1 /*- 2 * Copyright (c) 2000 Takanori Watanabe <takawata@jp.freebsd.org> 3 * Copyright (c) 2000 Mitsuru IWASAKI <iwasaki@jp.freebsd.org> 4 * Copyright (c) 2000, 2001 Michael Smith 5 * Copyright (c) 2000 BSDi 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include "opt_acpi.h" 34 #include <sys/param.h> 35 #include <sys/kernel.h> 36 #include <sys/proc.h> 37 #include <sys/fcntl.h> 38 #include <sys/malloc.h> 39 #include <sys/module.h> 40 #include <sys/bus.h> 41 #include <sys/conf.h> 42 #include <sys/ioccom.h> 43 #include <sys/reboot.h> 44 #include <sys/sysctl.h> 45 #include <sys/ctype.h> 46 #include <sys/linker.h> 47 #include <sys/power.h> 48 #include <sys/sbuf.h> 49 #include <sys/sched.h> 50 #include <sys/smp.h> 51 #include <sys/timetc.h> 52 53 #if defined(__i386__) || defined(__amd64__) 54 #include <machine/pci_cfgreg.h> 55 #endif 56 #include <machine/resource.h> 57 #include <machine/bus.h> 58 #include <sys/rman.h> 59 #include <isa/isavar.h> 60 #include <isa/pnpvar.h> 61 62 #include <contrib/dev/acpica/include/acpi.h> 63 #include <contrib/dev/acpica/include/accommon.h> 64 #include <contrib/dev/acpica/include/acnamesp.h> 65 66 #include <dev/acpica/acpivar.h> 67 #include <dev/acpica/acpiio.h> 68 69 #include <vm/vm_param.h> 70 71 static MALLOC_DEFINE(M_ACPIDEV, "acpidev", "ACPI devices"); 72 73 /* Hooks for the ACPI CA debugging infrastructure */ 74 #define _COMPONENT ACPI_BUS 75 ACPI_MODULE_NAME("ACPI") 76 77 static d_open_t acpiopen; 78 static d_close_t acpiclose; 79 static d_ioctl_t acpiioctl; 80 81 static struct cdevsw acpi_cdevsw = { 82 .d_version = D_VERSION, 83 .d_open = acpiopen, 84 .d_close = acpiclose, 85 .d_ioctl = acpiioctl, 86 .d_name = "acpi", 87 }; 88 89 struct acpi_interface { 90 ACPI_STRING *data; 91 int num; 92 }; 93 94 /* Global mutex for locking access to the ACPI subsystem. */ 95 struct mtx acpi_mutex; 96 97 /* Bitmap of device quirks. */ 98 int acpi_quirks; 99 100 /* Supported sleep states. */ 101 static BOOLEAN acpi_sleep_states[ACPI_S_STATE_COUNT]; 102 103 static int acpi_modevent(struct module *mod, int event, void *junk); 104 static int acpi_probe(device_t dev); 105 static int acpi_attach(device_t dev); 106 static int acpi_suspend(device_t dev); 107 static int acpi_resume(device_t dev); 108 static int acpi_shutdown(device_t dev); 109 static device_t acpi_add_child(device_t bus, u_int order, const char *name, 110 int unit); 111 static int acpi_print_child(device_t bus, device_t child); 112 static void acpi_probe_nomatch(device_t bus, device_t child); 113 static void acpi_driver_added(device_t dev, driver_t *driver); 114 static int acpi_read_ivar(device_t dev, device_t child, int index, 115 uintptr_t *result); 116 static int acpi_write_ivar(device_t dev, device_t child, int index, 117 uintptr_t value); 118 static struct resource_list *acpi_get_rlist(device_t dev, device_t child); 119 static void acpi_reserve_resources(device_t dev); 120 static int acpi_sysres_alloc(device_t dev); 121 static int acpi_set_resource(device_t dev, device_t child, int type, 122 int rid, u_long start, u_long count); 123 static struct resource *acpi_alloc_resource(device_t bus, device_t child, 124 int type, int *rid, u_long start, u_long end, 125 u_long count, u_int flags); 126 static int acpi_adjust_resource(device_t bus, device_t child, int type, 127 struct resource *r, u_long start, u_long end); 128 static int acpi_release_resource(device_t bus, device_t child, int type, 129 int rid, struct resource *r); 130 static void acpi_delete_resource(device_t bus, device_t child, int type, 131 int rid); 132 static uint32_t acpi_isa_get_logicalid(device_t dev); 133 static int acpi_isa_get_compatid(device_t dev, uint32_t *cids, int count); 134 static char *acpi_device_id_probe(device_t bus, device_t dev, char **ids); 135 static ACPI_STATUS acpi_device_eval_obj(device_t bus, device_t dev, 136 ACPI_STRING pathname, ACPI_OBJECT_LIST *parameters, 137 ACPI_BUFFER *ret); 138 static ACPI_STATUS acpi_device_scan_cb(ACPI_HANDLE h, UINT32 level, 139 void *context, void **retval); 140 static ACPI_STATUS acpi_device_scan_children(device_t bus, device_t dev, 141 int max_depth, acpi_scan_cb_t user_fn, void *arg); 142 static int acpi_set_powerstate(device_t child, int state); 143 static int acpi_isa_pnp_probe(device_t bus, device_t child, 144 struct isa_pnp_id *ids); 145 static void acpi_probe_children(device_t bus); 146 static void acpi_probe_order(ACPI_HANDLE handle, int *order); 147 static ACPI_STATUS acpi_probe_child(ACPI_HANDLE handle, UINT32 level, 148 void *context, void **status); 149 static void acpi_sleep_enable(void *arg); 150 static ACPI_STATUS acpi_sleep_disable(struct acpi_softc *sc); 151 static ACPI_STATUS acpi_EnterSleepState(struct acpi_softc *sc, int state); 152 static void acpi_shutdown_final(void *arg, int howto); 153 static void acpi_enable_fixed_events(struct acpi_softc *sc); 154 static BOOLEAN acpi_has_hid(ACPI_HANDLE handle); 155 static void acpi_resync_clock(struct acpi_softc *sc); 156 static int acpi_wake_sleep_prep(ACPI_HANDLE handle, int sstate); 157 static int acpi_wake_run_prep(ACPI_HANDLE handle, int sstate); 158 static int acpi_wake_prep_walk(int sstate); 159 static int acpi_wake_sysctl_walk(device_t dev); 160 static int acpi_wake_set_sysctl(SYSCTL_HANDLER_ARGS); 161 static void acpi_system_eventhandler_sleep(void *arg, int state); 162 static void acpi_system_eventhandler_wakeup(void *arg, int state); 163 static int acpi_sname2sstate(const char *sname); 164 static const char *acpi_sstate2sname(int sstate); 165 static int acpi_supported_sleep_state_sysctl(SYSCTL_HANDLER_ARGS); 166 static int acpi_sleep_state_sysctl(SYSCTL_HANDLER_ARGS); 167 static int acpi_debug_objects_sysctl(SYSCTL_HANDLER_ARGS); 168 static int acpi_pm_func(u_long cmd, void *arg, ...); 169 static int acpi_child_location_str_method(device_t acdev, device_t child, 170 char *buf, size_t buflen); 171 static int acpi_child_pnpinfo_str_method(device_t acdev, device_t child, 172 char *buf, size_t buflen); 173 #if defined(__i386__) || defined(__amd64__) 174 static void acpi_enable_pcie(void); 175 #endif 176 static void acpi_hint_device_unit(device_t acdev, device_t child, 177 const char *name, int *unitp); 178 static void acpi_reset_interfaces(device_t dev); 179 180 static device_method_t acpi_methods[] = { 181 /* Device interface */ 182 DEVMETHOD(device_probe, acpi_probe), 183 DEVMETHOD(device_attach, acpi_attach), 184 DEVMETHOD(device_shutdown, acpi_shutdown), 185 DEVMETHOD(device_detach, bus_generic_detach), 186 DEVMETHOD(device_suspend, acpi_suspend), 187 DEVMETHOD(device_resume, acpi_resume), 188 189 /* Bus interface */ 190 DEVMETHOD(bus_add_child, acpi_add_child), 191 DEVMETHOD(bus_print_child, acpi_print_child), 192 DEVMETHOD(bus_probe_nomatch, acpi_probe_nomatch), 193 DEVMETHOD(bus_driver_added, acpi_driver_added), 194 DEVMETHOD(bus_read_ivar, acpi_read_ivar), 195 DEVMETHOD(bus_write_ivar, acpi_write_ivar), 196 DEVMETHOD(bus_get_resource_list, acpi_get_rlist), 197 DEVMETHOD(bus_set_resource, acpi_set_resource), 198 DEVMETHOD(bus_get_resource, bus_generic_rl_get_resource), 199 DEVMETHOD(bus_alloc_resource, acpi_alloc_resource), 200 DEVMETHOD(bus_adjust_resource, acpi_adjust_resource), 201 DEVMETHOD(bus_release_resource, acpi_release_resource), 202 DEVMETHOD(bus_delete_resource, acpi_delete_resource), 203 DEVMETHOD(bus_child_pnpinfo_str, acpi_child_pnpinfo_str_method), 204 DEVMETHOD(bus_child_location_str, acpi_child_location_str_method), 205 DEVMETHOD(bus_activate_resource, bus_generic_activate_resource), 206 DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource), 207 DEVMETHOD(bus_setup_intr, bus_generic_setup_intr), 208 DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr), 209 DEVMETHOD(bus_hint_device_unit, acpi_hint_device_unit), 210 211 /* ACPI bus */ 212 DEVMETHOD(acpi_id_probe, acpi_device_id_probe), 213 DEVMETHOD(acpi_evaluate_object, acpi_device_eval_obj), 214 DEVMETHOD(acpi_pwr_for_sleep, acpi_device_pwr_for_sleep), 215 DEVMETHOD(acpi_scan_children, acpi_device_scan_children), 216 217 /* ISA emulation */ 218 DEVMETHOD(isa_pnp_probe, acpi_isa_pnp_probe), 219 220 DEVMETHOD_END 221 }; 222 223 static driver_t acpi_driver = { 224 "acpi", 225 acpi_methods, 226 sizeof(struct acpi_softc), 227 }; 228 229 static devclass_t acpi_devclass; 230 DRIVER_MODULE(acpi, nexus, acpi_driver, acpi_devclass, acpi_modevent, 0); 231 MODULE_VERSION(acpi, 1); 232 233 ACPI_SERIAL_DECL(acpi, "ACPI root bus"); 234 235 /* Local pools for managing system resources for ACPI child devices. */ 236 static struct rman acpi_rman_io, acpi_rman_mem; 237 238 #define ACPI_MINIMUM_AWAKETIME 5 239 240 /* Holds the description of the acpi0 device. */ 241 static char acpi_desc[ACPI_OEM_ID_SIZE + ACPI_OEM_TABLE_ID_SIZE + 2]; 242 243 SYSCTL_NODE(_debug, OID_AUTO, acpi, CTLFLAG_RD, NULL, "ACPI debugging"); 244 static char acpi_ca_version[12]; 245 SYSCTL_STRING(_debug_acpi, OID_AUTO, acpi_ca_version, CTLFLAG_RD, 246 acpi_ca_version, 0, "Version of Intel ACPI-CA"); 247 248 /* 249 * Allow overriding _OSI methods. 250 */ 251 static char acpi_install_interface[256]; 252 TUNABLE_STR("hw.acpi.install_interface", acpi_install_interface, 253 sizeof(acpi_install_interface)); 254 static char acpi_remove_interface[256]; 255 TUNABLE_STR("hw.acpi.remove_interface", acpi_remove_interface, 256 sizeof(acpi_remove_interface)); 257 258 /* 259 * Allow override of whether methods execute in parallel or not. 260 * Enable this for serial behavior, which fixes "AE_ALREADY_EXISTS" 261 * errors for AML that really can't handle parallel method execution. 262 * It is off by default since this breaks recursive methods and 263 * some IBMs use such code. 264 */ 265 static int acpi_serialize_methods; 266 TUNABLE_INT("hw.acpi.serialize_methods", &acpi_serialize_methods); 267 268 /* Allow users to dump Debug objects without ACPI debugger. */ 269 static int acpi_debug_objects; 270 TUNABLE_INT("debug.acpi.enable_debug_objects", &acpi_debug_objects); 271 SYSCTL_PROC(_debug_acpi, OID_AUTO, enable_debug_objects, 272 CTLFLAG_RW | CTLTYPE_INT, NULL, 0, acpi_debug_objects_sysctl, "I", 273 "Enable Debug objects"); 274 275 /* Allow the interpreter to ignore common mistakes in BIOS. */ 276 static int acpi_interpreter_slack = 1; 277 TUNABLE_INT("debug.acpi.interpreter_slack", &acpi_interpreter_slack); 278 SYSCTL_INT(_debug_acpi, OID_AUTO, interpreter_slack, CTLFLAG_RDTUN, 279 &acpi_interpreter_slack, 1, "Turn on interpreter slack mode."); 280 281 #ifdef __amd64__ 282 /* Reset system clock while resuming. XXX Remove once tested. */ 283 static int acpi_reset_clock = 1; 284 TUNABLE_INT("debug.acpi.reset_clock", &acpi_reset_clock); 285 SYSCTL_INT(_debug_acpi, OID_AUTO, reset_clock, CTLFLAG_RW, 286 &acpi_reset_clock, 1, "Reset system clock while resuming."); 287 #endif 288 289 /* Allow users to override quirks. */ 290 TUNABLE_INT("debug.acpi.quirks", &acpi_quirks); 291 292 static int acpi_susp_bounce; 293 SYSCTL_INT(_debug_acpi, OID_AUTO, suspend_bounce, CTLFLAG_RW, 294 &acpi_susp_bounce, 0, "Don't actually suspend, just test devices."); 295 296 /* 297 * ACPI can only be loaded as a module by the loader; activating it after 298 * system bootstrap time is not useful, and can be fatal to the system. 299 * It also cannot be unloaded, since the entire system bus hierarchy hangs 300 * off it. 301 */ 302 static int 303 acpi_modevent(struct module *mod, int event, void *junk) 304 { 305 switch (event) { 306 case MOD_LOAD: 307 if (!cold) { 308 printf("The ACPI driver cannot be loaded after boot.\n"); 309 return (EPERM); 310 } 311 break; 312 case MOD_UNLOAD: 313 if (!cold && power_pm_get_type() == POWER_PM_TYPE_ACPI) 314 return (EBUSY); 315 break; 316 default: 317 break; 318 } 319 return (0); 320 } 321 322 /* 323 * Perform early initialization. 324 */ 325 ACPI_STATUS 326 acpi_Startup(void) 327 { 328 static int started = 0; 329 ACPI_STATUS status; 330 int val; 331 332 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 333 334 /* Only run the startup code once. The MADT driver also calls this. */ 335 if (started) 336 return_VALUE (AE_OK); 337 started = 1; 338 339 /* 340 * Pre-allocate space for RSDT/XSDT and DSDT tables and allow resizing 341 * if more tables exist. 342 */ 343 if (ACPI_FAILURE(status = AcpiInitializeTables(NULL, 2, TRUE))) { 344 printf("ACPI: Table initialisation failed: %s\n", 345 AcpiFormatException(status)); 346 return_VALUE (status); 347 } 348 349 /* Set up any quirks we have for this system. */ 350 if (acpi_quirks == ACPI_Q_OK) 351 acpi_table_quirks(&acpi_quirks); 352 353 /* If the user manually set the disabled hint to 0, force-enable ACPI. */ 354 if (resource_int_value("acpi", 0, "disabled", &val) == 0 && val == 0) 355 acpi_quirks &= ~ACPI_Q_BROKEN; 356 if (acpi_quirks & ACPI_Q_BROKEN) { 357 printf("ACPI disabled by blacklist. Contact your BIOS vendor.\n"); 358 status = AE_SUPPORT; 359 } 360 361 return_VALUE (status); 362 } 363 364 /* 365 * Detect ACPI and perform early initialisation. 366 */ 367 int 368 acpi_identify(void) 369 { 370 ACPI_TABLE_RSDP *rsdp; 371 ACPI_TABLE_HEADER *rsdt; 372 ACPI_PHYSICAL_ADDRESS paddr; 373 struct sbuf sb; 374 375 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 376 377 if (!cold) 378 return (ENXIO); 379 380 /* Check that we haven't been disabled with a hint. */ 381 if (resource_disabled("acpi", 0)) 382 return (ENXIO); 383 384 /* Check for other PM systems. */ 385 if (power_pm_get_type() != POWER_PM_TYPE_NONE && 386 power_pm_get_type() != POWER_PM_TYPE_ACPI) { 387 printf("ACPI identify failed, other PM system enabled.\n"); 388 return (ENXIO); 389 } 390 391 /* Initialize root tables. */ 392 if (ACPI_FAILURE(acpi_Startup())) { 393 printf("ACPI: Try disabling either ACPI or apic support.\n"); 394 return (ENXIO); 395 } 396 397 if ((paddr = AcpiOsGetRootPointer()) == 0 || 398 (rsdp = AcpiOsMapMemory(paddr, sizeof(ACPI_TABLE_RSDP))) == NULL) 399 return (ENXIO); 400 if (rsdp->Revision > 1 && rsdp->XsdtPhysicalAddress != 0) 401 paddr = (ACPI_PHYSICAL_ADDRESS)rsdp->XsdtPhysicalAddress; 402 else 403 paddr = (ACPI_PHYSICAL_ADDRESS)rsdp->RsdtPhysicalAddress; 404 AcpiOsUnmapMemory(rsdp, sizeof(ACPI_TABLE_RSDP)); 405 406 if ((rsdt = AcpiOsMapMemory(paddr, sizeof(ACPI_TABLE_HEADER))) == NULL) 407 return (ENXIO); 408 sbuf_new(&sb, acpi_desc, sizeof(acpi_desc), SBUF_FIXEDLEN); 409 sbuf_bcat(&sb, rsdt->OemId, ACPI_OEM_ID_SIZE); 410 sbuf_trim(&sb); 411 sbuf_putc(&sb, ' '); 412 sbuf_bcat(&sb, rsdt->OemTableId, ACPI_OEM_TABLE_ID_SIZE); 413 sbuf_trim(&sb); 414 sbuf_finish(&sb); 415 sbuf_delete(&sb); 416 AcpiOsUnmapMemory(rsdt, sizeof(ACPI_TABLE_HEADER)); 417 418 snprintf(acpi_ca_version, sizeof(acpi_ca_version), "%x", ACPI_CA_VERSION); 419 420 return (0); 421 } 422 423 /* 424 * Fetch some descriptive data from ACPI to put in our attach message. 425 */ 426 static int 427 acpi_probe(device_t dev) 428 { 429 430 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 431 432 device_set_desc(dev, acpi_desc); 433 434 return_VALUE (BUS_PROBE_NOWILDCARD); 435 } 436 437 static int 438 acpi_attach(device_t dev) 439 { 440 struct acpi_softc *sc; 441 ACPI_STATUS status; 442 int error, state; 443 UINT32 flags; 444 UINT8 TypeA, TypeB; 445 char *env; 446 447 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 448 449 sc = device_get_softc(dev); 450 sc->acpi_dev = dev; 451 callout_init(&sc->susp_force_to, TRUE); 452 453 error = ENXIO; 454 455 /* Initialize resource manager. */ 456 acpi_rman_io.rm_type = RMAN_ARRAY; 457 acpi_rman_io.rm_start = 0; 458 acpi_rman_io.rm_end = 0xffff; 459 acpi_rman_io.rm_descr = "ACPI I/O ports"; 460 if (rman_init(&acpi_rman_io) != 0) 461 panic("acpi rman_init IO ports failed"); 462 acpi_rman_mem.rm_type = RMAN_ARRAY; 463 acpi_rman_mem.rm_start = 0; 464 acpi_rman_mem.rm_end = ~0ul; 465 acpi_rman_mem.rm_descr = "ACPI I/O memory addresses"; 466 if (rman_init(&acpi_rman_mem) != 0) 467 panic("acpi rman_init memory failed"); 468 469 /* Initialise the ACPI mutex */ 470 mtx_init(&acpi_mutex, "ACPI global lock", NULL, MTX_DEF); 471 472 /* 473 * Set the globals from our tunables. This is needed because ACPI-CA 474 * uses UINT8 for some values and we have no tunable_byte. 475 */ 476 AcpiGbl_AllMethodsSerialized = acpi_serialize_methods ? TRUE : FALSE; 477 AcpiGbl_EnableInterpreterSlack = acpi_interpreter_slack ? TRUE : FALSE; 478 AcpiGbl_EnableAmlDebugObject = acpi_debug_objects ? TRUE : FALSE; 479 480 #ifndef ACPI_DEBUG 481 /* 482 * Disable all debugging layers and levels. 483 */ 484 AcpiDbgLayer = 0; 485 AcpiDbgLevel = 0; 486 #endif 487 488 /* Start up the ACPI CA subsystem. */ 489 status = AcpiInitializeSubsystem(); 490 if (ACPI_FAILURE(status)) { 491 device_printf(dev, "Could not initialize Subsystem: %s\n", 492 AcpiFormatException(status)); 493 goto out; 494 } 495 496 /* Override OS interfaces if the user requested. */ 497 acpi_reset_interfaces(dev); 498 499 /* Load ACPI name space. */ 500 status = AcpiLoadTables(); 501 if (ACPI_FAILURE(status)) { 502 device_printf(dev, "Could not load Namespace: %s\n", 503 AcpiFormatException(status)); 504 goto out; 505 } 506 507 #if defined(__i386__) || defined(__amd64__) 508 /* Handle MCFG table if present. */ 509 acpi_enable_pcie(); 510 #endif 511 512 /* 513 * Note that some systems (specifically, those with namespace evaluation 514 * issues that require the avoidance of parts of the namespace) must 515 * avoid running _INI and _STA on everything, as well as dodging the final 516 * object init pass. 517 * 518 * For these devices, we set ACPI_NO_DEVICE_INIT and ACPI_NO_OBJECT_INIT). 519 * 520 * XXX We should arrange for the object init pass after we have attached 521 * all our child devices, but on many systems it works here. 522 */ 523 flags = 0; 524 if (testenv("debug.acpi.avoid")) 525 flags = ACPI_NO_DEVICE_INIT | ACPI_NO_OBJECT_INIT; 526 527 /* Bring the hardware and basic handlers online. */ 528 if (ACPI_FAILURE(status = AcpiEnableSubsystem(flags))) { 529 device_printf(dev, "Could not enable ACPI: %s\n", 530 AcpiFormatException(status)); 531 goto out; 532 } 533 534 /* 535 * Call the ECDT probe function to provide EC functionality before 536 * the namespace has been evaluated. 537 * 538 * XXX This happens before the sysresource devices have been probed and 539 * attached so its resources come from nexus0. In practice, this isn't 540 * a problem but should be addressed eventually. 541 */ 542 acpi_ec_ecdt_probe(dev); 543 544 /* Bring device objects and regions online. */ 545 if (ACPI_FAILURE(status = AcpiInitializeObjects(flags))) { 546 device_printf(dev, "Could not initialize ACPI objects: %s\n", 547 AcpiFormatException(status)); 548 goto out; 549 } 550 551 /* 552 * Setup our sysctl tree. 553 * 554 * XXX: This doesn't check to make sure that none of these fail. 555 */ 556 sysctl_ctx_init(&sc->acpi_sysctl_ctx); 557 sc->acpi_sysctl_tree = SYSCTL_ADD_NODE(&sc->acpi_sysctl_ctx, 558 SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO, 559 device_get_name(dev), CTLFLAG_RD, 0, ""); 560 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 561 OID_AUTO, "supported_sleep_state", CTLTYPE_STRING | CTLFLAG_RD, 562 0, 0, acpi_supported_sleep_state_sysctl, "A", ""); 563 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 564 OID_AUTO, "power_button_state", CTLTYPE_STRING | CTLFLAG_RW, 565 &sc->acpi_power_button_sx, 0, acpi_sleep_state_sysctl, "A", ""); 566 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 567 OID_AUTO, "sleep_button_state", CTLTYPE_STRING | CTLFLAG_RW, 568 &sc->acpi_sleep_button_sx, 0, acpi_sleep_state_sysctl, "A", ""); 569 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 570 OID_AUTO, "lid_switch_state", CTLTYPE_STRING | CTLFLAG_RW, 571 &sc->acpi_lid_switch_sx, 0, acpi_sleep_state_sysctl, "A", ""); 572 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 573 OID_AUTO, "standby_state", CTLTYPE_STRING | CTLFLAG_RW, 574 &sc->acpi_standby_sx, 0, acpi_sleep_state_sysctl, "A", ""); 575 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 576 OID_AUTO, "suspend_state", CTLTYPE_STRING | CTLFLAG_RW, 577 &sc->acpi_suspend_sx, 0, acpi_sleep_state_sysctl, "A", ""); 578 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 579 OID_AUTO, "sleep_delay", CTLFLAG_RW, &sc->acpi_sleep_delay, 0, 580 "sleep delay in seconds"); 581 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 582 OID_AUTO, "s4bios", CTLFLAG_RW, &sc->acpi_s4bios, 0, "S4BIOS mode"); 583 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 584 OID_AUTO, "verbose", CTLFLAG_RW, &sc->acpi_verbose, 0, "verbose mode"); 585 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 586 OID_AUTO, "disable_on_reboot", CTLFLAG_RW, 587 &sc->acpi_do_disable, 0, "Disable ACPI when rebooting/halting system"); 588 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 589 OID_AUTO, "handle_reboot", CTLFLAG_RW, 590 &sc->acpi_handle_reboot, 0, "Use ACPI Reset Register to reboot"); 591 592 /* 593 * Default to 1 second before sleeping to give some machines time to 594 * stabilize. 595 */ 596 sc->acpi_sleep_delay = 1; 597 if (bootverbose) 598 sc->acpi_verbose = 1; 599 if ((env = getenv("hw.acpi.verbose")) != NULL) { 600 if (strcmp(env, "0") != 0) 601 sc->acpi_verbose = 1; 602 freeenv(env); 603 } 604 605 /* Only enable reboot by default if the FADT says it is available. */ 606 if (AcpiGbl_FADT.Flags & ACPI_FADT_RESET_REGISTER) 607 sc->acpi_handle_reboot = 1; 608 609 /* Only enable S4BIOS by default if the FACS says it is available. */ 610 if (AcpiGbl_FACS->Flags & ACPI_FACS_S4_BIOS_PRESENT) 611 sc->acpi_s4bios = 1; 612 613 /* Probe all supported sleep states. */ 614 acpi_sleep_states[ACPI_STATE_S0] = TRUE; 615 for (state = ACPI_STATE_S1; state < ACPI_S_STATE_COUNT; state++) 616 if (ACPI_SUCCESS(AcpiEvaluateObject(ACPI_ROOT_OBJECT, 617 __DECONST(char *, AcpiGbl_SleepStateNames[state]), NULL, NULL)) && 618 ACPI_SUCCESS(AcpiGetSleepTypeData(state, &TypeA, &TypeB))) 619 acpi_sleep_states[state] = TRUE; 620 621 /* 622 * Dispatch the default sleep state to devices. The lid switch is set 623 * to UNKNOWN by default to avoid surprising users. 624 */ 625 sc->acpi_power_button_sx = acpi_sleep_states[ACPI_STATE_S5] ? 626 ACPI_STATE_S5 : ACPI_STATE_UNKNOWN; 627 sc->acpi_lid_switch_sx = ACPI_STATE_UNKNOWN; 628 sc->acpi_standby_sx = acpi_sleep_states[ACPI_STATE_S1] ? 629 ACPI_STATE_S1 : ACPI_STATE_UNKNOWN; 630 sc->acpi_suspend_sx = acpi_sleep_states[ACPI_STATE_S3] ? 631 ACPI_STATE_S3 : ACPI_STATE_UNKNOWN; 632 633 /* Pick the first valid sleep state for the sleep button default. */ 634 sc->acpi_sleep_button_sx = ACPI_STATE_UNKNOWN; 635 for (state = ACPI_STATE_S1; state <= ACPI_STATE_S4; state++) 636 if (acpi_sleep_states[state]) { 637 sc->acpi_sleep_button_sx = state; 638 break; 639 } 640 641 acpi_enable_fixed_events(sc); 642 643 /* 644 * Scan the namespace and attach/initialise children. 645 */ 646 647 /* Register our shutdown handler. */ 648 EVENTHANDLER_REGISTER(shutdown_final, acpi_shutdown_final, sc, 649 SHUTDOWN_PRI_LAST); 650 651 /* 652 * Register our acpi event handlers. 653 * XXX should be configurable eg. via userland policy manager. 654 */ 655 EVENTHANDLER_REGISTER(acpi_sleep_event, acpi_system_eventhandler_sleep, 656 sc, ACPI_EVENT_PRI_LAST); 657 EVENTHANDLER_REGISTER(acpi_wakeup_event, acpi_system_eventhandler_wakeup, 658 sc, ACPI_EVENT_PRI_LAST); 659 660 /* Flag our initial states. */ 661 sc->acpi_enabled = TRUE; 662 sc->acpi_sstate = ACPI_STATE_S0; 663 sc->acpi_sleep_disabled = TRUE; 664 665 /* Create the control device */ 666 sc->acpi_dev_t = make_dev(&acpi_cdevsw, 0, UID_ROOT, GID_WHEEL, 0644, 667 "acpi"); 668 sc->acpi_dev_t->si_drv1 = sc; 669 670 if ((error = acpi_machdep_init(dev))) 671 goto out; 672 673 /* Register ACPI again to pass the correct argument of pm_func. */ 674 power_pm_register(POWER_PM_TYPE_ACPI, acpi_pm_func, sc); 675 676 if (!acpi_disabled("bus")) 677 acpi_probe_children(dev); 678 679 /* Update all GPEs and enable runtime GPEs. */ 680 status = AcpiUpdateAllGpes(); 681 if (ACPI_FAILURE(status)) 682 device_printf(dev, "Could not update all GPEs: %s\n", 683 AcpiFormatException(status)); 684 685 /* Allow sleep request after a while. */ 686 timeout(acpi_sleep_enable, sc, hz * ACPI_MINIMUM_AWAKETIME); 687 688 error = 0; 689 690 out: 691 return_VALUE (error); 692 } 693 694 static void 695 acpi_set_power_children(device_t dev, int state) 696 { 697 device_t child, parent; 698 device_t *devlist; 699 int dstate, i, numdevs; 700 701 if (device_get_children(dev, &devlist, &numdevs) != 0) 702 return; 703 704 /* 705 * Retrieve and set D-state for the sleep state if _SxD is present. 706 * Skip children who aren't attached since they are handled separately. 707 */ 708 parent = device_get_parent(dev); 709 for (i = 0; i < numdevs; i++) { 710 child = devlist[i]; 711 dstate = state; 712 if (device_is_attached(child) && 713 acpi_device_pwr_for_sleep(parent, dev, &dstate) == 0) 714 acpi_set_powerstate(child, dstate); 715 } 716 free(devlist, M_TEMP); 717 } 718 719 static int 720 acpi_suspend(device_t dev) 721 { 722 int error; 723 724 GIANT_REQUIRED; 725 726 error = bus_generic_suspend(dev); 727 if (error == 0) 728 acpi_set_power_children(dev, ACPI_STATE_D3); 729 730 return (error); 731 } 732 733 static int 734 acpi_resume(device_t dev) 735 { 736 737 GIANT_REQUIRED; 738 739 acpi_set_power_children(dev, ACPI_STATE_D0); 740 741 return (bus_generic_resume(dev)); 742 } 743 744 static int 745 acpi_shutdown(device_t dev) 746 { 747 748 GIANT_REQUIRED; 749 750 /* Allow children to shutdown first. */ 751 bus_generic_shutdown(dev); 752 753 /* 754 * Enable any GPEs that are able to power-on the system (i.e., RTC). 755 * Also, disable any that are not valid for this state (most). 756 */ 757 acpi_wake_prep_walk(ACPI_STATE_S5); 758 759 return (0); 760 } 761 762 /* 763 * Handle a new device being added 764 */ 765 static device_t 766 acpi_add_child(device_t bus, u_int order, const char *name, int unit) 767 { 768 struct acpi_device *ad; 769 device_t child; 770 771 if ((ad = malloc(sizeof(*ad), M_ACPIDEV, M_NOWAIT | M_ZERO)) == NULL) 772 return (NULL); 773 774 resource_list_init(&ad->ad_rl); 775 776 child = device_add_child_ordered(bus, order, name, unit); 777 if (child != NULL) 778 device_set_ivars(child, ad); 779 else 780 free(ad, M_ACPIDEV); 781 return (child); 782 } 783 784 static int 785 acpi_print_child(device_t bus, device_t child) 786 { 787 struct acpi_device *adev = device_get_ivars(child); 788 struct resource_list *rl = &adev->ad_rl; 789 int retval = 0; 790 791 retval += bus_print_child_header(bus, child); 792 retval += resource_list_print_type(rl, "port", SYS_RES_IOPORT, "%#lx"); 793 retval += resource_list_print_type(rl, "iomem", SYS_RES_MEMORY, "%#lx"); 794 retval += resource_list_print_type(rl, "irq", SYS_RES_IRQ, "%ld"); 795 retval += resource_list_print_type(rl, "drq", SYS_RES_DRQ, "%ld"); 796 if (device_get_flags(child)) 797 retval += printf(" flags %#x", device_get_flags(child)); 798 retval += bus_print_child_footer(bus, child); 799 800 return (retval); 801 } 802 803 /* 804 * If this device is an ACPI child but no one claimed it, attempt 805 * to power it off. We'll power it back up when a driver is added. 806 * 807 * XXX Disabled for now since many necessary devices (like fdc and 808 * ATA) don't claim the devices we created for them but still expect 809 * them to be powered up. 810 */ 811 static void 812 acpi_probe_nomatch(device_t bus, device_t child) 813 { 814 #ifdef ACPI_ENABLE_POWERDOWN_NODRIVER 815 acpi_set_powerstate(child, ACPI_STATE_D3); 816 #endif 817 } 818 819 /* 820 * If a new driver has a chance to probe a child, first power it up. 821 * 822 * XXX Disabled for now (see acpi_probe_nomatch for details). 823 */ 824 static void 825 acpi_driver_added(device_t dev, driver_t *driver) 826 { 827 device_t child, *devlist; 828 int i, numdevs; 829 830 DEVICE_IDENTIFY(driver, dev); 831 if (device_get_children(dev, &devlist, &numdevs)) 832 return; 833 for (i = 0; i < numdevs; i++) { 834 child = devlist[i]; 835 if (device_get_state(child) == DS_NOTPRESENT) { 836 #ifdef ACPI_ENABLE_POWERDOWN_NODRIVER 837 acpi_set_powerstate(child, ACPI_STATE_D0); 838 if (device_probe_and_attach(child) != 0) 839 acpi_set_powerstate(child, ACPI_STATE_D3); 840 #else 841 device_probe_and_attach(child); 842 #endif 843 } 844 } 845 free(devlist, M_TEMP); 846 } 847 848 /* Location hint for devctl(8) */ 849 static int 850 acpi_child_location_str_method(device_t cbdev, device_t child, char *buf, 851 size_t buflen) 852 { 853 struct acpi_device *dinfo = device_get_ivars(child); 854 855 if (dinfo->ad_handle) 856 snprintf(buf, buflen, "handle=%s", acpi_name(dinfo->ad_handle)); 857 else 858 snprintf(buf, buflen, "unknown"); 859 return (0); 860 } 861 862 /* PnP information for devctl(8) */ 863 static int 864 acpi_child_pnpinfo_str_method(device_t cbdev, device_t child, char *buf, 865 size_t buflen) 866 { 867 struct acpi_device *dinfo = device_get_ivars(child); 868 ACPI_DEVICE_INFO *adinfo; 869 870 if (ACPI_FAILURE(AcpiGetObjectInfo(dinfo->ad_handle, &adinfo))) { 871 snprintf(buf, buflen, "unknown"); 872 return (0); 873 } 874 875 snprintf(buf, buflen, "_HID=%s _UID=%lu", 876 (adinfo->Valid & ACPI_VALID_HID) ? 877 adinfo->HardwareId.String : "none", 878 (adinfo->Valid & ACPI_VALID_UID) ? 879 strtoul(adinfo->UniqueId.String, NULL, 10) : 0UL); 880 AcpiOsFree(adinfo); 881 882 return (0); 883 } 884 885 /* 886 * Handle per-device ivars 887 */ 888 static int 889 acpi_read_ivar(device_t dev, device_t child, int index, uintptr_t *result) 890 { 891 struct acpi_device *ad; 892 893 if ((ad = device_get_ivars(child)) == NULL) { 894 device_printf(child, "device has no ivars\n"); 895 return (ENOENT); 896 } 897 898 /* ACPI and ISA compatibility ivars */ 899 switch(index) { 900 case ACPI_IVAR_HANDLE: 901 *(ACPI_HANDLE *)result = ad->ad_handle; 902 break; 903 case ACPI_IVAR_PRIVATE: 904 *(void **)result = ad->ad_private; 905 break; 906 case ACPI_IVAR_FLAGS: 907 *(int *)result = ad->ad_flags; 908 break; 909 case ISA_IVAR_VENDORID: 910 case ISA_IVAR_SERIAL: 911 case ISA_IVAR_COMPATID: 912 *(int *)result = -1; 913 break; 914 case ISA_IVAR_LOGICALID: 915 *(int *)result = acpi_isa_get_logicalid(child); 916 break; 917 default: 918 return (ENOENT); 919 } 920 921 return (0); 922 } 923 924 static int 925 acpi_write_ivar(device_t dev, device_t child, int index, uintptr_t value) 926 { 927 struct acpi_device *ad; 928 929 if ((ad = device_get_ivars(child)) == NULL) { 930 device_printf(child, "device has no ivars\n"); 931 return (ENOENT); 932 } 933 934 switch(index) { 935 case ACPI_IVAR_HANDLE: 936 ad->ad_handle = (ACPI_HANDLE)value; 937 break; 938 case ACPI_IVAR_PRIVATE: 939 ad->ad_private = (void *)value; 940 break; 941 case ACPI_IVAR_FLAGS: 942 ad->ad_flags = (int)value; 943 break; 944 default: 945 panic("bad ivar write request (%d)", index); 946 return (ENOENT); 947 } 948 949 return (0); 950 } 951 952 /* 953 * Handle child resource allocation/removal 954 */ 955 static struct resource_list * 956 acpi_get_rlist(device_t dev, device_t child) 957 { 958 struct acpi_device *ad; 959 960 ad = device_get_ivars(child); 961 return (&ad->ad_rl); 962 } 963 964 static int 965 acpi_match_resource_hint(device_t dev, int type, long value) 966 { 967 struct acpi_device *ad = device_get_ivars(dev); 968 struct resource_list *rl = &ad->ad_rl; 969 struct resource_list_entry *rle; 970 971 STAILQ_FOREACH(rle, rl, link) { 972 if (rle->type != type) 973 continue; 974 if (rle->start <= value && rle->end >= value) 975 return (1); 976 } 977 return (0); 978 } 979 980 /* 981 * Wire device unit numbers based on resource matches in hints. 982 */ 983 static void 984 acpi_hint_device_unit(device_t acdev, device_t child, const char *name, 985 int *unitp) 986 { 987 const char *s; 988 long value; 989 int line, matches, unit; 990 991 /* 992 * Iterate over all the hints for the devices with the specified 993 * name to see if one's resources are a subset of this device. 994 */ 995 line = 0; 996 for (;;) { 997 if (resource_find_dev(&line, name, &unit, "at", NULL) != 0) 998 break; 999 1000 /* Must have an "at" for acpi or isa. */ 1001 resource_string_value(name, unit, "at", &s); 1002 if (!(strcmp(s, "acpi0") == 0 || strcmp(s, "acpi") == 0 || 1003 strcmp(s, "isa0") == 0 || strcmp(s, "isa") == 0)) 1004 continue; 1005 1006 /* 1007 * Check for matching resources. We must have at least one match. 1008 * Since I/O and memory resources cannot be shared, if we get a 1009 * match on either of those, ignore any mismatches in IRQs or DRQs. 1010 * 1011 * XXX: We may want to revisit this to be more lenient and wire 1012 * as long as it gets one match. 1013 */ 1014 matches = 0; 1015 if (resource_long_value(name, unit, "port", &value) == 0) { 1016 /* 1017 * Floppy drive controllers are notorious for having a 1018 * wide variety of resources not all of which include the 1019 * first port that is specified by the hint (typically 1020 * 0x3f0) (see the comment above fdc_isa_alloc_resources() 1021 * in fdc_isa.c). However, they do all seem to include 1022 * port + 2 (e.g. 0x3f2) so for a floppy device, look for 1023 * 'value + 2' in the port resources instead of the hint 1024 * value. 1025 */ 1026 if (strcmp(name, "fdc") == 0) 1027 value += 2; 1028 if (acpi_match_resource_hint(child, SYS_RES_IOPORT, value)) 1029 matches++; 1030 else 1031 continue; 1032 } 1033 if (resource_long_value(name, unit, "maddr", &value) == 0) { 1034 if (acpi_match_resource_hint(child, SYS_RES_MEMORY, value)) 1035 matches++; 1036 else 1037 continue; 1038 } 1039 if (matches > 0) 1040 goto matched; 1041 if (resource_long_value(name, unit, "irq", &value) == 0) { 1042 if (acpi_match_resource_hint(child, SYS_RES_IRQ, value)) 1043 matches++; 1044 else 1045 continue; 1046 } 1047 if (resource_long_value(name, unit, "drq", &value) == 0) { 1048 if (acpi_match_resource_hint(child, SYS_RES_DRQ, value)) 1049 matches++; 1050 else 1051 continue; 1052 } 1053 1054 matched: 1055 if (matches > 0) { 1056 /* We have a winner! */ 1057 *unitp = unit; 1058 break; 1059 } 1060 } 1061 } 1062 1063 /* 1064 * Pre-allocate/manage all memory and IO resources. Since rman can't handle 1065 * duplicates, we merge any in the sysresource attach routine. 1066 */ 1067 static int 1068 acpi_sysres_alloc(device_t dev) 1069 { 1070 struct resource *res; 1071 struct resource_list *rl; 1072 struct resource_list_entry *rle; 1073 struct rman *rm; 1074 char *sysres_ids[] = { "PNP0C01", "PNP0C02", NULL }; 1075 device_t *children; 1076 int child_count, i; 1077 1078 /* 1079 * Probe/attach any sysresource devices. This would be unnecessary if we 1080 * had multi-pass probe/attach. 1081 */ 1082 if (device_get_children(dev, &children, &child_count) != 0) 1083 return (ENXIO); 1084 for (i = 0; i < child_count; i++) { 1085 if (ACPI_ID_PROBE(dev, children[i], sysres_ids) != NULL) 1086 device_probe_and_attach(children[i]); 1087 } 1088 free(children, M_TEMP); 1089 1090 rl = BUS_GET_RESOURCE_LIST(device_get_parent(dev), dev); 1091 STAILQ_FOREACH(rle, rl, link) { 1092 if (rle->res != NULL) { 1093 device_printf(dev, "duplicate resource for %lx\n", rle->start); 1094 continue; 1095 } 1096 1097 /* Only memory and IO resources are valid here. */ 1098 switch (rle->type) { 1099 case SYS_RES_IOPORT: 1100 rm = &acpi_rman_io; 1101 break; 1102 case SYS_RES_MEMORY: 1103 rm = &acpi_rman_mem; 1104 break; 1105 default: 1106 continue; 1107 } 1108 1109 /* Pre-allocate resource and add to our rman pool. */ 1110 res = BUS_ALLOC_RESOURCE(device_get_parent(dev), dev, rle->type, 1111 &rle->rid, rle->start, rle->start + rle->count - 1, rle->count, 0); 1112 if (res != NULL) { 1113 rman_manage_region(rm, rman_get_start(res), rman_get_end(res)); 1114 rle->res = res; 1115 } else 1116 device_printf(dev, "reservation of %lx, %lx (%d) failed\n", 1117 rle->start, rle->count, rle->type); 1118 } 1119 return (0); 1120 } 1121 1122 static char *pcilink_ids[] = { "PNP0C0F", NULL }; 1123 static char *sysres_ids[] = { "PNP0C01", "PNP0C02", NULL }; 1124 1125 /* 1126 * Reserve declared resources for devices found during attach once system 1127 * resources have been allocated. 1128 */ 1129 static void 1130 acpi_reserve_resources(device_t dev) 1131 { 1132 struct resource_list_entry *rle; 1133 struct resource_list *rl; 1134 struct acpi_device *ad; 1135 struct acpi_softc *sc; 1136 device_t *children; 1137 int child_count, i; 1138 1139 sc = device_get_softc(dev); 1140 if (device_get_children(dev, &children, &child_count) != 0) 1141 return; 1142 for (i = 0; i < child_count; i++) { 1143 ad = device_get_ivars(children[i]); 1144 rl = &ad->ad_rl; 1145 1146 /* Don't reserve system resources. */ 1147 if (ACPI_ID_PROBE(dev, children[i], sysres_ids) != NULL) 1148 continue; 1149 1150 STAILQ_FOREACH(rle, rl, link) { 1151 /* 1152 * Don't reserve IRQ resources. There are many sticky things 1153 * to get right otherwise (e.g. IRQs for psm, atkbd, and HPET 1154 * when using legacy routing). 1155 */ 1156 if (rle->type == SYS_RES_IRQ) 1157 continue; 1158 1159 /* 1160 * Don't reserve the resource if it is already allocated. 1161 * The acpi_ec(4) driver can allocate its resources early 1162 * if ECDT is present. 1163 */ 1164 if (rle->res != NULL) 1165 continue; 1166 1167 /* 1168 * Try to reserve the resource from our parent. If this 1169 * fails because the resource is a system resource, just 1170 * let it be. The resource range is already reserved so 1171 * that other devices will not use it. If the driver 1172 * needs to allocate the resource, then 1173 * acpi_alloc_resource() will sub-alloc from the system 1174 * resource. 1175 */ 1176 resource_list_reserve(rl, dev, children[i], rle->type, &rle->rid, 1177 rle->start, rle->end, rle->count, 0); 1178 } 1179 } 1180 free(children, M_TEMP); 1181 sc->acpi_resources_reserved = 1; 1182 } 1183 1184 static int 1185 acpi_set_resource(device_t dev, device_t child, int type, int rid, 1186 u_long start, u_long count) 1187 { 1188 struct acpi_softc *sc = device_get_softc(dev); 1189 struct acpi_device *ad = device_get_ivars(child); 1190 struct resource_list *rl = &ad->ad_rl; 1191 ACPI_DEVICE_INFO *devinfo; 1192 u_long end; 1193 1194 /* Ignore IRQ resources for PCI link devices. */ 1195 if (type == SYS_RES_IRQ && ACPI_ID_PROBE(dev, child, pcilink_ids) != NULL) 1196 return (0); 1197 1198 /* 1199 * Ignore most resources for PCI root bridges. Some BIOSes 1200 * incorrectly enumerate the memory ranges they decode as plain 1201 * memory resources instead of as ResourceProducer ranges. Other 1202 * BIOSes incorrectly list system resource entries for I/O ranges 1203 * under the PCI bridge. Do allow the one known-correct case on 1204 * x86 of a PCI bridge claiming the I/O ports used for PCI config 1205 * access. 1206 */ 1207 if (type == SYS_RES_MEMORY || type == SYS_RES_IOPORT) { 1208 if (ACPI_SUCCESS(AcpiGetObjectInfo(ad->ad_handle, &devinfo))) { 1209 if ((devinfo->Flags & ACPI_PCI_ROOT_BRIDGE) != 0) { 1210 #if defined(__i386__) || defined(__amd64__) 1211 if (!(type == SYS_RES_IOPORT && start == CONF1_ADDR_PORT)) 1212 #endif 1213 { 1214 if (bootverbose) 1215 device_printf(dev, 1216 "Ignoring %s range %#lx-%#lx for %s\n", 1217 type == SYS_RES_MEMORY ? "memory" : "I/O", 1218 start, start + count - 1, acpi_name(ad->ad_handle)); 1219 AcpiOsFree(devinfo); 1220 return (0); 1221 } 1222 } 1223 AcpiOsFree(devinfo); 1224 } 1225 } 1226 1227 /* If the resource is already allocated, fail. */ 1228 if (resource_list_busy(rl, type, rid)) 1229 return (EBUSY); 1230 1231 /* If the resource is already reserved, release it. */ 1232 if (resource_list_reserved(rl, type, rid)) 1233 resource_list_unreserve(rl, dev, child, type, rid); 1234 1235 /* Add the resource. */ 1236 end = (start + count - 1); 1237 resource_list_add(rl, type, rid, start, end, count); 1238 1239 /* Don't reserve resources until the system resources are allocated. */ 1240 if (!sc->acpi_resources_reserved) 1241 return (0); 1242 1243 /* Don't reserve system resources. */ 1244 if (ACPI_ID_PROBE(dev, child, sysres_ids) != NULL) 1245 return (0); 1246 1247 /* 1248 * Don't reserve IRQ resources. There are many sticky things to 1249 * get right otherwise (e.g. IRQs for psm, atkbd, and HPET when 1250 * using legacy routing). 1251 */ 1252 if (type == SYS_RES_IRQ) 1253 return (0); 1254 1255 /* 1256 * Reserve the resource. 1257 * 1258 * XXX: Ignores failure for now. Failure here is probably a 1259 * BIOS/firmware bug? 1260 */ 1261 resource_list_reserve(rl, dev, child, type, &rid, start, end, count, 0); 1262 return (0); 1263 } 1264 1265 static struct resource * 1266 acpi_alloc_resource(device_t bus, device_t child, int type, int *rid, 1267 u_long start, u_long end, u_long count, u_int flags) 1268 { 1269 ACPI_RESOURCE ares; 1270 struct acpi_device *ad; 1271 struct resource_list_entry *rle; 1272 struct resource_list *rl; 1273 struct resource *res; 1274 int isdefault = (start == 0UL && end == ~0UL); 1275 1276 /* 1277 * First attempt at allocating the resource. For direct children, 1278 * use resource_list_alloc() to handle reserved resources. For 1279 * other devices, pass the request up to our parent. 1280 */ 1281 if (bus == device_get_parent(child)) { 1282 ad = device_get_ivars(child); 1283 rl = &ad->ad_rl; 1284 1285 /* 1286 * Simulate the behavior of the ISA bus for direct children 1287 * devices. That is, if a non-default range is specified for 1288 * a resource that doesn't exist, use bus_set_resource() to 1289 * add the resource before allocating it. Note that these 1290 * resources will not be reserved. 1291 */ 1292 if (!isdefault && resource_list_find(rl, type, *rid) == NULL) 1293 resource_list_add(rl, type, *rid, start, end, count); 1294 res = resource_list_alloc(rl, bus, child, type, rid, start, end, count, 1295 flags); 1296 if (res != NULL && type == SYS_RES_IRQ) { 1297 /* 1298 * Since bus_config_intr() takes immediate effect, we cannot 1299 * configure the interrupt associated with a device when we 1300 * parse the resources but have to defer it until a driver 1301 * actually allocates the interrupt via bus_alloc_resource(). 1302 * 1303 * XXX: Should we handle the lookup failing? 1304 */ 1305 if (ACPI_SUCCESS(acpi_lookup_irq_resource(child, *rid, res, &ares))) 1306 acpi_config_intr(child, &ares); 1307 } 1308 1309 /* 1310 * If this is an allocation of the "default" range for a given 1311 * RID, fetch the exact bounds for this resource from the 1312 * resource list entry to try to allocate the range from the 1313 * system resource regions. 1314 */ 1315 if (res == NULL && isdefault) { 1316 rle = resource_list_find(rl, type, *rid); 1317 if (rle != NULL) { 1318 start = rle->start; 1319 end = rle->end; 1320 count = rle->count; 1321 } 1322 } 1323 } else 1324 res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, type, rid, 1325 start, end, count, flags); 1326 1327 /* 1328 * If the first attempt failed and this is an allocation of a 1329 * specific range, try to satisfy the request via a suballocation 1330 * from our system resource regions. 1331 */ 1332 if (res == NULL && start + count - 1 == end) 1333 res = acpi_alloc_sysres(child, type, rid, start, end, count, flags); 1334 return (res); 1335 } 1336 1337 /* 1338 * Attempt to allocate a specific resource range from the system 1339 * resource ranges. Note that we only handle memory and I/O port 1340 * system resources. 1341 */ 1342 struct resource * 1343 acpi_alloc_sysres(device_t child, int type, int *rid, u_long start, u_long end, 1344 u_long count, u_int flags) 1345 { 1346 struct rman *rm; 1347 struct resource *res; 1348 1349 switch (type) { 1350 case SYS_RES_IOPORT: 1351 rm = &acpi_rman_io; 1352 break; 1353 case SYS_RES_MEMORY: 1354 rm = &acpi_rman_mem; 1355 break; 1356 default: 1357 return (NULL); 1358 } 1359 1360 KASSERT(start + count - 1 == end, ("wildcard resource range")); 1361 res = rman_reserve_resource(rm, start, end, count, flags & ~RF_ACTIVE, 1362 child); 1363 if (res == NULL) 1364 return (NULL); 1365 1366 rman_set_rid(res, *rid); 1367 1368 /* If requested, activate the resource using the parent's method. */ 1369 if (flags & RF_ACTIVE) 1370 if (bus_activate_resource(child, type, *rid, res) != 0) { 1371 rman_release_resource(res); 1372 return (NULL); 1373 } 1374 1375 return (res); 1376 } 1377 1378 static int 1379 acpi_is_resource_managed(int type, struct resource *r) 1380 { 1381 1382 /* We only handle memory and IO resources through rman. */ 1383 switch (type) { 1384 case SYS_RES_IOPORT: 1385 return (rman_is_region_manager(r, &acpi_rman_io)); 1386 case SYS_RES_MEMORY: 1387 return (rman_is_region_manager(r, &acpi_rman_mem)); 1388 } 1389 return (0); 1390 } 1391 1392 static int 1393 acpi_adjust_resource(device_t bus, device_t child, int type, struct resource *r, 1394 u_long start, u_long end) 1395 { 1396 1397 if (acpi_is_resource_managed(type, r)) 1398 return (rman_adjust_resource(r, start, end)); 1399 return (bus_generic_adjust_resource(bus, child, type, r, start, end)); 1400 } 1401 1402 static int 1403 acpi_release_resource(device_t bus, device_t child, int type, int rid, 1404 struct resource *r) 1405 { 1406 int ret; 1407 1408 /* 1409 * If this resource belongs to one of our internal managers, 1410 * deactivate it and release it to the local pool. 1411 */ 1412 if (acpi_is_resource_managed(type, r)) { 1413 if (rman_get_flags(r) & RF_ACTIVE) { 1414 ret = bus_deactivate_resource(child, type, rid, r); 1415 if (ret != 0) 1416 return (ret); 1417 } 1418 return (rman_release_resource(r)); 1419 } 1420 1421 return (bus_generic_rl_release_resource(bus, child, type, rid, r)); 1422 } 1423 1424 static void 1425 acpi_delete_resource(device_t bus, device_t child, int type, int rid) 1426 { 1427 struct resource_list *rl; 1428 1429 rl = acpi_get_rlist(bus, child); 1430 if (resource_list_busy(rl, type, rid)) { 1431 device_printf(bus, "delete_resource: Resource still owned by child" 1432 " (type=%d, rid=%d)\n", type, rid); 1433 return; 1434 } 1435 resource_list_unreserve(rl, bus, child, type, rid); 1436 resource_list_delete(rl, type, rid); 1437 } 1438 1439 /* Allocate an IO port or memory resource, given its GAS. */ 1440 int 1441 acpi_bus_alloc_gas(device_t dev, int *type, int *rid, ACPI_GENERIC_ADDRESS *gas, 1442 struct resource **res, u_int flags) 1443 { 1444 int error, res_type; 1445 1446 error = ENOMEM; 1447 if (type == NULL || rid == NULL || gas == NULL || res == NULL) 1448 return (EINVAL); 1449 1450 /* We only support memory and IO spaces. */ 1451 switch (gas->SpaceId) { 1452 case ACPI_ADR_SPACE_SYSTEM_MEMORY: 1453 res_type = SYS_RES_MEMORY; 1454 break; 1455 case ACPI_ADR_SPACE_SYSTEM_IO: 1456 res_type = SYS_RES_IOPORT; 1457 break; 1458 default: 1459 return (EOPNOTSUPP); 1460 } 1461 1462 /* 1463 * If the register width is less than 8, assume the BIOS author means 1464 * it is a bit field and just allocate a byte. 1465 */ 1466 if (gas->BitWidth && gas->BitWidth < 8) 1467 gas->BitWidth = 8; 1468 1469 /* Validate the address after we're sure we support the space. */ 1470 if (gas->Address == 0 || gas->BitWidth == 0) 1471 return (EINVAL); 1472 1473 bus_set_resource(dev, res_type, *rid, gas->Address, 1474 gas->BitWidth / 8); 1475 *res = bus_alloc_resource_any(dev, res_type, rid, RF_ACTIVE | flags); 1476 if (*res != NULL) { 1477 *type = res_type; 1478 error = 0; 1479 } else 1480 bus_delete_resource(dev, res_type, *rid); 1481 1482 return (error); 1483 } 1484 1485 /* Probe _HID and _CID for compatible ISA PNP ids. */ 1486 static uint32_t 1487 acpi_isa_get_logicalid(device_t dev) 1488 { 1489 ACPI_DEVICE_INFO *devinfo; 1490 ACPI_HANDLE h; 1491 uint32_t pnpid; 1492 1493 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1494 1495 /* Fetch and validate the HID. */ 1496 if ((h = acpi_get_handle(dev)) == NULL || 1497 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 1498 return_VALUE (0); 1499 1500 pnpid = (devinfo->Valid & ACPI_VALID_HID) != 0 && 1501 devinfo->HardwareId.Length >= ACPI_EISAID_STRING_SIZE ? 1502 PNP_EISAID(devinfo->HardwareId.String) : 0; 1503 AcpiOsFree(devinfo); 1504 1505 return_VALUE (pnpid); 1506 } 1507 1508 static int 1509 acpi_isa_get_compatid(device_t dev, uint32_t *cids, int count) 1510 { 1511 ACPI_DEVICE_INFO *devinfo; 1512 ACPI_PNP_DEVICE_ID *ids; 1513 ACPI_HANDLE h; 1514 uint32_t *pnpid; 1515 int i, valid; 1516 1517 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1518 1519 pnpid = cids; 1520 1521 /* Fetch and validate the CID */ 1522 if ((h = acpi_get_handle(dev)) == NULL || 1523 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 1524 return_VALUE (0); 1525 1526 if ((devinfo->Valid & ACPI_VALID_CID) == 0) { 1527 AcpiOsFree(devinfo); 1528 return_VALUE (0); 1529 } 1530 1531 if (devinfo->CompatibleIdList.Count < count) 1532 count = devinfo->CompatibleIdList.Count; 1533 ids = devinfo->CompatibleIdList.Ids; 1534 for (i = 0, valid = 0; i < count; i++) 1535 if (ids[i].Length >= ACPI_EISAID_STRING_SIZE && 1536 strncmp(ids[i].String, "PNP", 3) == 0) { 1537 *pnpid++ = PNP_EISAID(ids[i].String); 1538 valid++; 1539 } 1540 AcpiOsFree(devinfo); 1541 1542 return_VALUE (valid); 1543 } 1544 1545 static char * 1546 acpi_device_id_probe(device_t bus, device_t dev, char **ids) 1547 { 1548 ACPI_HANDLE h; 1549 ACPI_OBJECT_TYPE t; 1550 int i; 1551 1552 h = acpi_get_handle(dev); 1553 if (ids == NULL || h == NULL) 1554 return (NULL); 1555 t = acpi_get_type(dev); 1556 if (t != ACPI_TYPE_DEVICE && t != ACPI_TYPE_PROCESSOR) 1557 return (NULL); 1558 1559 /* Try to match one of the array of IDs with a HID or CID. */ 1560 for (i = 0; ids[i] != NULL; i++) { 1561 if (acpi_MatchHid(h, ids[i])) 1562 return (ids[i]); 1563 } 1564 return (NULL); 1565 } 1566 1567 static ACPI_STATUS 1568 acpi_device_eval_obj(device_t bus, device_t dev, ACPI_STRING pathname, 1569 ACPI_OBJECT_LIST *parameters, ACPI_BUFFER *ret) 1570 { 1571 ACPI_HANDLE h; 1572 1573 if (dev == NULL) 1574 h = ACPI_ROOT_OBJECT; 1575 else if ((h = acpi_get_handle(dev)) == NULL) 1576 return (AE_BAD_PARAMETER); 1577 return (AcpiEvaluateObject(h, pathname, parameters, ret)); 1578 } 1579 1580 int 1581 acpi_device_pwr_for_sleep(device_t bus, device_t dev, int *dstate) 1582 { 1583 struct acpi_softc *sc; 1584 ACPI_HANDLE handle; 1585 ACPI_STATUS status; 1586 char sxd[8]; 1587 1588 handle = acpi_get_handle(dev); 1589 1590 /* 1591 * XXX If we find these devices, don't try to power them down. 1592 * The serial and IRDA ports on my T23 hang the system when 1593 * set to D3 and it appears that such legacy devices may 1594 * need special handling in their drivers. 1595 */ 1596 if (dstate == NULL || handle == NULL || 1597 acpi_MatchHid(handle, "PNP0500") || 1598 acpi_MatchHid(handle, "PNP0501") || 1599 acpi_MatchHid(handle, "PNP0502") || 1600 acpi_MatchHid(handle, "PNP0510") || 1601 acpi_MatchHid(handle, "PNP0511")) 1602 return (ENXIO); 1603 1604 /* 1605 * Override next state with the value from _SxD, if present. 1606 * Note illegal _S0D is evaluated because some systems expect this. 1607 */ 1608 sc = device_get_softc(bus); 1609 snprintf(sxd, sizeof(sxd), "_S%dD", sc->acpi_sstate); 1610 status = acpi_GetInteger(handle, sxd, dstate); 1611 if (ACPI_FAILURE(status) && status != AE_NOT_FOUND) { 1612 device_printf(dev, "failed to get %s on %s: %s\n", sxd, 1613 acpi_name(handle), AcpiFormatException(status)); 1614 return (ENXIO); 1615 } 1616 1617 return (0); 1618 } 1619 1620 /* Callback arg for our implementation of walking the namespace. */ 1621 struct acpi_device_scan_ctx { 1622 acpi_scan_cb_t user_fn; 1623 void *arg; 1624 ACPI_HANDLE parent; 1625 }; 1626 1627 static ACPI_STATUS 1628 acpi_device_scan_cb(ACPI_HANDLE h, UINT32 level, void *arg, void **retval) 1629 { 1630 struct acpi_device_scan_ctx *ctx; 1631 device_t dev, old_dev; 1632 ACPI_STATUS status; 1633 ACPI_OBJECT_TYPE type; 1634 1635 /* 1636 * Skip this device if we think we'll have trouble with it or it is 1637 * the parent where the scan began. 1638 */ 1639 ctx = (struct acpi_device_scan_ctx *)arg; 1640 if (acpi_avoid(h) || h == ctx->parent) 1641 return (AE_OK); 1642 1643 /* If this is not a valid device type (e.g., a method), skip it. */ 1644 if (ACPI_FAILURE(AcpiGetType(h, &type))) 1645 return (AE_OK); 1646 if (type != ACPI_TYPE_DEVICE && type != ACPI_TYPE_PROCESSOR && 1647 type != ACPI_TYPE_THERMAL && type != ACPI_TYPE_POWER) 1648 return (AE_OK); 1649 1650 /* 1651 * Call the user function with the current device. If it is unchanged 1652 * afterwards, return. Otherwise, we update the handle to the new dev. 1653 */ 1654 old_dev = acpi_get_device(h); 1655 dev = old_dev; 1656 status = ctx->user_fn(h, &dev, level, ctx->arg); 1657 if (ACPI_FAILURE(status) || old_dev == dev) 1658 return (status); 1659 1660 /* Remove the old child and its connection to the handle. */ 1661 if (old_dev != NULL) { 1662 device_delete_child(device_get_parent(old_dev), old_dev); 1663 AcpiDetachData(h, acpi_fake_objhandler); 1664 } 1665 1666 /* Recreate the handle association if the user created a device. */ 1667 if (dev != NULL) 1668 AcpiAttachData(h, acpi_fake_objhandler, dev); 1669 1670 return (AE_OK); 1671 } 1672 1673 static ACPI_STATUS 1674 acpi_device_scan_children(device_t bus, device_t dev, int max_depth, 1675 acpi_scan_cb_t user_fn, void *arg) 1676 { 1677 ACPI_HANDLE h; 1678 struct acpi_device_scan_ctx ctx; 1679 1680 if (acpi_disabled("children")) 1681 return (AE_OK); 1682 1683 if (dev == NULL) 1684 h = ACPI_ROOT_OBJECT; 1685 else if ((h = acpi_get_handle(dev)) == NULL) 1686 return (AE_BAD_PARAMETER); 1687 ctx.user_fn = user_fn; 1688 ctx.arg = arg; 1689 ctx.parent = h; 1690 return (AcpiWalkNamespace(ACPI_TYPE_ANY, h, max_depth, 1691 acpi_device_scan_cb, NULL, &ctx, NULL)); 1692 } 1693 1694 /* 1695 * Even though ACPI devices are not PCI, we use the PCI approach for setting 1696 * device power states since it's close enough to ACPI. 1697 */ 1698 static int 1699 acpi_set_powerstate(device_t child, int state) 1700 { 1701 ACPI_HANDLE h; 1702 ACPI_STATUS status; 1703 1704 h = acpi_get_handle(child); 1705 if (state < ACPI_STATE_D0 || state > ACPI_D_STATES_MAX) 1706 return (EINVAL); 1707 if (h == NULL) 1708 return (0); 1709 1710 /* Ignore errors if the power methods aren't present. */ 1711 status = acpi_pwr_switch_consumer(h, state); 1712 if (ACPI_SUCCESS(status)) { 1713 if (bootverbose) 1714 device_printf(child, "set ACPI power state D%d on %s\n", 1715 state, acpi_name(h)); 1716 } else if (status != AE_NOT_FOUND) 1717 device_printf(child, 1718 "failed to set ACPI power state D%d on %s: %s\n", state, 1719 acpi_name(h), AcpiFormatException(status)); 1720 1721 return (0); 1722 } 1723 1724 static int 1725 acpi_isa_pnp_probe(device_t bus, device_t child, struct isa_pnp_id *ids) 1726 { 1727 int result, cid_count, i; 1728 uint32_t lid, cids[8]; 1729 1730 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1731 1732 /* 1733 * ISA-style drivers attached to ACPI may persist and 1734 * probe manually if we return ENOENT. We never want 1735 * that to happen, so don't ever return it. 1736 */ 1737 result = ENXIO; 1738 1739 /* Scan the supplied IDs for a match */ 1740 lid = acpi_isa_get_logicalid(child); 1741 cid_count = acpi_isa_get_compatid(child, cids, 8); 1742 while (ids && ids->ip_id) { 1743 if (lid == ids->ip_id) { 1744 result = 0; 1745 goto out; 1746 } 1747 for (i = 0; i < cid_count; i++) { 1748 if (cids[i] == ids->ip_id) { 1749 result = 0; 1750 goto out; 1751 } 1752 } 1753 ids++; 1754 } 1755 1756 out: 1757 if (result == 0 && ids->ip_desc) 1758 device_set_desc(child, ids->ip_desc); 1759 1760 return_VALUE (result); 1761 } 1762 1763 #if defined(__i386__) || defined(__amd64__) 1764 /* 1765 * Look for a MCFG table. If it is present, use the settings for 1766 * domain (segment) 0 to setup PCI config space access via the memory 1767 * map. 1768 */ 1769 static void 1770 acpi_enable_pcie(void) 1771 { 1772 ACPI_TABLE_HEADER *hdr; 1773 ACPI_MCFG_ALLOCATION *alloc, *end; 1774 ACPI_STATUS status; 1775 1776 status = AcpiGetTable(ACPI_SIG_MCFG, 1, &hdr); 1777 if (ACPI_FAILURE(status)) 1778 return; 1779 1780 end = (ACPI_MCFG_ALLOCATION *)((char *)hdr + hdr->Length); 1781 alloc = (ACPI_MCFG_ALLOCATION *)((ACPI_TABLE_MCFG *)hdr + 1); 1782 while (alloc < end) { 1783 if (alloc->PciSegment == 0) { 1784 pcie_cfgregopen(alloc->Address, alloc->StartBusNumber, 1785 alloc->EndBusNumber); 1786 return; 1787 } 1788 alloc++; 1789 } 1790 } 1791 #endif 1792 1793 /* 1794 * Scan all of the ACPI namespace and attach child devices. 1795 * 1796 * We should only expect to find devices in the \_PR, \_TZ, \_SI, and 1797 * \_SB scopes, and \_PR and \_TZ became obsolete in the ACPI 2.0 spec. 1798 * However, in violation of the spec, some systems place their PCI link 1799 * devices in \, so we have to walk the whole namespace. We check the 1800 * type of namespace nodes, so this should be ok. 1801 */ 1802 static void 1803 acpi_probe_children(device_t bus) 1804 { 1805 1806 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1807 1808 /* 1809 * Scan the namespace and insert placeholders for all the devices that 1810 * we find. We also probe/attach any early devices. 1811 * 1812 * Note that we use AcpiWalkNamespace rather than AcpiGetDevices because 1813 * we want to create nodes for all devices, not just those that are 1814 * currently present. (This assumes that we don't want to create/remove 1815 * devices as they appear, which might be smarter.) 1816 */ 1817 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "namespace scan\n")); 1818 AcpiWalkNamespace(ACPI_TYPE_ANY, ACPI_ROOT_OBJECT, 100, acpi_probe_child, 1819 NULL, bus, NULL); 1820 1821 /* Pre-allocate resources for our rman from any sysresource devices. */ 1822 acpi_sysres_alloc(bus); 1823 1824 /* Reserve resources already allocated to children. */ 1825 acpi_reserve_resources(bus); 1826 1827 /* Create any static children by calling device identify methods. */ 1828 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "device identify routines\n")); 1829 bus_generic_probe(bus); 1830 1831 /* Probe/attach all children, created statically and from the namespace. */ 1832 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "acpi bus_generic_attach\n")); 1833 bus_generic_attach(bus); 1834 1835 /* Attach wake sysctls. */ 1836 acpi_wake_sysctl_walk(bus); 1837 1838 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "done attaching children\n")); 1839 return_VOID; 1840 } 1841 1842 /* 1843 * Determine the probe order for a given device. 1844 */ 1845 static void 1846 acpi_probe_order(ACPI_HANDLE handle, int *order) 1847 { 1848 ACPI_OBJECT_TYPE type; 1849 1850 /* 1851 * 0. CPUs 1852 * 1. I/O port and memory system resource holders 1853 * 2. Clocks and timers (to handle early accesses) 1854 * 3. Embedded controllers (to handle early accesses) 1855 * 4. PCI Link Devices 1856 */ 1857 AcpiGetType(handle, &type); 1858 if (type == ACPI_TYPE_PROCESSOR) 1859 *order = 0; 1860 else if (acpi_MatchHid(handle, "PNP0C01") || 1861 acpi_MatchHid(handle, "PNP0C02")) 1862 *order = 1; 1863 else if (acpi_MatchHid(handle, "PNP0100") || 1864 acpi_MatchHid(handle, "PNP0103") || 1865 acpi_MatchHid(handle, "PNP0B00")) 1866 *order = 2; 1867 else if (acpi_MatchHid(handle, "PNP0C09")) 1868 *order = 3; 1869 else if (acpi_MatchHid(handle, "PNP0C0F")) 1870 *order = 4; 1871 } 1872 1873 /* 1874 * Evaluate a child device and determine whether we might attach a device to 1875 * it. 1876 */ 1877 static ACPI_STATUS 1878 acpi_probe_child(ACPI_HANDLE handle, UINT32 level, void *context, void **status) 1879 { 1880 struct acpi_prw_data prw; 1881 ACPI_OBJECT_TYPE type; 1882 ACPI_HANDLE h; 1883 device_t bus, child; 1884 char *handle_str; 1885 int order; 1886 1887 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1888 1889 if (acpi_disabled("children")) 1890 return_ACPI_STATUS (AE_OK); 1891 1892 /* Skip this device if we think we'll have trouble with it. */ 1893 if (acpi_avoid(handle)) 1894 return_ACPI_STATUS (AE_OK); 1895 1896 bus = (device_t)context; 1897 if (ACPI_SUCCESS(AcpiGetType(handle, &type))) { 1898 handle_str = acpi_name(handle); 1899 switch (type) { 1900 case ACPI_TYPE_DEVICE: 1901 /* 1902 * Since we scan from \, be sure to skip system scope objects. 1903 * \_SB_ and \_TZ_ are defined in ACPICA as devices to work around 1904 * BIOS bugs. For example, \_SB_ is to allow \_SB_._INI to be run 1905 * during the intialization and \_TZ_ is to support Notify() on it. 1906 */ 1907 if (strcmp(handle_str, "\\_SB_") == 0 || 1908 strcmp(handle_str, "\\_TZ_") == 0) 1909 break; 1910 if (acpi_parse_prw(handle, &prw) == 0) 1911 AcpiSetupGpeForWake(handle, prw.gpe_handle, prw.gpe_bit); 1912 1913 /* 1914 * Ignore devices that do not have a _HID or _CID. They should 1915 * be discovered by other buses (e.g. the PCI bus driver). 1916 */ 1917 if (!acpi_has_hid(handle)) 1918 break; 1919 /* FALLTHROUGH */ 1920 case ACPI_TYPE_PROCESSOR: 1921 case ACPI_TYPE_THERMAL: 1922 case ACPI_TYPE_POWER: 1923 /* 1924 * Create a placeholder device for this node. Sort the 1925 * placeholder so that the probe/attach passes will run 1926 * breadth-first. Orders less than ACPI_DEV_BASE_ORDER 1927 * are reserved for special objects (i.e., system 1928 * resources). 1929 */ 1930 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "scanning '%s'\n", handle_str)); 1931 order = level * 10 + ACPI_DEV_BASE_ORDER; 1932 acpi_probe_order(handle, &order); 1933 child = BUS_ADD_CHILD(bus, order, NULL, -1); 1934 if (child == NULL) 1935 break; 1936 1937 /* Associate the handle with the device_t and vice versa. */ 1938 acpi_set_handle(child, handle); 1939 AcpiAttachData(handle, acpi_fake_objhandler, child); 1940 1941 /* 1942 * Check that the device is present. If it's not present, 1943 * leave it disabled (so that we have a device_t attached to 1944 * the handle, but we don't probe it). 1945 * 1946 * XXX PCI link devices sometimes report "present" but not 1947 * "functional" (i.e. if disabled). Go ahead and probe them 1948 * anyway since we may enable them later. 1949 */ 1950 if (type == ACPI_TYPE_DEVICE && !acpi_DeviceIsPresent(child)) { 1951 /* Never disable PCI link devices. */ 1952 if (acpi_MatchHid(handle, "PNP0C0F")) 1953 break; 1954 /* 1955 * Docking stations should remain enabled since the system 1956 * may be undocked at boot. 1957 */ 1958 if (ACPI_SUCCESS(AcpiGetHandle(handle, "_DCK", &h))) 1959 break; 1960 1961 device_disable(child); 1962 break; 1963 } 1964 1965 /* 1966 * Get the device's resource settings and attach them. 1967 * Note that if the device has _PRS but no _CRS, we need 1968 * to decide when it's appropriate to try to configure the 1969 * device. Ignore the return value here; it's OK for the 1970 * device not to have any resources. 1971 */ 1972 acpi_parse_resources(child, handle, &acpi_res_parse_set, NULL); 1973 break; 1974 } 1975 } 1976 1977 return_ACPI_STATUS (AE_OK); 1978 } 1979 1980 /* 1981 * AcpiAttachData() requires an object handler but never uses it. This is a 1982 * placeholder object handler so we can store a device_t in an ACPI_HANDLE. 1983 */ 1984 void 1985 acpi_fake_objhandler(ACPI_HANDLE h, void *data) 1986 { 1987 } 1988 1989 static void 1990 acpi_shutdown_final(void *arg, int howto) 1991 { 1992 struct acpi_softc *sc = (struct acpi_softc *)arg; 1993 register_t intr; 1994 ACPI_STATUS status; 1995 1996 /* 1997 * XXX Shutdown code should only run on the BSP (cpuid 0). 1998 * Some chipsets do not power off the system correctly if called from 1999 * an AP. 2000 */ 2001 if ((howto & RB_POWEROFF) != 0) { 2002 status = AcpiEnterSleepStatePrep(ACPI_STATE_S5); 2003 if (ACPI_FAILURE(status)) { 2004 device_printf(sc->acpi_dev, "AcpiEnterSleepStatePrep failed - %s\n", 2005 AcpiFormatException(status)); 2006 return; 2007 } 2008 device_printf(sc->acpi_dev, "Powering system off\n"); 2009 intr = intr_disable(); 2010 status = AcpiEnterSleepState(ACPI_STATE_S5); 2011 if (ACPI_FAILURE(status)) { 2012 intr_restore(intr); 2013 device_printf(sc->acpi_dev, "power-off failed - %s\n", 2014 AcpiFormatException(status)); 2015 } else { 2016 DELAY(1000000); 2017 intr_restore(intr); 2018 device_printf(sc->acpi_dev, "power-off failed - timeout\n"); 2019 } 2020 } else if ((howto & RB_HALT) == 0 && sc->acpi_handle_reboot) { 2021 /* Reboot using the reset register. */ 2022 status = AcpiReset(); 2023 if (ACPI_SUCCESS(status)) { 2024 DELAY(1000000); 2025 device_printf(sc->acpi_dev, "reset failed - timeout\n"); 2026 } else if (status != AE_NOT_EXIST) 2027 device_printf(sc->acpi_dev, "reset failed - %s\n", 2028 AcpiFormatException(status)); 2029 } else if (sc->acpi_do_disable && panicstr == NULL) { 2030 /* 2031 * Only disable ACPI if the user requested. On some systems, writing 2032 * the disable value to SMI_CMD hangs the system. 2033 */ 2034 device_printf(sc->acpi_dev, "Shutting down\n"); 2035 AcpiTerminate(); 2036 } 2037 } 2038 2039 static void 2040 acpi_enable_fixed_events(struct acpi_softc *sc) 2041 { 2042 static int first_time = 1; 2043 2044 /* Enable and clear fixed events and install handlers. */ 2045 if ((AcpiGbl_FADT.Flags & ACPI_FADT_POWER_BUTTON) == 0) { 2046 AcpiClearEvent(ACPI_EVENT_POWER_BUTTON); 2047 AcpiInstallFixedEventHandler(ACPI_EVENT_POWER_BUTTON, 2048 acpi_event_power_button_sleep, sc); 2049 if (first_time) 2050 device_printf(sc->acpi_dev, "Power Button (fixed)\n"); 2051 } 2052 if ((AcpiGbl_FADT.Flags & ACPI_FADT_SLEEP_BUTTON) == 0) { 2053 AcpiClearEvent(ACPI_EVENT_SLEEP_BUTTON); 2054 AcpiInstallFixedEventHandler(ACPI_EVENT_SLEEP_BUTTON, 2055 acpi_event_sleep_button_sleep, sc); 2056 if (first_time) 2057 device_printf(sc->acpi_dev, "Sleep Button (fixed)\n"); 2058 } 2059 2060 first_time = 0; 2061 } 2062 2063 /* 2064 * Returns true if the device is actually present and should 2065 * be attached to. This requires the present, enabled, UI-visible 2066 * and diagnostics-passed bits to be set. 2067 */ 2068 BOOLEAN 2069 acpi_DeviceIsPresent(device_t dev) 2070 { 2071 ACPI_DEVICE_INFO *devinfo; 2072 ACPI_HANDLE h; 2073 BOOLEAN present; 2074 2075 if ((h = acpi_get_handle(dev)) == NULL || 2076 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 2077 return (FALSE); 2078 2079 /* If no _STA method, must be present */ 2080 present = (devinfo->Valid & ACPI_VALID_STA) == 0 || 2081 ACPI_DEVICE_PRESENT(devinfo->CurrentStatus) ? TRUE : FALSE; 2082 2083 AcpiOsFree(devinfo); 2084 return (present); 2085 } 2086 2087 /* 2088 * Returns true if the battery is actually present and inserted. 2089 */ 2090 BOOLEAN 2091 acpi_BatteryIsPresent(device_t dev) 2092 { 2093 ACPI_DEVICE_INFO *devinfo; 2094 ACPI_HANDLE h; 2095 BOOLEAN present; 2096 2097 if ((h = acpi_get_handle(dev)) == NULL || 2098 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 2099 return (FALSE); 2100 2101 /* If no _STA method, must be present */ 2102 present = (devinfo->Valid & ACPI_VALID_STA) == 0 || 2103 ACPI_BATTERY_PRESENT(devinfo->CurrentStatus) ? TRUE : FALSE; 2104 2105 AcpiOsFree(devinfo); 2106 return (present); 2107 } 2108 2109 /* 2110 * Returns true if a device has at least one valid device ID. 2111 */ 2112 static BOOLEAN 2113 acpi_has_hid(ACPI_HANDLE h) 2114 { 2115 ACPI_DEVICE_INFO *devinfo; 2116 BOOLEAN ret; 2117 2118 if (h == NULL || 2119 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 2120 return (FALSE); 2121 2122 ret = FALSE; 2123 if ((devinfo->Valid & ACPI_VALID_HID) != 0) 2124 ret = TRUE; 2125 else if ((devinfo->Valid & ACPI_VALID_CID) != 0) 2126 if (devinfo->CompatibleIdList.Count > 0) 2127 ret = TRUE; 2128 2129 AcpiOsFree(devinfo); 2130 return (ret); 2131 } 2132 2133 /* 2134 * Match a HID string against a handle 2135 */ 2136 BOOLEAN 2137 acpi_MatchHid(ACPI_HANDLE h, const char *hid) 2138 { 2139 ACPI_DEVICE_INFO *devinfo; 2140 BOOLEAN ret; 2141 int i; 2142 2143 if (hid == NULL || h == NULL || 2144 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 2145 return (FALSE); 2146 2147 ret = FALSE; 2148 if ((devinfo->Valid & ACPI_VALID_HID) != 0 && 2149 strcmp(hid, devinfo->HardwareId.String) == 0) 2150 ret = TRUE; 2151 else if ((devinfo->Valid & ACPI_VALID_CID) != 0) 2152 for (i = 0; i < devinfo->CompatibleIdList.Count; i++) { 2153 if (strcmp(hid, devinfo->CompatibleIdList.Ids[i].String) == 0) { 2154 ret = TRUE; 2155 break; 2156 } 2157 } 2158 2159 AcpiOsFree(devinfo); 2160 return (ret); 2161 } 2162 2163 /* 2164 * Return the handle of a named object within our scope, ie. that of (parent) 2165 * or one if its parents. 2166 */ 2167 ACPI_STATUS 2168 acpi_GetHandleInScope(ACPI_HANDLE parent, char *path, ACPI_HANDLE *result) 2169 { 2170 ACPI_HANDLE r; 2171 ACPI_STATUS status; 2172 2173 /* Walk back up the tree to the root */ 2174 for (;;) { 2175 status = AcpiGetHandle(parent, path, &r); 2176 if (ACPI_SUCCESS(status)) { 2177 *result = r; 2178 return (AE_OK); 2179 } 2180 /* XXX Return error here? */ 2181 if (status != AE_NOT_FOUND) 2182 return (AE_OK); 2183 if (ACPI_FAILURE(AcpiGetParent(parent, &r))) 2184 return (AE_NOT_FOUND); 2185 parent = r; 2186 } 2187 } 2188 2189 /* 2190 * Allocate a buffer with a preset data size. 2191 */ 2192 ACPI_BUFFER * 2193 acpi_AllocBuffer(int size) 2194 { 2195 ACPI_BUFFER *buf; 2196 2197 if ((buf = malloc(size + sizeof(*buf), M_ACPIDEV, M_NOWAIT)) == NULL) 2198 return (NULL); 2199 buf->Length = size; 2200 buf->Pointer = (void *)(buf + 1); 2201 return (buf); 2202 } 2203 2204 ACPI_STATUS 2205 acpi_SetInteger(ACPI_HANDLE handle, char *path, UINT32 number) 2206 { 2207 ACPI_OBJECT arg1; 2208 ACPI_OBJECT_LIST args; 2209 2210 arg1.Type = ACPI_TYPE_INTEGER; 2211 arg1.Integer.Value = number; 2212 args.Count = 1; 2213 args.Pointer = &arg1; 2214 2215 return (AcpiEvaluateObject(handle, path, &args, NULL)); 2216 } 2217 2218 /* 2219 * Evaluate a path that should return an integer. 2220 */ 2221 ACPI_STATUS 2222 acpi_GetInteger(ACPI_HANDLE handle, char *path, UINT32 *number) 2223 { 2224 ACPI_STATUS status; 2225 ACPI_BUFFER buf; 2226 ACPI_OBJECT param; 2227 2228 if (handle == NULL) 2229 handle = ACPI_ROOT_OBJECT; 2230 2231 /* 2232 * Assume that what we've been pointed at is an Integer object, or 2233 * a method that will return an Integer. 2234 */ 2235 buf.Pointer = ¶m; 2236 buf.Length = sizeof(param); 2237 status = AcpiEvaluateObject(handle, path, NULL, &buf); 2238 if (ACPI_SUCCESS(status)) { 2239 if (param.Type == ACPI_TYPE_INTEGER) 2240 *number = param.Integer.Value; 2241 else 2242 status = AE_TYPE; 2243 } 2244 2245 /* 2246 * In some applications, a method that's expected to return an Integer 2247 * may instead return a Buffer (probably to simplify some internal 2248 * arithmetic). We'll try to fetch whatever it is, and if it's a Buffer, 2249 * convert it into an Integer as best we can. 2250 * 2251 * This is a hack. 2252 */ 2253 if (status == AE_BUFFER_OVERFLOW) { 2254 if ((buf.Pointer = AcpiOsAllocate(buf.Length)) == NULL) { 2255 status = AE_NO_MEMORY; 2256 } else { 2257 status = AcpiEvaluateObject(handle, path, NULL, &buf); 2258 if (ACPI_SUCCESS(status)) 2259 status = acpi_ConvertBufferToInteger(&buf, number); 2260 AcpiOsFree(buf.Pointer); 2261 } 2262 } 2263 return (status); 2264 } 2265 2266 ACPI_STATUS 2267 acpi_ConvertBufferToInteger(ACPI_BUFFER *bufp, UINT32 *number) 2268 { 2269 ACPI_OBJECT *p; 2270 UINT8 *val; 2271 int i; 2272 2273 p = (ACPI_OBJECT *)bufp->Pointer; 2274 if (p->Type == ACPI_TYPE_INTEGER) { 2275 *number = p->Integer.Value; 2276 return (AE_OK); 2277 } 2278 if (p->Type != ACPI_TYPE_BUFFER) 2279 return (AE_TYPE); 2280 if (p->Buffer.Length > sizeof(int)) 2281 return (AE_BAD_DATA); 2282 2283 *number = 0; 2284 val = p->Buffer.Pointer; 2285 for (i = 0; i < p->Buffer.Length; i++) 2286 *number += val[i] << (i * 8); 2287 return (AE_OK); 2288 } 2289 2290 /* 2291 * Iterate over the elements of an a package object, calling the supplied 2292 * function for each element. 2293 * 2294 * XXX possible enhancement might be to abort traversal on error. 2295 */ 2296 ACPI_STATUS 2297 acpi_ForeachPackageObject(ACPI_OBJECT *pkg, 2298 void (*func)(ACPI_OBJECT *comp, void *arg), void *arg) 2299 { 2300 ACPI_OBJECT *comp; 2301 int i; 2302 2303 if (pkg == NULL || pkg->Type != ACPI_TYPE_PACKAGE) 2304 return (AE_BAD_PARAMETER); 2305 2306 /* Iterate over components */ 2307 i = 0; 2308 comp = pkg->Package.Elements; 2309 for (; i < pkg->Package.Count; i++, comp++) 2310 func(comp, arg); 2311 2312 return (AE_OK); 2313 } 2314 2315 /* 2316 * Find the (index)th resource object in a set. 2317 */ 2318 ACPI_STATUS 2319 acpi_FindIndexedResource(ACPI_BUFFER *buf, int index, ACPI_RESOURCE **resp) 2320 { 2321 ACPI_RESOURCE *rp; 2322 int i; 2323 2324 rp = (ACPI_RESOURCE *)buf->Pointer; 2325 i = index; 2326 while (i-- > 0) { 2327 /* Range check */ 2328 if (rp > (ACPI_RESOURCE *)((u_int8_t *)buf->Pointer + buf->Length)) 2329 return (AE_BAD_PARAMETER); 2330 2331 /* Check for terminator */ 2332 if (rp->Type == ACPI_RESOURCE_TYPE_END_TAG || rp->Length == 0) 2333 return (AE_NOT_FOUND); 2334 rp = ACPI_NEXT_RESOURCE(rp); 2335 } 2336 if (resp != NULL) 2337 *resp = rp; 2338 2339 return (AE_OK); 2340 } 2341 2342 /* 2343 * Append an ACPI_RESOURCE to an ACPI_BUFFER. 2344 * 2345 * Given a pointer to an ACPI_RESOURCE structure, expand the ACPI_BUFFER 2346 * provided to contain it. If the ACPI_BUFFER is empty, allocate a sensible 2347 * backing block. If the ACPI_RESOURCE is NULL, return an empty set of 2348 * resources. 2349 */ 2350 #define ACPI_INITIAL_RESOURCE_BUFFER_SIZE 512 2351 2352 ACPI_STATUS 2353 acpi_AppendBufferResource(ACPI_BUFFER *buf, ACPI_RESOURCE *res) 2354 { 2355 ACPI_RESOURCE *rp; 2356 void *newp; 2357 2358 /* Initialise the buffer if necessary. */ 2359 if (buf->Pointer == NULL) { 2360 buf->Length = ACPI_INITIAL_RESOURCE_BUFFER_SIZE; 2361 if ((buf->Pointer = AcpiOsAllocate(buf->Length)) == NULL) 2362 return (AE_NO_MEMORY); 2363 rp = (ACPI_RESOURCE *)buf->Pointer; 2364 rp->Type = ACPI_RESOURCE_TYPE_END_TAG; 2365 rp->Length = ACPI_RS_SIZE_MIN; 2366 } 2367 if (res == NULL) 2368 return (AE_OK); 2369 2370 /* 2371 * Scan the current buffer looking for the terminator. 2372 * This will either find the terminator or hit the end 2373 * of the buffer and return an error. 2374 */ 2375 rp = (ACPI_RESOURCE *)buf->Pointer; 2376 for (;;) { 2377 /* Range check, don't go outside the buffer */ 2378 if (rp >= (ACPI_RESOURCE *)((u_int8_t *)buf->Pointer + buf->Length)) 2379 return (AE_BAD_PARAMETER); 2380 if (rp->Type == ACPI_RESOURCE_TYPE_END_TAG || rp->Length == 0) 2381 break; 2382 rp = ACPI_NEXT_RESOURCE(rp); 2383 } 2384 2385 /* 2386 * Check the size of the buffer and expand if required. 2387 * 2388 * Required size is: 2389 * size of existing resources before terminator + 2390 * size of new resource and header + 2391 * size of terminator. 2392 * 2393 * Note that this loop should really only run once, unless 2394 * for some reason we are stuffing a *really* huge resource. 2395 */ 2396 while ((((u_int8_t *)rp - (u_int8_t *)buf->Pointer) + 2397 res->Length + ACPI_RS_SIZE_NO_DATA + 2398 ACPI_RS_SIZE_MIN) >= buf->Length) { 2399 if ((newp = AcpiOsAllocate(buf->Length * 2)) == NULL) 2400 return (AE_NO_MEMORY); 2401 bcopy(buf->Pointer, newp, buf->Length); 2402 rp = (ACPI_RESOURCE *)((u_int8_t *)newp + 2403 ((u_int8_t *)rp - (u_int8_t *)buf->Pointer)); 2404 AcpiOsFree(buf->Pointer); 2405 buf->Pointer = newp; 2406 buf->Length += buf->Length; 2407 } 2408 2409 /* Insert the new resource. */ 2410 bcopy(res, rp, res->Length + ACPI_RS_SIZE_NO_DATA); 2411 2412 /* And add the terminator. */ 2413 rp = ACPI_NEXT_RESOURCE(rp); 2414 rp->Type = ACPI_RESOURCE_TYPE_END_TAG; 2415 rp->Length = ACPI_RS_SIZE_MIN; 2416 2417 return (AE_OK); 2418 } 2419 2420 /* 2421 * Set interrupt model. 2422 */ 2423 ACPI_STATUS 2424 acpi_SetIntrModel(int model) 2425 { 2426 2427 return (acpi_SetInteger(ACPI_ROOT_OBJECT, "_PIC", model)); 2428 } 2429 2430 /* 2431 * Walk subtables of a table and call a callback routine for each 2432 * subtable. The caller should provide the first subtable and a 2433 * pointer to the end of the table. This can be used to walk tables 2434 * such as MADT and SRAT that use subtable entries. 2435 */ 2436 void 2437 acpi_walk_subtables(void *first, void *end, acpi_subtable_handler *handler, 2438 void *arg) 2439 { 2440 ACPI_SUBTABLE_HEADER *entry; 2441 2442 for (entry = first; (void *)entry < end; ) { 2443 /* Avoid an infinite loop if we hit a bogus entry. */ 2444 if (entry->Length < sizeof(ACPI_SUBTABLE_HEADER)) 2445 return; 2446 2447 handler(entry, arg); 2448 entry = ACPI_ADD_PTR(ACPI_SUBTABLE_HEADER, entry, entry->Length); 2449 } 2450 } 2451 2452 /* 2453 * DEPRECATED. This interface has serious deficiencies and will be 2454 * removed. 2455 * 2456 * Immediately enter the sleep state. In the old model, acpiconf(8) ran 2457 * rc.suspend and rc.resume so we don't have to notify devd(8) to do this. 2458 */ 2459 ACPI_STATUS 2460 acpi_SetSleepState(struct acpi_softc *sc, int state) 2461 { 2462 static int once; 2463 2464 if (!once) { 2465 device_printf(sc->acpi_dev, 2466 "warning: acpi_SetSleepState() deprecated, need to update your software\n"); 2467 once = 1; 2468 } 2469 return (acpi_EnterSleepState(sc, state)); 2470 } 2471 2472 #if defined(__amd64__) || defined(__i386__) 2473 static void 2474 acpi_sleep_force_task(void *context) 2475 { 2476 struct acpi_softc *sc = (struct acpi_softc *)context; 2477 2478 if (ACPI_FAILURE(acpi_EnterSleepState(sc, sc->acpi_next_sstate))) 2479 device_printf(sc->acpi_dev, "force sleep state S%d failed\n", 2480 sc->acpi_next_sstate); 2481 } 2482 2483 static void 2484 acpi_sleep_force(void *arg) 2485 { 2486 struct acpi_softc *sc = (struct acpi_softc *)arg; 2487 2488 device_printf(sc->acpi_dev, 2489 "suspend request timed out, forcing sleep now\n"); 2490 /* 2491 * XXX Suspending from callout cause the freeze in DEVICE_SUSPEND(). 2492 * Suspend from acpi_task thread in stead. 2493 */ 2494 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 2495 acpi_sleep_force_task, sc))) 2496 device_printf(sc->acpi_dev, "AcpiOsExecute() for sleeping failed\n"); 2497 } 2498 #endif 2499 2500 /* 2501 * Request that the system enter the given suspend state. All /dev/apm 2502 * devices and devd(8) will be notified. Userland then has a chance to 2503 * save state and acknowledge the request. The system sleeps once all 2504 * acks are in. 2505 */ 2506 int 2507 acpi_ReqSleepState(struct acpi_softc *sc, int state) 2508 { 2509 #if defined(__amd64__) || defined(__i386__) 2510 struct apm_clone_data *clone; 2511 ACPI_STATUS status; 2512 2513 if (state < ACPI_STATE_S1 || state > ACPI_S_STATES_MAX) 2514 return (EINVAL); 2515 if (!acpi_sleep_states[state]) 2516 return (EOPNOTSUPP); 2517 2518 /* If a suspend request is already in progress, just return. */ 2519 if (sc->acpi_next_sstate != 0) { 2520 return (0); 2521 } 2522 2523 /* Wait until sleep is enabled. */ 2524 while (sc->acpi_sleep_disabled) { 2525 AcpiOsSleep(1000); 2526 } 2527 2528 ACPI_LOCK(acpi); 2529 2530 sc->acpi_next_sstate = state; 2531 2532 /* S5 (soft-off) should be entered directly with no waiting. */ 2533 if (state == ACPI_STATE_S5) { 2534 ACPI_UNLOCK(acpi); 2535 status = acpi_EnterSleepState(sc, state); 2536 return (ACPI_SUCCESS(status) ? 0 : ENXIO); 2537 } 2538 2539 /* Record the pending state and notify all apm devices. */ 2540 STAILQ_FOREACH(clone, &sc->apm_cdevs, entries) { 2541 clone->notify_status = APM_EV_NONE; 2542 if ((clone->flags & ACPI_EVF_DEVD) == 0) { 2543 selwakeuppri(&clone->sel_read, PZERO); 2544 KNOTE_LOCKED(&clone->sel_read.si_note, 0); 2545 } 2546 } 2547 2548 /* If devd(8) is not running, immediately enter the sleep state. */ 2549 if (!devctl_process_running()) { 2550 ACPI_UNLOCK(acpi); 2551 status = acpi_EnterSleepState(sc, state); 2552 return (ACPI_SUCCESS(status) ? 0 : ENXIO); 2553 } 2554 2555 /* 2556 * Set a timeout to fire if userland doesn't ack the suspend request 2557 * in time. This way we still eventually go to sleep if we were 2558 * overheating or running low on battery, even if userland is hung. 2559 * We cancel this timeout once all userland acks are in or the 2560 * suspend request is aborted. 2561 */ 2562 callout_reset(&sc->susp_force_to, 10 * hz, acpi_sleep_force, sc); 2563 ACPI_UNLOCK(acpi); 2564 2565 /* Now notify devd(8) also. */ 2566 acpi_UserNotify("Suspend", ACPI_ROOT_OBJECT, state); 2567 2568 return (0); 2569 #else 2570 /* This platform does not support acpi suspend/resume. */ 2571 return (EOPNOTSUPP); 2572 #endif 2573 } 2574 2575 /* 2576 * Acknowledge (or reject) a pending sleep state. The caller has 2577 * prepared for suspend and is now ready for it to proceed. If the 2578 * error argument is non-zero, it indicates suspend should be cancelled 2579 * and gives an errno value describing why. Once all votes are in, 2580 * we suspend the system. 2581 */ 2582 int 2583 acpi_AckSleepState(struct apm_clone_data *clone, int error) 2584 { 2585 #if defined(__amd64__) || defined(__i386__) 2586 struct acpi_softc *sc; 2587 int ret, sleeping; 2588 2589 /* If no pending sleep state, return an error. */ 2590 ACPI_LOCK(acpi); 2591 sc = clone->acpi_sc; 2592 if (sc->acpi_next_sstate == 0) { 2593 ACPI_UNLOCK(acpi); 2594 return (ENXIO); 2595 } 2596 2597 /* Caller wants to abort suspend process. */ 2598 if (error) { 2599 sc->acpi_next_sstate = 0; 2600 callout_stop(&sc->susp_force_to); 2601 device_printf(sc->acpi_dev, 2602 "listener on %s cancelled the pending suspend\n", 2603 devtoname(clone->cdev)); 2604 ACPI_UNLOCK(acpi); 2605 return (0); 2606 } 2607 2608 /* 2609 * Mark this device as acking the suspend request. Then, walk through 2610 * all devices, seeing if they agree yet. We only count devices that 2611 * are writable since read-only devices couldn't ack the request. 2612 */ 2613 sleeping = TRUE; 2614 clone->notify_status = APM_EV_ACKED; 2615 STAILQ_FOREACH(clone, &sc->apm_cdevs, entries) { 2616 if ((clone->flags & ACPI_EVF_WRITE) != 0 && 2617 clone->notify_status != APM_EV_ACKED) { 2618 sleeping = FALSE; 2619 break; 2620 } 2621 } 2622 2623 /* If all devices have voted "yes", we will suspend now. */ 2624 if (sleeping) 2625 callout_stop(&sc->susp_force_to); 2626 ACPI_UNLOCK(acpi); 2627 ret = 0; 2628 if (sleeping) { 2629 if (ACPI_FAILURE(acpi_EnterSleepState(sc, sc->acpi_next_sstate))) 2630 ret = ENODEV; 2631 } 2632 return (ret); 2633 #else 2634 /* This platform does not support acpi suspend/resume. */ 2635 return (EOPNOTSUPP); 2636 #endif 2637 } 2638 2639 static void 2640 acpi_sleep_enable(void *arg) 2641 { 2642 struct acpi_softc *sc = (struct acpi_softc *)arg; 2643 2644 /* Reschedule if the system is not fully up and running. */ 2645 if (!AcpiGbl_SystemAwakeAndRunning) { 2646 timeout(acpi_sleep_enable, sc, hz * ACPI_MINIMUM_AWAKETIME); 2647 return; 2648 } 2649 2650 ACPI_LOCK(acpi); 2651 sc->acpi_sleep_disabled = FALSE; 2652 ACPI_UNLOCK(acpi); 2653 } 2654 2655 static ACPI_STATUS 2656 acpi_sleep_disable(struct acpi_softc *sc) 2657 { 2658 ACPI_STATUS status; 2659 2660 /* Fail if the system is not fully up and running. */ 2661 if (!AcpiGbl_SystemAwakeAndRunning) 2662 return (AE_ERROR); 2663 2664 ACPI_LOCK(acpi); 2665 status = sc->acpi_sleep_disabled ? AE_ERROR : AE_OK; 2666 sc->acpi_sleep_disabled = TRUE; 2667 ACPI_UNLOCK(acpi); 2668 2669 return (status); 2670 } 2671 2672 enum acpi_sleep_state { 2673 ACPI_SS_NONE, 2674 ACPI_SS_GPE_SET, 2675 ACPI_SS_DEV_SUSPEND, 2676 ACPI_SS_SLP_PREP, 2677 ACPI_SS_SLEPT, 2678 }; 2679 2680 /* 2681 * Enter the desired system sleep state. 2682 * 2683 * Currently we support S1-S5 but S4 is only S4BIOS 2684 */ 2685 static ACPI_STATUS 2686 acpi_EnterSleepState(struct acpi_softc *sc, int state) 2687 { 2688 register_t intr; 2689 ACPI_STATUS status; 2690 ACPI_EVENT_STATUS power_button_status; 2691 enum acpi_sleep_state slp_state; 2692 int sleep_result; 2693 2694 ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state); 2695 2696 if (state < ACPI_STATE_S1 || state > ACPI_S_STATES_MAX) 2697 return_ACPI_STATUS (AE_BAD_PARAMETER); 2698 if (!acpi_sleep_states[state]) { 2699 device_printf(sc->acpi_dev, "Sleep state S%d not supported by BIOS\n", 2700 state); 2701 return (AE_SUPPORT); 2702 } 2703 2704 /* Re-entry once we're suspending is not allowed. */ 2705 status = acpi_sleep_disable(sc); 2706 if (ACPI_FAILURE(status)) { 2707 device_printf(sc->acpi_dev, 2708 "suspend request ignored (not ready yet)\n"); 2709 return (status); 2710 } 2711 2712 if (state == ACPI_STATE_S5) { 2713 /* 2714 * Shut down cleanly and power off. This will call us back through the 2715 * shutdown handlers. 2716 */ 2717 shutdown_nice(RB_POWEROFF); 2718 return_ACPI_STATUS (AE_OK); 2719 } 2720 2721 EVENTHANDLER_INVOKE(power_suspend); 2722 2723 if (smp_started) { 2724 thread_lock(curthread); 2725 sched_bind(curthread, 0); 2726 thread_unlock(curthread); 2727 } 2728 2729 /* 2730 * Be sure to hold Giant across DEVICE_SUSPEND/RESUME since non-MPSAFE 2731 * drivers need this. 2732 */ 2733 mtx_lock(&Giant); 2734 2735 slp_state = ACPI_SS_NONE; 2736 2737 sc->acpi_sstate = state; 2738 2739 /* Enable any GPEs as appropriate and requested by the user. */ 2740 acpi_wake_prep_walk(state); 2741 slp_state = ACPI_SS_GPE_SET; 2742 2743 /* 2744 * Inform all devices that we are going to sleep. If at least one 2745 * device fails, DEVICE_SUSPEND() automatically resumes the tree. 2746 * 2747 * XXX Note that a better two-pass approach with a 'veto' pass 2748 * followed by a "real thing" pass would be better, but the current 2749 * bus interface does not provide for this. 2750 */ 2751 if (DEVICE_SUSPEND(root_bus) != 0) { 2752 device_printf(sc->acpi_dev, "device_suspend failed\n"); 2753 goto backout; 2754 } 2755 slp_state = ACPI_SS_DEV_SUSPEND; 2756 2757 /* If testing device suspend only, back out of everything here. */ 2758 if (acpi_susp_bounce) 2759 goto backout; 2760 2761 status = AcpiEnterSleepStatePrep(state); 2762 if (ACPI_FAILURE(status)) { 2763 device_printf(sc->acpi_dev, "AcpiEnterSleepStatePrep failed - %s\n", 2764 AcpiFormatException(status)); 2765 goto backout; 2766 } 2767 slp_state = ACPI_SS_SLP_PREP; 2768 2769 if (sc->acpi_sleep_delay > 0) 2770 DELAY(sc->acpi_sleep_delay * 1000000); 2771 2772 intr = intr_disable(); 2773 if (state != ACPI_STATE_S1) { 2774 sleep_result = acpi_sleep_machdep(sc, state); 2775 acpi_wakeup_machdep(sc, state, sleep_result, 0); 2776 2777 /* 2778 * XXX According to ACPI specification SCI_EN bit should be restored 2779 * by ACPI platform (BIOS, firmware) to its pre-sleep state. 2780 * Unfortunately some BIOSes fail to do that and that leads to 2781 * unexpected and serious consequences during wake up like a system 2782 * getting stuck in SMI handlers. 2783 * This hack is picked up from Linux, which claims that it follows 2784 * Windows behavior. 2785 */ 2786 if (sleep_result == 1 && state != ACPI_STATE_S4) 2787 AcpiWriteBitRegister(ACPI_BITREG_SCI_ENABLE, ACPI_ENABLE_EVENT); 2788 2789 AcpiLeaveSleepStatePrep(state); 2790 2791 if (sleep_result == 1 && state == ACPI_STATE_S3) { 2792 /* 2793 * Prevent mis-interpretation of the wakeup by power button 2794 * as a request for power off. 2795 * Ideally we should post an appropriate wakeup event, 2796 * perhaps using acpi_event_power_button_wake or alike. 2797 * 2798 * Clearing of power button status after wakeup is mandated 2799 * by ACPI specification in section "Fixed Power Button". 2800 * 2801 * XXX As of ACPICA 20121114 AcpiGetEventStatus provides 2802 * status as 0/1 corressponding to inactive/active despite 2803 * its type being ACPI_EVENT_STATUS. In other words, 2804 * we should not test for ACPI_EVENT_FLAG_SET for time being. 2805 */ 2806 if (ACPI_SUCCESS(AcpiGetEventStatus(ACPI_EVENT_POWER_BUTTON, 2807 &power_button_status)) && power_button_status != 0) { 2808 AcpiClearEvent(ACPI_EVENT_POWER_BUTTON); 2809 device_printf(sc->acpi_dev, 2810 "cleared fixed power button status\n"); 2811 } 2812 } 2813 2814 intr_restore(intr); 2815 2816 /* call acpi_wakeup_machdep() again with interrupt enabled */ 2817 acpi_wakeup_machdep(sc, state, sleep_result, 1); 2818 2819 if (sleep_result == -1) 2820 goto backout; 2821 2822 /* Re-enable ACPI hardware on wakeup from sleep state 4. */ 2823 if (state == ACPI_STATE_S4) 2824 AcpiEnable(); 2825 } else { 2826 status = AcpiEnterSleepState(state); 2827 AcpiLeaveSleepStatePrep(state); 2828 intr_restore(intr); 2829 if (ACPI_FAILURE(status)) { 2830 device_printf(sc->acpi_dev, "AcpiEnterSleepState failed - %s\n", 2831 AcpiFormatException(status)); 2832 goto backout; 2833 } 2834 } 2835 slp_state = ACPI_SS_SLEPT; 2836 2837 /* 2838 * Back out state according to how far along we got in the suspend 2839 * process. This handles both the error and success cases. 2840 */ 2841 backout: 2842 if (slp_state >= ACPI_SS_GPE_SET) { 2843 acpi_wake_prep_walk(state); 2844 sc->acpi_sstate = ACPI_STATE_S0; 2845 } 2846 if (slp_state >= ACPI_SS_DEV_SUSPEND) 2847 DEVICE_RESUME(root_bus); 2848 if (slp_state >= ACPI_SS_SLP_PREP) 2849 AcpiLeaveSleepState(state); 2850 if (slp_state >= ACPI_SS_SLEPT) { 2851 acpi_resync_clock(sc); 2852 acpi_enable_fixed_events(sc); 2853 } 2854 sc->acpi_next_sstate = 0; 2855 2856 mtx_unlock(&Giant); 2857 2858 if (smp_started) { 2859 thread_lock(curthread); 2860 sched_unbind(curthread); 2861 thread_unlock(curthread); 2862 } 2863 2864 EVENTHANDLER_INVOKE(power_resume); 2865 2866 /* Allow another sleep request after a while. */ 2867 timeout(acpi_sleep_enable, sc, hz * ACPI_MINIMUM_AWAKETIME); 2868 2869 /* Run /etc/rc.resume after we are back. */ 2870 if (devctl_process_running()) 2871 acpi_UserNotify("Resume", ACPI_ROOT_OBJECT, state); 2872 2873 return_ACPI_STATUS (status); 2874 } 2875 2876 static void 2877 acpi_resync_clock(struct acpi_softc *sc) 2878 { 2879 #ifdef __amd64__ 2880 if (!acpi_reset_clock) 2881 return; 2882 2883 /* 2884 * Warm up timecounter again and reset system clock. 2885 */ 2886 (void)timecounter->tc_get_timecount(timecounter); 2887 (void)timecounter->tc_get_timecount(timecounter); 2888 inittodr(time_second + sc->acpi_sleep_delay); 2889 #endif 2890 } 2891 2892 /* Enable or disable the device's wake GPE. */ 2893 int 2894 acpi_wake_set_enable(device_t dev, int enable) 2895 { 2896 struct acpi_prw_data prw; 2897 ACPI_STATUS status; 2898 int flags; 2899 2900 /* Make sure the device supports waking the system and get the GPE. */ 2901 if (acpi_parse_prw(acpi_get_handle(dev), &prw) != 0) 2902 return (ENXIO); 2903 2904 flags = acpi_get_flags(dev); 2905 if (enable) { 2906 status = AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, 2907 ACPI_GPE_ENABLE); 2908 if (ACPI_FAILURE(status)) { 2909 device_printf(dev, "enable wake failed\n"); 2910 return (ENXIO); 2911 } 2912 acpi_set_flags(dev, flags | ACPI_FLAG_WAKE_ENABLED); 2913 } else { 2914 status = AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, 2915 ACPI_GPE_DISABLE); 2916 if (ACPI_FAILURE(status)) { 2917 device_printf(dev, "disable wake failed\n"); 2918 return (ENXIO); 2919 } 2920 acpi_set_flags(dev, flags & ~ACPI_FLAG_WAKE_ENABLED); 2921 } 2922 2923 return (0); 2924 } 2925 2926 static int 2927 acpi_wake_sleep_prep(ACPI_HANDLE handle, int sstate) 2928 { 2929 struct acpi_prw_data prw; 2930 device_t dev; 2931 2932 /* Check that this is a wake-capable device and get its GPE. */ 2933 if (acpi_parse_prw(handle, &prw) != 0) 2934 return (ENXIO); 2935 dev = acpi_get_device(handle); 2936 2937 /* 2938 * The destination sleep state must be less than (i.e., higher power) 2939 * or equal to the value specified by _PRW. If this GPE cannot be 2940 * enabled for the next sleep state, then disable it. If it can and 2941 * the user requested it be enabled, turn on any required power resources 2942 * and set _PSW. 2943 */ 2944 if (sstate > prw.lowest_wake) { 2945 AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, ACPI_GPE_DISABLE); 2946 if (bootverbose) 2947 device_printf(dev, "wake_prep disabled wake for %s (S%d)\n", 2948 acpi_name(handle), sstate); 2949 } else if (dev && (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) != 0) { 2950 acpi_pwr_wake_enable(handle, 1); 2951 acpi_SetInteger(handle, "_PSW", 1); 2952 if (bootverbose) 2953 device_printf(dev, "wake_prep enabled for %s (S%d)\n", 2954 acpi_name(handle), sstate); 2955 } 2956 2957 return (0); 2958 } 2959 2960 static int 2961 acpi_wake_run_prep(ACPI_HANDLE handle, int sstate) 2962 { 2963 struct acpi_prw_data prw; 2964 device_t dev; 2965 2966 /* 2967 * Check that this is a wake-capable device and get its GPE. Return 2968 * now if the user didn't enable this device for wake. 2969 */ 2970 if (acpi_parse_prw(handle, &prw) != 0) 2971 return (ENXIO); 2972 dev = acpi_get_device(handle); 2973 if (dev == NULL || (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) == 0) 2974 return (0); 2975 2976 /* 2977 * If this GPE couldn't be enabled for the previous sleep state, it was 2978 * disabled before going to sleep so re-enable it. If it was enabled, 2979 * clear _PSW and turn off any power resources it used. 2980 */ 2981 if (sstate > prw.lowest_wake) { 2982 AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, ACPI_GPE_ENABLE); 2983 if (bootverbose) 2984 device_printf(dev, "run_prep re-enabled %s\n", acpi_name(handle)); 2985 } else { 2986 acpi_SetInteger(handle, "_PSW", 0); 2987 acpi_pwr_wake_enable(handle, 0); 2988 if (bootverbose) 2989 device_printf(dev, "run_prep cleaned up for %s\n", 2990 acpi_name(handle)); 2991 } 2992 2993 return (0); 2994 } 2995 2996 static ACPI_STATUS 2997 acpi_wake_prep(ACPI_HANDLE handle, UINT32 level, void *context, void **status) 2998 { 2999 int sstate; 3000 3001 /* If suspending, run the sleep prep function, otherwise wake. */ 3002 sstate = *(int *)context; 3003 if (AcpiGbl_SystemAwakeAndRunning) 3004 acpi_wake_sleep_prep(handle, sstate); 3005 else 3006 acpi_wake_run_prep(handle, sstate); 3007 return (AE_OK); 3008 } 3009 3010 /* Walk the tree rooted at acpi0 to prep devices for suspend/resume. */ 3011 static int 3012 acpi_wake_prep_walk(int sstate) 3013 { 3014 ACPI_HANDLE sb_handle; 3015 3016 if (ACPI_SUCCESS(AcpiGetHandle(ACPI_ROOT_OBJECT, "\\_SB_", &sb_handle))) 3017 AcpiWalkNamespace(ACPI_TYPE_DEVICE, sb_handle, 100, 3018 acpi_wake_prep, NULL, &sstate, NULL); 3019 return (0); 3020 } 3021 3022 /* Walk the tree rooted at acpi0 to attach per-device wake sysctls. */ 3023 static int 3024 acpi_wake_sysctl_walk(device_t dev) 3025 { 3026 int error, i, numdevs; 3027 device_t *devlist; 3028 device_t child; 3029 ACPI_STATUS status; 3030 3031 error = device_get_children(dev, &devlist, &numdevs); 3032 if (error != 0 || numdevs == 0) { 3033 if (numdevs == 0) 3034 free(devlist, M_TEMP); 3035 return (error); 3036 } 3037 for (i = 0; i < numdevs; i++) { 3038 child = devlist[i]; 3039 acpi_wake_sysctl_walk(child); 3040 if (!device_is_attached(child)) 3041 continue; 3042 status = AcpiEvaluateObject(acpi_get_handle(child), "_PRW", NULL, NULL); 3043 if (ACPI_SUCCESS(status)) { 3044 SYSCTL_ADD_PROC(device_get_sysctl_ctx(child), 3045 SYSCTL_CHILDREN(device_get_sysctl_tree(child)), OID_AUTO, 3046 "wake", CTLTYPE_INT | CTLFLAG_RW, child, 0, 3047 acpi_wake_set_sysctl, "I", "Device set to wake the system"); 3048 } 3049 } 3050 free(devlist, M_TEMP); 3051 3052 return (0); 3053 } 3054 3055 /* Enable or disable wake from userland. */ 3056 static int 3057 acpi_wake_set_sysctl(SYSCTL_HANDLER_ARGS) 3058 { 3059 int enable, error; 3060 device_t dev; 3061 3062 dev = (device_t)arg1; 3063 enable = (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) ? 1 : 0; 3064 3065 error = sysctl_handle_int(oidp, &enable, 0, req); 3066 if (error != 0 || req->newptr == NULL) 3067 return (error); 3068 if (enable != 0 && enable != 1) 3069 return (EINVAL); 3070 3071 return (acpi_wake_set_enable(dev, enable)); 3072 } 3073 3074 /* Parse a device's _PRW into a structure. */ 3075 int 3076 acpi_parse_prw(ACPI_HANDLE h, struct acpi_prw_data *prw) 3077 { 3078 ACPI_STATUS status; 3079 ACPI_BUFFER prw_buffer; 3080 ACPI_OBJECT *res, *res2; 3081 int error, i, power_count; 3082 3083 if (h == NULL || prw == NULL) 3084 return (EINVAL); 3085 3086 /* 3087 * The _PRW object (7.2.9) is only required for devices that have the 3088 * ability to wake the system from a sleeping state. 3089 */ 3090 error = EINVAL; 3091 prw_buffer.Pointer = NULL; 3092 prw_buffer.Length = ACPI_ALLOCATE_BUFFER; 3093 status = AcpiEvaluateObject(h, "_PRW", NULL, &prw_buffer); 3094 if (ACPI_FAILURE(status)) 3095 return (ENOENT); 3096 res = (ACPI_OBJECT *)prw_buffer.Pointer; 3097 if (res == NULL) 3098 return (ENOENT); 3099 if (!ACPI_PKG_VALID(res, 2)) 3100 goto out; 3101 3102 /* 3103 * Element 1 of the _PRW object: 3104 * The lowest power system sleeping state that can be entered while still 3105 * providing wake functionality. The sleeping state being entered must 3106 * be less than (i.e., higher power) or equal to this value. 3107 */ 3108 if (acpi_PkgInt32(res, 1, &prw->lowest_wake) != 0) 3109 goto out; 3110 3111 /* 3112 * Element 0 of the _PRW object: 3113 */ 3114 switch (res->Package.Elements[0].Type) { 3115 case ACPI_TYPE_INTEGER: 3116 /* 3117 * If the data type of this package element is numeric, then this 3118 * _PRW package element is the bit index in the GPEx_EN, in the 3119 * GPE blocks described in the FADT, of the enable bit that is 3120 * enabled for the wake event. 3121 */ 3122 prw->gpe_handle = NULL; 3123 prw->gpe_bit = res->Package.Elements[0].Integer.Value; 3124 error = 0; 3125 break; 3126 case ACPI_TYPE_PACKAGE: 3127 /* 3128 * If the data type of this package element is a package, then this 3129 * _PRW package element is itself a package containing two 3130 * elements. The first is an object reference to the GPE Block 3131 * device that contains the GPE that will be triggered by the wake 3132 * event. The second element is numeric and it contains the bit 3133 * index in the GPEx_EN, in the GPE Block referenced by the 3134 * first element in the package, of the enable bit that is enabled for 3135 * the wake event. 3136 * 3137 * For example, if this field is a package then it is of the form: 3138 * Package() {\_SB.PCI0.ISA.GPE, 2} 3139 */ 3140 res2 = &res->Package.Elements[0]; 3141 if (!ACPI_PKG_VALID(res2, 2)) 3142 goto out; 3143 prw->gpe_handle = acpi_GetReference(NULL, &res2->Package.Elements[0]); 3144 if (prw->gpe_handle == NULL) 3145 goto out; 3146 if (acpi_PkgInt32(res2, 1, &prw->gpe_bit) != 0) 3147 goto out; 3148 error = 0; 3149 break; 3150 default: 3151 goto out; 3152 } 3153 3154 /* Elements 2 to N of the _PRW object are power resources. */ 3155 power_count = res->Package.Count - 2; 3156 if (power_count > ACPI_PRW_MAX_POWERRES) { 3157 printf("ACPI device %s has too many power resources\n", acpi_name(h)); 3158 power_count = 0; 3159 } 3160 prw->power_res_count = power_count; 3161 for (i = 0; i < power_count; i++) 3162 prw->power_res[i] = res->Package.Elements[i]; 3163 3164 out: 3165 if (prw_buffer.Pointer != NULL) 3166 AcpiOsFree(prw_buffer.Pointer); 3167 return (error); 3168 } 3169 3170 /* 3171 * ACPI Event Handlers 3172 */ 3173 3174 /* System Event Handlers (registered by EVENTHANDLER_REGISTER) */ 3175 3176 static void 3177 acpi_system_eventhandler_sleep(void *arg, int state) 3178 { 3179 struct acpi_softc *sc = (struct acpi_softc *)arg; 3180 int ret; 3181 3182 ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state); 3183 3184 /* Check if button action is disabled or unknown. */ 3185 if (state == ACPI_STATE_UNKNOWN) 3186 return; 3187 3188 /* Request that the system prepare to enter the given suspend state. */ 3189 ret = acpi_ReqSleepState(sc, state); 3190 if (ret != 0) 3191 device_printf(sc->acpi_dev, 3192 "request to enter state S%d failed (err %d)\n", state, ret); 3193 3194 return_VOID; 3195 } 3196 3197 static void 3198 acpi_system_eventhandler_wakeup(void *arg, int state) 3199 { 3200 3201 ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state); 3202 3203 /* Currently, nothing to do for wakeup. */ 3204 3205 return_VOID; 3206 } 3207 3208 /* 3209 * ACPICA Event Handlers (FixedEvent, also called from button notify handler) 3210 */ 3211 static void 3212 acpi_invoke_sleep_eventhandler(void *context) 3213 { 3214 3215 EVENTHANDLER_INVOKE(acpi_sleep_event, *(int *)context); 3216 } 3217 3218 static void 3219 acpi_invoke_wake_eventhandler(void *context) 3220 { 3221 3222 EVENTHANDLER_INVOKE(acpi_wakeup_event, *(int *)context); 3223 } 3224 3225 UINT32 3226 acpi_event_power_button_sleep(void *context) 3227 { 3228 struct acpi_softc *sc = (struct acpi_softc *)context; 3229 3230 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3231 3232 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3233 acpi_invoke_sleep_eventhandler, &sc->acpi_power_button_sx))) 3234 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); 3235 return_VALUE (ACPI_INTERRUPT_HANDLED); 3236 } 3237 3238 UINT32 3239 acpi_event_power_button_wake(void *context) 3240 { 3241 struct acpi_softc *sc = (struct acpi_softc *)context; 3242 3243 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3244 3245 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3246 acpi_invoke_wake_eventhandler, &sc->acpi_power_button_sx))) 3247 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); 3248 return_VALUE (ACPI_INTERRUPT_HANDLED); 3249 } 3250 3251 UINT32 3252 acpi_event_sleep_button_sleep(void *context) 3253 { 3254 struct acpi_softc *sc = (struct acpi_softc *)context; 3255 3256 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3257 3258 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3259 acpi_invoke_sleep_eventhandler, &sc->acpi_sleep_button_sx))) 3260 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); 3261 return_VALUE (ACPI_INTERRUPT_HANDLED); 3262 } 3263 3264 UINT32 3265 acpi_event_sleep_button_wake(void *context) 3266 { 3267 struct acpi_softc *sc = (struct acpi_softc *)context; 3268 3269 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3270 3271 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3272 acpi_invoke_wake_eventhandler, &sc->acpi_sleep_button_sx))) 3273 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); 3274 return_VALUE (ACPI_INTERRUPT_HANDLED); 3275 } 3276 3277 /* 3278 * XXX This static buffer is suboptimal. There is no locking so only 3279 * use this for single-threaded callers. 3280 */ 3281 char * 3282 acpi_name(ACPI_HANDLE handle) 3283 { 3284 ACPI_BUFFER buf; 3285 static char data[256]; 3286 3287 buf.Length = sizeof(data); 3288 buf.Pointer = data; 3289 3290 if (handle && ACPI_SUCCESS(AcpiGetName(handle, ACPI_FULL_PATHNAME, &buf))) 3291 return (data); 3292 return ("(unknown)"); 3293 } 3294 3295 /* 3296 * Debugging/bug-avoidance. Avoid trying to fetch info on various 3297 * parts of the namespace. 3298 */ 3299 int 3300 acpi_avoid(ACPI_HANDLE handle) 3301 { 3302 char *cp, *env, *np; 3303 int len; 3304 3305 np = acpi_name(handle); 3306 if (*np == '\\') 3307 np++; 3308 if ((env = getenv("debug.acpi.avoid")) == NULL) 3309 return (0); 3310 3311 /* Scan the avoid list checking for a match */ 3312 cp = env; 3313 for (;;) { 3314 while (*cp != 0 && isspace(*cp)) 3315 cp++; 3316 if (*cp == 0) 3317 break; 3318 len = 0; 3319 while (cp[len] != 0 && !isspace(cp[len])) 3320 len++; 3321 if (!strncmp(cp, np, len)) { 3322 freeenv(env); 3323 return(1); 3324 } 3325 cp += len; 3326 } 3327 freeenv(env); 3328 3329 return (0); 3330 } 3331 3332 /* 3333 * Debugging/bug-avoidance. Disable ACPI subsystem components. 3334 */ 3335 int 3336 acpi_disabled(char *subsys) 3337 { 3338 char *cp, *env; 3339 int len; 3340 3341 if ((env = getenv("debug.acpi.disabled")) == NULL) 3342 return (0); 3343 if (strcmp(env, "all") == 0) { 3344 freeenv(env); 3345 return (1); 3346 } 3347 3348 /* Scan the disable list, checking for a match. */ 3349 cp = env; 3350 for (;;) { 3351 while (*cp != '\0' && isspace(*cp)) 3352 cp++; 3353 if (*cp == '\0') 3354 break; 3355 len = 0; 3356 while (cp[len] != '\0' && !isspace(cp[len])) 3357 len++; 3358 if (strncmp(cp, subsys, len) == 0) { 3359 freeenv(env); 3360 return (1); 3361 } 3362 cp += len; 3363 } 3364 freeenv(env); 3365 3366 return (0); 3367 } 3368 3369 /* 3370 * Control interface. 3371 * 3372 * We multiplex ioctls for all participating ACPI devices here. Individual 3373 * drivers wanting to be accessible via /dev/acpi should use the 3374 * register/deregister interface to make their handlers visible. 3375 */ 3376 struct acpi_ioctl_hook 3377 { 3378 TAILQ_ENTRY(acpi_ioctl_hook) link; 3379 u_long cmd; 3380 acpi_ioctl_fn fn; 3381 void *arg; 3382 }; 3383 3384 static TAILQ_HEAD(,acpi_ioctl_hook) acpi_ioctl_hooks; 3385 static int acpi_ioctl_hooks_initted; 3386 3387 int 3388 acpi_register_ioctl(u_long cmd, acpi_ioctl_fn fn, void *arg) 3389 { 3390 struct acpi_ioctl_hook *hp; 3391 3392 if ((hp = malloc(sizeof(*hp), M_ACPIDEV, M_NOWAIT)) == NULL) 3393 return (ENOMEM); 3394 hp->cmd = cmd; 3395 hp->fn = fn; 3396 hp->arg = arg; 3397 3398 ACPI_LOCK(acpi); 3399 if (acpi_ioctl_hooks_initted == 0) { 3400 TAILQ_INIT(&acpi_ioctl_hooks); 3401 acpi_ioctl_hooks_initted = 1; 3402 } 3403 TAILQ_INSERT_TAIL(&acpi_ioctl_hooks, hp, link); 3404 ACPI_UNLOCK(acpi); 3405 3406 return (0); 3407 } 3408 3409 void 3410 acpi_deregister_ioctl(u_long cmd, acpi_ioctl_fn fn) 3411 { 3412 struct acpi_ioctl_hook *hp; 3413 3414 ACPI_LOCK(acpi); 3415 TAILQ_FOREACH(hp, &acpi_ioctl_hooks, link) 3416 if (hp->cmd == cmd && hp->fn == fn) 3417 break; 3418 3419 if (hp != NULL) { 3420 TAILQ_REMOVE(&acpi_ioctl_hooks, hp, link); 3421 free(hp, M_ACPIDEV); 3422 } 3423 ACPI_UNLOCK(acpi); 3424 } 3425 3426 static int 3427 acpiopen(struct cdev *dev, int flag, int fmt, struct thread *td) 3428 { 3429 return (0); 3430 } 3431 3432 static int 3433 acpiclose(struct cdev *dev, int flag, int fmt, struct thread *td) 3434 { 3435 return (0); 3436 } 3437 3438 static int 3439 acpiioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 3440 { 3441 struct acpi_softc *sc; 3442 struct acpi_ioctl_hook *hp; 3443 int error, state; 3444 3445 error = 0; 3446 hp = NULL; 3447 sc = dev->si_drv1; 3448 3449 /* 3450 * Scan the list of registered ioctls, looking for handlers. 3451 */ 3452 ACPI_LOCK(acpi); 3453 if (acpi_ioctl_hooks_initted) 3454 TAILQ_FOREACH(hp, &acpi_ioctl_hooks, link) { 3455 if (hp->cmd == cmd) 3456 break; 3457 } 3458 ACPI_UNLOCK(acpi); 3459 if (hp) 3460 return (hp->fn(cmd, addr, hp->arg)); 3461 3462 /* 3463 * Core ioctls are not permitted for non-writable user. 3464 * Currently, other ioctls just fetch information. 3465 * Not changing system behavior. 3466 */ 3467 if ((flag & FWRITE) == 0) 3468 return (EPERM); 3469 3470 /* Core system ioctls. */ 3471 switch (cmd) { 3472 case ACPIIO_REQSLPSTATE: 3473 state = *(int *)addr; 3474 if (state != ACPI_STATE_S5) 3475 return (acpi_ReqSleepState(sc, state)); 3476 device_printf(sc->acpi_dev, "power off via acpi ioctl not supported\n"); 3477 error = EOPNOTSUPP; 3478 break; 3479 case ACPIIO_ACKSLPSTATE: 3480 error = *(int *)addr; 3481 error = acpi_AckSleepState(sc->acpi_clone, error); 3482 break; 3483 case ACPIIO_SETSLPSTATE: /* DEPRECATED */ 3484 state = *(int *)addr; 3485 if (state < ACPI_STATE_S0 || state > ACPI_S_STATES_MAX) 3486 return (EINVAL); 3487 if (!acpi_sleep_states[state]) 3488 return (EOPNOTSUPP); 3489 if (ACPI_FAILURE(acpi_SetSleepState(sc, state))) 3490 error = ENXIO; 3491 break; 3492 default: 3493 error = ENXIO; 3494 break; 3495 } 3496 3497 return (error); 3498 } 3499 3500 static int 3501 acpi_sname2sstate(const char *sname) 3502 { 3503 int sstate; 3504 3505 if (toupper(sname[0]) == 'S') { 3506 sstate = sname[1] - '0'; 3507 if (sstate >= ACPI_STATE_S0 && sstate <= ACPI_STATE_S5 && 3508 sname[2] == '\0') 3509 return (sstate); 3510 } else if (strcasecmp(sname, "NONE") == 0) 3511 return (ACPI_STATE_UNKNOWN); 3512 return (-1); 3513 } 3514 3515 static const char * 3516 acpi_sstate2sname(int sstate) 3517 { 3518 static const char *snames[] = { "S0", "S1", "S2", "S3", "S4", "S5" }; 3519 3520 if (sstate >= ACPI_STATE_S0 && sstate <= ACPI_STATE_S5) 3521 return (snames[sstate]); 3522 else if (sstate == ACPI_STATE_UNKNOWN) 3523 return ("NONE"); 3524 return (NULL); 3525 } 3526 3527 static int 3528 acpi_supported_sleep_state_sysctl(SYSCTL_HANDLER_ARGS) 3529 { 3530 int error; 3531 struct sbuf sb; 3532 UINT8 state; 3533 3534 sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND); 3535 for (state = ACPI_STATE_S1; state < ACPI_S_STATE_COUNT; state++) 3536 if (acpi_sleep_states[state]) 3537 sbuf_printf(&sb, "%s ", acpi_sstate2sname(state)); 3538 sbuf_trim(&sb); 3539 sbuf_finish(&sb); 3540 error = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req); 3541 sbuf_delete(&sb); 3542 return (error); 3543 } 3544 3545 static int 3546 acpi_sleep_state_sysctl(SYSCTL_HANDLER_ARGS) 3547 { 3548 char sleep_state[10]; 3549 int error, new_state, old_state; 3550 3551 old_state = *(int *)oidp->oid_arg1; 3552 strlcpy(sleep_state, acpi_sstate2sname(old_state), sizeof(sleep_state)); 3553 error = sysctl_handle_string(oidp, sleep_state, sizeof(sleep_state), req); 3554 if (error == 0 && req->newptr != NULL) { 3555 new_state = acpi_sname2sstate(sleep_state); 3556 if (new_state < ACPI_STATE_S1) 3557 return (EINVAL); 3558 if (new_state < ACPI_S_STATE_COUNT && !acpi_sleep_states[new_state]) 3559 return (EOPNOTSUPP); 3560 if (new_state != old_state) 3561 *(int *)oidp->oid_arg1 = new_state; 3562 } 3563 return (error); 3564 } 3565 3566 /* Inform devctl(4) when we receive a Notify. */ 3567 void 3568 acpi_UserNotify(const char *subsystem, ACPI_HANDLE h, uint8_t notify) 3569 { 3570 char notify_buf[16]; 3571 ACPI_BUFFER handle_buf; 3572 ACPI_STATUS status; 3573 3574 if (subsystem == NULL) 3575 return; 3576 3577 handle_buf.Pointer = NULL; 3578 handle_buf.Length = ACPI_ALLOCATE_BUFFER; 3579 status = AcpiNsHandleToPathname(h, &handle_buf); 3580 if (ACPI_FAILURE(status)) 3581 return; 3582 snprintf(notify_buf, sizeof(notify_buf), "notify=0x%02x", notify); 3583 devctl_notify("ACPI", subsystem, handle_buf.Pointer, notify_buf); 3584 AcpiOsFree(handle_buf.Pointer); 3585 } 3586 3587 #ifdef ACPI_DEBUG 3588 /* 3589 * Support for parsing debug options from the kernel environment. 3590 * 3591 * Bits may be set in the AcpiDbgLayer and AcpiDbgLevel debug registers 3592 * by specifying the names of the bits in the debug.acpi.layer and 3593 * debug.acpi.level environment variables. Bits may be unset by 3594 * prefixing the bit name with !. 3595 */ 3596 struct debugtag 3597 { 3598 char *name; 3599 UINT32 value; 3600 }; 3601 3602 static struct debugtag dbg_layer[] = { 3603 {"ACPI_UTILITIES", ACPI_UTILITIES}, 3604 {"ACPI_HARDWARE", ACPI_HARDWARE}, 3605 {"ACPI_EVENTS", ACPI_EVENTS}, 3606 {"ACPI_TABLES", ACPI_TABLES}, 3607 {"ACPI_NAMESPACE", ACPI_NAMESPACE}, 3608 {"ACPI_PARSER", ACPI_PARSER}, 3609 {"ACPI_DISPATCHER", ACPI_DISPATCHER}, 3610 {"ACPI_EXECUTER", ACPI_EXECUTER}, 3611 {"ACPI_RESOURCES", ACPI_RESOURCES}, 3612 {"ACPI_CA_DEBUGGER", ACPI_CA_DEBUGGER}, 3613 {"ACPI_OS_SERVICES", ACPI_OS_SERVICES}, 3614 {"ACPI_CA_DISASSEMBLER", ACPI_CA_DISASSEMBLER}, 3615 {"ACPI_ALL_COMPONENTS", ACPI_ALL_COMPONENTS}, 3616 3617 {"ACPI_AC_ADAPTER", ACPI_AC_ADAPTER}, 3618 {"ACPI_BATTERY", ACPI_BATTERY}, 3619 {"ACPI_BUS", ACPI_BUS}, 3620 {"ACPI_BUTTON", ACPI_BUTTON}, 3621 {"ACPI_EC", ACPI_EC}, 3622 {"ACPI_FAN", ACPI_FAN}, 3623 {"ACPI_POWERRES", ACPI_POWERRES}, 3624 {"ACPI_PROCESSOR", ACPI_PROCESSOR}, 3625 {"ACPI_THERMAL", ACPI_THERMAL}, 3626 {"ACPI_TIMER", ACPI_TIMER}, 3627 {"ACPI_ALL_DRIVERS", ACPI_ALL_DRIVERS}, 3628 {NULL, 0} 3629 }; 3630 3631 static struct debugtag dbg_level[] = { 3632 {"ACPI_LV_INIT", ACPI_LV_INIT}, 3633 {"ACPI_LV_DEBUG_OBJECT", ACPI_LV_DEBUG_OBJECT}, 3634 {"ACPI_LV_INFO", ACPI_LV_INFO}, 3635 {"ACPI_LV_REPAIR", ACPI_LV_REPAIR}, 3636 {"ACPI_LV_ALL_EXCEPTIONS", ACPI_LV_ALL_EXCEPTIONS}, 3637 3638 /* Trace verbosity level 1 [Standard Trace Level] */ 3639 {"ACPI_LV_INIT_NAMES", ACPI_LV_INIT_NAMES}, 3640 {"ACPI_LV_PARSE", ACPI_LV_PARSE}, 3641 {"ACPI_LV_LOAD", ACPI_LV_LOAD}, 3642 {"ACPI_LV_DISPATCH", ACPI_LV_DISPATCH}, 3643 {"ACPI_LV_EXEC", ACPI_LV_EXEC}, 3644 {"ACPI_LV_NAMES", ACPI_LV_NAMES}, 3645 {"ACPI_LV_OPREGION", ACPI_LV_OPREGION}, 3646 {"ACPI_LV_BFIELD", ACPI_LV_BFIELD}, 3647 {"ACPI_LV_TABLES", ACPI_LV_TABLES}, 3648 {"ACPI_LV_VALUES", ACPI_LV_VALUES}, 3649 {"ACPI_LV_OBJECTS", ACPI_LV_OBJECTS}, 3650 {"ACPI_LV_RESOURCES", ACPI_LV_RESOURCES}, 3651 {"ACPI_LV_USER_REQUESTS", ACPI_LV_USER_REQUESTS}, 3652 {"ACPI_LV_PACKAGE", ACPI_LV_PACKAGE}, 3653 {"ACPI_LV_VERBOSITY1", ACPI_LV_VERBOSITY1}, 3654 3655 /* Trace verbosity level 2 [Function tracing and memory allocation] */ 3656 {"ACPI_LV_ALLOCATIONS", ACPI_LV_ALLOCATIONS}, 3657 {"ACPI_LV_FUNCTIONS", ACPI_LV_FUNCTIONS}, 3658 {"ACPI_LV_OPTIMIZATIONS", ACPI_LV_OPTIMIZATIONS}, 3659 {"ACPI_LV_VERBOSITY2", ACPI_LV_VERBOSITY2}, 3660 {"ACPI_LV_ALL", ACPI_LV_ALL}, 3661 3662 /* Trace verbosity level 3 [Threading, I/O, and Interrupts] */ 3663 {"ACPI_LV_MUTEX", ACPI_LV_MUTEX}, 3664 {"ACPI_LV_THREADS", ACPI_LV_THREADS}, 3665 {"ACPI_LV_IO", ACPI_LV_IO}, 3666 {"ACPI_LV_INTERRUPTS", ACPI_LV_INTERRUPTS}, 3667 {"ACPI_LV_VERBOSITY3", ACPI_LV_VERBOSITY3}, 3668 3669 /* Exceptionally verbose output -- also used in the global "DebugLevel" */ 3670 {"ACPI_LV_AML_DISASSEMBLE", ACPI_LV_AML_DISASSEMBLE}, 3671 {"ACPI_LV_VERBOSE_INFO", ACPI_LV_VERBOSE_INFO}, 3672 {"ACPI_LV_FULL_TABLES", ACPI_LV_FULL_TABLES}, 3673 {"ACPI_LV_EVENTS", ACPI_LV_EVENTS}, 3674 {"ACPI_LV_VERBOSE", ACPI_LV_VERBOSE}, 3675 {NULL, 0} 3676 }; 3677 3678 static void 3679 acpi_parse_debug(char *cp, struct debugtag *tag, UINT32 *flag) 3680 { 3681 char *ep; 3682 int i, l; 3683 int set; 3684 3685 while (*cp) { 3686 if (isspace(*cp)) { 3687 cp++; 3688 continue; 3689 } 3690 ep = cp; 3691 while (*ep && !isspace(*ep)) 3692 ep++; 3693 if (*cp == '!') { 3694 set = 0; 3695 cp++; 3696 if (cp == ep) 3697 continue; 3698 } else { 3699 set = 1; 3700 } 3701 l = ep - cp; 3702 for (i = 0; tag[i].name != NULL; i++) { 3703 if (!strncmp(cp, tag[i].name, l)) { 3704 if (set) 3705 *flag |= tag[i].value; 3706 else 3707 *flag &= ~tag[i].value; 3708 } 3709 } 3710 cp = ep; 3711 } 3712 } 3713 3714 static void 3715 acpi_set_debugging(void *junk) 3716 { 3717 char *layer, *level; 3718 3719 if (cold) { 3720 AcpiDbgLayer = 0; 3721 AcpiDbgLevel = 0; 3722 } 3723 3724 layer = getenv("debug.acpi.layer"); 3725 level = getenv("debug.acpi.level"); 3726 if (layer == NULL && level == NULL) 3727 return; 3728 3729 printf("ACPI set debug"); 3730 if (layer != NULL) { 3731 if (strcmp("NONE", layer) != 0) 3732 printf(" layer '%s'", layer); 3733 acpi_parse_debug(layer, &dbg_layer[0], &AcpiDbgLayer); 3734 freeenv(layer); 3735 } 3736 if (level != NULL) { 3737 if (strcmp("NONE", level) != 0) 3738 printf(" level '%s'", level); 3739 acpi_parse_debug(level, &dbg_level[0], &AcpiDbgLevel); 3740 freeenv(level); 3741 } 3742 printf("\n"); 3743 } 3744 3745 SYSINIT(acpi_debugging, SI_SUB_TUNABLES, SI_ORDER_ANY, acpi_set_debugging, 3746 NULL); 3747 3748 static int 3749 acpi_debug_sysctl(SYSCTL_HANDLER_ARGS) 3750 { 3751 int error, *dbg; 3752 struct debugtag *tag; 3753 struct sbuf sb; 3754 3755 if (sbuf_new(&sb, NULL, 128, SBUF_AUTOEXTEND) == NULL) 3756 return (ENOMEM); 3757 if (strcmp(oidp->oid_arg1, "debug.acpi.layer") == 0) { 3758 tag = &dbg_layer[0]; 3759 dbg = &AcpiDbgLayer; 3760 } else { 3761 tag = &dbg_level[0]; 3762 dbg = &AcpiDbgLevel; 3763 } 3764 3765 /* Get old values if this is a get request. */ 3766 ACPI_SERIAL_BEGIN(acpi); 3767 if (*dbg == 0) { 3768 sbuf_cpy(&sb, "NONE"); 3769 } else if (req->newptr == NULL) { 3770 for (; tag->name != NULL; tag++) { 3771 if ((*dbg & tag->value) == tag->value) 3772 sbuf_printf(&sb, "%s ", tag->name); 3773 } 3774 } 3775 sbuf_trim(&sb); 3776 sbuf_finish(&sb); 3777 3778 /* Copy out the old values to the user. */ 3779 error = SYSCTL_OUT(req, sbuf_data(&sb), sbuf_len(&sb)); 3780 sbuf_delete(&sb); 3781 3782 /* If the user is setting a string, parse it. */ 3783 if (error == 0 && req->newptr != NULL) { 3784 *dbg = 0; 3785 setenv((char *)oidp->oid_arg1, (char *)req->newptr); 3786 acpi_set_debugging(NULL); 3787 } 3788 ACPI_SERIAL_END(acpi); 3789 3790 return (error); 3791 } 3792 3793 SYSCTL_PROC(_debug_acpi, OID_AUTO, layer, CTLFLAG_RW | CTLTYPE_STRING, 3794 "debug.acpi.layer", 0, acpi_debug_sysctl, "A", ""); 3795 SYSCTL_PROC(_debug_acpi, OID_AUTO, level, CTLFLAG_RW | CTLTYPE_STRING, 3796 "debug.acpi.level", 0, acpi_debug_sysctl, "A", ""); 3797 #endif /* ACPI_DEBUG */ 3798 3799 static int 3800 acpi_debug_objects_sysctl(SYSCTL_HANDLER_ARGS) 3801 { 3802 int error; 3803 int old; 3804 3805 old = acpi_debug_objects; 3806 error = sysctl_handle_int(oidp, &acpi_debug_objects, 0, req); 3807 if (error != 0 || req->newptr == NULL) 3808 return (error); 3809 if (old == acpi_debug_objects || (old && acpi_debug_objects)) 3810 return (0); 3811 3812 ACPI_SERIAL_BEGIN(acpi); 3813 AcpiGbl_EnableAmlDebugObject = acpi_debug_objects ? TRUE : FALSE; 3814 ACPI_SERIAL_END(acpi); 3815 3816 return (0); 3817 } 3818 3819 static int 3820 acpi_parse_interfaces(char *str, struct acpi_interface *iface) 3821 { 3822 char *p; 3823 size_t len; 3824 int i, j; 3825 3826 p = str; 3827 while (isspace(*p) || *p == ',') 3828 p++; 3829 len = strlen(p); 3830 if (len == 0) 3831 return (0); 3832 p = strdup(p, M_TEMP); 3833 for (i = 0; i < len; i++) 3834 if (p[i] == ',') 3835 p[i] = '\0'; 3836 i = j = 0; 3837 while (i < len) 3838 if (isspace(p[i]) || p[i] == '\0') 3839 i++; 3840 else { 3841 i += strlen(p + i) + 1; 3842 j++; 3843 } 3844 if (j == 0) { 3845 free(p, M_TEMP); 3846 return (0); 3847 } 3848 iface->data = malloc(sizeof(*iface->data) * j, M_TEMP, M_WAITOK); 3849 iface->num = j; 3850 i = j = 0; 3851 while (i < len) 3852 if (isspace(p[i]) || p[i] == '\0') 3853 i++; 3854 else { 3855 iface->data[j] = p + i; 3856 i += strlen(p + i) + 1; 3857 j++; 3858 } 3859 3860 return (j); 3861 } 3862 3863 static void 3864 acpi_free_interfaces(struct acpi_interface *iface) 3865 { 3866 3867 free(iface->data[0], M_TEMP); 3868 free(iface->data, M_TEMP); 3869 } 3870 3871 static void 3872 acpi_reset_interfaces(device_t dev) 3873 { 3874 struct acpi_interface list; 3875 ACPI_STATUS status; 3876 int i; 3877 3878 if (acpi_parse_interfaces(acpi_install_interface, &list) > 0) { 3879 for (i = 0; i < list.num; i++) { 3880 status = AcpiInstallInterface(list.data[i]); 3881 if (ACPI_FAILURE(status)) 3882 device_printf(dev, 3883 "failed to install _OSI(\"%s\"): %s\n", 3884 list.data[i], AcpiFormatException(status)); 3885 else if (bootverbose) 3886 device_printf(dev, "installed _OSI(\"%s\")\n", 3887 list.data[i]); 3888 } 3889 acpi_free_interfaces(&list); 3890 } 3891 if (acpi_parse_interfaces(acpi_remove_interface, &list) > 0) { 3892 for (i = 0; i < list.num; i++) { 3893 status = AcpiRemoveInterface(list.data[i]); 3894 if (ACPI_FAILURE(status)) 3895 device_printf(dev, 3896 "failed to remove _OSI(\"%s\"): %s\n", 3897 list.data[i], AcpiFormatException(status)); 3898 else if (bootverbose) 3899 device_printf(dev, "removed _OSI(\"%s\")\n", 3900 list.data[i]); 3901 } 3902 acpi_free_interfaces(&list); 3903 } 3904 } 3905 3906 static int 3907 acpi_pm_func(u_long cmd, void *arg, ...) 3908 { 3909 int state, acpi_state; 3910 int error; 3911 struct acpi_softc *sc; 3912 va_list ap; 3913 3914 error = 0; 3915 switch (cmd) { 3916 case POWER_CMD_SUSPEND: 3917 sc = (struct acpi_softc *)arg; 3918 if (sc == NULL) { 3919 error = EINVAL; 3920 goto out; 3921 } 3922 3923 va_start(ap, arg); 3924 state = va_arg(ap, int); 3925 va_end(ap); 3926 3927 switch (state) { 3928 case POWER_SLEEP_STATE_STANDBY: 3929 acpi_state = sc->acpi_standby_sx; 3930 break; 3931 case POWER_SLEEP_STATE_SUSPEND: 3932 acpi_state = sc->acpi_suspend_sx; 3933 break; 3934 case POWER_SLEEP_STATE_HIBERNATE: 3935 acpi_state = ACPI_STATE_S4; 3936 break; 3937 default: 3938 error = EINVAL; 3939 goto out; 3940 } 3941 3942 if (ACPI_FAILURE(acpi_EnterSleepState(sc, acpi_state))) 3943 error = ENXIO; 3944 break; 3945 default: 3946 error = EINVAL; 3947 goto out; 3948 } 3949 3950 out: 3951 return (error); 3952 } 3953 3954 static void 3955 acpi_pm_register(void *arg) 3956 { 3957 if (!cold || resource_disabled("acpi", 0)) 3958 return; 3959 3960 power_pm_register(POWER_PM_TYPE_ACPI, acpi_pm_func, NULL); 3961 } 3962 3963 SYSINIT(power, SI_SUB_KLD, SI_ORDER_ANY, acpi_pm_register, 0); 3964