1 /*- 2 * Copyright (c) 2000 Takanori Watanabe <takawata@jp.freebsd.org> 3 * Copyright (c) 2000 Mitsuru IWASAKI <iwasaki@jp.freebsd.org> 4 * Copyright (c) 2000, 2001 Michael Smith 5 * Copyright (c) 2000 BSDi 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include "opt_acpi.h" 34 35 #include <sys/param.h> 36 #include <sys/kernel.h> 37 #include <sys/proc.h> 38 #include <sys/fcntl.h> 39 #include <sys/malloc.h> 40 #include <sys/module.h> 41 #include <sys/bus.h> 42 #include <sys/conf.h> 43 #include <sys/ioccom.h> 44 #include <sys/reboot.h> 45 #include <sys/sysctl.h> 46 #include <sys/ctype.h> 47 #include <sys/linker.h> 48 #include <sys/power.h> 49 #include <sys/sbuf.h> 50 #include <sys/sched.h> 51 #include <sys/smp.h> 52 #include <sys/timetc.h> 53 54 #if defined(__i386__) || defined(__amd64__) 55 #include <machine/clock.h> 56 #include <machine/pci_cfgreg.h> 57 #endif 58 #include <machine/resource.h> 59 #include <machine/bus.h> 60 #include <sys/rman.h> 61 #include <isa/isavar.h> 62 #include <isa/pnpvar.h> 63 64 #include <contrib/dev/acpica/include/acpi.h> 65 #include <contrib/dev/acpica/include/accommon.h> 66 #include <contrib/dev/acpica/include/acnamesp.h> 67 68 #include <dev/acpica/acpivar.h> 69 #include <dev/acpica/acpiio.h> 70 71 #include <dev/pci/pcivar.h> 72 73 #include <vm/vm_param.h> 74 75 static MALLOC_DEFINE(M_ACPIDEV, "acpidev", "ACPI devices"); 76 77 /* Hooks for the ACPI CA debugging infrastructure */ 78 #define _COMPONENT ACPI_BUS 79 ACPI_MODULE_NAME("ACPI") 80 81 static d_open_t acpiopen; 82 static d_close_t acpiclose; 83 static d_ioctl_t acpiioctl; 84 85 static struct cdevsw acpi_cdevsw = { 86 .d_version = D_VERSION, 87 .d_open = acpiopen, 88 .d_close = acpiclose, 89 .d_ioctl = acpiioctl, 90 .d_name = "acpi", 91 }; 92 93 struct acpi_interface { 94 ACPI_STRING *data; 95 int num; 96 }; 97 98 static char *sysres_ids[] = { "PNP0C01", "PNP0C02", NULL }; 99 static char *pcilink_ids[] = { "PNP0C0F", NULL }; 100 101 /* Global mutex for locking access to the ACPI subsystem. */ 102 struct mtx acpi_mutex; 103 struct callout acpi_sleep_timer; 104 105 /* Bitmap of device quirks. */ 106 int acpi_quirks; 107 108 /* Supported sleep states. */ 109 static BOOLEAN acpi_sleep_states[ACPI_S_STATE_COUNT]; 110 111 static void acpi_lookup(void *arg, const char *name, device_t *dev); 112 static int acpi_modevent(struct module *mod, int event, void *junk); 113 static int acpi_probe(device_t dev); 114 static int acpi_attach(device_t dev); 115 static int acpi_suspend(device_t dev); 116 static int acpi_resume(device_t dev); 117 static int acpi_shutdown(device_t dev); 118 static device_t acpi_add_child(device_t bus, u_int order, const char *name, 119 int unit); 120 static int acpi_print_child(device_t bus, device_t child); 121 static void acpi_probe_nomatch(device_t bus, device_t child); 122 static void acpi_driver_added(device_t dev, driver_t *driver); 123 static int acpi_read_ivar(device_t dev, device_t child, int index, 124 uintptr_t *result); 125 static int acpi_write_ivar(device_t dev, device_t child, int index, 126 uintptr_t value); 127 static struct resource_list *acpi_get_rlist(device_t dev, device_t child); 128 static void acpi_reserve_resources(device_t dev); 129 static int acpi_sysres_alloc(device_t dev); 130 static int acpi_set_resource(device_t dev, device_t child, int type, 131 int rid, rman_res_t start, rman_res_t count); 132 static struct resource *acpi_alloc_resource(device_t bus, device_t child, 133 int type, int *rid, rman_res_t start, rman_res_t end, 134 rman_res_t count, u_int flags); 135 static int acpi_adjust_resource(device_t bus, device_t child, int type, 136 struct resource *r, rman_res_t start, rman_res_t end); 137 static int acpi_release_resource(device_t bus, device_t child, int type, 138 int rid, struct resource *r); 139 static void acpi_delete_resource(device_t bus, device_t child, int type, 140 int rid); 141 static uint32_t acpi_isa_get_logicalid(device_t dev); 142 static int acpi_isa_get_compatid(device_t dev, uint32_t *cids, int count); 143 static char *acpi_device_id_probe(device_t bus, device_t dev, char **ids); 144 static ACPI_STATUS acpi_device_eval_obj(device_t bus, device_t dev, 145 ACPI_STRING pathname, ACPI_OBJECT_LIST *parameters, 146 ACPI_BUFFER *ret); 147 static ACPI_STATUS acpi_device_scan_cb(ACPI_HANDLE h, UINT32 level, 148 void *context, void **retval); 149 static ACPI_STATUS acpi_device_scan_children(device_t bus, device_t dev, 150 int max_depth, acpi_scan_cb_t user_fn, void *arg); 151 static int acpi_set_powerstate(device_t child, int state); 152 static int acpi_isa_pnp_probe(device_t bus, device_t child, 153 struct isa_pnp_id *ids); 154 static void acpi_probe_children(device_t bus); 155 static void acpi_probe_order(ACPI_HANDLE handle, int *order); 156 static ACPI_STATUS acpi_probe_child(ACPI_HANDLE handle, UINT32 level, 157 void *context, void **status); 158 static void acpi_sleep_enable(void *arg); 159 static ACPI_STATUS acpi_sleep_disable(struct acpi_softc *sc); 160 static ACPI_STATUS acpi_EnterSleepState(struct acpi_softc *sc, int state); 161 static void acpi_shutdown_final(void *arg, int howto); 162 static void acpi_enable_fixed_events(struct acpi_softc *sc); 163 static BOOLEAN acpi_has_hid(ACPI_HANDLE handle); 164 static void acpi_resync_clock(struct acpi_softc *sc); 165 static int acpi_wake_sleep_prep(ACPI_HANDLE handle, int sstate); 166 static int acpi_wake_run_prep(ACPI_HANDLE handle, int sstate); 167 static int acpi_wake_prep_walk(int sstate); 168 static int acpi_wake_sysctl_walk(device_t dev); 169 static int acpi_wake_set_sysctl(SYSCTL_HANDLER_ARGS); 170 static void acpi_system_eventhandler_sleep(void *arg, int state); 171 static void acpi_system_eventhandler_wakeup(void *arg, int state); 172 static int acpi_sname2sstate(const char *sname); 173 static const char *acpi_sstate2sname(int sstate); 174 static int acpi_supported_sleep_state_sysctl(SYSCTL_HANDLER_ARGS); 175 static int acpi_sleep_state_sysctl(SYSCTL_HANDLER_ARGS); 176 static int acpi_debug_objects_sysctl(SYSCTL_HANDLER_ARGS); 177 static int acpi_pm_func(u_long cmd, void *arg, ...); 178 static int acpi_child_location_str_method(device_t acdev, device_t child, 179 char *buf, size_t buflen); 180 static int acpi_child_pnpinfo_str_method(device_t acdev, device_t child, 181 char *buf, size_t buflen); 182 #if defined(__i386__) || defined(__amd64__) 183 static void acpi_enable_pcie(void); 184 #endif 185 static void acpi_hint_device_unit(device_t acdev, device_t child, 186 const char *name, int *unitp); 187 static void acpi_reset_interfaces(device_t dev); 188 189 static device_method_t acpi_methods[] = { 190 /* Device interface */ 191 DEVMETHOD(device_probe, acpi_probe), 192 DEVMETHOD(device_attach, acpi_attach), 193 DEVMETHOD(device_shutdown, acpi_shutdown), 194 DEVMETHOD(device_detach, bus_generic_detach), 195 DEVMETHOD(device_suspend, acpi_suspend), 196 DEVMETHOD(device_resume, acpi_resume), 197 198 /* Bus interface */ 199 DEVMETHOD(bus_add_child, acpi_add_child), 200 DEVMETHOD(bus_print_child, acpi_print_child), 201 DEVMETHOD(bus_probe_nomatch, acpi_probe_nomatch), 202 DEVMETHOD(bus_driver_added, acpi_driver_added), 203 DEVMETHOD(bus_read_ivar, acpi_read_ivar), 204 DEVMETHOD(bus_write_ivar, acpi_write_ivar), 205 DEVMETHOD(bus_get_resource_list, acpi_get_rlist), 206 DEVMETHOD(bus_set_resource, acpi_set_resource), 207 DEVMETHOD(bus_get_resource, bus_generic_rl_get_resource), 208 DEVMETHOD(bus_alloc_resource, acpi_alloc_resource), 209 DEVMETHOD(bus_adjust_resource, acpi_adjust_resource), 210 DEVMETHOD(bus_release_resource, acpi_release_resource), 211 DEVMETHOD(bus_delete_resource, acpi_delete_resource), 212 DEVMETHOD(bus_child_pnpinfo_str, acpi_child_pnpinfo_str_method), 213 DEVMETHOD(bus_child_location_str, acpi_child_location_str_method), 214 DEVMETHOD(bus_activate_resource, bus_generic_activate_resource), 215 DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource), 216 DEVMETHOD(bus_setup_intr, bus_generic_setup_intr), 217 DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr), 218 DEVMETHOD(bus_hint_device_unit, acpi_hint_device_unit), 219 DEVMETHOD(bus_get_cpus, acpi_get_cpus), 220 DEVMETHOD(bus_get_domain, acpi_get_domain), 221 222 /* ACPI bus */ 223 DEVMETHOD(acpi_id_probe, acpi_device_id_probe), 224 DEVMETHOD(acpi_evaluate_object, acpi_device_eval_obj), 225 DEVMETHOD(acpi_pwr_for_sleep, acpi_device_pwr_for_sleep), 226 DEVMETHOD(acpi_scan_children, acpi_device_scan_children), 227 228 /* ISA emulation */ 229 DEVMETHOD(isa_pnp_probe, acpi_isa_pnp_probe), 230 231 DEVMETHOD_END 232 }; 233 234 static driver_t acpi_driver = { 235 "acpi", 236 acpi_methods, 237 sizeof(struct acpi_softc), 238 }; 239 240 static devclass_t acpi_devclass; 241 DRIVER_MODULE(acpi, nexus, acpi_driver, acpi_devclass, acpi_modevent, 0); 242 MODULE_VERSION(acpi, 1); 243 244 ACPI_SERIAL_DECL(acpi, "ACPI root bus"); 245 246 /* Local pools for managing system resources for ACPI child devices. */ 247 static struct rman acpi_rman_io, acpi_rman_mem; 248 249 #define ACPI_MINIMUM_AWAKETIME 5 250 251 /* Holds the description of the acpi0 device. */ 252 static char acpi_desc[ACPI_OEM_ID_SIZE + ACPI_OEM_TABLE_ID_SIZE + 2]; 253 254 SYSCTL_NODE(_debug, OID_AUTO, acpi, CTLFLAG_RD, NULL, "ACPI debugging"); 255 static char acpi_ca_version[12]; 256 SYSCTL_STRING(_debug_acpi, OID_AUTO, acpi_ca_version, CTLFLAG_RD, 257 acpi_ca_version, 0, "Version of Intel ACPI-CA"); 258 259 /* 260 * Allow overriding _OSI methods. 261 */ 262 static char acpi_install_interface[256]; 263 TUNABLE_STR("hw.acpi.install_interface", acpi_install_interface, 264 sizeof(acpi_install_interface)); 265 static char acpi_remove_interface[256]; 266 TUNABLE_STR("hw.acpi.remove_interface", acpi_remove_interface, 267 sizeof(acpi_remove_interface)); 268 269 /* Allow users to dump Debug objects without ACPI debugger. */ 270 static int acpi_debug_objects; 271 TUNABLE_INT("debug.acpi.enable_debug_objects", &acpi_debug_objects); 272 SYSCTL_PROC(_debug_acpi, OID_AUTO, enable_debug_objects, 273 CTLFLAG_RW | CTLTYPE_INT, NULL, 0, acpi_debug_objects_sysctl, "I", 274 "Enable Debug objects"); 275 276 /* Allow the interpreter to ignore common mistakes in BIOS. */ 277 static int acpi_interpreter_slack = 1; 278 TUNABLE_INT("debug.acpi.interpreter_slack", &acpi_interpreter_slack); 279 SYSCTL_INT(_debug_acpi, OID_AUTO, interpreter_slack, CTLFLAG_RDTUN, 280 &acpi_interpreter_slack, 1, "Turn on interpreter slack mode."); 281 282 /* Ignore register widths set by FADT and use default widths instead. */ 283 static int acpi_ignore_reg_width = 1; 284 TUNABLE_INT("debug.acpi.default_register_width", &acpi_ignore_reg_width); 285 SYSCTL_INT(_debug_acpi, OID_AUTO, default_register_width, CTLFLAG_RDTUN, 286 &acpi_ignore_reg_width, 1, "Ignore register widths set by FADT"); 287 288 /* Allow users to override quirks. */ 289 TUNABLE_INT("debug.acpi.quirks", &acpi_quirks); 290 291 int acpi_susp_bounce; 292 SYSCTL_INT(_debug_acpi, OID_AUTO, suspend_bounce, CTLFLAG_RW, 293 &acpi_susp_bounce, 0, "Don't actually suspend, just test devices."); 294 295 /* 296 * ACPI can only be loaded as a module by the loader; activating it after 297 * system bootstrap time is not useful, and can be fatal to the system. 298 * It also cannot be unloaded, since the entire system bus hierarchy hangs 299 * off it. 300 */ 301 static int 302 acpi_modevent(struct module *mod, int event, void *junk) 303 { 304 switch (event) { 305 case MOD_LOAD: 306 if (!cold) { 307 printf("The ACPI driver cannot be loaded after boot.\n"); 308 return (EPERM); 309 } 310 break; 311 case MOD_UNLOAD: 312 if (!cold && power_pm_get_type() == POWER_PM_TYPE_ACPI) 313 return (EBUSY); 314 break; 315 default: 316 break; 317 } 318 return (0); 319 } 320 321 /* 322 * Perform early initialization. 323 */ 324 ACPI_STATUS 325 acpi_Startup(void) 326 { 327 static int started = 0; 328 ACPI_STATUS status; 329 int val; 330 331 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 332 333 /* Only run the startup code once. The MADT driver also calls this. */ 334 if (started) 335 return_VALUE (AE_OK); 336 started = 1; 337 338 /* 339 * Initialize the ACPICA subsystem. 340 */ 341 if (ACPI_FAILURE(status = AcpiInitializeSubsystem())) { 342 printf("ACPI: Could not initialize Subsystem: %s\n", 343 AcpiFormatException(status)); 344 return_VALUE (status); 345 } 346 347 /* 348 * Pre-allocate space for RSDT/XSDT and DSDT tables and allow resizing 349 * if more tables exist. 350 */ 351 if (ACPI_FAILURE(status = AcpiInitializeTables(NULL, 2, TRUE))) { 352 printf("ACPI: Table initialisation failed: %s\n", 353 AcpiFormatException(status)); 354 return_VALUE (status); 355 } 356 357 /* Set up any quirks we have for this system. */ 358 if (acpi_quirks == ACPI_Q_OK) 359 acpi_table_quirks(&acpi_quirks); 360 361 /* If the user manually set the disabled hint to 0, force-enable ACPI. */ 362 if (resource_int_value("acpi", 0, "disabled", &val) == 0 && val == 0) 363 acpi_quirks &= ~ACPI_Q_BROKEN; 364 if (acpi_quirks & ACPI_Q_BROKEN) { 365 printf("ACPI disabled by blacklist. Contact your BIOS vendor.\n"); 366 status = AE_SUPPORT; 367 } 368 369 return_VALUE (status); 370 } 371 372 /* 373 * Detect ACPI and perform early initialisation. 374 */ 375 int 376 acpi_identify(void) 377 { 378 ACPI_TABLE_RSDP *rsdp; 379 ACPI_TABLE_HEADER *rsdt; 380 ACPI_PHYSICAL_ADDRESS paddr; 381 struct sbuf sb; 382 383 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 384 385 if (!cold) 386 return (ENXIO); 387 388 /* Check that we haven't been disabled with a hint. */ 389 if (resource_disabled("acpi", 0)) 390 return (ENXIO); 391 392 /* Check for other PM systems. */ 393 if (power_pm_get_type() != POWER_PM_TYPE_NONE && 394 power_pm_get_type() != POWER_PM_TYPE_ACPI) { 395 printf("ACPI identify failed, other PM system enabled.\n"); 396 return (ENXIO); 397 } 398 399 /* Initialize root tables. */ 400 if (ACPI_FAILURE(acpi_Startup())) { 401 printf("ACPI: Try disabling either ACPI or apic support.\n"); 402 return (ENXIO); 403 } 404 405 if ((paddr = AcpiOsGetRootPointer()) == 0 || 406 (rsdp = AcpiOsMapMemory(paddr, sizeof(ACPI_TABLE_RSDP))) == NULL) 407 return (ENXIO); 408 if (rsdp->Revision > 1 && rsdp->XsdtPhysicalAddress != 0) 409 paddr = (ACPI_PHYSICAL_ADDRESS)rsdp->XsdtPhysicalAddress; 410 else 411 paddr = (ACPI_PHYSICAL_ADDRESS)rsdp->RsdtPhysicalAddress; 412 AcpiOsUnmapMemory(rsdp, sizeof(ACPI_TABLE_RSDP)); 413 414 if ((rsdt = AcpiOsMapMemory(paddr, sizeof(ACPI_TABLE_HEADER))) == NULL) 415 return (ENXIO); 416 sbuf_new(&sb, acpi_desc, sizeof(acpi_desc), SBUF_FIXEDLEN); 417 sbuf_bcat(&sb, rsdt->OemId, ACPI_OEM_ID_SIZE); 418 sbuf_trim(&sb); 419 sbuf_putc(&sb, ' '); 420 sbuf_bcat(&sb, rsdt->OemTableId, ACPI_OEM_TABLE_ID_SIZE); 421 sbuf_trim(&sb); 422 sbuf_finish(&sb); 423 sbuf_delete(&sb); 424 AcpiOsUnmapMemory(rsdt, sizeof(ACPI_TABLE_HEADER)); 425 426 snprintf(acpi_ca_version, sizeof(acpi_ca_version), "%x", ACPI_CA_VERSION); 427 428 return (0); 429 } 430 431 /* 432 * Fetch some descriptive data from ACPI to put in our attach message. 433 */ 434 static int 435 acpi_probe(device_t dev) 436 { 437 438 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 439 440 device_set_desc(dev, acpi_desc); 441 442 return_VALUE (BUS_PROBE_NOWILDCARD); 443 } 444 445 static int 446 acpi_attach(device_t dev) 447 { 448 struct acpi_softc *sc; 449 ACPI_STATUS status; 450 int error, state; 451 UINT32 flags; 452 UINT8 TypeA, TypeB; 453 char *env; 454 455 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 456 457 sc = device_get_softc(dev); 458 sc->acpi_dev = dev; 459 callout_init(&sc->susp_force_to, 1); 460 461 error = ENXIO; 462 463 /* Initialize resource manager. */ 464 acpi_rman_io.rm_type = RMAN_ARRAY; 465 acpi_rman_io.rm_start = 0; 466 acpi_rman_io.rm_end = 0xffff; 467 acpi_rman_io.rm_descr = "ACPI I/O ports"; 468 if (rman_init(&acpi_rman_io) != 0) 469 panic("acpi rman_init IO ports failed"); 470 acpi_rman_mem.rm_type = RMAN_ARRAY; 471 acpi_rman_mem.rm_descr = "ACPI I/O memory addresses"; 472 if (rman_init(&acpi_rman_mem) != 0) 473 panic("acpi rman_init memory failed"); 474 475 /* Initialise the ACPI mutex */ 476 mtx_init(&acpi_mutex, "ACPI global lock", NULL, MTX_DEF); 477 478 /* 479 * Set the globals from our tunables. This is needed because ACPI-CA 480 * uses UINT8 for some values and we have no tunable_byte. 481 */ 482 AcpiGbl_EnableInterpreterSlack = acpi_interpreter_slack ? TRUE : FALSE; 483 AcpiGbl_EnableAmlDebugObject = acpi_debug_objects ? TRUE : FALSE; 484 AcpiGbl_UseDefaultRegisterWidths = acpi_ignore_reg_width ? TRUE : FALSE; 485 486 #ifndef ACPI_DEBUG 487 /* 488 * Disable all debugging layers and levels. 489 */ 490 AcpiDbgLayer = 0; 491 AcpiDbgLevel = 0; 492 #endif 493 494 /* Override OS interfaces if the user requested. */ 495 acpi_reset_interfaces(dev); 496 497 /* Load ACPI name space. */ 498 status = AcpiLoadTables(); 499 if (ACPI_FAILURE(status)) { 500 device_printf(dev, "Could not load Namespace: %s\n", 501 AcpiFormatException(status)); 502 goto out; 503 } 504 505 #if defined(__i386__) || defined(__amd64__) 506 /* Handle MCFG table if present. */ 507 acpi_enable_pcie(); 508 #endif 509 510 /* 511 * Note that some systems (specifically, those with namespace evaluation 512 * issues that require the avoidance of parts of the namespace) must 513 * avoid running _INI and _STA on everything, as well as dodging the final 514 * object init pass. 515 * 516 * For these devices, we set ACPI_NO_DEVICE_INIT and ACPI_NO_OBJECT_INIT). 517 * 518 * XXX We should arrange for the object init pass after we have attached 519 * all our child devices, but on many systems it works here. 520 */ 521 flags = 0; 522 if (testenv("debug.acpi.avoid")) 523 flags = ACPI_NO_DEVICE_INIT | ACPI_NO_OBJECT_INIT; 524 525 /* Bring the hardware and basic handlers online. */ 526 if (ACPI_FAILURE(status = AcpiEnableSubsystem(flags))) { 527 device_printf(dev, "Could not enable ACPI: %s\n", 528 AcpiFormatException(status)); 529 goto out; 530 } 531 532 /* 533 * Call the ECDT probe function to provide EC functionality before 534 * the namespace has been evaluated. 535 * 536 * XXX This happens before the sysresource devices have been probed and 537 * attached so its resources come from nexus0. In practice, this isn't 538 * a problem but should be addressed eventually. 539 */ 540 acpi_ec_ecdt_probe(dev); 541 542 /* Bring device objects and regions online. */ 543 if (ACPI_FAILURE(status = AcpiInitializeObjects(flags))) { 544 device_printf(dev, "Could not initialize ACPI objects: %s\n", 545 AcpiFormatException(status)); 546 goto out; 547 } 548 549 /* 550 * Setup our sysctl tree. 551 * 552 * XXX: This doesn't check to make sure that none of these fail. 553 */ 554 sysctl_ctx_init(&sc->acpi_sysctl_ctx); 555 sc->acpi_sysctl_tree = SYSCTL_ADD_NODE(&sc->acpi_sysctl_ctx, 556 SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO, 557 device_get_name(dev), CTLFLAG_RD, 0, ""); 558 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 559 OID_AUTO, "supported_sleep_state", CTLTYPE_STRING | CTLFLAG_RD, 560 0, 0, acpi_supported_sleep_state_sysctl, "A", 561 "List supported ACPI sleep states."); 562 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 563 OID_AUTO, "power_button_state", CTLTYPE_STRING | CTLFLAG_RW, 564 &sc->acpi_power_button_sx, 0, acpi_sleep_state_sysctl, "A", 565 "Power button ACPI sleep state."); 566 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 567 OID_AUTO, "sleep_button_state", CTLTYPE_STRING | CTLFLAG_RW, 568 &sc->acpi_sleep_button_sx, 0, acpi_sleep_state_sysctl, "A", 569 "Sleep button ACPI sleep state."); 570 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 571 OID_AUTO, "lid_switch_state", CTLTYPE_STRING | CTLFLAG_RW, 572 &sc->acpi_lid_switch_sx, 0, acpi_sleep_state_sysctl, "A", 573 "Lid ACPI sleep state. Set to S3 if you want to suspend your laptop when close the Lid."); 574 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 575 OID_AUTO, "standby_state", CTLTYPE_STRING | CTLFLAG_RW, 576 &sc->acpi_standby_sx, 0, acpi_sleep_state_sysctl, "A", ""); 577 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 578 OID_AUTO, "suspend_state", CTLTYPE_STRING | CTLFLAG_RW, 579 &sc->acpi_suspend_sx, 0, acpi_sleep_state_sysctl, "A", ""); 580 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 581 OID_AUTO, "sleep_delay", CTLFLAG_RW, &sc->acpi_sleep_delay, 0, 582 "sleep delay in seconds"); 583 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 584 OID_AUTO, "s4bios", CTLFLAG_RW, &sc->acpi_s4bios, 0, "S4BIOS mode"); 585 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 586 OID_AUTO, "verbose", CTLFLAG_RW, &sc->acpi_verbose, 0, "verbose mode"); 587 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 588 OID_AUTO, "disable_on_reboot", CTLFLAG_RW, 589 &sc->acpi_do_disable, 0, "Disable ACPI when rebooting/halting system"); 590 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 591 OID_AUTO, "handle_reboot", CTLFLAG_RW, 592 &sc->acpi_handle_reboot, 0, "Use ACPI Reset Register to reboot"); 593 594 /* 595 * Default to 1 second before sleeping to give some machines time to 596 * stabilize. 597 */ 598 sc->acpi_sleep_delay = 1; 599 if (bootverbose) 600 sc->acpi_verbose = 1; 601 if ((env = kern_getenv("hw.acpi.verbose")) != NULL) { 602 if (strcmp(env, "0") != 0) 603 sc->acpi_verbose = 1; 604 freeenv(env); 605 } 606 607 /* Only enable reboot by default if the FADT says it is available. */ 608 if (AcpiGbl_FADT.Flags & ACPI_FADT_RESET_REGISTER) 609 sc->acpi_handle_reboot = 1; 610 611 #if !ACPI_REDUCED_HARDWARE 612 /* Only enable S4BIOS by default if the FACS says it is available. */ 613 if (AcpiGbl_FACS != NULL && AcpiGbl_FACS->Flags & ACPI_FACS_S4_BIOS_PRESENT) 614 sc->acpi_s4bios = 1; 615 #endif 616 617 /* Probe all supported sleep states. */ 618 acpi_sleep_states[ACPI_STATE_S0] = TRUE; 619 for (state = ACPI_STATE_S1; state < ACPI_S_STATE_COUNT; state++) 620 if (ACPI_SUCCESS(AcpiEvaluateObject(ACPI_ROOT_OBJECT, 621 __DECONST(char *, AcpiGbl_SleepStateNames[state]), NULL, NULL)) && 622 ACPI_SUCCESS(AcpiGetSleepTypeData(state, &TypeA, &TypeB))) 623 acpi_sleep_states[state] = TRUE; 624 625 /* 626 * Dispatch the default sleep state to devices. The lid switch is set 627 * to UNKNOWN by default to avoid surprising users. 628 */ 629 sc->acpi_power_button_sx = acpi_sleep_states[ACPI_STATE_S5] ? 630 ACPI_STATE_S5 : ACPI_STATE_UNKNOWN; 631 sc->acpi_lid_switch_sx = ACPI_STATE_UNKNOWN; 632 sc->acpi_standby_sx = acpi_sleep_states[ACPI_STATE_S1] ? 633 ACPI_STATE_S1 : ACPI_STATE_UNKNOWN; 634 sc->acpi_suspend_sx = acpi_sleep_states[ACPI_STATE_S3] ? 635 ACPI_STATE_S3 : ACPI_STATE_UNKNOWN; 636 637 /* Pick the first valid sleep state for the sleep button default. */ 638 sc->acpi_sleep_button_sx = ACPI_STATE_UNKNOWN; 639 for (state = ACPI_STATE_S1; state <= ACPI_STATE_S4; state++) 640 if (acpi_sleep_states[state]) { 641 sc->acpi_sleep_button_sx = state; 642 break; 643 } 644 645 acpi_enable_fixed_events(sc); 646 647 /* 648 * Scan the namespace and attach/initialise children. 649 */ 650 651 /* Register our shutdown handler. */ 652 EVENTHANDLER_REGISTER(shutdown_final, acpi_shutdown_final, sc, 653 SHUTDOWN_PRI_LAST); 654 655 /* 656 * Register our acpi event handlers. 657 * XXX should be configurable eg. via userland policy manager. 658 */ 659 EVENTHANDLER_REGISTER(acpi_sleep_event, acpi_system_eventhandler_sleep, 660 sc, ACPI_EVENT_PRI_LAST); 661 EVENTHANDLER_REGISTER(acpi_wakeup_event, acpi_system_eventhandler_wakeup, 662 sc, ACPI_EVENT_PRI_LAST); 663 664 /* Flag our initial states. */ 665 sc->acpi_enabled = TRUE; 666 sc->acpi_sstate = ACPI_STATE_S0; 667 sc->acpi_sleep_disabled = TRUE; 668 669 /* Create the control device */ 670 sc->acpi_dev_t = make_dev(&acpi_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0664, 671 "acpi"); 672 sc->acpi_dev_t->si_drv1 = sc; 673 674 if ((error = acpi_machdep_init(dev))) 675 goto out; 676 677 /* Register ACPI again to pass the correct argument of pm_func. */ 678 power_pm_register(POWER_PM_TYPE_ACPI, acpi_pm_func, sc); 679 680 if (!acpi_disabled("bus")) { 681 EVENTHANDLER_REGISTER(dev_lookup, acpi_lookup, NULL, 1000); 682 acpi_probe_children(dev); 683 } 684 685 /* Update all GPEs and enable runtime GPEs. */ 686 status = AcpiUpdateAllGpes(); 687 if (ACPI_FAILURE(status)) 688 device_printf(dev, "Could not update all GPEs: %s\n", 689 AcpiFormatException(status)); 690 691 /* Allow sleep request after a while. */ 692 callout_init_mtx(&acpi_sleep_timer, &acpi_mutex, 0); 693 callout_reset(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME, 694 acpi_sleep_enable, sc); 695 696 error = 0; 697 698 out: 699 return_VALUE (error); 700 } 701 702 static void 703 acpi_set_power_children(device_t dev, int state) 704 { 705 device_t child; 706 device_t *devlist; 707 int dstate, i, numdevs; 708 709 if (device_get_children(dev, &devlist, &numdevs) != 0) 710 return; 711 712 /* 713 * Retrieve and set D-state for the sleep state if _SxD is present. 714 * Skip children who aren't attached since they are handled separately. 715 */ 716 for (i = 0; i < numdevs; i++) { 717 child = devlist[i]; 718 dstate = state; 719 if (device_is_attached(child) && 720 acpi_device_pwr_for_sleep(dev, child, &dstate) == 0) 721 acpi_set_powerstate(child, dstate); 722 } 723 free(devlist, M_TEMP); 724 } 725 726 static int 727 acpi_suspend(device_t dev) 728 { 729 int error; 730 731 GIANT_REQUIRED; 732 733 error = bus_generic_suspend(dev); 734 if (error == 0) 735 acpi_set_power_children(dev, ACPI_STATE_D3); 736 737 return (error); 738 } 739 740 static int 741 acpi_resume(device_t dev) 742 { 743 744 GIANT_REQUIRED; 745 746 acpi_set_power_children(dev, ACPI_STATE_D0); 747 748 return (bus_generic_resume(dev)); 749 } 750 751 static int 752 acpi_shutdown(device_t dev) 753 { 754 755 GIANT_REQUIRED; 756 757 /* Allow children to shutdown first. */ 758 bus_generic_shutdown(dev); 759 760 /* 761 * Enable any GPEs that are able to power-on the system (i.e., RTC). 762 * Also, disable any that are not valid for this state (most). 763 */ 764 acpi_wake_prep_walk(ACPI_STATE_S5); 765 766 return (0); 767 } 768 769 /* 770 * Handle a new device being added 771 */ 772 static device_t 773 acpi_add_child(device_t bus, u_int order, const char *name, int unit) 774 { 775 struct acpi_device *ad; 776 device_t child; 777 778 if ((ad = malloc(sizeof(*ad), M_ACPIDEV, M_NOWAIT | M_ZERO)) == NULL) 779 return (NULL); 780 781 resource_list_init(&ad->ad_rl); 782 783 child = device_add_child_ordered(bus, order, name, unit); 784 if (child != NULL) 785 device_set_ivars(child, ad); 786 else 787 free(ad, M_ACPIDEV); 788 return (child); 789 } 790 791 static int 792 acpi_print_child(device_t bus, device_t child) 793 { 794 struct acpi_device *adev = device_get_ivars(child); 795 struct resource_list *rl = &adev->ad_rl; 796 int retval = 0; 797 798 retval += bus_print_child_header(bus, child); 799 retval += resource_list_print_type(rl, "port", SYS_RES_IOPORT, "%#jx"); 800 retval += resource_list_print_type(rl, "iomem", SYS_RES_MEMORY, "%#jx"); 801 retval += resource_list_print_type(rl, "irq", SYS_RES_IRQ, "%jd"); 802 retval += resource_list_print_type(rl, "drq", SYS_RES_DRQ, "%jd"); 803 if (device_get_flags(child)) 804 retval += printf(" flags %#x", device_get_flags(child)); 805 retval += bus_print_child_domain(bus, child); 806 retval += bus_print_child_footer(bus, child); 807 808 return (retval); 809 } 810 811 /* 812 * If this device is an ACPI child but no one claimed it, attempt 813 * to power it off. We'll power it back up when a driver is added. 814 * 815 * XXX Disabled for now since many necessary devices (like fdc and 816 * ATA) don't claim the devices we created for them but still expect 817 * them to be powered up. 818 */ 819 static void 820 acpi_probe_nomatch(device_t bus, device_t child) 821 { 822 #ifdef ACPI_ENABLE_POWERDOWN_NODRIVER 823 acpi_set_powerstate(child, ACPI_STATE_D3); 824 #endif 825 } 826 827 /* 828 * If a new driver has a chance to probe a child, first power it up. 829 * 830 * XXX Disabled for now (see acpi_probe_nomatch for details). 831 */ 832 static void 833 acpi_driver_added(device_t dev, driver_t *driver) 834 { 835 device_t child, *devlist; 836 int i, numdevs; 837 838 DEVICE_IDENTIFY(driver, dev); 839 if (device_get_children(dev, &devlist, &numdevs)) 840 return; 841 for (i = 0; i < numdevs; i++) { 842 child = devlist[i]; 843 if (device_get_state(child) == DS_NOTPRESENT) { 844 #ifdef ACPI_ENABLE_POWERDOWN_NODRIVER 845 acpi_set_powerstate(child, ACPI_STATE_D0); 846 if (device_probe_and_attach(child) != 0) 847 acpi_set_powerstate(child, ACPI_STATE_D3); 848 #else 849 device_probe_and_attach(child); 850 #endif 851 } 852 } 853 free(devlist, M_TEMP); 854 } 855 856 /* Location hint for devctl(8) */ 857 static int 858 acpi_child_location_str_method(device_t cbdev, device_t child, char *buf, 859 size_t buflen) 860 { 861 struct acpi_device *dinfo = device_get_ivars(child); 862 char buf2[32]; 863 int pxm; 864 865 if (dinfo->ad_handle) { 866 snprintf(buf, buflen, "handle=%s", acpi_name(dinfo->ad_handle)); 867 if (ACPI_SUCCESS(acpi_GetInteger(dinfo->ad_handle, "_PXM", &pxm))) { 868 snprintf(buf2, 32, " _PXM=%d", pxm); 869 strlcat(buf, buf2, buflen); 870 } 871 } else { 872 snprintf(buf, buflen, "unknown"); 873 } 874 return (0); 875 } 876 877 /* PnP information for devctl(8) */ 878 static int 879 acpi_child_pnpinfo_str_method(device_t cbdev, device_t child, char *buf, 880 size_t buflen) 881 { 882 struct acpi_device *dinfo = device_get_ivars(child); 883 ACPI_DEVICE_INFO *adinfo; 884 885 if (ACPI_FAILURE(AcpiGetObjectInfo(dinfo->ad_handle, &adinfo))) { 886 snprintf(buf, buflen, "unknown"); 887 return (0); 888 } 889 890 snprintf(buf, buflen, "_HID=%s _UID=%lu", 891 (adinfo->Valid & ACPI_VALID_HID) ? 892 adinfo->HardwareId.String : "none", 893 (adinfo->Valid & ACPI_VALID_UID) ? 894 strtoul(adinfo->UniqueId.String, NULL, 10) : 0UL); 895 AcpiOsFree(adinfo); 896 897 return (0); 898 } 899 900 /* 901 * Handle per-device ivars 902 */ 903 static int 904 acpi_read_ivar(device_t dev, device_t child, int index, uintptr_t *result) 905 { 906 struct acpi_device *ad; 907 908 if ((ad = device_get_ivars(child)) == NULL) { 909 device_printf(child, "device has no ivars\n"); 910 return (ENOENT); 911 } 912 913 /* ACPI and ISA compatibility ivars */ 914 switch(index) { 915 case ACPI_IVAR_HANDLE: 916 *(ACPI_HANDLE *)result = ad->ad_handle; 917 break; 918 case ACPI_IVAR_PRIVATE: 919 *(void **)result = ad->ad_private; 920 break; 921 case ACPI_IVAR_FLAGS: 922 *(int *)result = ad->ad_flags; 923 break; 924 case ISA_IVAR_VENDORID: 925 case ISA_IVAR_SERIAL: 926 case ISA_IVAR_COMPATID: 927 *(int *)result = -1; 928 break; 929 case ISA_IVAR_LOGICALID: 930 *(int *)result = acpi_isa_get_logicalid(child); 931 break; 932 case PCI_IVAR_CLASS: 933 *(uint8_t*)result = (ad->ad_cls_class >> 16) & 0xff; 934 break; 935 case PCI_IVAR_SUBCLASS: 936 *(uint8_t*)result = (ad->ad_cls_class >> 8) & 0xff; 937 break; 938 case PCI_IVAR_PROGIF: 939 *(uint8_t*)result = (ad->ad_cls_class >> 0) & 0xff; 940 break; 941 default: 942 return (ENOENT); 943 } 944 945 return (0); 946 } 947 948 static int 949 acpi_write_ivar(device_t dev, device_t child, int index, uintptr_t value) 950 { 951 struct acpi_device *ad; 952 953 if ((ad = device_get_ivars(child)) == NULL) { 954 device_printf(child, "device has no ivars\n"); 955 return (ENOENT); 956 } 957 958 switch(index) { 959 case ACPI_IVAR_HANDLE: 960 ad->ad_handle = (ACPI_HANDLE)value; 961 break; 962 case ACPI_IVAR_PRIVATE: 963 ad->ad_private = (void *)value; 964 break; 965 case ACPI_IVAR_FLAGS: 966 ad->ad_flags = (int)value; 967 break; 968 default: 969 panic("bad ivar write request (%d)", index); 970 return (ENOENT); 971 } 972 973 return (0); 974 } 975 976 /* 977 * Handle child resource allocation/removal 978 */ 979 static struct resource_list * 980 acpi_get_rlist(device_t dev, device_t child) 981 { 982 struct acpi_device *ad; 983 984 ad = device_get_ivars(child); 985 return (&ad->ad_rl); 986 } 987 988 static int 989 acpi_match_resource_hint(device_t dev, int type, long value) 990 { 991 struct acpi_device *ad = device_get_ivars(dev); 992 struct resource_list *rl = &ad->ad_rl; 993 struct resource_list_entry *rle; 994 995 STAILQ_FOREACH(rle, rl, link) { 996 if (rle->type != type) 997 continue; 998 if (rle->start <= value && rle->end >= value) 999 return (1); 1000 } 1001 return (0); 1002 } 1003 1004 /* 1005 * Wire device unit numbers based on resource matches in hints. 1006 */ 1007 static void 1008 acpi_hint_device_unit(device_t acdev, device_t child, const char *name, 1009 int *unitp) 1010 { 1011 const char *s; 1012 long value; 1013 int line, matches, unit; 1014 1015 /* 1016 * Iterate over all the hints for the devices with the specified 1017 * name to see if one's resources are a subset of this device. 1018 */ 1019 line = 0; 1020 while (resource_find_dev(&line, name, &unit, "at", NULL) == 0) { 1021 /* Must have an "at" for acpi or isa. */ 1022 resource_string_value(name, unit, "at", &s); 1023 if (!(strcmp(s, "acpi0") == 0 || strcmp(s, "acpi") == 0 || 1024 strcmp(s, "isa0") == 0 || strcmp(s, "isa") == 0)) 1025 continue; 1026 1027 /* 1028 * Check for matching resources. We must have at least one match. 1029 * Since I/O and memory resources cannot be shared, if we get a 1030 * match on either of those, ignore any mismatches in IRQs or DRQs. 1031 * 1032 * XXX: We may want to revisit this to be more lenient and wire 1033 * as long as it gets one match. 1034 */ 1035 matches = 0; 1036 if (resource_long_value(name, unit, "port", &value) == 0) { 1037 /* 1038 * Floppy drive controllers are notorious for having a 1039 * wide variety of resources not all of which include the 1040 * first port that is specified by the hint (typically 1041 * 0x3f0) (see the comment above fdc_isa_alloc_resources() 1042 * in fdc_isa.c). However, they do all seem to include 1043 * port + 2 (e.g. 0x3f2) so for a floppy device, look for 1044 * 'value + 2' in the port resources instead of the hint 1045 * value. 1046 */ 1047 if (strcmp(name, "fdc") == 0) 1048 value += 2; 1049 if (acpi_match_resource_hint(child, SYS_RES_IOPORT, value)) 1050 matches++; 1051 else 1052 continue; 1053 } 1054 if (resource_long_value(name, unit, "maddr", &value) == 0) { 1055 if (acpi_match_resource_hint(child, SYS_RES_MEMORY, value)) 1056 matches++; 1057 else 1058 continue; 1059 } 1060 if (matches > 0) 1061 goto matched; 1062 if (resource_long_value(name, unit, "irq", &value) == 0) { 1063 if (acpi_match_resource_hint(child, SYS_RES_IRQ, value)) 1064 matches++; 1065 else 1066 continue; 1067 } 1068 if (resource_long_value(name, unit, "drq", &value) == 0) { 1069 if (acpi_match_resource_hint(child, SYS_RES_DRQ, value)) 1070 matches++; 1071 else 1072 continue; 1073 } 1074 1075 matched: 1076 if (matches > 0) { 1077 /* We have a winner! */ 1078 *unitp = unit; 1079 break; 1080 } 1081 } 1082 } 1083 1084 /* 1085 * Fetch the NUMA domain for a device by mapping the value returned by 1086 * _PXM to a NUMA domain. If the device does not have a _PXM method, 1087 * -2 is returned. If any other error occurs, -1 is returned. 1088 */ 1089 static int 1090 acpi_parse_pxm(device_t dev) 1091 { 1092 #ifdef NUMA 1093 #if defined(__i386__) || defined(__amd64__) 1094 ACPI_HANDLE handle; 1095 ACPI_STATUS status; 1096 int pxm; 1097 1098 handle = acpi_get_handle(dev); 1099 if (handle == NULL) 1100 return (-2); 1101 status = acpi_GetInteger(handle, "_PXM", &pxm); 1102 if (ACPI_SUCCESS(status)) 1103 return (acpi_map_pxm_to_vm_domainid(pxm)); 1104 if (status == AE_NOT_FOUND) 1105 return (-2); 1106 #endif 1107 #endif 1108 return (-1); 1109 } 1110 1111 int 1112 acpi_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize, 1113 cpuset_t *cpuset) 1114 { 1115 int d, error; 1116 1117 d = acpi_parse_pxm(child); 1118 if (d < 0) 1119 return (bus_generic_get_cpus(dev, child, op, setsize, cpuset)); 1120 1121 switch (op) { 1122 case LOCAL_CPUS: 1123 if (setsize != sizeof(cpuset_t)) 1124 return (EINVAL); 1125 *cpuset = cpuset_domain[d]; 1126 return (0); 1127 case INTR_CPUS: 1128 error = bus_generic_get_cpus(dev, child, op, setsize, cpuset); 1129 if (error != 0) 1130 return (error); 1131 if (setsize != sizeof(cpuset_t)) 1132 return (EINVAL); 1133 CPU_AND(cpuset, &cpuset_domain[d]); 1134 return (0); 1135 default: 1136 return (bus_generic_get_cpus(dev, child, op, setsize, cpuset)); 1137 } 1138 } 1139 1140 /* 1141 * Fetch the NUMA domain for the given device 'dev'. 1142 * 1143 * If a device has a _PXM method, map that to a NUMA domain. 1144 * Otherwise, pass the request up to the parent. 1145 * If there's no matching domain or the domain cannot be 1146 * determined, return ENOENT. 1147 */ 1148 int 1149 acpi_get_domain(device_t dev, device_t child, int *domain) 1150 { 1151 int d; 1152 1153 d = acpi_parse_pxm(child); 1154 if (d >= 0) { 1155 *domain = d; 1156 return (0); 1157 } 1158 if (d == -1) 1159 return (ENOENT); 1160 1161 /* No _PXM node; go up a level */ 1162 return (bus_generic_get_domain(dev, child, domain)); 1163 } 1164 1165 /* 1166 * Pre-allocate/manage all memory and IO resources. Since rman can't handle 1167 * duplicates, we merge any in the sysresource attach routine. 1168 */ 1169 static int 1170 acpi_sysres_alloc(device_t dev) 1171 { 1172 struct resource *res; 1173 struct resource_list *rl; 1174 struct resource_list_entry *rle; 1175 struct rman *rm; 1176 device_t *children; 1177 int child_count, i; 1178 1179 /* 1180 * Probe/attach any sysresource devices. This would be unnecessary if we 1181 * had multi-pass probe/attach. 1182 */ 1183 if (device_get_children(dev, &children, &child_count) != 0) 1184 return (ENXIO); 1185 for (i = 0; i < child_count; i++) { 1186 if (ACPI_ID_PROBE(dev, children[i], sysres_ids) != NULL) 1187 device_probe_and_attach(children[i]); 1188 } 1189 free(children, M_TEMP); 1190 1191 rl = BUS_GET_RESOURCE_LIST(device_get_parent(dev), dev); 1192 STAILQ_FOREACH(rle, rl, link) { 1193 if (rle->res != NULL) { 1194 device_printf(dev, "duplicate resource for %jx\n", rle->start); 1195 continue; 1196 } 1197 1198 /* Only memory and IO resources are valid here. */ 1199 switch (rle->type) { 1200 case SYS_RES_IOPORT: 1201 rm = &acpi_rman_io; 1202 break; 1203 case SYS_RES_MEMORY: 1204 rm = &acpi_rman_mem; 1205 break; 1206 default: 1207 continue; 1208 } 1209 1210 /* Pre-allocate resource and add to our rman pool. */ 1211 res = BUS_ALLOC_RESOURCE(device_get_parent(dev), dev, rle->type, 1212 &rle->rid, rle->start, rle->start + rle->count - 1, rle->count, 0); 1213 if (res != NULL) { 1214 rman_manage_region(rm, rman_get_start(res), rman_get_end(res)); 1215 rle->res = res; 1216 } else if (bootverbose) 1217 device_printf(dev, "reservation of %jx, %jx (%d) failed\n", 1218 rle->start, rle->count, rle->type); 1219 } 1220 return (0); 1221 } 1222 1223 /* 1224 * Reserve declared resources for devices found during attach once system 1225 * resources have been allocated. 1226 */ 1227 static void 1228 acpi_reserve_resources(device_t dev) 1229 { 1230 struct resource_list_entry *rle; 1231 struct resource_list *rl; 1232 struct acpi_device *ad; 1233 struct acpi_softc *sc; 1234 device_t *children; 1235 int child_count, i; 1236 1237 sc = device_get_softc(dev); 1238 if (device_get_children(dev, &children, &child_count) != 0) 1239 return; 1240 for (i = 0; i < child_count; i++) { 1241 ad = device_get_ivars(children[i]); 1242 rl = &ad->ad_rl; 1243 1244 /* Don't reserve system resources. */ 1245 if (ACPI_ID_PROBE(dev, children[i], sysres_ids) != NULL) 1246 continue; 1247 1248 STAILQ_FOREACH(rle, rl, link) { 1249 /* 1250 * Don't reserve IRQ resources. There are many sticky things 1251 * to get right otherwise (e.g. IRQs for psm, atkbd, and HPET 1252 * when using legacy routing). 1253 */ 1254 if (rle->type == SYS_RES_IRQ) 1255 continue; 1256 1257 /* 1258 * Don't reserve the resource if it is already allocated. 1259 * The acpi_ec(4) driver can allocate its resources early 1260 * if ECDT is present. 1261 */ 1262 if (rle->res != NULL) 1263 continue; 1264 1265 /* 1266 * Try to reserve the resource from our parent. If this 1267 * fails because the resource is a system resource, just 1268 * let it be. The resource range is already reserved so 1269 * that other devices will not use it. If the driver 1270 * needs to allocate the resource, then 1271 * acpi_alloc_resource() will sub-alloc from the system 1272 * resource. 1273 */ 1274 resource_list_reserve(rl, dev, children[i], rle->type, &rle->rid, 1275 rle->start, rle->end, rle->count, 0); 1276 } 1277 } 1278 free(children, M_TEMP); 1279 sc->acpi_resources_reserved = 1; 1280 } 1281 1282 static int 1283 acpi_set_resource(device_t dev, device_t child, int type, int rid, 1284 rman_res_t start, rman_res_t count) 1285 { 1286 struct acpi_softc *sc = device_get_softc(dev); 1287 struct acpi_device *ad = device_get_ivars(child); 1288 struct resource_list *rl = &ad->ad_rl; 1289 #if defined(__i386__) || defined(__amd64__) 1290 ACPI_DEVICE_INFO *devinfo; 1291 #endif 1292 rman_res_t end; 1293 1294 /* Ignore IRQ resources for PCI link devices. */ 1295 if (type == SYS_RES_IRQ && ACPI_ID_PROBE(dev, child, pcilink_ids) != NULL) 1296 return (0); 1297 1298 /* 1299 * Ignore most resources for PCI root bridges. Some BIOSes 1300 * incorrectly enumerate the memory ranges they decode as plain 1301 * memory resources instead of as ResourceProducer ranges. Other 1302 * BIOSes incorrectly list system resource entries for I/O ranges 1303 * under the PCI bridge. Do allow the one known-correct case on 1304 * x86 of a PCI bridge claiming the I/O ports used for PCI config 1305 * access. 1306 */ 1307 #if defined(__i386__) || defined(__amd64__) 1308 if (type == SYS_RES_MEMORY || type == SYS_RES_IOPORT) { 1309 if (ACPI_SUCCESS(AcpiGetObjectInfo(ad->ad_handle, &devinfo))) { 1310 if ((devinfo->Flags & ACPI_PCI_ROOT_BRIDGE) != 0) { 1311 if (!(type == SYS_RES_IOPORT && start == CONF1_ADDR_PORT)) { 1312 AcpiOsFree(devinfo); 1313 return (0); 1314 } 1315 } 1316 AcpiOsFree(devinfo); 1317 } 1318 } 1319 #endif 1320 1321 /* If the resource is already allocated, fail. */ 1322 if (resource_list_busy(rl, type, rid)) 1323 return (EBUSY); 1324 1325 /* If the resource is already reserved, release it. */ 1326 if (resource_list_reserved(rl, type, rid)) 1327 resource_list_unreserve(rl, dev, child, type, rid); 1328 1329 /* Add the resource. */ 1330 end = (start + count - 1); 1331 resource_list_add(rl, type, rid, start, end, count); 1332 1333 /* Don't reserve resources until the system resources are allocated. */ 1334 if (!sc->acpi_resources_reserved) 1335 return (0); 1336 1337 /* Don't reserve system resources. */ 1338 if (ACPI_ID_PROBE(dev, child, sysres_ids) != NULL) 1339 return (0); 1340 1341 /* 1342 * Don't reserve IRQ resources. There are many sticky things to 1343 * get right otherwise (e.g. IRQs for psm, atkbd, and HPET when 1344 * using legacy routing). 1345 */ 1346 if (type == SYS_RES_IRQ) 1347 return (0); 1348 1349 /* 1350 * Reserve the resource. 1351 * 1352 * XXX: Ignores failure for now. Failure here is probably a 1353 * BIOS/firmware bug? 1354 */ 1355 resource_list_reserve(rl, dev, child, type, &rid, start, end, count, 0); 1356 return (0); 1357 } 1358 1359 static struct resource * 1360 acpi_alloc_resource(device_t bus, device_t child, int type, int *rid, 1361 rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 1362 { 1363 #ifndef INTRNG 1364 ACPI_RESOURCE ares; 1365 #endif 1366 struct acpi_device *ad; 1367 struct resource_list_entry *rle; 1368 struct resource_list *rl; 1369 struct resource *res; 1370 int isdefault = RMAN_IS_DEFAULT_RANGE(start, end); 1371 1372 /* 1373 * First attempt at allocating the resource. For direct children, 1374 * use resource_list_alloc() to handle reserved resources. For 1375 * other devices, pass the request up to our parent. 1376 */ 1377 if (bus == device_get_parent(child)) { 1378 ad = device_get_ivars(child); 1379 rl = &ad->ad_rl; 1380 1381 /* 1382 * Simulate the behavior of the ISA bus for direct children 1383 * devices. That is, if a non-default range is specified for 1384 * a resource that doesn't exist, use bus_set_resource() to 1385 * add the resource before allocating it. Note that these 1386 * resources will not be reserved. 1387 */ 1388 if (!isdefault && resource_list_find(rl, type, *rid) == NULL) 1389 resource_list_add(rl, type, *rid, start, end, count); 1390 res = resource_list_alloc(rl, bus, child, type, rid, start, end, count, 1391 flags); 1392 #ifndef INTRNG 1393 if (res != NULL && type == SYS_RES_IRQ) { 1394 /* 1395 * Since bus_config_intr() takes immediate effect, we cannot 1396 * configure the interrupt associated with a device when we 1397 * parse the resources but have to defer it until a driver 1398 * actually allocates the interrupt via bus_alloc_resource(). 1399 * 1400 * XXX: Should we handle the lookup failing? 1401 */ 1402 if (ACPI_SUCCESS(acpi_lookup_irq_resource(child, *rid, res, &ares))) 1403 acpi_config_intr(child, &ares); 1404 } 1405 #endif 1406 1407 /* 1408 * If this is an allocation of the "default" range for a given 1409 * RID, fetch the exact bounds for this resource from the 1410 * resource list entry to try to allocate the range from the 1411 * system resource regions. 1412 */ 1413 if (res == NULL && isdefault) { 1414 rle = resource_list_find(rl, type, *rid); 1415 if (rle != NULL) { 1416 start = rle->start; 1417 end = rle->end; 1418 count = rle->count; 1419 } 1420 } 1421 } else 1422 res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, type, rid, 1423 start, end, count, flags); 1424 1425 /* 1426 * If the first attempt failed and this is an allocation of a 1427 * specific range, try to satisfy the request via a suballocation 1428 * from our system resource regions. 1429 */ 1430 if (res == NULL && start + count - 1 == end) 1431 res = acpi_alloc_sysres(child, type, rid, start, end, count, flags); 1432 return (res); 1433 } 1434 1435 /* 1436 * Attempt to allocate a specific resource range from the system 1437 * resource ranges. Note that we only handle memory and I/O port 1438 * system resources. 1439 */ 1440 struct resource * 1441 acpi_alloc_sysres(device_t child, int type, int *rid, rman_res_t start, 1442 rman_res_t end, rman_res_t count, u_int flags) 1443 { 1444 struct rman *rm; 1445 struct resource *res; 1446 1447 switch (type) { 1448 case SYS_RES_IOPORT: 1449 rm = &acpi_rman_io; 1450 break; 1451 case SYS_RES_MEMORY: 1452 rm = &acpi_rman_mem; 1453 break; 1454 default: 1455 return (NULL); 1456 } 1457 1458 KASSERT(start + count - 1 == end, ("wildcard resource range")); 1459 res = rman_reserve_resource(rm, start, end, count, flags & ~RF_ACTIVE, 1460 child); 1461 if (res == NULL) 1462 return (NULL); 1463 1464 rman_set_rid(res, *rid); 1465 1466 /* If requested, activate the resource using the parent's method. */ 1467 if (flags & RF_ACTIVE) 1468 if (bus_activate_resource(child, type, *rid, res) != 0) { 1469 rman_release_resource(res); 1470 return (NULL); 1471 } 1472 1473 return (res); 1474 } 1475 1476 static int 1477 acpi_is_resource_managed(int type, struct resource *r) 1478 { 1479 1480 /* We only handle memory and IO resources through rman. */ 1481 switch (type) { 1482 case SYS_RES_IOPORT: 1483 return (rman_is_region_manager(r, &acpi_rman_io)); 1484 case SYS_RES_MEMORY: 1485 return (rman_is_region_manager(r, &acpi_rman_mem)); 1486 } 1487 return (0); 1488 } 1489 1490 static int 1491 acpi_adjust_resource(device_t bus, device_t child, int type, struct resource *r, 1492 rman_res_t start, rman_res_t end) 1493 { 1494 1495 if (acpi_is_resource_managed(type, r)) 1496 return (rman_adjust_resource(r, start, end)); 1497 return (bus_generic_adjust_resource(bus, child, type, r, start, end)); 1498 } 1499 1500 static int 1501 acpi_release_resource(device_t bus, device_t child, int type, int rid, 1502 struct resource *r) 1503 { 1504 int ret; 1505 1506 /* 1507 * If this resource belongs to one of our internal managers, 1508 * deactivate it and release it to the local pool. 1509 */ 1510 if (acpi_is_resource_managed(type, r)) { 1511 if (rman_get_flags(r) & RF_ACTIVE) { 1512 ret = bus_deactivate_resource(child, type, rid, r); 1513 if (ret != 0) 1514 return (ret); 1515 } 1516 return (rman_release_resource(r)); 1517 } 1518 1519 return (bus_generic_rl_release_resource(bus, child, type, rid, r)); 1520 } 1521 1522 static void 1523 acpi_delete_resource(device_t bus, device_t child, int type, int rid) 1524 { 1525 struct resource_list *rl; 1526 1527 rl = acpi_get_rlist(bus, child); 1528 if (resource_list_busy(rl, type, rid)) { 1529 device_printf(bus, "delete_resource: Resource still owned by child" 1530 " (type=%d, rid=%d)\n", type, rid); 1531 return; 1532 } 1533 resource_list_unreserve(rl, bus, child, type, rid); 1534 resource_list_delete(rl, type, rid); 1535 } 1536 1537 /* Allocate an IO port or memory resource, given its GAS. */ 1538 int 1539 acpi_bus_alloc_gas(device_t dev, int *type, int *rid, ACPI_GENERIC_ADDRESS *gas, 1540 struct resource **res, u_int flags) 1541 { 1542 int error, res_type; 1543 1544 error = ENOMEM; 1545 if (type == NULL || rid == NULL || gas == NULL || res == NULL) 1546 return (EINVAL); 1547 1548 /* We only support memory and IO spaces. */ 1549 switch (gas->SpaceId) { 1550 case ACPI_ADR_SPACE_SYSTEM_MEMORY: 1551 res_type = SYS_RES_MEMORY; 1552 break; 1553 case ACPI_ADR_SPACE_SYSTEM_IO: 1554 res_type = SYS_RES_IOPORT; 1555 break; 1556 default: 1557 return (EOPNOTSUPP); 1558 } 1559 1560 /* 1561 * If the register width is less than 8, assume the BIOS author means 1562 * it is a bit field and just allocate a byte. 1563 */ 1564 if (gas->BitWidth && gas->BitWidth < 8) 1565 gas->BitWidth = 8; 1566 1567 /* Validate the address after we're sure we support the space. */ 1568 if (gas->Address == 0 || gas->BitWidth == 0) 1569 return (EINVAL); 1570 1571 bus_set_resource(dev, res_type, *rid, gas->Address, 1572 gas->BitWidth / 8); 1573 *res = bus_alloc_resource_any(dev, res_type, rid, RF_ACTIVE | flags); 1574 if (*res != NULL) { 1575 *type = res_type; 1576 error = 0; 1577 } else 1578 bus_delete_resource(dev, res_type, *rid); 1579 1580 return (error); 1581 } 1582 1583 /* Probe _HID and _CID for compatible ISA PNP ids. */ 1584 static uint32_t 1585 acpi_isa_get_logicalid(device_t dev) 1586 { 1587 ACPI_DEVICE_INFO *devinfo; 1588 ACPI_HANDLE h; 1589 uint32_t pnpid; 1590 1591 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1592 1593 /* Fetch and validate the HID. */ 1594 if ((h = acpi_get_handle(dev)) == NULL || 1595 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 1596 return_VALUE (0); 1597 1598 pnpid = (devinfo->Valid & ACPI_VALID_HID) != 0 && 1599 devinfo->HardwareId.Length >= ACPI_EISAID_STRING_SIZE ? 1600 PNP_EISAID(devinfo->HardwareId.String) : 0; 1601 AcpiOsFree(devinfo); 1602 1603 return_VALUE (pnpid); 1604 } 1605 1606 static int 1607 acpi_isa_get_compatid(device_t dev, uint32_t *cids, int count) 1608 { 1609 ACPI_DEVICE_INFO *devinfo; 1610 ACPI_PNP_DEVICE_ID *ids; 1611 ACPI_HANDLE h; 1612 uint32_t *pnpid; 1613 int i, valid; 1614 1615 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1616 1617 pnpid = cids; 1618 1619 /* Fetch and validate the CID */ 1620 if ((h = acpi_get_handle(dev)) == NULL || 1621 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 1622 return_VALUE (0); 1623 1624 if ((devinfo->Valid & ACPI_VALID_CID) == 0) { 1625 AcpiOsFree(devinfo); 1626 return_VALUE (0); 1627 } 1628 1629 if (devinfo->CompatibleIdList.Count < count) 1630 count = devinfo->CompatibleIdList.Count; 1631 ids = devinfo->CompatibleIdList.Ids; 1632 for (i = 0, valid = 0; i < count; i++) 1633 if (ids[i].Length >= ACPI_EISAID_STRING_SIZE && 1634 strncmp(ids[i].String, "PNP", 3) == 0) { 1635 *pnpid++ = PNP_EISAID(ids[i].String); 1636 valid++; 1637 } 1638 AcpiOsFree(devinfo); 1639 1640 return_VALUE (valid); 1641 } 1642 1643 static char * 1644 acpi_device_id_probe(device_t bus, device_t dev, char **ids) 1645 { 1646 ACPI_HANDLE h; 1647 ACPI_OBJECT_TYPE t; 1648 int i; 1649 1650 h = acpi_get_handle(dev); 1651 if (ids == NULL || h == NULL) 1652 return (NULL); 1653 t = acpi_get_type(dev); 1654 if (t != ACPI_TYPE_DEVICE && t != ACPI_TYPE_PROCESSOR) 1655 return (NULL); 1656 1657 /* Try to match one of the array of IDs with a HID or CID. */ 1658 for (i = 0; ids[i] != NULL; i++) { 1659 if (acpi_MatchHid(h, ids[i])) 1660 return (ids[i]); 1661 } 1662 return (NULL); 1663 } 1664 1665 static ACPI_STATUS 1666 acpi_device_eval_obj(device_t bus, device_t dev, ACPI_STRING pathname, 1667 ACPI_OBJECT_LIST *parameters, ACPI_BUFFER *ret) 1668 { 1669 ACPI_HANDLE h; 1670 1671 if (dev == NULL) 1672 h = ACPI_ROOT_OBJECT; 1673 else if ((h = acpi_get_handle(dev)) == NULL) 1674 return (AE_BAD_PARAMETER); 1675 return (AcpiEvaluateObject(h, pathname, parameters, ret)); 1676 } 1677 1678 int 1679 acpi_device_pwr_for_sleep(device_t bus, device_t dev, int *dstate) 1680 { 1681 struct acpi_softc *sc; 1682 ACPI_HANDLE handle; 1683 ACPI_STATUS status; 1684 char sxd[8]; 1685 1686 handle = acpi_get_handle(dev); 1687 1688 /* 1689 * XXX If we find these devices, don't try to power them down. 1690 * The serial and IRDA ports on my T23 hang the system when 1691 * set to D3 and it appears that such legacy devices may 1692 * need special handling in their drivers. 1693 */ 1694 if (dstate == NULL || handle == NULL || 1695 acpi_MatchHid(handle, "PNP0500") || 1696 acpi_MatchHid(handle, "PNP0501") || 1697 acpi_MatchHid(handle, "PNP0502") || 1698 acpi_MatchHid(handle, "PNP0510") || 1699 acpi_MatchHid(handle, "PNP0511")) 1700 return (ENXIO); 1701 1702 /* 1703 * Override next state with the value from _SxD, if present. 1704 * Note illegal _S0D is evaluated because some systems expect this. 1705 */ 1706 sc = device_get_softc(bus); 1707 snprintf(sxd, sizeof(sxd), "_S%dD", sc->acpi_sstate); 1708 status = acpi_GetInteger(handle, sxd, dstate); 1709 if (ACPI_FAILURE(status) && status != AE_NOT_FOUND) { 1710 device_printf(dev, "failed to get %s on %s: %s\n", sxd, 1711 acpi_name(handle), AcpiFormatException(status)); 1712 return (ENXIO); 1713 } 1714 1715 return (0); 1716 } 1717 1718 /* Callback arg for our implementation of walking the namespace. */ 1719 struct acpi_device_scan_ctx { 1720 acpi_scan_cb_t user_fn; 1721 void *arg; 1722 ACPI_HANDLE parent; 1723 }; 1724 1725 static ACPI_STATUS 1726 acpi_device_scan_cb(ACPI_HANDLE h, UINT32 level, void *arg, void **retval) 1727 { 1728 struct acpi_device_scan_ctx *ctx; 1729 device_t dev, old_dev; 1730 ACPI_STATUS status; 1731 ACPI_OBJECT_TYPE type; 1732 1733 /* 1734 * Skip this device if we think we'll have trouble with it or it is 1735 * the parent where the scan began. 1736 */ 1737 ctx = (struct acpi_device_scan_ctx *)arg; 1738 if (acpi_avoid(h) || h == ctx->parent) 1739 return (AE_OK); 1740 1741 /* If this is not a valid device type (e.g., a method), skip it. */ 1742 if (ACPI_FAILURE(AcpiGetType(h, &type))) 1743 return (AE_OK); 1744 if (type != ACPI_TYPE_DEVICE && type != ACPI_TYPE_PROCESSOR && 1745 type != ACPI_TYPE_THERMAL && type != ACPI_TYPE_POWER) 1746 return (AE_OK); 1747 1748 /* 1749 * Call the user function with the current device. If it is unchanged 1750 * afterwards, return. Otherwise, we update the handle to the new dev. 1751 */ 1752 old_dev = acpi_get_device(h); 1753 dev = old_dev; 1754 status = ctx->user_fn(h, &dev, level, ctx->arg); 1755 if (ACPI_FAILURE(status) || old_dev == dev) 1756 return (status); 1757 1758 /* Remove the old child and its connection to the handle. */ 1759 if (old_dev != NULL) { 1760 device_delete_child(device_get_parent(old_dev), old_dev); 1761 AcpiDetachData(h, acpi_fake_objhandler); 1762 } 1763 1764 /* Recreate the handle association if the user created a device. */ 1765 if (dev != NULL) 1766 AcpiAttachData(h, acpi_fake_objhandler, dev); 1767 1768 return (AE_OK); 1769 } 1770 1771 static ACPI_STATUS 1772 acpi_device_scan_children(device_t bus, device_t dev, int max_depth, 1773 acpi_scan_cb_t user_fn, void *arg) 1774 { 1775 ACPI_HANDLE h; 1776 struct acpi_device_scan_ctx ctx; 1777 1778 if (acpi_disabled("children")) 1779 return (AE_OK); 1780 1781 if (dev == NULL) 1782 h = ACPI_ROOT_OBJECT; 1783 else if ((h = acpi_get_handle(dev)) == NULL) 1784 return (AE_BAD_PARAMETER); 1785 ctx.user_fn = user_fn; 1786 ctx.arg = arg; 1787 ctx.parent = h; 1788 return (AcpiWalkNamespace(ACPI_TYPE_ANY, h, max_depth, 1789 acpi_device_scan_cb, NULL, &ctx, NULL)); 1790 } 1791 1792 /* 1793 * Even though ACPI devices are not PCI, we use the PCI approach for setting 1794 * device power states since it's close enough to ACPI. 1795 */ 1796 static int 1797 acpi_set_powerstate(device_t child, int state) 1798 { 1799 ACPI_HANDLE h; 1800 ACPI_STATUS status; 1801 1802 h = acpi_get_handle(child); 1803 if (state < ACPI_STATE_D0 || state > ACPI_D_STATES_MAX) 1804 return (EINVAL); 1805 if (h == NULL) 1806 return (0); 1807 1808 /* Ignore errors if the power methods aren't present. */ 1809 status = acpi_pwr_switch_consumer(h, state); 1810 if (ACPI_SUCCESS(status)) { 1811 if (bootverbose) 1812 device_printf(child, "set ACPI power state D%d on %s\n", 1813 state, acpi_name(h)); 1814 } else if (status != AE_NOT_FOUND) 1815 device_printf(child, 1816 "failed to set ACPI power state D%d on %s: %s\n", state, 1817 acpi_name(h), AcpiFormatException(status)); 1818 1819 return (0); 1820 } 1821 1822 static int 1823 acpi_isa_pnp_probe(device_t bus, device_t child, struct isa_pnp_id *ids) 1824 { 1825 int result, cid_count, i; 1826 uint32_t lid, cids[8]; 1827 1828 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1829 1830 /* 1831 * ISA-style drivers attached to ACPI may persist and 1832 * probe manually if we return ENOENT. We never want 1833 * that to happen, so don't ever return it. 1834 */ 1835 result = ENXIO; 1836 1837 /* Scan the supplied IDs for a match */ 1838 lid = acpi_isa_get_logicalid(child); 1839 cid_count = acpi_isa_get_compatid(child, cids, 8); 1840 while (ids && ids->ip_id) { 1841 if (lid == ids->ip_id) { 1842 result = 0; 1843 goto out; 1844 } 1845 for (i = 0; i < cid_count; i++) { 1846 if (cids[i] == ids->ip_id) { 1847 result = 0; 1848 goto out; 1849 } 1850 } 1851 ids++; 1852 } 1853 1854 out: 1855 if (result == 0 && ids->ip_desc) 1856 device_set_desc(child, ids->ip_desc); 1857 1858 return_VALUE (result); 1859 } 1860 1861 #if defined(__i386__) || defined(__amd64__) 1862 /* 1863 * Look for a MCFG table. If it is present, use the settings for 1864 * domain (segment) 0 to setup PCI config space access via the memory 1865 * map. 1866 */ 1867 static void 1868 acpi_enable_pcie(void) 1869 { 1870 ACPI_TABLE_HEADER *hdr; 1871 ACPI_MCFG_ALLOCATION *alloc, *end; 1872 ACPI_STATUS status; 1873 1874 status = AcpiGetTable(ACPI_SIG_MCFG, 1, &hdr); 1875 if (ACPI_FAILURE(status)) 1876 return; 1877 1878 end = (ACPI_MCFG_ALLOCATION *)((char *)hdr + hdr->Length); 1879 alloc = (ACPI_MCFG_ALLOCATION *)((ACPI_TABLE_MCFG *)hdr + 1); 1880 while (alloc < end) { 1881 if (alloc->PciSegment == 0) { 1882 pcie_cfgregopen(alloc->Address, alloc->StartBusNumber, 1883 alloc->EndBusNumber); 1884 return; 1885 } 1886 alloc++; 1887 } 1888 } 1889 #elif defined(__aarch64__) 1890 static void 1891 acpi_enable_pcie(device_t child, int segment) 1892 { 1893 ACPI_TABLE_HEADER *hdr; 1894 ACPI_MCFG_ALLOCATION *alloc, *end; 1895 ACPI_STATUS status; 1896 1897 status = AcpiGetTable(ACPI_SIG_MCFG, 1, &hdr); 1898 if (ACPI_FAILURE(status)) 1899 return; 1900 1901 end = (ACPI_MCFG_ALLOCATION *)((char *)hdr + hdr->Length); 1902 alloc = (ACPI_MCFG_ALLOCATION *)((ACPI_TABLE_MCFG *)hdr + 1); 1903 while (alloc < end) { 1904 if (alloc->PciSegment == segment) { 1905 bus_set_resource(child, SYS_RES_MEMORY, 0, 1906 alloc->Address, 0x10000000); 1907 return; 1908 } 1909 alloc++; 1910 } 1911 } 1912 #endif 1913 1914 /* 1915 * Scan all of the ACPI namespace and attach child devices. 1916 * 1917 * We should only expect to find devices in the \_PR, \_TZ, \_SI, and 1918 * \_SB scopes, and \_PR and \_TZ became obsolete in the ACPI 2.0 spec. 1919 * However, in violation of the spec, some systems place their PCI link 1920 * devices in \, so we have to walk the whole namespace. We check the 1921 * type of namespace nodes, so this should be ok. 1922 */ 1923 static void 1924 acpi_probe_children(device_t bus) 1925 { 1926 1927 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1928 1929 /* 1930 * Scan the namespace and insert placeholders for all the devices that 1931 * we find. We also probe/attach any early devices. 1932 * 1933 * Note that we use AcpiWalkNamespace rather than AcpiGetDevices because 1934 * we want to create nodes for all devices, not just those that are 1935 * currently present. (This assumes that we don't want to create/remove 1936 * devices as they appear, which might be smarter.) 1937 */ 1938 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "namespace scan\n")); 1939 AcpiWalkNamespace(ACPI_TYPE_ANY, ACPI_ROOT_OBJECT, 100, acpi_probe_child, 1940 NULL, bus, NULL); 1941 1942 /* Pre-allocate resources for our rman from any sysresource devices. */ 1943 acpi_sysres_alloc(bus); 1944 1945 /* Reserve resources already allocated to children. */ 1946 acpi_reserve_resources(bus); 1947 1948 /* Create any static children by calling device identify methods. */ 1949 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "device identify routines\n")); 1950 bus_generic_probe(bus); 1951 1952 /* Probe/attach all children, created statically and from the namespace. */ 1953 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "acpi bus_generic_attach\n")); 1954 bus_generic_attach(bus); 1955 1956 /* Attach wake sysctls. */ 1957 acpi_wake_sysctl_walk(bus); 1958 1959 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "done attaching children\n")); 1960 return_VOID; 1961 } 1962 1963 /* 1964 * Determine the probe order for a given device. 1965 */ 1966 static void 1967 acpi_probe_order(ACPI_HANDLE handle, int *order) 1968 { 1969 ACPI_OBJECT_TYPE type; 1970 1971 /* 1972 * 0. CPUs 1973 * 1. I/O port and memory system resource holders 1974 * 2. Clocks and timers (to handle early accesses) 1975 * 3. Embedded controllers (to handle early accesses) 1976 * 4. PCI Link Devices 1977 */ 1978 AcpiGetType(handle, &type); 1979 if (type == ACPI_TYPE_PROCESSOR) 1980 *order = 0; 1981 else if (acpi_MatchHid(handle, "PNP0C01") || 1982 acpi_MatchHid(handle, "PNP0C02")) 1983 *order = 1; 1984 else if (acpi_MatchHid(handle, "PNP0100") || 1985 acpi_MatchHid(handle, "PNP0103") || 1986 acpi_MatchHid(handle, "PNP0B00")) 1987 *order = 2; 1988 else if (acpi_MatchHid(handle, "PNP0C09")) 1989 *order = 3; 1990 else if (acpi_MatchHid(handle, "PNP0C0F")) 1991 *order = 4; 1992 } 1993 1994 /* 1995 * Evaluate a child device and determine whether we might attach a device to 1996 * it. 1997 */ 1998 static ACPI_STATUS 1999 acpi_probe_child(ACPI_HANDLE handle, UINT32 level, void *context, void **status) 2000 { 2001 ACPI_DEVICE_INFO *devinfo; 2002 struct acpi_device *ad; 2003 #ifdef __aarch64__ 2004 int segment; 2005 #endif 2006 struct acpi_prw_data prw; 2007 ACPI_OBJECT_TYPE type; 2008 ACPI_HANDLE h; 2009 device_t bus, child; 2010 char *handle_str; 2011 int order; 2012 2013 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 2014 2015 if (acpi_disabled("children")) 2016 return_ACPI_STATUS (AE_OK); 2017 2018 /* Skip this device if we think we'll have trouble with it. */ 2019 if (acpi_avoid(handle)) 2020 return_ACPI_STATUS (AE_OK); 2021 2022 bus = (device_t)context; 2023 if (ACPI_SUCCESS(AcpiGetType(handle, &type))) { 2024 handle_str = acpi_name(handle); 2025 switch (type) { 2026 case ACPI_TYPE_DEVICE: 2027 /* 2028 * Since we scan from \, be sure to skip system scope objects. 2029 * \_SB_ and \_TZ_ are defined in ACPICA as devices to work around 2030 * BIOS bugs. For example, \_SB_ is to allow \_SB_._INI to be run 2031 * during the initialization and \_TZ_ is to support Notify() on it. 2032 */ 2033 if (strcmp(handle_str, "\\_SB_") == 0 || 2034 strcmp(handle_str, "\\_TZ_") == 0) 2035 break; 2036 if (acpi_parse_prw(handle, &prw) == 0) 2037 AcpiSetupGpeForWake(handle, prw.gpe_handle, prw.gpe_bit); 2038 2039 /* 2040 * Ignore devices that do not have a _HID or _CID. They should 2041 * be discovered by other buses (e.g. the PCI bus driver). 2042 */ 2043 if (!acpi_has_hid(handle)) 2044 break; 2045 /* FALLTHROUGH */ 2046 case ACPI_TYPE_PROCESSOR: 2047 case ACPI_TYPE_THERMAL: 2048 case ACPI_TYPE_POWER: 2049 /* 2050 * Create a placeholder device for this node. Sort the 2051 * placeholder so that the probe/attach passes will run 2052 * breadth-first. Orders less than ACPI_DEV_BASE_ORDER 2053 * are reserved for special objects (i.e., system 2054 * resources). 2055 */ 2056 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "scanning '%s'\n", handle_str)); 2057 order = level * 10 + ACPI_DEV_BASE_ORDER; 2058 acpi_probe_order(handle, &order); 2059 child = BUS_ADD_CHILD(bus, order, NULL, -1); 2060 if (child == NULL) 2061 break; 2062 2063 /* Associate the handle with the device_t and vice versa. */ 2064 acpi_set_handle(child, handle); 2065 AcpiAttachData(handle, acpi_fake_objhandler, child); 2066 2067 /* 2068 * Check that the device is present. If it's not present, 2069 * leave it disabled (so that we have a device_t attached to 2070 * the handle, but we don't probe it). 2071 * 2072 * XXX PCI link devices sometimes report "present" but not 2073 * "functional" (i.e. if disabled). Go ahead and probe them 2074 * anyway since we may enable them later. 2075 */ 2076 if (type == ACPI_TYPE_DEVICE && !acpi_DeviceIsPresent(child)) { 2077 /* Never disable PCI link devices. */ 2078 if (acpi_MatchHid(handle, "PNP0C0F")) 2079 break; 2080 /* 2081 * Docking stations should remain enabled since the system 2082 * may be undocked at boot. 2083 */ 2084 if (ACPI_SUCCESS(AcpiGetHandle(handle, "_DCK", &h))) 2085 break; 2086 2087 device_disable(child); 2088 break; 2089 } 2090 2091 /* 2092 * Get the device's resource settings and attach them. 2093 * Note that if the device has _PRS but no _CRS, we need 2094 * to decide when it's appropriate to try to configure the 2095 * device. Ignore the return value here; it's OK for the 2096 * device not to have any resources. 2097 */ 2098 acpi_parse_resources(child, handle, &acpi_res_parse_set, NULL); 2099 2100 ad = device_get_ivars(child); 2101 ad->ad_cls_class = 0xffffff; 2102 if (ACPI_SUCCESS(AcpiGetObjectInfo(handle, &devinfo))) { 2103 if ((devinfo->Valid & ACPI_VALID_CLS) != 0 && 2104 devinfo->ClassCode.Length >= ACPI_PCICLS_STRING_SIZE) { 2105 ad->ad_cls_class = strtoul(devinfo->ClassCode.String, 2106 NULL, 16); 2107 } 2108 #ifdef __aarch64__ 2109 if ((devinfo->Flags & ACPI_PCI_ROOT_BRIDGE) != 0) { 2110 if (ACPI_SUCCESS(acpi_GetInteger(handle, "_SEG", &segment))) { 2111 acpi_enable_pcie(child, segment); 2112 } 2113 } 2114 #endif 2115 AcpiOsFree(devinfo); 2116 } 2117 break; 2118 } 2119 } 2120 2121 return_ACPI_STATUS (AE_OK); 2122 } 2123 2124 /* 2125 * AcpiAttachData() requires an object handler but never uses it. This is a 2126 * placeholder object handler so we can store a device_t in an ACPI_HANDLE. 2127 */ 2128 void 2129 acpi_fake_objhandler(ACPI_HANDLE h, void *data) 2130 { 2131 } 2132 2133 static void 2134 acpi_shutdown_final(void *arg, int howto) 2135 { 2136 struct acpi_softc *sc = (struct acpi_softc *)arg; 2137 register_t intr; 2138 ACPI_STATUS status; 2139 2140 /* 2141 * XXX Shutdown code should only run on the BSP (cpuid 0). 2142 * Some chipsets do not power off the system correctly if called from 2143 * an AP. 2144 */ 2145 if ((howto & RB_POWEROFF) != 0) { 2146 status = AcpiEnterSleepStatePrep(ACPI_STATE_S5); 2147 if (ACPI_FAILURE(status)) { 2148 device_printf(sc->acpi_dev, "AcpiEnterSleepStatePrep failed - %s\n", 2149 AcpiFormatException(status)); 2150 return; 2151 } 2152 device_printf(sc->acpi_dev, "Powering system off\n"); 2153 intr = intr_disable(); 2154 status = AcpiEnterSleepState(ACPI_STATE_S5); 2155 if (ACPI_FAILURE(status)) { 2156 intr_restore(intr); 2157 device_printf(sc->acpi_dev, "power-off failed - %s\n", 2158 AcpiFormatException(status)); 2159 } else { 2160 DELAY(1000000); 2161 intr_restore(intr); 2162 device_printf(sc->acpi_dev, "power-off failed - timeout\n"); 2163 } 2164 } else if ((howto & RB_HALT) == 0 && sc->acpi_handle_reboot) { 2165 /* Reboot using the reset register. */ 2166 status = AcpiReset(); 2167 if (ACPI_SUCCESS(status)) { 2168 DELAY(1000000); 2169 device_printf(sc->acpi_dev, "reset failed - timeout\n"); 2170 } else if (status != AE_NOT_EXIST) 2171 device_printf(sc->acpi_dev, "reset failed - %s\n", 2172 AcpiFormatException(status)); 2173 } else if (sc->acpi_do_disable && panicstr == NULL) { 2174 /* 2175 * Only disable ACPI if the user requested. On some systems, writing 2176 * the disable value to SMI_CMD hangs the system. 2177 */ 2178 device_printf(sc->acpi_dev, "Shutting down\n"); 2179 AcpiTerminate(); 2180 } 2181 } 2182 2183 static void 2184 acpi_enable_fixed_events(struct acpi_softc *sc) 2185 { 2186 static int first_time = 1; 2187 2188 /* Enable and clear fixed events and install handlers. */ 2189 if ((AcpiGbl_FADT.Flags & ACPI_FADT_POWER_BUTTON) == 0) { 2190 AcpiClearEvent(ACPI_EVENT_POWER_BUTTON); 2191 AcpiInstallFixedEventHandler(ACPI_EVENT_POWER_BUTTON, 2192 acpi_event_power_button_sleep, sc); 2193 if (first_time) 2194 device_printf(sc->acpi_dev, "Power Button (fixed)\n"); 2195 } 2196 if ((AcpiGbl_FADT.Flags & ACPI_FADT_SLEEP_BUTTON) == 0) { 2197 AcpiClearEvent(ACPI_EVENT_SLEEP_BUTTON); 2198 AcpiInstallFixedEventHandler(ACPI_EVENT_SLEEP_BUTTON, 2199 acpi_event_sleep_button_sleep, sc); 2200 if (first_time) 2201 device_printf(sc->acpi_dev, "Sleep Button (fixed)\n"); 2202 } 2203 2204 first_time = 0; 2205 } 2206 2207 /* 2208 * Returns true if the device is actually present and should 2209 * be attached to. This requires the present, enabled, UI-visible 2210 * and diagnostics-passed bits to be set. 2211 */ 2212 BOOLEAN 2213 acpi_DeviceIsPresent(device_t dev) 2214 { 2215 ACPI_HANDLE h; 2216 UINT32 s; 2217 ACPI_STATUS status; 2218 2219 h = acpi_get_handle(dev); 2220 if (h == NULL) 2221 return (FALSE); 2222 status = acpi_GetInteger(h, "_STA", &s); 2223 2224 /* 2225 * Onboard serial ports on certain AMD motherboards have an invalid _STA 2226 * method that always returns 0. Force them to always be treated as present. 2227 * 2228 * This may solely be a quirk of a preproduction BIOS. 2229 */ 2230 if (acpi_MatchHid(h, "AMDI0020") || acpi_MatchHid(h, "AMDI0010")) 2231 return (TRUE); 2232 2233 /* If no _STA method, must be present */ 2234 if (ACPI_FAILURE(status)) 2235 return (status == AE_NOT_FOUND ? TRUE : FALSE); 2236 2237 return (ACPI_DEVICE_PRESENT(s) ? TRUE : FALSE); 2238 } 2239 2240 /* 2241 * Returns true if the battery is actually present and inserted. 2242 */ 2243 BOOLEAN 2244 acpi_BatteryIsPresent(device_t dev) 2245 { 2246 ACPI_HANDLE h; 2247 UINT32 s; 2248 ACPI_STATUS status; 2249 2250 h = acpi_get_handle(dev); 2251 if (h == NULL) 2252 return (FALSE); 2253 status = acpi_GetInteger(h, "_STA", &s); 2254 2255 /* If no _STA method, must be present */ 2256 if (ACPI_FAILURE(status)) 2257 return (status == AE_NOT_FOUND ? TRUE : FALSE); 2258 2259 return (ACPI_BATTERY_PRESENT(s) ? TRUE : FALSE); 2260 } 2261 2262 /* 2263 * Returns true if a device has at least one valid device ID. 2264 */ 2265 static BOOLEAN 2266 acpi_has_hid(ACPI_HANDLE h) 2267 { 2268 ACPI_DEVICE_INFO *devinfo; 2269 BOOLEAN ret; 2270 2271 if (h == NULL || 2272 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 2273 return (FALSE); 2274 2275 ret = FALSE; 2276 if ((devinfo->Valid & ACPI_VALID_HID) != 0) 2277 ret = TRUE; 2278 else if ((devinfo->Valid & ACPI_VALID_CID) != 0) 2279 if (devinfo->CompatibleIdList.Count > 0) 2280 ret = TRUE; 2281 2282 AcpiOsFree(devinfo); 2283 return (ret); 2284 } 2285 2286 /* 2287 * Match a HID string against a handle 2288 */ 2289 BOOLEAN 2290 acpi_MatchHid(ACPI_HANDLE h, const char *hid) 2291 { 2292 ACPI_DEVICE_INFO *devinfo; 2293 BOOLEAN ret; 2294 int i; 2295 2296 if (hid == NULL || h == NULL || 2297 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 2298 return (FALSE); 2299 2300 ret = FALSE; 2301 if ((devinfo->Valid & ACPI_VALID_HID) != 0 && 2302 strcmp(hid, devinfo->HardwareId.String) == 0) 2303 ret = TRUE; 2304 else if ((devinfo->Valid & ACPI_VALID_CID) != 0) 2305 for (i = 0; i < devinfo->CompatibleIdList.Count; i++) { 2306 if (strcmp(hid, devinfo->CompatibleIdList.Ids[i].String) == 0) { 2307 ret = TRUE; 2308 break; 2309 } 2310 } 2311 2312 AcpiOsFree(devinfo); 2313 return (ret); 2314 } 2315 2316 /* 2317 * Return the handle of a named object within our scope, ie. that of (parent) 2318 * or one if its parents. 2319 */ 2320 ACPI_STATUS 2321 acpi_GetHandleInScope(ACPI_HANDLE parent, char *path, ACPI_HANDLE *result) 2322 { 2323 ACPI_HANDLE r; 2324 ACPI_STATUS status; 2325 2326 /* Walk back up the tree to the root */ 2327 for (;;) { 2328 status = AcpiGetHandle(parent, path, &r); 2329 if (ACPI_SUCCESS(status)) { 2330 *result = r; 2331 return (AE_OK); 2332 } 2333 /* XXX Return error here? */ 2334 if (status != AE_NOT_FOUND) 2335 return (AE_OK); 2336 if (ACPI_FAILURE(AcpiGetParent(parent, &r))) 2337 return (AE_NOT_FOUND); 2338 parent = r; 2339 } 2340 } 2341 2342 /* 2343 * Allocate a buffer with a preset data size. 2344 */ 2345 ACPI_BUFFER * 2346 acpi_AllocBuffer(int size) 2347 { 2348 ACPI_BUFFER *buf; 2349 2350 if ((buf = malloc(size + sizeof(*buf), M_ACPIDEV, M_NOWAIT)) == NULL) 2351 return (NULL); 2352 buf->Length = size; 2353 buf->Pointer = (void *)(buf + 1); 2354 return (buf); 2355 } 2356 2357 ACPI_STATUS 2358 acpi_SetInteger(ACPI_HANDLE handle, char *path, UINT32 number) 2359 { 2360 ACPI_OBJECT arg1; 2361 ACPI_OBJECT_LIST args; 2362 2363 arg1.Type = ACPI_TYPE_INTEGER; 2364 arg1.Integer.Value = number; 2365 args.Count = 1; 2366 args.Pointer = &arg1; 2367 2368 return (AcpiEvaluateObject(handle, path, &args, NULL)); 2369 } 2370 2371 /* 2372 * Evaluate a path that should return an integer. 2373 */ 2374 ACPI_STATUS 2375 acpi_GetInteger(ACPI_HANDLE handle, char *path, UINT32 *number) 2376 { 2377 ACPI_STATUS status; 2378 ACPI_BUFFER buf; 2379 ACPI_OBJECT param; 2380 2381 if (handle == NULL) 2382 handle = ACPI_ROOT_OBJECT; 2383 2384 /* 2385 * Assume that what we've been pointed at is an Integer object, or 2386 * a method that will return an Integer. 2387 */ 2388 buf.Pointer = ¶m; 2389 buf.Length = sizeof(param); 2390 status = AcpiEvaluateObject(handle, path, NULL, &buf); 2391 if (ACPI_SUCCESS(status)) { 2392 if (param.Type == ACPI_TYPE_INTEGER) 2393 *number = param.Integer.Value; 2394 else 2395 status = AE_TYPE; 2396 } 2397 2398 /* 2399 * In some applications, a method that's expected to return an Integer 2400 * may instead return a Buffer (probably to simplify some internal 2401 * arithmetic). We'll try to fetch whatever it is, and if it's a Buffer, 2402 * convert it into an Integer as best we can. 2403 * 2404 * This is a hack. 2405 */ 2406 if (status == AE_BUFFER_OVERFLOW) { 2407 if ((buf.Pointer = AcpiOsAllocate(buf.Length)) == NULL) { 2408 status = AE_NO_MEMORY; 2409 } else { 2410 status = AcpiEvaluateObject(handle, path, NULL, &buf); 2411 if (ACPI_SUCCESS(status)) 2412 status = acpi_ConvertBufferToInteger(&buf, number); 2413 AcpiOsFree(buf.Pointer); 2414 } 2415 } 2416 return (status); 2417 } 2418 2419 ACPI_STATUS 2420 acpi_ConvertBufferToInteger(ACPI_BUFFER *bufp, UINT32 *number) 2421 { 2422 ACPI_OBJECT *p; 2423 UINT8 *val; 2424 int i; 2425 2426 p = (ACPI_OBJECT *)bufp->Pointer; 2427 if (p->Type == ACPI_TYPE_INTEGER) { 2428 *number = p->Integer.Value; 2429 return (AE_OK); 2430 } 2431 if (p->Type != ACPI_TYPE_BUFFER) 2432 return (AE_TYPE); 2433 if (p->Buffer.Length > sizeof(int)) 2434 return (AE_BAD_DATA); 2435 2436 *number = 0; 2437 val = p->Buffer.Pointer; 2438 for (i = 0; i < p->Buffer.Length; i++) 2439 *number += val[i] << (i * 8); 2440 return (AE_OK); 2441 } 2442 2443 /* 2444 * Iterate over the elements of an a package object, calling the supplied 2445 * function for each element. 2446 * 2447 * XXX possible enhancement might be to abort traversal on error. 2448 */ 2449 ACPI_STATUS 2450 acpi_ForeachPackageObject(ACPI_OBJECT *pkg, 2451 void (*func)(ACPI_OBJECT *comp, void *arg), void *arg) 2452 { 2453 ACPI_OBJECT *comp; 2454 int i; 2455 2456 if (pkg == NULL || pkg->Type != ACPI_TYPE_PACKAGE) 2457 return (AE_BAD_PARAMETER); 2458 2459 /* Iterate over components */ 2460 i = 0; 2461 comp = pkg->Package.Elements; 2462 for (; i < pkg->Package.Count; i++, comp++) 2463 func(comp, arg); 2464 2465 return (AE_OK); 2466 } 2467 2468 /* 2469 * Find the (index)th resource object in a set. 2470 */ 2471 ACPI_STATUS 2472 acpi_FindIndexedResource(ACPI_BUFFER *buf, int index, ACPI_RESOURCE **resp) 2473 { 2474 ACPI_RESOURCE *rp; 2475 int i; 2476 2477 rp = (ACPI_RESOURCE *)buf->Pointer; 2478 i = index; 2479 while (i-- > 0) { 2480 /* Range check */ 2481 if (rp > (ACPI_RESOURCE *)((u_int8_t *)buf->Pointer + buf->Length)) 2482 return (AE_BAD_PARAMETER); 2483 2484 /* Check for terminator */ 2485 if (rp->Type == ACPI_RESOURCE_TYPE_END_TAG || rp->Length == 0) 2486 return (AE_NOT_FOUND); 2487 rp = ACPI_NEXT_RESOURCE(rp); 2488 } 2489 if (resp != NULL) 2490 *resp = rp; 2491 2492 return (AE_OK); 2493 } 2494 2495 /* 2496 * Append an ACPI_RESOURCE to an ACPI_BUFFER. 2497 * 2498 * Given a pointer to an ACPI_RESOURCE structure, expand the ACPI_BUFFER 2499 * provided to contain it. If the ACPI_BUFFER is empty, allocate a sensible 2500 * backing block. If the ACPI_RESOURCE is NULL, return an empty set of 2501 * resources. 2502 */ 2503 #define ACPI_INITIAL_RESOURCE_BUFFER_SIZE 512 2504 2505 ACPI_STATUS 2506 acpi_AppendBufferResource(ACPI_BUFFER *buf, ACPI_RESOURCE *res) 2507 { 2508 ACPI_RESOURCE *rp; 2509 void *newp; 2510 2511 /* Initialise the buffer if necessary. */ 2512 if (buf->Pointer == NULL) { 2513 buf->Length = ACPI_INITIAL_RESOURCE_BUFFER_SIZE; 2514 if ((buf->Pointer = AcpiOsAllocate(buf->Length)) == NULL) 2515 return (AE_NO_MEMORY); 2516 rp = (ACPI_RESOURCE *)buf->Pointer; 2517 rp->Type = ACPI_RESOURCE_TYPE_END_TAG; 2518 rp->Length = ACPI_RS_SIZE_MIN; 2519 } 2520 if (res == NULL) 2521 return (AE_OK); 2522 2523 /* 2524 * Scan the current buffer looking for the terminator. 2525 * This will either find the terminator or hit the end 2526 * of the buffer and return an error. 2527 */ 2528 rp = (ACPI_RESOURCE *)buf->Pointer; 2529 for (;;) { 2530 /* Range check, don't go outside the buffer */ 2531 if (rp >= (ACPI_RESOURCE *)((u_int8_t *)buf->Pointer + buf->Length)) 2532 return (AE_BAD_PARAMETER); 2533 if (rp->Type == ACPI_RESOURCE_TYPE_END_TAG || rp->Length == 0) 2534 break; 2535 rp = ACPI_NEXT_RESOURCE(rp); 2536 } 2537 2538 /* 2539 * Check the size of the buffer and expand if required. 2540 * 2541 * Required size is: 2542 * size of existing resources before terminator + 2543 * size of new resource and header + 2544 * size of terminator. 2545 * 2546 * Note that this loop should really only run once, unless 2547 * for some reason we are stuffing a *really* huge resource. 2548 */ 2549 while ((((u_int8_t *)rp - (u_int8_t *)buf->Pointer) + 2550 res->Length + ACPI_RS_SIZE_NO_DATA + 2551 ACPI_RS_SIZE_MIN) >= buf->Length) { 2552 if ((newp = AcpiOsAllocate(buf->Length * 2)) == NULL) 2553 return (AE_NO_MEMORY); 2554 bcopy(buf->Pointer, newp, buf->Length); 2555 rp = (ACPI_RESOURCE *)((u_int8_t *)newp + 2556 ((u_int8_t *)rp - (u_int8_t *)buf->Pointer)); 2557 AcpiOsFree(buf->Pointer); 2558 buf->Pointer = newp; 2559 buf->Length += buf->Length; 2560 } 2561 2562 /* Insert the new resource. */ 2563 bcopy(res, rp, res->Length + ACPI_RS_SIZE_NO_DATA); 2564 2565 /* And add the terminator. */ 2566 rp = ACPI_NEXT_RESOURCE(rp); 2567 rp->Type = ACPI_RESOURCE_TYPE_END_TAG; 2568 rp->Length = ACPI_RS_SIZE_MIN; 2569 2570 return (AE_OK); 2571 } 2572 2573 UINT8 2574 acpi_DSMQuery(ACPI_HANDLE h, uint8_t *uuid, int revision) 2575 { 2576 /* 2577 * ACPI spec 9.1.1 defines this. 2578 * 2579 * "Arg2: Function Index Represents a specific function whose meaning is 2580 * specific to the UUID and Revision ID. Function indices should start 2581 * with 1. Function number zero is a query function (see the special 2582 * return code defined below)." 2583 */ 2584 ACPI_BUFFER buf; 2585 ACPI_OBJECT *obj; 2586 UINT8 ret = 0; 2587 2588 if (!ACPI_SUCCESS(acpi_EvaluateDSM(h, uuid, revision, 0, NULL, &buf))) { 2589 ACPI_INFO(("Failed to enumerate DSM functions\n")); 2590 return (0); 2591 } 2592 2593 obj = (ACPI_OBJECT *)buf.Pointer; 2594 KASSERT(obj, ("Object not allowed to be NULL\n")); 2595 2596 /* 2597 * From ACPI 6.2 spec 9.1.1: 2598 * If Function Index = 0, a Buffer containing a function index bitfield. 2599 * Otherwise, the return value and type depends on the UUID and revision 2600 * ID (see below). 2601 */ 2602 switch (obj->Type) { 2603 case ACPI_TYPE_BUFFER: 2604 ret = *(uint8_t *)obj->Buffer.Pointer; 2605 break; 2606 case ACPI_TYPE_INTEGER: 2607 ACPI_BIOS_WARNING((AE_INFO, 2608 "Possibly buggy BIOS with ACPI_TYPE_INTEGER for function enumeration\n")); 2609 ret = obj->Integer.Value & 0xFF; 2610 break; 2611 default: 2612 ACPI_WARNING((AE_INFO, "Unexpected return type %u\n", obj->Type)); 2613 }; 2614 2615 AcpiOsFree(obj); 2616 return ret; 2617 } 2618 2619 /* 2620 * DSM may return multiple types depending on the function. It is therefore 2621 * unsafe to use the typed evaluation. It is highly recommended that the caller 2622 * check the type of the returned object. 2623 */ 2624 ACPI_STATUS 2625 acpi_EvaluateDSM(ACPI_HANDLE handle, uint8_t *uuid, int revision, 2626 uint64_t function, union acpi_object *package, ACPI_BUFFER *out_buf) 2627 { 2628 ACPI_OBJECT arg[4]; 2629 ACPI_OBJECT_LIST arglist; 2630 ACPI_BUFFER buf; 2631 ACPI_STATUS status; 2632 2633 if (out_buf == NULL) 2634 return (AE_NO_MEMORY); 2635 2636 arg[0].Type = ACPI_TYPE_BUFFER; 2637 arg[0].Buffer.Length = ACPI_UUID_LENGTH; 2638 arg[0].Buffer.Pointer = uuid; 2639 arg[1].Type = ACPI_TYPE_INTEGER; 2640 arg[1].Integer.Value = revision; 2641 arg[2].Type = ACPI_TYPE_INTEGER; 2642 arg[2].Integer.Value = function; 2643 if (package) { 2644 arg[3] = *package; 2645 } else { 2646 arg[3].Type = ACPI_TYPE_PACKAGE; 2647 arg[3].Package.Count = 0; 2648 arg[3].Package.Elements = NULL; 2649 } 2650 2651 arglist.Pointer = arg; 2652 arglist.Count = 4; 2653 buf.Pointer = NULL; 2654 buf.Length = ACPI_ALLOCATE_BUFFER; 2655 status = AcpiEvaluateObject(handle, "_DSM", &arglist, &buf); 2656 if (ACPI_FAILURE(status)) 2657 return (status); 2658 2659 KASSERT(ACPI_SUCCESS(status), ("Unexpected status")); 2660 2661 *out_buf = buf; 2662 return (status); 2663 } 2664 2665 ACPI_STATUS 2666 acpi_EvaluateOSC(ACPI_HANDLE handle, uint8_t *uuid, int revision, int count, 2667 uint32_t *caps_in, uint32_t *caps_out, bool query) 2668 { 2669 ACPI_OBJECT arg[4], *ret; 2670 ACPI_OBJECT_LIST arglist; 2671 ACPI_BUFFER buf; 2672 ACPI_STATUS status; 2673 2674 arglist.Pointer = arg; 2675 arglist.Count = 4; 2676 arg[0].Type = ACPI_TYPE_BUFFER; 2677 arg[0].Buffer.Length = ACPI_UUID_LENGTH; 2678 arg[0].Buffer.Pointer = uuid; 2679 arg[1].Type = ACPI_TYPE_INTEGER; 2680 arg[1].Integer.Value = revision; 2681 arg[2].Type = ACPI_TYPE_INTEGER; 2682 arg[2].Integer.Value = count; 2683 arg[3].Type = ACPI_TYPE_BUFFER; 2684 arg[3].Buffer.Length = count * sizeof(*caps_in); 2685 arg[3].Buffer.Pointer = (uint8_t *)caps_in; 2686 caps_in[0] = query ? 1 : 0; 2687 buf.Pointer = NULL; 2688 buf.Length = ACPI_ALLOCATE_BUFFER; 2689 status = AcpiEvaluateObjectTyped(handle, "_OSC", &arglist, &buf, 2690 ACPI_TYPE_BUFFER); 2691 if (ACPI_FAILURE(status)) 2692 return (status); 2693 if (caps_out != NULL) { 2694 ret = buf.Pointer; 2695 if (ret->Buffer.Length != count * sizeof(*caps_out)) { 2696 AcpiOsFree(buf.Pointer); 2697 return (AE_BUFFER_OVERFLOW); 2698 } 2699 bcopy(ret->Buffer.Pointer, caps_out, ret->Buffer.Length); 2700 } 2701 AcpiOsFree(buf.Pointer); 2702 return (status); 2703 } 2704 2705 /* 2706 * Set interrupt model. 2707 */ 2708 ACPI_STATUS 2709 acpi_SetIntrModel(int model) 2710 { 2711 2712 return (acpi_SetInteger(ACPI_ROOT_OBJECT, "_PIC", model)); 2713 } 2714 2715 /* 2716 * Walk subtables of a table and call a callback routine for each 2717 * subtable. The caller should provide the first subtable and a 2718 * pointer to the end of the table. This can be used to walk tables 2719 * such as MADT and SRAT that use subtable entries. 2720 */ 2721 void 2722 acpi_walk_subtables(void *first, void *end, acpi_subtable_handler *handler, 2723 void *arg) 2724 { 2725 ACPI_SUBTABLE_HEADER *entry; 2726 2727 for (entry = first; (void *)entry < end; ) { 2728 /* Avoid an infinite loop if we hit a bogus entry. */ 2729 if (entry->Length < sizeof(ACPI_SUBTABLE_HEADER)) 2730 return; 2731 2732 handler(entry, arg); 2733 entry = ACPI_ADD_PTR(ACPI_SUBTABLE_HEADER, entry, entry->Length); 2734 } 2735 } 2736 2737 /* 2738 * DEPRECATED. This interface has serious deficiencies and will be 2739 * removed. 2740 * 2741 * Immediately enter the sleep state. In the old model, acpiconf(8) ran 2742 * rc.suspend and rc.resume so we don't have to notify devd(8) to do this. 2743 */ 2744 ACPI_STATUS 2745 acpi_SetSleepState(struct acpi_softc *sc, int state) 2746 { 2747 static int once; 2748 2749 if (!once) { 2750 device_printf(sc->acpi_dev, 2751 "warning: acpi_SetSleepState() deprecated, need to update your software\n"); 2752 once = 1; 2753 } 2754 return (acpi_EnterSleepState(sc, state)); 2755 } 2756 2757 #if defined(__amd64__) || defined(__i386__) 2758 static void 2759 acpi_sleep_force_task(void *context) 2760 { 2761 struct acpi_softc *sc = (struct acpi_softc *)context; 2762 2763 if (ACPI_FAILURE(acpi_EnterSleepState(sc, sc->acpi_next_sstate))) 2764 device_printf(sc->acpi_dev, "force sleep state S%d failed\n", 2765 sc->acpi_next_sstate); 2766 } 2767 2768 static void 2769 acpi_sleep_force(void *arg) 2770 { 2771 struct acpi_softc *sc = (struct acpi_softc *)arg; 2772 2773 device_printf(sc->acpi_dev, 2774 "suspend request timed out, forcing sleep now\n"); 2775 /* 2776 * XXX Suspending from callout causes freezes in DEVICE_SUSPEND(). 2777 * Suspend from acpi_task thread instead. 2778 */ 2779 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 2780 acpi_sleep_force_task, sc))) 2781 device_printf(sc->acpi_dev, "AcpiOsExecute() for sleeping failed\n"); 2782 } 2783 #endif 2784 2785 /* 2786 * Request that the system enter the given suspend state. All /dev/apm 2787 * devices and devd(8) will be notified. Userland then has a chance to 2788 * save state and acknowledge the request. The system sleeps once all 2789 * acks are in. 2790 */ 2791 int 2792 acpi_ReqSleepState(struct acpi_softc *sc, int state) 2793 { 2794 #if defined(__amd64__) || defined(__i386__) 2795 struct apm_clone_data *clone; 2796 ACPI_STATUS status; 2797 2798 if (state < ACPI_STATE_S1 || state > ACPI_S_STATES_MAX) 2799 return (EINVAL); 2800 if (!acpi_sleep_states[state]) 2801 return (EOPNOTSUPP); 2802 2803 /* 2804 * If a reboot/shutdown/suspend request is already in progress or 2805 * suspend is blocked due to an upcoming shutdown, just return. 2806 */ 2807 if (rebooting || sc->acpi_next_sstate != 0 || suspend_blocked) { 2808 return (0); 2809 } 2810 2811 /* Wait until sleep is enabled. */ 2812 while (sc->acpi_sleep_disabled) { 2813 AcpiOsSleep(1000); 2814 } 2815 2816 ACPI_LOCK(acpi); 2817 2818 sc->acpi_next_sstate = state; 2819 2820 /* S5 (soft-off) should be entered directly with no waiting. */ 2821 if (state == ACPI_STATE_S5) { 2822 ACPI_UNLOCK(acpi); 2823 status = acpi_EnterSleepState(sc, state); 2824 return (ACPI_SUCCESS(status) ? 0 : ENXIO); 2825 } 2826 2827 /* Record the pending state and notify all apm devices. */ 2828 STAILQ_FOREACH(clone, &sc->apm_cdevs, entries) { 2829 clone->notify_status = APM_EV_NONE; 2830 if ((clone->flags & ACPI_EVF_DEVD) == 0) { 2831 selwakeuppri(&clone->sel_read, PZERO); 2832 KNOTE_LOCKED(&clone->sel_read.si_note, 0); 2833 } 2834 } 2835 2836 /* If devd(8) is not running, immediately enter the sleep state. */ 2837 if (!devctl_process_running()) { 2838 ACPI_UNLOCK(acpi); 2839 status = acpi_EnterSleepState(sc, state); 2840 return (ACPI_SUCCESS(status) ? 0 : ENXIO); 2841 } 2842 2843 /* 2844 * Set a timeout to fire if userland doesn't ack the suspend request 2845 * in time. This way we still eventually go to sleep if we were 2846 * overheating or running low on battery, even if userland is hung. 2847 * We cancel this timeout once all userland acks are in or the 2848 * suspend request is aborted. 2849 */ 2850 callout_reset(&sc->susp_force_to, 10 * hz, acpi_sleep_force, sc); 2851 ACPI_UNLOCK(acpi); 2852 2853 /* Now notify devd(8) also. */ 2854 acpi_UserNotify("Suspend", ACPI_ROOT_OBJECT, state); 2855 2856 return (0); 2857 #else 2858 /* This platform does not support acpi suspend/resume. */ 2859 return (EOPNOTSUPP); 2860 #endif 2861 } 2862 2863 /* 2864 * Acknowledge (or reject) a pending sleep state. The caller has 2865 * prepared for suspend and is now ready for it to proceed. If the 2866 * error argument is non-zero, it indicates suspend should be cancelled 2867 * and gives an errno value describing why. Once all votes are in, 2868 * we suspend the system. 2869 */ 2870 int 2871 acpi_AckSleepState(struct apm_clone_data *clone, int error) 2872 { 2873 #if defined(__amd64__) || defined(__i386__) 2874 struct acpi_softc *sc; 2875 int ret, sleeping; 2876 2877 /* If no pending sleep state, return an error. */ 2878 ACPI_LOCK(acpi); 2879 sc = clone->acpi_sc; 2880 if (sc->acpi_next_sstate == 0) { 2881 ACPI_UNLOCK(acpi); 2882 return (ENXIO); 2883 } 2884 2885 /* Caller wants to abort suspend process. */ 2886 if (error) { 2887 sc->acpi_next_sstate = 0; 2888 callout_stop(&sc->susp_force_to); 2889 device_printf(sc->acpi_dev, 2890 "listener on %s cancelled the pending suspend\n", 2891 devtoname(clone->cdev)); 2892 ACPI_UNLOCK(acpi); 2893 return (0); 2894 } 2895 2896 /* 2897 * Mark this device as acking the suspend request. Then, walk through 2898 * all devices, seeing if they agree yet. We only count devices that 2899 * are writable since read-only devices couldn't ack the request. 2900 */ 2901 sleeping = TRUE; 2902 clone->notify_status = APM_EV_ACKED; 2903 STAILQ_FOREACH(clone, &sc->apm_cdevs, entries) { 2904 if ((clone->flags & ACPI_EVF_WRITE) != 0 && 2905 clone->notify_status != APM_EV_ACKED) { 2906 sleeping = FALSE; 2907 break; 2908 } 2909 } 2910 2911 /* If all devices have voted "yes", we will suspend now. */ 2912 if (sleeping) 2913 callout_stop(&sc->susp_force_to); 2914 ACPI_UNLOCK(acpi); 2915 ret = 0; 2916 if (sleeping) { 2917 if (ACPI_FAILURE(acpi_EnterSleepState(sc, sc->acpi_next_sstate))) 2918 ret = ENODEV; 2919 } 2920 return (ret); 2921 #else 2922 /* This platform does not support acpi suspend/resume. */ 2923 return (EOPNOTSUPP); 2924 #endif 2925 } 2926 2927 static void 2928 acpi_sleep_enable(void *arg) 2929 { 2930 struct acpi_softc *sc = (struct acpi_softc *)arg; 2931 2932 ACPI_LOCK_ASSERT(acpi); 2933 2934 /* Reschedule if the system is not fully up and running. */ 2935 if (!AcpiGbl_SystemAwakeAndRunning) { 2936 callout_schedule(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME); 2937 return; 2938 } 2939 2940 sc->acpi_sleep_disabled = FALSE; 2941 } 2942 2943 static ACPI_STATUS 2944 acpi_sleep_disable(struct acpi_softc *sc) 2945 { 2946 ACPI_STATUS status; 2947 2948 /* Fail if the system is not fully up and running. */ 2949 if (!AcpiGbl_SystemAwakeAndRunning) 2950 return (AE_ERROR); 2951 2952 ACPI_LOCK(acpi); 2953 status = sc->acpi_sleep_disabled ? AE_ERROR : AE_OK; 2954 sc->acpi_sleep_disabled = TRUE; 2955 ACPI_UNLOCK(acpi); 2956 2957 return (status); 2958 } 2959 2960 enum acpi_sleep_state { 2961 ACPI_SS_NONE, 2962 ACPI_SS_GPE_SET, 2963 ACPI_SS_DEV_SUSPEND, 2964 ACPI_SS_SLP_PREP, 2965 ACPI_SS_SLEPT, 2966 }; 2967 2968 /* 2969 * Enter the desired system sleep state. 2970 * 2971 * Currently we support S1-S5 but S4 is only S4BIOS 2972 */ 2973 static ACPI_STATUS 2974 acpi_EnterSleepState(struct acpi_softc *sc, int state) 2975 { 2976 register_t intr; 2977 ACPI_STATUS status; 2978 ACPI_EVENT_STATUS power_button_status; 2979 enum acpi_sleep_state slp_state; 2980 int sleep_result; 2981 2982 ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state); 2983 2984 if (state < ACPI_STATE_S1 || state > ACPI_S_STATES_MAX) 2985 return_ACPI_STATUS (AE_BAD_PARAMETER); 2986 if (!acpi_sleep_states[state]) { 2987 device_printf(sc->acpi_dev, "Sleep state S%d not supported by BIOS\n", 2988 state); 2989 return (AE_SUPPORT); 2990 } 2991 2992 /* Re-entry once we're suspending is not allowed. */ 2993 status = acpi_sleep_disable(sc); 2994 if (ACPI_FAILURE(status)) { 2995 device_printf(sc->acpi_dev, 2996 "suspend request ignored (not ready yet)\n"); 2997 return (status); 2998 } 2999 3000 if (state == ACPI_STATE_S5) { 3001 /* 3002 * Shut down cleanly and power off. This will call us back through the 3003 * shutdown handlers. 3004 */ 3005 shutdown_nice(RB_POWEROFF); 3006 return_ACPI_STATUS (AE_OK); 3007 } 3008 3009 EVENTHANDLER_INVOKE(power_suspend_early); 3010 stop_all_proc(); 3011 EVENTHANDLER_INVOKE(power_suspend); 3012 3013 #ifdef EARLY_AP_STARTUP 3014 MPASS(mp_ncpus == 1 || smp_started); 3015 thread_lock(curthread); 3016 sched_bind(curthread, 0); 3017 thread_unlock(curthread); 3018 #else 3019 if (smp_started) { 3020 thread_lock(curthread); 3021 sched_bind(curthread, 0); 3022 thread_unlock(curthread); 3023 } 3024 #endif 3025 3026 /* 3027 * Be sure to hold Giant across DEVICE_SUSPEND/RESUME since non-MPSAFE 3028 * drivers need this. 3029 */ 3030 mtx_lock(&Giant); 3031 3032 slp_state = ACPI_SS_NONE; 3033 3034 sc->acpi_sstate = state; 3035 3036 /* Enable any GPEs as appropriate and requested by the user. */ 3037 acpi_wake_prep_walk(state); 3038 slp_state = ACPI_SS_GPE_SET; 3039 3040 /* 3041 * Inform all devices that we are going to sleep. If at least one 3042 * device fails, DEVICE_SUSPEND() automatically resumes the tree. 3043 * 3044 * XXX Note that a better two-pass approach with a 'veto' pass 3045 * followed by a "real thing" pass would be better, but the current 3046 * bus interface does not provide for this. 3047 */ 3048 if (DEVICE_SUSPEND(root_bus) != 0) { 3049 device_printf(sc->acpi_dev, "device_suspend failed\n"); 3050 goto backout; 3051 } 3052 slp_state = ACPI_SS_DEV_SUSPEND; 3053 3054 status = AcpiEnterSleepStatePrep(state); 3055 if (ACPI_FAILURE(status)) { 3056 device_printf(sc->acpi_dev, "AcpiEnterSleepStatePrep failed - %s\n", 3057 AcpiFormatException(status)); 3058 goto backout; 3059 } 3060 slp_state = ACPI_SS_SLP_PREP; 3061 3062 if (sc->acpi_sleep_delay > 0) 3063 DELAY(sc->acpi_sleep_delay * 1000000); 3064 3065 suspendclock(); 3066 intr = intr_disable(); 3067 if (state != ACPI_STATE_S1) { 3068 sleep_result = acpi_sleep_machdep(sc, state); 3069 acpi_wakeup_machdep(sc, state, sleep_result, 0); 3070 3071 /* 3072 * XXX According to ACPI specification SCI_EN bit should be restored 3073 * by ACPI platform (BIOS, firmware) to its pre-sleep state. 3074 * Unfortunately some BIOSes fail to do that and that leads to 3075 * unexpected and serious consequences during wake up like a system 3076 * getting stuck in SMI handlers. 3077 * This hack is picked up from Linux, which claims that it follows 3078 * Windows behavior. 3079 */ 3080 if (sleep_result == 1 && state != ACPI_STATE_S4) 3081 AcpiWriteBitRegister(ACPI_BITREG_SCI_ENABLE, ACPI_ENABLE_EVENT); 3082 3083 if (sleep_result == 1 && state == ACPI_STATE_S3) { 3084 /* 3085 * Prevent mis-interpretation of the wakeup by power button 3086 * as a request for power off. 3087 * Ideally we should post an appropriate wakeup event, 3088 * perhaps using acpi_event_power_button_wake or alike. 3089 * 3090 * Clearing of power button status after wakeup is mandated 3091 * by ACPI specification in section "Fixed Power Button". 3092 * 3093 * XXX As of ACPICA 20121114 AcpiGetEventStatus provides 3094 * status as 0/1 corressponding to inactive/active despite 3095 * its type being ACPI_EVENT_STATUS. In other words, 3096 * we should not test for ACPI_EVENT_FLAG_SET for time being. 3097 */ 3098 if (ACPI_SUCCESS(AcpiGetEventStatus(ACPI_EVENT_POWER_BUTTON, 3099 &power_button_status)) && power_button_status != 0) { 3100 AcpiClearEvent(ACPI_EVENT_POWER_BUTTON); 3101 device_printf(sc->acpi_dev, 3102 "cleared fixed power button status\n"); 3103 } 3104 } 3105 3106 intr_restore(intr); 3107 3108 /* call acpi_wakeup_machdep() again with interrupt enabled */ 3109 acpi_wakeup_machdep(sc, state, sleep_result, 1); 3110 3111 AcpiLeaveSleepStatePrep(state); 3112 3113 if (sleep_result == -1) 3114 goto backout; 3115 3116 /* Re-enable ACPI hardware on wakeup from sleep state 4. */ 3117 if (state == ACPI_STATE_S4) 3118 AcpiEnable(); 3119 } else { 3120 status = AcpiEnterSleepState(state); 3121 intr_restore(intr); 3122 AcpiLeaveSleepStatePrep(state); 3123 if (ACPI_FAILURE(status)) { 3124 device_printf(sc->acpi_dev, "AcpiEnterSleepState failed - %s\n", 3125 AcpiFormatException(status)); 3126 goto backout; 3127 } 3128 } 3129 slp_state = ACPI_SS_SLEPT; 3130 3131 /* 3132 * Back out state according to how far along we got in the suspend 3133 * process. This handles both the error and success cases. 3134 */ 3135 backout: 3136 if (slp_state >= ACPI_SS_SLP_PREP) 3137 resumeclock(); 3138 if (slp_state >= ACPI_SS_GPE_SET) { 3139 acpi_wake_prep_walk(state); 3140 sc->acpi_sstate = ACPI_STATE_S0; 3141 } 3142 if (slp_state >= ACPI_SS_DEV_SUSPEND) 3143 DEVICE_RESUME(root_bus); 3144 if (slp_state >= ACPI_SS_SLP_PREP) 3145 AcpiLeaveSleepState(state); 3146 if (slp_state >= ACPI_SS_SLEPT) { 3147 #if defined(__i386__) || defined(__amd64__) 3148 /* NB: we are still using ACPI timecounter at this point. */ 3149 resume_TSC(); 3150 #endif 3151 acpi_resync_clock(sc); 3152 acpi_enable_fixed_events(sc); 3153 } 3154 sc->acpi_next_sstate = 0; 3155 3156 mtx_unlock(&Giant); 3157 3158 #ifdef EARLY_AP_STARTUP 3159 thread_lock(curthread); 3160 sched_unbind(curthread); 3161 thread_unlock(curthread); 3162 #else 3163 if (smp_started) { 3164 thread_lock(curthread); 3165 sched_unbind(curthread); 3166 thread_unlock(curthread); 3167 } 3168 #endif 3169 3170 resume_all_proc(); 3171 3172 EVENTHANDLER_INVOKE(power_resume); 3173 3174 /* Allow another sleep request after a while. */ 3175 callout_schedule(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME); 3176 3177 /* Run /etc/rc.resume after we are back. */ 3178 if (devctl_process_running()) 3179 acpi_UserNotify("Resume", ACPI_ROOT_OBJECT, state); 3180 3181 return_ACPI_STATUS (status); 3182 } 3183 3184 static void 3185 acpi_resync_clock(struct acpi_softc *sc) 3186 { 3187 3188 /* 3189 * Warm up timecounter again and reset system clock. 3190 */ 3191 (void)timecounter->tc_get_timecount(timecounter); 3192 (void)timecounter->tc_get_timecount(timecounter); 3193 inittodr(time_second + sc->acpi_sleep_delay); 3194 } 3195 3196 /* Enable or disable the device's wake GPE. */ 3197 int 3198 acpi_wake_set_enable(device_t dev, int enable) 3199 { 3200 struct acpi_prw_data prw; 3201 ACPI_STATUS status; 3202 int flags; 3203 3204 /* Make sure the device supports waking the system and get the GPE. */ 3205 if (acpi_parse_prw(acpi_get_handle(dev), &prw) != 0) 3206 return (ENXIO); 3207 3208 flags = acpi_get_flags(dev); 3209 if (enable) { 3210 status = AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, 3211 ACPI_GPE_ENABLE); 3212 if (ACPI_FAILURE(status)) { 3213 device_printf(dev, "enable wake failed\n"); 3214 return (ENXIO); 3215 } 3216 acpi_set_flags(dev, flags | ACPI_FLAG_WAKE_ENABLED); 3217 } else { 3218 status = AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, 3219 ACPI_GPE_DISABLE); 3220 if (ACPI_FAILURE(status)) { 3221 device_printf(dev, "disable wake failed\n"); 3222 return (ENXIO); 3223 } 3224 acpi_set_flags(dev, flags & ~ACPI_FLAG_WAKE_ENABLED); 3225 } 3226 3227 return (0); 3228 } 3229 3230 static int 3231 acpi_wake_sleep_prep(ACPI_HANDLE handle, int sstate) 3232 { 3233 struct acpi_prw_data prw; 3234 device_t dev; 3235 3236 /* Check that this is a wake-capable device and get its GPE. */ 3237 if (acpi_parse_prw(handle, &prw) != 0) 3238 return (ENXIO); 3239 dev = acpi_get_device(handle); 3240 3241 /* 3242 * The destination sleep state must be less than (i.e., higher power) 3243 * or equal to the value specified by _PRW. If this GPE cannot be 3244 * enabled for the next sleep state, then disable it. If it can and 3245 * the user requested it be enabled, turn on any required power resources 3246 * and set _PSW. 3247 */ 3248 if (sstate > prw.lowest_wake) { 3249 AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, ACPI_GPE_DISABLE); 3250 if (bootverbose) 3251 device_printf(dev, "wake_prep disabled wake for %s (S%d)\n", 3252 acpi_name(handle), sstate); 3253 } else if (dev && (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) != 0) { 3254 acpi_pwr_wake_enable(handle, 1); 3255 acpi_SetInteger(handle, "_PSW", 1); 3256 if (bootverbose) 3257 device_printf(dev, "wake_prep enabled for %s (S%d)\n", 3258 acpi_name(handle), sstate); 3259 } 3260 3261 return (0); 3262 } 3263 3264 static int 3265 acpi_wake_run_prep(ACPI_HANDLE handle, int sstate) 3266 { 3267 struct acpi_prw_data prw; 3268 device_t dev; 3269 3270 /* 3271 * Check that this is a wake-capable device and get its GPE. Return 3272 * now if the user didn't enable this device for wake. 3273 */ 3274 if (acpi_parse_prw(handle, &prw) != 0) 3275 return (ENXIO); 3276 dev = acpi_get_device(handle); 3277 if (dev == NULL || (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) == 0) 3278 return (0); 3279 3280 /* 3281 * If this GPE couldn't be enabled for the previous sleep state, it was 3282 * disabled before going to sleep so re-enable it. If it was enabled, 3283 * clear _PSW and turn off any power resources it used. 3284 */ 3285 if (sstate > prw.lowest_wake) { 3286 AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, ACPI_GPE_ENABLE); 3287 if (bootverbose) 3288 device_printf(dev, "run_prep re-enabled %s\n", acpi_name(handle)); 3289 } else { 3290 acpi_SetInteger(handle, "_PSW", 0); 3291 acpi_pwr_wake_enable(handle, 0); 3292 if (bootverbose) 3293 device_printf(dev, "run_prep cleaned up for %s\n", 3294 acpi_name(handle)); 3295 } 3296 3297 return (0); 3298 } 3299 3300 static ACPI_STATUS 3301 acpi_wake_prep(ACPI_HANDLE handle, UINT32 level, void *context, void **status) 3302 { 3303 int sstate; 3304 3305 /* If suspending, run the sleep prep function, otherwise wake. */ 3306 sstate = *(int *)context; 3307 if (AcpiGbl_SystemAwakeAndRunning) 3308 acpi_wake_sleep_prep(handle, sstate); 3309 else 3310 acpi_wake_run_prep(handle, sstate); 3311 return (AE_OK); 3312 } 3313 3314 /* Walk the tree rooted at acpi0 to prep devices for suspend/resume. */ 3315 static int 3316 acpi_wake_prep_walk(int sstate) 3317 { 3318 ACPI_HANDLE sb_handle; 3319 3320 if (ACPI_SUCCESS(AcpiGetHandle(ACPI_ROOT_OBJECT, "\\_SB_", &sb_handle))) 3321 AcpiWalkNamespace(ACPI_TYPE_DEVICE, sb_handle, 100, 3322 acpi_wake_prep, NULL, &sstate, NULL); 3323 return (0); 3324 } 3325 3326 /* Walk the tree rooted at acpi0 to attach per-device wake sysctls. */ 3327 static int 3328 acpi_wake_sysctl_walk(device_t dev) 3329 { 3330 int error, i, numdevs; 3331 device_t *devlist; 3332 device_t child; 3333 ACPI_STATUS status; 3334 3335 error = device_get_children(dev, &devlist, &numdevs); 3336 if (error != 0 || numdevs == 0) { 3337 if (numdevs == 0) 3338 free(devlist, M_TEMP); 3339 return (error); 3340 } 3341 for (i = 0; i < numdevs; i++) { 3342 child = devlist[i]; 3343 acpi_wake_sysctl_walk(child); 3344 if (!device_is_attached(child)) 3345 continue; 3346 status = AcpiEvaluateObject(acpi_get_handle(child), "_PRW", NULL, NULL); 3347 if (ACPI_SUCCESS(status)) { 3348 SYSCTL_ADD_PROC(device_get_sysctl_ctx(child), 3349 SYSCTL_CHILDREN(device_get_sysctl_tree(child)), OID_AUTO, 3350 "wake", CTLTYPE_INT | CTLFLAG_RW, child, 0, 3351 acpi_wake_set_sysctl, "I", "Device set to wake the system"); 3352 } 3353 } 3354 free(devlist, M_TEMP); 3355 3356 return (0); 3357 } 3358 3359 /* Enable or disable wake from userland. */ 3360 static int 3361 acpi_wake_set_sysctl(SYSCTL_HANDLER_ARGS) 3362 { 3363 int enable, error; 3364 device_t dev; 3365 3366 dev = (device_t)arg1; 3367 enable = (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) ? 1 : 0; 3368 3369 error = sysctl_handle_int(oidp, &enable, 0, req); 3370 if (error != 0 || req->newptr == NULL) 3371 return (error); 3372 if (enable != 0 && enable != 1) 3373 return (EINVAL); 3374 3375 return (acpi_wake_set_enable(dev, enable)); 3376 } 3377 3378 /* Parse a device's _PRW into a structure. */ 3379 int 3380 acpi_parse_prw(ACPI_HANDLE h, struct acpi_prw_data *prw) 3381 { 3382 ACPI_STATUS status; 3383 ACPI_BUFFER prw_buffer; 3384 ACPI_OBJECT *res, *res2; 3385 int error, i, power_count; 3386 3387 if (h == NULL || prw == NULL) 3388 return (EINVAL); 3389 3390 /* 3391 * The _PRW object (7.2.9) is only required for devices that have the 3392 * ability to wake the system from a sleeping state. 3393 */ 3394 error = EINVAL; 3395 prw_buffer.Pointer = NULL; 3396 prw_buffer.Length = ACPI_ALLOCATE_BUFFER; 3397 status = AcpiEvaluateObject(h, "_PRW", NULL, &prw_buffer); 3398 if (ACPI_FAILURE(status)) 3399 return (ENOENT); 3400 res = (ACPI_OBJECT *)prw_buffer.Pointer; 3401 if (res == NULL) 3402 return (ENOENT); 3403 if (!ACPI_PKG_VALID(res, 2)) 3404 goto out; 3405 3406 /* 3407 * Element 1 of the _PRW object: 3408 * The lowest power system sleeping state that can be entered while still 3409 * providing wake functionality. The sleeping state being entered must 3410 * be less than (i.e., higher power) or equal to this value. 3411 */ 3412 if (acpi_PkgInt32(res, 1, &prw->lowest_wake) != 0) 3413 goto out; 3414 3415 /* 3416 * Element 0 of the _PRW object: 3417 */ 3418 switch (res->Package.Elements[0].Type) { 3419 case ACPI_TYPE_INTEGER: 3420 /* 3421 * If the data type of this package element is numeric, then this 3422 * _PRW package element is the bit index in the GPEx_EN, in the 3423 * GPE blocks described in the FADT, of the enable bit that is 3424 * enabled for the wake event. 3425 */ 3426 prw->gpe_handle = NULL; 3427 prw->gpe_bit = res->Package.Elements[0].Integer.Value; 3428 error = 0; 3429 break; 3430 case ACPI_TYPE_PACKAGE: 3431 /* 3432 * If the data type of this package element is a package, then this 3433 * _PRW package element is itself a package containing two 3434 * elements. The first is an object reference to the GPE Block 3435 * device that contains the GPE that will be triggered by the wake 3436 * event. The second element is numeric and it contains the bit 3437 * index in the GPEx_EN, in the GPE Block referenced by the 3438 * first element in the package, of the enable bit that is enabled for 3439 * the wake event. 3440 * 3441 * For example, if this field is a package then it is of the form: 3442 * Package() {\_SB.PCI0.ISA.GPE, 2} 3443 */ 3444 res2 = &res->Package.Elements[0]; 3445 if (!ACPI_PKG_VALID(res2, 2)) 3446 goto out; 3447 prw->gpe_handle = acpi_GetReference(NULL, &res2->Package.Elements[0]); 3448 if (prw->gpe_handle == NULL) 3449 goto out; 3450 if (acpi_PkgInt32(res2, 1, &prw->gpe_bit) != 0) 3451 goto out; 3452 error = 0; 3453 break; 3454 default: 3455 goto out; 3456 } 3457 3458 /* Elements 2 to N of the _PRW object are power resources. */ 3459 power_count = res->Package.Count - 2; 3460 if (power_count > ACPI_PRW_MAX_POWERRES) { 3461 printf("ACPI device %s has too many power resources\n", acpi_name(h)); 3462 power_count = 0; 3463 } 3464 prw->power_res_count = power_count; 3465 for (i = 0; i < power_count; i++) 3466 prw->power_res[i] = res->Package.Elements[i]; 3467 3468 out: 3469 if (prw_buffer.Pointer != NULL) 3470 AcpiOsFree(prw_buffer.Pointer); 3471 return (error); 3472 } 3473 3474 /* 3475 * ACPI Event Handlers 3476 */ 3477 3478 /* System Event Handlers (registered by EVENTHANDLER_REGISTER) */ 3479 3480 static void 3481 acpi_system_eventhandler_sleep(void *arg, int state) 3482 { 3483 struct acpi_softc *sc = (struct acpi_softc *)arg; 3484 int ret; 3485 3486 ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state); 3487 3488 /* Check if button action is disabled or unknown. */ 3489 if (state == ACPI_STATE_UNKNOWN) 3490 return; 3491 3492 /* Request that the system prepare to enter the given suspend state. */ 3493 ret = acpi_ReqSleepState(sc, state); 3494 if (ret != 0) 3495 device_printf(sc->acpi_dev, 3496 "request to enter state S%d failed (err %d)\n", state, ret); 3497 3498 return_VOID; 3499 } 3500 3501 static void 3502 acpi_system_eventhandler_wakeup(void *arg, int state) 3503 { 3504 3505 ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state); 3506 3507 /* Currently, nothing to do for wakeup. */ 3508 3509 return_VOID; 3510 } 3511 3512 /* 3513 * ACPICA Event Handlers (FixedEvent, also called from button notify handler) 3514 */ 3515 static void 3516 acpi_invoke_sleep_eventhandler(void *context) 3517 { 3518 3519 EVENTHANDLER_INVOKE(acpi_sleep_event, *(int *)context); 3520 } 3521 3522 static void 3523 acpi_invoke_wake_eventhandler(void *context) 3524 { 3525 3526 EVENTHANDLER_INVOKE(acpi_wakeup_event, *(int *)context); 3527 } 3528 3529 UINT32 3530 acpi_event_power_button_sleep(void *context) 3531 { 3532 struct acpi_softc *sc = (struct acpi_softc *)context; 3533 3534 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3535 3536 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3537 acpi_invoke_sleep_eventhandler, &sc->acpi_power_button_sx))) 3538 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); 3539 return_VALUE (ACPI_INTERRUPT_HANDLED); 3540 } 3541 3542 UINT32 3543 acpi_event_power_button_wake(void *context) 3544 { 3545 struct acpi_softc *sc = (struct acpi_softc *)context; 3546 3547 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3548 3549 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3550 acpi_invoke_wake_eventhandler, &sc->acpi_power_button_sx))) 3551 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); 3552 return_VALUE (ACPI_INTERRUPT_HANDLED); 3553 } 3554 3555 UINT32 3556 acpi_event_sleep_button_sleep(void *context) 3557 { 3558 struct acpi_softc *sc = (struct acpi_softc *)context; 3559 3560 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3561 3562 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3563 acpi_invoke_sleep_eventhandler, &sc->acpi_sleep_button_sx))) 3564 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); 3565 return_VALUE (ACPI_INTERRUPT_HANDLED); 3566 } 3567 3568 UINT32 3569 acpi_event_sleep_button_wake(void *context) 3570 { 3571 struct acpi_softc *sc = (struct acpi_softc *)context; 3572 3573 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3574 3575 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3576 acpi_invoke_wake_eventhandler, &sc->acpi_sleep_button_sx))) 3577 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); 3578 return_VALUE (ACPI_INTERRUPT_HANDLED); 3579 } 3580 3581 /* 3582 * XXX This static buffer is suboptimal. There is no locking so only 3583 * use this for single-threaded callers. 3584 */ 3585 char * 3586 acpi_name(ACPI_HANDLE handle) 3587 { 3588 ACPI_BUFFER buf; 3589 static char data[256]; 3590 3591 buf.Length = sizeof(data); 3592 buf.Pointer = data; 3593 3594 if (handle && ACPI_SUCCESS(AcpiGetName(handle, ACPI_FULL_PATHNAME, &buf))) 3595 return (data); 3596 return ("(unknown)"); 3597 } 3598 3599 /* 3600 * Debugging/bug-avoidance. Avoid trying to fetch info on various 3601 * parts of the namespace. 3602 */ 3603 int 3604 acpi_avoid(ACPI_HANDLE handle) 3605 { 3606 char *cp, *env, *np; 3607 int len; 3608 3609 np = acpi_name(handle); 3610 if (*np == '\\') 3611 np++; 3612 if ((env = kern_getenv("debug.acpi.avoid")) == NULL) 3613 return (0); 3614 3615 /* Scan the avoid list checking for a match */ 3616 cp = env; 3617 for (;;) { 3618 while (*cp != 0 && isspace(*cp)) 3619 cp++; 3620 if (*cp == 0) 3621 break; 3622 len = 0; 3623 while (cp[len] != 0 && !isspace(cp[len])) 3624 len++; 3625 if (!strncmp(cp, np, len)) { 3626 freeenv(env); 3627 return(1); 3628 } 3629 cp += len; 3630 } 3631 freeenv(env); 3632 3633 return (0); 3634 } 3635 3636 /* 3637 * Debugging/bug-avoidance. Disable ACPI subsystem components. 3638 */ 3639 int 3640 acpi_disabled(char *subsys) 3641 { 3642 char *cp, *env; 3643 int len; 3644 3645 if ((env = kern_getenv("debug.acpi.disabled")) == NULL) 3646 return (0); 3647 if (strcmp(env, "all") == 0) { 3648 freeenv(env); 3649 return (1); 3650 } 3651 3652 /* Scan the disable list, checking for a match. */ 3653 cp = env; 3654 for (;;) { 3655 while (*cp != '\0' && isspace(*cp)) 3656 cp++; 3657 if (*cp == '\0') 3658 break; 3659 len = 0; 3660 while (cp[len] != '\0' && !isspace(cp[len])) 3661 len++; 3662 if (strncmp(cp, subsys, len) == 0) { 3663 freeenv(env); 3664 return (1); 3665 } 3666 cp += len; 3667 } 3668 freeenv(env); 3669 3670 return (0); 3671 } 3672 3673 static void 3674 acpi_lookup(void *arg, const char *name, device_t *dev) 3675 { 3676 ACPI_HANDLE handle; 3677 3678 if (*dev != NULL) 3679 return; 3680 3681 /* 3682 * Allow any handle name that is specified as an absolute path and 3683 * starts with '\'. We could restrict this to \_SB and friends, 3684 * but see acpi_probe_children() for notes on why we scan the entire 3685 * namespace for devices. 3686 * 3687 * XXX: The pathname argument to AcpiGetHandle() should be fixed to 3688 * be const. 3689 */ 3690 if (name[0] != '\\') 3691 return; 3692 if (ACPI_FAILURE(AcpiGetHandle(ACPI_ROOT_OBJECT, __DECONST(char *, name), 3693 &handle))) 3694 return; 3695 *dev = acpi_get_device(handle); 3696 } 3697 3698 /* 3699 * Control interface. 3700 * 3701 * We multiplex ioctls for all participating ACPI devices here. Individual 3702 * drivers wanting to be accessible via /dev/acpi should use the 3703 * register/deregister interface to make their handlers visible. 3704 */ 3705 struct acpi_ioctl_hook 3706 { 3707 TAILQ_ENTRY(acpi_ioctl_hook) link; 3708 u_long cmd; 3709 acpi_ioctl_fn fn; 3710 void *arg; 3711 }; 3712 3713 static TAILQ_HEAD(,acpi_ioctl_hook) acpi_ioctl_hooks; 3714 static int acpi_ioctl_hooks_initted; 3715 3716 int 3717 acpi_register_ioctl(u_long cmd, acpi_ioctl_fn fn, void *arg) 3718 { 3719 struct acpi_ioctl_hook *hp; 3720 3721 if ((hp = malloc(sizeof(*hp), M_ACPIDEV, M_NOWAIT)) == NULL) 3722 return (ENOMEM); 3723 hp->cmd = cmd; 3724 hp->fn = fn; 3725 hp->arg = arg; 3726 3727 ACPI_LOCK(acpi); 3728 if (acpi_ioctl_hooks_initted == 0) { 3729 TAILQ_INIT(&acpi_ioctl_hooks); 3730 acpi_ioctl_hooks_initted = 1; 3731 } 3732 TAILQ_INSERT_TAIL(&acpi_ioctl_hooks, hp, link); 3733 ACPI_UNLOCK(acpi); 3734 3735 return (0); 3736 } 3737 3738 void 3739 acpi_deregister_ioctl(u_long cmd, acpi_ioctl_fn fn) 3740 { 3741 struct acpi_ioctl_hook *hp; 3742 3743 ACPI_LOCK(acpi); 3744 TAILQ_FOREACH(hp, &acpi_ioctl_hooks, link) 3745 if (hp->cmd == cmd && hp->fn == fn) 3746 break; 3747 3748 if (hp != NULL) { 3749 TAILQ_REMOVE(&acpi_ioctl_hooks, hp, link); 3750 free(hp, M_ACPIDEV); 3751 } 3752 ACPI_UNLOCK(acpi); 3753 } 3754 3755 static int 3756 acpiopen(struct cdev *dev, int flag, int fmt, struct thread *td) 3757 { 3758 return (0); 3759 } 3760 3761 static int 3762 acpiclose(struct cdev *dev, int flag, int fmt, struct thread *td) 3763 { 3764 return (0); 3765 } 3766 3767 static int 3768 acpiioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 3769 { 3770 struct acpi_softc *sc; 3771 struct acpi_ioctl_hook *hp; 3772 int error, state; 3773 3774 error = 0; 3775 hp = NULL; 3776 sc = dev->si_drv1; 3777 3778 /* 3779 * Scan the list of registered ioctls, looking for handlers. 3780 */ 3781 ACPI_LOCK(acpi); 3782 if (acpi_ioctl_hooks_initted) 3783 TAILQ_FOREACH(hp, &acpi_ioctl_hooks, link) { 3784 if (hp->cmd == cmd) 3785 break; 3786 } 3787 ACPI_UNLOCK(acpi); 3788 if (hp) 3789 return (hp->fn(cmd, addr, hp->arg)); 3790 3791 /* 3792 * Core ioctls are not permitted for non-writable user. 3793 * Currently, other ioctls just fetch information. 3794 * Not changing system behavior. 3795 */ 3796 if ((flag & FWRITE) == 0) 3797 return (EPERM); 3798 3799 /* Core system ioctls. */ 3800 switch (cmd) { 3801 case ACPIIO_REQSLPSTATE: 3802 state = *(int *)addr; 3803 if (state != ACPI_STATE_S5) 3804 return (acpi_ReqSleepState(sc, state)); 3805 device_printf(sc->acpi_dev, "power off via acpi ioctl not supported\n"); 3806 error = EOPNOTSUPP; 3807 break; 3808 case ACPIIO_ACKSLPSTATE: 3809 error = *(int *)addr; 3810 error = acpi_AckSleepState(sc->acpi_clone, error); 3811 break; 3812 case ACPIIO_SETSLPSTATE: /* DEPRECATED */ 3813 state = *(int *)addr; 3814 if (state < ACPI_STATE_S0 || state > ACPI_S_STATES_MAX) 3815 return (EINVAL); 3816 if (!acpi_sleep_states[state]) 3817 return (EOPNOTSUPP); 3818 if (ACPI_FAILURE(acpi_SetSleepState(sc, state))) 3819 error = ENXIO; 3820 break; 3821 default: 3822 error = ENXIO; 3823 break; 3824 } 3825 3826 return (error); 3827 } 3828 3829 static int 3830 acpi_sname2sstate(const char *sname) 3831 { 3832 int sstate; 3833 3834 if (toupper(sname[0]) == 'S') { 3835 sstate = sname[1] - '0'; 3836 if (sstate >= ACPI_STATE_S0 && sstate <= ACPI_STATE_S5 && 3837 sname[2] == '\0') 3838 return (sstate); 3839 } else if (strcasecmp(sname, "NONE") == 0) 3840 return (ACPI_STATE_UNKNOWN); 3841 return (-1); 3842 } 3843 3844 static const char * 3845 acpi_sstate2sname(int sstate) 3846 { 3847 static const char *snames[] = { "S0", "S1", "S2", "S3", "S4", "S5" }; 3848 3849 if (sstate >= ACPI_STATE_S0 && sstate <= ACPI_STATE_S5) 3850 return (snames[sstate]); 3851 else if (sstate == ACPI_STATE_UNKNOWN) 3852 return ("NONE"); 3853 return (NULL); 3854 } 3855 3856 static int 3857 acpi_supported_sleep_state_sysctl(SYSCTL_HANDLER_ARGS) 3858 { 3859 int error; 3860 struct sbuf sb; 3861 UINT8 state; 3862 3863 sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND); 3864 for (state = ACPI_STATE_S1; state < ACPI_S_STATE_COUNT; state++) 3865 if (acpi_sleep_states[state]) 3866 sbuf_printf(&sb, "%s ", acpi_sstate2sname(state)); 3867 sbuf_trim(&sb); 3868 sbuf_finish(&sb); 3869 error = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req); 3870 sbuf_delete(&sb); 3871 return (error); 3872 } 3873 3874 static int 3875 acpi_sleep_state_sysctl(SYSCTL_HANDLER_ARGS) 3876 { 3877 char sleep_state[10]; 3878 int error, new_state, old_state; 3879 3880 old_state = *(int *)oidp->oid_arg1; 3881 strlcpy(sleep_state, acpi_sstate2sname(old_state), sizeof(sleep_state)); 3882 error = sysctl_handle_string(oidp, sleep_state, sizeof(sleep_state), req); 3883 if (error == 0 && req->newptr != NULL) { 3884 new_state = acpi_sname2sstate(sleep_state); 3885 if (new_state < ACPI_STATE_S1) 3886 return (EINVAL); 3887 if (new_state < ACPI_S_STATE_COUNT && !acpi_sleep_states[new_state]) 3888 return (EOPNOTSUPP); 3889 if (new_state != old_state) 3890 *(int *)oidp->oid_arg1 = new_state; 3891 } 3892 return (error); 3893 } 3894 3895 /* Inform devctl(4) when we receive a Notify. */ 3896 void 3897 acpi_UserNotify(const char *subsystem, ACPI_HANDLE h, uint8_t notify) 3898 { 3899 char notify_buf[16]; 3900 ACPI_BUFFER handle_buf; 3901 ACPI_STATUS status; 3902 3903 if (subsystem == NULL) 3904 return; 3905 3906 handle_buf.Pointer = NULL; 3907 handle_buf.Length = ACPI_ALLOCATE_BUFFER; 3908 status = AcpiNsHandleToPathname(h, &handle_buf, FALSE); 3909 if (ACPI_FAILURE(status)) 3910 return; 3911 snprintf(notify_buf, sizeof(notify_buf), "notify=0x%02x", notify); 3912 devctl_notify("ACPI", subsystem, handle_buf.Pointer, notify_buf); 3913 AcpiOsFree(handle_buf.Pointer); 3914 } 3915 3916 #ifdef ACPI_DEBUG 3917 /* 3918 * Support for parsing debug options from the kernel environment. 3919 * 3920 * Bits may be set in the AcpiDbgLayer and AcpiDbgLevel debug registers 3921 * by specifying the names of the bits in the debug.acpi.layer and 3922 * debug.acpi.level environment variables. Bits may be unset by 3923 * prefixing the bit name with !. 3924 */ 3925 struct debugtag 3926 { 3927 char *name; 3928 UINT32 value; 3929 }; 3930 3931 static struct debugtag dbg_layer[] = { 3932 {"ACPI_UTILITIES", ACPI_UTILITIES}, 3933 {"ACPI_HARDWARE", ACPI_HARDWARE}, 3934 {"ACPI_EVENTS", ACPI_EVENTS}, 3935 {"ACPI_TABLES", ACPI_TABLES}, 3936 {"ACPI_NAMESPACE", ACPI_NAMESPACE}, 3937 {"ACPI_PARSER", ACPI_PARSER}, 3938 {"ACPI_DISPATCHER", ACPI_DISPATCHER}, 3939 {"ACPI_EXECUTER", ACPI_EXECUTER}, 3940 {"ACPI_RESOURCES", ACPI_RESOURCES}, 3941 {"ACPI_CA_DEBUGGER", ACPI_CA_DEBUGGER}, 3942 {"ACPI_OS_SERVICES", ACPI_OS_SERVICES}, 3943 {"ACPI_CA_DISASSEMBLER", ACPI_CA_DISASSEMBLER}, 3944 {"ACPI_ALL_COMPONENTS", ACPI_ALL_COMPONENTS}, 3945 3946 {"ACPI_AC_ADAPTER", ACPI_AC_ADAPTER}, 3947 {"ACPI_BATTERY", ACPI_BATTERY}, 3948 {"ACPI_BUS", ACPI_BUS}, 3949 {"ACPI_BUTTON", ACPI_BUTTON}, 3950 {"ACPI_EC", ACPI_EC}, 3951 {"ACPI_FAN", ACPI_FAN}, 3952 {"ACPI_POWERRES", ACPI_POWERRES}, 3953 {"ACPI_PROCESSOR", ACPI_PROCESSOR}, 3954 {"ACPI_THERMAL", ACPI_THERMAL}, 3955 {"ACPI_TIMER", ACPI_TIMER}, 3956 {"ACPI_ALL_DRIVERS", ACPI_ALL_DRIVERS}, 3957 {NULL, 0} 3958 }; 3959 3960 static struct debugtag dbg_level[] = { 3961 {"ACPI_LV_INIT", ACPI_LV_INIT}, 3962 {"ACPI_LV_DEBUG_OBJECT", ACPI_LV_DEBUG_OBJECT}, 3963 {"ACPI_LV_INFO", ACPI_LV_INFO}, 3964 {"ACPI_LV_REPAIR", ACPI_LV_REPAIR}, 3965 {"ACPI_LV_ALL_EXCEPTIONS", ACPI_LV_ALL_EXCEPTIONS}, 3966 3967 /* Trace verbosity level 1 [Standard Trace Level] */ 3968 {"ACPI_LV_INIT_NAMES", ACPI_LV_INIT_NAMES}, 3969 {"ACPI_LV_PARSE", ACPI_LV_PARSE}, 3970 {"ACPI_LV_LOAD", ACPI_LV_LOAD}, 3971 {"ACPI_LV_DISPATCH", ACPI_LV_DISPATCH}, 3972 {"ACPI_LV_EXEC", ACPI_LV_EXEC}, 3973 {"ACPI_LV_NAMES", ACPI_LV_NAMES}, 3974 {"ACPI_LV_OPREGION", ACPI_LV_OPREGION}, 3975 {"ACPI_LV_BFIELD", ACPI_LV_BFIELD}, 3976 {"ACPI_LV_TABLES", ACPI_LV_TABLES}, 3977 {"ACPI_LV_VALUES", ACPI_LV_VALUES}, 3978 {"ACPI_LV_OBJECTS", ACPI_LV_OBJECTS}, 3979 {"ACPI_LV_RESOURCES", ACPI_LV_RESOURCES}, 3980 {"ACPI_LV_USER_REQUESTS", ACPI_LV_USER_REQUESTS}, 3981 {"ACPI_LV_PACKAGE", ACPI_LV_PACKAGE}, 3982 {"ACPI_LV_VERBOSITY1", ACPI_LV_VERBOSITY1}, 3983 3984 /* Trace verbosity level 2 [Function tracing and memory allocation] */ 3985 {"ACPI_LV_ALLOCATIONS", ACPI_LV_ALLOCATIONS}, 3986 {"ACPI_LV_FUNCTIONS", ACPI_LV_FUNCTIONS}, 3987 {"ACPI_LV_OPTIMIZATIONS", ACPI_LV_OPTIMIZATIONS}, 3988 {"ACPI_LV_VERBOSITY2", ACPI_LV_VERBOSITY2}, 3989 {"ACPI_LV_ALL", ACPI_LV_ALL}, 3990 3991 /* Trace verbosity level 3 [Threading, I/O, and Interrupts] */ 3992 {"ACPI_LV_MUTEX", ACPI_LV_MUTEX}, 3993 {"ACPI_LV_THREADS", ACPI_LV_THREADS}, 3994 {"ACPI_LV_IO", ACPI_LV_IO}, 3995 {"ACPI_LV_INTERRUPTS", ACPI_LV_INTERRUPTS}, 3996 {"ACPI_LV_VERBOSITY3", ACPI_LV_VERBOSITY3}, 3997 3998 /* Exceptionally verbose output -- also used in the global "DebugLevel" */ 3999 {"ACPI_LV_AML_DISASSEMBLE", ACPI_LV_AML_DISASSEMBLE}, 4000 {"ACPI_LV_VERBOSE_INFO", ACPI_LV_VERBOSE_INFO}, 4001 {"ACPI_LV_FULL_TABLES", ACPI_LV_FULL_TABLES}, 4002 {"ACPI_LV_EVENTS", ACPI_LV_EVENTS}, 4003 {"ACPI_LV_VERBOSE", ACPI_LV_VERBOSE}, 4004 {NULL, 0} 4005 }; 4006 4007 static void 4008 acpi_parse_debug(char *cp, struct debugtag *tag, UINT32 *flag) 4009 { 4010 char *ep; 4011 int i, l; 4012 int set; 4013 4014 while (*cp) { 4015 if (isspace(*cp)) { 4016 cp++; 4017 continue; 4018 } 4019 ep = cp; 4020 while (*ep && !isspace(*ep)) 4021 ep++; 4022 if (*cp == '!') { 4023 set = 0; 4024 cp++; 4025 if (cp == ep) 4026 continue; 4027 } else { 4028 set = 1; 4029 } 4030 l = ep - cp; 4031 for (i = 0; tag[i].name != NULL; i++) { 4032 if (!strncmp(cp, tag[i].name, l)) { 4033 if (set) 4034 *flag |= tag[i].value; 4035 else 4036 *flag &= ~tag[i].value; 4037 } 4038 } 4039 cp = ep; 4040 } 4041 } 4042 4043 static void 4044 acpi_set_debugging(void *junk) 4045 { 4046 char *layer, *level; 4047 4048 if (cold) { 4049 AcpiDbgLayer = 0; 4050 AcpiDbgLevel = 0; 4051 } 4052 4053 layer = kern_getenv("debug.acpi.layer"); 4054 level = kern_getenv("debug.acpi.level"); 4055 if (layer == NULL && level == NULL) 4056 return; 4057 4058 printf("ACPI set debug"); 4059 if (layer != NULL) { 4060 if (strcmp("NONE", layer) != 0) 4061 printf(" layer '%s'", layer); 4062 acpi_parse_debug(layer, &dbg_layer[0], &AcpiDbgLayer); 4063 freeenv(layer); 4064 } 4065 if (level != NULL) { 4066 if (strcmp("NONE", level) != 0) 4067 printf(" level '%s'", level); 4068 acpi_parse_debug(level, &dbg_level[0], &AcpiDbgLevel); 4069 freeenv(level); 4070 } 4071 printf("\n"); 4072 } 4073 4074 SYSINIT(acpi_debugging, SI_SUB_TUNABLES, SI_ORDER_ANY, acpi_set_debugging, 4075 NULL); 4076 4077 static int 4078 acpi_debug_sysctl(SYSCTL_HANDLER_ARGS) 4079 { 4080 int error, *dbg; 4081 struct debugtag *tag; 4082 struct sbuf sb; 4083 char temp[128]; 4084 4085 if (sbuf_new(&sb, NULL, 128, SBUF_AUTOEXTEND) == NULL) 4086 return (ENOMEM); 4087 if (strcmp(oidp->oid_arg1, "debug.acpi.layer") == 0) { 4088 tag = &dbg_layer[0]; 4089 dbg = &AcpiDbgLayer; 4090 } else { 4091 tag = &dbg_level[0]; 4092 dbg = &AcpiDbgLevel; 4093 } 4094 4095 /* Get old values if this is a get request. */ 4096 ACPI_SERIAL_BEGIN(acpi); 4097 if (*dbg == 0) { 4098 sbuf_cpy(&sb, "NONE"); 4099 } else if (req->newptr == NULL) { 4100 for (; tag->name != NULL; tag++) { 4101 if ((*dbg & tag->value) == tag->value) 4102 sbuf_printf(&sb, "%s ", tag->name); 4103 } 4104 } 4105 sbuf_trim(&sb); 4106 sbuf_finish(&sb); 4107 strlcpy(temp, sbuf_data(&sb), sizeof(temp)); 4108 sbuf_delete(&sb); 4109 4110 error = sysctl_handle_string(oidp, temp, sizeof(temp), req); 4111 4112 /* Check for error or no change */ 4113 if (error == 0 && req->newptr != NULL) { 4114 *dbg = 0; 4115 kern_setenv((char *)oidp->oid_arg1, temp); 4116 acpi_set_debugging(NULL); 4117 } 4118 ACPI_SERIAL_END(acpi); 4119 4120 return (error); 4121 } 4122 4123 SYSCTL_PROC(_debug_acpi, OID_AUTO, layer, CTLFLAG_RW | CTLTYPE_STRING, 4124 "debug.acpi.layer", 0, acpi_debug_sysctl, "A", ""); 4125 SYSCTL_PROC(_debug_acpi, OID_AUTO, level, CTLFLAG_RW | CTLTYPE_STRING, 4126 "debug.acpi.level", 0, acpi_debug_sysctl, "A", ""); 4127 #endif /* ACPI_DEBUG */ 4128 4129 static int 4130 acpi_debug_objects_sysctl(SYSCTL_HANDLER_ARGS) 4131 { 4132 int error; 4133 int old; 4134 4135 old = acpi_debug_objects; 4136 error = sysctl_handle_int(oidp, &acpi_debug_objects, 0, req); 4137 if (error != 0 || req->newptr == NULL) 4138 return (error); 4139 if (old == acpi_debug_objects || (old && acpi_debug_objects)) 4140 return (0); 4141 4142 ACPI_SERIAL_BEGIN(acpi); 4143 AcpiGbl_EnableAmlDebugObject = acpi_debug_objects ? TRUE : FALSE; 4144 ACPI_SERIAL_END(acpi); 4145 4146 return (0); 4147 } 4148 4149 static int 4150 acpi_parse_interfaces(char *str, struct acpi_interface *iface) 4151 { 4152 char *p; 4153 size_t len; 4154 int i, j; 4155 4156 p = str; 4157 while (isspace(*p) || *p == ',') 4158 p++; 4159 len = strlen(p); 4160 if (len == 0) 4161 return (0); 4162 p = strdup(p, M_TEMP); 4163 for (i = 0; i < len; i++) 4164 if (p[i] == ',') 4165 p[i] = '\0'; 4166 i = j = 0; 4167 while (i < len) 4168 if (isspace(p[i]) || p[i] == '\0') 4169 i++; 4170 else { 4171 i += strlen(p + i) + 1; 4172 j++; 4173 } 4174 if (j == 0) { 4175 free(p, M_TEMP); 4176 return (0); 4177 } 4178 iface->data = malloc(sizeof(*iface->data) * j, M_TEMP, M_WAITOK); 4179 iface->num = j; 4180 i = j = 0; 4181 while (i < len) 4182 if (isspace(p[i]) || p[i] == '\0') 4183 i++; 4184 else { 4185 iface->data[j] = p + i; 4186 i += strlen(p + i) + 1; 4187 j++; 4188 } 4189 4190 return (j); 4191 } 4192 4193 static void 4194 acpi_free_interfaces(struct acpi_interface *iface) 4195 { 4196 4197 free(iface->data[0], M_TEMP); 4198 free(iface->data, M_TEMP); 4199 } 4200 4201 static void 4202 acpi_reset_interfaces(device_t dev) 4203 { 4204 struct acpi_interface list; 4205 ACPI_STATUS status; 4206 int i; 4207 4208 if (acpi_parse_interfaces(acpi_install_interface, &list) > 0) { 4209 for (i = 0; i < list.num; i++) { 4210 status = AcpiInstallInterface(list.data[i]); 4211 if (ACPI_FAILURE(status)) 4212 device_printf(dev, 4213 "failed to install _OSI(\"%s\"): %s\n", 4214 list.data[i], AcpiFormatException(status)); 4215 else if (bootverbose) 4216 device_printf(dev, "installed _OSI(\"%s\")\n", 4217 list.data[i]); 4218 } 4219 acpi_free_interfaces(&list); 4220 } 4221 if (acpi_parse_interfaces(acpi_remove_interface, &list) > 0) { 4222 for (i = 0; i < list.num; i++) { 4223 status = AcpiRemoveInterface(list.data[i]); 4224 if (ACPI_FAILURE(status)) 4225 device_printf(dev, 4226 "failed to remove _OSI(\"%s\"): %s\n", 4227 list.data[i], AcpiFormatException(status)); 4228 else if (bootverbose) 4229 device_printf(dev, "removed _OSI(\"%s\")\n", 4230 list.data[i]); 4231 } 4232 acpi_free_interfaces(&list); 4233 } 4234 } 4235 4236 static int 4237 acpi_pm_func(u_long cmd, void *arg, ...) 4238 { 4239 int state, acpi_state; 4240 int error; 4241 struct acpi_softc *sc; 4242 va_list ap; 4243 4244 error = 0; 4245 switch (cmd) { 4246 case POWER_CMD_SUSPEND: 4247 sc = (struct acpi_softc *)arg; 4248 if (sc == NULL) { 4249 error = EINVAL; 4250 goto out; 4251 } 4252 4253 va_start(ap, arg); 4254 state = va_arg(ap, int); 4255 va_end(ap); 4256 4257 switch (state) { 4258 case POWER_SLEEP_STATE_STANDBY: 4259 acpi_state = sc->acpi_standby_sx; 4260 break; 4261 case POWER_SLEEP_STATE_SUSPEND: 4262 acpi_state = sc->acpi_suspend_sx; 4263 break; 4264 case POWER_SLEEP_STATE_HIBERNATE: 4265 acpi_state = ACPI_STATE_S4; 4266 break; 4267 default: 4268 error = EINVAL; 4269 goto out; 4270 } 4271 4272 if (ACPI_FAILURE(acpi_EnterSleepState(sc, acpi_state))) 4273 error = ENXIO; 4274 break; 4275 default: 4276 error = EINVAL; 4277 goto out; 4278 } 4279 4280 out: 4281 return (error); 4282 } 4283 4284 static void 4285 acpi_pm_register(void *arg) 4286 { 4287 if (!cold || resource_disabled("acpi", 0)) 4288 return; 4289 4290 power_pm_register(POWER_PM_TYPE_ACPI, acpi_pm_func, NULL); 4291 } 4292 4293 SYSINIT(power, SI_SUB_KLD, SI_ORDER_ANY, acpi_pm_register, NULL); 4294