1 /*- 2 * Copyright (c) 2000 Takanori Watanabe <takawata@jp.freebsd.org> 3 * Copyright (c) 2000 Mitsuru IWASAKI <iwasaki@jp.freebsd.org> 4 * Copyright (c) 2000, 2001 Michael Smith 5 * Copyright (c) 2000 BSDi 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include "opt_acpi.h" 34 #include <sys/param.h> 35 #include <sys/kernel.h> 36 #include <sys/proc.h> 37 #include <sys/fcntl.h> 38 #include <sys/malloc.h> 39 #include <sys/module.h> 40 #include <sys/bus.h> 41 #include <sys/conf.h> 42 #include <sys/ioccom.h> 43 #include <sys/reboot.h> 44 #include <sys/sysctl.h> 45 #include <sys/ctype.h> 46 #include <sys/linker.h> 47 #include <sys/power.h> 48 #include <sys/sbuf.h> 49 #ifdef SMP 50 #include <sys/sched.h> 51 #endif 52 #include <sys/smp.h> 53 #include <sys/timetc.h> 54 55 #if defined(__i386__) || defined(__amd64__) 56 #include <machine/pci_cfgreg.h> 57 #endif 58 #include <machine/resource.h> 59 #include <machine/bus.h> 60 #include <sys/rman.h> 61 #include <isa/isavar.h> 62 #include <isa/pnpvar.h> 63 64 #include <contrib/dev/acpica/include/acpi.h> 65 #include <contrib/dev/acpica/include/accommon.h> 66 #include <contrib/dev/acpica/include/acnamesp.h> 67 68 #include <dev/acpica/acpivar.h> 69 #include <dev/acpica/acpiio.h> 70 71 #include "pci_if.h" 72 #include <dev/pci/pcivar.h> 73 #include <dev/pci/pci_private.h> 74 75 #include <vm/vm_param.h> 76 77 MALLOC_DEFINE(M_ACPIDEV, "acpidev", "ACPI devices"); 78 79 /* Hooks for the ACPI CA debugging infrastructure */ 80 #define _COMPONENT ACPI_BUS 81 ACPI_MODULE_NAME("ACPI") 82 83 static d_open_t acpiopen; 84 static d_close_t acpiclose; 85 static d_ioctl_t acpiioctl; 86 87 static struct cdevsw acpi_cdevsw = { 88 .d_version = D_VERSION, 89 .d_open = acpiopen, 90 .d_close = acpiclose, 91 .d_ioctl = acpiioctl, 92 .d_name = "acpi", 93 }; 94 95 /* Global mutex for locking access to the ACPI subsystem. */ 96 struct mtx acpi_mutex; 97 98 /* Bitmap of device quirks. */ 99 int acpi_quirks; 100 101 /* Supported sleep states. */ 102 static BOOLEAN acpi_sleep_states[ACPI_S_STATE_COUNT]; 103 104 static int acpi_modevent(struct module *mod, int event, void *junk); 105 static int acpi_probe(device_t dev); 106 static int acpi_attach(device_t dev); 107 static int acpi_suspend(device_t dev); 108 static int acpi_resume(device_t dev); 109 static int acpi_shutdown(device_t dev); 110 static device_t acpi_add_child(device_t bus, int order, const char *name, 111 int unit); 112 static int acpi_print_child(device_t bus, device_t child); 113 static void acpi_probe_nomatch(device_t bus, device_t child); 114 static void acpi_driver_added(device_t dev, driver_t *driver); 115 static int acpi_read_ivar(device_t dev, device_t child, int index, 116 uintptr_t *result); 117 static int acpi_write_ivar(device_t dev, device_t child, int index, 118 uintptr_t value); 119 static struct resource_list *acpi_get_rlist(device_t dev, device_t child); 120 static int acpi_sysres_alloc(device_t dev); 121 static struct resource *acpi_alloc_resource(device_t bus, device_t child, 122 int type, int *rid, u_long start, u_long end, 123 u_long count, u_int flags); 124 static int acpi_release_resource(device_t bus, device_t child, int type, 125 int rid, struct resource *r); 126 static void acpi_delete_resource(device_t bus, device_t child, int type, 127 int rid); 128 static uint32_t acpi_isa_get_logicalid(device_t dev); 129 static int acpi_isa_get_compatid(device_t dev, uint32_t *cids, int count); 130 static char *acpi_device_id_probe(device_t bus, device_t dev, char **ids); 131 static ACPI_STATUS acpi_device_eval_obj(device_t bus, device_t dev, 132 ACPI_STRING pathname, ACPI_OBJECT_LIST *parameters, 133 ACPI_BUFFER *ret); 134 static int acpi_device_pwr_for_sleep(device_t bus, device_t dev, 135 int *dstate); 136 static ACPI_STATUS acpi_device_scan_cb(ACPI_HANDLE h, UINT32 level, 137 void *context, void **retval); 138 static ACPI_STATUS acpi_device_scan_children(device_t bus, device_t dev, 139 int max_depth, acpi_scan_cb_t user_fn, void *arg); 140 static int acpi_set_powerstate_method(device_t bus, device_t child, 141 int state); 142 static int acpi_isa_pnp_probe(device_t bus, device_t child, 143 struct isa_pnp_id *ids); 144 static void acpi_probe_children(device_t bus); 145 static void acpi_probe_order(ACPI_HANDLE handle, int *order); 146 static ACPI_STATUS acpi_probe_child(ACPI_HANDLE handle, UINT32 level, 147 void *context, void **status); 148 static BOOLEAN acpi_MatchHid(ACPI_HANDLE h, const char *hid); 149 static void acpi_sleep_enable(void *arg); 150 static ACPI_STATUS acpi_sleep_disable(struct acpi_softc *sc); 151 static ACPI_STATUS acpi_EnterSleepState(struct acpi_softc *sc, int state); 152 static void acpi_shutdown_final(void *arg, int howto); 153 static void acpi_enable_fixed_events(struct acpi_softc *sc); 154 static int acpi_wake_sleep_prep(ACPI_HANDLE handle, int sstate); 155 static int acpi_wake_run_prep(ACPI_HANDLE handle, int sstate); 156 static int acpi_wake_prep_walk(int sstate); 157 static int acpi_wake_sysctl_walk(device_t dev); 158 static int acpi_wake_set_sysctl(SYSCTL_HANDLER_ARGS); 159 static void acpi_system_eventhandler_sleep(void *arg, int state); 160 static void acpi_system_eventhandler_wakeup(void *arg, int state); 161 static int acpi_sname2sstate(const char *sname); 162 static const char *acpi_sstate2sname(int sstate); 163 static int acpi_supported_sleep_state_sysctl(SYSCTL_HANDLER_ARGS); 164 static int acpi_sleep_state_sysctl(SYSCTL_HANDLER_ARGS); 165 static int acpi_pm_func(u_long cmd, void *arg, ...); 166 static int acpi_child_location_str_method(device_t acdev, device_t child, 167 char *buf, size_t buflen); 168 static int acpi_child_pnpinfo_str_method(device_t acdev, device_t child, 169 char *buf, size_t buflen); 170 #if defined(__i386__) || defined(__amd64__) 171 static void acpi_enable_pcie(void); 172 #endif 173 static void acpi_hint_device_unit(device_t acdev, device_t child, 174 const char *name, int *unitp); 175 176 static device_method_t acpi_methods[] = { 177 /* Device interface */ 178 DEVMETHOD(device_probe, acpi_probe), 179 DEVMETHOD(device_attach, acpi_attach), 180 DEVMETHOD(device_shutdown, acpi_shutdown), 181 DEVMETHOD(device_detach, bus_generic_detach), 182 DEVMETHOD(device_suspend, acpi_suspend), 183 DEVMETHOD(device_resume, acpi_resume), 184 185 /* Bus interface */ 186 DEVMETHOD(bus_add_child, acpi_add_child), 187 DEVMETHOD(bus_print_child, acpi_print_child), 188 DEVMETHOD(bus_probe_nomatch, acpi_probe_nomatch), 189 DEVMETHOD(bus_driver_added, acpi_driver_added), 190 DEVMETHOD(bus_read_ivar, acpi_read_ivar), 191 DEVMETHOD(bus_write_ivar, acpi_write_ivar), 192 DEVMETHOD(bus_get_resource_list, acpi_get_rlist), 193 DEVMETHOD(bus_set_resource, bus_generic_rl_set_resource), 194 DEVMETHOD(bus_get_resource, bus_generic_rl_get_resource), 195 DEVMETHOD(bus_alloc_resource, acpi_alloc_resource), 196 DEVMETHOD(bus_release_resource, acpi_release_resource), 197 DEVMETHOD(bus_delete_resource, acpi_delete_resource), 198 DEVMETHOD(bus_child_pnpinfo_str, acpi_child_pnpinfo_str_method), 199 DEVMETHOD(bus_child_location_str, acpi_child_location_str_method), 200 DEVMETHOD(bus_activate_resource, bus_generic_activate_resource), 201 DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource), 202 DEVMETHOD(bus_setup_intr, bus_generic_setup_intr), 203 DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr), 204 DEVMETHOD(bus_hint_device_unit, acpi_hint_device_unit), 205 206 /* ACPI bus */ 207 DEVMETHOD(acpi_id_probe, acpi_device_id_probe), 208 DEVMETHOD(acpi_evaluate_object, acpi_device_eval_obj), 209 DEVMETHOD(acpi_pwr_for_sleep, acpi_device_pwr_for_sleep), 210 DEVMETHOD(acpi_scan_children, acpi_device_scan_children), 211 212 /* PCI emulation */ 213 DEVMETHOD(pci_set_powerstate, acpi_set_powerstate_method), 214 215 /* ISA emulation */ 216 DEVMETHOD(isa_pnp_probe, acpi_isa_pnp_probe), 217 218 {0, 0} 219 }; 220 221 static driver_t acpi_driver = { 222 "acpi", 223 acpi_methods, 224 sizeof(struct acpi_softc), 225 }; 226 227 static devclass_t acpi_devclass; 228 DRIVER_MODULE(acpi, nexus, acpi_driver, acpi_devclass, acpi_modevent, 0); 229 MODULE_VERSION(acpi, 1); 230 231 ACPI_SERIAL_DECL(acpi, "ACPI root bus"); 232 233 /* Local pools for managing system resources for ACPI child devices. */ 234 static struct rman acpi_rman_io, acpi_rman_mem; 235 236 #define ACPI_MINIMUM_AWAKETIME 5 237 238 /* Holds the description of the acpi0 device. */ 239 static char acpi_desc[ACPI_OEM_ID_SIZE + ACPI_OEM_TABLE_ID_SIZE + 2]; 240 241 SYSCTL_NODE(_debug, OID_AUTO, acpi, CTLFLAG_RD, NULL, "ACPI debugging"); 242 static char acpi_ca_version[12]; 243 SYSCTL_STRING(_debug_acpi, OID_AUTO, acpi_ca_version, CTLFLAG_RD, 244 acpi_ca_version, 0, "Version of Intel ACPI-CA"); 245 246 /* 247 * Allow override of whether methods execute in parallel or not. 248 * Enable this for serial behavior, which fixes "AE_ALREADY_EXISTS" 249 * errors for AML that really can't handle parallel method execution. 250 * It is off by default since this breaks recursive methods and 251 * some IBMs use such code. 252 */ 253 static int acpi_serialize_methods; 254 TUNABLE_INT("hw.acpi.serialize_methods", &acpi_serialize_methods); 255 256 /* Power devices off and on in suspend and resume. XXX Remove once tested. */ 257 static int acpi_do_powerstate = 1; 258 TUNABLE_INT("debug.acpi.do_powerstate", &acpi_do_powerstate); 259 SYSCTL_INT(_debug_acpi, OID_AUTO, do_powerstate, CTLFLAG_RW, 260 &acpi_do_powerstate, 1, "Turn off devices when suspending."); 261 262 /* Reset system clock while resuming. XXX Remove once tested. */ 263 static int acpi_reset_clock = 1; 264 TUNABLE_INT("debug.acpi.reset_clock", &acpi_reset_clock); 265 SYSCTL_INT(_debug_acpi, OID_AUTO, reset_clock, CTLFLAG_RW, 266 &acpi_reset_clock, 1, "Reset system clock while resuming."); 267 268 /* Allow users to override quirks. */ 269 TUNABLE_INT("debug.acpi.quirks", &acpi_quirks); 270 271 static int acpi_susp_bounce; 272 SYSCTL_INT(_debug_acpi, OID_AUTO, suspend_bounce, CTLFLAG_RW, 273 &acpi_susp_bounce, 0, "Don't actually suspend, just test devices."); 274 275 /* 276 * ACPI can only be loaded as a module by the loader; activating it after 277 * system bootstrap time is not useful, and can be fatal to the system. 278 * It also cannot be unloaded, since the entire system bus hierarchy hangs 279 * off it. 280 */ 281 static int 282 acpi_modevent(struct module *mod, int event, void *junk) 283 { 284 switch (event) { 285 case MOD_LOAD: 286 if (!cold) { 287 printf("The ACPI driver cannot be loaded after boot.\n"); 288 return (EPERM); 289 } 290 break; 291 case MOD_UNLOAD: 292 if (!cold && power_pm_get_type() == POWER_PM_TYPE_ACPI) 293 return (EBUSY); 294 break; 295 default: 296 break; 297 } 298 return (0); 299 } 300 301 /* 302 * Perform early initialization. 303 */ 304 ACPI_STATUS 305 acpi_Startup(void) 306 { 307 static int started = 0; 308 ACPI_STATUS status; 309 int val; 310 311 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 312 313 /* Only run the startup code once. The MADT driver also calls this. */ 314 if (started) 315 return_VALUE (AE_OK); 316 started = 1; 317 318 /* 319 * Pre-allocate space for RSDT/XSDT and DSDT tables and allow resizing 320 * if more tables exist. 321 */ 322 if (ACPI_FAILURE(status = AcpiInitializeTables(NULL, 2, TRUE))) { 323 printf("ACPI: Table initialisation failed: %s\n", 324 AcpiFormatException(status)); 325 return_VALUE (status); 326 } 327 328 /* Set up any quirks we have for this system. */ 329 if (acpi_quirks == ACPI_Q_OK) 330 acpi_table_quirks(&acpi_quirks); 331 332 /* If the user manually set the disabled hint to 0, force-enable ACPI. */ 333 if (resource_int_value("acpi", 0, "disabled", &val) == 0 && val == 0) 334 acpi_quirks &= ~ACPI_Q_BROKEN; 335 if (acpi_quirks & ACPI_Q_BROKEN) { 336 printf("ACPI disabled by blacklist. Contact your BIOS vendor.\n"); 337 status = AE_SUPPORT; 338 } 339 340 return_VALUE (status); 341 } 342 343 /* 344 * Detect ACPI and perform early initialisation. 345 */ 346 int 347 acpi_identify(void) 348 { 349 ACPI_TABLE_RSDP *rsdp; 350 ACPI_TABLE_HEADER *rsdt; 351 ACPI_PHYSICAL_ADDRESS paddr; 352 struct sbuf sb; 353 354 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 355 356 if (!cold) 357 return (ENXIO); 358 359 /* Check that we haven't been disabled with a hint. */ 360 if (resource_disabled("acpi", 0)) 361 return (ENXIO); 362 363 /* Check for other PM systems. */ 364 if (power_pm_get_type() != POWER_PM_TYPE_NONE && 365 power_pm_get_type() != POWER_PM_TYPE_ACPI) { 366 printf("ACPI identify failed, other PM system enabled.\n"); 367 return (ENXIO); 368 } 369 370 /* Initialize root tables. */ 371 if (ACPI_FAILURE(acpi_Startup())) { 372 printf("ACPI: Try disabling either ACPI or apic support.\n"); 373 return (ENXIO); 374 } 375 376 if ((paddr = AcpiOsGetRootPointer()) == 0 || 377 (rsdp = AcpiOsMapMemory(paddr, sizeof(ACPI_TABLE_RSDP))) == NULL) 378 return (ENXIO); 379 if (rsdp->Revision > 1 && rsdp->XsdtPhysicalAddress != 0) 380 paddr = (ACPI_PHYSICAL_ADDRESS)rsdp->XsdtPhysicalAddress; 381 else 382 paddr = (ACPI_PHYSICAL_ADDRESS)rsdp->RsdtPhysicalAddress; 383 AcpiOsUnmapMemory(rsdp, sizeof(ACPI_TABLE_RSDP)); 384 385 if ((rsdt = AcpiOsMapMemory(paddr, sizeof(ACPI_TABLE_HEADER))) == NULL) 386 return (ENXIO); 387 sbuf_new(&sb, acpi_desc, sizeof(acpi_desc), SBUF_FIXEDLEN); 388 sbuf_bcat(&sb, rsdt->OemId, ACPI_OEM_ID_SIZE); 389 sbuf_trim(&sb); 390 sbuf_putc(&sb, ' '); 391 sbuf_bcat(&sb, rsdt->OemTableId, ACPI_OEM_TABLE_ID_SIZE); 392 sbuf_trim(&sb); 393 sbuf_finish(&sb); 394 sbuf_delete(&sb); 395 AcpiOsUnmapMemory(rsdt, sizeof(ACPI_TABLE_HEADER)); 396 397 snprintf(acpi_ca_version, sizeof(acpi_ca_version), "%x", ACPI_CA_VERSION); 398 399 return (0); 400 } 401 402 /* 403 * Fetch some descriptive data from ACPI to put in our attach message. 404 */ 405 static int 406 acpi_probe(device_t dev) 407 { 408 409 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 410 411 device_set_desc(dev, acpi_desc); 412 413 return_VALUE (0); 414 } 415 416 static int 417 acpi_attach(device_t dev) 418 { 419 struct acpi_softc *sc; 420 ACPI_STATUS status; 421 int error, state; 422 UINT32 flags; 423 UINT8 TypeA, TypeB; 424 char *env; 425 426 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 427 428 sc = device_get_softc(dev); 429 sc->acpi_dev = dev; 430 callout_init(&sc->susp_force_to, TRUE); 431 432 error = ENXIO; 433 434 /* Initialize resource manager. */ 435 acpi_rman_io.rm_type = RMAN_ARRAY; 436 acpi_rman_io.rm_start = 0; 437 acpi_rman_io.rm_end = 0xffff; 438 acpi_rman_io.rm_descr = "ACPI I/O ports"; 439 if (rman_init(&acpi_rman_io) != 0) 440 panic("acpi rman_init IO ports failed"); 441 acpi_rman_mem.rm_type = RMAN_ARRAY; 442 acpi_rman_mem.rm_start = 0; 443 acpi_rman_mem.rm_end = ~0ul; 444 acpi_rman_mem.rm_descr = "ACPI I/O memory addresses"; 445 if (rman_init(&acpi_rman_mem) != 0) 446 panic("acpi rman_init memory failed"); 447 448 /* Initialise the ACPI mutex */ 449 mtx_init(&acpi_mutex, "ACPI global lock", NULL, MTX_DEF); 450 451 /* 452 * Set the globals from our tunables. This is needed because ACPI-CA 453 * uses UINT8 for some values and we have no tunable_byte. 454 */ 455 AcpiGbl_AllMethodsSerialized = acpi_serialize_methods; 456 AcpiGbl_EnableInterpreterSlack = TRUE; 457 458 /* Start up the ACPI CA subsystem. */ 459 status = AcpiInitializeSubsystem(); 460 if (ACPI_FAILURE(status)) { 461 device_printf(dev, "Could not initialize Subsystem: %s\n", 462 AcpiFormatException(status)); 463 goto out; 464 } 465 466 /* Load ACPI name space. */ 467 status = AcpiLoadTables(); 468 if (ACPI_FAILURE(status)) { 469 device_printf(dev, "Could not load Namespace: %s\n", 470 AcpiFormatException(status)); 471 goto out; 472 } 473 474 #if defined(__i386__) || defined(__amd64__) 475 /* Handle MCFG table if present. */ 476 acpi_enable_pcie(); 477 #endif 478 479 /* Install the default address space handlers. */ 480 status = AcpiInstallAddressSpaceHandler(ACPI_ROOT_OBJECT, 481 ACPI_ADR_SPACE_SYSTEM_MEMORY, ACPI_DEFAULT_HANDLER, NULL, NULL); 482 if (ACPI_FAILURE(status)) { 483 device_printf(dev, "Could not initialise SystemMemory handler: %s\n", 484 AcpiFormatException(status)); 485 goto out; 486 } 487 status = AcpiInstallAddressSpaceHandler(ACPI_ROOT_OBJECT, 488 ACPI_ADR_SPACE_SYSTEM_IO, ACPI_DEFAULT_HANDLER, NULL, NULL); 489 if (ACPI_FAILURE(status)) { 490 device_printf(dev, "Could not initialise SystemIO handler: %s\n", 491 AcpiFormatException(status)); 492 goto out; 493 } 494 status = AcpiInstallAddressSpaceHandler(ACPI_ROOT_OBJECT, 495 ACPI_ADR_SPACE_PCI_CONFIG, ACPI_DEFAULT_HANDLER, NULL, NULL); 496 if (ACPI_FAILURE(status)) { 497 device_printf(dev, "could not initialise PciConfig handler: %s\n", 498 AcpiFormatException(status)); 499 goto out; 500 } 501 502 /* 503 * Note that some systems (specifically, those with namespace evaluation 504 * issues that require the avoidance of parts of the namespace) must 505 * avoid running _INI and _STA on everything, as well as dodging the final 506 * object init pass. 507 * 508 * For these devices, we set ACPI_NO_DEVICE_INIT and ACPI_NO_OBJECT_INIT). 509 * 510 * XXX We should arrange for the object init pass after we have attached 511 * all our child devices, but on many systems it works here. 512 */ 513 flags = 0; 514 if (testenv("debug.acpi.avoid")) 515 flags = ACPI_NO_DEVICE_INIT | ACPI_NO_OBJECT_INIT; 516 517 /* Bring the hardware and basic handlers online. */ 518 if (ACPI_FAILURE(status = AcpiEnableSubsystem(flags))) { 519 device_printf(dev, "Could not enable ACPI: %s\n", 520 AcpiFormatException(status)); 521 goto out; 522 } 523 524 /* 525 * Call the ECDT probe function to provide EC functionality before 526 * the namespace has been evaluated. 527 * 528 * XXX This happens before the sysresource devices have been probed and 529 * attached so its resources come from nexus0. In practice, this isn't 530 * a problem but should be addressed eventually. 531 */ 532 acpi_ec_ecdt_probe(dev); 533 534 /* Bring device objects and regions online. */ 535 if (ACPI_FAILURE(status = AcpiInitializeObjects(flags))) { 536 device_printf(dev, "Could not initialize ACPI objects: %s\n", 537 AcpiFormatException(status)); 538 goto out; 539 } 540 541 /* 542 * Setup our sysctl tree. 543 * 544 * XXX: This doesn't check to make sure that none of these fail. 545 */ 546 sysctl_ctx_init(&sc->acpi_sysctl_ctx); 547 sc->acpi_sysctl_tree = SYSCTL_ADD_NODE(&sc->acpi_sysctl_ctx, 548 SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO, 549 device_get_name(dev), CTLFLAG_RD, 0, ""); 550 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 551 OID_AUTO, "supported_sleep_state", CTLTYPE_STRING | CTLFLAG_RD, 552 0, 0, acpi_supported_sleep_state_sysctl, "A", ""); 553 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 554 OID_AUTO, "power_button_state", CTLTYPE_STRING | CTLFLAG_RW, 555 &sc->acpi_power_button_sx, 0, acpi_sleep_state_sysctl, "A", ""); 556 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 557 OID_AUTO, "sleep_button_state", CTLTYPE_STRING | CTLFLAG_RW, 558 &sc->acpi_sleep_button_sx, 0, acpi_sleep_state_sysctl, "A", ""); 559 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 560 OID_AUTO, "lid_switch_state", CTLTYPE_STRING | CTLFLAG_RW, 561 &sc->acpi_lid_switch_sx, 0, acpi_sleep_state_sysctl, "A", ""); 562 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 563 OID_AUTO, "standby_state", CTLTYPE_STRING | CTLFLAG_RW, 564 &sc->acpi_standby_sx, 0, acpi_sleep_state_sysctl, "A", ""); 565 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 566 OID_AUTO, "suspend_state", CTLTYPE_STRING | CTLFLAG_RW, 567 &sc->acpi_suspend_sx, 0, acpi_sleep_state_sysctl, "A", ""); 568 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 569 OID_AUTO, "sleep_delay", CTLFLAG_RW, &sc->acpi_sleep_delay, 0, 570 "sleep delay"); 571 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 572 OID_AUTO, "s4bios", CTLFLAG_RW, &sc->acpi_s4bios, 0, "S4BIOS mode"); 573 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 574 OID_AUTO, "verbose", CTLFLAG_RW, &sc->acpi_verbose, 0, "verbose mode"); 575 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 576 OID_AUTO, "disable_on_reboot", CTLFLAG_RW, 577 &sc->acpi_do_disable, 0, "Disable ACPI when rebooting/halting system"); 578 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 579 OID_AUTO, "handle_reboot", CTLFLAG_RW, 580 &sc->acpi_handle_reboot, 0, "Use ACPI Reset Register to reboot"); 581 582 /* 583 * Default to 1 second before sleeping to give some machines time to 584 * stabilize. 585 */ 586 sc->acpi_sleep_delay = 1; 587 if (bootverbose) 588 sc->acpi_verbose = 1; 589 if ((env = getenv("hw.acpi.verbose")) != NULL) { 590 if (strcmp(env, "0") != 0) 591 sc->acpi_verbose = 1; 592 freeenv(env); 593 } 594 595 /* Only enable S4BIOS by default if the FACS says it is available. */ 596 if (AcpiGbl_FACS->Flags & ACPI_FACS_S4_BIOS_PRESENT) 597 sc->acpi_s4bios = 1; 598 599 /* Probe all supported sleep states. */ 600 acpi_sleep_states[ACPI_STATE_S0] = TRUE; 601 for (state = ACPI_STATE_S1; state < ACPI_S_STATE_COUNT; state++) 602 if (ACPI_SUCCESS(AcpiGetSleepTypeData(state, &TypeA, &TypeB))) 603 acpi_sleep_states[state] = TRUE; 604 605 /* 606 * Dispatch the default sleep state to devices. The lid switch is set 607 * to UNKNOWN by default to avoid surprising users. 608 */ 609 sc->acpi_power_button_sx = acpi_sleep_states[ACPI_STATE_S5] ? 610 ACPI_STATE_S5 : ACPI_STATE_UNKNOWN; 611 sc->acpi_lid_switch_sx = ACPI_STATE_UNKNOWN; 612 sc->acpi_standby_sx = acpi_sleep_states[ACPI_STATE_S1] ? 613 ACPI_STATE_S1 : ACPI_STATE_UNKNOWN; 614 sc->acpi_suspend_sx = acpi_sleep_states[ACPI_STATE_S3] ? 615 ACPI_STATE_S3 : ACPI_STATE_UNKNOWN; 616 617 /* Pick the first valid sleep state for the sleep button default. */ 618 sc->acpi_sleep_button_sx = ACPI_STATE_UNKNOWN; 619 for (state = ACPI_STATE_S1; state <= ACPI_STATE_S4; state++) 620 if (acpi_sleep_states[state]) { 621 sc->acpi_sleep_button_sx = state; 622 break; 623 } 624 625 acpi_enable_fixed_events(sc); 626 627 /* 628 * Scan the namespace and attach/initialise children. 629 */ 630 631 /* Register our shutdown handler. */ 632 EVENTHANDLER_REGISTER(shutdown_final, acpi_shutdown_final, sc, 633 SHUTDOWN_PRI_LAST); 634 635 /* 636 * Register our acpi event handlers. 637 * XXX should be configurable eg. via userland policy manager. 638 */ 639 EVENTHANDLER_REGISTER(acpi_sleep_event, acpi_system_eventhandler_sleep, 640 sc, ACPI_EVENT_PRI_LAST); 641 EVENTHANDLER_REGISTER(acpi_wakeup_event, acpi_system_eventhandler_wakeup, 642 sc, ACPI_EVENT_PRI_LAST); 643 644 /* Flag our initial states. */ 645 sc->acpi_enabled = TRUE; 646 sc->acpi_sstate = ACPI_STATE_S0; 647 sc->acpi_sleep_disabled = TRUE; 648 649 /* Create the control device */ 650 sc->acpi_dev_t = make_dev(&acpi_cdevsw, 0, UID_ROOT, GID_WHEEL, 0644, 651 "acpi"); 652 sc->acpi_dev_t->si_drv1 = sc; 653 654 if ((error = acpi_machdep_init(dev))) 655 goto out; 656 657 /* Register ACPI again to pass the correct argument of pm_func. */ 658 power_pm_register(POWER_PM_TYPE_ACPI, acpi_pm_func, sc); 659 660 if (!acpi_disabled("bus")) 661 acpi_probe_children(dev); 662 663 /* Allow sleep request after a while. */ 664 timeout(acpi_sleep_enable, sc, hz * ACPI_MINIMUM_AWAKETIME); 665 666 error = 0; 667 668 out: 669 return_VALUE (error); 670 } 671 672 static int 673 acpi_suspend(device_t dev) 674 { 675 device_t child, *devlist; 676 int error, i, numdevs, pstate; 677 678 GIANT_REQUIRED; 679 680 /* First give child devices a chance to suspend. */ 681 error = bus_generic_suspend(dev); 682 if (error) 683 return (error); 684 685 /* 686 * Now, set them into the appropriate power state, usually D3. If the 687 * device has an _SxD method for the next sleep state, use that power 688 * state instead. 689 */ 690 error = device_get_children(dev, &devlist, &numdevs); 691 if (error) 692 return (error); 693 for (i = 0; i < numdevs; i++) { 694 /* If the device is not attached, we've powered it down elsewhere. */ 695 child = devlist[i]; 696 if (!device_is_attached(child)) 697 continue; 698 699 /* 700 * Default to D3 for all sleep states. The _SxD method is optional 701 * so set the powerstate even if it's absent. 702 */ 703 pstate = PCI_POWERSTATE_D3; 704 error = acpi_device_pwr_for_sleep(device_get_parent(child), 705 child, &pstate); 706 if ((error == 0 || error == ESRCH) && acpi_do_powerstate) 707 pci_set_powerstate(child, pstate); 708 } 709 free(devlist, M_TEMP); 710 error = 0; 711 712 return (error); 713 } 714 715 static int 716 acpi_resume(device_t dev) 717 { 718 ACPI_HANDLE handle; 719 int i, numdevs, error; 720 device_t child, *devlist; 721 722 GIANT_REQUIRED; 723 724 /* 725 * Put all devices in D0 before resuming them. Call _S0D on each one 726 * since some systems expect this. 727 */ 728 error = device_get_children(dev, &devlist, &numdevs); 729 if (error) 730 return (error); 731 for (i = 0; i < numdevs; i++) { 732 child = devlist[i]; 733 handle = acpi_get_handle(child); 734 if (handle) 735 AcpiEvaluateObject(handle, "_S0D", NULL, NULL); 736 if (device_is_attached(child) && acpi_do_powerstate) 737 pci_set_powerstate(child, PCI_POWERSTATE_D0); 738 } 739 free(devlist, M_TEMP); 740 741 return (bus_generic_resume(dev)); 742 } 743 744 static int 745 acpi_shutdown(device_t dev) 746 { 747 748 GIANT_REQUIRED; 749 750 /* Allow children to shutdown first. */ 751 bus_generic_shutdown(dev); 752 753 /* 754 * Enable any GPEs that are able to power-on the system (i.e., RTC). 755 * Also, disable any that are not valid for this state (most). 756 */ 757 acpi_wake_prep_walk(ACPI_STATE_S5); 758 759 return (0); 760 } 761 762 /* 763 * Handle a new device being added 764 */ 765 static device_t 766 acpi_add_child(device_t bus, int order, const char *name, int unit) 767 { 768 struct acpi_device *ad; 769 device_t child; 770 771 if ((ad = malloc(sizeof(*ad), M_ACPIDEV, M_NOWAIT | M_ZERO)) == NULL) 772 return (NULL); 773 774 resource_list_init(&ad->ad_rl); 775 776 child = device_add_child_ordered(bus, order, name, unit); 777 if (child != NULL) 778 device_set_ivars(child, ad); 779 else 780 free(ad, M_ACPIDEV); 781 return (child); 782 } 783 784 static int 785 acpi_print_child(device_t bus, device_t child) 786 { 787 struct acpi_device *adev = device_get_ivars(child); 788 struct resource_list *rl = &adev->ad_rl; 789 int retval = 0; 790 791 retval += bus_print_child_header(bus, child); 792 retval += resource_list_print_type(rl, "port", SYS_RES_IOPORT, "%#lx"); 793 retval += resource_list_print_type(rl, "iomem", SYS_RES_MEMORY, "%#lx"); 794 retval += resource_list_print_type(rl, "irq", SYS_RES_IRQ, "%ld"); 795 retval += resource_list_print_type(rl, "drq", SYS_RES_DRQ, "%ld"); 796 if (device_get_flags(child)) 797 retval += printf(" flags %#x", device_get_flags(child)); 798 retval += bus_print_child_footer(bus, child); 799 800 return (retval); 801 } 802 803 /* 804 * If this device is an ACPI child but no one claimed it, attempt 805 * to power it off. We'll power it back up when a driver is added. 806 * 807 * XXX Disabled for now since many necessary devices (like fdc and 808 * ATA) don't claim the devices we created for them but still expect 809 * them to be powered up. 810 */ 811 static void 812 acpi_probe_nomatch(device_t bus, device_t child) 813 { 814 #ifdef ACPI_ENABLE_POWERDOWN_NODRIVER 815 pci_set_powerstate(child, PCI_POWERSTATE_D3); 816 #endif 817 } 818 819 /* 820 * If a new driver has a chance to probe a child, first power it up. 821 * 822 * XXX Disabled for now (see acpi_probe_nomatch for details). 823 */ 824 static void 825 acpi_driver_added(device_t dev, driver_t *driver) 826 { 827 device_t child, *devlist; 828 int i, numdevs; 829 830 DEVICE_IDENTIFY(driver, dev); 831 if (device_get_children(dev, &devlist, &numdevs)) 832 return; 833 for (i = 0; i < numdevs; i++) { 834 child = devlist[i]; 835 if (device_get_state(child) == DS_NOTPRESENT) { 836 #ifdef ACPI_ENABLE_POWERDOWN_NODRIVER 837 pci_set_powerstate(child, PCI_POWERSTATE_D0); 838 if (device_probe_and_attach(child) != 0) 839 pci_set_powerstate(child, PCI_POWERSTATE_D3); 840 #else 841 device_probe_and_attach(child); 842 #endif 843 } 844 } 845 free(devlist, M_TEMP); 846 } 847 848 /* Location hint for devctl(8) */ 849 static int 850 acpi_child_location_str_method(device_t cbdev, device_t child, char *buf, 851 size_t buflen) 852 { 853 struct acpi_device *dinfo = device_get_ivars(child); 854 855 if (dinfo->ad_handle) 856 snprintf(buf, buflen, "handle=%s", acpi_name(dinfo->ad_handle)); 857 else 858 snprintf(buf, buflen, "unknown"); 859 return (0); 860 } 861 862 /* PnP information for devctl(8) */ 863 static int 864 acpi_child_pnpinfo_str_method(device_t cbdev, device_t child, char *buf, 865 size_t buflen) 866 { 867 struct acpi_device *dinfo = device_get_ivars(child); 868 ACPI_DEVICE_INFO *adinfo; 869 870 if (ACPI_FAILURE(AcpiGetObjectInfo(dinfo->ad_handle, &adinfo))) { 871 snprintf(buf, buflen, "unknown"); 872 return (0); 873 } 874 875 snprintf(buf, buflen, "_HID=%s _UID=%lu", 876 (adinfo->Valid & ACPI_VALID_HID) ? 877 adinfo->HardwareId.String : "none", 878 (adinfo->Valid & ACPI_VALID_UID) ? 879 strtoul(adinfo->UniqueId.String, NULL, 10) : 0UL); 880 AcpiOsFree(adinfo); 881 882 return (0); 883 } 884 885 /* 886 * Handle per-device ivars 887 */ 888 static int 889 acpi_read_ivar(device_t dev, device_t child, int index, uintptr_t *result) 890 { 891 struct acpi_device *ad; 892 893 if ((ad = device_get_ivars(child)) == NULL) { 894 device_printf(child, "device has no ivars\n"); 895 return (ENOENT); 896 } 897 898 /* ACPI and ISA compatibility ivars */ 899 switch(index) { 900 case ACPI_IVAR_HANDLE: 901 *(ACPI_HANDLE *)result = ad->ad_handle; 902 break; 903 case ACPI_IVAR_PRIVATE: 904 *(void **)result = ad->ad_private; 905 break; 906 case ACPI_IVAR_FLAGS: 907 *(int *)result = ad->ad_flags; 908 break; 909 case ISA_IVAR_VENDORID: 910 case ISA_IVAR_SERIAL: 911 case ISA_IVAR_COMPATID: 912 *(int *)result = -1; 913 break; 914 case ISA_IVAR_LOGICALID: 915 *(int *)result = acpi_isa_get_logicalid(child); 916 break; 917 default: 918 return (ENOENT); 919 } 920 921 return (0); 922 } 923 924 static int 925 acpi_write_ivar(device_t dev, device_t child, int index, uintptr_t value) 926 { 927 struct acpi_device *ad; 928 929 if ((ad = device_get_ivars(child)) == NULL) { 930 device_printf(child, "device has no ivars\n"); 931 return (ENOENT); 932 } 933 934 switch(index) { 935 case ACPI_IVAR_HANDLE: 936 ad->ad_handle = (ACPI_HANDLE)value; 937 break; 938 case ACPI_IVAR_PRIVATE: 939 ad->ad_private = (void *)value; 940 break; 941 case ACPI_IVAR_FLAGS: 942 ad->ad_flags = (int)value; 943 break; 944 default: 945 panic("bad ivar write request (%d)", index); 946 return (ENOENT); 947 } 948 949 return (0); 950 } 951 952 /* 953 * Handle child resource allocation/removal 954 */ 955 static struct resource_list * 956 acpi_get_rlist(device_t dev, device_t child) 957 { 958 struct acpi_device *ad; 959 960 ad = device_get_ivars(child); 961 return (&ad->ad_rl); 962 } 963 964 static int 965 acpi_match_resource_hint(device_t dev, int type, long value) 966 { 967 struct acpi_device *ad = device_get_ivars(dev); 968 struct resource_list *rl = &ad->ad_rl; 969 struct resource_list_entry *rle; 970 971 STAILQ_FOREACH(rle, rl, link) { 972 if (rle->type != type) 973 continue; 974 if (rle->start <= value && rle->end >= value) 975 return (1); 976 } 977 return (0); 978 } 979 980 /* 981 * Wire device unit numbers based on resource matches in hints. 982 */ 983 static void 984 acpi_hint_device_unit(device_t acdev, device_t child, const char *name, 985 int *unitp) 986 { 987 const char *s; 988 long value; 989 int line, matches, unit; 990 991 /* 992 * Iterate over all the hints for the devices with the specified 993 * name to see if one's resources are a subset of this device. 994 */ 995 line = 0; 996 for (;;) { 997 if (resource_find_dev(&line, name, &unit, "at", NULL) != 0) 998 break; 999 1000 /* Must have an "at" for acpi or isa. */ 1001 resource_string_value(name, unit, "at", &s); 1002 if (!(strcmp(s, "acpi0") == 0 || strcmp(s, "acpi") == 0 || 1003 strcmp(s, "isa0") == 0 || strcmp(s, "isa") == 0)) 1004 continue; 1005 1006 /* 1007 * Check for matching resources. We must have at least one match. 1008 * Since I/O and memory resources cannot be shared, if we get a 1009 * match on either of those, ignore any mismatches in IRQs or DRQs. 1010 * 1011 * XXX: We may want to revisit this to be more lenient and wire 1012 * as long as it gets one match. 1013 */ 1014 matches = 0; 1015 if (resource_long_value(name, unit, "port", &value) == 0) { 1016 /* 1017 * Floppy drive controllers are notorious for having a 1018 * wide variety of resources not all of which include the 1019 * first port that is specified by the hint (typically 1020 * 0x3f0) (see the comment above fdc_isa_alloc_resources() 1021 * in fdc_isa.c). However, they do all seem to include 1022 * port + 2 (e.g. 0x3f2) so for a floppy device, look for 1023 * 'value + 2' in the port resources instead of the hint 1024 * value. 1025 */ 1026 if (strcmp(name, "fdc") == 0) 1027 value += 2; 1028 if (acpi_match_resource_hint(child, SYS_RES_IOPORT, value)) 1029 matches++; 1030 else 1031 continue; 1032 } 1033 if (resource_long_value(name, unit, "maddr", &value) == 0) { 1034 if (acpi_match_resource_hint(child, SYS_RES_MEMORY, value)) 1035 matches++; 1036 else 1037 continue; 1038 } 1039 if (matches > 0) 1040 goto matched; 1041 if (resource_long_value(name, unit, "irq", &value) == 0) { 1042 if (acpi_match_resource_hint(child, SYS_RES_IRQ, value)) 1043 matches++; 1044 else 1045 continue; 1046 } 1047 if (resource_long_value(name, unit, "drq", &value) == 0) { 1048 if (acpi_match_resource_hint(child, SYS_RES_DRQ, value)) 1049 matches++; 1050 else 1051 continue; 1052 } 1053 1054 matched: 1055 if (matches > 0) { 1056 /* We have a winner! */ 1057 *unitp = unit; 1058 break; 1059 } 1060 } 1061 } 1062 1063 /* 1064 * Pre-allocate/manage all memory and IO resources. Since rman can't handle 1065 * duplicates, we merge any in the sysresource attach routine. 1066 */ 1067 static int 1068 acpi_sysres_alloc(device_t dev) 1069 { 1070 struct resource *res; 1071 struct resource_list *rl; 1072 struct resource_list_entry *rle; 1073 struct rman *rm; 1074 char *sysres_ids[] = { "PNP0C01", "PNP0C02", NULL }; 1075 device_t *children; 1076 int child_count, i; 1077 1078 /* 1079 * Probe/attach any sysresource devices. This would be unnecessary if we 1080 * had multi-pass probe/attach. 1081 */ 1082 if (device_get_children(dev, &children, &child_count) != 0) 1083 return (ENXIO); 1084 for (i = 0; i < child_count; i++) { 1085 if (ACPI_ID_PROBE(dev, children[i], sysres_ids) != NULL) 1086 device_probe_and_attach(children[i]); 1087 } 1088 free(children, M_TEMP); 1089 1090 rl = BUS_GET_RESOURCE_LIST(device_get_parent(dev), dev); 1091 STAILQ_FOREACH(rle, rl, link) { 1092 if (rle->res != NULL) { 1093 device_printf(dev, "duplicate resource for %lx\n", rle->start); 1094 continue; 1095 } 1096 1097 /* Only memory and IO resources are valid here. */ 1098 switch (rle->type) { 1099 case SYS_RES_IOPORT: 1100 rm = &acpi_rman_io; 1101 break; 1102 case SYS_RES_MEMORY: 1103 rm = &acpi_rman_mem; 1104 break; 1105 default: 1106 continue; 1107 } 1108 1109 /* Pre-allocate resource and add to our rman pool. */ 1110 res = BUS_ALLOC_RESOURCE(device_get_parent(dev), dev, rle->type, 1111 &rle->rid, rle->start, rle->start + rle->count - 1, rle->count, 0); 1112 if (res != NULL) { 1113 rman_manage_region(rm, rman_get_start(res), rman_get_end(res)); 1114 rle->res = res; 1115 } else 1116 device_printf(dev, "reservation of %lx, %lx (%d) failed\n", 1117 rle->start, rle->count, rle->type); 1118 } 1119 return (0); 1120 } 1121 1122 static struct resource * 1123 acpi_alloc_resource(device_t bus, device_t child, int type, int *rid, 1124 u_long start, u_long end, u_long count, u_int flags) 1125 { 1126 ACPI_RESOURCE ares; 1127 struct acpi_device *ad = device_get_ivars(child); 1128 struct resource_list *rl = &ad->ad_rl; 1129 struct resource_list_entry *rle; 1130 struct resource *res; 1131 struct rman *rm; 1132 1133 res = NULL; 1134 1135 /* We only handle memory and IO resources through rman. */ 1136 switch (type) { 1137 case SYS_RES_IOPORT: 1138 rm = &acpi_rman_io; 1139 break; 1140 case SYS_RES_MEMORY: 1141 rm = &acpi_rman_mem; 1142 break; 1143 default: 1144 rm = NULL; 1145 } 1146 1147 ACPI_SERIAL_BEGIN(acpi); 1148 1149 /* 1150 * If this is an allocation of the "default" range for a given RID, and 1151 * we know what the resources for this device are (i.e., they're on the 1152 * child's resource list), use those start/end values. 1153 */ 1154 if (bus == device_get_parent(child) && start == 0UL && end == ~0UL) { 1155 rle = resource_list_find(rl, type, *rid); 1156 if (rle == NULL) 1157 goto out; 1158 start = rle->start; 1159 end = rle->end; 1160 count = rle->count; 1161 } 1162 1163 /* 1164 * If this is an allocation of a specific range, see if we can satisfy 1165 * the request from our system resource regions. If we can't, pass the 1166 * request up to the parent. 1167 */ 1168 if (start + count - 1 == end && rm != NULL) 1169 res = rman_reserve_resource(rm, start, end, count, flags & ~RF_ACTIVE, 1170 child); 1171 if (res == NULL) { 1172 res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, type, rid, 1173 start, end, count, flags); 1174 } else { 1175 rman_set_rid(res, *rid); 1176 1177 /* If requested, activate the resource using the parent's method. */ 1178 if (flags & RF_ACTIVE) 1179 if (bus_activate_resource(child, type, *rid, res) != 0) { 1180 rman_release_resource(res); 1181 res = NULL; 1182 goto out; 1183 } 1184 } 1185 1186 if (res != NULL && device_get_parent(child) == bus) 1187 switch (type) { 1188 case SYS_RES_IRQ: 1189 /* 1190 * Since bus_config_intr() takes immediate effect, we cannot 1191 * configure the interrupt associated with a device when we 1192 * parse the resources but have to defer it until a driver 1193 * actually allocates the interrupt via bus_alloc_resource(). 1194 * 1195 * XXX: Should we handle the lookup failing? 1196 */ 1197 if (ACPI_SUCCESS(acpi_lookup_irq_resource(child, *rid, res, &ares))) 1198 acpi_config_intr(child, &ares); 1199 break; 1200 } 1201 1202 out: 1203 ACPI_SERIAL_END(acpi); 1204 return (res); 1205 } 1206 1207 static int 1208 acpi_release_resource(device_t bus, device_t child, int type, int rid, 1209 struct resource *r) 1210 { 1211 struct rman *rm; 1212 int ret; 1213 1214 /* We only handle memory and IO resources through rman. */ 1215 switch (type) { 1216 case SYS_RES_IOPORT: 1217 rm = &acpi_rman_io; 1218 break; 1219 case SYS_RES_MEMORY: 1220 rm = &acpi_rman_mem; 1221 break; 1222 default: 1223 rm = NULL; 1224 } 1225 1226 ACPI_SERIAL_BEGIN(acpi); 1227 1228 /* 1229 * If this resource belongs to one of our internal managers, 1230 * deactivate it and release it to the local pool. If it doesn't, 1231 * pass this request up to the parent. 1232 */ 1233 if (rm != NULL && rman_is_region_manager(r, rm)) { 1234 if (rman_get_flags(r) & RF_ACTIVE) { 1235 ret = bus_deactivate_resource(child, type, rid, r); 1236 if (ret != 0) 1237 goto out; 1238 } 1239 ret = rman_release_resource(r); 1240 } else 1241 ret = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, type, rid, r); 1242 1243 out: 1244 ACPI_SERIAL_END(acpi); 1245 return (ret); 1246 } 1247 1248 static void 1249 acpi_delete_resource(device_t bus, device_t child, int type, int rid) 1250 { 1251 struct resource_list *rl; 1252 1253 rl = acpi_get_rlist(bus, child); 1254 resource_list_delete(rl, type, rid); 1255 } 1256 1257 /* Allocate an IO port or memory resource, given its GAS. */ 1258 int 1259 acpi_bus_alloc_gas(device_t dev, int *type, int *rid, ACPI_GENERIC_ADDRESS *gas, 1260 struct resource **res, u_int flags) 1261 { 1262 int error, res_type; 1263 1264 error = ENOMEM; 1265 if (type == NULL || rid == NULL || gas == NULL || res == NULL) 1266 return (EINVAL); 1267 1268 /* We only support memory and IO spaces. */ 1269 switch (gas->SpaceId) { 1270 case ACPI_ADR_SPACE_SYSTEM_MEMORY: 1271 res_type = SYS_RES_MEMORY; 1272 break; 1273 case ACPI_ADR_SPACE_SYSTEM_IO: 1274 res_type = SYS_RES_IOPORT; 1275 break; 1276 default: 1277 return (EOPNOTSUPP); 1278 } 1279 1280 /* 1281 * If the register width is less than 8, assume the BIOS author means 1282 * it is a bit field and just allocate a byte. 1283 */ 1284 if (gas->BitWidth && gas->BitWidth < 8) 1285 gas->BitWidth = 8; 1286 1287 /* Validate the address after we're sure we support the space. */ 1288 if (gas->Address == 0 || gas->BitWidth == 0) 1289 return (EINVAL); 1290 1291 bus_set_resource(dev, res_type, *rid, gas->Address, 1292 gas->BitWidth / 8); 1293 *res = bus_alloc_resource_any(dev, res_type, rid, RF_ACTIVE | flags); 1294 if (*res != NULL) { 1295 *type = res_type; 1296 error = 0; 1297 } else 1298 bus_delete_resource(dev, res_type, *rid); 1299 1300 return (error); 1301 } 1302 1303 /* Probe _HID and _CID for compatible ISA PNP ids. */ 1304 static uint32_t 1305 acpi_isa_get_logicalid(device_t dev) 1306 { 1307 ACPI_DEVICE_INFO *devinfo; 1308 ACPI_HANDLE h; 1309 uint32_t pnpid; 1310 1311 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1312 1313 /* Fetch and validate the HID. */ 1314 if ((h = acpi_get_handle(dev)) == NULL || 1315 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 1316 return_VALUE (0); 1317 1318 pnpid = (devinfo->Valid & ACPI_VALID_HID) != 0 && 1319 devinfo->HardwareId.Length >= ACPI_EISAID_STRING_SIZE ? 1320 PNP_EISAID(devinfo->HardwareId.String) : 0; 1321 AcpiOsFree(devinfo); 1322 1323 return_VALUE (pnpid); 1324 } 1325 1326 static int 1327 acpi_isa_get_compatid(device_t dev, uint32_t *cids, int count) 1328 { 1329 ACPI_DEVICE_INFO *devinfo; 1330 ACPI_DEVICE_ID *ids; 1331 ACPI_HANDLE h; 1332 uint32_t *pnpid; 1333 int i, valid; 1334 1335 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1336 1337 pnpid = cids; 1338 1339 /* Fetch and validate the CID */ 1340 if ((h = acpi_get_handle(dev)) == NULL || 1341 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 1342 return_VALUE (0); 1343 1344 if ((devinfo->Valid & ACPI_VALID_CID) == 0) { 1345 AcpiOsFree(devinfo); 1346 return_VALUE (0); 1347 } 1348 1349 if (devinfo->CompatibleIdList.Count < count) 1350 count = devinfo->CompatibleIdList.Count; 1351 ids = devinfo->CompatibleIdList.Ids; 1352 for (i = 0, valid = 0; i < count; i++) 1353 if (ids[i].Length >= ACPI_EISAID_STRING_SIZE && 1354 strncmp(ids[i].String, "PNP", 3) == 0) { 1355 *pnpid++ = PNP_EISAID(ids[i].String); 1356 valid++; 1357 } 1358 AcpiOsFree(devinfo); 1359 1360 return_VALUE (valid); 1361 } 1362 1363 static char * 1364 acpi_device_id_probe(device_t bus, device_t dev, char **ids) 1365 { 1366 ACPI_HANDLE h; 1367 ACPI_OBJECT_TYPE t; 1368 int i; 1369 1370 h = acpi_get_handle(dev); 1371 if (ids == NULL || h == NULL) 1372 return (NULL); 1373 t = acpi_get_type(dev); 1374 if (t != ACPI_TYPE_DEVICE && t != ACPI_TYPE_PROCESSOR) 1375 return (NULL); 1376 1377 /* Try to match one of the array of IDs with a HID or CID. */ 1378 for (i = 0; ids[i] != NULL; i++) { 1379 if (acpi_MatchHid(h, ids[i])) 1380 return (ids[i]); 1381 } 1382 return (NULL); 1383 } 1384 1385 static ACPI_STATUS 1386 acpi_device_eval_obj(device_t bus, device_t dev, ACPI_STRING pathname, 1387 ACPI_OBJECT_LIST *parameters, ACPI_BUFFER *ret) 1388 { 1389 ACPI_HANDLE h; 1390 1391 if (dev == NULL) 1392 h = ACPI_ROOT_OBJECT; 1393 else if ((h = acpi_get_handle(dev)) == NULL) 1394 return (AE_BAD_PARAMETER); 1395 return (AcpiEvaluateObject(h, pathname, parameters, ret)); 1396 } 1397 1398 static int 1399 acpi_device_pwr_for_sleep(device_t bus, device_t dev, int *dstate) 1400 { 1401 struct acpi_softc *sc; 1402 ACPI_HANDLE handle; 1403 ACPI_STATUS status; 1404 char sxd[8]; 1405 int error; 1406 1407 sc = device_get_softc(bus); 1408 handle = acpi_get_handle(dev); 1409 1410 /* 1411 * XXX If we find these devices, don't try to power them down. 1412 * The serial and IRDA ports on my T23 hang the system when 1413 * set to D3 and it appears that such legacy devices may 1414 * need special handling in their drivers. 1415 */ 1416 if (handle == NULL || 1417 acpi_MatchHid(handle, "PNP0500") || 1418 acpi_MatchHid(handle, "PNP0501") || 1419 acpi_MatchHid(handle, "PNP0502") || 1420 acpi_MatchHid(handle, "PNP0510") || 1421 acpi_MatchHid(handle, "PNP0511")) 1422 return (ENXIO); 1423 1424 /* 1425 * Override next state with the value from _SxD, if present. If no 1426 * dstate argument was provided, don't fetch the return value. 1427 */ 1428 snprintf(sxd, sizeof(sxd), "_S%dD", sc->acpi_sstate); 1429 if (dstate) 1430 status = acpi_GetInteger(handle, sxd, dstate); 1431 else 1432 status = AcpiEvaluateObject(handle, sxd, NULL, NULL); 1433 1434 switch (status) { 1435 case AE_OK: 1436 error = 0; 1437 break; 1438 case AE_NOT_FOUND: 1439 error = ESRCH; 1440 break; 1441 default: 1442 error = ENXIO; 1443 break; 1444 } 1445 1446 return (error); 1447 } 1448 1449 /* Callback arg for our implementation of walking the namespace. */ 1450 struct acpi_device_scan_ctx { 1451 acpi_scan_cb_t user_fn; 1452 void *arg; 1453 ACPI_HANDLE parent; 1454 }; 1455 1456 static ACPI_STATUS 1457 acpi_device_scan_cb(ACPI_HANDLE h, UINT32 level, void *arg, void **retval) 1458 { 1459 struct acpi_device_scan_ctx *ctx; 1460 device_t dev, old_dev; 1461 ACPI_STATUS status; 1462 ACPI_OBJECT_TYPE type; 1463 1464 /* 1465 * Skip this device if we think we'll have trouble with it or it is 1466 * the parent where the scan began. 1467 */ 1468 ctx = (struct acpi_device_scan_ctx *)arg; 1469 if (acpi_avoid(h) || h == ctx->parent) 1470 return (AE_OK); 1471 1472 /* If this is not a valid device type (e.g., a method), skip it. */ 1473 if (ACPI_FAILURE(AcpiGetType(h, &type))) 1474 return (AE_OK); 1475 if (type != ACPI_TYPE_DEVICE && type != ACPI_TYPE_PROCESSOR && 1476 type != ACPI_TYPE_THERMAL && type != ACPI_TYPE_POWER) 1477 return (AE_OK); 1478 1479 /* 1480 * Call the user function with the current device. If it is unchanged 1481 * afterwards, return. Otherwise, we update the handle to the new dev. 1482 */ 1483 old_dev = acpi_get_device(h); 1484 dev = old_dev; 1485 status = ctx->user_fn(h, &dev, level, ctx->arg); 1486 if (ACPI_FAILURE(status) || old_dev == dev) 1487 return (status); 1488 1489 /* Remove the old child and its connection to the handle. */ 1490 if (old_dev != NULL) { 1491 device_delete_child(device_get_parent(old_dev), old_dev); 1492 AcpiDetachData(h, acpi_fake_objhandler); 1493 } 1494 1495 /* Recreate the handle association if the user created a device. */ 1496 if (dev != NULL) 1497 AcpiAttachData(h, acpi_fake_objhandler, dev); 1498 1499 return (AE_OK); 1500 } 1501 1502 static ACPI_STATUS 1503 acpi_device_scan_children(device_t bus, device_t dev, int max_depth, 1504 acpi_scan_cb_t user_fn, void *arg) 1505 { 1506 ACPI_HANDLE h; 1507 struct acpi_device_scan_ctx ctx; 1508 1509 if (acpi_disabled("children")) 1510 return (AE_OK); 1511 1512 if (dev == NULL) 1513 h = ACPI_ROOT_OBJECT; 1514 else if ((h = acpi_get_handle(dev)) == NULL) 1515 return (AE_BAD_PARAMETER); 1516 ctx.user_fn = user_fn; 1517 ctx.arg = arg; 1518 ctx.parent = h; 1519 return (AcpiWalkNamespace(ACPI_TYPE_ANY, h, max_depth, 1520 acpi_device_scan_cb, NULL, &ctx, NULL)); 1521 } 1522 1523 /* 1524 * Even though ACPI devices are not PCI, we use the PCI approach for setting 1525 * device power states since it's close enough to ACPI. 1526 */ 1527 static int 1528 acpi_set_powerstate_method(device_t bus, device_t child, int state) 1529 { 1530 ACPI_HANDLE h; 1531 ACPI_STATUS status; 1532 int error; 1533 1534 error = 0; 1535 h = acpi_get_handle(child); 1536 if (state < ACPI_STATE_D0 || state > ACPI_D_STATES_MAX) 1537 return (EINVAL); 1538 if (h == NULL) 1539 return (0); 1540 1541 /* Ignore errors if the power methods aren't present. */ 1542 status = acpi_pwr_switch_consumer(h, state); 1543 if (ACPI_FAILURE(status) && status != AE_NOT_FOUND 1544 && status != AE_BAD_PARAMETER) 1545 device_printf(bus, "failed to set ACPI power state D%d on %s: %s\n", 1546 state, acpi_name(h), AcpiFormatException(status)); 1547 1548 return (error); 1549 } 1550 1551 static int 1552 acpi_isa_pnp_probe(device_t bus, device_t child, struct isa_pnp_id *ids) 1553 { 1554 int result, cid_count, i; 1555 uint32_t lid, cids[8]; 1556 1557 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1558 1559 /* 1560 * ISA-style drivers attached to ACPI may persist and 1561 * probe manually if we return ENOENT. We never want 1562 * that to happen, so don't ever return it. 1563 */ 1564 result = ENXIO; 1565 1566 /* Scan the supplied IDs for a match */ 1567 lid = acpi_isa_get_logicalid(child); 1568 cid_count = acpi_isa_get_compatid(child, cids, 8); 1569 while (ids && ids->ip_id) { 1570 if (lid == ids->ip_id) { 1571 result = 0; 1572 goto out; 1573 } 1574 for (i = 0; i < cid_count; i++) { 1575 if (cids[i] == ids->ip_id) { 1576 result = 0; 1577 goto out; 1578 } 1579 } 1580 ids++; 1581 } 1582 1583 out: 1584 if (result == 0 && ids->ip_desc) 1585 device_set_desc(child, ids->ip_desc); 1586 1587 return_VALUE (result); 1588 } 1589 1590 #if defined(__i386__) || defined(__amd64__) 1591 /* 1592 * Look for a MCFG table. If it is present, use the settings for 1593 * domain (segment) 0 to setup PCI config space access via the memory 1594 * map. 1595 */ 1596 static void 1597 acpi_enable_pcie(void) 1598 { 1599 ACPI_TABLE_HEADER *hdr; 1600 ACPI_MCFG_ALLOCATION *alloc, *end; 1601 ACPI_STATUS status; 1602 1603 status = AcpiGetTable(ACPI_SIG_MCFG, 1, &hdr); 1604 if (ACPI_FAILURE(status)) 1605 return; 1606 1607 end = (ACPI_MCFG_ALLOCATION *)((char *)hdr + hdr->Length); 1608 alloc = (ACPI_MCFG_ALLOCATION *)((ACPI_TABLE_MCFG *)hdr + 1); 1609 while (alloc < end) { 1610 if (alloc->PciSegment == 0) { 1611 pcie_cfgregopen(alloc->Address, alloc->StartBusNumber, 1612 alloc->EndBusNumber); 1613 return; 1614 } 1615 alloc++; 1616 } 1617 } 1618 #endif 1619 1620 /* 1621 * Scan all of the ACPI namespace and attach child devices. 1622 * 1623 * We should only expect to find devices in the \_PR, \_TZ, \_SI, and 1624 * \_SB scopes, and \_PR and \_TZ became obsolete in the ACPI 2.0 spec. 1625 * However, in violation of the spec, some systems place their PCI link 1626 * devices in \, so we have to walk the whole namespace. We check the 1627 * type of namespace nodes, so this should be ok. 1628 */ 1629 static void 1630 acpi_probe_children(device_t bus) 1631 { 1632 1633 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1634 1635 /* 1636 * Scan the namespace and insert placeholders for all the devices that 1637 * we find. We also probe/attach any early devices. 1638 * 1639 * Note that we use AcpiWalkNamespace rather than AcpiGetDevices because 1640 * we want to create nodes for all devices, not just those that are 1641 * currently present. (This assumes that we don't want to create/remove 1642 * devices as they appear, which might be smarter.) 1643 */ 1644 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "namespace scan\n")); 1645 AcpiWalkNamespace(ACPI_TYPE_ANY, ACPI_ROOT_OBJECT, 100, acpi_probe_child, 1646 NULL, bus, NULL); 1647 1648 /* Pre-allocate resources for our rman from any sysresource devices. */ 1649 acpi_sysres_alloc(bus); 1650 1651 /* Create any static children by calling device identify methods. */ 1652 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "device identify routines\n")); 1653 bus_generic_probe(bus); 1654 1655 /* Probe/attach all children, created staticly and from the namespace. */ 1656 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "first bus_generic_attach\n")); 1657 bus_generic_attach(bus); 1658 1659 /* 1660 * Some of these children may have attached others as part of their attach 1661 * process (eg. the root PCI bus driver), so rescan. 1662 */ 1663 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "second bus_generic_attach\n")); 1664 bus_generic_attach(bus); 1665 1666 /* Attach wake sysctls. */ 1667 acpi_wake_sysctl_walk(bus); 1668 1669 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "done attaching children\n")); 1670 return_VOID; 1671 } 1672 1673 /* 1674 * Determine the probe order for a given device. 1675 */ 1676 static void 1677 acpi_probe_order(ACPI_HANDLE handle, int *order) 1678 { 1679 ACPI_OBJECT_TYPE type; 1680 1681 /* 1682 * 1. I/O port and memory system resource holders 1683 * 2. Embedded controllers (to handle early accesses) 1684 * 3. PCI Link Devices 1685 * 100000. CPUs 1686 */ 1687 AcpiGetType(handle, &type); 1688 if (acpi_MatchHid(handle, "PNP0C01") || acpi_MatchHid(handle, "PNP0C02")) 1689 *order = 1; 1690 else if (acpi_MatchHid(handle, "PNP0C09")) 1691 *order = 2; 1692 else if (acpi_MatchHid(handle, "PNP0C0F")) 1693 *order = 3; 1694 else if (type == ACPI_TYPE_PROCESSOR) 1695 *order = 100000; 1696 } 1697 1698 /* 1699 * Evaluate a child device and determine whether we might attach a device to 1700 * it. 1701 */ 1702 static ACPI_STATUS 1703 acpi_probe_child(ACPI_HANDLE handle, UINT32 level, void *context, void **status) 1704 { 1705 ACPI_OBJECT_TYPE type; 1706 ACPI_HANDLE h; 1707 device_t bus, child; 1708 int order; 1709 char *handle_str, **search; 1710 static char *scopes[] = {"\\_PR_", "\\_TZ_", "\\_SI_", "\\_SB_", NULL}; 1711 1712 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1713 1714 /* Skip this device if we think we'll have trouble with it. */ 1715 if (acpi_avoid(handle)) 1716 return_ACPI_STATUS (AE_OK); 1717 1718 bus = (device_t)context; 1719 if (ACPI_SUCCESS(AcpiGetType(handle, &type))) { 1720 switch (type) { 1721 case ACPI_TYPE_DEVICE: 1722 case ACPI_TYPE_PROCESSOR: 1723 case ACPI_TYPE_THERMAL: 1724 case ACPI_TYPE_POWER: 1725 if (acpi_disabled("children")) 1726 break; 1727 1728 /* 1729 * Since we scan from \, be sure to skip system scope objects. 1730 * At least \_SB and \_TZ are detected as devices (ACPI-CA bug?) 1731 */ 1732 handle_str = acpi_name(handle); 1733 for (search = scopes; *search != NULL; search++) { 1734 if (strcmp(handle_str, *search) == 0) 1735 break; 1736 } 1737 if (*search != NULL) 1738 break; 1739 1740 /* 1741 * Create a placeholder device for this node. Sort the 1742 * placeholder so that the probe/attach passes will run 1743 * breadth-first. Orders less than ACPI_DEV_BASE_ORDER 1744 * are reserved for special objects (i.e., system 1745 * resources). CPU devices have a very high order to 1746 * ensure they are probed after other devices. 1747 */ 1748 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "scanning '%s'\n", handle_str)); 1749 order = level * 10 + 100; 1750 acpi_probe_order(handle, &order); 1751 child = BUS_ADD_CHILD(bus, order, NULL, -1); 1752 if (child == NULL) 1753 break; 1754 1755 /* Associate the handle with the device_t and vice versa. */ 1756 acpi_set_handle(child, handle); 1757 AcpiAttachData(handle, acpi_fake_objhandler, child); 1758 1759 /* 1760 * Check that the device is present. If it's not present, 1761 * leave it disabled (so that we have a device_t attached to 1762 * the handle, but we don't probe it). 1763 * 1764 * XXX PCI link devices sometimes report "present" but not 1765 * "functional" (i.e. if disabled). Go ahead and probe them 1766 * anyway since we may enable them later. 1767 */ 1768 if (type == ACPI_TYPE_DEVICE && !acpi_DeviceIsPresent(child)) { 1769 /* Never disable PCI link devices. */ 1770 if (acpi_MatchHid(handle, "PNP0C0F")) 1771 break; 1772 /* 1773 * Docking stations should remain enabled since the system 1774 * may be undocked at boot. 1775 */ 1776 if (ACPI_SUCCESS(AcpiGetHandle(handle, "_DCK", &h))) 1777 break; 1778 1779 device_disable(child); 1780 break; 1781 } 1782 1783 /* 1784 * Get the device's resource settings and attach them. 1785 * Note that if the device has _PRS but no _CRS, we need 1786 * to decide when it's appropriate to try to configure the 1787 * device. Ignore the return value here; it's OK for the 1788 * device not to have any resources. 1789 */ 1790 acpi_parse_resources(child, handle, &acpi_res_parse_set, NULL); 1791 break; 1792 } 1793 } 1794 1795 return_ACPI_STATUS (AE_OK); 1796 } 1797 1798 /* 1799 * AcpiAttachData() requires an object handler but never uses it. This is a 1800 * placeholder object handler so we can store a device_t in an ACPI_HANDLE. 1801 */ 1802 void 1803 acpi_fake_objhandler(ACPI_HANDLE h, void *data) 1804 { 1805 } 1806 1807 static void 1808 acpi_shutdown_final(void *arg, int howto) 1809 { 1810 struct acpi_softc *sc = (struct acpi_softc *)arg; 1811 ACPI_STATUS status; 1812 1813 /* 1814 * XXX Shutdown code should only run on the BSP (cpuid 0). 1815 * Some chipsets do not power off the system correctly if called from 1816 * an AP. 1817 */ 1818 if ((howto & RB_POWEROFF) != 0) { 1819 status = AcpiEnterSleepStatePrep(ACPI_STATE_S5); 1820 if (ACPI_FAILURE(status)) { 1821 device_printf(sc->acpi_dev, "AcpiEnterSleepStatePrep failed - %s\n", 1822 AcpiFormatException(status)); 1823 return; 1824 } 1825 device_printf(sc->acpi_dev, "Powering system off\n"); 1826 ACPI_DISABLE_IRQS(); 1827 status = AcpiEnterSleepState(ACPI_STATE_S5); 1828 if (ACPI_FAILURE(status)) 1829 device_printf(sc->acpi_dev, "power-off failed - %s\n", 1830 AcpiFormatException(status)); 1831 else { 1832 DELAY(1000000); 1833 device_printf(sc->acpi_dev, "power-off failed - timeout\n"); 1834 } 1835 } else if ((howto & RB_HALT) == 0 && 1836 (AcpiGbl_FADT.Flags & ACPI_FADT_RESET_REGISTER) && 1837 sc->acpi_handle_reboot) { 1838 /* Reboot using the reset register. */ 1839 status = AcpiWrite( 1840 AcpiGbl_FADT.ResetValue, &AcpiGbl_FADT.ResetRegister); 1841 if (ACPI_FAILURE(status)) 1842 device_printf(sc->acpi_dev, "reset failed - %s\n", 1843 AcpiFormatException(status)); 1844 else { 1845 DELAY(1000000); 1846 device_printf(sc->acpi_dev, "reset failed - timeout\n"); 1847 } 1848 } else if (sc->acpi_do_disable && panicstr == NULL) { 1849 /* 1850 * Only disable ACPI if the user requested. On some systems, writing 1851 * the disable value to SMI_CMD hangs the system. 1852 */ 1853 device_printf(sc->acpi_dev, "Shutting down\n"); 1854 AcpiTerminate(); 1855 } 1856 } 1857 1858 static void 1859 acpi_enable_fixed_events(struct acpi_softc *sc) 1860 { 1861 static int first_time = 1; 1862 1863 /* Enable and clear fixed events and install handlers. */ 1864 if ((AcpiGbl_FADT.Flags & ACPI_FADT_POWER_BUTTON) == 0) { 1865 AcpiClearEvent(ACPI_EVENT_POWER_BUTTON); 1866 AcpiInstallFixedEventHandler(ACPI_EVENT_POWER_BUTTON, 1867 acpi_event_power_button_sleep, sc); 1868 if (first_time) 1869 device_printf(sc->acpi_dev, "Power Button (fixed)\n"); 1870 } 1871 if ((AcpiGbl_FADT.Flags & ACPI_FADT_SLEEP_BUTTON) == 0) { 1872 AcpiClearEvent(ACPI_EVENT_SLEEP_BUTTON); 1873 AcpiInstallFixedEventHandler(ACPI_EVENT_SLEEP_BUTTON, 1874 acpi_event_sleep_button_sleep, sc); 1875 if (first_time) 1876 device_printf(sc->acpi_dev, "Sleep Button (fixed)\n"); 1877 } 1878 1879 first_time = 0; 1880 } 1881 1882 /* 1883 * Returns true if the device is actually present and should 1884 * be attached to. This requires the present, enabled, UI-visible 1885 * and diagnostics-passed bits to be set. 1886 */ 1887 BOOLEAN 1888 acpi_DeviceIsPresent(device_t dev) 1889 { 1890 ACPI_DEVICE_INFO *devinfo; 1891 ACPI_HANDLE h; 1892 BOOLEAN present; 1893 1894 if ((h = acpi_get_handle(dev)) == NULL || 1895 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 1896 return (FALSE); 1897 1898 /* If no _STA method, must be present */ 1899 present = (devinfo->Valid & ACPI_VALID_STA) == 0 || 1900 ACPI_DEVICE_PRESENT(devinfo->CurrentStatus) ? TRUE : FALSE; 1901 1902 AcpiOsFree(devinfo); 1903 return (present); 1904 } 1905 1906 /* 1907 * Returns true if the battery is actually present and inserted. 1908 */ 1909 BOOLEAN 1910 acpi_BatteryIsPresent(device_t dev) 1911 { 1912 ACPI_DEVICE_INFO *devinfo; 1913 ACPI_HANDLE h; 1914 BOOLEAN present; 1915 1916 if ((h = acpi_get_handle(dev)) == NULL || 1917 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 1918 return (FALSE); 1919 1920 /* If no _STA method, must be present */ 1921 present = (devinfo->Valid & ACPI_VALID_STA) == 0 || 1922 ACPI_BATTERY_PRESENT(devinfo->CurrentStatus) ? TRUE : FALSE; 1923 1924 AcpiOsFree(devinfo); 1925 return (present); 1926 } 1927 1928 /* 1929 * Match a HID string against a handle 1930 */ 1931 static BOOLEAN 1932 acpi_MatchHid(ACPI_HANDLE h, const char *hid) 1933 { 1934 ACPI_DEVICE_INFO *devinfo; 1935 BOOLEAN ret; 1936 int i; 1937 1938 if (hid == NULL || h == NULL || 1939 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 1940 return (FALSE); 1941 1942 ret = FALSE; 1943 if ((devinfo->Valid & ACPI_VALID_HID) != 0 && 1944 strcmp(hid, devinfo->HardwareId.String) == 0) 1945 ret = TRUE; 1946 else if ((devinfo->Valid & ACPI_VALID_CID) != 0) 1947 for (i = 0; i < devinfo->CompatibleIdList.Count; i++) { 1948 if (strcmp(hid, devinfo->CompatibleIdList.Ids[i].String) == 0) { 1949 ret = TRUE; 1950 break; 1951 } 1952 } 1953 1954 AcpiOsFree(devinfo); 1955 return (ret); 1956 } 1957 1958 /* 1959 * Return the handle of a named object within our scope, ie. that of (parent) 1960 * or one if its parents. 1961 */ 1962 ACPI_STATUS 1963 acpi_GetHandleInScope(ACPI_HANDLE parent, char *path, ACPI_HANDLE *result) 1964 { 1965 ACPI_HANDLE r; 1966 ACPI_STATUS status; 1967 1968 /* Walk back up the tree to the root */ 1969 for (;;) { 1970 status = AcpiGetHandle(parent, path, &r); 1971 if (ACPI_SUCCESS(status)) { 1972 *result = r; 1973 return (AE_OK); 1974 } 1975 /* XXX Return error here? */ 1976 if (status != AE_NOT_FOUND) 1977 return (AE_OK); 1978 if (ACPI_FAILURE(AcpiGetParent(parent, &r))) 1979 return (AE_NOT_FOUND); 1980 parent = r; 1981 } 1982 } 1983 1984 /* Find the difference between two PM tick counts. */ 1985 uint32_t 1986 acpi_TimerDelta(uint32_t end, uint32_t start) 1987 { 1988 uint32_t delta; 1989 1990 if (end >= start) 1991 delta = end - start; 1992 else if (AcpiGbl_FADT.Flags & ACPI_FADT_32BIT_TIMER) 1993 delta = ((0xFFFFFFFF - start) + end + 1); 1994 else 1995 delta = ((0x00FFFFFF - start) + end + 1) & 0x00FFFFFF; 1996 return (delta); 1997 } 1998 1999 /* 2000 * Allocate a buffer with a preset data size. 2001 */ 2002 ACPI_BUFFER * 2003 acpi_AllocBuffer(int size) 2004 { 2005 ACPI_BUFFER *buf; 2006 2007 if ((buf = malloc(size + sizeof(*buf), M_ACPIDEV, M_NOWAIT)) == NULL) 2008 return (NULL); 2009 buf->Length = size; 2010 buf->Pointer = (void *)(buf + 1); 2011 return (buf); 2012 } 2013 2014 ACPI_STATUS 2015 acpi_SetInteger(ACPI_HANDLE handle, char *path, UINT32 number) 2016 { 2017 ACPI_OBJECT arg1; 2018 ACPI_OBJECT_LIST args; 2019 2020 arg1.Type = ACPI_TYPE_INTEGER; 2021 arg1.Integer.Value = number; 2022 args.Count = 1; 2023 args.Pointer = &arg1; 2024 2025 return (AcpiEvaluateObject(handle, path, &args, NULL)); 2026 } 2027 2028 /* 2029 * Evaluate a path that should return an integer. 2030 */ 2031 ACPI_STATUS 2032 acpi_GetInteger(ACPI_HANDLE handle, char *path, UINT32 *number) 2033 { 2034 ACPI_STATUS status; 2035 ACPI_BUFFER buf; 2036 ACPI_OBJECT param; 2037 2038 if (handle == NULL) 2039 handle = ACPI_ROOT_OBJECT; 2040 2041 /* 2042 * Assume that what we've been pointed at is an Integer object, or 2043 * a method that will return an Integer. 2044 */ 2045 buf.Pointer = ¶m; 2046 buf.Length = sizeof(param); 2047 status = AcpiEvaluateObject(handle, path, NULL, &buf); 2048 if (ACPI_SUCCESS(status)) { 2049 if (param.Type == ACPI_TYPE_INTEGER) 2050 *number = param.Integer.Value; 2051 else 2052 status = AE_TYPE; 2053 } 2054 2055 /* 2056 * In some applications, a method that's expected to return an Integer 2057 * may instead return a Buffer (probably to simplify some internal 2058 * arithmetic). We'll try to fetch whatever it is, and if it's a Buffer, 2059 * convert it into an Integer as best we can. 2060 * 2061 * This is a hack. 2062 */ 2063 if (status == AE_BUFFER_OVERFLOW) { 2064 if ((buf.Pointer = AcpiOsAllocate(buf.Length)) == NULL) { 2065 status = AE_NO_MEMORY; 2066 } else { 2067 status = AcpiEvaluateObject(handle, path, NULL, &buf); 2068 if (ACPI_SUCCESS(status)) 2069 status = acpi_ConvertBufferToInteger(&buf, number); 2070 AcpiOsFree(buf.Pointer); 2071 } 2072 } 2073 return (status); 2074 } 2075 2076 ACPI_STATUS 2077 acpi_ConvertBufferToInteger(ACPI_BUFFER *bufp, UINT32 *number) 2078 { 2079 ACPI_OBJECT *p; 2080 UINT8 *val; 2081 int i; 2082 2083 p = (ACPI_OBJECT *)bufp->Pointer; 2084 if (p->Type == ACPI_TYPE_INTEGER) { 2085 *number = p->Integer.Value; 2086 return (AE_OK); 2087 } 2088 if (p->Type != ACPI_TYPE_BUFFER) 2089 return (AE_TYPE); 2090 if (p->Buffer.Length > sizeof(int)) 2091 return (AE_BAD_DATA); 2092 2093 *number = 0; 2094 val = p->Buffer.Pointer; 2095 for (i = 0; i < p->Buffer.Length; i++) 2096 *number += val[i] << (i * 8); 2097 return (AE_OK); 2098 } 2099 2100 /* 2101 * Iterate over the elements of an a package object, calling the supplied 2102 * function for each element. 2103 * 2104 * XXX possible enhancement might be to abort traversal on error. 2105 */ 2106 ACPI_STATUS 2107 acpi_ForeachPackageObject(ACPI_OBJECT *pkg, 2108 void (*func)(ACPI_OBJECT *comp, void *arg), void *arg) 2109 { 2110 ACPI_OBJECT *comp; 2111 int i; 2112 2113 if (pkg == NULL || pkg->Type != ACPI_TYPE_PACKAGE) 2114 return (AE_BAD_PARAMETER); 2115 2116 /* Iterate over components */ 2117 i = 0; 2118 comp = pkg->Package.Elements; 2119 for (; i < pkg->Package.Count; i++, comp++) 2120 func(comp, arg); 2121 2122 return (AE_OK); 2123 } 2124 2125 /* 2126 * Find the (index)th resource object in a set. 2127 */ 2128 ACPI_STATUS 2129 acpi_FindIndexedResource(ACPI_BUFFER *buf, int index, ACPI_RESOURCE **resp) 2130 { 2131 ACPI_RESOURCE *rp; 2132 int i; 2133 2134 rp = (ACPI_RESOURCE *)buf->Pointer; 2135 i = index; 2136 while (i-- > 0) { 2137 /* Range check */ 2138 if (rp > (ACPI_RESOURCE *)((u_int8_t *)buf->Pointer + buf->Length)) 2139 return (AE_BAD_PARAMETER); 2140 2141 /* Check for terminator */ 2142 if (rp->Type == ACPI_RESOURCE_TYPE_END_TAG || rp->Length == 0) 2143 return (AE_NOT_FOUND); 2144 rp = ACPI_NEXT_RESOURCE(rp); 2145 } 2146 if (resp != NULL) 2147 *resp = rp; 2148 2149 return (AE_OK); 2150 } 2151 2152 /* 2153 * Append an ACPI_RESOURCE to an ACPI_BUFFER. 2154 * 2155 * Given a pointer to an ACPI_RESOURCE structure, expand the ACPI_BUFFER 2156 * provided to contain it. If the ACPI_BUFFER is empty, allocate a sensible 2157 * backing block. If the ACPI_RESOURCE is NULL, return an empty set of 2158 * resources. 2159 */ 2160 #define ACPI_INITIAL_RESOURCE_BUFFER_SIZE 512 2161 2162 ACPI_STATUS 2163 acpi_AppendBufferResource(ACPI_BUFFER *buf, ACPI_RESOURCE *res) 2164 { 2165 ACPI_RESOURCE *rp; 2166 void *newp; 2167 2168 /* Initialise the buffer if necessary. */ 2169 if (buf->Pointer == NULL) { 2170 buf->Length = ACPI_INITIAL_RESOURCE_BUFFER_SIZE; 2171 if ((buf->Pointer = AcpiOsAllocate(buf->Length)) == NULL) 2172 return (AE_NO_MEMORY); 2173 rp = (ACPI_RESOURCE *)buf->Pointer; 2174 rp->Type = ACPI_RESOURCE_TYPE_END_TAG; 2175 rp->Length = 0; 2176 } 2177 if (res == NULL) 2178 return (AE_OK); 2179 2180 /* 2181 * Scan the current buffer looking for the terminator. 2182 * This will either find the terminator or hit the end 2183 * of the buffer and return an error. 2184 */ 2185 rp = (ACPI_RESOURCE *)buf->Pointer; 2186 for (;;) { 2187 /* Range check, don't go outside the buffer */ 2188 if (rp >= (ACPI_RESOURCE *)((u_int8_t *)buf->Pointer + buf->Length)) 2189 return (AE_BAD_PARAMETER); 2190 if (rp->Type == ACPI_RESOURCE_TYPE_END_TAG || rp->Length == 0) 2191 break; 2192 rp = ACPI_NEXT_RESOURCE(rp); 2193 } 2194 2195 /* 2196 * Check the size of the buffer and expand if required. 2197 * 2198 * Required size is: 2199 * size of existing resources before terminator + 2200 * size of new resource and header + 2201 * size of terminator. 2202 * 2203 * Note that this loop should really only run once, unless 2204 * for some reason we are stuffing a *really* huge resource. 2205 */ 2206 while ((((u_int8_t *)rp - (u_int8_t *)buf->Pointer) + 2207 res->Length + ACPI_RS_SIZE_NO_DATA + 2208 ACPI_RS_SIZE_MIN) >= buf->Length) { 2209 if ((newp = AcpiOsAllocate(buf->Length * 2)) == NULL) 2210 return (AE_NO_MEMORY); 2211 bcopy(buf->Pointer, newp, buf->Length); 2212 rp = (ACPI_RESOURCE *)((u_int8_t *)newp + 2213 ((u_int8_t *)rp - (u_int8_t *)buf->Pointer)); 2214 AcpiOsFree(buf->Pointer); 2215 buf->Pointer = newp; 2216 buf->Length += buf->Length; 2217 } 2218 2219 /* Insert the new resource. */ 2220 bcopy(res, rp, res->Length + ACPI_RS_SIZE_NO_DATA); 2221 2222 /* And add the terminator. */ 2223 rp = ACPI_NEXT_RESOURCE(rp); 2224 rp->Type = ACPI_RESOURCE_TYPE_END_TAG; 2225 rp->Length = 0; 2226 2227 return (AE_OK); 2228 } 2229 2230 /* 2231 * Set interrupt model. 2232 */ 2233 ACPI_STATUS 2234 acpi_SetIntrModel(int model) 2235 { 2236 2237 return (acpi_SetInteger(ACPI_ROOT_OBJECT, "_PIC", model)); 2238 } 2239 2240 /* 2241 * Walk subtables of a table and call a callback routine for each 2242 * subtable. The caller should provide the first subtable and a 2243 * pointer to the end of the table. This can be used to walk tables 2244 * such as MADT and SRAT that use subtable entries. 2245 */ 2246 void 2247 acpi_walk_subtables(void *first, void *end, acpi_subtable_handler *handler, 2248 void *arg) 2249 { 2250 ACPI_SUBTABLE_HEADER *entry; 2251 2252 for (entry = first; (void *)entry < end; ) { 2253 /* Avoid an infinite loop if we hit a bogus entry. */ 2254 if (entry->Length < sizeof(ACPI_SUBTABLE_HEADER)) 2255 return; 2256 2257 handler(entry, arg); 2258 entry = ACPI_ADD_PTR(ACPI_SUBTABLE_HEADER, entry, entry->Length); 2259 } 2260 } 2261 2262 /* 2263 * DEPRECATED. This interface has serious deficiencies and will be 2264 * removed. 2265 * 2266 * Immediately enter the sleep state. In the old model, acpiconf(8) ran 2267 * rc.suspend and rc.resume so we don't have to notify devd(8) to do this. 2268 */ 2269 ACPI_STATUS 2270 acpi_SetSleepState(struct acpi_softc *sc, int state) 2271 { 2272 static int once; 2273 2274 if (!once) { 2275 device_printf(sc->acpi_dev, 2276 "warning: acpi_SetSleepState() deprecated, need to update your software\n"); 2277 once = 1; 2278 } 2279 return (acpi_EnterSleepState(sc, state)); 2280 } 2281 2282 #if defined(__amd64__) || defined(__i386__) 2283 static void 2284 acpi_sleep_force(void *arg) 2285 { 2286 struct acpi_softc *sc = (struct acpi_softc *)arg; 2287 2288 device_printf(sc->acpi_dev, 2289 "suspend request timed out, forcing sleep now\n"); 2290 if (ACPI_FAILURE(acpi_EnterSleepState(sc, sc->acpi_next_sstate))) 2291 device_printf(sc->acpi_dev, "force sleep state S%d failed\n", 2292 sc->acpi_next_sstate); 2293 } 2294 #endif 2295 2296 /* 2297 * Request that the system enter the given suspend state. All /dev/apm 2298 * devices and devd(8) will be notified. Userland then has a chance to 2299 * save state and acknowledge the request. The system sleeps once all 2300 * acks are in. 2301 */ 2302 int 2303 acpi_ReqSleepState(struct acpi_softc *sc, int state) 2304 { 2305 #if defined(__amd64__) || defined(__i386__) 2306 struct apm_clone_data *clone; 2307 2308 if (state < ACPI_STATE_S1 || state > ACPI_S_STATES_MAX) 2309 return (EINVAL); 2310 if (!acpi_sleep_states[state]) 2311 return (EOPNOTSUPP); 2312 2313 /* S5 (soft-off) should be entered directly with no waiting. */ 2314 if (state == ACPI_STATE_S5) { 2315 if (ACPI_SUCCESS(acpi_EnterSleepState(sc, state))) 2316 return (0); 2317 else 2318 return (ENXIO); 2319 } 2320 2321 /* If a suspend request is already in progress, just return. */ 2322 ACPI_LOCK(acpi); 2323 if (sc->acpi_next_sstate != 0) { 2324 ACPI_UNLOCK(acpi); 2325 return (0); 2326 } 2327 2328 /* Record the pending state and notify all apm devices. */ 2329 sc->acpi_next_sstate = state; 2330 STAILQ_FOREACH(clone, &sc->apm_cdevs, entries) { 2331 clone->notify_status = APM_EV_NONE; 2332 if ((clone->flags & ACPI_EVF_DEVD) == 0) { 2333 selwakeuppri(&clone->sel_read, PZERO); 2334 KNOTE_UNLOCKED(&clone->sel_read.si_note, 0); 2335 } 2336 } 2337 2338 /* If devd(8) is not running, immediately enter the sleep state. */ 2339 if (!devctl_process_running()) { 2340 ACPI_UNLOCK(acpi); 2341 if (ACPI_SUCCESS(acpi_EnterSleepState(sc, sc->acpi_next_sstate))) { 2342 return (0); 2343 } else { 2344 return (ENXIO); 2345 } 2346 } 2347 2348 /* 2349 * Set a timeout to fire if userland doesn't ack the suspend request 2350 * in time. This way we still eventually go to sleep if we were 2351 * overheating or running low on battery, even if userland is hung. 2352 * We cancel this timeout once all userland acks are in or the 2353 * suspend request is aborted. 2354 */ 2355 callout_reset(&sc->susp_force_to, 10 * hz, acpi_sleep_force, sc); 2356 ACPI_UNLOCK(acpi); 2357 2358 /* Now notify devd(8) also. */ 2359 acpi_UserNotify("Suspend", ACPI_ROOT_OBJECT, state); 2360 2361 return (0); 2362 #else 2363 /* This platform does not support acpi suspend/resume. */ 2364 return (EOPNOTSUPP); 2365 #endif 2366 } 2367 2368 /* 2369 * Acknowledge (or reject) a pending sleep state. The caller has 2370 * prepared for suspend and is now ready for it to proceed. If the 2371 * error argument is non-zero, it indicates suspend should be cancelled 2372 * and gives an errno value describing why. Once all votes are in, 2373 * we suspend the system. 2374 */ 2375 int 2376 acpi_AckSleepState(struct apm_clone_data *clone, int error) 2377 { 2378 #if defined(__amd64__) || defined(__i386__) 2379 struct acpi_softc *sc; 2380 int ret, sleeping; 2381 2382 /* If no pending sleep state, return an error. */ 2383 ACPI_LOCK(acpi); 2384 sc = clone->acpi_sc; 2385 if (sc->acpi_next_sstate == 0) { 2386 ACPI_UNLOCK(acpi); 2387 return (ENXIO); 2388 } 2389 2390 /* Caller wants to abort suspend process. */ 2391 if (error) { 2392 sc->acpi_next_sstate = 0; 2393 callout_stop(&sc->susp_force_to); 2394 device_printf(sc->acpi_dev, 2395 "listener on %s cancelled the pending suspend\n", 2396 devtoname(clone->cdev)); 2397 ACPI_UNLOCK(acpi); 2398 return (0); 2399 } 2400 2401 /* 2402 * Mark this device as acking the suspend request. Then, walk through 2403 * all devices, seeing if they agree yet. We only count devices that 2404 * are writable since read-only devices couldn't ack the request. 2405 */ 2406 sleeping = TRUE; 2407 clone->notify_status = APM_EV_ACKED; 2408 STAILQ_FOREACH(clone, &sc->apm_cdevs, entries) { 2409 if ((clone->flags & ACPI_EVF_WRITE) != 0 && 2410 clone->notify_status != APM_EV_ACKED) { 2411 sleeping = FALSE; 2412 break; 2413 } 2414 } 2415 2416 /* If all devices have voted "yes", we will suspend now. */ 2417 if (sleeping) 2418 callout_stop(&sc->susp_force_to); 2419 ACPI_UNLOCK(acpi); 2420 ret = 0; 2421 if (sleeping) { 2422 if (ACPI_FAILURE(acpi_EnterSleepState(sc, sc->acpi_next_sstate))) 2423 ret = ENODEV; 2424 } 2425 return (ret); 2426 #else 2427 /* This platform does not support acpi suspend/resume. */ 2428 return (EOPNOTSUPP); 2429 #endif 2430 } 2431 2432 static void 2433 acpi_sleep_enable(void *arg) 2434 { 2435 struct acpi_softc *sc = (struct acpi_softc *)arg; 2436 2437 /* Reschedule if the system is not fully up and running. */ 2438 if (!AcpiGbl_SystemAwakeAndRunning) { 2439 timeout(acpi_sleep_enable, sc, hz * ACPI_MINIMUM_AWAKETIME); 2440 return; 2441 } 2442 2443 ACPI_LOCK(acpi); 2444 sc->acpi_sleep_disabled = FALSE; 2445 ACPI_UNLOCK(acpi); 2446 } 2447 2448 static ACPI_STATUS 2449 acpi_sleep_disable(struct acpi_softc *sc) 2450 { 2451 ACPI_STATUS status; 2452 2453 /* Fail if the system is not fully up and running. */ 2454 if (!AcpiGbl_SystemAwakeAndRunning) 2455 return (AE_ERROR); 2456 2457 ACPI_LOCK(acpi); 2458 status = sc->acpi_sleep_disabled ? AE_ERROR : AE_OK; 2459 sc->acpi_sleep_disabled = TRUE; 2460 ACPI_UNLOCK(acpi); 2461 2462 return (status); 2463 } 2464 2465 enum acpi_sleep_state { 2466 ACPI_SS_NONE, 2467 ACPI_SS_GPE_SET, 2468 ACPI_SS_DEV_SUSPEND, 2469 ACPI_SS_SLP_PREP, 2470 ACPI_SS_SLEPT, 2471 }; 2472 2473 /* 2474 * Enter the desired system sleep state. 2475 * 2476 * Currently we support S1-S5 but S4 is only S4BIOS 2477 */ 2478 static ACPI_STATUS 2479 acpi_EnterSleepState(struct acpi_softc *sc, int state) 2480 { 2481 ACPI_STATUS status; 2482 enum acpi_sleep_state slp_state; 2483 2484 ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state); 2485 2486 if (state < ACPI_STATE_S1 || state > ACPI_S_STATES_MAX) 2487 return_ACPI_STATUS (AE_BAD_PARAMETER); 2488 if (!acpi_sleep_states[state]) { 2489 device_printf(sc->acpi_dev, "Sleep state S%d not supported by BIOS\n", 2490 state); 2491 return (AE_SUPPORT); 2492 } 2493 2494 /* Re-entry once we're suspending is not allowed. */ 2495 status = acpi_sleep_disable(sc); 2496 if (ACPI_FAILURE(status)) { 2497 device_printf(sc->acpi_dev, 2498 "suspend request ignored (not ready yet)\n"); 2499 return (status); 2500 } 2501 2502 if (state == ACPI_STATE_S5) { 2503 /* 2504 * Shut down cleanly and power off. This will call us back through the 2505 * shutdown handlers. 2506 */ 2507 shutdown_nice(RB_POWEROFF); 2508 return_ACPI_STATUS (AE_OK); 2509 } 2510 2511 #ifdef SMP 2512 thread_lock(curthread); 2513 sched_bind(curthread, 0); 2514 thread_unlock(curthread); 2515 #endif 2516 2517 /* 2518 * Be sure to hold Giant across DEVICE_SUSPEND/RESUME since non-MPSAFE 2519 * drivers need this. 2520 */ 2521 mtx_lock(&Giant); 2522 2523 slp_state = ACPI_SS_NONE; 2524 2525 sc->acpi_sstate = state; 2526 2527 /* Enable any GPEs as appropriate and requested by the user. */ 2528 acpi_wake_prep_walk(state); 2529 slp_state = ACPI_SS_GPE_SET; 2530 2531 /* 2532 * Inform all devices that we are going to sleep. If at least one 2533 * device fails, DEVICE_SUSPEND() automatically resumes the tree. 2534 * 2535 * XXX Note that a better two-pass approach with a 'veto' pass 2536 * followed by a "real thing" pass would be better, but the current 2537 * bus interface does not provide for this. 2538 */ 2539 if (DEVICE_SUSPEND(root_bus) != 0) { 2540 device_printf(sc->acpi_dev, "device_suspend failed\n"); 2541 goto backout; 2542 } 2543 slp_state = ACPI_SS_DEV_SUSPEND; 2544 2545 /* If testing device suspend only, back out of everything here. */ 2546 if (acpi_susp_bounce) 2547 goto backout; 2548 2549 status = AcpiEnterSleepStatePrep(state); 2550 if (ACPI_FAILURE(status)) { 2551 device_printf(sc->acpi_dev, "AcpiEnterSleepStatePrep failed - %s\n", 2552 AcpiFormatException(status)); 2553 goto backout; 2554 } 2555 slp_state = ACPI_SS_SLP_PREP; 2556 2557 if (sc->acpi_sleep_delay > 0) 2558 DELAY(sc->acpi_sleep_delay * 1000000); 2559 2560 if (state != ACPI_STATE_S1) { 2561 acpi_sleep_machdep(sc, state); 2562 2563 /* Re-enable ACPI hardware on wakeup from sleep state 4. */ 2564 if (state == ACPI_STATE_S4) 2565 AcpiEnable(); 2566 } else { 2567 ACPI_DISABLE_IRQS(); 2568 status = AcpiEnterSleepState(state); 2569 if (ACPI_FAILURE(status)) { 2570 device_printf(sc->acpi_dev, "AcpiEnterSleepState failed - %s\n", 2571 AcpiFormatException(status)); 2572 goto backout; 2573 } 2574 } 2575 slp_state = ACPI_SS_SLEPT; 2576 2577 /* 2578 * Back out state according to how far along we got in the suspend 2579 * process. This handles both the error and success cases. 2580 */ 2581 backout: 2582 sc->acpi_next_sstate = 0; 2583 if (slp_state >= ACPI_SS_GPE_SET) { 2584 acpi_wake_prep_walk(state); 2585 sc->acpi_sstate = ACPI_STATE_S0; 2586 } 2587 if (slp_state >= ACPI_SS_SLP_PREP) 2588 AcpiLeaveSleepState(state); 2589 if (slp_state >= ACPI_SS_DEV_SUSPEND) 2590 DEVICE_RESUME(root_bus); 2591 if (slp_state >= ACPI_SS_SLEPT) 2592 acpi_enable_fixed_events(sc); 2593 2594 mtx_unlock(&Giant); 2595 2596 #ifdef SMP 2597 thread_lock(curthread); 2598 sched_unbind(curthread); 2599 thread_unlock(curthread); 2600 #endif 2601 2602 /* Allow another sleep request after a while. */ 2603 timeout(acpi_sleep_enable, sc, hz * ACPI_MINIMUM_AWAKETIME); 2604 2605 /* Run /etc/rc.resume after we are back. */ 2606 if (devctl_process_running()) 2607 acpi_UserNotify("Resume", ACPI_ROOT_OBJECT, state); 2608 2609 return_ACPI_STATUS (status); 2610 } 2611 2612 void 2613 acpi_resync_clock(struct acpi_softc *sc) 2614 { 2615 2616 if (!acpi_reset_clock) 2617 return; 2618 2619 /* 2620 * Warm up timecounter again and reset system clock. 2621 */ 2622 (void)timecounter->tc_get_timecount(timecounter); 2623 (void)timecounter->tc_get_timecount(timecounter); 2624 inittodr(time_second + sc->acpi_sleep_delay); 2625 } 2626 2627 /* Initialize a device's wake GPE. */ 2628 int 2629 acpi_wake_init(device_t dev, int type) 2630 { 2631 struct acpi_prw_data prw; 2632 2633 /* Evaluate _PRW to find the GPE. */ 2634 if (acpi_parse_prw(acpi_get_handle(dev), &prw) != 0) 2635 return (ENXIO); 2636 2637 /* Set the requested type for the GPE (runtime, wake, or both). */ 2638 if (ACPI_FAILURE(AcpiSetGpeType(prw.gpe_handle, prw.gpe_bit, type))) { 2639 device_printf(dev, "set GPE type failed\n"); 2640 return (ENXIO); 2641 } 2642 2643 return (0); 2644 } 2645 2646 /* Enable or disable the device's wake GPE. */ 2647 int 2648 acpi_wake_set_enable(device_t dev, int enable) 2649 { 2650 struct acpi_prw_data prw; 2651 ACPI_STATUS status; 2652 int flags; 2653 2654 /* Make sure the device supports waking the system and get the GPE. */ 2655 if (acpi_parse_prw(acpi_get_handle(dev), &prw) != 0) 2656 return (ENXIO); 2657 2658 flags = acpi_get_flags(dev); 2659 if (enable) { 2660 status = AcpiEnableGpe(prw.gpe_handle, prw.gpe_bit, ACPI_NOT_ISR); 2661 if (ACPI_FAILURE(status)) { 2662 device_printf(dev, "enable wake failed\n"); 2663 return (ENXIO); 2664 } 2665 acpi_set_flags(dev, flags | ACPI_FLAG_WAKE_ENABLED); 2666 } else { 2667 status = AcpiDisableGpe(prw.gpe_handle, prw.gpe_bit, ACPI_NOT_ISR); 2668 if (ACPI_FAILURE(status)) { 2669 device_printf(dev, "disable wake failed\n"); 2670 return (ENXIO); 2671 } 2672 acpi_set_flags(dev, flags & ~ACPI_FLAG_WAKE_ENABLED); 2673 } 2674 2675 return (0); 2676 } 2677 2678 static int 2679 acpi_wake_sleep_prep(ACPI_HANDLE handle, int sstate) 2680 { 2681 struct acpi_prw_data prw; 2682 device_t dev; 2683 2684 /* Check that this is a wake-capable device and get its GPE. */ 2685 if (acpi_parse_prw(handle, &prw) != 0) 2686 return (ENXIO); 2687 dev = acpi_get_device(handle); 2688 2689 /* 2690 * The destination sleep state must be less than (i.e., higher power) 2691 * or equal to the value specified by _PRW. If this GPE cannot be 2692 * enabled for the next sleep state, then disable it. If it can and 2693 * the user requested it be enabled, turn on any required power resources 2694 * and set _PSW. 2695 */ 2696 if (sstate > prw.lowest_wake) { 2697 AcpiDisableGpe(prw.gpe_handle, prw.gpe_bit, ACPI_NOT_ISR); 2698 if (bootverbose) 2699 device_printf(dev, "wake_prep disabled wake for %s (S%d)\n", 2700 acpi_name(handle), sstate); 2701 } else if (dev && (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) != 0) { 2702 acpi_pwr_wake_enable(handle, 1); 2703 acpi_SetInteger(handle, "_PSW", 1); 2704 if (bootverbose) 2705 device_printf(dev, "wake_prep enabled for %s (S%d)\n", 2706 acpi_name(handle), sstate); 2707 } 2708 2709 return (0); 2710 } 2711 2712 static int 2713 acpi_wake_run_prep(ACPI_HANDLE handle, int sstate) 2714 { 2715 struct acpi_prw_data prw; 2716 device_t dev; 2717 2718 /* 2719 * Check that this is a wake-capable device and get its GPE. Return 2720 * now if the user didn't enable this device for wake. 2721 */ 2722 if (acpi_parse_prw(handle, &prw) != 0) 2723 return (ENXIO); 2724 dev = acpi_get_device(handle); 2725 if (dev == NULL || (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) == 0) 2726 return (0); 2727 2728 /* 2729 * If this GPE couldn't be enabled for the previous sleep state, it was 2730 * disabled before going to sleep so re-enable it. If it was enabled, 2731 * clear _PSW and turn off any power resources it used. 2732 */ 2733 if (sstate > prw.lowest_wake) { 2734 AcpiEnableGpe(prw.gpe_handle, prw.gpe_bit, ACPI_NOT_ISR); 2735 if (bootverbose) 2736 device_printf(dev, "run_prep re-enabled %s\n", acpi_name(handle)); 2737 } else { 2738 acpi_SetInteger(handle, "_PSW", 0); 2739 acpi_pwr_wake_enable(handle, 0); 2740 if (bootverbose) 2741 device_printf(dev, "run_prep cleaned up for %s\n", 2742 acpi_name(handle)); 2743 } 2744 2745 return (0); 2746 } 2747 2748 static ACPI_STATUS 2749 acpi_wake_prep(ACPI_HANDLE handle, UINT32 level, void *context, void **status) 2750 { 2751 int sstate; 2752 2753 /* If suspending, run the sleep prep function, otherwise wake. */ 2754 sstate = *(int *)context; 2755 if (AcpiGbl_SystemAwakeAndRunning) 2756 acpi_wake_sleep_prep(handle, sstate); 2757 else 2758 acpi_wake_run_prep(handle, sstate); 2759 return (AE_OK); 2760 } 2761 2762 /* Walk the tree rooted at acpi0 to prep devices for suspend/resume. */ 2763 static int 2764 acpi_wake_prep_walk(int sstate) 2765 { 2766 ACPI_HANDLE sb_handle; 2767 2768 if (ACPI_SUCCESS(AcpiGetHandle(ACPI_ROOT_OBJECT, "\\_SB_", &sb_handle))) 2769 AcpiWalkNamespace(ACPI_TYPE_DEVICE, sb_handle, 100, 2770 acpi_wake_prep, NULL, &sstate, NULL); 2771 return (0); 2772 } 2773 2774 /* Walk the tree rooted at acpi0 to attach per-device wake sysctls. */ 2775 static int 2776 acpi_wake_sysctl_walk(device_t dev) 2777 { 2778 int error, i, numdevs; 2779 device_t *devlist; 2780 device_t child; 2781 ACPI_STATUS status; 2782 2783 error = device_get_children(dev, &devlist, &numdevs); 2784 if (error != 0 || numdevs == 0) { 2785 if (numdevs == 0) 2786 free(devlist, M_TEMP); 2787 return (error); 2788 } 2789 for (i = 0; i < numdevs; i++) { 2790 child = devlist[i]; 2791 acpi_wake_sysctl_walk(child); 2792 if (!device_is_attached(child)) 2793 continue; 2794 status = AcpiEvaluateObject(acpi_get_handle(child), "_PRW", NULL, NULL); 2795 if (ACPI_SUCCESS(status)) { 2796 SYSCTL_ADD_PROC(device_get_sysctl_ctx(child), 2797 SYSCTL_CHILDREN(device_get_sysctl_tree(child)), OID_AUTO, 2798 "wake", CTLTYPE_INT | CTLFLAG_RW, child, 0, 2799 acpi_wake_set_sysctl, "I", "Device set to wake the system"); 2800 } 2801 } 2802 free(devlist, M_TEMP); 2803 2804 return (0); 2805 } 2806 2807 /* Enable or disable wake from userland. */ 2808 static int 2809 acpi_wake_set_sysctl(SYSCTL_HANDLER_ARGS) 2810 { 2811 int enable, error; 2812 device_t dev; 2813 2814 dev = (device_t)arg1; 2815 enable = (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) ? 1 : 0; 2816 2817 error = sysctl_handle_int(oidp, &enable, 0, req); 2818 if (error != 0 || req->newptr == NULL) 2819 return (error); 2820 if (enable != 0 && enable != 1) 2821 return (EINVAL); 2822 2823 return (acpi_wake_set_enable(dev, enable)); 2824 } 2825 2826 /* Parse a device's _PRW into a structure. */ 2827 int 2828 acpi_parse_prw(ACPI_HANDLE h, struct acpi_prw_data *prw) 2829 { 2830 ACPI_STATUS status; 2831 ACPI_BUFFER prw_buffer; 2832 ACPI_OBJECT *res, *res2; 2833 int error, i, power_count; 2834 2835 if (h == NULL || prw == NULL) 2836 return (EINVAL); 2837 2838 /* 2839 * The _PRW object (7.2.9) is only required for devices that have the 2840 * ability to wake the system from a sleeping state. 2841 */ 2842 error = EINVAL; 2843 prw_buffer.Pointer = NULL; 2844 prw_buffer.Length = ACPI_ALLOCATE_BUFFER; 2845 status = AcpiEvaluateObject(h, "_PRW", NULL, &prw_buffer); 2846 if (ACPI_FAILURE(status)) 2847 return (ENOENT); 2848 res = (ACPI_OBJECT *)prw_buffer.Pointer; 2849 if (res == NULL) 2850 return (ENOENT); 2851 if (!ACPI_PKG_VALID(res, 2)) 2852 goto out; 2853 2854 /* 2855 * Element 1 of the _PRW object: 2856 * The lowest power system sleeping state that can be entered while still 2857 * providing wake functionality. The sleeping state being entered must 2858 * be less than (i.e., higher power) or equal to this value. 2859 */ 2860 if (acpi_PkgInt32(res, 1, &prw->lowest_wake) != 0) 2861 goto out; 2862 2863 /* 2864 * Element 0 of the _PRW object: 2865 */ 2866 switch (res->Package.Elements[0].Type) { 2867 case ACPI_TYPE_INTEGER: 2868 /* 2869 * If the data type of this package element is numeric, then this 2870 * _PRW package element is the bit index in the GPEx_EN, in the 2871 * GPE blocks described in the FADT, of the enable bit that is 2872 * enabled for the wake event. 2873 */ 2874 prw->gpe_handle = NULL; 2875 prw->gpe_bit = res->Package.Elements[0].Integer.Value; 2876 error = 0; 2877 break; 2878 case ACPI_TYPE_PACKAGE: 2879 /* 2880 * If the data type of this package element is a package, then this 2881 * _PRW package element is itself a package containing two 2882 * elements. The first is an object reference to the GPE Block 2883 * device that contains the GPE that will be triggered by the wake 2884 * event. The second element is numeric and it contains the bit 2885 * index in the GPEx_EN, in the GPE Block referenced by the 2886 * first element in the package, of the enable bit that is enabled for 2887 * the wake event. 2888 * 2889 * For example, if this field is a package then it is of the form: 2890 * Package() {\_SB.PCI0.ISA.GPE, 2} 2891 */ 2892 res2 = &res->Package.Elements[0]; 2893 if (!ACPI_PKG_VALID(res2, 2)) 2894 goto out; 2895 prw->gpe_handle = acpi_GetReference(NULL, &res2->Package.Elements[0]); 2896 if (prw->gpe_handle == NULL) 2897 goto out; 2898 if (acpi_PkgInt32(res2, 1, &prw->gpe_bit) != 0) 2899 goto out; 2900 error = 0; 2901 break; 2902 default: 2903 goto out; 2904 } 2905 2906 /* Elements 2 to N of the _PRW object are power resources. */ 2907 power_count = res->Package.Count - 2; 2908 if (power_count > ACPI_PRW_MAX_POWERRES) { 2909 printf("ACPI device %s has too many power resources\n", acpi_name(h)); 2910 power_count = 0; 2911 } 2912 prw->power_res_count = power_count; 2913 for (i = 0; i < power_count; i++) 2914 prw->power_res[i] = res->Package.Elements[i]; 2915 2916 out: 2917 if (prw_buffer.Pointer != NULL) 2918 AcpiOsFree(prw_buffer.Pointer); 2919 return (error); 2920 } 2921 2922 /* 2923 * ACPI Event Handlers 2924 */ 2925 2926 /* System Event Handlers (registered by EVENTHANDLER_REGISTER) */ 2927 2928 static void 2929 acpi_system_eventhandler_sleep(void *arg, int state) 2930 { 2931 struct acpi_softc *sc = (struct acpi_softc *)arg; 2932 int ret; 2933 2934 ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state); 2935 2936 /* Check if button action is disabled or unknown. */ 2937 if (state == ACPI_STATE_UNKNOWN) 2938 return; 2939 2940 /* Request that the system prepare to enter the given suspend state. */ 2941 ret = acpi_ReqSleepState(sc, state); 2942 if (ret != 0) 2943 device_printf(sc->acpi_dev, 2944 "request to enter state S%d failed (err %d)\n", state, ret); 2945 2946 return_VOID; 2947 } 2948 2949 static void 2950 acpi_system_eventhandler_wakeup(void *arg, int state) 2951 { 2952 2953 ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state); 2954 2955 /* Currently, nothing to do for wakeup. */ 2956 2957 return_VOID; 2958 } 2959 2960 /* 2961 * ACPICA Event Handlers (FixedEvent, also called from button notify handler) 2962 */ 2963 UINT32 2964 acpi_event_power_button_sleep(void *context) 2965 { 2966 struct acpi_softc *sc = (struct acpi_softc *)context; 2967 2968 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 2969 2970 EVENTHANDLER_INVOKE(acpi_sleep_event, sc->acpi_power_button_sx); 2971 2972 return_VALUE (ACPI_INTERRUPT_HANDLED); 2973 } 2974 2975 UINT32 2976 acpi_event_power_button_wake(void *context) 2977 { 2978 struct acpi_softc *sc = (struct acpi_softc *)context; 2979 2980 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 2981 2982 EVENTHANDLER_INVOKE(acpi_wakeup_event, sc->acpi_power_button_sx); 2983 2984 return_VALUE (ACPI_INTERRUPT_HANDLED); 2985 } 2986 2987 UINT32 2988 acpi_event_sleep_button_sleep(void *context) 2989 { 2990 struct acpi_softc *sc = (struct acpi_softc *)context; 2991 2992 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 2993 2994 EVENTHANDLER_INVOKE(acpi_sleep_event, sc->acpi_sleep_button_sx); 2995 2996 return_VALUE (ACPI_INTERRUPT_HANDLED); 2997 } 2998 2999 UINT32 3000 acpi_event_sleep_button_wake(void *context) 3001 { 3002 struct acpi_softc *sc = (struct acpi_softc *)context; 3003 3004 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3005 3006 EVENTHANDLER_INVOKE(acpi_wakeup_event, sc->acpi_sleep_button_sx); 3007 3008 return_VALUE (ACPI_INTERRUPT_HANDLED); 3009 } 3010 3011 /* 3012 * XXX This static buffer is suboptimal. There is no locking so only 3013 * use this for single-threaded callers. 3014 */ 3015 char * 3016 acpi_name(ACPI_HANDLE handle) 3017 { 3018 ACPI_BUFFER buf; 3019 static char data[256]; 3020 3021 buf.Length = sizeof(data); 3022 buf.Pointer = data; 3023 3024 if (handle && ACPI_SUCCESS(AcpiGetName(handle, ACPI_FULL_PATHNAME, &buf))) 3025 return (data); 3026 return ("(unknown)"); 3027 } 3028 3029 /* 3030 * Debugging/bug-avoidance. Avoid trying to fetch info on various 3031 * parts of the namespace. 3032 */ 3033 int 3034 acpi_avoid(ACPI_HANDLE handle) 3035 { 3036 char *cp, *env, *np; 3037 int len; 3038 3039 np = acpi_name(handle); 3040 if (*np == '\\') 3041 np++; 3042 if ((env = getenv("debug.acpi.avoid")) == NULL) 3043 return (0); 3044 3045 /* Scan the avoid list checking for a match */ 3046 cp = env; 3047 for (;;) { 3048 while (*cp != 0 && isspace(*cp)) 3049 cp++; 3050 if (*cp == 0) 3051 break; 3052 len = 0; 3053 while (cp[len] != 0 && !isspace(cp[len])) 3054 len++; 3055 if (!strncmp(cp, np, len)) { 3056 freeenv(env); 3057 return(1); 3058 } 3059 cp += len; 3060 } 3061 freeenv(env); 3062 3063 return (0); 3064 } 3065 3066 /* 3067 * Debugging/bug-avoidance. Disable ACPI subsystem components. 3068 */ 3069 int 3070 acpi_disabled(char *subsys) 3071 { 3072 char *cp, *env; 3073 int len; 3074 3075 if ((env = getenv("debug.acpi.disabled")) == NULL) 3076 return (0); 3077 if (strcmp(env, "all") == 0) { 3078 freeenv(env); 3079 return (1); 3080 } 3081 3082 /* Scan the disable list, checking for a match. */ 3083 cp = env; 3084 for (;;) { 3085 while (*cp != '\0' && isspace(*cp)) 3086 cp++; 3087 if (*cp == '\0') 3088 break; 3089 len = 0; 3090 while (cp[len] != '\0' && !isspace(cp[len])) 3091 len++; 3092 if (strncmp(cp, subsys, len) == 0) { 3093 freeenv(env); 3094 return (1); 3095 } 3096 cp += len; 3097 } 3098 freeenv(env); 3099 3100 return (0); 3101 } 3102 3103 /* 3104 * Control interface. 3105 * 3106 * We multiplex ioctls for all participating ACPI devices here. Individual 3107 * drivers wanting to be accessible via /dev/acpi should use the 3108 * register/deregister interface to make their handlers visible. 3109 */ 3110 struct acpi_ioctl_hook 3111 { 3112 TAILQ_ENTRY(acpi_ioctl_hook) link; 3113 u_long cmd; 3114 acpi_ioctl_fn fn; 3115 void *arg; 3116 }; 3117 3118 static TAILQ_HEAD(,acpi_ioctl_hook) acpi_ioctl_hooks; 3119 static int acpi_ioctl_hooks_initted; 3120 3121 int 3122 acpi_register_ioctl(u_long cmd, acpi_ioctl_fn fn, void *arg) 3123 { 3124 struct acpi_ioctl_hook *hp; 3125 3126 if ((hp = malloc(sizeof(*hp), M_ACPIDEV, M_NOWAIT)) == NULL) 3127 return (ENOMEM); 3128 hp->cmd = cmd; 3129 hp->fn = fn; 3130 hp->arg = arg; 3131 3132 ACPI_LOCK(acpi); 3133 if (acpi_ioctl_hooks_initted == 0) { 3134 TAILQ_INIT(&acpi_ioctl_hooks); 3135 acpi_ioctl_hooks_initted = 1; 3136 } 3137 TAILQ_INSERT_TAIL(&acpi_ioctl_hooks, hp, link); 3138 ACPI_UNLOCK(acpi); 3139 3140 return (0); 3141 } 3142 3143 void 3144 acpi_deregister_ioctl(u_long cmd, acpi_ioctl_fn fn) 3145 { 3146 struct acpi_ioctl_hook *hp; 3147 3148 ACPI_LOCK(acpi); 3149 TAILQ_FOREACH(hp, &acpi_ioctl_hooks, link) 3150 if (hp->cmd == cmd && hp->fn == fn) 3151 break; 3152 3153 if (hp != NULL) { 3154 TAILQ_REMOVE(&acpi_ioctl_hooks, hp, link); 3155 free(hp, M_ACPIDEV); 3156 } 3157 ACPI_UNLOCK(acpi); 3158 } 3159 3160 static int 3161 acpiopen(struct cdev *dev, int flag, int fmt, struct thread *td) 3162 { 3163 return (0); 3164 } 3165 3166 static int 3167 acpiclose(struct cdev *dev, int flag, int fmt, struct thread *td) 3168 { 3169 return (0); 3170 } 3171 3172 static int 3173 acpiioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 3174 { 3175 struct acpi_softc *sc; 3176 struct acpi_ioctl_hook *hp; 3177 int error, state; 3178 3179 error = 0; 3180 hp = NULL; 3181 sc = dev->si_drv1; 3182 3183 /* 3184 * Scan the list of registered ioctls, looking for handlers. 3185 */ 3186 ACPI_LOCK(acpi); 3187 if (acpi_ioctl_hooks_initted) 3188 TAILQ_FOREACH(hp, &acpi_ioctl_hooks, link) { 3189 if (hp->cmd == cmd) 3190 break; 3191 } 3192 ACPI_UNLOCK(acpi); 3193 if (hp) 3194 return (hp->fn(cmd, addr, hp->arg)); 3195 3196 /* 3197 * Core ioctls are not permitted for non-writable user. 3198 * Currently, other ioctls just fetch information. 3199 * Not changing system behavior. 3200 */ 3201 if ((flag & FWRITE) == 0) 3202 return (EPERM); 3203 3204 /* Core system ioctls. */ 3205 switch (cmd) { 3206 case ACPIIO_REQSLPSTATE: 3207 state = *(int *)addr; 3208 if (state != ACPI_STATE_S5) 3209 return (acpi_ReqSleepState(sc, state)); 3210 device_printf(sc->acpi_dev, "power off via acpi ioctl not supported\n"); 3211 error = EOPNOTSUPP; 3212 break; 3213 case ACPIIO_ACKSLPSTATE: 3214 error = *(int *)addr; 3215 error = acpi_AckSleepState(sc->acpi_clone, error); 3216 break; 3217 case ACPIIO_SETSLPSTATE: /* DEPRECATED */ 3218 state = *(int *)addr; 3219 if (state < ACPI_STATE_S0 || state > ACPI_S_STATES_MAX) 3220 return (EINVAL); 3221 if (!acpi_sleep_states[state]) 3222 return (EOPNOTSUPP); 3223 if (ACPI_FAILURE(acpi_SetSleepState(sc, state))) 3224 error = ENXIO; 3225 break; 3226 default: 3227 error = ENXIO; 3228 break; 3229 } 3230 3231 return (error); 3232 } 3233 3234 static int 3235 acpi_sname2sstate(const char *sname) 3236 { 3237 int sstate; 3238 3239 if (toupper(sname[0]) == 'S') { 3240 sstate = sname[1] - '0'; 3241 if (sstate >= ACPI_STATE_S0 && sstate <= ACPI_STATE_S5 && 3242 sname[2] == '\0') 3243 return (sstate); 3244 } else if (strcasecmp(sname, "NONE") == 0) 3245 return (ACPI_STATE_UNKNOWN); 3246 return (-1); 3247 } 3248 3249 static const char * 3250 acpi_sstate2sname(int sstate) 3251 { 3252 static const char *snames[] = { "S0", "S1", "S2", "S3", "S4", "S5" }; 3253 3254 if (sstate >= ACPI_STATE_S0 && sstate <= ACPI_STATE_S5) 3255 return (snames[sstate]); 3256 else if (sstate == ACPI_STATE_UNKNOWN) 3257 return ("NONE"); 3258 return (NULL); 3259 } 3260 3261 static int 3262 acpi_supported_sleep_state_sysctl(SYSCTL_HANDLER_ARGS) 3263 { 3264 int error; 3265 struct sbuf sb; 3266 UINT8 state; 3267 3268 sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND); 3269 for (state = ACPI_STATE_S1; state < ACPI_S_STATE_COUNT; state++) 3270 if (acpi_sleep_states[state]) 3271 sbuf_printf(&sb, "%s ", acpi_sstate2sname(state)); 3272 sbuf_trim(&sb); 3273 sbuf_finish(&sb); 3274 error = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req); 3275 sbuf_delete(&sb); 3276 return (error); 3277 } 3278 3279 static int 3280 acpi_sleep_state_sysctl(SYSCTL_HANDLER_ARGS) 3281 { 3282 char sleep_state[10]; 3283 int error, new_state, old_state; 3284 3285 old_state = *(int *)oidp->oid_arg1; 3286 strlcpy(sleep_state, acpi_sstate2sname(old_state), sizeof(sleep_state)); 3287 error = sysctl_handle_string(oidp, sleep_state, sizeof(sleep_state), req); 3288 if (error == 0 && req->newptr != NULL) { 3289 new_state = acpi_sname2sstate(sleep_state); 3290 if (new_state < ACPI_STATE_S1) 3291 return (EINVAL); 3292 if (new_state < ACPI_S_STATE_COUNT && !acpi_sleep_states[new_state]) 3293 return (EOPNOTSUPP); 3294 if (new_state != old_state) 3295 *(int *)oidp->oid_arg1 = new_state; 3296 } 3297 return (error); 3298 } 3299 3300 /* Inform devctl(4) when we receive a Notify. */ 3301 void 3302 acpi_UserNotify(const char *subsystem, ACPI_HANDLE h, uint8_t notify) 3303 { 3304 char notify_buf[16]; 3305 ACPI_BUFFER handle_buf; 3306 ACPI_STATUS status; 3307 3308 if (subsystem == NULL) 3309 return; 3310 3311 handle_buf.Pointer = NULL; 3312 handle_buf.Length = ACPI_ALLOCATE_BUFFER; 3313 status = AcpiNsHandleToPathname(h, &handle_buf); 3314 if (ACPI_FAILURE(status)) 3315 return; 3316 snprintf(notify_buf, sizeof(notify_buf), "notify=0x%02x", notify); 3317 devctl_notify("ACPI", subsystem, handle_buf.Pointer, notify_buf); 3318 AcpiOsFree(handle_buf.Pointer); 3319 } 3320 3321 #ifdef ACPI_DEBUG 3322 /* 3323 * Support for parsing debug options from the kernel environment. 3324 * 3325 * Bits may be set in the AcpiDbgLayer and AcpiDbgLevel debug registers 3326 * by specifying the names of the bits in the debug.acpi.layer and 3327 * debug.acpi.level environment variables. Bits may be unset by 3328 * prefixing the bit name with !. 3329 */ 3330 struct debugtag 3331 { 3332 char *name; 3333 UINT32 value; 3334 }; 3335 3336 static struct debugtag dbg_layer[] = { 3337 {"ACPI_UTILITIES", ACPI_UTILITIES}, 3338 {"ACPI_HARDWARE", ACPI_HARDWARE}, 3339 {"ACPI_EVENTS", ACPI_EVENTS}, 3340 {"ACPI_TABLES", ACPI_TABLES}, 3341 {"ACPI_NAMESPACE", ACPI_NAMESPACE}, 3342 {"ACPI_PARSER", ACPI_PARSER}, 3343 {"ACPI_DISPATCHER", ACPI_DISPATCHER}, 3344 {"ACPI_EXECUTER", ACPI_EXECUTER}, 3345 {"ACPI_RESOURCES", ACPI_RESOURCES}, 3346 {"ACPI_CA_DEBUGGER", ACPI_CA_DEBUGGER}, 3347 {"ACPI_OS_SERVICES", ACPI_OS_SERVICES}, 3348 {"ACPI_CA_DISASSEMBLER", ACPI_CA_DISASSEMBLER}, 3349 {"ACPI_ALL_COMPONENTS", ACPI_ALL_COMPONENTS}, 3350 3351 {"ACPI_AC_ADAPTER", ACPI_AC_ADAPTER}, 3352 {"ACPI_BATTERY", ACPI_BATTERY}, 3353 {"ACPI_BUS", ACPI_BUS}, 3354 {"ACPI_BUTTON", ACPI_BUTTON}, 3355 {"ACPI_EC", ACPI_EC}, 3356 {"ACPI_FAN", ACPI_FAN}, 3357 {"ACPI_POWERRES", ACPI_POWERRES}, 3358 {"ACPI_PROCESSOR", ACPI_PROCESSOR}, 3359 {"ACPI_THERMAL", ACPI_THERMAL}, 3360 {"ACPI_TIMER", ACPI_TIMER}, 3361 {"ACPI_ALL_DRIVERS", ACPI_ALL_DRIVERS}, 3362 {NULL, 0} 3363 }; 3364 3365 static struct debugtag dbg_level[] = { 3366 {"ACPI_LV_INIT", ACPI_LV_INIT}, 3367 {"ACPI_LV_DEBUG_OBJECT", ACPI_LV_DEBUG_OBJECT}, 3368 {"ACPI_LV_INFO", ACPI_LV_INFO}, 3369 {"ACPI_LV_ALL_EXCEPTIONS", ACPI_LV_ALL_EXCEPTIONS}, 3370 3371 /* Trace verbosity level 1 [Standard Trace Level] */ 3372 {"ACPI_LV_INIT_NAMES", ACPI_LV_INIT_NAMES}, 3373 {"ACPI_LV_PARSE", ACPI_LV_PARSE}, 3374 {"ACPI_LV_LOAD", ACPI_LV_LOAD}, 3375 {"ACPI_LV_DISPATCH", ACPI_LV_DISPATCH}, 3376 {"ACPI_LV_EXEC", ACPI_LV_EXEC}, 3377 {"ACPI_LV_NAMES", ACPI_LV_NAMES}, 3378 {"ACPI_LV_OPREGION", ACPI_LV_OPREGION}, 3379 {"ACPI_LV_BFIELD", ACPI_LV_BFIELD}, 3380 {"ACPI_LV_TABLES", ACPI_LV_TABLES}, 3381 {"ACPI_LV_VALUES", ACPI_LV_VALUES}, 3382 {"ACPI_LV_OBJECTS", ACPI_LV_OBJECTS}, 3383 {"ACPI_LV_RESOURCES", ACPI_LV_RESOURCES}, 3384 {"ACPI_LV_USER_REQUESTS", ACPI_LV_USER_REQUESTS}, 3385 {"ACPI_LV_PACKAGE", ACPI_LV_PACKAGE}, 3386 {"ACPI_LV_VERBOSITY1", ACPI_LV_VERBOSITY1}, 3387 3388 /* Trace verbosity level 2 [Function tracing and memory allocation] */ 3389 {"ACPI_LV_ALLOCATIONS", ACPI_LV_ALLOCATIONS}, 3390 {"ACPI_LV_FUNCTIONS", ACPI_LV_FUNCTIONS}, 3391 {"ACPI_LV_OPTIMIZATIONS", ACPI_LV_OPTIMIZATIONS}, 3392 {"ACPI_LV_VERBOSITY2", ACPI_LV_VERBOSITY2}, 3393 {"ACPI_LV_ALL", ACPI_LV_ALL}, 3394 3395 /* Trace verbosity level 3 [Threading, I/O, and Interrupts] */ 3396 {"ACPI_LV_MUTEX", ACPI_LV_MUTEX}, 3397 {"ACPI_LV_THREADS", ACPI_LV_THREADS}, 3398 {"ACPI_LV_IO", ACPI_LV_IO}, 3399 {"ACPI_LV_INTERRUPTS", ACPI_LV_INTERRUPTS}, 3400 {"ACPI_LV_VERBOSITY3", ACPI_LV_VERBOSITY3}, 3401 3402 /* Exceptionally verbose output -- also used in the global "DebugLevel" */ 3403 {"ACPI_LV_AML_DISASSEMBLE", ACPI_LV_AML_DISASSEMBLE}, 3404 {"ACPI_LV_VERBOSE_INFO", ACPI_LV_VERBOSE_INFO}, 3405 {"ACPI_LV_FULL_TABLES", ACPI_LV_FULL_TABLES}, 3406 {"ACPI_LV_EVENTS", ACPI_LV_EVENTS}, 3407 {"ACPI_LV_VERBOSE", ACPI_LV_VERBOSE}, 3408 {NULL, 0} 3409 }; 3410 3411 static void 3412 acpi_parse_debug(char *cp, struct debugtag *tag, UINT32 *flag) 3413 { 3414 char *ep; 3415 int i, l; 3416 int set; 3417 3418 while (*cp) { 3419 if (isspace(*cp)) { 3420 cp++; 3421 continue; 3422 } 3423 ep = cp; 3424 while (*ep && !isspace(*ep)) 3425 ep++; 3426 if (*cp == '!') { 3427 set = 0; 3428 cp++; 3429 if (cp == ep) 3430 continue; 3431 } else { 3432 set = 1; 3433 } 3434 l = ep - cp; 3435 for (i = 0; tag[i].name != NULL; i++) { 3436 if (!strncmp(cp, tag[i].name, l)) { 3437 if (set) 3438 *flag |= tag[i].value; 3439 else 3440 *flag &= ~tag[i].value; 3441 } 3442 } 3443 cp = ep; 3444 } 3445 } 3446 3447 static void 3448 acpi_set_debugging(void *junk) 3449 { 3450 char *layer, *level; 3451 3452 if (cold) { 3453 AcpiDbgLayer = 0; 3454 AcpiDbgLevel = 0; 3455 } 3456 3457 layer = getenv("debug.acpi.layer"); 3458 level = getenv("debug.acpi.level"); 3459 if (layer == NULL && level == NULL) 3460 return; 3461 3462 printf("ACPI set debug"); 3463 if (layer != NULL) { 3464 if (strcmp("NONE", layer) != 0) 3465 printf(" layer '%s'", layer); 3466 acpi_parse_debug(layer, &dbg_layer[0], &AcpiDbgLayer); 3467 freeenv(layer); 3468 } 3469 if (level != NULL) { 3470 if (strcmp("NONE", level) != 0) 3471 printf(" level '%s'", level); 3472 acpi_parse_debug(level, &dbg_level[0], &AcpiDbgLevel); 3473 freeenv(level); 3474 } 3475 printf("\n"); 3476 } 3477 3478 SYSINIT(acpi_debugging, SI_SUB_TUNABLES, SI_ORDER_ANY, acpi_set_debugging, 3479 NULL); 3480 3481 static int 3482 acpi_debug_sysctl(SYSCTL_HANDLER_ARGS) 3483 { 3484 int error, *dbg; 3485 struct debugtag *tag; 3486 struct sbuf sb; 3487 3488 if (sbuf_new(&sb, NULL, 128, SBUF_AUTOEXTEND) == NULL) 3489 return (ENOMEM); 3490 if (strcmp(oidp->oid_arg1, "debug.acpi.layer") == 0) { 3491 tag = &dbg_layer[0]; 3492 dbg = &AcpiDbgLayer; 3493 } else { 3494 tag = &dbg_level[0]; 3495 dbg = &AcpiDbgLevel; 3496 } 3497 3498 /* Get old values if this is a get request. */ 3499 ACPI_SERIAL_BEGIN(acpi); 3500 if (*dbg == 0) { 3501 sbuf_cpy(&sb, "NONE"); 3502 } else if (req->newptr == NULL) { 3503 for (; tag->name != NULL; tag++) { 3504 if ((*dbg & tag->value) == tag->value) 3505 sbuf_printf(&sb, "%s ", tag->name); 3506 } 3507 } 3508 sbuf_trim(&sb); 3509 sbuf_finish(&sb); 3510 3511 /* Copy out the old values to the user. */ 3512 error = SYSCTL_OUT(req, sbuf_data(&sb), sbuf_len(&sb)); 3513 sbuf_delete(&sb); 3514 3515 /* If the user is setting a string, parse it. */ 3516 if (error == 0 && req->newptr != NULL) { 3517 *dbg = 0; 3518 setenv((char *)oidp->oid_arg1, (char *)req->newptr); 3519 acpi_set_debugging(NULL); 3520 } 3521 ACPI_SERIAL_END(acpi); 3522 3523 return (error); 3524 } 3525 3526 SYSCTL_PROC(_debug_acpi, OID_AUTO, layer, CTLFLAG_RW | CTLTYPE_STRING, 3527 "debug.acpi.layer", 0, acpi_debug_sysctl, "A", ""); 3528 SYSCTL_PROC(_debug_acpi, OID_AUTO, level, CTLFLAG_RW | CTLTYPE_STRING, 3529 "debug.acpi.level", 0, acpi_debug_sysctl, "A", ""); 3530 #endif /* ACPI_DEBUG */ 3531 3532 static int 3533 acpi_pm_func(u_long cmd, void *arg, ...) 3534 { 3535 int state, acpi_state; 3536 int error; 3537 struct acpi_softc *sc; 3538 va_list ap; 3539 3540 error = 0; 3541 switch (cmd) { 3542 case POWER_CMD_SUSPEND: 3543 sc = (struct acpi_softc *)arg; 3544 if (sc == NULL) { 3545 error = EINVAL; 3546 goto out; 3547 } 3548 3549 va_start(ap, arg); 3550 state = va_arg(ap, int); 3551 va_end(ap); 3552 3553 switch (state) { 3554 case POWER_SLEEP_STATE_STANDBY: 3555 acpi_state = sc->acpi_standby_sx; 3556 break; 3557 case POWER_SLEEP_STATE_SUSPEND: 3558 acpi_state = sc->acpi_suspend_sx; 3559 break; 3560 case POWER_SLEEP_STATE_HIBERNATE: 3561 acpi_state = ACPI_STATE_S4; 3562 break; 3563 default: 3564 error = EINVAL; 3565 goto out; 3566 } 3567 3568 if (ACPI_FAILURE(acpi_EnterSleepState(sc, acpi_state))) 3569 error = ENXIO; 3570 break; 3571 default: 3572 error = EINVAL; 3573 goto out; 3574 } 3575 3576 out: 3577 return (error); 3578 } 3579 3580 static void 3581 acpi_pm_register(void *arg) 3582 { 3583 if (!cold || resource_disabled("acpi", 0)) 3584 return; 3585 3586 power_pm_register(POWER_PM_TYPE_ACPI, acpi_pm_func, NULL); 3587 } 3588 3589 SYSINIT(power, SI_SUB_KLD, SI_ORDER_ANY, acpi_pm_register, 0); 3590