit(dev), sc->cpu_p_blk, sc->cpu_p_blk_len));
324 
325     /*
326      * If this is the first cpu we attach, create and initialize the generic
327      * resources that will be used by all acpi cpu devices.
328      */
329     if (device_get_unit(dev) == 0) {
330 	/* Assume we won't be using generic Cx mode by default */
331 	cpu_cx_generic = FALSE;
332 
333 	/* Install hw.acpi.cpu sysctl tree */
334 	acpi_sc = acpi_device_get_parent_softc(dev);
335 	sysctl_ctx_init(&cpu_sysctl_ctx);
336 	cpu_sysctl_tree = SYSCTL_ADD_NODE(&cpu_sysctl_ctx,
337 	    SYSCTL_CHILDREN(acpi_sc->acpi_sysctl_tree), OID_AUTO, "cpu",
338 	    CTLFLAG_RD, 0, "node for CPU children");
339 
340 	/* Queue post cpu-probing task handler */
341 	AcpiOsExecute(OSL_NOTIFY_HANDLER, acpi_cpu_startup, NULL);
342     }
343 
344     /*
345      * Before calling any CPU methods, collect child driver feature hints
346      * and notify ACPI of them.  We support unified SMP power control
347      * so advertise this ourselves.  Note this is not the same as independent
348      * SMP control where each CPU can have different settings.
349      */
350     sc->cpu_features = ACPI_CAP_SMP_SAME | ACPI_CAP_SMP_SAME_C3;
351     if (devclass_get_drivers(acpi_cpu_devclass, &drivers, &drv_count) == 0) {
352 	for (i = 0; i < drv_count; i++) {
353 	    if (ACPI_GET_FEATURES(drivers[i], &features) == 0)
354 		sc->cpu_features |= features;
355 	}
356 	free(drivers, M_TEMP);
357     }
358 
359     /*
360      * CPU capabilities are specified in
361      * Intel Processor Vendor-Specific ACPI Interface Specification.
362      */
363     if (sc->cpu_features) {
364 	arglist.Pointer = arg;
365 	arglist.Count = 4;
366 	arg[0].Type = ACPI_TYPE_BUFFER;
367 	arg[0].Buffer.Length = sizeof(cpu_oscuuid);
368 	arg[0].Buffer.Pointer = cpu_oscuuid;	/* UUID */
369 	arg[1].Type = ACPI_TYPE_INTEGER;
370 	arg[1].Integer.Value = 1;		/* revision */
371 	arg[2].Type = ACPI_TYPE_INTEGER;
372 	arg[2].Integer.Value = 1;		/* count */
373 	arg[3].Type = ACPI_TYPE_BUFFER;
374 	arg[3].Buffer.Length = sizeof(cap_set);	/* Capabilities buffer */
375 	arg[3].Buffer.Pointer = (uint8_t *)cap_set;
376 	cap_set[0] = 0;				/* status */
377 	cap_set[1] = sc->cpu_features;
378 	status = AcpiEvaluateObject(sc->cpu_handle, "_OSC", &arglist, NULL);
379 	if (ACPI_SUCCESS(status)) {
380 	    if (cap_set[0] != 0)
381 		device_printf(dev, "_OSC returned status %#x\n", cap_set[0]);
382 	}
383 	else {
384 	    arglist.Pointer = arg;
385 	    arglist.Count = 1;
386 	    arg[0].Type = ACPI_TYPE_BUFFER;
387 	    arg[0].Buffer.Length = sizeof(cap_set);
388 	    arg[0].Buffer.Pointer = (uint8_t *)cap_set;
389 	    cap_set[0] = 1; /* revision */
390 	    cap_set[1] = 1; /* number of capabilities integers */
391 	    cap_set[2] = sc->cpu_features;
392 	    AcpiEvaluateObject(sc->cpu_handle, "_PDC", &arglist, NULL);
393 	}
394     }
395 
396     /* Probe for Cx state support. */
397     acpi_cpu_cx_probe(sc);
398 
399     return (0);
400 }
401 
402 static void
403 acpi_cpu_postattach(void *unused __unused)
404 {
405     device_t *devices;
406     int err;
407     int i, n;
408 
409     err = devclass_get_devices(acpi_cpu_devclass, &devices, &n);
410     if (err != 0) {
411 	printf("devclass_get_devices(acpi_cpu_devclass) failed\n");
412 	return;
413     }
414     for (i = 0; i < n; i++)
415 	bus_generic_probe(devices[i]);
416     for (i = 0; i < n; i++)
417 	bus_generic_attach(devices[i]);
418     free(devices, M_TEMP);
419 }
420 
421 SYSINIT(acpi_cpu, SI_SUB_CONFIGURE, SI_ORDER_MIDDLE,
422     acpi_cpu_postattach, NULL);
423 
424 static void
425 disable_idle(struct acpi_cpu_softc *sc)
426 {
427     cpuset_t cpuset;
428 
429     CPU_SETOF(sc->cpu_pcpu->pc_cpuid, &cpuset);
430     sc->cpu_disable_idle = TRUE;
431 
432     /*
433      * Ensure that the CPU is not in idle state or in acpi_cpu_idle().
434      * Note that this code depends on the fact that the rendezvous IPI
435      * can not penetrate context where interrupts are disabled and acpi_cpu_idle
436      * is called and executed in such a context with interrupts being re-enabled
437      * right before return.
438      */
439     smp_rendezvous_cpus(cpuset, smp_no_rendevous_barrier, NULL,
440 	smp_no_rendevous_barrier, NULL);
441 }
442 
443 static void
444 enable_idle(struct acpi_cpu_softc *sc)
445 {
446 
447     sc->cpu_disable_idle = FALSE;
448 }
449 
450 static int
451 is_idle_disabled(struct acpi_cpu_softc *sc)
452 {
453 
454     return (sc->cpu_disable_idle);
455 }
456 
457 /*
458  * Disable any entry to the idle function during suspend and re-enable it
459  * during resume.
460  */
461 static int
462 acpi_cpu_suspend(device_t dev)
463 {
464     int error;
465 
466     error = bus_generic_suspend(dev);
467     if (error)
468 	return (error);
469     disable_idle(device_get_softc(dev));
470     return (0);
471 }
472 
473 static int
474 acpi_cpu_resume(device_t dev)
475 {
476 
477     enable_idle(device_get_softc(dev));
478     return (bus_generic_resume(dev));
479 }
480 
481 /*
482  * Find the processor associated with a given ACPI ID.  By default,
483  * use the MADT to map ACPI IDs to APIC IDs and use that to locate a
484  * processor.  Some systems have inconsistent ASL and MADT however.
485  * For these systems the cpu_unordered tunable can be set in which
486  * case we assume that Processor objects are listed in the same order
487  * in both the MADT and ASL.
488  */
489 static int
490 acpi_pcpu_get_id(device_t dev, uint32_t *acpi_id, uint32_t *cpu_id)
491 {
492     struct pcpu	*pc;
493     uint32_t	 i, idx;
494 
495     KASSERT(acpi_id != NULL, ("Null acpi_id"));
496     KASSERT(cpu_id != NULL, ("Null cpu_id"));
497     idx = device_get_unit(dev);
498 
499     /*
500      * If pc_acpi_id for CPU 0 is not initialized (e.g. a non-APIC
501      * UP box) use the ACPI ID from the first processor we find.
502      */
503     if (idx == 0 && mp_ncpus == 1) {
504 	pc = pcpu_find(0);
505 	if (pc->pc_acpi_id == 0xffffffff)
506 	    pc->pc_acpi_id = *acpi_id;
507 	*cpu_id = 0;
508 	return (0);
509     }
510 
511     CPU_FOREACH(i) {
512 	pc = pcpu_find(i);
513 	KASSERT(pc != NULL, ("no pcpu data for %d", i));
514 	if (cpu_unordered) {
515 	    if (idx-- == 0) {
516 		/*
517 		 * If pc_acpi_id doesn't match the ACPI ID from the
518 		 * ASL, prefer the MADT-derived value.
519 		 */
520 		if (pc->pc_acpi_id != *acpi_id)
521 		    *acpi_id = pc->pc_acpi_id;
522 		*cpu_id = pc->pc_cpuid;
523 		return (0);
524 	    }
525 	} else {
526 	    if (pc->pc_acpi_id == *acpi_id) {
527 		if (bootverbose)
528 		    device_printf(dev,
529 			"Processor %s (ACPI ID %u) -> APIC ID %d\n",
530 			acpi_name(acpi_get_handle(dev)), *acpi_id,
531 			pc->pc_cpuid);
532 		*cpu_id = pc->pc_cpuid;
533 		return (0);
534 	    }
535 	}
536     }
537 
538     if (bootverbose)
539 	printf("ACPI: Processor %s (ACPI ID %u) ignored\n",
540 	    acpi_name(acpi_get_handle(dev)), *acpi_id);
541 
542     return (ESRCH);
543 }
544 
545 static struct resource_list *
546 acpi_cpu_get_rlist(device_t dev, device_t child)
547 {
548     struct acpi_cpu_device *ad;
549 
550     ad = device_get_ivars(child);
551     if (ad == NULL)
552 	return (NULL);
553     return (&ad->ad_rl);
554 }
555 
556 static device_t
557 acpi_cpu_add_child(device_t dev, u_int order, const char *name, int unit)
558 {
559     struct acpi_cpu_device *ad;
560     device_t child;
561 
562     if ((ad = malloc(sizeof(*ad), M_TEMP, M_NOWAIT | M_ZERO)) == NULL)
563 	return (NULL);
564 
565     resource_list_init(&ad->ad_rl);
566 
567     child = device_add_child_ordered(dev, order, name, unit);
568     if (child != NULL)
569 	device_set_ivars(child, ad);
570     else
571 	free(ad, M_TEMP);
572     return (child);
573 }
574 
575 static int
576 acpi_cpu_read_ivar(device_t dev, device_t child, int index, uintptr_t *result)
577 {
578     struct acpi_cpu_softc *sc;
579 
580     sc = device_get_softc(dev);
581     switch (index) {
582     case ACPI_IVAR_HANDLE:
583 	*result = (uintptr_t)sc->cpu_handle;
584 	break;
585     case CPU_IVAR_PCPU:
586 	*result = (uintptr_t)sc->cpu_pcpu;
587 	break;
588 #if defined(__amd64__) || defined(__i386__)
589     case CPU_IVAR_NOMINAL_MHZ:
590 	if (tsc_is_invariant) {
591 	    *result = (uintptr_t)(atomic_load_acq_64(&tsc_freq) / 1000000);
592 	    break;
593 	}
594 	/* FALLTHROUGH */
595 #endif
596     default:
597 	return (ENOENT);
598     }
599     return (0);
600 }
601 
602 static int
603 acpi_cpu_shutdown(device_t dev)
604 {
605     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
606 
607     /* Allow children to shutdown first. */
608     bus_generic_shutdown(dev);
609 
610     /*
611      * Disable any entry to the idle function.
612      */
613     disable_idle(device_get_softc(dev));
614 
615     /*
616      * CPU devices are not truely detached and remain referenced,
617      * so their resources are not freed.
618      */
619 
620     return_VALUE (0);
621 }
622 
623 static void
624 acpi_cpu_cx_probe(struct acpi_cpu_softc *sc)
625 {
626     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
627 
628     /* Use initial sleep value of 1 sec. to start with lowest idle state. */
629     sc->cpu_prev_sleep = 1000000;
630     sc->cpu_cx_lowest = 0;
631     sc->cpu_cx_lowest_lim = 0;
632 
633     /*
634      * Check for the ACPI 2.0 _CST sleep states object. If we can't find
635      * any, we'll revert to generic FADT/P_BLK Cx control method which will
636      * be handled by acpi_cpu_startup. We need to defer to after having
637      * probed all the cpus in the system before probing for generic Cx
638      * states as we may already have found cpus with valid _CST packages
639      */
640     if (!cpu_cx_generic && acpi_cpu_cx_cst(sc) != 0) {
641 	/*
642 	 * We were unable to find a _CST package for this cpu or there
643 	 * was an error parsing it. Switch back to generic mode.
644 	 */
645 	cpu_cx_generic = TRUE;
646 	if (bootverbose)
647 	    device_printf(sc->cpu_dev, "switching to generic Cx mode\n");
648     }
649 
650     /*
651      * TODO: _CSD Package should be checked here.
652      */
653 }
654 
655 static void
656 acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc)
657 {
658     ACPI_GENERIC_ADDRESS	 gas;
659     struct acpi_cx		*cx_ptr;
660 
661     sc->cpu_cx_count = 0;
662     cx_ptr = sc->cpu_cx_states;
663 
664     /* Use initial sleep value of 1 sec. to start with lowest idle state. */
665     sc->cpu_prev_sleep = 1000000;
666 
667     /* C1 has been required since just after ACPI 1.0 */
668     cx_ptr->type = ACPI_STATE_C1;
669     cx_ptr->trans_lat = 0;
670     cx_ptr++;
671     sc->cpu_non_c3 = sc->cpu_cx_count;
672     sc->cpu_cx_count++;
673 
674     /*
675      * The spec says P_BLK must be 6 bytes long.  However, some systems
676      * use it to indicate a fractional set of features present so we
677      * take 5 as C2.  Some may also have a value of 7 to indicate
678      * another C3 but most use _CST for this (as required) and having
679      * "only" C1-C3 is not a hardship.
680      */
681     if (sc->cpu_p_blk_len < 5)
682 	return;
683 
684     /* Validate and allocate resources for C2 (P_LVL2). */
685     gas.SpaceId = ACPI_ADR_SPACE_SYSTEM_IO;
686     gas.BitWidth = 8;
687     if (AcpiGbl_FADT.C2Latency <= 100) {
688 	gas.Address = sc->cpu_p_blk + 4;
689 	cx_ptr->res_rid = 0;
690 	acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &cx_ptr->res_rid,
691 	    &gas, &cx_ptr->p_lvlx, RF_SHAREABLE);
692 	if (cx_ptr->p_lvlx != NULL) {
693 	    cx_ptr->type = ACPI_STATE_C2;
694 	    cx_ptr->trans_lat = AcpiGbl_FADT.C2Latency;
695 	    cx_ptr++;
696 	    sc->cpu_non_c3 = sc->cpu_cx_count;
697 	    sc->cpu_cx_count++;
698 	}
699     }
700     if (sc->cpu_p_blk_len < 6)
701 	return;
702 
703     /* Validate and allocate resources for C3 (P_LVL3). */
704     if (AcpiGbl_FADT.C3Latency <= 1000 && !(cpu_quirks & CPU_QUIRK_NO_C3)) {
705 	gas.Address = sc->cpu_p_blk + 5;
706 	cx_ptr->res_rid = 1;
707 	acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &cx_ptr->res_rid,
708 	    &gas, &cx_ptr->p_lvlx, RF_SHAREABLE);
709 	if (cx_ptr->p_lvlx != NULL) {
710 	    cx_ptr->type = ACPI_STATE_C3;
711 	    cx_ptr->trans_lat = AcpiGbl_FADT.C3Latency;
712 	    cx_ptr++;
713 	    sc->cpu_cx_count++;
714 	    cpu_can_deep_sleep = 1;
715 	}
716     }
717 }
718 
719 /*
720  * Parse a _CST package and set up its Cx states.  Since the _CST object
721  * can change dynamically, our notify handler may call this function
722  * to clean up and probe the new _CST package.
723  */
724 static int
725 acpi_cpu_cx_cst(struct acpi_cpu_softc *sc)
726 {
727     struct	 acpi_cx *cx_ptr;
728     ACPI_STATUS	 status;
729     ACPI_BUFFER	 buf;
730     ACPI_OBJECT	*top;
731     ACPI_OBJECT	*pkg;
732     uint32_t	 count;
733     int		 i;
734 
735     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
736 
737     buf.Pointer = NULL;
738     buf.Length = ACPI_ALLOCATE_BUFFER;
739     status = AcpiEvaluateObject(sc->cpu_handle, "_CST", NULL, &buf);
740     if (ACPI_FAILURE(status))
741 	return (ENXIO);
742 
743     /* _CST is a package with a count and at least one Cx package. */
744     top = (ACPI_OBJECT *)buf.Pointer;
745     if (!ACPI_PKG_VALID(top, 2) || acpi_PkgInt32(top, 0, &count) != 0) {
746 	device_printf(sc->cpu_dev, "invalid _CST package\n");
747 	AcpiOsFree(buf.Pointer);
748 	return (ENXIO);
749     }
750     if (count != top->Package.Count - 1) {
751 	device_printf(sc->cpu_dev, "invalid _CST state count (%d != %d)\n",
752 	       count, top->Package.Count - 1);
753 	count = top->Package.Count - 1;
754     }
755     if (count > MAX_CX_STATES) {
756 	device_printf(sc->cpu_dev, "_CST has too many states (%d)\n", count);
757 	count = MAX_CX_STATES;
758     }
759 
760     sc->cpu_non_c3 = 0;
761     sc->cpu_cx_count = 0;
762     cx_ptr = sc->cpu_cx_states;
763 
764     /*
765      * C1 has been required since just after ACPI 1.0.
766      * Reserve the first slot for it.
767      */
768     cx_ptr->type = ACPI_STATE_C0;
769     cx_ptr++;
770     sc->cpu_cx_count++;
771 
772     /* Set up all valid states. */
773     for (i = 0; i < count; i++) {
774 	pkg = &top->Package.Elements[i + 1];
775 	if (!ACPI_PKG_VALID(pkg, 4) ||
776 	    acpi_PkgInt32(pkg, 1, &cx_ptr->type) != 0 ||
777 	    acpi_PkgInt32(pkg, 2, &cx_ptr->trans_lat) != 0 ||
778 	    acpi_PkgInt32(pkg, 3, &cx_ptr->power) != 0) {
779 
780 	    device_printf(sc->cpu_dev, "skipping invalid Cx state package\n");
781 	    continue;
782 	}
783 
784 	/* Validate the state to see if we should use it. */
785 	switch (cx_ptr->type) {
786 	case ACPI_STATE_C1:
787 	    if (sc->cpu_cx_states[0].type == ACPI_STATE_C0) {
788 		/* This is the first C1 state.  Use the reserved slot. */
789 		sc->cpu_cx_states[0] = *cx_ptr;
790 	    } else {
791 		sc->cpu_non_c3 = sc->cpu_cx_count;
792 		cx_ptr++;
793 		sc->cpu_cx_count++;
794 	    }
795 	    continue;
796 	case ACPI_STATE_C2:
797 	    sc->cpu_non_c3 = sc->cpu_cx_count;
798 	    break;
799 	case ACPI_STATE_C3:
800 	default:
801 	    if ((cpu_quirks & CPU_QUIRK_NO_C3) != 0) {
802 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
803 				 "acpi_cpu%d: C3[%d] not available.\n",
804 				 device_get_unit(sc->cpu_dev), i));
805 		continue;
806 	    } else
807 		cpu_can_deep_sleep = 1;
808 	    break;
809 	}
810 
811 	/* Free up any previous register. */
812 	if (cx_ptr->p_lvlx != NULL) {
813 	    bus_release_resource(sc->cpu_dev, cx_ptr->res_type, cx_ptr->res_rid,
814 	        cx_ptr->p_lvlx);
815 	    cx_ptr->p_lvlx = NULL;
816 	}
817 
818 	/* Allocate the control register for C2 or C3. */
819 	cx_ptr->res_rid = sc->cpu_cx_count;
820 	acpi_PkgGas(sc->cpu_dev, pkg, 0, &cx_ptr->res_type, &cx_ptr->res_rid,
821 	    &cx_ptr->p_lvlx, RF_SHAREABLE);
822 	if (cx_ptr->p_lvlx) {
823 	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
824 			     "acpi_cpu%d: Got C%d - %d latency\n",
825 			     device_get_unit(sc->cpu_dev), cx_ptr->type,
826 			     cx_ptr->trans_lat));
827 	    cx_ptr++;
828 	    sc->cpu_cx_count++;
829 	}
830     }
831     AcpiOsFree(buf.Pointer);
832 
833     /* If C1 state was not found, we need one now. */
834     cx_ptr = sc->cpu_cx_states;
835     if (cx_ptr->type == ACPI_STATE_C0) {
836 	cx_ptr->type = ACPI_STATE_C1;
837 	cx_ptr->trans_lat = 0;
838     }
839 
840     return (0);
841 }
842 
843 /*
844  * Call this *after* all CPUs have been attached.
845  */
846 static void
847 acpi_cpu_startup(void *arg)
848 {
849     struct acpi_cpu_softc *sc;
850     int i;
851 
852     /* Get set of CPU devices */
853     devclass_get_devices(acpi_cpu_devclass, &cpu_devices, &cpu_ndevices);
854 
855     /*
856      * Setup any quirks that might necessary now that we have probed
857      * all the CPUs
858      */
859     acpi_cpu_quirks();
860 
861     if (cpu_cx_generic) {
862 	/*
863 	 * We are using generic Cx mode, probe for available Cx states
864 	 * for all processors.
865 	 */
866 	for (i = 0; i < cpu_ndevices; i++) {
867 	    sc = device_get_softc(cpu_devices[i]);
868 	    acpi_cpu_generic_cx_probe(sc);
869 	}
870     } else {
871 	/*
872 	 * We are using _CST mode, remove C3 state if necessary.
873 	 * As we now know for sure that we will be using _CST mode
874 	 * install our notify handler.
875 	 */
876 	for (i = 0; i < cpu_ndevices; i++) {
877 	    sc = device_get_softc(cpu_devices[i]);
878 	    if (cpu_quirks & CPU_QUIRK_NO_C3) {
879 		sc->cpu_cx_count = sc->cpu_non_c3 + 1;
880 	    }
881 	    AcpiInstallNotifyHandler(sc->cpu_handle, ACPI_DEVICE_NOTIFY,
882 		acpi_cpu_notify, sc);
883 	}
884     }
885 
886     /* Perform Cx final initialization. */
887     for (i = 0; i < cpu_ndevices; i++) {
888 	sc = device_get_softc(cpu_devices[i]);
889 	acpi_cpu_startup_cx(sc);
890     }
891 
892     /* Add a sysctl handler to handle global Cx lowest setting */
893     SYSCTL_ADD_PROC(&cpu_sysctl_ctx, SYSCTL_CHILDREN(cpu_sysctl_tree),
894 	OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW,
895 	NULL, 0, acpi_cpu_global_cx_lowest_sysctl, "A",
896 	"Global lowest Cx sleep state to use");
897 
898     /* Take over idling from cpu_idle_default(). */
899     cpu_cx_lowest_lim = 0;
900     for (i = 0; i < cpu_ndevices; i++) {
901 	sc = device_get_softc(cpu_devices[i]);
902 	enable_idle(sc);
903     }
904     cpu_idle_hook = acpi_cpu_idle;
905 }
906 
907 static void
908 acpi_cpu_cx_list(struct acpi_cpu_softc *sc)
909 {
910     struct sbuf sb;
911     int i;
912 
913     /*
914      * Set up the list of Cx states
915      */
916     sbuf_new(&sb, sc->cpu_cx_supported, sizeof(sc->cpu_cx_supported),
917 	SBUF_FIXEDLEN);
918     for (i = 0; i < sc->cpu_cx_count; i++)
919 	sbuf_printf(&sb, "C%d/%d/%d ", i + 1, sc->cpu_cx_states[i].type,
920 	    sc->cpu_cx_states[i].trans_lat);
921     sbuf_trim(&sb);
922     sbuf_finish(&sb);
923 }
924 
925 static void
926 acpi_cpu_startup_cx(struct acpi_cpu_softc *sc)
927 {
928     acpi_cpu_cx_list(sc);
929 
930     SYSCTL_ADD_STRING(&sc->cpu_sysctl_ctx,
931 		      SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
932 		      OID_AUTO, "cx_supported", CTLFLAG_RD,
933 		      sc->cpu_cx_supported, 0,
934 		      "Cx/microsecond values for supported Cx states");
935     SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
936 		    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
937 		    OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW,
938 		    (void *)sc, 0, acpi_cpu_cx_lowest_sysctl, "A",
939 		    "lowest Cx sleep state to use");
940     SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
941 		    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
942 		    OID_AUTO, "cx_usage", CTLTYPE_STRING | CTLFLAG_RD,
943 		    (void *)sc, 0, acpi_cpu_usage_sysctl, "A",
944 		    "percent usage for each Cx state");
945     SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
946 		    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
947 		    OID_AUTO, "cx_usage_counters", CTLTYPE_STRING | CTLFLAG_RD,
948 		    (void *)sc, 0, acpi_cpu_usage_counters_sysctl, "A",
949 		    "Cx sleep state counters");
950 
951     /* Signal platform that we can handle _CST notification. */
952     if (!cpu_cx_generic && cpu_cst_cnt != 0) {
953 	ACPI_LOCK(acpi);
954 	AcpiOsWritePort(cpu_smi_cmd, cpu_cst_cnt, 8);
955 	ACPI_UNLOCK(acpi);
956     }
957 }
958 
959 /*
960  * Idle the CPU in the lowest state possible.  This function is called with
961  * interrupts disabled.  Note that once it re-enables interrupts, a task
962  * switch can occur so do not access shared data (i.e. the softc) after
963  * interrupts are re-enabled.
964  */
965 static void
966 acpi_cpu_idle(sbintime_t sbt)
967 {
968     struct	acpi_cpu_softc *sc;
969     struct	acpi_cx *cx_next;
970     uint64_t	cputicks;
971     uint32_t	start_time, end_time;
972     int		bm_active, cx_next_idx, i, us;
973 
974     /*
975      * Look up our CPU id to get our softc.  If it's NULL, we'll use C1
976      * since there is no ACPI processor object for this CPU.  This occurs
977      * for logical CPUs in the HTT case.
978      */
979     sc = cpu_softc[PCPU_GET(cpuid)];
980     if (sc == NULL) {
981 	acpi_cpu_c1();
982 	return;
983     }
984 
985     /* If disabled, take the safe path. */
986     if (is_idle_disabled(sc)) {
987 	acpi_cpu_c1();
988 	return;
989     }
990 
991     /* Find the lowest state that has small enough latency. */
992     us = sc->cpu_prev_sleep;
993     if (sbt >= 0 && us > (sbt >> 12))
994 	us = (sbt >> 12);
995     cx_next_idx = 0;
996     if (cpu_disable_deep_sleep)
997 	i = min(sc->cpu_cx_lowest, sc->cpu_non_c3);
998     else
999 	i = sc->cpu_cx_lowest;
1000     for (; i >= 0; i--) {
1001 	if (sc->cpu_cx_states[i].trans_lat * 3 <= us) {
1002 	    cx_next_idx = i;
1003 	    break;
1004 	}
1005     }
1006 
1007     /*
1008      * Check for bus master activity.  If there was activity, clear
1009      * the bit and use the lowest non-C3 state.  Note that the USB
1010      * driver polling for new devices keeps this bit set all the
1011      * time if USB is loaded.
1012      */
1013     if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0 &&
1014 	cx_next_idx > sc->cpu_non_c3) {
1015 	AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, &bm_active);
1016 	if (bm_active != 0) {
1017 	    AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, 1);
1018 	    cx_next_idx = sc->cpu_non_c3;
1019 	}
1020     }
1021 
1022     /* Select the next state and update statistics. */
1023     cx_next = &sc->cpu_cx_states[cx_next_idx];
1024     sc->cpu_cx_stats[cx_next_idx]++;
1025     KASSERT(cx_next->type != ACPI_STATE_C0, ("acpi_cpu_idle: C0 sleep"));
1026 
1027     /*
1028      * Execute HLT (or equivalent) and wait for an interrupt.  We can't
1029      * precisely calculate the time spent in C1 since the place we wake up
1030      * is an ISR.  Assume we slept no more then half of quantum, unless
1031      * we are called inside critical section, delaying context switch.
1032      */
1033     if (cx_next->type == ACPI_STATE_C1) {
1034 	cputicks = cpu_ticks();
1035 	acpi_cpu_c1();
1036 	end_time = ((cpu_ticks() - cputicks) << 20) / cpu_tickrate();
1037 	if (curthread->td_critnest == 0)
1038 		end_time = min(end_time, 500000 / hz);
1039 	sc->cpu_prev_sleep = (sc->cpu_prev_sleep * 3 + end_time) / 4;
1040 	return;
1041     }
1042 
1043     /*
1044      * For C3, disable bus master arbitration and enable bus master wake
1045      * if BM control is available, otherwise flush the CPU cache.
1046      */
1047     if (cx_next->type == ACPI_STATE_C3) {
1048 	if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
1049 	    AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 1);
1050 	    AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 1);
1051 	} else
1052 	    ACPI_FLUSH_CPU_CACHE();
1053     }
1054 
1055     /*
1056      * Read from P_LVLx to enter C2(+), checking time spent asleep.
1057      * Use the ACPI timer for measuring sleep time.  Since we need to
1058      * get the time very close to the CPU start/stop clock logic, this
1059      * is the only reliable time source.
1060      */
1061     if (cx_next->type == ACPI_STATE_C3) {
1062 	AcpiHwRead(&start_time, &AcpiGbl_FADT.XPmTimerBlock);
1063 	cputicks = 0;
1064     } else {
1065 	start_time = 0;
1066 	cputicks = cpu_ticks();
1067     }
1068     CPU_GET_REG(cx_next->p_lvlx, 1);
1069 
1070     /*
1071      * Read the end time twice.  Since it may take an arbitrary time
1072      * to enter the idle state, the first read may be executed before
1073      * the processor has stopped.  Doing it again provides enough
1074      * margin that we are certain to have a correct value.
1075      */
1076     AcpiHwRead(&end_time, &AcpiGbl_FADT.XPmTimerBlock);
1077     if (cx_next->type == ACPI_STATE_C3) {
1078 	AcpiHwRead(&end_time, &AcpiGbl_FADT.XPmTimerBlock);
1079 	end_time = acpi_TimerDelta(end_time, start_time);
1080     } else
1081 	end_time = ((cpu_ticks() - cputicks) << 20) / cpu_tickrate();
1082 
1083     /* Enable bus master arbitration and disable bus master wakeup. */
1084     if (cx_next->type == ACPI_STATE_C3 &&
1085 	(cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
1086 	AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 0);
1087 	AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0);
1088     }
1089     ACPI_ENABLE_IRQS();
1090 
1091     sc->cpu_prev_sleep = (sc->cpu_prev_sleep * 3 + PM_USEC(end_time)) / 4;
1092 }
1093 
1094 /*
1095  * Re-evaluate the _CST object when we are notified that it changed.
1096  */
1097 static void
1098 acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context)
1099 {
1100     struct acpi_cpu_softc *sc = (struct acpi_cpu_softc *)context;
1101 
1102     if (notify != ACPI_NOTIFY_CX_STATES)
1103 	return;
1104 
1105     /*
1106      * C-state data for target CPU is going to be in flux while we execute
1107      * acpi_cpu_cx_cst, so disable entering acpi_cpu_idle.
1108      * Also, it may happen that multiple ACPI taskqueues may concurrently
1109      * execute notifications for the same CPU.  ACPI_SERIAL is used to
1110      * protect against that.
1111      */
1112     ACPI_SERIAL_BEGIN(cpu);
1113     disable_idle(sc);
1114 
1115     /* Update the list of Cx states. */
1116     acpi_cpu_cx_cst(sc);
1117     acpi_cpu_cx_list(sc);
1118     acpi_cpu_set_cx_lowest(sc);
1119 
1120     enable_idle(sc);
1121     ACPI_SERIAL_END(cpu);
1122 
1123     acpi_UserNotify("PROCESSOR", sc->cpu_handle, notify);
1124 }
1125 
1126 static int
1127 acpi_cpu_quirks(void)
1128 {
1129     device_t acpi_dev;
1130     uint32_t val;
1131 
1132     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
1133 
1134     /*
1135      * Bus mastering arbitration control is needed to keep caches coherent
1136      * while sleeping in C3.  If it's not present but a working flush cache
1137      * instruction is present, flush the caches before entering C3 instead.
1138      * Otherwise, just disable C3 completely.
1139      */
1140     if (AcpiGbl_FADT.Pm2ControlBlock == 0 ||
1141 	AcpiGbl_FADT.Pm2ControlLength == 0) {
1142 	if ((AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD) &&
1143 	    (AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD_FLUSH) == 0) {
1144 	    cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
1145 	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1146 		"acpi_cpu: no BM control, using flush cache method\n"));
1147 	} else {
1148 	    cpu_quirks |= CPU_QUIRK_NO_C3;
1149 	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1150 		"acpi_cpu: no BM control, C3 not available\n"));
1151 	}
1152     }
1153 
1154     /*
1155      * If we are using generic Cx mode, C3 on multiple CPUs requires using
1156      * the expensive flush cache instruction.
1157      */
1158     if (cpu_cx_generic && mp_ncpus > 1) {
1159 	cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
1160 	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1161 	    "acpi_cpu: SMP, using flush cache mode for C3\n"));
1162     }
1163 
1164     /* Look for various quirks of the PIIX4 part. */
1165     acpi_dev = pci_find_device(PCI_VENDOR_INTEL, PCI_DEVICE_82371AB_3);
1166     if (acpi_dev != NULL) {
1167 	switch (pci_get_revid(acpi_dev)) {
1168 	/*
1169 	 * Disable C3 support for all PIIX4 chipsets.  Some of these parts
1170 	 * do not report the BMIDE status to the BM status register and
1171 	 * others have a livelock bug if Type-F DMA is enabled.  Linux
1172 	 * works around the BMIDE bug by reading the BM status directly
1173 	 * but we take the simpler approach of disabling C3 for these
1174 	 * parts.
1175 	 *
1176 	 * See erratum #18 ("C3 Power State/BMIDE and Type-F DMA
1177 	 * Livelock") from the January 2002 PIIX4 specification update.
1178 	 * Applies to all PIIX4 models.
1179 	 *
1180 	 * Also, make sure that all interrupts cause a "Stop Break"
1181 	 * event to exit from C2 state.
1182 	 * Also, BRLD_EN_BM (ACPI_BITREG_BUS_MASTER_RLD in ACPI-speak)
1183 	 * should be set to zero, otherwise it causes C2 to short-sleep.
1184 	 * PIIX4 doesn't properly support C3 and bus master activity
1185 	 * need not break out of C2.
1186 	 */
1187 	case PCI_REVISION_A_STEP:
1188 	case PCI_REVISION_B_STEP:
1189 	case PCI_REVISION_4E:
1190 	case PCI_REVISION_4M:
1191 	    cpu_quirks |= CPU_QUIRK_NO_C3;
1192 	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1193 		"acpi_cpu: working around PIIX4 bug, disabling C3\n"));
1194 
1195 	    val = pci_read_config(acpi_dev, PIIX4_DEVACTB_REG, 4);
1196 	    if ((val & PIIX4_STOP_BREAK_MASK) != PIIX4_STOP_BREAK_MASK) {
1197 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1198 		    "acpi_cpu: PIIX4: enabling IRQs to generate Stop Break\n"));
1199 	    	val |= PIIX4_STOP_BREAK_MASK;
1200 		pci_write_config(acpi_dev, PIIX4_DEVACTB_REG, val, 4);
1201 	    }
1202 	    AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_RLD, &val);
1203 	    if (val) {
1204 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1205 		    "acpi_cpu: PIIX4: reset BRLD_EN_BM\n"));
1206 		AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0);
1207 	    }
1208 	    break;
1209 	default:
1210 	    break;
1211 	}
1212     }
1213 
1214     return (0);
1215 }
1216 
1217 static int
1218 acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS)
1219 {
1220     struct acpi_cpu_softc *sc;
1221     struct sbuf	 sb;
1222     char	 buf[128];
1223     int		 i;
1224     uintmax_t	 fract, sum, whole;
1225 
1226     sc = (struct acpi_cpu_softc *) arg1;
1227     sum = 0;
1228     for (i = 0; i < sc->cpu_cx_count; i++)
1229 	sum += sc->cpu_cx_stats[i];
1230     sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
1231     for (i = 0; i < sc->cpu_cx_count; i++) {
1232 	if (sum > 0) {
1233 	    whole = (uintmax_t)sc->cpu_cx_stats[i] * 100;
1234 	    fract = (whole % sum) * 100;
1235 	    sbuf_printf(&sb, "%u.%02u%% ", (u_int)(whole / sum),
1236 		(u_int)(fract / sum));
1237 	} else
1238 	    sbuf_printf(&sb, "0.00%% ");
1239     }
1240     sbuf_printf(&sb, "last %dus", sc->cpu_prev_sleep);
1241     sbuf_trim(&sb);
1242     sbuf_finish(&sb);
1243     sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
1244     sbuf_delete(&sb);
1245 
1246     return (0);
1247 }
1248 
1249 /*
1250  * XXX TODO: actually add support to count each entry/exit
1251  * from the Cx states.
1252  */
1253 static int
1254 acpi_cpu_usage_counters_sysctl(SYSCTL_HANDLER_ARGS)
1255 {
1256     struct acpi_cpu_softc *sc;
1257     struct sbuf	 sb;
1258     char	 buf[128];
1259     int		 i;
1260 
1261     sc = (struct acpi_cpu_softc *) arg1;
1262 
1263     /* Print out the raw counters */
1264     sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
1265 
1266     for (i = 0; i < sc->cpu_cx_count; i++) {
1267         sbuf_printf(&sb, "%u ", sc->cpu_cx_stats[i]);
1268     }
1269 
1270     sbuf_trim(&sb);
1271     sbuf_finish(&sb);
1272     sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
1273     sbuf_delete(&sb);
1274 
1275     return (0);
1276 }
1277 
1278 static int
1279 acpi_cpu_set_cx_lowest(struct acpi_cpu_softc *sc)
1280 {
1281     int i;
1282 
1283     ACPI_SERIAL_ASSERT(cpu);
1284     sc->cpu_cx_lowest = min(sc->cpu_cx_lowest_lim, sc->cpu_cx_count - 1);
1285 
1286     /* If not disabling, cache the new lowest non-C3 state. */
1287     sc->cpu_non_c3 = 0;
1288     for (i = sc->cpu_cx_lowest; i >= 0; i--) {
1289 	if (sc->cpu_cx_states[i].type < ACPI_STATE_C3) {
1290 	    sc->cpu_non_c3 = i;
1291 	    break;
1292 	}
1293     }
1294 
1295     /* Reset the statistics counters. */
1296     bzero(sc->cpu_cx_stats, sizeof(sc->cpu_cx_stats));
1297     return (0);
1298 }
1299 
1300 static int
1301 acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)
1302 {
1303     struct	 acpi_cpu_softc *sc;
1304     char	 state[8];
1305     int		 val, error;
1306 
1307     sc = (struct acpi_cpu_softc *) arg1;
1308     snprintf(state, sizeof(state), "C%d", sc->cpu_cx_lowest_lim + 1);
1309     error = sysctl_handle_string(oidp, state, sizeof(state), req);
1310     if (error != 0 || req->newptr == NULL)
1311 	return (error);
1312     if (strlen(state) < 2 || toupper(state[0]) != 'C')
1313 	return (EINVAL);
1314     if (strcasecmp(state, "Cmax") == 0)
1315 	val = MAX_CX_STATES;
1316     else {
1317 	val = (int) strtol(state + 1, NULL, 10);
1318 	if (val < 1 || val > MAX_CX_STATES)
1319 	    return (EINVAL);
1320     }
1321 
1322     ACPI_SERIAL_BEGIN(cpu);
1323     sc->cpu_cx_lowest_lim = val - 1;
1324     acpi_cpu_set_cx_lowest(sc);
1325     ACPI_SERIAL_END(cpu);
1326 
1327     return (0);
1328 }
1329 
1330 static int
1331 acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)
1332 {
1333     struct	acpi_cpu_softc *sc;
1334     char	state[8];
1335     int		val, error, i;
1336 
1337     snprintf(state, sizeof(state), "C%d", cpu_cx_lowest_lim + 1);
1338     error = sysctl_handle_string(oidp, state, sizeof(state), req);
1339     if (error != 0 || req->newptr == NULL)
1340 	return (error);
1341     if (strlen(state) < 2 || toupper(state[0]) != 'C')
1342 	return (EINVAL);
1343     if (strcasecmp(state, "Cmax") == 0)
1344 	val = MAX_CX_STATES;
1345     else {
1346 	val = (int) strtol(state + 1, NULL, 10);
1347 	if (val < 1 || val > MAX_CX_STATES)
1348 	    return (EINVAL);
1349     }
1350 
1351     /* Update the new lowest useable Cx state for all CPUs. */
1352     ACPI_SERIAL_BEGIN(cpu);
1353     cpu_cx_lowest_lim = val - 1;
1354     for (i = 0; i < cpu_ndevices; i++) {
1355 	sc = device_get_softc(cpu_devices[i]);
1356 	sc->cpu_cx_lowest_lim = cpu_cx_lowest_lim;
1357 	acpi_cpu_set_cx_lowest(sc);
1358     }
1359     ACPI_SERIAL_END(cpu);
1360 
1361     return (0);
1362 }
1363