1 /*- 2 * Copyright (c) 2000 Takanori Watanabe <takawata@jp.freebsd.org> 3 * Copyright (c) 2000 Mitsuru IWASAKI <iwasaki@jp.freebsd.org> 4 * Copyright (c) 2000, 2001 Michael Smith 5 * Copyright (c) 2000 BSDi 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include "opt_acpi.h" 34 35 #include <sys/param.h> 36 #include <sys/eventhandler.h> 37 #include <sys/kernel.h> 38 #include <sys/proc.h> 39 #include <sys/fcntl.h> 40 #include <sys/malloc.h> 41 #include <sys/module.h> 42 #include <sys/bus.h> 43 #include <sys/conf.h> 44 #include <sys/ioccom.h> 45 #include <sys/reboot.h> 46 #include <sys/sysctl.h> 47 #include <sys/ctype.h> 48 #include <sys/linker.h> 49 #include <sys/mount.h> 50 #include <sys/power.h> 51 #include <sys/sbuf.h> 52 #include <sys/sched.h> 53 #include <sys/smp.h> 54 #include <sys/timetc.h> 55 #include <sys/uuid.h> 56 57 #if defined(__i386__) || defined(__amd64__) 58 #include <machine/clock.h> 59 #include <machine/pci_cfgreg.h> 60 #endif 61 #include <machine/resource.h> 62 #include <machine/bus.h> 63 #include <sys/rman.h> 64 #include <isa/isavar.h> 65 #include <isa/pnpvar.h> 66 67 #include <contrib/dev/acpica/include/acpi.h> 68 #include <contrib/dev/acpica/include/accommon.h> 69 #include <contrib/dev/acpica/include/acnamesp.h> 70 71 #include <dev/acpica/acpivar.h> 72 #include <dev/acpica/acpiio.h> 73 74 #include <dev/pci/pcivar.h> 75 76 #include <vm/vm_param.h> 77 78 static MALLOC_DEFINE(M_ACPIDEV, "acpidev", "ACPI devices"); 79 80 /* Hooks for the ACPI CA debugging infrastructure */ 81 #define _COMPONENT ACPI_BUS 82 ACPI_MODULE_NAME("ACPI") 83 84 static d_open_t acpiopen; 85 static d_close_t acpiclose; 86 static d_ioctl_t acpiioctl; 87 88 static struct cdevsw acpi_cdevsw = { 89 .d_version = D_VERSION, 90 .d_open = acpiopen, 91 .d_close = acpiclose, 92 .d_ioctl = acpiioctl, 93 .d_name = "acpi", 94 }; 95 96 struct acpi_interface { 97 ACPI_STRING *data; 98 int num; 99 }; 100 101 static char *sysres_ids[] = { "PNP0C01", "PNP0C02", NULL }; 102 static char *pcilink_ids[] = { "PNP0C0F", NULL }; 103 104 /* Global mutex for locking access to the ACPI subsystem. */ 105 struct mtx acpi_mutex; 106 struct callout acpi_sleep_timer; 107 108 /* Bitmap of device quirks. */ 109 int acpi_quirks; 110 111 /* Supported sleep states. */ 112 static BOOLEAN acpi_sleep_states[ACPI_S_STATE_COUNT]; 113 114 static void acpi_lookup(void *arg, const char *name, device_t *dev); 115 static int acpi_modevent(struct module *mod, int event, void *junk); 116 static int acpi_probe(device_t dev); 117 static int acpi_attach(device_t dev); 118 static int acpi_suspend(device_t dev); 119 static int acpi_resume(device_t dev); 120 static int acpi_shutdown(device_t dev); 121 static device_t acpi_add_child(device_t bus, u_int order, const char *name, 122 int unit); 123 static int acpi_print_child(device_t bus, device_t child); 124 static void acpi_probe_nomatch(device_t bus, device_t child); 125 static void acpi_driver_added(device_t dev, driver_t *driver); 126 static void acpi_child_deleted(device_t dev, device_t child); 127 static int acpi_read_ivar(device_t dev, device_t child, int index, 128 uintptr_t *result); 129 static int acpi_write_ivar(device_t dev, device_t child, int index, 130 uintptr_t value); 131 static struct resource_list *acpi_get_rlist(device_t dev, device_t child); 132 static void acpi_reserve_resources(device_t dev); 133 static int acpi_sysres_alloc(device_t dev); 134 static int acpi_set_resource(device_t dev, device_t child, int type, 135 int rid, rman_res_t start, rman_res_t count); 136 static struct resource *acpi_alloc_resource(device_t bus, device_t child, 137 int type, int *rid, rman_res_t start, rman_res_t end, 138 rman_res_t count, u_int flags); 139 static int acpi_adjust_resource(device_t bus, device_t child, int type, 140 struct resource *r, rman_res_t start, rman_res_t end); 141 static int acpi_release_resource(device_t bus, device_t child, int type, 142 int rid, struct resource *r); 143 static void acpi_delete_resource(device_t bus, device_t child, int type, 144 int rid); 145 static uint32_t acpi_isa_get_logicalid(device_t dev); 146 static int acpi_isa_get_compatid(device_t dev, uint32_t *cids, int count); 147 static ssize_t acpi_bus_get_prop(device_t bus, device_t child, const char *propname, 148 void *propvalue, size_t size); 149 static int acpi_device_id_probe(device_t bus, device_t dev, char **ids, char **match); 150 static ACPI_STATUS acpi_device_eval_obj(device_t bus, device_t dev, 151 ACPI_STRING pathname, ACPI_OBJECT_LIST *parameters, 152 ACPI_BUFFER *ret); 153 static ACPI_STATUS acpi_device_get_prop(device_t bus, device_t dev, 154 ACPI_STRING propname, const ACPI_OBJECT **value); 155 static ACPI_STATUS acpi_device_scan_cb(ACPI_HANDLE h, UINT32 level, 156 void *context, void **retval); 157 static ACPI_STATUS acpi_device_scan_children(device_t bus, device_t dev, 158 int max_depth, acpi_scan_cb_t user_fn, void *arg); 159 static ACPI_STATUS acpi_find_dsd(device_t bus, device_t dev); 160 static int acpi_isa_pnp_probe(device_t bus, device_t child, 161 struct isa_pnp_id *ids); 162 static void acpi_platform_osc(device_t dev); 163 static void acpi_probe_children(device_t bus); 164 static void acpi_probe_order(ACPI_HANDLE handle, int *order); 165 static ACPI_STATUS acpi_probe_child(ACPI_HANDLE handle, UINT32 level, 166 void *context, void **status); 167 static void acpi_sleep_enable(void *arg); 168 static ACPI_STATUS acpi_sleep_disable(struct acpi_softc *sc); 169 static ACPI_STATUS acpi_EnterSleepState(struct acpi_softc *sc, int state); 170 static void acpi_shutdown_final(void *arg, int howto); 171 static void acpi_enable_fixed_events(struct acpi_softc *sc); 172 static void acpi_resync_clock(struct acpi_softc *sc); 173 static int acpi_wake_sleep_prep(ACPI_HANDLE handle, int sstate); 174 static int acpi_wake_run_prep(ACPI_HANDLE handle, int sstate); 175 static int acpi_wake_prep_walk(int sstate); 176 static int acpi_wake_sysctl_walk(device_t dev); 177 static int acpi_wake_set_sysctl(SYSCTL_HANDLER_ARGS); 178 static void acpi_system_eventhandler_sleep(void *arg, int state); 179 static void acpi_system_eventhandler_wakeup(void *arg, int state); 180 static int acpi_sname2sstate(const char *sname); 181 static const char *acpi_sstate2sname(int sstate); 182 static int acpi_supported_sleep_state_sysctl(SYSCTL_HANDLER_ARGS); 183 static int acpi_sleep_state_sysctl(SYSCTL_HANDLER_ARGS); 184 static int acpi_debug_objects_sysctl(SYSCTL_HANDLER_ARGS); 185 static int acpi_pm_func(u_long cmd, void *arg, ...); 186 static int acpi_child_location_method(device_t acdev, device_t child, 187 struct sbuf *sb); 188 static int acpi_child_pnpinfo_method(device_t acdev, device_t child, 189 struct sbuf *sb); 190 static void acpi_enable_pcie(void); 191 static void acpi_hint_device_unit(device_t acdev, device_t child, 192 const char *name, int *unitp); 193 static void acpi_reset_interfaces(device_t dev); 194 195 static device_method_t acpi_methods[] = { 196 /* Device interface */ 197 DEVMETHOD(device_probe, acpi_probe), 198 DEVMETHOD(device_attach, acpi_attach), 199 DEVMETHOD(device_shutdown, acpi_shutdown), 200 DEVMETHOD(device_detach, bus_generic_detach), 201 DEVMETHOD(device_suspend, acpi_suspend), 202 DEVMETHOD(device_resume, acpi_resume), 203 204 /* Bus interface */ 205 DEVMETHOD(bus_add_child, acpi_add_child), 206 DEVMETHOD(bus_print_child, acpi_print_child), 207 DEVMETHOD(bus_probe_nomatch, acpi_probe_nomatch), 208 DEVMETHOD(bus_driver_added, acpi_driver_added), 209 DEVMETHOD(bus_child_deleted, acpi_child_deleted), 210 DEVMETHOD(bus_read_ivar, acpi_read_ivar), 211 DEVMETHOD(bus_write_ivar, acpi_write_ivar), 212 DEVMETHOD(bus_get_resource_list, acpi_get_rlist), 213 DEVMETHOD(bus_set_resource, acpi_set_resource), 214 DEVMETHOD(bus_get_resource, bus_generic_rl_get_resource), 215 DEVMETHOD(bus_alloc_resource, acpi_alloc_resource), 216 DEVMETHOD(bus_adjust_resource, acpi_adjust_resource), 217 DEVMETHOD(bus_release_resource, acpi_release_resource), 218 DEVMETHOD(bus_delete_resource, acpi_delete_resource), 219 DEVMETHOD(bus_child_pnpinfo, acpi_child_pnpinfo_method), 220 DEVMETHOD(bus_child_location, acpi_child_location_method), 221 DEVMETHOD(bus_activate_resource, bus_generic_activate_resource), 222 DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource), 223 DEVMETHOD(bus_setup_intr, bus_generic_setup_intr), 224 DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr), 225 DEVMETHOD(bus_hint_device_unit, acpi_hint_device_unit), 226 DEVMETHOD(bus_get_cpus, acpi_get_cpus), 227 DEVMETHOD(bus_get_domain, acpi_get_domain), 228 DEVMETHOD(bus_get_property, acpi_bus_get_prop), 229 230 /* ACPI bus */ 231 DEVMETHOD(acpi_id_probe, acpi_device_id_probe), 232 DEVMETHOD(acpi_evaluate_object, acpi_device_eval_obj), 233 DEVMETHOD(acpi_get_property, acpi_device_get_prop), 234 DEVMETHOD(acpi_pwr_for_sleep, acpi_device_pwr_for_sleep), 235 DEVMETHOD(acpi_scan_children, acpi_device_scan_children), 236 237 /* ISA emulation */ 238 DEVMETHOD(isa_pnp_probe, acpi_isa_pnp_probe), 239 240 DEVMETHOD_END 241 }; 242 243 static driver_t acpi_driver = { 244 "acpi", 245 acpi_methods, 246 sizeof(struct acpi_softc), 247 }; 248 249 static devclass_t acpi_devclass; 250 EARLY_DRIVER_MODULE(acpi, nexus, acpi_driver, acpi_devclass, acpi_modevent, 0, 251 BUS_PASS_BUS + BUS_PASS_ORDER_MIDDLE); 252 MODULE_VERSION(acpi, 1); 253 254 ACPI_SERIAL_DECL(acpi, "ACPI root bus"); 255 256 /* Local pools for managing system resources for ACPI child devices. */ 257 static struct rman acpi_rman_io, acpi_rman_mem; 258 259 #define ACPI_MINIMUM_AWAKETIME 5 260 261 /* Holds the description of the acpi0 device. */ 262 static char acpi_desc[ACPI_OEM_ID_SIZE + ACPI_OEM_TABLE_ID_SIZE + 2]; 263 264 SYSCTL_NODE(_debug, OID_AUTO, acpi, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 265 "ACPI debugging"); 266 static char acpi_ca_version[12]; 267 SYSCTL_STRING(_debug_acpi, OID_AUTO, acpi_ca_version, CTLFLAG_RD, 268 acpi_ca_version, 0, "Version of Intel ACPI-CA"); 269 270 /* 271 * Allow overriding _OSI methods. 272 */ 273 static char acpi_install_interface[256]; 274 TUNABLE_STR("hw.acpi.install_interface", acpi_install_interface, 275 sizeof(acpi_install_interface)); 276 static char acpi_remove_interface[256]; 277 TUNABLE_STR("hw.acpi.remove_interface", acpi_remove_interface, 278 sizeof(acpi_remove_interface)); 279 280 /* Allow users to dump Debug objects without ACPI debugger. */ 281 static int acpi_debug_objects; 282 TUNABLE_INT("debug.acpi.enable_debug_objects", &acpi_debug_objects); 283 SYSCTL_PROC(_debug_acpi, OID_AUTO, enable_debug_objects, 284 CTLFLAG_RW | CTLTYPE_INT | CTLFLAG_NEEDGIANT, NULL, 0, 285 acpi_debug_objects_sysctl, "I", 286 "Enable Debug objects"); 287 288 /* Allow the interpreter to ignore common mistakes in BIOS. */ 289 static int acpi_interpreter_slack = 1; 290 TUNABLE_INT("debug.acpi.interpreter_slack", &acpi_interpreter_slack); 291 SYSCTL_INT(_debug_acpi, OID_AUTO, interpreter_slack, CTLFLAG_RDTUN, 292 &acpi_interpreter_slack, 1, "Turn on interpreter slack mode."); 293 294 /* Ignore register widths set by FADT and use default widths instead. */ 295 static int acpi_ignore_reg_width = 1; 296 TUNABLE_INT("debug.acpi.default_register_width", &acpi_ignore_reg_width); 297 SYSCTL_INT(_debug_acpi, OID_AUTO, default_register_width, CTLFLAG_RDTUN, 298 &acpi_ignore_reg_width, 1, "Ignore register widths set by FADT"); 299 300 /* Allow users to override quirks. */ 301 TUNABLE_INT("debug.acpi.quirks", &acpi_quirks); 302 303 int acpi_susp_bounce; 304 SYSCTL_INT(_debug_acpi, OID_AUTO, suspend_bounce, CTLFLAG_RW, 305 &acpi_susp_bounce, 0, "Don't actually suspend, just test devices."); 306 307 /* 308 * ACPI standard UUID for Device Specific Data Package 309 * "Device Properties UUID for _DSD" Rev. 2.0 310 */ 311 static const struct uuid acpi_dsd_uuid = { 312 0xdaffd814, 0x6eba, 0x4d8c, 0x8a, 0x91, 313 { 0xbc, 0x9b, 0xbf, 0x4a, 0xa3, 0x01 } 314 }; 315 316 /* 317 * ACPI can only be loaded as a module by the loader; activating it after 318 * system bootstrap time is not useful, and can be fatal to the system. 319 * It also cannot be unloaded, since the entire system bus hierarchy hangs 320 * off it. 321 */ 322 static int 323 acpi_modevent(struct module *mod, int event, void *junk) 324 { 325 switch (event) { 326 case MOD_LOAD: 327 if (!cold) { 328 printf("The ACPI driver cannot be loaded after boot.\n"); 329 return (EPERM); 330 } 331 break; 332 case MOD_UNLOAD: 333 if (!cold && power_pm_get_type() == POWER_PM_TYPE_ACPI) 334 return (EBUSY); 335 break; 336 default: 337 break; 338 } 339 return (0); 340 } 341 342 /* 343 * Perform early initialization. 344 */ 345 ACPI_STATUS 346 acpi_Startup(void) 347 { 348 static int started = 0; 349 ACPI_STATUS status; 350 int val; 351 352 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 353 354 /* Only run the startup code once. The MADT driver also calls this. */ 355 if (started) 356 return_VALUE (AE_OK); 357 started = 1; 358 359 /* 360 * Initialize the ACPICA subsystem. 361 */ 362 if (ACPI_FAILURE(status = AcpiInitializeSubsystem())) { 363 printf("ACPI: Could not initialize Subsystem: %s\n", 364 AcpiFormatException(status)); 365 return_VALUE (status); 366 } 367 368 /* 369 * Pre-allocate space for RSDT/XSDT and DSDT tables and allow resizing 370 * if more tables exist. 371 */ 372 if (ACPI_FAILURE(status = AcpiInitializeTables(NULL, 2, TRUE))) { 373 printf("ACPI: Table initialisation failed: %s\n", 374 AcpiFormatException(status)); 375 return_VALUE (status); 376 } 377 378 /* Set up any quirks we have for this system. */ 379 if (acpi_quirks == ACPI_Q_OK) 380 acpi_table_quirks(&acpi_quirks); 381 382 /* If the user manually set the disabled hint to 0, force-enable ACPI. */ 383 if (resource_int_value("acpi", 0, "disabled", &val) == 0 && val == 0) 384 acpi_quirks &= ~ACPI_Q_BROKEN; 385 if (acpi_quirks & ACPI_Q_BROKEN) { 386 printf("ACPI disabled by blacklist. Contact your BIOS vendor.\n"); 387 status = AE_SUPPORT; 388 } 389 390 return_VALUE (status); 391 } 392 393 /* 394 * Detect ACPI and perform early initialisation. 395 */ 396 int 397 acpi_identify(void) 398 { 399 ACPI_TABLE_RSDP *rsdp; 400 ACPI_TABLE_HEADER *rsdt; 401 ACPI_PHYSICAL_ADDRESS paddr; 402 struct sbuf sb; 403 404 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 405 406 if (!cold) 407 return (ENXIO); 408 409 /* Check that we haven't been disabled with a hint. */ 410 if (resource_disabled("acpi", 0)) 411 return (ENXIO); 412 413 /* Check for other PM systems. */ 414 if (power_pm_get_type() != POWER_PM_TYPE_NONE && 415 power_pm_get_type() != POWER_PM_TYPE_ACPI) { 416 printf("ACPI identify failed, other PM system enabled.\n"); 417 return (ENXIO); 418 } 419 420 /* Initialize root tables. */ 421 if (ACPI_FAILURE(acpi_Startup())) { 422 printf("ACPI: Try disabling either ACPI or apic support.\n"); 423 return (ENXIO); 424 } 425 426 if ((paddr = AcpiOsGetRootPointer()) == 0 || 427 (rsdp = AcpiOsMapMemory(paddr, sizeof(ACPI_TABLE_RSDP))) == NULL) 428 return (ENXIO); 429 if (rsdp->Revision > 1 && rsdp->XsdtPhysicalAddress != 0) 430 paddr = (ACPI_PHYSICAL_ADDRESS)rsdp->XsdtPhysicalAddress; 431 else 432 paddr = (ACPI_PHYSICAL_ADDRESS)rsdp->RsdtPhysicalAddress; 433 AcpiOsUnmapMemory(rsdp, sizeof(ACPI_TABLE_RSDP)); 434 435 if ((rsdt = AcpiOsMapMemory(paddr, sizeof(ACPI_TABLE_HEADER))) == NULL) 436 return (ENXIO); 437 sbuf_new(&sb, acpi_desc, sizeof(acpi_desc), SBUF_FIXEDLEN); 438 sbuf_bcat(&sb, rsdt->OemId, ACPI_OEM_ID_SIZE); 439 sbuf_trim(&sb); 440 sbuf_putc(&sb, ' '); 441 sbuf_bcat(&sb, rsdt->OemTableId, ACPI_OEM_TABLE_ID_SIZE); 442 sbuf_trim(&sb); 443 sbuf_finish(&sb); 444 sbuf_delete(&sb); 445 AcpiOsUnmapMemory(rsdt, sizeof(ACPI_TABLE_HEADER)); 446 447 snprintf(acpi_ca_version, sizeof(acpi_ca_version), "%x", ACPI_CA_VERSION); 448 449 return (0); 450 } 451 452 /* 453 * Fetch some descriptive data from ACPI to put in our attach message. 454 */ 455 static int 456 acpi_probe(device_t dev) 457 { 458 459 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 460 461 device_set_desc(dev, acpi_desc); 462 463 return_VALUE (BUS_PROBE_NOWILDCARD); 464 } 465 466 static int 467 acpi_attach(device_t dev) 468 { 469 struct acpi_softc *sc; 470 ACPI_STATUS status; 471 int error, state; 472 UINT32 flags; 473 UINT8 TypeA, TypeB; 474 char *env; 475 476 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 477 478 sc = device_get_softc(dev); 479 sc->acpi_dev = dev; 480 callout_init(&sc->susp_force_to, 1); 481 482 error = ENXIO; 483 484 /* Initialize resource manager. */ 485 acpi_rman_io.rm_type = RMAN_ARRAY; 486 acpi_rman_io.rm_start = 0; 487 acpi_rman_io.rm_end = 0xffff; 488 acpi_rman_io.rm_descr = "ACPI I/O ports"; 489 if (rman_init(&acpi_rman_io) != 0) 490 panic("acpi rman_init IO ports failed"); 491 acpi_rman_mem.rm_type = RMAN_ARRAY; 492 acpi_rman_mem.rm_descr = "ACPI I/O memory addresses"; 493 if (rman_init(&acpi_rman_mem) != 0) 494 panic("acpi rman_init memory failed"); 495 496 /* Initialise the ACPI mutex */ 497 mtx_init(&acpi_mutex, "ACPI global lock", NULL, MTX_DEF); 498 499 /* 500 * Set the globals from our tunables. This is needed because ACPI-CA 501 * uses UINT8 for some values and we have no tunable_byte. 502 */ 503 AcpiGbl_EnableInterpreterSlack = acpi_interpreter_slack ? TRUE : FALSE; 504 AcpiGbl_EnableAmlDebugObject = acpi_debug_objects ? TRUE : FALSE; 505 AcpiGbl_UseDefaultRegisterWidths = acpi_ignore_reg_width ? TRUE : FALSE; 506 507 #ifndef ACPI_DEBUG 508 /* 509 * Disable all debugging layers and levels. 510 */ 511 AcpiDbgLayer = 0; 512 AcpiDbgLevel = 0; 513 #endif 514 515 /* Override OS interfaces if the user requested. */ 516 acpi_reset_interfaces(dev); 517 518 /* Load ACPI name space. */ 519 status = AcpiLoadTables(); 520 if (ACPI_FAILURE(status)) { 521 device_printf(dev, "Could not load Namespace: %s\n", 522 AcpiFormatException(status)); 523 goto out; 524 } 525 526 /* Handle MCFG table if present. */ 527 acpi_enable_pcie(); 528 529 /* 530 * Note that some systems (specifically, those with namespace evaluation 531 * issues that require the avoidance of parts of the namespace) must 532 * avoid running _INI and _STA on everything, as well as dodging the final 533 * object init pass. 534 * 535 * For these devices, we set ACPI_NO_DEVICE_INIT and ACPI_NO_OBJECT_INIT). 536 * 537 * XXX We should arrange for the object init pass after we have attached 538 * all our child devices, but on many systems it works here. 539 */ 540 flags = 0; 541 if (testenv("debug.acpi.avoid")) 542 flags = ACPI_NO_DEVICE_INIT | ACPI_NO_OBJECT_INIT; 543 544 /* Bring the hardware and basic handlers online. */ 545 if (ACPI_FAILURE(status = AcpiEnableSubsystem(flags))) { 546 device_printf(dev, "Could not enable ACPI: %s\n", 547 AcpiFormatException(status)); 548 goto out; 549 } 550 551 /* 552 * Call the ECDT probe function to provide EC functionality before 553 * the namespace has been evaluated. 554 * 555 * XXX This happens before the sysresource devices have been probed and 556 * attached so its resources come from nexus0. In practice, this isn't 557 * a problem but should be addressed eventually. 558 */ 559 acpi_ec_ecdt_probe(dev); 560 561 /* Bring device objects and regions online. */ 562 if (ACPI_FAILURE(status = AcpiInitializeObjects(flags))) { 563 device_printf(dev, "Could not initialize ACPI objects: %s\n", 564 AcpiFormatException(status)); 565 goto out; 566 } 567 568 /* 569 * Setup our sysctl tree. 570 * 571 * XXX: This doesn't check to make sure that none of these fail. 572 */ 573 sysctl_ctx_init(&sc->acpi_sysctl_ctx); 574 sc->acpi_sysctl_tree = SYSCTL_ADD_NODE(&sc->acpi_sysctl_ctx, 575 SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO, device_get_name(dev), 576 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, ""); 577 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 578 OID_AUTO, "supported_sleep_state", 579 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 580 0, 0, acpi_supported_sleep_state_sysctl, "A", 581 "List supported ACPI sleep states."); 582 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 583 OID_AUTO, "power_button_state", 584 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 585 &sc->acpi_power_button_sx, 0, acpi_sleep_state_sysctl, "A", 586 "Power button ACPI sleep state."); 587 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 588 OID_AUTO, "sleep_button_state", 589 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 590 &sc->acpi_sleep_button_sx, 0, acpi_sleep_state_sysctl, "A", 591 "Sleep button ACPI sleep state."); 592 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 593 OID_AUTO, "lid_switch_state", 594 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 595 &sc->acpi_lid_switch_sx, 0, acpi_sleep_state_sysctl, "A", 596 "Lid ACPI sleep state. Set to S3 if you want to suspend your laptop when close the Lid."); 597 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 598 OID_AUTO, "standby_state", 599 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 600 &sc->acpi_standby_sx, 0, acpi_sleep_state_sysctl, "A", ""); 601 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 602 OID_AUTO, "suspend_state", 603 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 604 &sc->acpi_suspend_sx, 0, acpi_sleep_state_sysctl, "A", ""); 605 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 606 OID_AUTO, "sleep_delay", CTLFLAG_RW, &sc->acpi_sleep_delay, 0, 607 "sleep delay in seconds"); 608 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 609 OID_AUTO, "s4bios", CTLFLAG_RW, &sc->acpi_s4bios, 0, "S4BIOS mode"); 610 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 611 OID_AUTO, "verbose", CTLFLAG_RW, &sc->acpi_verbose, 0, "verbose mode"); 612 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 613 OID_AUTO, "disable_on_reboot", CTLFLAG_RW, 614 &sc->acpi_do_disable, 0, "Disable ACPI when rebooting/halting system"); 615 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 616 OID_AUTO, "handle_reboot", CTLFLAG_RW, 617 &sc->acpi_handle_reboot, 0, "Use ACPI Reset Register to reboot"); 618 619 /* 620 * Default to 1 second before sleeping to give some machines time to 621 * stabilize. 622 */ 623 sc->acpi_sleep_delay = 1; 624 if (bootverbose) 625 sc->acpi_verbose = 1; 626 if ((env = kern_getenv("hw.acpi.verbose")) != NULL) { 627 if (strcmp(env, "0") != 0) 628 sc->acpi_verbose = 1; 629 freeenv(env); 630 } 631 632 /* Only enable reboot by default if the FADT says it is available. */ 633 if (AcpiGbl_FADT.Flags & ACPI_FADT_RESET_REGISTER) 634 sc->acpi_handle_reboot = 1; 635 636 #if !ACPI_REDUCED_HARDWARE 637 /* Only enable S4BIOS by default if the FACS says it is available. */ 638 if (AcpiGbl_FACS != NULL && AcpiGbl_FACS->Flags & ACPI_FACS_S4_BIOS_PRESENT) 639 sc->acpi_s4bios = 1; 640 #endif 641 642 /* Probe all supported sleep states. */ 643 acpi_sleep_states[ACPI_STATE_S0] = TRUE; 644 for (state = ACPI_STATE_S1; state < ACPI_S_STATE_COUNT; state++) 645 if (ACPI_SUCCESS(AcpiEvaluateObject(ACPI_ROOT_OBJECT, 646 __DECONST(char *, AcpiGbl_SleepStateNames[state]), NULL, NULL)) && 647 ACPI_SUCCESS(AcpiGetSleepTypeData(state, &TypeA, &TypeB))) 648 acpi_sleep_states[state] = TRUE; 649 650 /* 651 * Dispatch the default sleep state to devices. The lid switch is set 652 * to UNKNOWN by default to avoid surprising users. 653 */ 654 sc->acpi_power_button_sx = acpi_sleep_states[ACPI_STATE_S5] ? 655 ACPI_STATE_S5 : ACPI_STATE_UNKNOWN; 656 sc->acpi_lid_switch_sx = ACPI_STATE_UNKNOWN; 657 sc->acpi_standby_sx = acpi_sleep_states[ACPI_STATE_S1] ? 658 ACPI_STATE_S1 : ACPI_STATE_UNKNOWN; 659 sc->acpi_suspend_sx = acpi_sleep_states[ACPI_STATE_S3] ? 660 ACPI_STATE_S3 : ACPI_STATE_UNKNOWN; 661 662 /* Pick the first valid sleep state for the sleep button default. */ 663 sc->acpi_sleep_button_sx = ACPI_STATE_UNKNOWN; 664 for (state = ACPI_STATE_S1; state <= ACPI_STATE_S4; state++) 665 if (acpi_sleep_states[state]) { 666 sc->acpi_sleep_button_sx = state; 667 break; 668 } 669 670 acpi_enable_fixed_events(sc); 671 672 /* 673 * Scan the namespace and attach/initialise children. 674 */ 675 676 /* Register our shutdown handler. */ 677 EVENTHANDLER_REGISTER(shutdown_final, acpi_shutdown_final, sc, 678 SHUTDOWN_PRI_LAST); 679 680 /* 681 * Register our acpi event handlers. 682 * XXX should be configurable eg. via userland policy manager. 683 */ 684 EVENTHANDLER_REGISTER(acpi_sleep_event, acpi_system_eventhandler_sleep, 685 sc, ACPI_EVENT_PRI_LAST); 686 EVENTHANDLER_REGISTER(acpi_wakeup_event, acpi_system_eventhandler_wakeup, 687 sc, ACPI_EVENT_PRI_LAST); 688 689 /* Flag our initial states. */ 690 sc->acpi_enabled = TRUE; 691 sc->acpi_sstate = ACPI_STATE_S0; 692 sc->acpi_sleep_disabled = TRUE; 693 694 /* Create the control device */ 695 sc->acpi_dev_t = make_dev(&acpi_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0664, 696 "acpi"); 697 sc->acpi_dev_t->si_drv1 = sc; 698 699 if ((error = acpi_machdep_init(dev))) 700 goto out; 701 702 /* Register ACPI again to pass the correct argument of pm_func. */ 703 power_pm_register(POWER_PM_TYPE_ACPI, acpi_pm_func, sc); 704 705 acpi_platform_osc(dev); 706 707 if (!acpi_disabled("bus")) { 708 EVENTHANDLER_REGISTER(dev_lookup, acpi_lookup, NULL, 1000); 709 acpi_probe_children(dev); 710 } 711 712 /* Update all GPEs and enable runtime GPEs. */ 713 status = AcpiUpdateAllGpes(); 714 if (ACPI_FAILURE(status)) 715 device_printf(dev, "Could not update all GPEs: %s\n", 716 AcpiFormatException(status)); 717 718 /* Allow sleep request after a while. */ 719 callout_init_mtx(&acpi_sleep_timer, &acpi_mutex, 0); 720 callout_reset(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME, 721 acpi_sleep_enable, sc); 722 723 error = 0; 724 725 out: 726 return_VALUE (error); 727 } 728 729 static void 730 acpi_set_power_children(device_t dev, int state) 731 { 732 device_t child; 733 device_t *devlist; 734 int dstate, i, numdevs; 735 736 if (device_get_children(dev, &devlist, &numdevs) != 0) 737 return; 738 739 /* 740 * Retrieve and set D-state for the sleep state if _SxD is present. 741 * Skip children who aren't attached since they are handled separately. 742 */ 743 for (i = 0; i < numdevs; i++) { 744 child = devlist[i]; 745 dstate = state; 746 if (device_is_attached(child) && 747 acpi_device_pwr_for_sleep(dev, child, &dstate) == 0) 748 acpi_set_powerstate(child, dstate); 749 } 750 free(devlist, M_TEMP); 751 } 752 753 static int 754 acpi_suspend(device_t dev) 755 { 756 int error; 757 758 bus_topo_assert(); 759 760 error = bus_generic_suspend(dev); 761 if (error == 0) 762 acpi_set_power_children(dev, ACPI_STATE_D3); 763 764 return (error); 765 } 766 767 static int 768 acpi_resume(device_t dev) 769 { 770 771 bus_topo_assert(); 772 773 acpi_set_power_children(dev, ACPI_STATE_D0); 774 775 return (bus_generic_resume(dev)); 776 } 777 778 static int 779 acpi_shutdown(device_t dev) 780 { 781 782 bus_topo_assert(); 783 784 /* Allow children to shutdown first. */ 785 bus_generic_shutdown(dev); 786 787 /* 788 * Enable any GPEs that are able to power-on the system (i.e., RTC). 789 * Also, disable any that are not valid for this state (most). 790 */ 791 acpi_wake_prep_walk(ACPI_STATE_S5); 792 793 return (0); 794 } 795 796 /* 797 * Handle a new device being added 798 */ 799 static device_t 800 acpi_add_child(device_t bus, u_int order, const char *name, int unit) 801 { 802 struct acpi_device *ad; 803 device_t child; 804 805 if ((ad = malloc(sizeof(*ad), M_ACPIDEV, M_NOWAIT | M_ZERO)) == NULL) 806 return (NULL); 807 808 resource_list_init(&ad->ad_rl); 809 810 child = device_add_child_ordered(bus, order, name, unit); 811 if (child != NULL) 812 device_set_ivars(child, ad); 813 else 814 free(ad, M_ACPIDEV); 815 return (child); 816 } 817 818 static int 819 acpi_print_child(device_t bus, device_t child) 820 { 821 struct acpi_device *adev = device_get_ivars(child); 822 struct resource_list *rl = &adev->ad_rl; 823 int retval = 0; 824 825 retval += bus_print_child_header(bus, child); 826 retval += resource_list_print_type(rl, "port", SYS_RES_IOPORT, "%#jx"); 827 retval += resource_list_print_type(rl, "iomem", SYS_RES_MEMORY, "%#jx"); 828 retval += resource_list_print_type(rl, "irq", SYS_RES_IRQ, "%jd"); 829 retval += resource_list_print_type(rl, "drq", SYS_RES_DRQ, "%jd"); 830 if (device_get_flags(child)) 831 retval += printf(" flags %#x", device_get_flags(child)); 832 retval += bus_print_child_domain(bus, child); 833 retval += bus_print_child_footer(bus, child); 834 835 return (retval); 836 } 837 838 /* 839 * If this device is an ACPI child but no one claimed it, attempt 840 * to power it off. We'll power it back up when a driver is added. 841 * 842 * XXX Disabled for now since many necessary devices (like fdc and 843 * ATA) don't claim the devices we created for them but still expect 844 * them to be powered up. 845 */ 846 static void 847 acpi_probe_nomatch(device_t bus, device_t child) 848 { 849 #ifdef ACPI_ENABLE_POWERDOWN_NODRIVER 850 acpi_set_powerstate(child, ACPI_STATE_D3); 851 #endif 852 } 853 854 /* 855 * If a new driver has a chance to probe a child, first power it up. 856 * 857 * XXX Disabled for now (see acpi_probe_nomatch for details). 858 */ 859 static void 860 acpi_driver_added(device_t dev, driver_t *driver) 861 { 862 device_t child, *devlist; 863 int i, numdevs; 864 865 DEVICE_IDENTIFY(driver, dev); 866 if (device_get_children(dev, &devlist, &numdevs)) 867 return; 868 for (i = 0; i < numdevs; i++) { 869 child = devlist[i]; 870 if (device_get_state(child) == DS_NOTPRESENT) { 871 #ifdef ACPI_ENABLE_POWERDOWN_NODRIVER 872 acpi_set_powerstate(child, ACPI_STATE_D0); 873 if (device_probe_and_attach(child) != 0) 874 acpi_set_powerstate(child, ACPI_STATE_D3); 875 #else 876 device_probe_and_attach(child); 877 #endif 878 } 879 } 880 free(devlist, M_TEMP); 881 } 882 883 /* Location hint for devctl(8) */ 884 static int 885 acpi_child_location_method(device_t cbdev, device_t child, struct sbuf *sb) 886 { 887 struct acpi_device *dinfo = device_get_ivars(child); 888 int pxm; 889 890 if (dinfo->ad_handle) { 891 sbuf_printf(sb, "handle=%s", acpi_name(dinfo->ad_handle)); 892 if (ACPI_SUCCESS(acpi_GetInteger(dinfo->ad_handle, "_PXM", &pxm))) { 893 sbuf_printf(sb, " _PXM=%d", pxm); 894 } 895 } 896 return (0); 897 } 898 899 /* PnP information for devctl(8) */ 900 int 901 acpi_pnpinfo(ACPI_HANDLE handle, struct sbuf *sb) 902 { 903 ACPI_DEVICE_INFO *adinfo; 904 905 if (ACPI_FAILURE(AcpiGetObjectInfo(handle, &adinfo))) { 906 sbuf_printf(sb, "unknown"); 907 return (0); 908 } 909 910 sbuf_printf(sb, "_HID=%s _UID=%lu _CID=%s", 911 (adinfo->Valid & ACPI_VALID_HID) ? 912 adinfo->HardwareId.String : "none", 913 (adinfo->Valid & ACPI_VALID_UID) ? 914 strtoul(adinfo->UniqueId.String, NULL, 10) : 0UL, 915 ((adinfo->Valid & ACPI_VALID_CID) && 916 adinfo->CompatibleIdList.Count > 0) ? 917 adinfo->CompatibleIdList.Ids[0].String : "none"); 918 AcpiOsFree(adinfo); 919 920 return (0); 921 } 922 923 static int 924 acpi_child_pnpinfo_method(device_t cbdev, device_t child, struct sbuf *sb) 925 { 926 struct acpi_device *dinfo = device_get_ivars(child); 927 928 return (acpi_pnpinfo(dinfo->ad_handle, sb)); 929 } 930 931 /* 932 * Handle device deletion. 933 */ 934 static void 935 acpi_child_deleted(device_t dev, device_t child) 936 { 937 struct acpi_device *dinfo = device_get_ivars(child); 938 939 if (acpi_get_device(dinfo->ad_handle) == child) 940 AcpiDetachData(dinfo->ad_handle, acpi_fake_objhandler); 941 } 942 943 /* 944 * Handle per-device ivars 945 */ 946 static int 947 acpi_read_ivar(device_t dev, device_t child, int index, uintptr_t *result) 948 { 949 struct acpi_device *ad; 950 951 if ((ad = device_get_ivars(child)) == NULL) { 952 device_printf(child, "device has no ivars\n"); 953 return (ENOENT); 954 } 955 956 /* ACPI and ISA compatibility ivars */ 957 switch(index) { 958 case ACPI_IVAR_HANDLE: 959 *(ACPI_HANDLE *)result = ad->ad_handle; 960 break; 961 case ACPI_IVAR_PRIVATE: 962 *(void **)result = ad->ad_private; 963 break; 964 case ACPI_IVAR_FLAGS: 965 *(int *)result = ad->ad_flags; 966 break; 967 case ISA_IVAR_VENDORID: 968 case ISA_IVAR_SERIAL: 969 case ISA_IVAR_COMPATID: 970 *(int *)result = -1; 971 break; 972 case ISA_IVAR_LOGICALID: 973 *(int *)result = acpi_isa_get_logicalid(child); 974 break; 975 case PCI_IVAR_CLASS: 976 *(uint8_t*)result = (ad->ad_cls_class >> 16) & 0xff; 977 break; 978 case PCI_IVAR_SUBCLASS: 979 *(uint8_t*)result = (ad->ad_cls_class >> 8) & 0xff; 980 break; 981 case PCI_IVAR_PROGIF: 982 *(uint8_t*)result = (ad->ad_cls_class >> 0) & 0xff; 983 break; 984 default: 985 return (ENOENT); 986 } 987 988 return (0); 989 } 990 991 static int 992 acpi_write_ivar(device_t dev, device_t child, int index, uintptr_t value) 993 { 994 struct acpi_device *ad; 995 996 if ((ad = device_get_ivars(child)) == NULL) { 997 device_printf(child, "device has no ivars\n"); 998 return (ENOENT); 999 } 1000 1001 switch(index) { 1002 case ACPI_IVAR_HANDLE: 1003 ad->ad_handle = (ACPI_HANDLE)value; 1004 break; 1005 case ACPI_IVAR_PRIVATE: 1006 ad->ad_private = (void *)value; 1007 break; 1008 case ACPI_IVAR_FLAGS: 1009 ad->ad_flags = (int)value; 1010 break; 1011 default: 1012 panic("bad ivar write request (%d)", index); 1013 return (ENOENT); 1014 } 1015 1016 return (0); 1017 } 1018 1019 /* 1020 * Handle child resource allocation/removal 1021 */ 1022 static struct resource_list * 1023 acpi_get_rlist(device_t dev, device_t child) 1024 { 1025 struct acpi_device *ad; 1026 1027 ad = device_get_ivars(child); 1028 return (&ad->ad_rl); 1029 } 1030 1031 static int 1032 acpi_match_resource_hint(device_t dev, int type, long value) 1033 { 1034 struct acpi_device *ad = device_get_ivars(dev); 1035 struct resource_list *rl = &ad->ad_rl; 1036 struct resource_list_entry *rle; 1037 1038 STAILQ_FOREACH(rle, rl, link) { 1039 if (rle->type != type) 1040 continue; 1041 if (rle->start <= value && rle->end >= value) 1042 return (1); 1043 } 1044 return (0); 1045 } 1046 1047 /* 1048 * Wire device unit numbers based on resource matches in hints. 1049 */ 1050 static void 1051 acpi_hint_device_unit(device_t acdev, device_t child, const char *name, 1052 int *unitp) 1053 { 1054 const char *s; 1055 long value; 1056 int line, matches, unit; 1057 1058 /* 1059 * Iterate over all the hints for the devices with the specified 1060 * name to see if one's resources are a subset of this device. 1061 */ 1062 line = 0; 1063 while (resource_find_dev(&line, name, &unit, "at", NULL) == 0) { 1064 /* Must have an "at" for acpi or isa. */ 1065 resource_string_value(name, unit, "at", &s); 1066 if (!(strcmp(s, "acpi0") == 0 || strcmp(s, "acpi") == 0 || 1067 strcmp(s, "isa0") == 0 || strcmp(s, "isa") == 0)) 1068 continue; 1069 1070 /* 1071 * Check for matching resources. We must have at least one match. 1072 * Since I/O and memory resources cannot be shared, if we get a 1073 * match on either of those, ignore any mismatches in IRQs or DRQs. 1074 * 1075 * XXX: We may want to revisit this to be more lenient and wire 1076 * as long as it gets one match. 1077 */ 1078 matches = 0; 1079 if (resource_long_value(name, unit, "port", &value) == 0) { 1080 /* 1081 * Floppy drive controllers are notorious for having a 1082 * wide variety of resources not all of which include the 1083 * first port that is specified by the hint (typically 1084 * 0x3f0) (see the comment above fdc_isa_alloc_resources() 1085 * in fdc_isa.c). However, they do all seem to include 1086 * port + 2 (e.g. 0x3f2) so for a floppy device, look for 1087 * 'value + 2' in the port resources instead of the hint 1088 * value. 1089 */ 1090 if (strcmp(name, "fdc") == 0) 1091 value += 2; 1092 if (acpi_match_resource_hint(child, SYS_RES_IOPORT, value)) 1093 matches++; 1094 else 1095 continue; 1096 } 1097 if (resource_long_value(name, unit, "maddr", &value) == 0) { 1098 if (acpi_match_resource_hint(child, SYS_RES_MEMORY, value)) 1099 matches++; 1100 else 1101 continue; 1102 } 1103 if (matches > 0) 1104 goto matched; 1105 if (resource_long_value(name, unit, "irq", &value) == 0) { 1106 if (acpi_match_resource_hint(child, SYS_RES_IRQ, value)) 1107 matches++; 1108 else 1109 continue; 1110 } 1111 if (resource_long_value(name, unit, "drq", &value) == 0) { 1112 if (acpi_match_resource_hint(child, SYS_RES_DRQ, value)) 1113 matches++; 1114 else 1115 continue; 1116 } 1117 1118 matched: 1119 if (matches > 0) { 1120 /* We have a winner! */ 1121 *unitp = unit; 1122 break; 1123 } 1124 } 1125 } 1126 1127 /* 1128 * Fetch the NUMA domain for a device by mapping the value returned by 1129 * _PXM to a NUMA domain. If the device does not have a _PXM method, 1130 * -2 is returned. If any other error occurs, -1 is returned. 1131 */ 1132 static int 1133 acpi_parse_pxm(device_t dev) 1134 { 1135 #ifdef NUMA 1136 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__) 1137 ACPI_HANDLE handle; 1138 ACPI_STATUS status; 1139 int pxm; 1140 1141 handle = acpi_get_handle(dev); 1142 if (handle == NULL) 1143 return (-2); 1144 status = acpi_GetInteger(handle, "_PXM", &pxm); 1145 if (ACPI_SUCCESS(status)) 1146 return (acpi_map_pxm_to_vm_domainid(pxm)); 1147 if (status == AE_NOT_FOUND) 1148 return (-2); 1149 #endif 1150 #endif 1151 return (-1); 1152 } 1153 1154 int 1155 acpi_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize, 1156 cpuset_t *cpuset) 1157 { 1158 int d, error; 1159 1160 d = acpi_parse_pxm(child); 1161 if (d < 0) 1162 return (bus_generic_get_cpus(dev, child, op, setsize, cpuset)); 1163 1164 switch (op) { 1165 case LOCAL_CPUS: 1166 if (setsize != sizeof(cpuset_t)) 1167 return (EINVAL); 1168 *cpuset = cpuset_domain[d]; 1169 return (0); 1170 case INTR_CPUS: 1171 error = bus_generic_get_cpus(dev, child, op, setsize, cpuset); 1172 if (error != 0) 1173 return (error); 1174 if (setsize != sizeof(cpuset_t)) 1175 return (EINVAL); 1176 CPU_AND(cpuset, &cpuset_domain[d]); 1177 return (0); 1178 default: 1179 return (bus_generic_get_cpus(dev, child, op, setsize, cpuset)); 1180 } 1181 } 1182 1183 /* 1184 * Fetch the NUMA domain for the given device 'dev'. 1185 * 1186 * If a device has a _PXM method, map that to a NUMA domain. 1187 * Otherwise, pass the request up to the parent. 1188 * If there's no matching domain or the domain cannot be 1189 * determined, return ENOENT. 1190 */ 1191 int 1192 acpi_get_domain(device_t dev, device_t child, int *domain) 1193 { 1194 int d; 1195 1196 d = acpi_parse_pxm(child); 1197 if (d >= 0) { 1198 *domain = d; 1199 return (0); 1200 } 1201 if (d == -1) 1202 return (ENOENT); 1203 1204 /* No _PXM node; go up a level */ 1205 return (bus_generic_get_domain(dev, child, domain)); 1206 } 1207 1208 /* 1209 * Pre-allocate/manage all memory and IO resources. Since rman can't handle 1210 * duplicates, we merge any in the sysresource attach routine. 1211 */ 1212 static int 1213 acpi_sysres_alloc(device_t dev) 1214 { 1215 struct resource *res; 1216 struct resource_list *rl; 1217 struct resource_list_entry *rle; 1218 struct rman *rm; 1219 device_t *children; 1220 int child_count, i; 1221 1222 /* 1223 * Probe/attach any sysresource devices. This would be unnecessary if we 1224 * had multi-pass probe/attach. 1225 */ 1226 if (device_get_children(dev, &children, &child_count) != 0) 1227 return (ENXIO); 1228 for (i = 0; i < child_count; i++) { 1229 if (ACPI_ID_PROBE(dev, children[i], sysres_ids, NULL) <= 0) 1230 device_probe_and_attach(children[i]); 1231 } 1232 free(children, M_TEMP); 1233 1234 rl = BUS_GET_RESOURCE_LIST(device_get_parent(dev), dev); 1235 STAILQ_FOREACH(rle, rl, link) { 1236 if (rle->res != NULL) { 1237 device_printf(dev, "duplicate resource for %jx\n", rle->start); 1238 continue; 1239 } 1240 1241 /* Only memory and IO resources are valid here. */ 1242 switch (rle->type) { 1243 case SYS_RES_IOPORT: 1244 rm = &acpi_rman_io; 1245 break; 1246 case SYS_RES_MEMORY: 1247 rm = &acpi_rman_mem; 1248 break; 1249 default: 1250 continue; 1251 } 1252 1253 /* Pre-allocate resource and add to our rman pool. */ 1254 res = BUS_ALLOC_RESOURCE(device_get_parent(dev), dev, rle->type, 1255 &rle->rid, rle->start, rle->start + rle->count - 1, rle->count, 0); 1256 if (res != NULL) { 1257 rman_manage_region(rm, rman_get_start(res), rman_get_end(res)); 1258 rle->res = res; 1259 } else if (bootverbose) 1260 device_printf(dev, "reservation of %jx, %jx (%d) failed\n", 1261 rle->start, rle->count, rle->type); 1262 } 1263 return (0); 1264 } 1265 1266 /* 1267 * Reserve declared resources for devices found during attach once system 1268 * resources have been allocated. 1269 */ 1270 static void 1271 acpi_reserve_resources(device_t dev) 1272 { 1273 struct resource_list_entry *rle; 1274 struct resource_list *rl; 1275 struct acpi_device *ad; 1276 struct acpi_softc *sc; 1277 device_t *children; 1278 int child_count, i; 1279 1280 sc = device_get_softc(dev); 1281 if (device_get_children(dev, &children, &child_count) != 0) 1282 return; 1283 for (i = 0; i < child_count; i++) { 1284 ad = device_get_ivars(children[i]); 1285 rl = &ad->ad_rl; 1286 1287 /* Don't reserve system resources. */ 1288 if (ACPI_ID_PROBE(dev, children[i], sysres_ids, NULL) <= 0) 1289 continue; 1290 1291 STAILQ_FOREACH(rle, rl, link) { 1292 /* 1293 * Don't reserve IRQ resources. There are many sticky things 1294 * to get right otherwise (e.g. IRQs for psm, atkbd, and HPET 1295 * when using legacy routing). 1296 */ 1297 if (rle->type == SYS_RES_IRQ) 1298 continue; 1299 1300 /* 1301 * Don't reserve the resource if it is already allocated. 1302 * The acpi_ec(4) driver can allocate its resources early 1303 * if ECDT is present. 1304 */ 1305 if (rle->res != NULL) 1306 continue; 1307 1308 /* 1309 * Try to reserve the resource from our parent. If this 1310 * fails because the resource is a system resource, just 1311 * let it be. The resource range is already reserved so 1312 * that other devices will not use it. If the driver 1313 * needs to allocate the resource, then 1314 * acpi_alloc_resource() will sub-alloc from the system 1315 * resource. 1316 */ 1317 resource_list_reserve(rl, dev, children[i], rle->type, &rle->rid, 1318 rle->start, rle->end, rle->count, 0); 1319 } 1320 } 1321 free(children, M_TEMP); 1322 sc->acpi_resources_reserved = 1; 1323 } 1324 1325 static int 1326 acpi_set_resource(device_t dev, device_t child, int type, int rid, 1327 rman_res_t start, rman_res_t count) 1328 { 1329 struct acpi_softc *sc = device_get_softc(dev); 1330 struct acpi_device *ad = device_get_ivars(child); 1331 struct resource_list *rl = &ad->ad_rl; 1332 ACPI_DEVICE_INFO *devinfo; 1333 rman_res_t end; 1334 int allow; 1335 1336 /* Ignore IRQ resources for PCI link devices. */ 1337 if (type == SYS_RES_IRQ && 1338 ACPI_ID_PROBE(dev, child, pcilink_ids, NULL) <= 0) 1339 return (0); 1340 1341 /* 1342 * Ignore most resources for PCI root bridges. Some BIOSes 1343 * incorrectly enumerate the memory ranges they decode as plain 1344 * memory resources instead of as ResourceProducer ranges. Other 1345 * BIOSes incorrectly list system resource entries for I/O ranges 1346 * under the PCI bridge. Do allow the one known-correct case on 1347 * x86 of a PCI bridge claiming the I/O ports used for PCI config 1348 * access. 1349 */ 1350 if (type == SYS_RES_MEMORY || type == SYS_RES_IOPORT) { 1351 if (ACPI_SUCCESS(AcpiGetObjectInfo(ad->ad_handle, &devinfo))) { 1352 if ((devinfo->Flags & ACPI_PCI_ROOT_BRIDGE) != 0) { 1353 #if defined(__i386__) || defined(__amd64__) 1354 allow = (type == SYS_RES_IOPORT && start == CONF1_ADDR_PORT); 1355 #else 1356 allow = 0; 1357 #endif 1358 if (!allow) { 1359 AcpiOsFree(devinfo); 1360 return (0); 1361 } 1362 } 1363 AcpiOsFree(devinfo); 1364 } 1365 } 1366 1367 #ifdef INTRNG 1368 /* map with default for now */ 1369 if (type == SYS_RES_IRQ) 1370 start = (rman_res_t)acpi_map_intr(child, (u_int)start, 1371 acpi_get_handle(child)); 1372 #endif 1373 1374 /* If the resource is already allocated, fail. */ 1375 if (resource_list_busy(rl, type, rid)) 1376 return (EBUSY); 1377 1378 /* If the resource is already reserved, release it. */ 1379 if (resource_list_reserved(rl, type, rid)) 1380 resource_list_unreserve(rl, dev, child, type, rid); 1381 1382 /* Add the resource. */ 1383 end = (start + count - 1); 1384 resource_list_add(rl, type, rid, start, end, count); 1385 1386 /* Don't reserve resources until the system resources are allocated. */ 1387 if (!sc->acpi_resources_reserved) 1388 return (0); 1389 1390 /* Don't reserve system resources. */ 1391 if (ACPI_ID_PROBE(dev, child, sysres_ids, NULL) <= 0) 1392 return (0); 1393 1394 /* 1395 * Don't reserve IRQ resources. There are many sticky things to 1396 * get right otherwise (e.g. IRQs for psm, atkbd, and HPET when 1397 * using legacy routing). 1398 */ 1399 if (type == SYS_RES_IRQ) 1400 return (0); 1401 1402 /* 1403 * Don't reserve resources for CPU devices. Some of these 1404 * resources need to be allocated as shareable, but reservations 1405 * are always non-shareable. 1406 */ 1407 if (device_get_devclass(child) == devclass_find("cpu")) 1408 return (0); 1409 1410 /* 1411 * Reserve the resource. 1412 * 1413 * XXX: Ignores failure for now. Failure here is probably a 1414 * BIOS/firmware bug? 1415 */ 1416 resource_list_reserve(rl, dev, child, type, &rid, start, end, count, 0); 1417 return (0); 1418 } 1419 1420 static struct resource * 1421 acpi_alloc_resource(device_t bus, device_t child, int type, int *rid, 1422 rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 1423 { 1424 #ifndef INTRNG 1425 ACPI_RESOURCE ares; 1426 #endif 1427 struct acpi_device *ad; 1428 struct resource_list_entry *rle; 1429 struct resource_list *rl; 1430 struct resource *res; 1431 int isdefault = RMAN_IS_DEFAULT_RANGE(start, end); 1432 1433 /* 1434 * First attempt at allocating the resource. For direct children, 1435 * use resource_list_alloc() to handle reserved resources. For 1436 * other devices, pass the request up to our parent. 1437 */ 1438 if (bus == device_get_parent(child)) { 1439 ad = device_get_ivars(child); 1440 rl = &ad->ad_rl; 1441 1442 /* 1443 * Simulate the behavior of the ISA bus for direct children 1444 * devices. That is, if a non-default range is specified for 1445 * a resource that doesn't exist, use bus_set_resource() to 1446 * add the resource before allocating it. Note that these 1447 * resources will not be reserved. 1448 */ 1449 if (!isdefault && resource_list_find(rl, type, *rid) == NULL) 1450 resource_list_add(rl, type, *rid, start, end, count); 1451 res = resource_list_alloc(rl, bus, child, type, rid, start, end, count, 1452 flags); 1453 #ifndef INTRNG 1454 if (res != NULL && type == SYS_RES_IRQ) { 1455 /* 1456 * Since bus_config_intr() takes immediate effect, we cannot 1457 * configure the interrupt associated with a device when we 1458 * parse the resources but have to defer it until a driver 1459 * actually allocates the interrupt via bus_alloc_resource(). 1460 * 1461 * XXX: Should we handle the lookup failing? 1462 */ 1463 if (ACPI_SUCCESS(acpi_lookup_irq_resource(child, *rid, res, &ares))) 1464 acpi_config_intr(child, &ares); 1465 } 1466 #endif 1467 1468 /* 1469 * If this is an allocation of the "default" range for a given 1470 * RID, fetch the exact bounds for this resource from the 1471 * resource list entry to try to allocate the range from the 1472 * system resource regions. 1473 */ 1474 if (res == NULL && isdefault) { 1475 rle = resource_list_find(rl, type, *rid); 1476 if (rle != NULL) { 1477 start = rle->start; 1478 end = rle->end; 1479 count = rle->count; 1480 } 1481 } 1482 } else 1483 res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, type, rid, 1484 start, end, count, flags); 1485 1486 /* 1487 * If the first attempt failed and this is an allocation of a 1488 * specific range, try to satisfy the request via a suballocation 1489 * from our system resource regions. 1490 */ 1491 if (res == NULL && start + count - 1 == end) 1492 res = acpi_alloc_sysres(child, type, rid, start, end, count, flags); 1493 return (res); 1494 } 1495 1496 /* 1497 * Attempt to allocate a specific resource range from the system 1498 * resource ranges. Note that we only handle memory and I/O port 1499 * system resources. 1500 */ 1501 struct resource * 1502 acpi_alloc_sysres(device_t child, int type, int *rid, rman_res_t start, 1503 rman_res_t end, rman_res_t count, u_int flags) 1504 { 1505 struct rman *rm; 1506 struct resource *res; 1507 1508 switch (type) { 1509 case SYS_RES_IOPORT: 1510 rm = &acpi_rman_io; 1511 break; 1512 case SYS_RES_MEMORY: 1513 rm = &acpi_rman_mem; 1514 break; 1515 default: 1516 return (NULL); 1517 } 1518 1519 KASSERT(start + count - 1 == end, ("wildcard resource range")); 1520 res = rman_reserve_resource(rm, start, end, count, flags & ~RF_ACTIVE, 1521 child); 1522 if (res == NULL) 1523 return (NULL); 1524 1525 rman_set_rid(res, *rid); 1526 1527 /* If requested, activate the resource using the parent's method. */ 1528 if (flags & RF_ACTIVE) 1529 if (bus_activate_resource(child, type, *rid, res) != 0) { 1530 rman_release_resource(res); 1531 return (NULL); 1532 } 1533 1534 return (res); 1535 } 1536 1537 static int 1538 acpi_is_resource_managed(int type, struct resource *r) 1539 { 1540 1541 /* We only handle memory and IO resources through rman. */ 1542 switch (type) { 1543 case SYS_RES_IOPORT: 1544 return (rman_is_region_manager(r, &acpi_rman_io)); 1545 case SYS_RES_MEMORY: 1546 return (rman_is_region_manager(r, &acpi_rman_mem)); 1547 } 1548 return (0); 1549 } 1550 1551 static int 1552 acpi_adjust_resource(device_t bus, device_t child, int type, struct resource *r, 1553 rman_res_t start, rman_res_t end) 1554 { 1555 1556 if (acpi_is_resource_managed(type, r)) 1557 return (rman_adjust_resource(r, start, end)); 1558 return (bus_generic_adjust_resource(bus, child, type, r, start, end)); 1559 } 1560 1561 static int 1562 acpi_release_resource(device_t bus, device_t child, int type, int rid, 1563 struct resource *r) 1564 { 1565 int ret; 1566 1567 /* 1568 * If this resource belongs to one of our internal managers, 1569 * deactivate it and release it to the local pool. 1570 */ 1571 if (acpi_is_resource_managed(type, r)) { 1572 if (rman_get_flags(r) & RF_ACTIVE) { 1573 ret = bus_deactivate_resource(child, type, rid, r); 1574 if (ret != 0) 1575 return (ret); 1576 } 1577 return (rman_release_resource(r)); 1578 } 1579 1580 return (bus_generic_rl_release_resource(bus, child, type, rid, r)); 1581 } 1582 1583 static void 1584 acpi_delete_resource(device_t bus, device_t child, int type, int rid) 1585 { 1586 struct resource_list *rl; 1587 1588 rl = acpi_get_rlist(bus, child); 1589 if (resource_list_busy(rl, type, rid)) { 1590 device_printf(bus, "delete_resource: Resource still owned by child" 1591 " (type=%d, rid=%d)\n", type, rid); 1592 return; 1593 } 1594 resource_list_unreserve(rl, bus, child, type, rid); 1595 resource_list_delete(rl, type, rid); 1596 } 1597 1598 /* Allocate an IO port or memory resource, given its GAS. */ 1599 int 1600 acpi_bus_alloc_gas(device_t dev, int *type, int *rid, ACPI_GENERIC_ADDRESS *gas, 1601 struct resource **res, u_int flags) 1602 { 1603 int error, res_type; 1604 1605 error = ENOMEM; 1606 if (type == NULL || rid == NULL || gas == NULL || res == NULL) 1607 return (EINVAL); 1608 1609 /* We only support memory and IO spaces. */ 1610 switch (gas->SpaceId) { 1611 case ACPI_ADR_SPACE_SYSTEM_MEMORY: 1612 res_type = SYS_RES_MEMORY; 1613 break; 1614 case ACPI_ADR_SPACE_SYSTEM_IO: 1615 res_type = SYS_RES_IOPORT; 1616 break; 1617 default: 1618 return (EOPNOTSUPP); 1619 } 1620 1621 /* 1622 * If the register width is less than 8, assume the BIOS author means 1623 * it is a bit field and just allocate a byte. 1624 */ 1625 if (gas->BitWidth && gas->BitWidth < 8) 1626 gas->BitWidth = 8; 1627 1628 /* Validate the address after we're sure we support the space. */ 1629 if (gas->Address == 0 || gas->BitWidth == 0) 1630 return (EINVAL); 1631 1632 bus_set_resource(dev, res_type, *rid, gas->Address, 1633 gas->BitWidth / 8); 1634 *res = bus_alloc_resource_any(dev, res_type, rid, RF_ACTIVE | flags); 1635 if (*res != NULL) { 1636 *type = res_type; 1637 error = 0; 1638 } else 1639 bus_delete_resource(dev, res_type, *rid); 1640 1641 return (error); 1642 } 1643 1644 /* Probe _HID and _CID for compatible ISA PNP ids. */ 1645 static uint32_t 1646 acpi_isa_get_logicalid(device_t dev) 1647 { 1648 ACPI_DEVICE_INFO *devinfo; 1649 ACPI_HANDLE h; 1650 uint32_t pnpid; 1651 1652 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1653 1654 /* Fetch and validate the HID. */ 1655 if ((h = acpi_get_handle(dev)) == NULL || 1656 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 1657 return_VALUE (0); 1658 1659 pnpid = (devinfo->Valid & ACPI_VALID_HID) != 0 && 1660 devinfo->HardwareId.Length >= ACPI_EISAID_STRING_SIZE ? 1661 PNP_EISAID(devinfo->HardwareId.String) : 0; 1662 AcpiOsFree(devinfo); 1663 1664 return_VALUE (pnpid); 1665 } 1666 1667 static int 1668 acpi_isa_get_compatid(device_t dev, uint32_t *cids, int count) 1669 { 1670 ACPI_DEVICE_INFO *devinfo; 1671 ACPI_PNP_DEVICE_ID *ids; 1672 ACPI_HANDLE h; 1673 uint32_t *pnpid; 1674 int i, valid; 1675 1676 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1677 1678 pnpid = cids; 1679 1680 /* Fetch and validate the CID */ 1681 if ((h = acpi_get_handle(dev)) == NULL || 1682 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 1683 return_VALUE (0); 1684 1685 if ((devinfo->Valid & ACPI_VALID_CID) == 0) { 1686 AcpiOsFree(devinfo); 1687 return_VALUE (0); 1688 } 1689 1690 if (devinfo->CompatibleIdList.Count < count) 1691 count = devinfo->CompatibleIdList.Count; 1692 ids = devinfo->CompatibleIdList.Ids; 1693 for (i = 0, valid = 0; i < count; i++) 1694 if (ids[i].Length >= ACPI_EISAID_STRING_SIZE && 1695 strncmp(ids[i].String, "PNP", 3) == 0) { 1696 *pnpid++ = PNP_EISAID(ids[i].String); 1697 valid++; 1698 } 1699 AcpiOsFree(devinfo); 1700 1701 return_VALUE (valid); 1702 } 1703 1704 static int 1705 acpi_device_id_probe(device_t bus, device_t dev, char **ids, char **match) 1706 { 1707 ACPI_HANDLE h; 1708 ACPI_OBJECT_TYPE t; 1709 int rv; 1710 int i; 1711 1712 h = acpi_get_handle(dev); 1713 if (ids == NULL || h == NULL) 1714 return (ENXIO); 1715 t = acpi_get_type(dev); 1716 if (t != ACPI_TYPE_DEVICE && t != ACPI_TYPE_PROCESSOR) 1717 return (ENXIO); 1718 1719 /* Try to match one of the array of IDs with a HID or CID. */ 1720 for (i = 0; ids[i] != NULL; i++) { 1721 rv = acpi_MatchHid(h, ids[i]); 1722 if (rv == ACPI_MATCHHID_NOMATCH) 1723 continue; 1724 1725 if (match != NULL) { 1726 *match = ids[i]; 1727 } 1728 return ((rv == ACPI_MATCHHID_HID)? 1729 BUS_PROBE_DEFAULT : BUS_PROBE_LOW_PRIORITY); 1730 } 1731 return (ENXIO); 1732 } 1733 1734 static ACPI_STATUS 1735 acpi_device_eval_obj(device_t bus, device_t dev, ACPI_STRING pathname, 1736 ACPI_OBJECT_LIST *parameters, ACPI_BUFFER *ret) 1737 { 1738 ACPI_HANDLE h; 1739 1740 if (dev == NULL) 1741 h = ACPI_ROOT_OBJECT; 1742 else if ((h = acpi_get_handle(dev)) == NULL) 1743 return (AE_BAD_PARAMETER); 1744 return (AcpiEvaluateObject(h, pathname, parameters, ret)); 1745 } 1746 1747 static ACPI_STATUS 1748 acpi_device_get_prop(device_t bus, device_t dev, ACPI_STRING propname, 1749 const ACPI_OBJECT **value) 1750 { 1751 const ACPI_OBJECT *pkg, *name, *val; 1752 struct acpi_device *ad; 1753 ACPI_STATUS status; 1754 int i; 1755 1756 ad = device_get_ivars(dev); 1757 1758 if (ad == NULL || propname == NULL) 1759 return (AE_BAD_PARAMETER); 1760 if (ad->dsd_pkg == NULL) { 1761 if (ad->dsd.Pointer == NULL) { 1762 status = acpi_find_dsd(bus, dev); 1763 if (ACPI_FAILURE(status)) 1764 return (status); 1765 } else { 1766 return (AE_NOT_FOUND); 1767 } 1768 } 1769 1770 for (i = 0; i < ad->dsd_pkg->Package.Count; i ++) { 1771 pkg = &ad->dsd_pkg->Package.Elements[i]; 1772 if (pkg->Type != ACPI_TYPE_PACKAGE || pkg->Package.Count != 2) 1773 continue; 1774 1775 name = &pkg->Package.Elements[0]; 1776 val = &pkg->Package.Elements[1]; 1777 if (name->Type != ACPI_TYPE_STRING) 1778 continue; 1779 if (strncmp(propname, name->String.Pointer, name->String.Length) == 0) { 1780 if (value != NULL) 1781 *value = val; 1782 1783 return (AE_OK); 1784 } 1785 } 1786 1787 return (AE_NOT_FOUND); 1788 } 1789 1790 static ACPI_STATUS 1791 acpi_find_dsd(device_t bus, device_t dev) 1792 { 1793 const ACPI_OBJECT *dsd, *guid, *pkg; 1794 struct acpi_device *ad; 1795 ACPI_STATUS status; 1796 1797 ad = device_get_ivars(dev); 1798 ad->dsd.Length = ACPI_ALLOCATE_BUFFER; 1799 ad->dsd.Pointer = NULL; 1800 ad->dsd_pkg = NULL; 1801 1802 status = ACPI_EVALUATE_OBJECT(bus, dev, "_DSD", NULL, &ad->dsd); 1803 if (ACPI_FAILURE(status)) 1804 return (status); 1805 1806 dsd = ad->dsd.Pointer; 1807 guid = &dsd->Package.Elements[0]; 1808 pkg = &dsd->Package.Elements[1]; 1809 1810 if (guid->Type != ACPI_TYPE_BUFFER || pkg->Type != ACPI_TYPE_PACKAGE || 1811 guid->Buffer.Length != sizeof(acpi_dsd_uuid)) 1812 return (AE_NOT_FOUND); 1813 if (memcmp(guid->Buffer.Pointer, &acpi_dsd_uuid, 1814 sizeof(acpi_dsd_uuid)) == 0) { 1815 1816 ad->dsd_pkg = pkg; 1817 return (AE_OK); 1818 } 1819 1820 return (AE_NOT_FOUND); 1821 } 1822 1823 static ssize_t 1824 acpi_bus_get_prop(device_t bus, device_t child, const char *propname, 1825 void *propvalue, size_t size) 1826 { 1827 ACPI_STATUS status; 1828 const ACPI_OBJECT *obj; 1829 1830 status = acpi_device_get_prop(bus, child, __DECONST(char *, propname), 1831 &obj); 1832 if (ACPI_FAILURE(status)) 1833 return (-1); 1834 1835 switch (obj->Type) { 1836 case ACPI_TYPE_INTEGER: 1837 if (propvalue != NULL && size >= sizeof(uint64_t)) 1838 *((uint64_t *) propvalue) = obj->Integer.Value; 1839 return (sizeof(uint64_t)); 1840 1841 case ACPI_TYPE_STRING: 1842 if (propvalue != NULL && size > 0) 1843 memcpy(propvalue, obj->String.Pointer, 1844 MIN(size, obj->String.Length)); 1845 return (obj->String.Length); 1846 1847 case ACPI_TYPE_BUFFER: 1848 if (propvalue != NULL && size > 0) 1849 memcpy(propvalue, obj->Buffer.Pointer, 1850 MIN(size, obj->Buffer.Length)); 1851 return (obj->Buffer.Length); 1852 1853 default: 1854 return (0); 1855 } 1856 } 1857 1858 int 1859 acpi_device_pwr_for_sleep(device_t bus, device_t dev, int *dstate) 1860 { 1861 struct acpi_softc *sc; 1862 ACPI_HANDLE handle; 1863 ACPI_STATUS status; 1864 char sxd[8]; 1865 1866 handle = acpi_get_handle(dev); 1867 1868 /* 1869 * XXX If we find these devices, don't try to power them down. 1870 * The serial and IRDA ports on my T23 hang the system when 1871 * set to D3 and it appears that such legacy devices may 1872 * need special handling in their drivers. 1873 */ 1874 if (dstate == NULL || handle == NULL || 1875 acpi_MatchHid(handle, "PNP0500") || 1876 acpi_MatchHid(handle, "PNP0501") || 1877 acpi_MatchHid(handle, "PNP0502") || 1878 acpi_MatchHid(handle, "PNP0510") || 1879 acpi_MatchHid(handle, "PNP0511")) 1880 return (ENXIO); 1881 1882 /* 1883 * Override next state with the value from _SxD, if present. 1884 * Note illegal _S0D is evaluated because some systems expect this. 1885 */ 1886 sc = device_get_softc(bus); 1887 snprintf(sxd, sizeof(sxd), "_S%dD", sc->acpi_sstate); 1888 status = acpi_GetInteger(handle, sxd, dstate); 1889 if (ACPI_FAILURE(status) && status != AE_NOT_FOUND) { 1890 device_printf(dev, "failed to get %s on %s: %s\n", sxd, 1891 acpi_name(handle), AcpiFormatException(status)); 1892 return (ENXIO); 1893 } 1894 1895 return (0); 1896 } 1897 1898 /* Callback arg for our implementation of walking the namespace. */ 1899 struct acpi_device_scan_ctx { 1900 acpi_scan_cb_t user_fn; 1901 void *arg; 1902 ACPI_HANDLE parent; 1903 }; 1904 1905 static ACPI_STATUS 1906 acpi_device_scan_cb(ACPI_HANDLE h, UINT32 level, void *arg, void **retval) 1907 { 1908 struct acpi_device_scan_ctx *ctx; 1909 device_t dev, old_dev; 1910 ACPI_STATUS status; 1911 ACPI_OBJECT_TYPE type; 1912 1913 /* 1914 * Skip this device if we think we'll have trouble with it or it is 1915 * the parent where the scan began. 1916 */ 1917 ctx = (struct acpi_device_scan_ctx *)arg; 1918 if (acpi_avoid(h) || h == ctx->parent) 1919 return (AE_OK); 1920 1921 /* If this is not a valid device type (e.g., a method), skip it. */ 1922 if (ACPI_FAILURE(AcpiGetType(h, &type))) 1923 return (AE_OK); 1924 if (type != ACPI_TYPE_DEVICE && type != ACPI_TYPE_PROCESSOR && 1925 type != ACPI_TYPE_THERMAL && type != ACPI_TYPE_POWER) 1926 return (AE_OK); 1927 1928 /* 1929 * Call the user function with the current device. If it is unchanged 1930 * afterwards, return. Otherwise, we update the handle to the new dev. 1931 */ 1932 old_dev = acpi_get_device(h); 1933 dev = old_dev; 1934 status = ctx->user_fn(h, &dev, level, ctx->arg); 1935 if (ACPI_FAILURE(status) || old_dev == dev) 1936 return (status); 1937 1938 /* Remove the old child and its connection to the handle. */ 1939 if (old_dev != NULL) 1940 device_delete_child(device_get_parent(old_dev), old_dev); 1941 1942 /* Recreate the handle association if the user created a device. */ 1943 if (dev != NULL) 1944 AcpiAttachData(h, acpi_fake_objhandler, dev); 1945 1946 return (AE_OK); 1947 } 1948 1949 static ACPI_STATUS 1950 acpi_device_scan_children(device_t bus, device_t dev, int max_depth, 1951 acpi_scan_cb_t user_fn, void *arg) 1952 { 1953 ACPI_HANDLE h; 1954 struct acpi_device_scan_ctx ctx; 1955 1956 if (acpi_disabled("children")) 1957 return (AE_OK); 1958 1959 if (dev == NULL) 1960 h = ACPI_ROOT_OBJECT; 1961 else if ((h = acpi_get_handle(dev)) == NULL) 1962 return (AE_BAD_PARAMETER); 1963 ctx.user_fn = user_fn; 1964 ctx.arg = arg; 1965 ctx.parent = h; 1966 return (AcpiWalkNamespace(ACPI_TYPE_ANY, h, max_depth, 1967 acpi_device_scan_cb, NULL, &ctx, NULL)); 1968 } 1969 1970 /* 1971 * Even though ACPI devices are not PCI, we use the PCI approach for setting 1972 * device power states since it's close enough to ACPI. 1973 */ 1974 int 1975 acpi_set_powerstate(device_t child, int state) 1976 { 1977 ACPI_HANDLE h; 1978 ACPI_STATUS status; 1979 1980 h = acpi_get_handle(child); 1981 if (state < ACPI_STATE_D0 || state > ACPI_D_STATES_MAX) 1982 return (EINVAL); 1983 if (h == NULL) 1984 return (0); 1985 1986 /* Ignore errors if the power methods aren't present. */ 1987 status = acpi_pwr_switch_consumer(h, state); 1988 if (ACPI_SUCCESS(status)) { 1989 if (bootverbose) 1990 device_printf(child, "set ACPI power state D%d on %s\n", 1991 state, acpi_name(h)); 1992 } else if (status != AE_NOT_FOUND) 1993 device_printf(child, 1994 "failed to set ACPI power state D%d on %s: %s\n", state, 1995 acpi_name(h), AcpiFormatException(status)); 1996 1997 return (0); 1998 } 1999 2000 static int 2001 acpi_isa_pnp_probe(device_t bus, device_t child, struct isa_pnp_id *ids) 2002 { 2003 int result, cid_count, i; 2004 uint32_t lid, cids[8]; 2005 2006 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 2007 2008 /* 2009 * ISA-style drivers attached to ACPI may persist and 2010 * probe manually if we return ENOENT. We never want 2011 * that to happen, so don't ever return it. 2012 */ 2013 result = ENXIO; 2014 2015 /* Scan the supplied IDs for a match */ 2016 lid = acpi_isa_get_logicalid(child); 2017 cid_count = acpi_isa_get_compatid(child, cids, 8); 2018 while (ids && ids->ip_id) { 2019 if (lid == ids->ip_id) { 2020 result = 0; 2021 goto out; 2022 } 2023 for (i = 0; i < cid_count; i++) { 2024 if (cids[i] == ids->ip_id) { 2025 result = 0; 2026 goto out; 2027 } 2028 } 2029 ids++; 2030 } 2031 2032 out: 2033 if (result == 0 && ids->ip_desc) 2034 device_set_desc(child, ids->ip_desc); 2035 2036 return_VALUE (result); 2037 } 2038 2039 /* 2040 * Look for a MCFG table. If it is present, use the settings for 2041 * domain (segment) 0 to setup PCI config space access via the memory 2042 * map. 2043 * 2044 * On non-x86 architectures (arm64 for now), this will be done from the 2045 * PCI host bridge driver. 2046 */ 2047 static void 2048 acpi_enable_pcie(void) 2049 { 2050 #if defined(__i386__) || defined(__amd64__) 2051 ACPI_TABLE_HEADER *hdr; 2052 ACPI_MCFG_ALLOCATION *alloc, *end; 2053 ACPI_STATUS status; 2054 2055 status = AcpiGetTable(ACPI_SIG_MCFG, 1, &hdr); 2056 if (ACPI_FAILURE(status)) 2057 return; 2058 2059 end = (ACPI_MCFG_ALLOCATION *)((char *)hdr + hdr->Length); 2060 alloc = (ACPI_MCFG_ALLOCATION *)((ACPI_TABLE_MCFG *)hdr + 1); 2061 while (alloc < end) { 2062 if (alloc->PciSegment == 0) { 2063 pcie_cfgregopen(alloc->Address, alloc->StartBusNumber, 2064 alloc->EndBusNumber); 2065 return; 2066 } 2067 alloc++; 2068 } 2069 #endif 2070 } 2071 2072 static void 2073 acpi_platform_osc(device_t dev) 2074 { 2075 ACPI_HANDLE sb_handle; 2076 ACPI_STATUS status; 2077 uint32_t cap_set[2]; 2078 2079 /* 0811B06E-4A27-44F9-8D60-3CBBC22E7B48 */ 2080 static uint8_t acpi_platform_uuid[ACPI_UUID_LENGTH] = { 2081 0x6e, 0xb0, 0x11, 0x08, 0x27, 0x4a, 0xf9, 0x44, 2082 0x8d, 0x60, 0x3c, 0xbb, 0xc2, 0x2e, 0x7b, 0x48 2083 }; 2084 2085 if (ACPI_FAILURE(AcpiGetHandle(ACPI_ROOT_OBJECT, "\\_SB_", &sb_handle))) 2086 return; 2087 2088 cap_set[1] = 0x10; /* APEI Support */ 2089 status = acpi_EvaluateOSC(sb_handle, acpi_platform_uuid, 1, 2090 nitems(cap_set), cap_set, cap_set, false); 2091 if (ACPI_FAILURE(status)) { 2092 if (status == AE_NOT_FOUND) 2093 return; 2094 device_printf(dev, "_OSC failed: %s\n", 2095 AcpiFormatException(status)); 2096 return; 2097 } 2098 } 2099 2100 /* 2101 * Scan all of the ACPI namespace and attach child devices. 2102 * 2103 * We should only expect to find devices in the \_PR, \_TZ, \_SI, and 2104 * \_SB scopes, and \_PR and \_TZ became obsolete in the ACPI 2.0 spec. 2105 * However, in violation of the spec, some systems place their PCI link 2106 * devices in \, so we have to walk the whole namespace. We check the 2107 * type of namespace nodes, so this should be ok. 2108 */ 2109 static void 2110 acpi_probe_children(device_t bus) 2111 { 2112 2113 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 2114 2115 /* 2116 * Scan the namespace and insert placeholders for all the devices that 2117 * we find. We also probe/attach any early devices. 2118 * 2119 * Note that we use AcpiWalkNamespace rather than AcpiGetDevices because 2120 * we want to create nodes for all devices, not just those that are 2121 * currently present. (This assumes that we don't want to create/remove 2122 * devices as they appear, which might be smarter.) 2123 */ 2124 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "namespace scan\n")); 2125 AcpiWalkNamespace(ACPI_TYPE_ANY, ACPI_ROOT_OBJECT, 100, acpi_probe_child, 2126 NULL, bus, NULL); 2127 2128 /* Pre-allocate resources for our rman from any sysresource devices. */ 2129 acpi_sysres_alloc(bus); 2130 2131 /* Reserve resources already allocated to children. */ 2132 acpi_reserve_resources(bus); 2133 2134 /* Create any static children by calling device identify methods. */ 2135 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "device identify routines\n")); 2136 bus_generic_probe(bus); 2137 2138 /* Probe/attach all children, created statically and from the namespace. */ 2139 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "acpi bus_generic_attach\n")); 2140 bus_generic_attach(bus); 2141 2142 /* Attach wake sysctls. */ 2143 acpi_wake_sysctl_walk(bus); 2144 2145 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "done attaching children\n")); 2146 return_VOID; 2147 } 2148 2149 /* 2150 * Determine the probe order for a given device. 2151 */ 2152 static void 2153 acpi_probe_order(ACPI_HANDLE handle, int *order) 2154 { 2155 ACPI_OBJECT_TYPE type; 2156 2157 /* 2158 * 0. CPUs 2159 * 1. I/O port and memory system resource holders 2160 * 2. Clocks and timers (to handle early accesses) 2161 * 3. Embedded controllers (to handle early accesses) 2162 * 4. PCI Link Devices 2163 */ 2164 AcpiGetType(handle, &type); 2165 if (type == ACPI_TYPE_PROCESSOR) 2166 *order = 0; 2167 else if (acpi_MatchHid(handle, "PNP0C01") || 2168 acpi_MatchHid(handle, "PNP0C02")) 2169 *order = 1; 2170 else if (acpi_MatchHid(handle, "PNP0100") || 2171 acpi_MatchHid(handle, "PNP0103") || 2172 acpi_MatchHid(handle, "PNP0B00")) 2173 *order = 2; 2174 else if (acpi_MatchHid(handle, "PNP0C09")) 2175 *order = 3; 2176 else if (acpi_MatchHid(handle, "PNP0C0F")) 2177 *order = 4; 2178 } 2179 2180 /* 2181 * Evaluate a child device and determine whether we might attach a device to 2182 * it. 2183 */ 2184 static ACPI_STATUS 2185 acpi_probe_child(ACPI_HANDLE handle, UINT32 level, void *context, void **status) 2186 { 2187 ACPI_DEVICE_INFO *devinfo; 2188 struct acpi_device *ad; 2189 struct acpi_prw_data prw; 2190 ACPI_OBJECT_TYPE type; 2191 ACPI_HANDLE h; 2192 device_t bus, child; 2193 char *handle_str; 2194 int order; 2195 2196 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 2197 2198 if (acpi_disabled("children")) 2199 return_ACPI_STATUS (AE_OK); 2200 2201 /* Skip this device if we think we'll have trouble with it. */ 2202 if (acpi_avoid(handle)) 2203 return_ACPI_STATUS (AE_OK); 2204 2205 bus = (device_t)context; 2206 if (ACPI_SUCCESS(AcpiGetType(handle, &type))) { 2207 handle_str = acpi_name(handle); 2208 switch (type) { 2209 case ACPI_TYPE_DEVICE: 2210 /* 2211 * Since we scan from \, be sure to skip system scope objects. 2212 * \_SB_ and \_TZ_ are defined in ACPICA as devices to work around 2213 * BIOS bugs. For example, \_SB_ is to allow \_SB_._INI to be run 2214 * during the initialization and \_TZ_ is to support Notify() on it. 2215 */ 2216 if (strcmp(handle_str, "\\_SB_") == 0 || 2217 strcmp(handle_str, "\\_TZ_") == 0) 2218 break; 2219 if (acpi_parse_prw(handle, &prw) == 0) 2220 AcpiSetupGpeForWake(handle, prw.gpe_handle, prw.gpe_bit); 2221 2222 /* 2223 * Ignore devices that do not have a _HID or _CID. They should 2224 * be discovered by other buses (e.g. the PCI bus driver). 2225 */ 2226 if (!acpi_has_hid(handle)) 2227 break; 2228 /* FALLTHROUGH */ 2229 case ACPI_TYPE_PROCESSOR: 2230 case ACPI_TYPE_THERMAL: 2231 case ACPI_TYPE_POWER: 2232 /* 2233 * Create a placeholder device for this node. Sort the 2234 * placeholder so that the probe/attach passes will run 2235 * breadth-first. Orders less than ACPI_DEV_BASE_ORDER 2236 * are reserved for special objects (i.e., system 2237 * resources). 2238 */ 2239 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "scanning '%s'\n", handle_str)); 2240 order = level * 10 + ACPI_DEV_BASE_ORDER; 2241 acpi_probe_order(handle, &order); 2242 child = BUS_ADD_CHILD(bus, order, NULL, -1); 2243 if (child == NULL) 2244 break; 2245 2246 /* Associate the handle with the device_t and vice versa. */ 2247 acpi_set_handle(child, handle); 2248 AcpiAttachData(handle, acpi_fake_objhandler, child); 2249 2250 /* 2251 * Check that the device is present. If it's not present, 2252 * leave it disabled (so that we have a device_t attached to 2253 * the handle, but we don't probe it). 2254 * 2255 * XXX PCI link devices sometimes report "present" but not 2256 * "functional" (i.e. if disabled). Go ahead and probe them 2257 * anyway since we may enable them later. 2258 */ 2259 if (type == ACPI_TYPE_DEVICE && !acpi_DeviceIsPresent(child)) { 2260 /* Never disable PCI link devices. */ 2261 if (acpi_MatchHid(handle, "PNP0C0F")) 2262 break; 2263 /* 2264 * Docking stations should remain enabled since the system 2265 * may be undocked at boot. 2266 */ 2267 if (ACPI_SUCCESS(AcpiGetHandle(handle, "_DCK", &h))) 2268 break; 2269 2270 device_disable(child); 2271 break; 2272 } 2273 2274 /* 2275 * Get the device's resource settings and attach them. 2276 * Note that if the device has _PRS but no _CRS, we need 2277 * to decide when it's appropriate to try to configure the 2278 * device. Ignore the return value here; it's OK for the 2279 * device not to have any resources. 2280 */ 2281 acpi_parse_resources(child, handle, &acpi_res_parse_set, NULL); 2282 2283 ad = device_get_ivars(child); 2284 ad->ad_cls_class = 0xffffff; 2285 if (ACPI_SUCCESS(AcpiGetObjectInfo(handle, &devinfo))) { 2286 if ((devinfo->Valid & ACPI_VALID_CLS) != 0 && 2287 devinfo->ClassCode.Length >= ACPI_PCICLS_STRING_SIZE) { 2288 ad->ad_cls_class = strtoul(devinfo->ClassCode.String, 2289 NULL, 16); 2290 } 2291 AcpiOsFree(devinfo); 2292 } 2293 break; 2294 } 2295 } 2296 2297 return_ACPI_STATUS (AE_OK); 2298 } 2299 2300 /* 2301 * AcpiAttachData() requires an object handler but never uses it. This is a 2302 * placeholder object handler so we can store a device_t in an ACPI_HANDLE. 2303 */ 2304 void 2305 acpi_fake_objhandler(ACPI_HANDLE h, void *data) 2306 { 2307 } 2308 2309 static void 2310 acpi_shutdown_final(void *arg, int howto) 2311 { 2312 struct acpi_softc *sc = (struct acpi_softc *)arg; 2313 register_t intr; 2314 ACPI_STATUS status; 2315 2316 /* 2317 * XXX Shutdown code should only run on the BSP (cpuid 0). 2318 * Some chipsets do not power off the system correctly if called from 2319 * an AP. 2320 */ 2321 if ((howto & RB_POWEROFF) != 0) { 2322 status = AcpiEnterSleepStatePrep(ACPI_STATE_S5); 2323 if (ACPI_FAILURE(status)) { 2324 device_printf(sc->acpi_dev, "AcpiEnterSleepStatePrep failed - %s\n", 2325 AcpiFormatException(status)); 2326 return; 2327 } 2328 device_printf(sc->acpi_dev, "Powering system off\n"); 2329 intr = intr_disable(); 2330 status = AcpiEnterSleepState(ACPI_STATE_S5); 2331 if (ACPI_FAILURE(status)) { 2332 intr_restore(intr); 2333 device_printf(sc->acpi_dev, "power-off failed - %s\n", 2334 AcpiFormatException(status)); 2335 } else { 2336 DELAY(1000000); 2337 intr_restore(intr); 2338 device_printf(sc->acpi_dev, "power-off failed - timeout\n"); 2339 } 2340 } else if ((howto & RB_HALT) == 0 && sc->acpi_handle_reboot) { 2341 /* Reboot using the reset register. */ 2342 status = AcpiReset(); 2343 if (ACPI_SUCCESS(status)) { 2344 DELAY(1000000); 2345 device_printf(sc->acpi_dev, "reset failed - timeout\n"); 2346 } else if (status != AE_NOT_EXIST) 2347 device_printf(sc->acpi_dev, "reset failed - %s\n", 2348 AcpiFormatException(status)); 2349 } else if (sc->acpi_do_disable && !KERNEL_PANICKED()) { 2350 /* 2351 * Only disable ACPI if the user requested. On some systems, writing 2352 * the disable value to SMI_CMD hangs the system. 2353 */ 2354 device_printf(sc->acpi_dev, "Shutting down\n"); 2355 AcpiTerminate(); 2356 } 2357 } 2358 2359 static void 2360 acpi_enable_fixed_events(struct acpi_softc *sc) 2361 { 2362 static int first_time = 1; 2363 2364 /* Enable and clear fixed events and install handlers. */ 2365 if ((AcpiGbl_FADT.Flags & ACPI_FADT_POWER_BUTTON) == 0) { 2366 AcpiClearEvent(ACPI_EVENT_POWER_BUTTON); 2367 AcpiInstallFixedEventHandler(ACPI_EVENT_POWER_BUTTON, 2368 acpi_event_power_button_sleep, sc); 2369 if (first_time) 2370 device_printf(sc->acpi_dev, "Power Button (fixed)\n"); 2371 } 2372 if ((AcpiGbl_FADT.Flags & ACPI_FADT_SLEEP_BUTTON) == 0) { 2373 AcpiClearEvent(ACPI_EVENT_SLEEP_BUTTON); 2374 AcpiInstallFixedEventHandler(ACPI_EVENT_SLEEP_BUTTON, 2375 acpi_event_sleep_button_sleep, sc); 2376 if (first_time) 2377 device_printf(sc->acpi_dev, "Sleep Button (fixed)\n"); 2378 } 2379 2380 first_time = 0; 2381 } 2382 2383 /* 2384 * Returns true if the device is actually present and should 2385 * be attached to. This requires the present, enabled, UI-visible 2386 * and diagnostics-passed bits to be set. 2387 */ 2388 BOOLEAN 2389 acpi_DeviceIsPresent(device_t dev) 2390 { 2391 ACPI_HANDLE h; 2392 UINT32 s; 2393 ACPI_STATUS status; 2394 2395 h = acpi_get_handle(dev); 2396 if (h == NULL) 2397 return (FALSE); 2398 2399 #ifdef ACPI_EARLY_EPYC_WAR 2400 /* 2401 * Certain Treadripper boards always returns 0 for FreeBSD because it 2402 * only returns non-zero for the OS string "Windows 2015". Otherwise it 2403 * will return zero. Force them to always be treated as present. 2404 * Beata versions were worse: they always returned 0. 2405 */ 2406 if (acpi_MatchHid(h, "AMDI0020") || acpi_MatchHid(h, "AMDI0010")) 2407 return (TRUE); 2408 #endif 2409 2410 status = acpi_GetInteger(h, "_STA", &s); 2411 2412 /* 2413 * If no _STA method or if it failed, then assume that 2414 * the device is present. 2415 */ 2416 if (ACPI_FAILURE(status)) 2417 return (TRUE); 2418 2419 return (ACPI_DEVICE_PRESENT(s) ? TRUE : FALSE); 2420 } 2421 2422 /* 2423 * Returns true if the battery is actually present and inserted. 2424 */ 2425 BOOLEAN 2426 acpi_BatteryIsPresent(device_t dev) 2427 { 2428 ACPI_HANDLE h; 2429 UINT32 s; 2430 ACPI_STATUS status; 2431 2432 h = acpi_get_handle(dev); 2433 if (h == NULL) 2434 return (FALSE); 2435 status = acpi_GetInteger(h, "_STA", &s); 2436 2437 /* 2438 * If no _STA method or if it failed, then assume that 2439 * the device is present. 2440 */ 2441 if (ACPI_FAILURE(status)) 2442 return (TRUE); 2443 2444 return (ACPI_BATTERY_PRESENT(s) ? TRUE : FALSE); 2445 } 2446 2447 /* 2448 * Returns true if a device has at least one valid device ID. 2449 */ 2450 BOOLEAN 2451 acpi_has_hid(ACPI_HANDLE h) 2452 { 2453 ACPI_DEVICE_INFO *devinfo; 2454 BOOLEAN ret; 2455 2456 if (h == NULL || 2457 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 2458 return (FALSE); 2459 2460 ret = FALSE; 2461 if ((devinfo->Valid & ACPI_VALID_HID) != 0) 2462 ret = TRUE; 2463 else if ((devinfo->Valid & ACPI_VALID_CID) != 0) 2464 if (devinfo->CompatibleIdList.Count > 0) 2465 ret = TRUE; 2466 2467 AcpiOsFree(devinfo); 2468 return (ret); 2469 } 2470 2471 /* 2472 * Match a HID string against a handle 2473 * returns ACPI_MATCHHID_HID if _HID match 2474 * ACPI_MATCHHID_CID if _CID match and not _HID match. 2475 * ACPI_MATCHHID_NOMATCH=0 if no match. 2476 */ 2477 int 2478 acpi_MatchHid(ACPI_HANDLE h, const char *hid) 2479 { 2480 ACPI_DEVICE_INFO *devinfo; 2481 BOOLEAN ret; 2482 int i; 2483 2484 if (hid == NULL || h == NULL || 2485 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 2486 return (ACPI_MATCHHID_NOMATCH); 2487 2488 ret = ACPI_MATCHHID_NOMATCH; 2489 if ((devinfo->Valid & ACPI_VALID_HID) != 0 && 2490 strcmp(hid, devinfo->HardwareId.String) == 0) 2491 ret = ACPI_MATCHHID_HID; 2492 else if ((devinfo->Valid & ACPI_VALID_CID) != 0) 2493 for (i = 0; i < devinfo->CompatibleIdList.Count; i++) { 2494 if (strcmp(hid, devinfo->CompatibleIdList.Ids[i].String) == 0) { 2495 ret = ACPI_MATCHHID_CID; 2496 break; 2497 } 2498 } 2499 2500 AcpiOsFree(devinfo); 2501 return (ret); 2502 } 2503 2504 /* 2505 * Return the handle of a named object within our scope, ie. that of (parent) 2506 * or one if its parents. 2507 */ 2508 ACPI_STATUS 2509 acpi_GetHandleInScope(ACPI_HANDLE parent, char *path, ACPI_HANDLE *result) 2510 { 2511 ACPI_HANDLE r; 2512 ACPI_STATUS status; 2513 2514 /* Walk back up the tree to the root */ 2515 for (;;) { 2516 status = AcpiGetHandle(parent, path, &r); 2517 if (ACPI_SUCCESS(status)) { 2518 *result = r; 2519 return (AE_OK); 2520 } 2521 /* XXX Return error here? */ 2522 if (status != AE_NOT_FOUND) 2523 return (AE_OK); 2524 if (ACPI_FAILURE(AcpiGetParent(parent, &r))) 2525 return (AE_NOT_FOUND); 2526 parent = r; 2527 } 2528 } 2529 2530 ACPI_STATUS 2531 acpi_GetProperty(device_t dev, ACPI_STRING propname, 2532 const ACPI_OBJECT **value) 2533 { 2534 device_t bus = device_get_parent(dev); 2535 2536 return (ACPI_GET_PROPERTY(bus, dev, propname, value)); 2537 } 2538 2539 /* 2540 * Allocate a buffer with a preset data size. 2541 */ 2542 ACPI_BUFFER * 2543 acpi_AllocBuffer(int size) 2544 { 2545 ACPI_BUFFER *buf; 2546 2547 if ((buf = malloc(size + sizeof(*buf), M_ACPIDEV, M_NOWAIT)) == NULL) 2548 return (NULL); 2549 buf->Length = size; 2550 buf->Pointer = (void *)(buf + 1); 2551 return (buf); 2552 } 2553 2554 ACPI_STATUS 2555 acpi_SetInteger(ACPI_HANDLE handle, char *path, UINT32 number) 2556 { 2557 ACPI_OBJECT arg1; 2558 ACPI_OBJECT_LIST args; 2559 2560 arg1.Type = ACPI_TYPE_INTEGER; 2561 arg1.Integer.Value = number; 2562 args.Count = 1; 2563 args.Pointer = &arg1; 2564 2565 return (AcpiEvaluateObject(handle, path, &args, NULL)); 2566 } 2567 2568 /* 2569 * Evaluate a path that should return an integer. 2570 */ 2571 ACPI_STATUS 2572 acpi_GetInteger(ACPI_HANDLE handle, char *path, UINT32 *number) 2573 { 2574 ACPI_STATUS status; 2575 ACPI_BUFFER buf; 2576 ACPI_OBJECT param; 2577 2578 if (handle == NULL) 2579 handle = ACPI_ROOT_OBJECT; 2580 2581 /* 2582 * Assume that what we've been pointed at is an Integer object, or 2583 * a method that will return an Integer. 2584 */ 2585 buf.Pointer = ¶m; 2586 buf.Length = sizeof(param); 2587 status = AcpiEvaluateObject(handle, path, NULL, &buf); 2588 if (ACPI_SUCCESS(status)) { 2589 if (param.Type == ACPI_TYPE_INTEGER) 2590 *number = param.Integer.Value; 2591 else 2592 status = AE_TYPE; 2593 } 2594 2595 /* 2596 * In some applications, a method that's expected to return an Integer 2597 * may instead return a Buffer (probably to simplify some internal 2598 * arithmetic). We'll try to fetch whatever it is, and if it's a Buffer, 2599 * convert it into an Integer as best we can. 2600 * 2601 * This is a hack. 2602 */ 2603 if (status == AE_BUFFER_OVERFLOW) { 2604 if ((buf.Pointer = AcpiOsAllocate(buf.Length)) == NULL) { 2605 status = AE_NO_MEMORY; 2606 } else { 2607 status = AcpiEvaluateObject(handle, path, NULL, &buf); 2608 if (ACPI_SUCCESS(status)) 2609 status = acpi_ConvertBufferToInteger(&buf, number); 2610 AcpiOsFree(buf.Pointer); 2611 } 2612 } 2613 return (status); 2614 } 2615 2616 ACPI_STATUS 2617 acpi_ConvertBufferToInteger(ACPI_BUFFER *bufp, UINT32 *number) 2618 { 2619 ACPI_OBJECT *p; 2620 UINT8 *val; 2621 int i; 2622 2623 p = (ACPI_OBJECT *)bufp->Pointer; 2624 if (p->Type == ACPI_TYPE_INTEGER) { 2625 *number = p->Integer.Value; 2626 return (AE_OK); 2627 } 2628 if (p->Type != ACPI_TYPE_BUFFER) 2629 return (AE_TYPE); 2630 if (p->Buffer.Length > sizeof(int)) 2631 return (AE_BAD_DATA); 2632 2633 *number = 0; 2634 val = p->Buffer.Pointer; 2635 for (i = 0; i < p->Buffer.Length; i++) 2636 *number += val[i] << (i * 8); 2637 return (AE_OK); 2638 } 2639 2640 /* 2641 * Iterate over the elements of an a package object, calling the supplied 2642 * function for each element. 2643 * 2644 * XXX possible enhancement might be to abort traversal on error. 2645 */ 2646 ACPI_STATUS 2647 acpi_ForeachPackageObject(ACPI_OBJECT *pkg, 2648 void (*func)(ACPI_OBJECT *comp, void *arg), void *arg) 2649 { 2650 ACPI_OBJECT *comp; 2651 int i; 2652 2653 if (pkg == NULL || pkg->Type != ACPI_TYPE_PACKAGE) 2654 return (AE_BAD_PARAMETER); 2655 2656 /* Iterate over components */ 2657 i = 0; 2658 comp = pkg->Package.Elements; 2659 for (; i < pkg->Package.Count; i++, comp++) 2660 func(comp, arg); 2661 2662 return (AE_OK); 2663 } 2664 2665 /* 2666 * Find the (index)th resource object in a set. 2667 */ 2668 ACPI_STATUS 2669 acpi_FindIndexedResource(ACPI_BUFFER *buf, int index, ACPI_RESOURCE **resp) 2670 { 2671 ACPI_RESOURCE *rp; 2672 int i; 2673 2674 rp = (ACPI_RESOURCE *)buf->Pointer; 2675 i = index; 2676 while (i-- > 0) { 2677 /* Range check */ 2678 if (rp > (ACPI_RESOURCE *)((u_int8_t *)buf->Pointer + buf->Length)) 2679 return (AE_BAD_PARAMETER); 2680 2681 /* Check for terminator */ 2682 if (rp->Type == ACPI_RESOURCE_TYPE_END_TAG || rp->Length == 0) 2683 return (AE_NOT_FOUND); 2684 rp = ACPI_NEXT_RESOURCE(rp); 2685 } 2686 if (resp != NULL) 2687 *resp = rp; 2688 2689 return (AE_OK); 2690 } 2691 2692 /* 2693 * Append an ACPI_RESOURCE to an ACPI_BUFFER. 2694 * 2695 * Given a pointer to an ACPI_RESOURCE structure, expand the ACPI_BUFFER 2696 * provided to contain it. If the ACPI_BUFFER is empty, allocate a sensible 2697 * backing block. If the ACPI_RESOURCE is NULL, return an empty set of 2698 * resources. 2699 */ 2700 #define ACPI_INITIAL_RESOURCE_BUFFER_SIZE 512 2701 2702 ACPI_STATUS 2703 acpi_AppendBufferResource(ACPI_BUFFER *buf, ACPI_RESOURCE *res) 2704 { 2705 ACPI_RESOURCE *rp; 2706 void *newp; 2707 2708 /* Initialise the buffer if necessary. */ 2709 if (buf->Pointer == NULL) { 2710 buf->Length = ACPI_INITIAL_RESOURCE_BUFFER_SIZE; 2711 if ((buf->Pointer = AcpiOsAllocate(buf->Length)) == NULL) 2712 return (AE_NO_MEMORY); 2713 rp = (ACPI_RESOURCE *)buf->Pointer; 2714 rp->Type = ACPI_RESOURCE_TYPE_END_TAG; 2715 rp->Length = ACPI_RS_SIZE_MIN; 2716 } 2717 if (res == NULL) 2718 return (AE_OK); 2719 2720 /* 2721 * Scan the current buffer looking for the terminator. 2722 * This will either find the terminator or hit the end 2723 * of the buffer and return an error. 2724 */ 2725 rp = (ACPI_RESOURCE *)buf->Pointer; 2726 for (;;) { 2727 /* Range check, don't go outside the buffer */ 2728 if (rp >= (ACPI_RESOURCE *)((u_int8_t *)buf->Pointer + buf->Length)) 2729 return (AE_BAD_PARAMETER); 2730 if (rp->Type == ACPI_RESOURCE_TYPE_END_TAG || rp->Length == 0) 2731 break; 2732 rp = ACPI_NEXT_RESOURCE(rp); 2733 } 2734 2735 /* 2736 * Check the size of the buffer and expand if required. 2737 * 2738 * Required size is: 2739 * size of existing resources before terminator + 2740 * size of new resource and header + 2741 * size of terminator. 2742 * 2743 * Note that this loop should really only run once, unless 2744 * for some reason we are stuffing a *really* huge resource. 2745 */ 2746 while ((((u_int8_t *)rp - (u_int8_t *)buf->Pointer) + 2747 res->Length + ACPI_RS_SIZE_NO_DATA + 2748 ACPI_RS_SIZE_MIN) >= buf->Length) { 2749 if ((newp = AcpiOsAllocate(buf->Length * 2)) == NULL) 2750 return (AE_NO_MEMORY); 2751 bcopy(buf->Pointer, newp, buf->Length); 2752 rp = (ACPI_RESOURCE *)((u_int8_t *)newp + 2753 ((u_int8_t *)rp - (u_int8_t *)buf->Pointer)); 2754 AcpiOsFree(buf->Pointer); 2755 buf->Pointer = newp; 2756 buf->Length += buf->Length; 2757 } 2758 2759 /* Insert the new resource. */ 2760 bcopy(res, rp, res->Length + ACPI_RS_SIZE_NO_DATA); 2761 2762 /* And add the terminator. */ 2763 rp = ACPI_NEXT_RESOURCE(rp); 2764 rp->Type = ACPI_RESOURCE_TYPE_END_TAG; 2765 rp->Length = ACPI_RS_SIZE_MIN; 2766 2767 return (AE_OK); 2768 } 2769 2770 UINT64 2771 acpi_DSMQuery(ACPI_HANDLE h, const uint8_t *uuid, int revision) 2772 { 2773 /* 2774 * ACPI spec 9.1.1 defines this. 2775 * 2776 * "Arg2: Function Index Represents a specific function whose meaning is 2777 * specific to the UUID and Revision ID. Function indices should start 2778 * with 1. Function number zero is a query function (see the special 2779 * return code defined below)." 2780 */ 2781 ACPI_BUFFER buf; 2782 ACPI_OBJECT *obj; 2783 UINT64 ret = 0; 2784 int i; 2785 2786 if (!ACPI_SUCCESS(acpi_EvaluateDSM(h, uuid, revision, 0, NULL, &buf))) { 2787 ACPI_INFO(("Failed to enumerate DSM functions\n")); 2788 return (0); 2789 } 2790 2791 obj = (ACPI_OBJECT *)buf.Pointer; 2792 KASSERT(obj, ("Object not allowed to be NULL\n")); 2793 2794 /* 2795 * From ACPI 6.2 spec 9.1.1: 2796 * If Function Index = 0, a Buffer containing a function index bitfield. 2797 * Otherwise, the return value and type depends on the UUID and revision 2798 * ID (see below). 2799 */ 2800 switch (obj->Type) { 2801 case ACPI_TYPE_BUFFER: 2802 for (i = 0; i < MIN(obj->Buffer.Length, sizeof(ret)); i++) 2803 ret |= (((uint64_t)obj->Buffer.Pointer[i]) << (i * 8)); 2804 break; 2805 case ACPI_TYPE_INTEGER: 2806 ACPI_BIOS_WARNING((AE_INFO, 2807 "Possibly buggy BIOS with ACPI_TYPE_INTEGER for function enumeration\n")); 2808 ret = obj->Integer.Value; 2809 break; 2810 default: 2811 ACPI_WARNING((AE_INFO, "Unexpected return type %u\n", obj->Type)); 2812 }; 2813 2814 AcpiOsFree(obj); 2815 return ret; 2816 } 2817 2818 /* 2819 * DSM may return multiple types depending on the function. It is therefore 2820 * unsafe to use the typed evaluation. It is highly recommended that the caller 2821 * check the type of the returned object. 2822 */ 2823 ACPI_STATUS 2824 acpi_EvaluateDSM(ACPI_HANDLE handle, const uint8_t *uuid, int revision, 2825 UINT64 function, ACPI_OBJECT *package, ACPI_BUFFER *out_buf) 2826 { 2827 return (acpi_EvaluateDSMTyped(handle, uuid, revision, function, 2828 package, out_buf, ACPI_TYPE_ANY)); 2829 } 2830 2831 ACPI_STATUS 2832 acpi_EvaluateDSMTyped(ACPI_HANDLE handle, const uint8_t *uuid, int revision, 2833 UINT64 function, ACPI_OBJECT *package, ACPI_BUFFER *out_buf, 2834 ACPI_OBJECT_TYPE type) 2835 { 2836 ACPI_OBJECT arg[4]; 2837 ACPI_OBJECT_LIST arglist; 2838 ACPI_BUFFER buf; 2839 ACPI_STATUS status; 2840 2841 if (out_buf == NULL) 2842 return (AE_NO_MEMORY); 2843 2844 arg[0].Type = ACPI_TYPE_BUFFER; 2845 arg[0].Buffer.Length = ACPI_UUID_LENGTH; 2846 arg[0].Buffer.Pointer = __DECONST(uint8_t *, uuid); 2847 arg[1].Type = ACPI_TYPE_INTEGER; 2848 arg[1].Integer.Value = revision; 2849 arg[2].Type = ACPI_TYPE_INTEGER; 2850 arg[2].Integer.Value = function; 2851 if (package) { 2852 arg[3] = *package; 2853 } else { 2854 arg[3].Type = ACPI_TYPE_PACKAGE; 2855 arg[3].Package.Count = 0; 2856 arg[3].Package.Elements = NULL; 2857 } 2858 2859 arglist.Pointer = arg; 2860 arglist.Count = 4; 2861 buf.Pointer = NULL; 2862 buf.Length = ACPI_ALLOCATE_BUFFER; 2863 status = AcpiEvaluateObjectTyped(handle, "_DSM", &arglist, &buf, type); 2864 if (ACPI_FAILURE(status)) 2865 return (status); 2866 2867 KASSERT(ACPI_SUCCESS(status), ("Unexpected status")); 2868 2869 *out_buf = buf; 2870 return (status); 2871 } 2872 2873 ACPI_STATUS 2874 acpi_EvaluateOSC(ACPI_HANDLE handle, uint8_t *uuid, int revision, int count, 2875 uint32_t *caps_in, uint32_t *caps_out, bool query) 2876 { 2877 ACPI_OBJECT arg[4], *ret; 2878 ACPI_OBJECT_LIST arglist; 2879 ACPI_BUFFER buf; 2880 ACPI_STATUS status; 2881 2882 arglist.Pointer = arg; 2883 arglist.Count = 4; 2884 arg[0].Type = ACPI_TYPE_BUFFER; 2885 arg[0].Buffer.Length = ACPI_UUID_LENGTH; 2886 arg[0].Buffer.Pointer = uuid; 2887 arg[1].Type = ACPI_TYPE_INTEGER; 2888 arg[1].Integer.Value = revision; 2889 arg[2].Type = ACPI_TYPE_INTEGER; 2890 arg[2].Integer.Value = count; 2891 arg[3].Type = ACPI_TYPE_BUFFER; 2892 arg[3].Buffer.Length = count * sizeof(*caps_in); 2893 arg[3].Buffer.Pointer = (uint8_t *)caps_in; 2894 caps_in[0] = query ? 1 : 0; 2895 buf.Pointer = NULL; 2896 buf.Length = ACPI_ALLOCATE_BUFFER; 2897 status = AcpiEvaluateObjectTyped(handle, "_OSC", &arglist, &buf, 2898 ACPI_TYPE_BUFFER); 2899 if (ACPI_FAILURE(status)) 2900 return (status); 2901 if (caps_out != NULL) { 2902 ret = buf.Pointer; 2903 if (ret->Buffer.Length != count * sizeof(*caps_out)) { 2904 AcpiOsFree(buf.Pointer); 2905 return (AE_BUFFER_OVERFLOW); 2906 } 2907 bcopy(ret->Buffer.Pointer, caps_out, ret->Buffer.Length); 2908 } 2909 AcpiOsFree(buf.Pointer); 2910 return (status); 2911 } 2912 2913 /* 2914 * Set interrupt model. 2915 */ 2916 ACPI_STATUS 2917 acpi_SetIntrModel(int model) 2918 { 2919 2920 return (acpi_SetInteger(ACPI_ROOT_OBJECT, "_PIC", model)); 2921 } 2922 2923 /* 2924 * Walk subtables of a table and call a callback routine for each 2925 * subtable. The caller should provide the first subtable and a 2926 * pointer to the end of the table. This can be used to walk tables 2927 * such as MADT and SRAT that use subtable entries. 2928 */ 2929 void 2930 acpi_walk_subtables(void *first, void *end, acpi_subtable_handler *handler, 2931 void *arg) 2932 { 2933 ACPI_SUBTABLE_HEADER *entry; 2934 2935 for (entry = first; (void *)entry < end; ) { 2936 /* Avoid an infinite loop if we hit a bogus entry. */ 2937 if (entry->Length < sizeof(ACPI_SUBTABLE_HEADER)) 2938 return; 2939 2940 handler(entry, arg); 2941 entry = ACPI_ADD_PTR(ACPI_SUBTABLE_HEADER, entry, entry->Length); 2942 } 2943 } 2944 2945 /* 2946 * DEPRECATED. This interface has serious deficiencies and will be 2947 * removed. 2948 * 2949 * Immediately enter the sleep state. In the old model, acpiconf(8) ran 2950 * rc.suspend and rc.resume so we don't have to notify devd(8) to do this. 2951 */ 2952 ACPI_STATUS 2953 acpi_SetSleepState(struct acpi_softc *sc, int state) 2954 { 2955 static int once; 2956 2957 if (!once) { 2958 device_printf(sc->acpi_dev, 2959 "warning: acpi_SetSleepState() deprecated, need to update your software\n"); 2960 once = 1; 2961 } 2962 return (acpi_EnterSleepState(sc, state)); 2963 } 2964 2965 #if defined(__amd64__) || defined(__i386__) 2966 static void 2967 acpi_sleep_force_task(void *context) 2968 { 2969 struct acpi_softc *sc = (struct acpi_softc *)context; 2970 2971 if (ACPI_FAILURE(acpi_EnterSleepState(sc, sc->acpi_next_sstate))) 2972 device_printf(sc->acpi_dev, "force sleep state S%d failed\n", 2973 sc->acpi_next_sstate); 2974 } 2975 2976 static void 2977 acpi_sleep_force(void *arg) 2978 { 2979 struct acpi_softc *sc = (struct acpi_softc *)arg; 2980 2981 device_printf(sc->acpi_dev, 2982 "suspend request timed out, forcing sleep now\n"); 2983 /* 2984 * XXX Suspending from callout causes freezes in DEVICE_SUSPEND(). 2985 * Suspend from acpi_task thread instead. 2986 */ 2987 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 2988 acpi_sleep_force_task, sc))) 2989 device_printf(sc->acpi_dev, "AcpiOsExecute() for sleeping failed\n"); 2990 } 2991 #endif 2992 2993 /* 2994 * Request that the system enter the given suspend state. All /dev/apm 2995 * devices and devd(8) will be notified. Userland then has a chance to 2996 * save state and acknowledge the request. The system sleeps once all 2997 * acks are in. 2998 */ 2999 int 3000 acpi_ReqSleepState(struct acpi_softc *sc, int state) 3001 { 3002 #if defined(__amd64__) || defined(__i386__) 3003 struct apm_clone_data *clone; 3004 ACPI_STATUS status; 3005 3006 if (state < ACPI_STATE_S1 || state > ACPI_S_STATES_MAX) 3007 return (EINVAL); 3008 if (!acpi_sleep_states[state]) 3009 return (EOPNOTSUPP); 3010 3011 /* 3012 * If a reboot/shutdown/suspend request is already in progress or 3013 * suspend is blocked due to an upcoming shutdown, just return. 3014 */ 3015 if (rebooting || sc->acpi_next_sstate != 0 || suspend_blocked) { 3016 return (0); 3017 } 3018 3019 /* Wait until sleep is enabled. */ 3020 while (sc->acpi_sleep_disabled) { 3021 AcpiOsSleep(1000); 3022 } 3023 3024 ACPI_LOCK(acpi); 3025 3026 sc->acpi_next_sstate = state; 3027 3028 /* S5 (soft-off) should be entered directly with no waiting. */ 3029 if (state == ACPI_STATE_S5) { 3030 ACPI_UNLOCK(acpi); 3031 status = acpi_EnterSleepState(sc, state); 3032 return (ACPI_SUCCESS(status) ? 0 : ENXIO); 3033 } 3034 3035 /* Record the pending state and notify all apm devices. */ 3036 STAILQ_FOREACH(clone, &sc->apm_cdevs, entries) { 3037 clone->notify_status = APM_EV_NONE; 3038 if ((clone->flags & ACPI_EVF_DEVD) == 0) { 3039 selwakeuppri(&clone->sel_read, PZERO); 3040 KNOTE_LOCKED(&clone->sel_read.si_note, 0); 3041 } 3042 } 3043 3044 /* If devd(8) is not running, immediately enter the sleep state. */ 3045 if (!devctl_process_running()) { 3046 ACPI_UNLOCK(acpi); 3047 status = acpi_EnterSleepState(sc, state); 3048 return (ACPI_SUCCESS(status) ? 0 : ENXIO); 3049 } 3050 3051 /* 3052 * Set a timeout to fire if userland doesn't ack the suspend request 3053 * in time. This way we still eventually go to sleep if we were 3054 * overheating or running low on battery, even if userland is hung. 3055 * We cancel this timeout once all userland acks are in or the 3056 * suspend request is aborted. 3057 */ 3058 callout_reset(&sc->susp_force_to, 10 * hz, acpi_sleep_force, sc); 3059 ACPI_UNLOCK(acpi); 3060 3061 /* Now notify devd(8) also. */ 3062 acpi_UserNotify("Suspend", ACPI_ROOT_OBJECT, state); 3063 3064 return (0); 3065 #else 3066 /* This platform does not support acpi suspend/resume. */ 3067 return (EOPNOTSUPP); 3068 #endif 3069 } 3070 3071 /* 3072 * Acknowledge (or reject) a pending sleep state. The caller has 3073 * prepared for suspend and is now ready for it to proceed. If the 3074 * error argument is non-zero, it indicates suspend should be cancelled 3075 * and gives an errno value describing why. Once all votes are in, 3076 * we suspend the system. 3077 */ 3078 int 3079 acpi_AckSleepState(struct apm_clone_data *clone, int error) 3080 { 3081 #if defined(__amd64__) || defined(__i386__) 3082 struct acpi_softc *sc; 3083 int ret, sleeping; 3084 3085 /* If no pending sleep state, return an error. */ 3086 ACPI_LOCK(acpi); 3087 sc = clone->acpi_sc; 3088 if (sc->acpi_next_sstate == 0) { 3089 ACPI_UNLOCK(acpi); 3090 return (ENXIO); 3091 } 3092 3093 /* Caller wants to abort suspend process. */ 3094 if (error) { 3095 sc->acpi_next_sstate = 0; 3096 callout_stop(&sc->susp_force_to); 3097 device_printf(sc->acpi_dev, 3098 "listener on %s cancelled the pending suspend\n", 3099 devtoname(clone->cdev)); 3100 ACPI_UNLOCK(acpi); 3101 return (0); 3102 } 3103 3104 /* 3105 * Mark this device as acking the suspend request. Then, walk through 3106 * all devices, seeing if they agree yet. We only count devices that 3107 * are writable since read-only devices couldn't ack the request. 3108 */ 3109 sleeping = TRUE; 3110 clone->notify_status = APM_EV_ACKED; 3111 STAILQ_FOREACH(clone, &sc->apm_cdevs, entries) { 3112 if ((clone->flags & ACPI_EVF_WRITE) != 0 && 3113 clone->notify_status != APM_EV_ACKED) { 3114 sleeping = FALSE; 3115 break; 3116 } 3117 } 3118 3119 /* If all devices have voted "yes", we will suspend now. */ 3120 if (sleeping) 3121 callout_stop(&sc->susp_force_to); 3122 ACPI_UNLOCK(acpi); 3123 ret = 0; 3124 if (sleeping) { 3125 if (ACPI_FAILURE(acpi_EnterSleepState(sc, sc->acpi_next_sstate))) 3126 ret = ENODEV; 3127 } 3128 return (ret); 3129 #else 3130 /* This platform does not support acpi suspend/resume. */ 3131 return (EOPNOTSUPP); 3132 #endif 3133 } 3134 3135 static void 3136 acpi_sleep_enable(void *arg) 3137 { 3138 struct acpi_softc *sc = (struct acpi_softc *)arg; 3139 3140 ACPI_LOCK_ASSERT(acpi); 3141 3142 /* Reschedule if the system is not fully up and running. */ 3143 if (!AcpiGbl_SystemAwakeAndRunning) { 3144 callout_schedule(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME); 3145 return; 3146 } 3147 3148 sc->acpi_sleep_disabled = FALSE; 3149 } 3150 3151 static ACPI_STATUS 3152 acpi_sleep_disable(struct acpi_softc *sc) 3153 { 3154 ACPI_STATUS status; 3155 3156 /* Fail if the system is not fully up and running. */ 3157 if (!AcpiGbl_SystemAwakeAndRunning) 3158 return (AE_ERROR); 3159 3160 ACPI_LOCK(acpi); 3161 status = sc->acpi_sleep_disabled ? AE_ERROR : AE_OK; 3162 sc->acpi_sleep_disabled = TRUE; 3163 ACPI_UNLOCK(acpi); 3164 3165 return (status); 3166 } 3167 3168 enum acpi_sleep_state { 3169 ACPI_SS_NONE, 3170 ACPI_SS_GPE_SET, 3171 ACPI_SS_DEV_SUSPEND, 3172 ACPI_SS_SLP_PREP, 3173 ACPI_SS_SLEPT, 3174 }; 3175 3176 /* 3177 * Enter the desired system sleep state. 3178 * 3179 * Currently we support S1-S5 but S4 is only S4BIOS 3180 */ 3181 static ACPI_STATUS 3182 acpi_EnterSleepState(struct acpi_softc *sc, int state) 3183 { 3184 register_t intr; 3185 ACPI_STATUS status; 3186 ACPI_EVENT_STATUS power_button_status; 3187 enum acpi_sleep_state slp_state; 3188 int sleep_result; 3189 3190 ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state); 3191 3192 if (state < ACPI_STATE_S1 || state > ACPI_S_STATES_MAX) 3193 return_ACPI_STATUS (AE_BAD_PARAMETER); 3194 if (!acpi_sleep_states[state]) { 3195 device_printf(sc->acpi_dev, "Sleep state S%d not supported by BIOS\n", 3196 state); 3197 return (AE_SUPPORT); 3198 } 3199 3200 /* Re-entry once we're suspending is not allowed. */ 3201 status = acpi_sleep_disable(sc); 3202 if (ACPI_FAILURE(status)) { 3203 device_printf(sc->acpi_dev, 3204 "suspend request ignored (not ready yet)\n"); 3205 return (status); 3206 } 3207 3208 if (state == ACPI_STATE_S5) { 3209 /* 3210 * Shut down cleanly and power off. This will call us back through the 3211 * shutdown handlers. 3212 */ 3213 shutdown_nice(RB_POWEROFF); 3214 return_ACPI_STATUS (AE_OK); 3215 } 3216 3217 EVENTHANDLER_INVOKE(power_suspend_early); 3218 stop_all_proc(); 3219 suspend_all_fs(); 3220 EVENTHANDLER_INVOKE(power_suspend); 3221 3222 #ifdef EARLY_AP_STARTUP 3223 MPASS(mp_ncpus == 1 || smp_started); 3224 thread_lock(curthread); 3225 sched_bind(curthread, 0); 3226 thread_unlock(curthread); 3227 #else 3228 if (smp_started) { 3229 thread_lock(curthread); 3230 sched_bind(curthread, 0); 3231 thread_unlock(curthread); 3232 } 3233 #endif 3234 3235 /* 3236 * Be sure to hold Giant across DEVICE_SUSPEND/RESUME 3237 */ 3238 bus_topo_lock(); 3239 3240 slp_state = ACPI_SS_NONE; 3241 3242 sc->acpi_sstate = state; 3243 3244 /* Enable any GPEs as appropriate and requested by the user. */ 3245 acpi_wake_prep_walk(state); 3246 slp_state = ACPI_SS_GPE_SET; 3247 3248 /* 3249 * Inform all devices that we are going to sleep. If at least one 3250 * device fails, DEVICE_SUSPEND() automatically resumes the tree. 3251 * 3252 * XXX Note that a better two-pass approach with a 'veto' pass 3253 * followed by a "real thing" pass would be better, but the current 3254 * bus interface does not provide for this. 3255 */ 3256 if (DEVICE_SUSPEND(root_bus) != 0) { 3257 device_printf(sc->acpi_dev, "device_suspend failed\n"); 3258 goto backout; 3259 } 3260 slp_state = ACPI_SS_DEV_SUSPEND; 3261 3262 status = AcpiEnterSleepStatePrep(state); 3263 if (ACPI_FAILURE(status)) { 3264 device_printf(sc->acpi_dev, "AcpiEnterSleepStatePrep failed - %s\n", 3265 AcpiFormatException(status)); 3266 goto backout; 3267 } 3268 slp_state = ACPI_SS_SLP_PREP; 3269 3270 if (sc->acpi_sleep_delay > 0) 3271 DELAY(sc->acpi_sleep_delay * 1000000); 3272 3273 suspendclock(); 3274 intr = intr_disable(); 3275 if (state != ACPI_STATE_S1) { 3276 sleep_result = acpi_sleep_machdep(sc, state); 3277 acpi_wakeup_machdep(sc, state, sleep_result, 0); 3278 3279 /* 3280 * XXX According to ACPI specification SCI_EN bit should be restored 3281 * by ACPI platform (BIOS, firmware) to its pre-sleep state. 3282 * Unfortunately some BIOSes fail to do that and that leads to 3283 * unexpected and serious consequences during wake up like a system 3284 * getting stuck in SMI handlers. 3285 * This hack is picked up from Linux, which claims that it follows 3286 * Windows behavior. 3287 */ 3288 if (sleep_result == 1 && state != ACPI_STATE_S4) 3289 AcpiWriteBitRegister(ACPI_BITREG_SCI_ENABLE, ACPI_ENABLE_EVENT); 3290 3291 if (sleep_result == 1 && state == ACPI_STATE_S3) { 3292 /* 3293 * Prevent mis-interpretation of the wakeup by power button 3294 * as a request for power off. 3295 * Ideally we should post an appropriate wakeup event, 3296 * perhaps using acpi_event_power_button_wake or alike. 3297 * 3298 * Clearing of power button status after wakeup is mandated 3299 * by ACPI specification in section "Fixed Power Button". 3300 * 3301 * XXX As of ACPICA 20121114 AcpiGetEventStatus provides 3302 * status as 0/1 corressponding to inactive/active despite 3303 * its type being ACPI_EVENT_STATUS. In other words, 3304 * we should not test for ACPI_EVENT_FLAG_SET for time being. 3305 */ 3306 if (ACPI_SUCCESS(AcpiGetEventStatus(ACPI_EVENT_POWER_BUTTON, 3307 &power_button_status)) && power_button_status != 0) { 3308 AcpiClearEvent(ACPI_EVENT_POWER_BUTTON); 3309 device_printf(sc->acpi_dev, 3310 "cleared fixed power button status\n"); 3311 } 3312 } 3313 3314 intr_restore(intr); 3315 3316 /* call acpi_wakeup_machdep() again with interrupt enabled */ 3317 acpi_wakeup_machdep(sc, state, sleep_result, 1); 3318 3319 AcpiLeaveSleepStatePrep(state); 3320 3321 if (sleep_result == -1) 3322 goto backout; 3323 3324 /* Re-enable ACPI hardware on wakeup from sleep state 4. */ 3325 if (state == ACPI_STATE_S4) 3326 AcpiEnable(); 3327 } else { 3328 status = AcpiEnterSleepState(state); 3329 intr_restore(intr); 3330 AcpiLeaveSleepStatePrep(state); 3331 if (ACPI_FAILURE(status)) { 3332 device_printf(sc->acpi_dev, "AcpiEnterSleepState failed - %s\n", 3333 AcpiFormatException(status)); 3334 goto backout; 3335 } 3336 } 3337 slp_state = ACPI_SS_SLEPT; 3338 3339 /* 3340 * Back out state according to how far along we got in the suspend 3341 * process. This handles both the error and success cases. 3342 */ 3343 backout: 3344 if (slp_state >= ACPI_SS_SLP_PREP) 3345 resumeclock(); 3346 if (slp_state >= ACPI_SS_GPE_SET) { 3347 acpi_wake_prep_walk(state); 3348 sc->acpi_sstate = ACPI_STATE_S0; 3349 } 3350 if (slp_state >= ACPI_SS_DEV_SUSPEND) 3351 DEVICE_RESUME(root_bus); 3352 if (slp_state >= ACPI_SS_SLP_PREP) 3353 AcpiLeaveSleepState(state); 3354 if (slp_state >= ACPI_SS_SLEPT) { 3355 #if defined(__i386__) || defined(__amd64__) 3356 /* NB: we are still using ACPI timecounter at this point. */ 3357 resume_TSC(); 3358 #endif 3359 acpi_resync_clock(sc); 3360 acpi_enable_fixed_events(sc); 3361 } 3362 sc->acpi_next_sstate = 0; 3363 3364 bus_topo_unlock(); 3365 3366 #ifdef EARLY_AP_STARTUP 3367 thread_lock(curthread); 3368 sched_unbind(curthread); 3369 thread_unlock(curthread); 3370 #else 3371 if (smp_started) { 3372 thread_lock(curthread); 3373 sched_unbind(curthread); 3374 thread_unlock(curthread); 3375 } 3376 #endif 3377 3378 resume_all_fs(); 3379 resume_all_proc(); 3380 3381 EVENTHANDLER_INVOKE(power_resume); 3382 3383 /* Allow another sleep request after a while. */ 3384 callout_schedule(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME); 3385 3386 /* Run /etc/rc.resume after we are back. */ 3387 if (devctl_process_running()) 3388 acpi_UserNotify("Resume", ACPI_ROOT_OBJECT, state); 3389 3390 return_ACPI_STATUS (status); 3391 } 3392 3393 static void 3394 acpi_resync_clock(struct acpi_softc *sc) 3395 { 3396 3397 /* 3398 * Warm up timecounter again and reset system clock. 3399 */ 3400 (void)timecounter->tc_get_timecount(timecounter); 3401 inittodr(time_second + sc->acpi_sleep_delay); 3402 } 3403 3404 /* Enable or disable the device's wake GPE. */ 3405 int 3406 acpi_wake_set_enable(device_t dev, int enable) 3407 { 3408 struct acpi_prw_data prw; 3409 ACPI_STATUS status; 3410 int flags; 3411 3412 /* Make sure the device supports waking the system and get the GPE. */ 3413 if (acpi_parse_prw(acpi_get_handle(dev), &prw) != 0) 3414 return (ENXIO); 3415 3416 flags = acpi_get_flags(dev); 3417 if (enable) { 3418 status = AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, 3419 ACPI_GPE_ENABLE); 3420 if (ACPI_FAILURE(status)) { 3421 device_printf(dev, "enable wake failed\n"); 3422 return (ENXIO); 3423 } 3424 acpi_set_flags(dev, flags | ACPI_FLAG_WAKE_ENABLED); 3425 } else { 3426 status = AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, 3427 ACPI_GPE_DISABLE); 3428 if (ACPI_FAILURE(status)) { 3429 device_printf(dev, "disable wake failed\n"); 3430 return (ENXIO); 3431 } 3432 acpi_set_flags(dev, flags & ~ACPI_FLAG_WAKE_ENABLED); 3433 } 3434 3435 return (0); 3436 } 3437 3438 static int 3439 acpi_wake_sleep_prep(ACPI_HANDLE handle, int sstate) 3440 { 3441 struct acpi_prw_data prw; 3442 device_t dev; 3443 3444 /* Check that this is a wake-capable device and get its GPE. */ 3445 if (acpi_parse_prw(handle, &prw) != 0) 3446 return (ENXIO); 3447 dev = acpi_get_device(handle); 3448 3449 /* 3450 * The destination sleep state must be less than (i.e., higher power) 3451 * or equal to the value specified by _PRW. If this GPE cannot be 3452 * enabled for the next sleep state, then disable it. If it can and 3453 * the user requested it be enabled, turn on any required power resources 3454 * and set _PSW. 3455 */ 3456 if (sstate > prw.lowest_wake) { 3457 AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, ACPI_GPE_DISABLE); 3458 if (bootverbose) 3459 device_printf(dev, "wake_prep disabled wake for %s (S%d)\n", 3460 acpi_name(handle), sstate); 3461 } else if (dev && (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) != 0) { 3462 acpi_pwr_wake_enable(handle, 1); 3463 acpi_SetInteger(handle, "_PSW", 1); 3464 if (bootverbose) 3465 device_printf(dev, "wake_prep enabled for %s (S%d)\n", 3466 acpi_name(handle), sstate); 3467 } 3468 3469 return (0); 3470 } 3471 3472 static int 3473 acpi_wake_run_prep(ACPI_HANDLE handle, int sstate) 3474 { 3475 struct acpi_prw_data prw; 3476 device_t dev; 3477 3478 /* 3479 * Check that this is a wake-capable device and get its GPE. Return 3480 * now if the user didn't enable this device for wake. 3481 */ 3482 if (acpi_parse_prw(handle, &prw) != 0) 3483 return (ENXIO); 3484 dev = acpi_get_device(handle); 3485 if (dev == NULL || (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) == 0) 3486 return (0); 3487 3488 /* 3489 * If this GPE couldn't be enabled for the previous sleep state, it was 3490 * disabled before going to sleep so re-enable it. If it was enabled, 3491 * clear _PSW and turn off any power resources it used. 3492 */ 3493 if (sstate > prw.lowest_wake) { 3494 AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, ACPI_GPE_ENABLE); 3495 if (bootverbose) 3496 device_printf(dev, "run_prep re-enabled %s\n", acpi_name(handle)); 3497 } else { 3498 acpi_SetInteger(handle, "_PSW", 0); 3499 acpi_pwr_wake_enable(handle, 0); 3500 if (bootverbose) 3501 device_printf(dev, "run_prep cleaned up for %s\n", 3502 acpi_name(handle)); 3503 } 3504 3505 return (0); 3506 } 3507 3508 static ACPI_STATUS 3509 acpi_wake_prep(ACPI_HANDLE handle, UINT32 level, void *context, void **status) 3510 { 3511 int sstate; 3512 3513 /* If suspending, run the sleep prep function, otherwise wake. */ 3514 sstate = *(int *)context; 3515 if (AcpiGbl_SystemAwakeAndRunning) 3516 acpi_wake_sleep_prep(handle, sstate); 3517 else 3518 acpi_wake_run_prep(handle, sstate); 3519 return (AE_OK); 3520 } 3521 3522 /* Walk the tree rooted at acpi0 to prep devices for suspend/resume. */ 3523 static int 3524 acpi_wake_prep_walk(int sstate) 3525 { 3526 ACPI_HANDLE sb_handle; 3527 3528 if (ACPI_SUCCESS(AcpiGetHandle(ACPI_ROOT_OBJECT, "\\_SB_", &sb_handle))) 3529 AcpiWalkNamespace(ACPI_TYPE_DEVICE, sb_handle, 100, 3530 acpi_wake_prep, NULL, &sstate, NULL); 3531 return (0); 3532 } 3533 3534 /* Walk the tree rooted at acpi0 to attach per-device wake sysctls. */ 3535 static int 3536 acpi_wake_sysctl_walk(device_t dev) 3537 { 3538 int error, i, numdevs; 3539 device_t *devlist; 3540 device_t child; 3541 ACPI_STATUS status; 3542 3543 error = device_get_children(dev, &devlist, &numdevs); 3544 if (error != 0 || numdevs == 0) { 3545 if (numdevs == 0) 3546 free(devlist, M_TEMP); 3547 return (error); 3548 } 3549 for (i = 0; i < numdevs; i++) { 3550 child = devlist[i]; 3551 acpi_wake_sysctl_walk(child); 3552 if (!device_is_attached(child)) 3553 continue; 3554 status = AcpiEvaluateObject(acpi_get_handle(child), "_PRW", NULL, NULL); 3555 if (ACPI_SUCCESS(status)) { 3556 SYSCTL_ADD_PROC(device_get_sysctl_ctx(child), 3557 SYSCTL_CHILDREN(device_get_sysctl_tree(child)), OID_AUTO, 3558 "wake", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, child, 0, 3559 acpi_wake_set_sysctl, "I", "Device set to wake the system"); 3560 } 3561 } 3562 free(devlist, M_TEMP); 3563 3564 return (0); 3565 } 3566 3567 /* Enable or disable wake from userland. */ 3568 static int 3569 acpi_wake_set_sysctl(SYSCTL_HANDLER_ARGS) 3570 { 3571 int enable, error; 3572 device_t dev; 3573 3574 dev = (device_t)arg1; 3575 enable = (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) ? 1 : 0; 3576 3577 error = sysctl_handle_int(oidp, &enable, 0, req); 3578 if (error != 0 || req->newptr == NULL) 3579 return (error); 3580 if (enable != 0 && enable != 1) 3581 return (EINVAL); 3582 3583 return (acpi_wake_set_enable(dev, enable)); 3584 } 3585 3586 /* Parse a device's _PRW into a structure. */ 3587 int 3588 acpi_parse_prw(ACPI_HANDLE h, struct acpi_prw_data *prw) 3589 { 3590 ACPI_STATUS status; 3591 ACPI_BUFFER prw_buffer; 3592 ACPI_OBJECT *res, *res2; 3593 int error, i, power_count; 3594 3595 if (h == NULL || prw == NULL) 3596 return (EINVAL); 3597 3598 /* 3599 * The _PRW object (7.2.9) is only required for devices that have the 3600 * ability to wake the system from a sleeping state. 3601 */ 3602 error = EINVAL; 3603 prw_buffer.Pointer = NULL; 3604 prw_buffer.Length = ACPI_ALLOCATE_BUFFER; 3605 status = AcpiEvaluateObject(h, "_PRW", NULL, &prw_buffer); 3606 if (ACPI_FAILURE(status)) 3607 return (ENOENT); 3608 res = (ACPI_OBJECT *)prw_buffer.Pointer; 3609 if (res == NULL) 3610 return (ENOENT); 3611 if (!ACPI_PKG_VALID(res, 2)) 3612 goto out; 3613 3614 /* 3615 * Element 1 of the _PRW object: 3616 * The lowest power system sleeping state that can be entered while still 3617 * providing wake functionality. The sleeping state being entered must 3618 * be less than (i.e., higher power) or equal to this value. 3619 */ 3620 if (acpi_PkgInt32(res, 1, &prw->lowest_wake) != 0) 3621 goto out; 3622 3623 /* 3624 * Element 0 of the _PRW object: 3625 */ 3626 switch (res->Package.Elements[0].Type) { 3627 case ACPI_TYPE_INTEGER: 3628 /* 3629 * If the data type of this package element is numeric, then this 3630 * _PRW package element is the bit index in the GPEx_EN, in the 3631 * GPE blocks described in the FADT, of the enable bit that is 3632 * enabled for the wake event. 3633 */ 3634 prw->gpe_handle = NULL; 3635 prw->gpe_bit = res->Package.Elements[0].Integer.Value; 3636 error = 0; 3637 break; 3638 case ACPI_TYPE_PACKAGE: 3639 /* 3640 * If the data type of this package element is a package, then this 3641 * _PRW package element is itself a package containing two 3642 * elements. The first is an object reference to the GPE Block 3643 * device that contains the GPE that will be triggered by the wake 3644 * event. The second element is numeric and it contains the bit 3645 * index in the GPEx_EN, in the GPE Block referenced by the 3646 * first element in the package, of the enable bit that is enabled for 3647 * the wake event. 3648 * 3649 * For example, if this field is a package then it is of the form: 3650 * Package() {\_SB.PCI0.ISA.GPE, 2} 3651 */ 3652 res2 = &res->Package.Elements[0]; 3653 if (!ACPI_PKG_VALID(res2, 2)) 3654 goto out; 3655 prw->gpe_handle = acpi_GetReference(NULL, &res2->Package.Elements[0]); 3656 if (prw->gpe_handle == NULL) 3657 goto out; 3658 if (acpi_PkgInt32(res2, 1, &prw->gpe_bit) != 0) 3659 goto out; 3660 error = 0; 3661 break; 3662 default: 3663 goto out; 3664 } 3665 3666 /* Elements 2 to N of the _PRW object are power resources. */ 3667 power_count = res->Package.Count - 2; 3668 if (power_count > ACPI_PRW_MAX_POWERRES) { 3669 printf("ACPI device %s has too many power resources\n", acpi_name(h)); 3670 power_count = 0; 3671 } 3672 prw->power_res_count = power_count; 3673 for (i = 0; i < power_count; i++) 3674 prw->power_res[i] = res->Package.Elements[i]; 3675 3676 out: 3677 if (prw_buffer.Pointer != NULL) 3678 AcpiOsFree(prw_buffer.Pointer); 3679 return (error); 3680 } 3681 3682 /* 3683 * ACPI Event Handlers 3684 */ 3685 3686 /* System Event Handlers (registered by EVENTHANDLER_REGISTER) */ 3687 3688 static void 3689 acpi_system_eventhandler_sleep(void *arg, int state) 3690 { 3691 struct acpi_softc *sc = (struct acpi_softc *)arg; 3692 int ret; 3693 3694 ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state); 3695 3696 /* Check if button action is disabled or unknown. */ 3697 if (state == ACPI_STATE_UNKNOWN) 3698 return; 3699 3700 /* Request that the system prepare to enter the given suspend state. */ 3701 ret = acpi_ReqSleepState(sc, state); 3702 if (ret != 0) 3703 device_printf(sc->acpi_dev, 3704 "request to enter state S%d failed (err %d)\n", state, ret); 3705 3706 return_VOID; 3707 } 3708 3709 static void 3710 acpi_system_eventhandler_wakeup(void *arg, int state) 3711 { 3712 3713 ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state); 3714 3715 /* Currently, nothing to do for wakeup. */ 3716 3717 return_VOID; 3718 } 3719 3720 /* 3721 * ACPICA Event Handlers (FixedEvent, also called from button notify handler) 3722 */ 3723 static void 3724 acpi_invoke_sleep_eventhandler(void *context) 3725 { 3726 3727 EVENTHANDLER_INVOKE(acpi_sleep_event, *(int *)context); 3728 } 3729 3730 static void 3731 acpi_invoke_wake_eventhandler(void *context) 3732 { 3733 3734 EVENTHANDLER_INVOKE(acpi_wakeup_event, *(int *)context); 3735 } 3736 3737 UINT32 3738 acpi_event_power_button_sleep(void *context) 3739 { 3740 struct acpi_softc *sc = (struct acpi_softc *)context; 3741 3742 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3743 3744 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3745 acpi_invoke_sleep_eventhandler, &sc->acpi_power_button_sx))) 3746 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); 3747 return_VALUE (ACPI_INTERRUPT_HANDLED); 3748 } 3749 3750 UINT32 3751 acpi_event_power_button_wake(void *context) 3752 { 3753 struct acpi_softc *sc = (struct acpi_softc *)context; 3754 3755 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3756 3757 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3758 acpi_invoke_wake_eventhandler, &sc->acpi_power_button_sx))) 3759 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); 3760 return_VALUE (ACPI_INTERRUPT_HANDLED); 3761 } 3762 3763 UINT32 3764 acpi_event_sleep_button_sleep(void *context) 3765 { 3766 struct acpi_softc *sc = (struct acpi_softc *)context; 3767 3768 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3769 3770 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3771 acpi_invoke_sleep_eventhandler, &sc->acpi_sleep_button_sx))) 3772 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); 3773 return_VALUE (ACPI_INTERRUPT_HANDLED); 3774 } 3775 3776 UINT32 3777 acpi_event_sleep_button_wake(void *context) 3778 { 3779 struct acpi_softc *sc = (struct acpi_softc *)context; 3780 3781 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3782 3783 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3784 acpi_invoke_wake_eventhandler, &sc->acpi_sleep_button_sx))) 3785 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); 3786 return_VALUE (ACPI_INTERRUPT_HANDLED); 3787 } 3788 3789 /* 3790 * XXX This static buffer is suboptimal. There is no locking so only 3791 * use this for single-threaded callers. 3792 */ 3793 char * 3794 acpi_name(ACPI_HANDLE handle) 3795 { 3796 ACPI_BUFFER buf; 3797 static char data[256]; 3798 3799 buf.Length = sizeof(data); 3800 buf.Pointer = data; 3801 3802 if (handle && ACPI_SUCCESS(AcpiGetName(handle, ACPI_FULL_PATHNAME, &buf))) 3803 return (data); 3804 return ("(unknown)"); 3805 } 3806 3807 /* 3808 * Debugging/bug-avoidance. Avoid trying to fetch info on various 3809 * parts of the namespace. 3810 */ 3811 int 3812 acpi_avoid(ACPI_HANDLE handle) 3813 { 3814 char *cp, *env, *np; 3815 int len; 3816 3817 np = acpi_name(handle); 3818 if (*np == '\\') 3819 np++; 3820 if ((env = kern_getenv("debug.acpi.avoid")) == NULL) 3821 return (0); 3822 3823 /* Scan the avoid list checking for a match */ 3824 cp = env; 3825 for (;;) { 3826 while (*cp != 0 && isspace(*cp)) 3827 cp++; 3828 if (*cp == 0) 3829 break; 3830 len = 0; 3831 while (cp[len] != 0 && !isspace(cp[len])) 3832 len++; 3833 if (!strncmp(cp, np, len)) { 3834 freeenv(env); 3835 return(1); 3836 } 3837 cp += len; 3838 } 3839 freeenv(env); 3840 3841 return (0); 3842 } 3843 3844 /* 3845 * Debugging/bug-avoidance. Disable ACPI subsystem components. 3846 */ 3847 int 3848 acpi_disabled(char *subsys) 3849 { 3850 char *cp, *env; 3851 int len; 3852 3853 if ((env = kern_getenv("debug.acpi.disabled")) == NULL) 3854 return (0); 3855 if (strcmp(env, "all") == 0) { 3856 freeenv(env); 3857 return (1); 3858 } 3859 3860 /* Scan the disable list, checking for a match. */ 3861 cp = env; 3862 for (;;) { 3863 while (*cp != '\0' && isspace(*cp)) 3864 cp++; 3865 if (*cp == '\0') 3866 break; 3867 len = 0; 3868 while (cp[len] != '\0' && !isspace(cp[len])) 3869 len++; 3870 if (strncmp(cp, subsys, len) == 0) { 3871 freeenv(env); 3872 return (1); 3873 } 3874 cp += len; 3875 } 3876 freeenv(env); 3877 3878 return (0); 3879 } 3880 3881 static void 3882 acpi_lookup(void *arg, const char *name, device_t *dev) 3883 { 3884 ACPI_HANDLE handle; 3885 3886 if (*dev != NULL) 3887 return; 3888 3889 /* 3890 * Allow any handle name that is specified as an absolute path and 3891 * starts with '\'. We could restrict this to \_SB and friends, 3892 * but see acpi_probe_children() for notes on why we scan the entire 3893 * namespace for devices. 3894 * 3895 * XXX: The pathname argument to AcpiGetHandle() should be fixed to 3896 * be const. 3897 */ 3898 if (name[0] != '\\') 3899 return; 3900 if (ACPI_FAILURE(AcpiGetHandle(ACPI_ROOT_OBJECT, __DECONST(char *, name), 3901 &handle))) 3902 return; 3903 *dev = acpi_get_device(handle); 3904 } 3905 3906 /* 3907 * Control interface. 3908 * 3909 * We multiplex ioctls for all participating ACPI devices here. Individual 3910 * drivers wanting to be accessible via /dev/acpi should use the 3911 * register/deregister interface to make their handlers visible. 3912 */ 3913 struct acpi_ioctl_hook 3914 { 3915 TAILQ_ENTRY(acpi_ioctl_hook) link; 3916 u_long cmd; 3917 acpi_ioctl_fn fn; 3918 void *arg; 3919 }; 3920 3921 static TAILQ_HEAD(,acpi_ioctl_hook) acpi_ioctl_hooks; 3922 static int acpi_ioctl_hooks_initted; 3923 3924 int 3925 acpi_register_ioctl(u_long cmd, acpi_ioctl_fn fn, void *arg) 3926 { 3927 struct acpi_ioctl_hook *hp; 3928 3929 if ((hp = malloc(sizeof(*hp), M_ACPIDEV, M_NOWAIT)) == NULL) 3930 return (ENOMEM); 3931 hp->cmd = cmd; 3932 hp->fn = fn; 3933 hp->arg = arg; 3934 3935 ACPI_LOCK(acpi); 3936 if (acpi_ioctl_hooks_initted == 0) { 3937 TAILQ_INIT(&acpi_ioctl_hooks); 3938 acpi_ioctl_hooks_initted = 1; 3939 } 3940 TAILQ_INSERT_TAIL(&acpi_ioctl_hooks, hp, link); 3941 ACPI_UNLOCK(acpi); 3942 3943 return (0); 3944 } 3945 3946 void 3947 acpi_deregister_ioctl(u_long cmd, acpi_ioctl_fn fn) 3948 { 3949 struct acpi_ioctl_hook *hp; 3950 3951 ACPI_LOCK(acpi); 3952 TAILQ_FOREACH(hp, &acpi_ioctl_hooks, link) 3953 if (hp->cmd == cmd && hp->fn == fn) 3954 break; 3955 3956 if (hp != NULL) { 3957 TAILQ_REMOVE(&acpi_ioctl_hooks, hp, link); 3958 free(hp, M_ACPIDEV); 3959 } 3960 ACPI_UNLOCK(acpi); 3961 } 3962 3963 static int 3964 acpiopen(struct cdev *dev, int flag, int fmt, struct thread *td) 3965 { 3966 return (0); 3967 } 3968 3969 static int 3970 acpiclose(struct cdev *dev, int flag, int fmt, struct thread *td) 3971 { 3972 return (0); 3973 } 3974 3975 static int 3976 acpiioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 3977 { 3978 struct acpi_softc *sc; 3979 struct acpi_ioctl_hook *hp; 3980 int error, state; 3981 3982 error = 0; 3983 hp = NULL; 3984 sc = dev->si_drv1; 3985 3986 /* 3987 * Scan the list of registered ioctls, looking for handlers. 3988 */ 3989 ACPI_LOCK(acpi); 3990 if (acpi_ioctl_hooks_initted) 3991 TAILQ_FOREACH(hp, &acpi_ioctl_hooks, link) { 3992 if (hp->cmd == cmd) 3993 break; 3994 } 3995 ACPI_UNLOCK(acpi); 3996 if (hp) 3997 return (hp->fn(cmd, addr, hp->arg)); 3998 3999 /* 4000 * Core ioctls are not permitted for non-writable user. 4001 * Currently, other ioctls just fetch information. 4002 * Not changing system behavior. 4003 */ 4004 if ((flag & FWRITE) == 0) 4005 return (EPERM); 4006 4007 /* Core system ioctls. */ 4008 switch (cmd) { 4009 case ACPIIO_REQSLPSTATE: 4010 state = *(int *)addr; 4011 if (state != ACPI_STATE_S5) 4012 return (acpi_ReqSleepState(sc, state)); 4013 device_printf(sc->acpi_dev, "power off via acpi ioctl not supported\n"); 4014 error = EOPNOTSUPP; 4015 break; 4016 case ACPIIO_ACKSLPSTATE: 4017 error = *(int *)addr; 4018 error = acpi_AckSleepState(sc->acpi_clone, error); 4019 break; 4020 case ACPIIO_SETSLPSTATE: /* DEPRECATED */ 4021 state = *(int *)addr; 4022 if (state < ACPI_STATE_S0 || state > ACPI_S_STATES_MAX) 4023 return (EINVAL); 4024 if (!acpi_sleep_states[state]) 4025 return (EOPNOTSUPP); 4026 if (ACPI_FAILURE(acpi_SetSleepState(sc, state))) 4027 error = ENXIO; 4028 break; 4029 default: 4030 error = ENXIO; 4031 break; 4032 } 4033 4034 return (error); 4035 } 4036 4037 static int 4038 acpi_sname2sstate(const char *sname) 4039 { 4040 int sstate; 4041 4042 if (toupper(sname[0]) == 'S') { 4043 sstate = sname[1] - '0'; 4044 if (sstate >= ACPI_STATE_S0 && sstate <= ACPI_STATE_S5 && 4045 sname[2] == '\0') 4046 return (sstate); 4047 } else if (strcasecmp(sname, "NONE") == 0) 4048 return (ACPI_STATE_UNKNOWN); 4049 return (-1); 4050 } 4051 4052 static const char * 4053 acpi_sstate2sname(int sstate) 4054 { 4055 static const char *snames[] = { "S0", "S1", "S2", "S3", "S4", "S5" }; 4056 4057 if (sstate >= ACPI_STATE_S0 && sstate <= ACPI_STATE_S5) 4058 return (snames[sstate]); 4059 else if (sstate == ACPI_STATE_UNKNOWN) 4060 return ("NONE"); 4061 return (NULL); 4062 } 4063 4064 static int 4065 acpi_supported_sleep_state_sysctl(SYSCTL_HANDLER_ARGS) 4066 { 4067 int error; 4068 struct sbuf sb; 4069 UINT8 state; 4070 4071 sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND); 4072 for (state = ACPI_STATE_S1; state < ACPI_S_STATE_COUNT; state++) 4073 if (acpi_sleep_states[state]) 4074 sbuf_printf(&sb, "%s ", acpi_sstate2sname(state)); 4075 sbuf_trim(&sb); 4076 sbuf_finish(&sb); 4077 error = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req); 4078 sbuf_delete(&sb); 4079 return (error); 4080 } 4081 4082 static int 4083 acpi_sleep_state_sysctl(SYSCTL_HANDLER_ARGS) 4084 { 4085 char sleep_state[10]; 4086 int error, new_state, old_state; 4087 4088 old_state = *(int *)oidp->oid_arg1; 4089 strlcpy(sleep_state, acpi_sstate2sname(old_state), sizeof(sleep_state)); 4090 error = sysctl_handle_string(oidp, sleep_state, sizeof(sleep_state), req); 4091 if (error == 0 && req->newptr != NULL) { 4092 new_state = acpi_sname2sstate(sleep_state); 4093 if (new_state < ACPI_STATE_S1) 4094 return (EINVAL); 4095 if (new_state < ACPI_S_STATE_COUNT && !acpi_sleep_states[new_state]) 4096 return (EOPNOTSUPP); 4097 if (new_state != old_state) 4098 *(int *)oidp->oid_arg1 = new_state; 4099 } 4100 return (error); 4101 } 4102 4103 /* Inform devctl(4) when we receive a Notify. */ 4104 void 4105 acpi_UserNotify(const char *subsystem, ACPI_HANDLE h, uint8_t notify) 4106 { 4107 char notify_buf[16]; 4108 ACPI_BUFFER handle_buf; 4109 ACPI_STATUS status; 4110 4111 if (subsystem == NULL) 4112 return; 4113 4114 handle_buf.Pointer = NULL; 4115 handle_buf.Length = ACPI_ALLOCATE_BUFFER; 4116 status = AcpiNsHandleToPathname(h, &handle_buf, FALSE); 4117 if (ACPI_FAILURE(status)) 4118 return; 4119 snprintf(notify_buf, sizeof(notify_buf), "notify=0x%02x", notify); 4120 devctl_notify("ACPI", subsystem, handle_buf.Pointer, notify_buf); 4121 AcpiOsFree(handle_buf.Pointer); 4122 } 4123 4124 #ifdef ACPI_DEBUG 4125 /* 4126 * Support for parsing debug options from the kernel environment. 4127 * 4128 * Bits may be set in the AcpiDbgLayer and AcpiDbgLevel debug registers 4129 * by specifying the names of the bits in the debug.acpi.layer and 4130 * debug.acpi.level environment variables. Bits may be unset by 4131 * prefixing the bit name with !. 4132 */ 4133 struct debugtag 4134 { 4135 char *name; 4136 UINT32 value; 4137 }; 4138 4139 static struct debugtag dbg_layer[] = { 4140 {"ACPI_UTILITIES", ACPI_UTILITIES}, 4141 {"ACPI_HARDWARE", ACPI_HARDWARE}, 4142 {"ACPI_EVENTS", ACPI_EVENTS}, 4143 {"ACPI_TABLES", ACPI_TABLES}, 4144 {"ACPI_NAMESPACE", ACPI_NAMESPACE}, 4145 {"ACPI_PARSER", ACPI_PARSER}, 4146 {"ACPI_DISPATCHER", ACPI_DISPATCHER}, 4147 {"ACPI_EXECUTER", ACPI_EXECUTER}, 4148 {"ACPI_RESOURCES", ACPI_RESOURCES}, 4149 {"ACPI_CA_DEBUGGER", ACPI_CA_DEBUGGER}, 4150 {"ACPI_OS_SERVICES", ACPI_OS_SERVICES}, 4151 {"ACPI_CA_DISASSEMBLER", ACPI_CA_DISASSEMBLER}, 4152 {"ACPI_ALL_COMPONENTS", ACPI_ALL_COMPONENTS}, 4153 4154 {"ACPI_AC_ADAPTER", ACPI_AC_ADAPTER}, 4155 {"ACPI_BATTERY", ACPI_BATTERY}, 4156 {"ACPI_BUS", ACPI_BUS}, 4157 {"ACPI_BUTTON", ACPI_BUTTON}, 4158 {"ACPI_EC", ACPI_EC}, 4159 {"ACPI_FAN", ACPI_FAN}, 4160 {"ACPI_POWERRES", ACPI_POWERRES}, 4161 {"ACPI_PROCESSOR", ACPI_PROCESSOR}, 4162 {"ACPI_THERMAL", ACPI_THERMAL}, 4163 {"ACPI_TIMER", ACPI_TIMER}, 4164 {"ACPI_ALL_DRIVERS", ACPI_ALL_DRIVERS}, 4165 {NULL, 0} 4166 }; 4167 4168 static struct debugtag dbg_level[] = { 4169 {"ACPI_LV_INIT", ACPI_LV_INIT}, 4170 {"ACPI_LV_DEBUG_OBJECT", ACPI_LV_DEBUG_OBJECT}, 4171 {"ACPI_LV_INFO", ACPI_LV_INFO}, 4172 {"ACPI_LV_REPAIR", ACPI_LV_REPAIR}, 4173 {"ACPI_LV_ALL_EXCEPTIONS", ACPI_LV_ALL_EXCEPTIONS}, 4174 4175 /* Trace verbosity level 1 [Standard Trace Level] */ 4176 {"ACPI_LV_INIT_NAMES", ACPI_LV_INIT_NAMES}, 4177 {"ACPI_LV_PARSE", ACPI_LV_PARSE}, 4178 {"ACPI_LV_LOAD", ACPI_LV_LOAD}, 4179 {"ACPI_LV_DISPATCH", ACPI_LV_DISPATCH}, 4180 {"ACPI_LV_EXEC", ACPI_LV_EXEC}, 4181 {"ACPI_LV_NAMES", ACPI_LV_NAMES}, 4182 {"ACPI_LV_OPREGION", ACPI_LV_OPREGION}, 4183 {"ACPI_LV_BFIELD", ACPI_LV_BFIELD}, 4184 {"ACPI_LV_TABLES", ACPI_LV_TABLES}, 4185 {"ACPI_LV_VALUES", ACPI_LV_VALUES}, 4186 {"ACPI_LV_OBJECTS", ACPI_LV_OBJECTS}, 4187 {"ACPI_LV_RESOURCES", ACPI_LV_RESOURCES}, 4188 {"ACPI_LV_USER_REQUESTS", ACPI_LV_USER_REQUESTS}, 4189 {"ACPI_LV_PACKAGE", ACPI_LV_PACKAGE}, 4190 {"ACPI_LV_VERBOSITY1", ACPI_LV_VERBOSITY1}, 4191 4192 /* Trace verbosity level 2 [Function tracing and memory allocation] */ 4193 {"ACPI_LV_ALLOCATIONS", ACPI_LV_ALLOCATIONS}, 4194 {"ACPI_LV_FUNCTIONS", ACPI_LV_FUNCTIONS}, 4195 {"ACPI_LV_OPTIMIZATIONS", ACPI_LV_OPTIMIZATIONS}, 4196 {"ACPI_LV_VERBOSITY2", ACPI_LV_VERBOSITY2}, 4197 {"ACPI_LV_ALL", ACPI_LV_ALL}, 4198 4199 /* Trace verbosity level 3 [Threading, I/O, and Interrupts] */ 4200 {"ACPI_LV_MUTEX", ACPI_LV_MUTEX}, 4201 {"ACPI_LV_THREADS", ACPI_LV_THREADS}, 4202 {"ACPI_LV_IO", ACPI_LV_IO}, 4203 {"ACPI_LV_INTERRUPTS", ACPI_LV_INTERRUPTS}, 4204 {"ACPI_LV_VERBOSITY3", ACPI_LV_VERBOSITY3}, 4205 4206 /* Exceptionally verbose output -- also used in the global "DebugLevel" */ 4207 {"ACPI_LV_AML_DISASSEMBLE", ACPI_LV_AML_DISASSEMBLE}, 4208 {"ACPI_LV_VERBOSE_INFO", ACPI_LV_VERBOSE_INFO}, 4209 {"ACPI_LV_FULL_TABLES", ACPI_LV_FULL_TABLES}, 4210 {"ACPI_LV_EVENTS", ACPI_LV_EVENTS}, 4211 {"ACPI_LV_VERBOSE", ACPI_LV_VERBOSE}, 4212 {NULL, 0} 4213 }; 4214 4215 static void 4216 acpi_parse_debug(char *cp, struct debugtag *tag, UINT32 *flag) 4217 { 4218 char *ep; 4219 int i, l; 4220 int set; 4221 4222 while (*cp) { 4223 if (isspace(*cp)) { 4224 cp++; 4225 continue; 4226 } 4227 ep = cp; 4228 while (*ep && !isspace(*ep)) 4229 ep++; 4230 if (*cp == '!') { 4231 set = 0; 4232 cp++; 4233 if (cp == ep) 4234 continue; 4235 } else { 4236 set = 1; 4237 } 4238 l = ep - cp; 4239 for (i = 0; tag[i].name != NULL; i++) { 4240 if (!strncmp(cp, tag[i].name, l)) { 4241 if (set) 4242 *flag |= tag[i].value; 4243 else 4244 *flag &= ~tag[i].value; 4245 } 4246 } 4247 cp = ep; 4248 } 4249 } 4250 4251 static void 4252 acpi_set_debugging(void *junk) 4253 { 4254 char *layer, *level; 4255 4256 if (cold) { 4257 AcpiDbgLayer = 0; 4258 AcpiDbgLevel = 0; 4259 } 4260 4261 layer = kern_getenv("debug.acpi.layer"); 4262 level = kern_getenv("debug.acpi.level"); 4263 if (layer == NULL && level == NULL) 4264 return; 4265 4266 printf("ACPI set debug"); 4267 if (layer != NULL) { 4268 if (strcmp("NONE", layer) != 0) 4269 printf(" layer '%s'", layer); 4270 acpi_parse_debug(layer, &dbg_layer[0], &AcpiDbgLayer); 4271 freeenv(layer); 4272 } 4273 if (level != NULL) { 4274 if (strcmp("NONE", level) != 0) 4275 printf(" level '%s'", level); 4276 acpi_parse_debug(level, &dbg_level[0], &AcpiDbgLevel); 4277 freeenv(level); 4278 } 4279 printf("\n"); 4280 } 4281 4282 SYSINIT(acpi_debugging, SI_SUB_TUNABLES, SI_ORDER_ANY, acpi_set_debugging, 4283 NULL); 4284 4285 static int 4286 acpi_debug_sysctl(SYSCTL_HANDLER_ARGS) 4287 { 4288 int error, *dbg; 4289 struct debugtag *tag; 4290 struct sbuf sb; 4291 char temp[128]; 4292 4293 if (sbuf_new(&sb, NULL, 128, SBUF_AUTOEXTEND) == NULL) 4294 return (ENOMEM); 4295 if (strcmp(oidp->oid_arg1, "debug.acpi.layer") == 0) { 4296 tag = &dbg_layer[0]; 4297 dbg = &AcpiDbgLayer; 4298 } else { 4299 tag = &dbg_level[0]; 4300 dbg = &AcpiDbgLevel; 4301 } 4302 4303 /* Get old values if this is a get request. */ 4304 ACPI_SERIAL_BEGIN(acpi); 4305 if (*dbg == 0) { 4306 sbuf_cpy(&sb, "NONE"); 4307 } else if (req->newptr == NULL) { 4308 for (; tag->name != NULL; tag++) { 4309 if ((*dbg & tag->value) == tag->value) 4310 sbuf_printf(&sb, "%s ", tag->name); 4311 } 4312 } 4313 sbuf_trim(&sb); 4314 sbuf_finish(&sb); 4315 strlcpy(temp, sbuf_data(&sb), sizeof(temp)); 4316 sbuf_delete(&sb); 4317 4318 error = sysctl_handle_string(oidp, temp, sizeof(temp), req); 4319 4320 /* Check for error or no change */ 4321 if (error == 0 && req->newptr != NULL) { 4322 *dbg = 0; 4323 kern_setenv((char *)oidp->oid_arg1, temp); 4324 acpi_set_debugging(NULL); 4325 } 4326 ACPI_SERIAL_END(acpi); 4327 4328 return (error); 4329 } 4330 4331 SYSCTL_PROC(_debug_acpi, OID_AUTO, layer, 4332 CTLFLAG_RW | CTLTYPE_STRING | CTLFLAG_NEEDGIANT, "debug.acpi.layer", 0, 4333 acpi_debug_sysctl, "A", 4334 ""); 4335 SYSCTL_PROC(_debug_acpi, OID_AUTO, level, 4336 CTLFLAG_RW | CTLTYPE_STRING | CTLFLAG_NEEDGIANT, "debug.acpi.level", 0, 4337 acpi_debug_sysctl, "A", 4338 ""); 4339 #endif /* ACPI_DEBUG */ 4340 4341 static int 4342 acpi_debug_objects_sysctl(SYSCTL_HANDLER_ARGS) 4343 { 4344 int error; 4345 int old; 4346 4347 old = acpi_debug_objects; 4348 error = sysctl_handle_int(oidp, &acpi_debug_objects, 0, req); 4349 if (error != 0 || req->newptr == NULL) 4350 return (error); 4351 if (old == acpi_debug_objects || (old && acpi_debug_objects)) 4352 return (0); 4353 4354 ACPI_SERIAL_BEGIN(acpi); 4355 AcpiGbl_EnableAmlDebugObject = acpi_debug_objects ? TRUE : FALSE; 4356 ACPI_SERIAL_END(acpi); 4357 4358 return (0); 4359 } 4360 4361 static int 4362 acpi_parse_interfaces(char *str, struct acpi_interface *iface) 4363 { 4364 char *p; 4365 size_t len; 4366 int i, j; 4367 4368 p = str; 4369 while (isspace(*p) || *p == ',') 4370 p++; 4371 len = strlen(p); 4372 if (len == 0) 4373 return (0); 4374 p = strdup(p, M_TEMP); 4375 for (i = 0; i < len; i++) 4376 if (p[i] == ',') 4377 p[i] = '\0'; 4378 i = j = 0; 4379 while (i < len) 4380 if (isspace(p[i]) || p[i] == '\0') 4381 i++; 4382 else { 4383 i += strlen(p + i) + 1; 4384 j++; 4385 } 4386 if (j == 0) { 4387 free(p, M_TEMP); 4388 return (0); 4389 } 4390 iface->data = malloc(sizeof(*iface->data) * j, M_TEMP, M_WAITOK); 4391 iface->num = j; 4392 i = j = 0; 4393 while (i < len) 4394 if (isspace(p[i]) || p[i] == '\0') 4395 i++; 4396 else { 4397 iface->data[j] = p + i; 4398 i += strlen(p + i) + 1; 4399 j++; 4400 } 4401 4402 return (j); 4403 } 4404 4405 static void 4406 acpi_free_interfaces(struct acpi_interface *iface) 4407 { 4408 4409 free(iface->data[0], M_TEMP); 4410 free(iface->data, M_TEMP); 4411 } 4412 4413 static void 4414 acpi_reset_interfaces(device_t dev) 4415 { 4416 struct acpi_interface list; 4417 ACPI_STATUS status; 4418 int i; 4419 4420 if (acpi_parse_interfaces(acpi_install_interface, &list) > 0) { 4421 for (i = 0; i < list.num; i++) { 4422 status = AcpiInstallInterface(list.data[i]); 4423 if (ACPI_FAILURE(status)) 4424 device_printf(dev, 4425 "failed to install _OSI(\"%s\"): %s\n", 4426 list.data[i], AcpiFormatException(status)); 4427 else if (bootverbose) 4428 device_printf(dev, "installed _OSI(\"%s\")\n", 4429 list.data[i]); 4430 } 4431 acpi_free_interfaces(&list); 4432 } 4433 if (acpi_parse_interfaces(acpi_remove_interface, &list) > 0) { 4434 for (i = 0; i < list.num; i++) { 4435 status = AcpiRemoveInterface(list.data[i]); 4436 if (ACPI_FAILURE(status)) 4437 device_printf(dev, 4438 "failed to remove _OSI(\"%s\"): %s\n", 4439 list.data[i], AcpiFormatException(status)); 4440 else if (bootverbose) 4441 device_printf(dev, "removed _OSI(\"%s\")\n", 4442 list.data[i]); 4443 } 4444 acpi_free_interfaces(&list); 4445 } 4446 } 4447 4448 static int 4449 acpi_pm_func(u_long cmd, void *arg, ...) 4450 { 4451 int state, acpi_state; 4452 int error; 4453 struct acpi_softc *sc; 4454 va_list ap; 4455 4456 error = 0; 4457 switch (cmd) { 4458 case POWER_CMD_SUSPEND: 4459 sc = (struct acpi_softc *)arg; 4460 if (sc == NULL) { 4461 error = EINVAL; 4462 goto out; 4463 } 4464 4465 va_start(ap, arg); 4466 state = va_arg(ap, int); 4467 va_end(ap); 4468 4469 switch (state) { 4470 case POWER_SLEEP_STATE_STANDBY: 4471 acpi_state = sc->acpi_standby_sx; 4472 break; 4473 case POWER_SLEEP_STATE_SUSPEND: 4474 acpi_state = sc->acpi_suspend_sx; 4475 break; 4476 case POWER_SLEEP_STATE_HIBERNATE: 4477 acpi_state = ACPI_STATE_S4; 4478 break; 4479 default: 4480 error = EINVAL; 4481 goto out; 4482 } 4483 4484 if (ACPI_FAILURE(acpi_EnterSleepState(sc, acpi_state))) 4485 error = ENXIO; 4486 break; 4487 default: 4488 error = EINVAL; 4489 goto out; 4490 } 4491 4492 out: 4493 return (error); 4494 } 4495 4496 static void 4497 acpi_pm_register(void *arg) 4498 { 4499 if (!cold || resource_disabled("acpi", 0)) 4500 return; 4501 4502 power_pm_register(POWER_PM_TYPE_ACPI, acpi_pm_func, NULL); 4503 } 4504 4505 SYSINIT(power, SI_SUB_KLD, SI_ORDER_ANY, acpi_pm_register, NULL); 4506