1 /*- 2 * Copyright (c) 2000 Takanori Watanabe <takawata@jp.freebsd.org> 3 * Copyright (c) 2000 Mitsuru IWASAKI <iwasaki@jp.freebsd.org> 4 * Copyright (c) 2000, 2001 Michael Smith 5 * Copyright (c) 2000 BSDi 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include "opt_acpi.h" 34 35 #include <sys/param.h> 36 #include <sys/kernel.h> 37 #include <sys/proc.h> 38 #include <sys/fcntl.h> 39 #include <sys/malloc.h> 40 #include <sys/module.h> 41 #include <sys/bus.h> 42 #include <sys/conf.h> 43 #include <sys/ioccom.h> 44 #include <sys/reboot.h> 45 #include <sys/sysctl.h> 46 #include <sys/ctype.h> 47 #include <sys/linker.h> 48 #include <sys/power.h> 49 #include <sys/sbuf.h> 50 #include <sys/sched.h> 51 #include <sys/smp.h> 52 #include <sys/timetc.h> 53 54 #if defined(__i386__) || defined(__amd64__) 55 #include <machine/clock.h> 56 #include <machine/pci_cfgreg.h> 57 #endif 58 #include <machine/resource.h> 59 #include <machine/bus.h> 60 #include <sys/rman.h> 61 #include <isa/isavar.h> 62 #include <isa/pnpvar.h> 63 64 #include <contrib/dev/acpica/include/acpi.h> 65 #include <contrib/dev/acpica/include/accommon.h> 66 #include <contrib/dev/acpica/include/acnamesp.h> 67 68 #include <dev/acpica/acpivar.h> 69 #include <dev/acpica/acpiio.h> 70 71 #include <dev/pci/pcivar.h> 72 73 #include <vm/vm_param.h> 74 75 static MALLOC_DEFINE(M_ACPIDEV, "acpidev", "ACPI devices"); 76 77 /* Hooks for the ACPI CA debugging infrastructure */ 78 #define _COMPONENT ACPI_BUS 79 ACPI_MODULE_NAME("ACPI") 80 81 static d_open_t acpiopen; 82 static d_close_t acpiclose; 83 static d_ioctl_t acpiioctl; 84 85 static struct cdevsw acpi_cdevsw = { 86 .d_version = D_VERSION, 87 .d_open = acpiopen, 88 .d_close = acpiclose, 89 .d_ioctl = acpiioctl, 90 .d_name = "acpi", 91 }; 92 93 struct acpi_interface { 94 ACPI_STRING *data; 95 int num; 96 }; 97 98 static char *sysres_ids[] = { "PNP0C01", "PNP0C02", NULL }; 99 static char *pcilink_ids[] = { "PNP0C0F", NULL }; 100 101 /* Global mutex for locking access to the ACPI subsystem. */ 102 struct mtx acpi_mutex; 103 struct callout acpi_sleep_timer; 104 105 /* Bitmap of device quirks. */ 106 int acpi_quirks; 107 108 /* Supported sleep states. */ 109 static BOOLEAN acpi_sleep_states[ACPI_S_STATE_COUNT]; 110 111 static void acpi_lookup(void *arg, const char *name, device_t *dev); 112 static int acpi_modevent(struct module *mod, int event, void *junk); 113 static int acpi_probe(device_t dev); 114 static int acpi_attach(device_t dev); 115 static int acpi_suspend(device_t dev); 116 static int acpi_resume(device_t dev); 117 static int acpi_shutdown(device_t dev); 118 static device_t acpi_add_child(device_t bus, u_int order, const char *name, 119 int unit); 120 static int acpi_print_child(device_t bus, device_t child); 121 static void acpi_probe_nomatch(device_t bus, device_t child); 122 static void acpi_driver_added(device_t dev, driver_t *driver); 123 static int acpi_read_ivar(device_t dev, device_t child, int index, 124 uintptr_t *result); 125 static int acpi_write_ivar(device_t dev, device_t child, int index, 126 uintptr_t value); 127 static struct resource_list *acpi_get_rlist(device_t dev, device_t child); 128 static void acpi_reserve_resources(device_t dev); 129 static int acpi_sysres_alloc(device_t dev); 130 static int acpi_set_resource(device_t dev, device_t child, int type, 131 int rid, rman_res_t start, rman_res_t count); 132 static struct resource *acpi_alloc_resource(device_t bus, device_t child, 133 int type, int *rid, rman_res_t start, rman_res_t end, 134 rman_res_t count, u_int flags); 135 static int acpi_adjust_resource(device_t bus, device_t child, int type, 136 struct resource *r, rman_res_t start, rman_res_t end); 137 static int acpi_release_resource(device_t bus, device_t child, int type, 138 int rid, struct resource *r); 139 static void acpi_delete_resource(device_t bus, device_t child, int type, 140 int rid); 141 static uint32_t acpi_isa_get_logicalid(device_t dev); 142 static int acpi_isa_get_compatid(device_t dev, uint32_t *cids, int count); 143 static char *acpi_device_id_probe(device_t bus, device_t dev, char **ids); 144 static ACPI_STATUS acpi_device_eval_obj(device_t bus, device_t dev, 145 ACPI_STRING pathname, ACPI_OBJECT_LIST *parameters, 146 ACPI_BUFFER *ret); 147 static ACPI_STATUS acpi_device_scan_cb(ACPI_HANDLE h, UINT32 level, 148 void *context, void **retval); 149 static ACPI_STATUS acpi_device_scan_children(device_t bus, device_t dev, 150 int max_depth, acpi_scan_cb_t user_fn, void *arg); 151 static int acpi_set_powerstate(device_t child, int state); 152 static int acpi_isa_pnp_probe(device_t bus, device_t child, 153 struct isa_pnp_id *ids); 154 static void acpi_probe_children(device_t bus); 155 static void acpi_probe_order(ACPI_HANDLE handle, int *order); 156 static ACPI_STATUS acpi_probe_child(ACPI_HANDLE handle, UINT32 level, 157 void *context, void **status); 158 static void acpi_sleep_enable(void *arg); 159 static ACPI_STATUS acpi_sleep_disable(struct acpi_softc *sc); 160 static ACPI_STATUS acpi_EnterSleepState(struct acpi_softc *sc, int state); 161 static void acpi_shutdown_final(void *arg, int howto); 162 static void acpi_enable_fixed_events(struct acpi_softc *sc); 163 static BOOLEAN acpi_has_hid(ACPI_HANDLE handle); 164 static void acpi_resync_clock(struct acpi_softc *sc); 165 static int acpi_wake_sleep_prep(ACPI_HANDLE handle, int sstate); 166 static int acpi_wake_run_prep(ACPI_HANDLE handle, int sstate); 167 static int acpi_wake_prep_walk(int sstate); 168 static int acpi_wake_sysctl_walk(device_t dev); 169 static int acpi_wake_set_sysctl(SYSCTL_HANDLER_ARGS); 170 static void acpi_system_eventhandler_sleep(void *arg, int state); 171 static void acpi_system_eventhandler_wakeup(void *arg, int state); 172 static int acpi_sname2sstate(const char *sname); 173 static const char *acpi_sstate2sname(int sstate); 174 static int acpi_supported_sleep_state_sysctl(SYSCTL_HANDLER_ARGS); 175 static int acpi_sleep_state_sysctl(SYSCTL_HANDLER_ARGS); 176 static int acpi_debug_objects_sysctl(SYSCTL_HANDLER_ARGS); 177 static int acpi_pm_func(u_long cmd, void *arg, ...); 178 static int acpi_child_location_str_method(device_t acdev, device_t child, 179 char *buf, size_t buflen); 180 static int acpi_child_pnpinfo_str_method(device_t acdev, device_t child, 181 char *buf, size_t buflen); 182 #if defined(__i386__) || defined(__amd64__) 183 static void acpi_enable_pcie(void); 184 #endif 185 static void acpi_hint_device_unit(device_t acdev, device_t child, 186 const char *name, int *unitp); 187 static void acpi_reset_interfaces(device_t dev); 188 189 static device_method_t acpi_methods[] = { 190 /* Device interface */ 191 DEVMETHOD(device_probe, acpi_probe), 192 DEVMETHOD(device_attach, acpi_attach), 193 DEVMETHOD(device_shutdown, acpi_shutdown), 194 DEVMETHOD(device_detach, bus_generic_detach), 195 DEVMETHOD(device_suspend, acpi_suspend), 196 DEVMETHOD(device_resume, acpi_resume), 197 198 /* Bus interface */ 199 DEVMETHOD(bus_add_child, acpi_add_child), 200 DEVMETHOD(bus_print_child, acpi_print_child), 201 DEVMETHOD(bus_probe_nomatch, acpi_probe_nomatch), 202 DEVMETHOD(bus_driver_added, acpi_driver_added), 203 DEVMETHOD(bus_read_ivar, acpi_read_ivar), 204 DEVMETHOD(bus_write_ivar, acpi_write_ivar), 205 DEVMETHOD(bus_get_resource_list, acpi_get_rlist), 206 DEVMETHOD(bus_set_resource, acpi_set_resource), 207 DEVMETHOD(bus_get_resource, bus_generic_rl_get_resource), 208 DEVMETHOD(bus_alloc_resource, acpi_alloc_resource), 209 DEVMETHOD(bus_adjust_resource, acpi_adjust_resource), 210 DEVMETHOD(bus_release_resource, acpi_release_resource), 211 DEVMETHOD(bus_delete_resource, acpi_delete_resource), 212 DEVMETHOD(bus_child_pnpinfo_str, acpi_child_pnpinfo_str_method), 213 DEVMETHOD(bus_child_location_str, acpi_child_location_str_method), 214 DEVMETHOD(bus_activate_resource, bus_generic_activate_resource), 215 DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource), 216 DEVMETHOD(bus_setup_intr, bus_generic_setup_intr), 217 DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr), 218 DEVMETHOD(bus_hint_device_unit, acpi_hint_device_unit), 219 DEVMETHOD(bus_get_cpus, acpi_get_cpus), 220 DEVMETHOD(bus_get_domain, acpi_get_domain), 221 222 /* ACPI bus */ 223 DEVMETHOD(acpi_id_probe, acpi_device_id_probe), 224 DEVMETHOD(acpi_evaluate_object, acpi_device_eval_obj), 225 DEVMETHOD(acpi_pwr_for_sleep, acpi_device_pwr_for_sleep), 226 DEVMETHOD(acpi_scan_children, acpi_device_scan_children), 227 228 /* ISA emulation */ 229 DEVMETHOD(isa_pnp_probe, acpi_isa_pnp_probe), 230 231 DEVMETHOD_END 232 }; 233 234 static driver_t acpi_driver = { 235 "acpi", 236 acpi_methods, 237 sizeof(struct acpi_softc), 238 }; 239 240 static devclass_t acpi_devclass; 241 DRIVER_MODULE(acpi, nexus, acpi_driver, acpi_devclass, acpi_modevent, 0); 242 MODULE_VERSION(acpi, 1); 243 244 ACPI_SERIAL_DECL(acpi, "ACPI root bus"); 245 246 /* Local pools for managing system resources for ACPI child devices. */ 247 static struct rman acpi_rman_io, acpi_rman_mem; 248 249 #define ACPI_MINIMUM_AWAKETIME 5 250 251 /* Holds the description of the acpi0 device. */ 252 static char acpi_desc[ACPI_OEM_ID_SIZE + ACPI_OEM_TABLE_ID_SIZE + 2]; 253 254 SYSCTL_NODE(_debug, OID_AUTO, acpi, CTLFLAG_RD, NULL, "ACPI debugging"); 255 static char acpi_ca_version[12]; 256 SYSCTL_STRING(_debug_acpi, OID_AUTO, acpi_ca_version, CTLFLAG_RD, 257 acpi_ca_version, 0, "Version of Intel ACPI-CA"); 258 259 /* 260 * Allow overriding _OSI methods. 261 */ 262 static char acpi_install_interface[256]; 263 TUNABLE_STR("hw.acpi.install_interface", acpi_install_interface, 264 sizeof(acpi_install_interface)); 265 static char acpi_remove_interface[256]; 266 TUNABLE_STR("hw.acpi.remove_interface", acpi_remove_interface, 267 sizeof(acpi_remove_interface)); 268 269 /* Allow users to dump Debug objects without ACPI debugger. */ 270 static int acpi_debug_objects; 271 TUNABLE_INT("debug.acpi.enable_debug_objects", &acpi_debug_objects); 272 SYSCTL_PROC(_debug_acpi, OID_AUTO, enable_debug_objects, 273 CTLFLAG_RW | CTLTYPE_INT, NULL, 0, acpi_debug_objects_sysctl, "I", 274 "Enable Debug objects"); 275 276 /* Allow the interpreter to ignore common mistakes in BIOS. */ 277 static int acpi_interpreter_slack = 1; 278 TUNABLE_INT("debug.acpi.interpreter_slack", &acpi_interpreter_slack); 279 SYSCTL_INT(_debug_acpi, OID_AUTO, interpreter_slack, CTLFLAG_RDTUN, 280 &acpi_interpreter_slack, 1, "Turn on interpreter slack mode."); 281 282 /* Ignore register widths set by FADT and use default widths instead. */ 283 static int acpi_ignore_reg_width = 1; 284 TUNABLE_INT("debug.acpi.default_register_width", &acpi_ignore_reg_width); 285 SYSCTL_INT(_debug_acpi, OID_AUTO, default_register_width, CTLFLAG_RDTUN, 286 &acpi_ignore_reg_width, 1, "Ignore register widths set by FADT"); 287 288 /* Allow users to override quirks. */ 289 TUNABLE_INT("debug.acpi.quirks", &acpi_quirks); 290 291 int acpi_susp_bounce; 292 SYSCTL_INT(_debug_acpi, OID_AUTO, suspend_bounce, CTLFLAG_RW, 293 &acpi_susp_bounce, 0, "Don't actually suspend, just test devices."); 294 295 /* 296 * ACPI can only be loaded as a module by the loader; activating it after 297 * system bootstrap time is not useful, and can be fatal to the system. 298 * It also cannot be unloaded, since the entire system bus hierarchy hangs 299 * off it. 300 */ 301 static int 302 acpi_modevent(struct module *mod, int event, void *junk) 303 { 304 switch (event) { 305 case MOD_LOAD: 306 if (!cold) { 307 printf("The ACPI driver cannot be loaded after boot.\n"); 308 return (EPERM); 309 } 310 break; 311 case MOD_UNLOAD: 312 if (!cold && power_pm_get_type() == POWER_PM_TYPE_ACPI) 313 return (EBUSY); 314 break; 315 default: 316 break; 317 } 318 return (0); 319 } 320 321 /* 322 * Perform early initialization. 323 */ 324 ACPI_STATUS 325 acpi_Startup(void) 326 { 327 static int started = 0; 328 ACPI_STATUS status; 329 int val; 330 331 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 332 333 /* Only run the startup code once. The MADT driver also calls this. */ 334 if (started) 335 return_VALUE (AE_OK); 336 started = 1; 337 338 /* 339 * Initialize the ACPICA subsystem. 340 */ 341 if (ACPI_FAILURE(status = AcpiInitializeSubsystem())) { 342 printf("ACPI: Could not initialize Subsystem: %s\n", 343 AcpiFormatException(status)); 344 return_VALUE (status); 345 } 346 347 /* 348 * Pre-allocate space for RSDT/XSDT and DSDT tables and allow resizing 349 * if more tables exist. 350 */ 351 if (ACPI_FAILURE(status = AcpiInitializeTables(NULL, 2, TRUE))) { 352 printf("ACPI: Table initialisation failed: %s\n", 353 AcpiFormatException(status)); 354 return_VALUE (status); 355 } 356 357 /* Set up any quirks we have for this system. */ 358 if (acpi_quirks == ACPI_Q_OK) 359 acpi_table_quirks(&acpi_quirks); 360 361 /* If the user manually set the disabled hint to 0, force-enable ACPI. */ 362 if (resource_int_value("acpi", 0, "disabled", &val) == 0 && val == 0) 363 acpi_quirks &= ~ACPI_Q_BROKEN; 364 if (acpi_quirks & ACPI_Q_BROKEN) { 365 printf("ACPI disabled by blacklist. Contact your BIOS vendor.\n"); 366 status = AE_SUPPORT; 367 } 368 369 return_VALUE (status); 370 } 371 372 /* 373 * Detect ACPI and perform early initialisation. 374 */ 375 int 376 acpi_identify(void) 377 { 378 ACPI_TABLE_RSDP *rsdp; 379 ACPI_TABLE_HEADER *rsdt; 380 ACPI_PHYSICAL_ADDRESS paddr; 381 struct sbuf sb; 382 383 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 384 385 if (!cold) 386 return (ENXIO); 387 388 /* Check that we haven't been disabled with a hint. */ 389 if (resource_disabled("acpi", 0)) 390 return (ENXIO); 391 392 /* Check for other PM systems. */ 393 if (power_pm_get_type() != POWER_PM_TYPE_NONE && 394 power_pm_get_type() != POWER_PM_TYPE_ACPI) { 395 printf("ACPI identify failed, other PM system enabled.\n"); 396 return (ENXIO); 397 } 398 399 /* Initialize root tables. */ 400 if (ACPI_FAILURE(acpi_Startup())) { 401 printf("ACPI: Try disabling either ACPI or apic support.\n"); 402 return (ENXIO); 403 } 404 405 if ((paddr = AcpiOsGetRootPointer()) == 0 || 406 (rsdp = AcpiOsMapMemory(paddr, sizeof(ACPI_TABLE_RSDP))) == NULL) 407 return (ENXIO); 408 if (rsdp->Revision > 1 && rsdp->XsdtPhysicalAddress != 0) 409 paddr = (ACPI_PHYSICAL_ADDRESS)rsdp->XsdtPhysicalAddress; 410 else 411 paddr = (ACPI_PHYSICAL_ADDRESS)rsdp->RsdtPhysicalAddress; 412 AcpiOsUnmapMemory(rsdp, sizeof(ACPI_TABLE_RSDP)); 413 414 if ((rsdt = AcpiOsMapMemory(paddr, sizeof(ACPI_TABLE_HEADER))) == NULL) 415 return (ENXIO); 416 sbuf_new(&sb, acpi_desc, sizeof(acpi_desc), SBUF_FIXEDLEN); 417 sbuf_bcat(&sb, rsdt->OemId, ACPI_OEM_ID_SIZE); 418 sbuf_trim(&sb); 419 sbuf_putc(&sb, ' '); 420 sbuf_bcat(&sb, rsdt->OemTableId, ACPI_OEM_TABLE_ID_SIZE); 421 sbuf_trim(&sb); 422 sbuf_finish(&sb); 423 sbuf_delete(&sb); 424 AcpiOsUnmapMemory(rsdt, sizeof(ACPI_TABLE_HEADER)); 425 426 snprintf(acpi_ca_version, sizeof(acpi_ca_version), "%x", ACPI_CA_VERSION); 427 428 return (0); 429 } 430 431 /* 432 * Fetch some descriptive data from ACPI to put in our attach message. 433 */ 434 static int 435 acpi_probe(device_t dev) 436 { 437 438 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 439 440 device_set_desc(dev, acpi_desc); 441 442 return_VALUE (BUS_PROBE_NOWILDCARD); 443 } 444 445 static int 446 acpi_attach(device_t dev) 447 { 448 struct acpi_softc *sc; 449 ACPI_STATUS status; 450 int error, state; 451 UINT32 flags; 452 UINT8 TypeA, TypeB; 453 char *env; 454 455 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 456 457 sc = device_get_softc(dev); 458 sc->acpi_dev = dev; 459 callout_init(&sc->susp_force_to, 1); 460 461 error = ENXIO; 462 463 /* Initialize resource manager. */ 464 acpi_rman_io.rm_type = RMAN_ARRAY; 465 acpi_rman_io.rm_start = 0; 466 acpi_rman_io.rm_end = 0xffff; 467 acpi_rman_io.rm_descr = "ACPI I/O ports"; 468 if (rman_init(&acpi_rman_io) != 0) 469 panic("acpi rman_init IO ports failed"); 470 acpi_rman_mem.rm_type = RMAN_ARRAY; 471 acpi_rman_mem.rm_descr = "ACPI I/O memory addresses"; 472 if (rman_init(&acpi_rman_mem) != 0) 473 panic("acpi rman_init memory failed"); 474 475 /* Initialise the ACPI mutex */ 476 mtx_init(&acpi_mutex, "ACPI global lock", NULL, MTX_DEF); 477 478 /* 479 * Set the globals from our tunables. This is needed because ACPI-CA 480 * uses UINT8 for some values and we have no tunable_byte. 481 */ 482 AcpiGbl_EnableInterpreterSlack = acpi_interpreter_slack ? TRUE : FALSE; 483 AcpiGbl_EnableAmlDebugObject = acpi_debug_objects ? TRUE : FALSE; 484 AcpiGbl_UseDefaultRegisterWidths = acpi_ignore_reg_width ? TRUE : FALSE; 485 486 #ifndef ACPI_DEBUG 487 /* 488 * Disable all debugging layers and levels. 489 */ 490 AcpiDbgLayer = 0; 491 AcpiDbgLevel = 0; 492 #endif 493 494 /* Override OS interfaces if the user requested. */ 495 acpi_reset_interfaces(dev); 496 497 /* Load ACPI name space. */ 498 status = AcpiLoadTables(); 499 if (ACPI_FAILURE(status)) { 500 device_printf(dev, "Could not load Namespace: %s\n", 501 AcpiFormatException(status)); 502 goto out; 503 } 504 505 #if defined(__i386__) || defined(__amd64__) 506 /* Handle MCFG table if present. */ 507 acpi_enable_pcie(); 508 #endif 509 510 /* 511 * Note that some systems (specifically, those with namespace evaluation 512 * issues that require the avoidance of parts of the namespace) must 513 * avoid running _INI and _STA on everything, as well as dodging the final 514 * object init pass. 515 * 516 * For these devices, we set ACPI_NO_DEVICE_INIT and ACPI_NO_OBJECT_INIT). 517 * 518 * XXX We should arrange for the object init pass after we have attached 519 * all our child devices, but on many systems it works here. 520 */ 521 flags = 0; 522 if (testenv("debug.acpi.avoid")) 523 flags = ACPI_NO_DEVICE_INIT | ACPI_NO_OBJECT_INIT; 524 525 /* Bring the hardware and basic handlers online. */ 526 if (ACPI_FAILURE(status = AcpiEnableSubsystem(flags))) { 527 device_printf(dev, "Could not enable ACPI: %s\n", 528 AcpiFormatException(status)); 529 goto out; 530 } 531 532 /* 533 * Call the ECDT probe function to provide EC functionality before 534 * the namespace has been evaluated. 535 * 536 * XXX This happens before the sysresource devices have been probed and 537 * attached so its resources come from nexus0. In practice, this isn't 538 * a problem but should be addressed eventually. 539 */ 540 acpi_ec_ecdt_probe(dev); 541 542 /* Bring device objects and regions online. */ 543 if (ACPI_FAILURE(status = AcpiInitializeObjects(flags))) { 544 device_printf(dev, "Could not initialize ACPI objects: %s\n", 545 AcpiFormatException(status)); 546 goto out; 547 } 548 549 /* 550 * Setup our sysctl tree. 551 * 552 * XXX: This doesn't check to make sure that none of these fail. 553 */ 554 sysctl_ctx_init(&sc->acpi_sysctl_ctx); 555 sc->acpi_sysctl_tree = SYSCTL_ADD_NODE(&sc->acpi_sysctl_ctx, 556 SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO, 557 device_get_name(dev), CTLFLAG_RD, 0, ""); 558 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 559 OID_AUTO, "supported_sleep_state", CTLTYPE_STRING | CTLFLAG_RD, 560 0, 0, acpi_supported_sleep_state_sysctl, "A", 561 "List supported ACPI sleep states."); 562 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 563 OID_AUTO, "power_button_state", CTLTYPE_STRING | CTLFLAG_RW, 564 &sc->acpi_power_button_sx, 0, acpi_sleep_state_sysctl, "A", 565 "Power button ACPI sleep state."); 566 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 567 OID_AUTO, "sleep_button_state", CTLTYPE_STRING | CTLFLAG_RW, 568 &sc->acpi_sleep_button_sx, 0, acpi_sleep_state_sysctl, "A", 569 "Sleep button ACPI sleep state."); 570 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 571 OID_AUTO, "lid_switch_state", CTLTYPE_STRING | CTLFLAG_RW, 572 &sc->acpi_lid_switch_sx, 0, acpi_sleep_state_sysctl, "A", 573 "Lid ACPI sleep state. Set to S3 if you want to suspend your laptop when close the Lid."); 574 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 575 OID_AUTO, "standby_state", CTLTYPE_STRING | CTLFLAG_RW, 576 &sc->acpi_standby_sx, 0, acpi_sleep_state_sysctl, "A", ""); 577 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 578 OID_AUTO, "suspend_state", CTLTYPE_STRING | CTLFLAG_RW, 579 &sc->acpi_suspend_sx, 0, acpi_sleep_state_sysctl, "A", ""); 580 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 581 OID_AUTO, "sleep_delay", CTLFLAG_RW, &sc->acpi_sleep_delay, 0, 582 "sleep delay in seconds"); 583 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 584 OID_AUTO, "s4bios", CTLFLAG_RW, &sc->acpi_s4bios, 0, "S4BIOS mode"); 585 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 586 OID_AUTO, "verbose", CTLFLAG_RW, &sc->acpi_verbose, 0, "verbose mode"); 587 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 588 OID_AUTO, "disable_on_reboot", CTLFLAG_RW, 589 &sc->acpi_do_disable, 0, "Disable ACPI when rebooting/halting system"); 590 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 591 OID_AUTO, "handle_reboot", CTLFLAG_RW, 592 &sc->acpi_handle_reboot, 0, "Use ACPI Reset Register to reboot"); 593 594 /* 595 * Default to 1 second before sleeping to give some machines time to 596 * stabilize. 597 */ 598 sc->acpi_sleep_delay = 1; 599 if (bootverbose) 600 sc->acpi_verbose = 1; 601 if ((env = kern_getenv("hw.acpi.verbose")) != NULL) { 602 if (strcmp(env, "0") != 0) 603 sc->acpi_verbose = 1; 604 freeenv(env); 605 } 606 607 /* Only enable reboot by default if the FADT says it is available. */ 608 if (AcpiGbl_FADT.Flags & ACPI_FADT_RESET_REGISTER) 609 sc->acpi_handle_reboot = 1; 610 611 #if !ACPI_REDUCED_HARDWARE 612 /* Only enable S4BIOS by default if the FACS says it is available. */ 613 if (AcpiGbl_FACS != NULL && AcpiGbl_FACS->Flags & ACPI_FACS_S4_BIOS_PRESENT) 614 sc->acpi_s4bios = 1; 615 #endif 616 617 /* Probe all supported sleep states. */ 618 acpi_sleep_states[ACPI_STATE_S0] = TRUE; 619 for (state = ACPI_STATE_S1; state < ACPI_S_STATE_COUNT; state++) 620 if (ACPI_SUCCESS(AcpiEvaluateObject(ACPI_ROOT_OBJECT, 621 __DECONST(char *, AcpiGbl_SleepStateNames[state]), NULL, NULL)) && 622 ACPI_SUCCESS(AcpiGetSleepTypeData(state, &TypeA, &TypeB))) 623 acpi_sleep_states[state] = TRUE; 624 625 /* 626 * Dispatch the default sleep state to devices. The lid switch is set 627 * to UNKNOWN by default to avoid surprising users. 628 */ 629 sc->acpi_power_button_sx = acpi_sleep_states[ACPI_STATE_S5] ? 630 ACPI_STATE_S5 : ACPI_STATE_UNKNOWN; 631 sc->acpi_lid_switch_sx = ACPI_STATE_UNKNOWN; 632 sc->acpi_standby_sx = acpi_sleep_states[ACPI_STATE_S1] ? 633 ACPI_STATE_S1 : ACPI_STATE_UNKNOWN; 634 sc->acpi_suspend_sx = acpi_sleep_states[ACPI_STATE_S3] ? 635 ACPI_STATE_S3 : ACPI_STATE_UNKNOWN; 636 637 /* Pick the first valid sleep state for the sleep button default. */ 638 sc->acpi_sleep_button_sx = ACPI_STATE_UNKNOWN; 639 for (state = ACPI_STATE_S1; state <= ACPI_STATE_S4; state++) 640 if (acpi_sleep_states[state]) { 641 sc->acpi_sleep_button_sx = state; 642 break; 643 } 644 645 acpi_enable_fixed_events(sc); 646 647 /* 648 * Scan the namespace and attach/initialise children. 649 */ 650 651 /* Register our shutdown handler. */ 652 EVENTHANDLER_REGISTER(shutdown_final, acpi_shutdown_final, sc, 653 SHUTDOWN_PRI_LAST); 654 655 /* 656 * Register our acpi event handlers. 657 * XXX should be configurable eg. via userland policy manager. 658 */ 659 EVENTHANDLER_REGISTER(acpi_sleep_event, acpi_system_eventhandler_sleep, 660 sc, ACPI_EVENT_PRI_LAST); 661 EVENTHANDLER_REGISTER(acpi_wakeup_event, acpi_system_eventhandler_wakeup, 662 sc, ACPI_EVENT_PRI_LAST); 663 664 /* Flag our initial states. */ 665 sc->acpi_enabled = TRUE; 666 sc->acpi_sstate = ACPI_STATE_S0; 667 sc->acpi_sleep_disabled = TRUE; 668 669 /* Create the control device */ 670 sc->acpi_dev_t = make_dev(&acpi_cdevsw, 0, UID_ROOT, GID_WHEEL, 0644, 671 "acpi"); 672 sc->acpi_dev_t->si_drv1 = sc; 673 674 if ((error = acpi_machdep_init(dev))) 675 goto out; 676 677 /* Register ACPI again to pass the correct argument of pm_func. */ 678 power_pm_register(POWER_PM_TYPE_ACPI, acpi_pm_func, sc); 679 680 if (!acpi_disabled("bus")) { 681 EVENTHANDLER_REGISTER(dev_lookup, acpi_lookup, NULL, 1000); 682 acpi_probe_children(dev); 683 } 684 685 /* Update all GPEs and enable runtime GPEs. */ 686 status = AcpiUpdateAllGpes(); 687 if (ACPI_FAILURE(status)) 688 device_printf(dev, "Could not update all GPEs: %s\n", 689 AcpiFormatException(status)); 690 691 /* Allow sleep request after a while. */ 692 callout_init_mtx(&acpi_sleep_timer, &acpi_mutex, 0); 693 callout_reset(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME, 694 acpi_sleep_enable, sc); 695 696 error = 0; 697 698 out: 699 return_VALUE (error); 700 } 701 702 static void 703 acpi_set_power_children(device_t dev, int state) 704 { 705 device_t child; 706 device_t *devlist; 707 int dstate, i, numdevs; 708 709 if (device_get_children(dev, &devlist, &numdevs) != 0) 710 return; 711 712 /* 713 * Retrieve and set D-state for the sleep state if _SxD is present. 714 * Skip children who aren't attached since they are handled separately. 715 */ 716 for (i = 0; i < numdevs; i++) { 717 child = devlist[i]; 718 dstate = state; 719 if (device_is_attached(child) && 720 acpi_device_pwr_for_sleep(dev, child, &dstate) == 0) 721 acpi_set_powerstate(child, dstate); 722 } 723 free(devlist, M_TEMP); 724 } 725 726 static int 727 acpi_suspend(device_t dev) 728 { 729 int error; 730 731 GIANT_REQUIRED; 732 733 error = bus_generic_suspend(dev); 734 if (error == 0) 735 acpi_set_power_children(dev, ACPI_STATE_D3); 736 737 return (error); 738 } 739 740 static int 741 acpi_resume(device_t dev) 742 { 743 744 GIANT_REQUIRED; 745 746 acpi_set_power_children(dev, ACPI_STATE_D0); 747 748 return (bus_generic_resume(dev)); 749 } 750 751 static int 752 acpi_shutdown(device_t dev) 753 { 754 755 GIANT_REQUIRED; 756 757 /* Allow children to shutdown first. */ 758 bus_generic_shutdown(dev); 759 760 /* 761 * Enable any GPEs that are able to power-on the system (i.e., RTC). 762 * Also, disable any that are not valid for this state (most). 763 */ 764 acpi_wake_prep_walk(ACPI_STATE_S5); 765 766 return (0); 767 } 768 769 /* 770 * Handle a new device being added 771 */ 772 static device_t 773 acpi_add_child(device_t bus, u_int order, const char *name, int unit) 774 { 775 struct acpi_device *ad; 776 device_t child; 777 778 if ((ad = malloc(sizeof(*ad), M_ACPIDEV, M_NOWAIT | M_ZERO)) == NULL) 779 return (NULL); 780 781 resource_list_init(&ad->ad_rl); 782 783 child = device_add_child_ordered(bus, order, name, unit); 784 if (child != NULL) 785 device_set_ivars(child, ad); 786 else 787 free(ad, M_ACPIDEV); 788 return (child); 789 } 790 791 static int 792 acpi_print_child(device_t bus, device_t child) 793 { 794 struct acpi_device *adev = device_get_ivars(child); 795 struct resource_list *rl = &adev->ad_rl; 796 int retval = 0; 797 798 retval += bus_print_child_header(bus, child); 799 retval += resource_list_print_type(rl, "port", SYS_RES_IOPORT, "%#jx"); 800 retval += resource_list_print_type(rl, "iomem", SYS_RES_MEMORY, "%#jx"); 801 retval += resource_list_print_type(rl, "irq", SYS_RES_IRQ, "%jd"); 802 retval += resource_list_print_type(rl, "drq", SYS_RES_DRQ, "%jd"); 803 if (device_get_flags(child)) 804 retval += printf(" flags %#x", device_get_flags(child)); 805 retval += bus_print_child_domain(bus, child); 806 retval += bus_print_child_footer(bus, child); 807 808 return (retval); 809 } 810 811 /* 812 * If this device is an ACPI child but no one claimed it, attempt 813 * to power it off. We'll power it back up when a driver is added. 814 * 815 * XXX Disabled for now since many necessary devices (like fdc and 816 * ATA) don't claim the devices we created for them but still expect 817 * them to be powered up. 818 */ 819 static void 820 acpi_probe_nomatch(device_t bus, device_t child) 821 { 822 #ifdef ACPI_ENABLE_POWERDOWN_NODRIVER 823 acpi_set_powerstate(child, ACPI_STATE_D3); 824 #endif 825 } 826 827 /* 828 * If a new driver has a chance to probe a child, first power it up. 829 * 830 * XXX Disabled for now (see acpi_probe_nomatch for details). 831 */ 832 static void 833 acpi_driver_added(device_t dev, driver_t *driver) 834 { 835 device_t child, *devlist; 836 int i, numdevs; 837 838 DEVICE_IDENTIFY(driver, dev); 839 if (device_get_children(dev, &devlist, &numdevs)) 840 return; 841 for (i = 0; i < numdevs; i++) { 842 child = devlist[i]; 843 if (device_get_state(child) == DS_NOTPRESENT) { 844 #ifdef ACPI_ENABLE_POWERDOWN_NODRIVER 845 acpi_set_powerstate(child, ACPI_STATE_D0); 846 if (device_probe_and_attach(child) != 0) 847 acpi_set_powerstate(child, ACPI_STATE_D3); 848 #else 849 device_probe_and_attach(child); 850 #endif 851 } 852 } 853 free(devlist, M_TEMP); 854 } 855 856 /* Location hint for devctl(8) */ 857 static int 858 acpi_child_location_str_method(device_t cbdev, device_t child, char *buf, 859 size_t buflen) 860 { 861 struct acpi_device *dinfo = device_get_ivars(child); 862 char buf2[32]; 863 int pxm; 864 865 if (dinfo->ad_handle) { 866 snprintf(buf, buflen, "handle=%s", acpi_name(dinfo->ad_handle)); 867 if (ACPI_SUCCESS(acpi_GetInteger(dinfo->ad_handle, "_PXM", &pxm))) { 868 snprintf(buf2, 32, " _PXM=%d", pxm); 869 strlcat(buf, buf2, buflen); 870 } 871 } else { 872 snprintf(buf, buflen, "unknown"); 873 } 874 return (0); 875 } 876 877 /* PnP information for devctl(8) */ 878 static int 879 acpi_child_pnpinfo_str_method(device_t cbdev, device_t child, char *buf, 880 size_t buflen) 881 { 882 struct acpi_device *dinfo = device_get_ivars(child); 883 ACPI_DEVICE_INFO *adinfo; 884 885 if (ACPI_FAILURE(AcpiGetObjectInfo(dinfo->ad_handle, &adinfo))) { 886 snprintf(buf, buflen, "unknown"); 887 return (0); 888 } 889 890 snprintf(buf, buflen, "_HID=%s _UID=%lu", 891 (adinfo->Valid & ACPI_VALID_HID) ? 892 adinfo->HardwareId.String : "none", 893 (adinfo->Valid & ACPI_VALID_UID) ? 894 strtoul(adinfo->UniqueId.String, NULL, 10) : 0UL); 895 AcpiOsFree(adinfo); 896 897 return (0); 898 } 899 900 /* 901 * Handle per-device ivars 902 */ 903 static int 904 acpi_read_ivar(device_t dev, device_t child, int index, uintptr_t *result) 905 { 906 struct acpi_device *ad; 907 908 if ((ad = device_get_ivars(child)) == NULL) { 909 device_printf(child, "device has no ivars\n"); 910 return (ENOENT); 911 } 912 913 /* ACPI and ISA compatibility ivars */ 914 switch(index) { 915 case ACPI_IVAR_HANDLE: 916 *(ACPI_HANDLE *)result = ad->ad_handle; 917 break; 918 case ACPI_IVAR_PRIVATE: 919 *(void **)result = ad->ad_private; 920 break; 921 case ACPI_IVAR_FLAGS: 922 *(int *)result = ad->ad_flags; 923 break; 924 case ISA_IVAR_VENDORID: 925 case ISA_IVAR_SERIAL: 926 case ISA_IVAR_COMPATID: 927 *(int *)result = -1; 928 break; 929 case ISA_IVAR_LOGICALID: 930 *(int *)result = acpi_isa_get_logicalid(child); 931 break; 932 case PCI_IVAR_CLASS: 933 *(uint8_t*)result = (ad->ad_cls_class >> 16) & 0xff; 934 break; 935 case PCI_IVAR_SUBCLASS: 936 *(uint8_t*)result = (ad->ad_cls_class >> 8) & 0xff; 937 break; 938 case PCI_IVAR_PROGIF: 939 *(uint8_t*)result = (ad->ad_cls_class >> 0) & 0xff; 940 break; 941 default: 942 return (ENOENT); 943 } 944 945 return (0); 946 } 947 948 static int 949 acpi_write_ivar(device_t dev, device_t child, int index, uintptr_t value) 950 { 951 struct acpi_device *ad; 952 953 if ((ad = device_get_ivars(child)) == NULL) { 954 device_printf(child, "device has no ivars\n"); 955 return (ENOENT); 956 } 957 958 switch(index) { 959 case ACPI_IVAR_HANDLE: 960 ad->ad_handle = (ACPI_HANDLE)value; 961 break; 962 case ACPI_IVAR_PRIVATE: 963 ad->ad_private = (void *)value; 964 break; 965 case ACPI_IVAR_FLAGS: 966 ad->ad_flags = (int)value; 967 break; 968 default: 969 panic("bad ivar write request (%d)", index); 970 return (ENOENT); 971 } 972 973 return (0); 974 } 975 976 /* 977 * Handle child resource allocation/removal 978 */ 979 static struct resource_list * 980 acpi_get_rlist(device_t dev, device_t child) 981 { 982 struct acpi_device *ad; 983 984 ad = device_get_ivars(child); 985 return (&ad->ad_rl); 986 } 987 988 static int 989 acpi_match_resource_hint(device_t dev, int type, long value) 990 { 991 struct acpi_device *ad = device_get_ivars(dev); 992 struct resource_list *rl = &ad->ad_rl; 993 struct resource_list_entry *rle; 994 995 STAILQ_FOREACH(rle, rl, link) { 996 if (rle->type != type) 997 continue; 998 if (rle->start <= value && rle->end >= value) 999 return (1); 1000 } 1001 return (0); 1002 } 1003 1004 /* 1005 * Wire device unit numbers based on resource matches in hints. 1006 */ 1007 static void 1008 acpi_hint_device_unit(device_t acdev, device_t child, const char *name, 1009 int *unitp) 1010 { 1011 const char *s; 1012 long value; 1013 int line, matches, unit; 1014 1015 /* 1016 * Iterate over all the hints for the devices with the specified 1017 * name to see if one's resources are a subset of this device. 1018 */ 1019 line = 0; 1020 while (resource_find_dev(&line, name, &unit, "at", NULL) == 0) { 1021 /* Must have an "at" for acpi or isa. */ 1022 resource_string_value(name, unit, "at", &s); 1023 if (!(strcmp(s, "acpi0") == 0 || strcmp(s, "acpi") == 0 || 1024 strcmp(s, "isa0") == 0 || strcmp(s, "isa") == 0)) 1025 continue; 1026 1027 /* 1028 * Check for matching resources. We must have at least one match. 1029 * Since I/O and memory resources cannot be shared, if we get a 1030 * match on either of those, ignore any mismatches in IRQs or DRQs. 1031 * 1032 * XXX: We may want to revisit this to be more lenient and wire 1033 * as long as it gets one match. 1034 */ 1035 matches = 0; 1036 if (resource_long_value(name, unit, "port", &value) == 0) { 1037 /* 1038 * Floppy drive controllers are notorious for having a 1039 * wide variety of resources not all of which include the 1040 * first port that is specified by the hint (typically 1041 * 0x3f0) (see the comment above fdc_isa_alloc_resources() 1042 * in fdc_isa.c). However, they do all seem to include 1043 * port + 2 (e.g. 0x3f2) so for a floppy device, look for 1044 * 'value + 2' in the port resources instead of the hint 1045 * value. 1046 */ 1047 if (strcmp(name, "fdc") == 0) 1048 value += 2; 1049 if (acpi_match_resource_hint(child, SYS_RES_IOPORT, value)) 1050 matches++; 1051 else 1052 continue; 1053 } 1054 if (resource_long_value(name, unit, "maddr", &value) == 0) { 1055 if (acpi_match_resource_hint(child, SYS_RES_MEMORY, value)) 1056 matches++; 1057 else 1058 continue; 1059 } 1060 if (matches > 0) 1061 goto matched; 1062 if (resource_long_value(name, unit, "irq", &value) == 0) { 1063 if (acpi_match_resource_hint(child, SYS_RES_IRQ, value)) 1064 matches++; 1065 else 1066 continue; 1067 } 1068 if (resource_long_value(name, unit, "drq", &value) == 0) { 1069 if (acpi_match_resource_hint(child, SYS_RES_DRQ, value)) 1070 matches++; 1071 else 1072 continue; 1073 } 1074 1075 matched: 1076 if (matches > 0) { 1077 /* We have a winner! */ 1078 *unitp = unit; 1079 break; 1080 } 1081 } 1082 } 1083 1084 /* 1085 * Fetch the NUMA domain for a device by mapping the value returned by 1086 * _PXM to a NUMA domain. If the device does not have a _PXM method, 1087 * -2 is returned. If any other error occurs, -1 is returned. 1088 */ 1089 static int 1090 acpi_parse_pxm(device_t dev) 1091 { 1092 #ifdef NUMA 1093 ACPI_HANDLE handle; 1094 ACPI_STATUS status; 1095 int pxm; 1096 1097 handle = acpi_get_handle(dev); 1098 if (handle == NULL) 1099 return (-2); 1100 status = acpi_GetInteger(handle, "_PXM", &pxm); 1101 if (ACPI_SUCCESS(status)) 1102 return (acpi_map_pxm_to_vm_domainid(pxm)); 1103 if (status == AE_NOT_FOUND) 1104 return (-2); 1105 #endif 1106 return (-1); 1107 } 1108 1109 int 1110 acpi_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize, 1111 cpuset_t *cpuset) 1112 { 1113 int d, error; 1114 1115 d = acpi_parse_pxm(child); 1116 if (d < 0) 1117 return (bus_generic_get_cpus(dev, child, op, setsize, cpuset)); 1118 1119 switch (op) { 1120 case LOCAL_CPUS: 1121 if (setsize != sizeof(cpuset_t)) 1122 return (EINVAL); 1123 *cpuset = cpuset_domain[d]; 1124 return (0); 1125 case INTR_CPUS: 1126 error = bus_generic_get_cpus(dev, child, op, setsize, cpuset); 1127 if (error != 0) 1128 return (error); 1129 if (setsize != sizeof(cpuset_t)) 1130 return (EINVAL); 1131 CPU_AND(cpuset, &cpuset_domain[d]); 1132 return (0); 1133 default: 1134 return (bus_generic_get_cpus(dev, child, op, setsize, cpuset)); 1135 } 1136 } 1137 1138 /* 1139 * Fetch the NUMA domain for the given device 'dev'. 1140 * 1141 * If a device has a _PXM method, map that to a NUMA domain. 1142 * Otherwise, pass the request up to the parent. 1143 * If there's no matching domain or the domain cannot be 1144 * determined, return ENOENT. 1145 */ 1146 int 1147 acpi_get_domain(device_t dev, device_t child, int *domain) 1148 { 1149 int d; 1150 1151 d = acpi_parse_pxm(child); 1152 if (d >= 0) { 1153 *domain = d; 1154 return (0); 1155 } 1156 if (d == -1) 1157 return (ENOENT); 1158 1159 /* No _PXM node; go up a level */ 1160 return (bus_generic_get_domain(dev, child, domain)); 1161 } 1162 1163 /* 1164 * Pre-allocate/manage all memory and IO resources. Since rman can't handle 1165 * duplicates, we merge any in the sysresource attach routine. 1166 */ 1167 static int 1168 acpi_sysres_alloc(device_t dev) 1169 { 1170 struct resource *res; 1171 struct resource_list *rl; 1172 struct resource_list_entry *rle; 1173 struct rman *rm; 1174 device_t *children; 1175 int child_count, i; 1176 1177 /* 1178 * Probe/attach any sysresource devices. This would be unnecessary if we 1179 * had multi-pass probe/attach. 1180 */ 1181 if (device_get_children(dev, &children, &child_count) != 0) 1182 return (ENXIO); 1183 for (i = 0; i < child_count; i++) { 1184 if (ACPI_ID_PROBE(dev, children[i], sysres_ids) != NULL) 1185 device_probe_and_attach(children[i]); 1186 } 1187 free(children, M_TEMP); 1188 1189 rl = BUS_GET_RESOURCE_LIST(device_get_parent(dev), dev); 1190 STAILQ_FOREACH(rle, rl, link) { 1191 if (rle->res != NULL) { 1192 device_printf(dev, "duplicate resource for %jx\n", rle->start); 1193 continue; 1194 } 1195 1196 /* Only memory and IO resources are valid here. */ 1197 switch (rle->type) { 1198 case SYS_RES_IOPORT: 1199 rm = &acpi_rman_io; 1200 break; 1201 case SYS_RES_MEMORY: 1202 rm = &acpi_rman_mem; 1203 break; 1204 default: 1205 continue; 1206 } 1207 1208 /* Pre-allocate resource and add to our rman pool. */ 1209 res = BUS_ALLOC_RESOURCE(device_get_parent(dev), dev, rle->type, 1210 &rle->rid, rle->start, rle->start + rle->count - 1, rle->count, 0); 1211 if (res != NULL) { 1212 rman_manage_region(rm, rman_get_start(res), rman_get_end(res)); 1213 rle->res = res; 1214 } else if (bootverbose) 1215 device_printf(dev, "reservation of %jx, %jx (%d) failed\n", 1216 rle->start, rle->count, rle->type); 1217 } 1218 return (0); 1219 } 1220 1221 /* 1222 * Reserve declared resources for devices found during attach once system 1223 * resources have been allocated. 1224 */ 1225 static void 1226 acpi_reserve_resources(device_t dev) 1227 { 1228 struct resource_list_entry *rle; 1229 struct resource_list *rl; 1230 struct acpi_device *ad; 1231 struct acpi_softc *sc; 1232 device_t *children; 1233 int child_count, i; 1234 1235 sc = device_get_softc(dev); 1236 if (device_get_children(dev, &children, &child_count) != 0) 1237 return; 1238 for (i = 0; i < child_count; i++) { 1239 ad = device_get_ivars(children[i]); 1240 rl = &ad->ad_rl; 1241 1242 /* Don't reserve system resources. */ 1243 if (ACPI_ID_PROBE(dev, children[i], sysres_ids) != NULL) 1244 continue; 1245 1246 STAILQ_FOREACH(rle, rl, link) { 1247 /* 1248 * Don't reserve IRQ resources. There are many sticky things 1249 * to get right otherwise (e.g. IRQs for psm, atkbd, and HPET 1250 * when using legacy routing). 1251 */ 1252 if (rle->type == SYS_RES_IRQ) 1253 continue; 1254 1255 /* 1256 * Don't reserve the resource if it is already allocated. 1257 * The acpi_ec(4) driver can allocate its resources early 1258 * if ECDT is present. 1259 */ 1260 if (rle->res != NULL) 1261 continue; 1262 1263 /* 1264 * Try to reserve the resource from our parent. If this 1265 * fails because the resource is a system resource, just 1266 * let it be. The resource range is already reserved so 1267 * that other devices will not use it. If the driver 1268 * needs to allocate the resource, then 1269 * acpi_alloc_resource() will sub-alloc from the system 1270 * resource. 1271 */ 1272 resource_list_reserve(rl, dev, children[i], rle->type, &rle->rid, 1273 rle->start, rle->end, rle->count, 0); 1274 } 1275 } 1276 free(children, M_TEMP); 1277 sc->acpi_resources_reserved = 1; 1278 } 1279 1280 static int 1281 acpi_set_resource(device_t dev, device_t child, int type, int rid, 1282 rman_res_t start, rman_res_t count) 1283 { 1284 struct acpi_softc *sc = device_get_softc(dev); 1285 struct acpi_device *ad = device_get_ivars(child); 1286 struct resource_list *rl = &ad->ad_rl; 1287 #if defined(__i386__) || defined(__amd64__) 1288 ACPI_DEVICE_INFO *devinfo; 1289 #endif 1290 rman_res_t end; 1291 1292 /* Ignore IRQ resources for PCI link devices. */ 1293 if (type == SYS_RES_IRQ && ACPI_ID_PROBE(dev, child, pcilink_ids) != NULL) 1294 return (0); 1295 1296 /* 1297 * Ignore most resources for PCI root bridges. Some BIOSes 1298 * incorrectly enumerate the memory ranges they decode as plain 1299 * memory resources instead of as ResourceProducer ranges. Other 1300 * BIOSes incorrectly list system resource entries for I/O ranges 1301 * under the PCI bridge. Do allow the one known-correct case on 1302 * x86 of a PCI bridge claiming the I/O ports used for PCI config 1303 * access. 1304 */ 1305 #if defined(__i386__) || defined(__amd64__) 1306 if (type == SYS_RES_MEMORY || type == SYS_RES_IOPORT) { 1307 if (ACPI_SUCCESS(AcpiGetObjectInfo(ad->ad_handle, &devinfo))) { 1308 if ((devinfo->Flags & ACPI_PCI_ROOT_BRIDGE) != 0) { 1309 if (!(type == SYS_RES_IOPORT && start == CONF1_ADDR_PORT)) { 1310 AcpiOsFree(devinfo); 1311 return (0); 1312 } 1313 } 1314 AcpiOsFree(devinfo); 1315 } 1316 } 1317 #endif 1318 1319 /* If the resource is already allocated, fail. */ 1320 if (resource_list_busy(rl, type, rid)) 1321 return (EBUSY); 1322 1323 /* If the resource is already reserved, release it. */ 1324 if (resource_list_reserved(rl, type, rid)) 1325 resource_list_unreserve(rl, dev, child, type, rid); 1326 1327 /* Add the resource. */ 1328 end = (start + count - 1); 1329 resource_list_add(rl, type, rid, start, end, count); 1330 1331 /* Don't reserve resources until the system resources are allocated. */ 1332 if (!sc->acpi_resources_reserved) 1333 return (0); 1334 1335 /* Don't reserve system resources. */ 1336 if (ACPI_ID_PROBE(dev, child, sysres_ids) != NULL) 1337 return (0); 1338 1339 /* 1340 * Don't reserve IRQ resources. There are many sticky things to 1341 * get right otherwise (e.g. IRQs for psm, atkbd, and HPET when 1342 * using legacy routing). 1343 */ 1344 if (type == SYS_RES_IRQ) 1345 return (0); 1346 1347 /* 1348 * Reserve the resource. 1349 * 1350 * XXX: Ignores failure for now. Failure here is probably a 1351 * BIOS/firmware bug? 1352 */ 1353 resource_list_reserve(rl, dev, child, type, &rid, start, end, count, 0); 1354 return (0); 1355 } 1356 1357 static struct resource * 1358 acpi_alloc_resource(device_t bus, device_t child, int type, int *rid, 1359 rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 1360 { 1361 #ifndef INTRNG 1362 ACPI_RESOURCE ares; 1363 #endif 1364 struct acpi_device *ad; 1365 struct resource_list_entry *rle; 1366 struct resource_list *rl; 1367 struct resource *res; 1368 int isdefault = RMAN_IS_DEFAULT_RANGE(start, end); 1369 1370 /* 1371 * First attempt at allocating the resource. For direct children, 1372 * use resource_list_alloc() to handle reserved resources. For 1373 * other devices, pass the request up to our parent. 1374 */ 1375 if (bus == device_get_parent(child)) { 1376 ad = device_get_ivars(child); 1377 rl = &ad->ad_rl; 1378 1379 /* 1380 * Simulate the behavior of the ISA bus for direct children 1381 * devices. That is, if a non-default range is specified for 1382 * a resource that doesn't exist, use bus_set_resource() to 1383 * add the resource before allocating it. Note that these 1384 * resources will not be reserved. 1385 */ 1386 if (!isdefault && resource_list_find(rl, type, *rid) == NULL) 1387 resource_list_add(rl, type, *rid, start, end, count); 1388 res = resource_list_alloc(rl, bus, child, type, rid, start, end, count, 1389 flags); 1390 #ifndef INTRNG 1391 if (res != NULL && type == SYS_RES_IRQ) { 1392 /* 1393 * Since bus_config_intr() takes immediate effect, we cannot 1394 * configure the interrupt associated with a device when we 1395 * parse the resources but have to defer it until a driver 1396 * actually allocates the interrupt via bus_alloc_resource(). 1397 * 1398 * XXX: Should we handle the lookup failing? 1399 */ 1400 if (ACPI_SUCCESS(acpi_lookup_irq_resource(child, *rid, res, &ares))) 1401 acpi_config_intr(child, &ares); 1402 } 1403 #endif 1404 1405 /* 1406 * If this is an allocation of the "default" range for a given 1407 * RID, fetch the exact bounds for this resource from the 1408 * resource list entry to try to allocate the range from the 1409 * system resource regions. 1410 */ 1411 if (res == NULL && isdefault) { 1412 rle = resource_list_find(rl, type, *rid); 1413 if (rle != NULL) { 1414 start = rle->start; 1415 end = rle->end; 1416 count = rle->count; 1417 } 1418 } 1419 } else 1420 res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, type, rid, 1421 start, end, count, flags); 1422 1423 /* 1424 * If the first attempt failed and this is an allocation of a 1425 * specific range, try to satisfy the request via a suballocation 1426 * from our system resource regions. 1427 */ 1428 if (res == NULL && start + count - 1 == end) 1429 res = acpi_alloc_sysres(child, type, rid, start, end, count, flags); 1430 return (res); 1431 } 1432 1433 /* 1434 * Attempt to allocate a specific resource range from the system 1435 * resource ranges. Note that we only handle memory and I/O port 1436 * system resources. 1437 */ 1438 struct resource * 1439 acpi_alloc_sysres(device_t child, int type, int *rid, rman_res_t start, 1440 rman_res_t end, rman_res_t count, u_int flags) 1441 { 1442 struct rman *rm; 1443 struct resource *res; 1444 1445 switch (type) { 1446 case SYS_RES_IOPORT: 1447 rm = &acpi_rman_io; 1448 break; 1449 case SYS_RES_MEMORY: 1450 rm = &acpi_rman_mem; 1451 break; 1452 default: 1453 return (NULL); 1454 } 1455 1456 KASSERT(start + count - 1 == end, ("wildcard resource range")); 1457 res = rman_reserve_resource(rm, start, end, count, flags & ~RF_ACTIVE, 1458 child); 1459 if (res == NULL) 1460 return (NULL); 1461 1462 rman_set_rid(res, *rid); 1463 1464 /* If requested, activate the resource using the parent's method. */ 1465 if (flags & RF_ACTIVE) 1466 if (bus_activate_resource(child, type, *rid, res) != 0) { 1467 rman_release_resource(res); 1468 return (NULL); 1469 } 1470 1471 return (res); 1472 } 1473 1474 static int 1475 acpi_is_resource_managed(int type, struct resource *r) 1476 { 1477 1478 /* We only handle memory and IO resources through rman. */ 1479 switch (type) { 1480 case SYS_RES_IOPORT: 1481 return (rman_is_region_manager(r, &acpi_rman_io)); 1482 case SYS_RES_MEMORY: 1483 return (rman_is_region_manager(r, &acpi_rman_mem)); 1484 } 1485 return (0); 1486 } 1487 1488 static int 1489 acpi_adjust_resource(device_t bus, device_t child, int type, struct resource *r, 1490 rman_res_t start, rman_res_t end) 1491 { 1492 1493 if (acpi_is_resource_managed(type, r)) 1494 return (rman_adjust_resource(r, start, end)); 1495 return (bus_generic_adjust_resource(bus, child, type, r, start, end)); 1496 } 1497 1498 static int 1499 acpi_release_resource(device_t bus, device_t child, int type, int rid, 1500 struct resource *r) 1501 { 1502 int ret; 1503 1504 /* 1505 * If this resource belongs to one of our internal managers, 1506 * deactivate it and release it to the local pool. 1507 */ 1508 if (acpi_is_resource_managed(type, r)) { 1509 if (rman_get_flags(r) & RF_ACTIVE) { 1510 ret = bus_deactivate_resource(child, type, rid, r); 1511 if (ret != 0) 1512 return (ret); 1513 } 1514 return (rman_release_resource(r)); 1515 } 1516 1517 return (bus_generic_rl_release_resource(bus, child, type, rid, r)); 1518 } 1519 1520 static void 1521 acpi_delete_resource(device_t bus, device_t child, int type, int rid) 1522 { 1523 struct resource_list *rl; 1524 1525 rl = acpi_get_rlist(bus, child); 1526 if (resource_list_busy(rl, type, rid)) { 1527 device_printf(bus, "delete_resource: Resource still owned by child" 1528 " (type=%d, rid=%d)\n", type, rid); 1529 return; 1530 } 1531 resource_list_unreserve(rl, bus, child, type, rid); 1532 resource_list_delete(rl, type, rid); 1533 } 1534 1535 /* Allocate an IO port or memory resource, given its GAS. */ 1536 int 1537 acpi_bus_alloc_gas(device_t dev, int *type, int *rid, ACPI_GENERIC_ADDRESS *gas, 1538 struct resource **res, u_int flags) 1539 { 1540 int error, res_type; 1541 1542 error = ENOMEM; 1543 if (type == NULL || rid == NULL || gas == NULL || res == NULL) 1544 return (EINVAL); 1545 1546 /* We only support memory and IO spaces. */ 1547 switch (gas->SpaceId) { 1548 case ACPI_ADR_SPACE_SYSTEM_MEMORY: 1549 res_type = SYS_RES_MEMORY; 1550 break; 1551 case ACPI_ADR_SPACE_SYSTEM_IO: 1552 res_type = SYS_RES_IOPORT; 1553 break; 1554 default: 1555 return (EOPNOTSUPP); 1556 } 1557 1558 /* 1559 * If the register width is less than 8, assume the BIOS author means 1560 * it is a bit field and just allocate a byte. 1561 */ 1562 if (gas->BitWidth && gas->BitWidth < 8) 1563 gas->BitWidth = 8; 1564 1565 /* Validate the address after we're sure we support the space. */ 1566 if (gas->Address == 0 || gas->BitWidth == 0) 1567 return (EINVAL); 1568 1569 bus_set_resource(dev, res_type, *rid, gas->Address, 1570 gas->BitWidth / 8); 1571 *res = bus_alloc_resource_any(dev, res_type, rid, RF_ACTIVE | flags); 1572 if (*res != NULL) { 1573 *type = res_type; 1574 error = 0; 1575 } else 1576 bus_delete_resource(dev, res_type, *rid); 1577 1578 return (error); 1579 } 1580 1581 /* Probe _HID and _CID for compatible ISA PNP ids. */ 1582 static uint32_t 1583 acpi_isa_get_logicalid(device_t dev) 1584 { 1585 ACPI_DEVICE_INFO *devinfo; 1586 ACPI_HANDLE h; 1587 uint32_t pnpid; 1588 1589 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1590 1591 /* Fetch and validate the HID. */ 1592 if ((h = acpi_get_handle(dev)) == NULL || 1593 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 1594 return_VALUE (0); 1595 1596 pnpid = (devinfo->Valid & ACPI_VALID_HID) != 0 && 1597 devinfo->HardwareId.Length >= ACPI_EISAID_STRING_SIZE ? 1598 PNP_EISAID(devinfo->HardwareId.String) : 0; 1599 AcpiOsFree(devinfo); 1600 1601 return_VALUE (pnpid); 1602 } 1603 1604 static int 1605 acpi_isa_get_compatid(device_t dev, uint32_t *cids, int count) 1606 { 1607 ACPI_DEVICE_INFO *devinfo; 1608 ACPI_PNP_DEVICE_ID *ids; 1609 ACPI_HANDLE h; 1610 uint32_t *pnpid; 1611 int i, valid; 1612 1613 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1614 1615 pnpid = cids; 1616 1617 /* Fetch and validate the CID */ 1618 if ((h = acpi_get_handle(dev)) == NULL || 1619 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 1620 return_VALUE (0); 1621 1622 if ((devinfo->Valid & ACPI_VALID_CID) == 0) { 1623 AcpiOsFree(devinfo); 1624 return_VALUE (0); 1625 } 1626 1627 if (devinfo->CompatibleIdList.Count < count) 1628 count = devinfo->CompatibleIdList.Count; 1629 ids = devinfo->CompatibleIdList.Ids; 1630 for (i = 0, valid = 0; i < count; i++) 1631 if (ids[i].Length >= ACPI_EISAID_STRING_SIZE && 1632 strncmp(ids[i].String, "PNP", 3) == 0) { 1633 *pnpid++ = PNP_EISAID(ids[i].String); 1634 valid++; 1635 } 1636 AcpiOsFree(devinfo); 1637 1638 return_VALUE (valid); 1639 } 1640 1641 static char * 1642 acpi_device_id_probe(device_t bus, device_t dev, char **ids) 1643 { 1644 ACPI_HANDLE h; 1645 ACPI_OBJECT_TYPE t; 1646 int i; 1647 1648 h = acpi_get_handle(dev); 1649 if (ids == NULL || h == NULL) 1650 return (NULL); 1651 t = acpi_get_type(dev); 1652 if (t != ACPI_TYPE_DEVICE && t != ACPI_TYPE_PROCESSOR) 1653 return (NULL); 1654 1655 /* Try to match one of the array of IDs with a HID or CID. */ 1656 for (i = 0; ids[i] != NULL; i++) { 1657 if (acpi_MatchHid(h, ids[i])) 1658 return (ids[i]); 1659 } 1660 return (NULL); 1661 } 1662 1663 static ACPI_STATUS 1664 acpi_device_eval_obj(device_t bus, device_t dev, ACPI_STRING pathname, 1665 ACPI_OBJECT_LIST *parameters, ACPI_BUFFER *ret) 1666 { 1667 ACPI_HANDLE h; 1668 1669 if (dev == NULL) 1670 h = ACPI_ROOT_OBJECT; 1671 else if ((h = acpi_get_handle(dev)) == NULL) 1672 return (AE_BAD_PARAMETER); 1673 return (AcpiEvaluateObject(h, pathname, parameters, ret)); 1674 } 1675 1676 int 1677 acpi_device_pwr_for_sleep(device_t bus, device_t dev, int *dstate) 1678 { 1679 struct acpi_softc *sc; 1680 ACPI_HANDLE handle; 1681 ACPI_STATUS status; 1682 char sxd[8]; 1683 1684 handle = acpi_get_handle(dev); 1685 1686 /* 1687 * XXX If we find these devices, don't try to power them down. 1688 * The serial and IRDA ports on my T23 hang the system when 1689 * set to D3 and it appears that such legacy devices may 1690 * need special handling in their drivers. 1691 */ 1692 if (dstate == NULL || handle == NULL || 1693 acpi_MatchHid(handle, "PNP0500") || 1694 acpi_MatchHid(handle, "PNP0501") || 1695 acpi_MatchHid(handle, "PNP0502") || 1696 acpi_MatchHid(handle, "PNP0510") || 1697 acpi_MatchHid(handle, "PNP0511")) 1698 return (ENXIO); 1699 1700 /* 1701 * Override next state with the value from _SxD, if present. 1702 * Note illegal _S0D is evaluated because some systems expect this. 1703 */ 1704 sc = device_get_softc(bus); 1705 snprintf(sxd, sizeof(sxd), "_S%dD", sc->acpi_sstate); 1706 status = acpi_GetInteger(handle, sxd, dstate); 1707 if (ACPI_FAILURE(status) && status != AE_NOT_FOUND) { 1708 device_printf(dev, "failed to get %s on %s: %s\n", sxd, 1709 acpi_name(handle), AcpiFormatException(status)); 1710 return (ENXIO); 1711 } 1712 1713 return (0); 1714 } 1715 1716 /* Callback arg for our implementation of walking the namespace. */ 1717 struct acpi_device_scan_ctx { 1718 acpi_scan_cb_t user_fn; 1719 void *arg; 1720 ACPI_HANDLE parent; 1721 }; 1722 1723 static ACPI_STATUS 1724 acpi_device_scan_cb(ACPI_HANDLE h, UINT32 level, void *arg, void **retval) 1725 { 1726 struct acpi_device_scan_ctx *ctx; 1727 device_t dev, old_dev; 1728 ACPI_STATUS status; 1729 ACPI_OBJECT_TYPE type; 1730 1731 /* 1732 * Skip this device if we think we'll have trouble with it or it is 1733 * the parent where the scan began. 1734 */ 1735 ctx = (struct acpi_device_scan_ctx *)arg; 1736 if (acpi_avoid(h) || h == ctx->parent) 1737 return (AE_OK); 1738 1739 /* If this is not a valid device type (e.g., a method), skip it. */ 1740 if (ACPI_FAILURE(AcpiGetType(h, &type))) 1741 return (AE_OK); 1742 if (type != ACPI_TYPE_DEVICE && type != ACPI_TYPE_PROCESSOR && 1743 type != ACPI_TYPE_THERMAL && type != ACPI_TYPE_POWER) 1744 return (AE_OK); 1745 1746 /* 1747 * Call the user function with the current device. If it is unchanged 1748 * afterwards, return. Otherwise, we update the handle to the new dev. 1749 */ 1750 old_dev = acpi_get_device(h); 1751 dev = old_dev; 1752 status = ctx->user_fn(h, &dev, level, ctx->arg); 1753 if (ACPI_FAILURE(status) || old_dev == dev) 1754 return (status); 1755 1756 /* Remove the old child and its connection to the handle. */ 1757 if (old_dev != NULL) { 1758 device_delete_child(device_get_parent(old_dev), old_dev); 1759 AcpiDetachData(h, acpi_fake_objhandler); 1760 } 1761 1762 /* Recreate the handle association if the user created a device. */ 1763 if (dev != NULL) 1764 AcpiAttachData(h, acpi_fake_objhandler, dev); 1765 1766 return (AE_OK); 1767 } 1768 1769 static ACPI_STATUS 1770 acpi_device_scan_children(device_t bus, device_t dev, int max_depth, 1771 acpi_scan_cb_t user_fn, void *arg) 1772 { 1773 ACPI_HANDLE h; 1774 struct acpi_device_scan_ctx ctx; 1775 1776 if (acpi_disabled("children")) 1777 return (AE_OK); 1778 1779 if (dev == NULL) 1780 h = ACPI_ROOT_OBJECT; 1781 else if ((h = acpi_get_handle(dev)) == NULL) 1782 return (AE_BAD_PARAMETER); 1783 ctx.user_fn = user_fn; 1784 ctx.arg = arg; 1785 ctx.parent = h; 1786 return (AcpiWalkNamespace(ACPI_TYPE_ANY, h, max_depth, 1787 acpi_device_scan_cb, NULL, &ctx, NULL)); 1788 } 1789 1790 /* 1791 * Even though ACPI devices are not PCI, we use the PCI approach for setting 1792 * device power states since it's close enough to ACPI. 1793 */ 1794 static int 1795 acpi_set_powerstate(device_t child, int state) 1796 { 1797 ACPI_HANDLE h; 1798 ACPI_STATUS status; 1799 1800 h = acpi_get_handle(child); 1801 if (state < ACPI_STATE_D0 || state > ACPI_D_STATES_MAX) 1802 return (EINVAL); 1803 if (h == NULL) 1804 return (0); 1805 1806 /* Ignore errors if the power methods aren't present. */ 1807 status = acpi_pwr_switch_consumer(h, state); 1808 if (ACPI_SUCCESS(status)) { 1809 if (bootverbose) 1810 device_printf(child, "set ACPI power state D%d on %s\n", 1811 state, acpi_name(h)); 1812 } else if (status != AE_NOT_FOUND) 1813 device_printf(child, 1814 "failed to set ACPI power state D%d on %s: %s\n", state, 1815 acpi_name(h), AcpiFormatException(status)); 1816 1817 return (0); 1818 } 1819 1820 static int 1821 acpi_isa_pnp_probe(device_t bus, device_t child, struct isa_pnp_id *ids) 1822 { 1823 int result, cid_count, i; 1824 uint32_t lid, cids[8]; 1825 1826 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1827 1828 /* 1829 * ISA-style drivers attached to ACPI may persist and 1830 * probe manually if we return ENOENT. We never want 1831 * that to happen, so don't ever return it. 1832 */ 1833 result = ENXIO; 1834 1835 /* Scan the supplied IDs for a match */ 1836 lid = acpi_isa_get_logicalid(child); 1837 cid_count = acpi_isa_get_compatid(child, cids, 8); 1838 while (ids && ids->ip_id) { 1839 if (lid == ids->ip_id) { 1840 result = 0; 1841 goto out; 1842 } 1843 for (i = 0; i < cid_count; i++) { 1844 if (cids[i] == ids->ip_id) { 1845 result = 0; 1846 goto out; 1847 } 1848 } 1849 ids++; 1850 } 1851 1852 out: 1853 if (result == 0 && ids->ip_desc) 1854 device_set_desc(child, ids->ip_desc); 1855 1856 return_VALUE (result); 1857 } 1858 1859 #if defined(__i386__) || defined(__amd64__) 1860 /* 1861 * Look for a MCFG table. If it is present, use the settings for 1862 * domain (segment) 0 to setup PCI config space access via the memory 1863 * map. 1864 */ 1865 static void 1866 acpi_enable_pcie(void) 1867 { 1868 ACPI_TABLE_HEADER *hdr; 1869 ACPI_MCFG_ALLOCATION *alloc, *end; 1870 ACPI_STATUS status; 1871 1872 status = AcpiGetTable(ACPI_SIG_MCFG, 1, &hdr); 1873 if (ACPI_FAILURE(status)) 1874 return; 1875 1876 end = (ACPI_MCFG_ALLOCATION *)((char *)hdr + hdr->Length); 1877 alloc = (ACPI_MCFG_ALLOCATION *)((ACPI_TABLE_MCFG *)hdr + 1); 1878 while (alloc < end) { 1879 if (alloc->PciSegment == 0) { 1880 pcie_cfgregopen(alloc->Address, alloc->StartBusNumber, 1881 alloc->EndBusNumber); 1882 return; 1883 } 1884 alloc++; 1885 } 1886 } 1887 #elif defined(__aarch64__) 1888 static void 1889 acpi_enable_pcie(device_t child, int segment) 1890 { 1891 ACPI_TABLE_HEADER *hdr; 1892 ACPI_MCFG_ALLOCATION *alloc, *end; 1893 ACPI_STATUS status; 1894 1895 status = AcpiGetTable(ACPI_SIG_MCFG, 1, &hdr); 1896 if (ACPI_FAILURE(status)) 1897 return; 1898 1899 end = (ACPI_MCFG_ALLOCATION *)((char *)hdr + hdr->Length); 1900 alloc = (ACPI_MCFG_ALLOCATION *)((ACPI_TABLE_MCFG *)hdr + 1); 1901 while (alloc < end) { 1902 if (alloc->PciSegment == segment) { 1903 bus_set_resource(child, SYS_RES_MEMORY, 0, 1904 alloc->Address, 0x10000000); 1905 return; 1906 } 1907 alloc++; 1908 } 1909 } 1910 #endif 1911 1912 /* 1913 * Scan all of the ACPI namespace and attach child devices. 1914 * 1915 * We should only expect to find devices in the \_PR, \_TZ, \_SI, and 1916 * \_SB scopes, and \_PR and \_TZ became obsolete in the ACPI 2.0 spec. 1917 * However, in violation of the spec, some systems place their PCI link 1918 * devices in \, so we have to walk the whole namespace. We check the 1919 * type of namespace nodes, so this should be ok. 1920 */ 1921 static void 1922 acpi_probe_children(device_t bus) 1923 { 1924 1925 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1926 1927 /* 1928 * Scan the namespace and insert placeholders for all the devices that 1929 * we find. We also probe/attach any early devices. 1930 * 1931 * Note that we use AcpiWalkNamespace rather than AcpiGetDevices because 1932 * we want to create nodes for all devices, not just those that are 1933 * currently present. (This assumes that we don't want to create/remove 1934 * devices as they appear, which might be smarter.) 1935 */ 1936 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "namespace scan\n")); 1937 AcpiWalkNamespace(ACPI_TYPE_ANY, ACPI_ROOT_OBJECT, 100, acpi_probe_child, 1938 NULL, bus, NULL); 1939 1940 /* Pre-allocate resources for our rman from any sysresource devices. */ 1941 acpi_sysres_alloc(bus); 1942 1943 /* Reserve resources already allocated to children. */ 1944 acpi_reserve_resources(bus); 1945 1946 /* Create any static children by calling device identify methods. */ 1947 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "device identify routines\n")); 1948 bus_generic_probe(bus); 1949 1950 /* Probe/attach all children, created statically and from the namespace. */ 1951 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "acpi bus_generic_attach\n")); 1952 bus_generic_attach(bus); 1953 1954 /* Attach wake sysctls. */ 1955 acpi_wake_sysctl_walk(bus); 1956 1957 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "done attaching children\n")); 1958 return_VOID; 1959 } 1960 1961 /* 1962 * Determine the probe order for a given device. 1963 */ 1964 static void 1965 acpi_probe_order(ACPI_HANDLE handle, int *order) 1966 { 1967 ACPI_OBJECT_TYPE type; 1968 1969 /* 1970 * 0. CPUs 1971 * 1. I/O port and memory system resource holders 1972 * 2. Clocks and timers (to handle early accesses) 1973 * 3. Embedded controllers (to handle early accesses) 1974 * 4. PCI Link Devices 1975 */ 1976 AcpiGetType(handle, &type); 1977 if (type == ACPI_TYPE_PROCESSOR) 1978 *order = 0; 1979 else if (acpi_MatchHid(handle, "PNP0C01") || 1980 acpi_MatchHid(handle, "PNP0C02")) 1981 *order = 1; 1982 else if (acpi_MatchHid(handle, "PNP0100") || 1983 acpi_MatchHid(handle, "PNP0103") || 1984 acpi_MatchHid(handle, "PNP0B00")) 1985 *order = 2; 1986 else if (acpi_MatchHid(handle, "PNP0C09")) 1987 *order = 3; 1988 else if (acpi_MatchHid(handle, "PNP0C0F")) 1989 *order = 4; 1990 } 1991 1992 /* 1993 * Evaluate a child device and determine whether we might attach a device to 1994 * it. 1995 */ 1996 static ACPI_STATUS 1997 acpi_probe_child(ACPI_HANDLE handle, UINT32 level, void *context, void **status) 1998 { 1999 ACPI_DEVICE_INFO *devinfo; 2000 struct acpi_device *ad; 2001 #ifdef __aarch64__ 2002 int segment; 2003 #endif 2004 struct acpi_prw_data prw; 2005 ACPI_OBJECT_TYPE type; 2006 ACPI_HANDLE h; 2007 device_t bus, child; 2008 char *handle_str; 2009 int order; 2010 2011 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 2012 2013 if (acpi_disabled("children")) 2014 return_ACPI_STATUS (AE_OK); 2015 2016 /* Skip this device if we think we'll have trouble with it. */ 2017 if (acpi_avoid(handle)) 2018 return_ACPI_STATUS (AE_OK); 2019 2020 bus = (device_t)context; 2021 if (ACPI_SUCCESS(AcpiGetType(handle, &type))) { 2022 handle_str = acpi_name(handle); 2023 switch (type) { 2024 case ACPI_TYPE_DEVICE: 2025 /* 2026 * Since we scan from \, be sure to skip system scope objects. 2027 * \_SB_ and \_TZ_ are defined in ACPICA as devices to work around 2028 * BIOS bugs. For example, \_SB_ is to allow \_SB_._INI to be run 2029 * during the initialization and \_TZ_ is to support Notify() on it. 2030 */ 2031 if (strcmp(handle_str, "\\_SB_") == 0 || 2032 strcmp(handle_str, "\\_TZ_") == 0) 2033 break; 2034 if (acpi_parse_prw(handle, &prw) == 0) 2035 AcpiSetupGpeForWake(handle, prw.gpe_handle, prw.gpe_bit); 2036 2037 /* 2038 * Ignore devices that do not have a _HID or _CID. They should 2039 * be discovered by other buses (e.g. the PCI bus driver). 2040 */ 2041 if (!acpi_has_hid(handle)) 2042 break; 2043 /* FALLTHROUGH */ 2044 case ACPI_TYPE_PROCESSOR: 2045 case ACPI_TYPE_THERMAL: 2046 case ACPI_TYPE_POWER: 2047 /* 2048 * Create a placeholder device for this node. Sort the 2049 * placeholder so that the probe/attach passes will run 2050 * breadth-first. Orders less than ACPI_DEV_BASE_ORDER 2051 * are reserved for special objects (i.e., system 2052 * resources). 2053 */ 2054 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "scanning '%s'\n", handle_str)); 2055 order = level * 10 + ACPI_DEV_BASE_ORDER; 2056 acpi_probe_order(handle, &order); 2057 child = BUS_ADD_CHILD(bus, order, NULL, -1); 2058 if (child == NULL) 2059 break; 2060 2061 /* Associate the handle with the device_t and vice versa. */ 2062 acpi_set_handle(child, handle); 2063 AcpiAttachData(handle, acpi_fake_objhandler, child); 2064 2065 /* 2066 * Check that the device is present. If it's not present, 2067 * leave it disabled (so that we have a device_t attached to 2068 * the handle, but we don't probe it). 2069 * 2070 * XXX PCI link devices sometimes report "present" but not 2071 * "functional" (i.e. if disabled). Go ahead and probe them 2072 * anyway since we may enable them later. 2073 */ 2074 if (type == ACPI_TYPE_DEVICE && !acpi_DeviceIsPresent(child)) { 2075 /* Never disable PCI link devices. */ 2076 if (acpi_MatchHid(handle, "PNP0C0F")) 2077 break; 2078 /* 2079 * Docking stations should remain enabled since the system 2080 * may be undocked at boot. 2081 */ 2082 if (ACPI_SUCCESS(AcpiGetHandle(handle, "_DCK", &h))) 2083 break; 2084 2085 device_disable(child); 2086 break; 2087 } 2088 2089 /* 2090 * Get the device's resource settings and attach them. 2091 * Note that if the device has _PRS but no _CRS, we need 2092 * to decide when it's appropriate to try to configure the 2093 * device. Ignore the return value here; it's OK for the 2094 * device not to have any resources. 2095 */ 2096 acpi_parse_resources(child, handle, &acpi_res_parse_set, NULL); 2097 2098 ad = device_get_ivars(child); 2099 ad->ad_cls_class = 0xffffff; 2100 if (ACPI_SUCCESS(AcpiGetObjectInfo(handle, &devinfo))) { 2101 if ((devinfo->Valid & ACPI_VALID_CLS) != 0 && 2102 devinfo->ClassCode.Length >= ACPI_PCICLS_STRING_SIZE) { 2103 ad->ad_cls_class = strtoul(devinfo->ClassCode.String, 2104 NULL, 16); 2105 } 2106 #ifdef __aarch64__ 2107 if ((devinfo->Flags & ACPI_PCI_ROOT_BRIDGE) != 0) { 2108 if (ACPI_SUCCESS(acpi_GetInteger(handle, "_SEG", &segment))) { 2109 acpi_enable_pcie(child, segment); 2110 } 2111 } 2112 #endif 2113 AcpiOsFree(devinfo); 2114 } 2115 break; 2116 } 2117 } 2118 2119 return_ACPI_STATUS (AE_OK); 2120 } 2121 2122 /* 2123 * AcpiAttachData() requires an object handler but never uses it. This is a 2124 * placeholder object handler so we can store a device_t in an ACPI_HANDLE. 2125 */ 2126 void 2127 acpi_fake_objhandler(ACPI_HANDLE h, void *data) 2128 { 2129 } 2130 2131 static void 2132 acpi_shutdown_final(void *arg, int howto) 2133 { 2134 struct acpi_softc *sc = (struct acpi_softc *)arg; 2135 register_t intr; 2136 ACPI_STATUS status; 2137 2138 /* 2139 * XXX Shutdown code should only run on the BSP (cpuid 0). 2140 * Some chipsets do not power off the system correctly if called from 2141 * an AP. 2142 */ 2143 if ((howto & RB_POWEROFF) != 0) { 2144 status = AcpiEnterSleepStatePrep(ACPI_STATE_S5); 2145 if (ACPI_FAILURE(status)) { 2146 device_printf(sc->acpi_dev, "AcpiEnterSleepStatePrep failed - %s\n", 2147 AcpiFormatException(status)); 2148 return; 2149 } 2150 device_printf(sc->acpi_dev, "Powering system off\n"); 2151 intr = intr_disable(); 2152 status = AcpiEnterSleepState(ACPI_STATE_S5); 2153 if (ACPI_FAILURE(status)) { 2154 intr_restore(intr); 2155 device_printf(sc->acpi_dev, "power-off failed - %s\n", 2156 AcpiFormatException(status)); 2157 } else { 2158 DELAY(1000000); 2159 intr_restore(intr); 2160 device_printf(sc->acpi_dev, "power-off failed - timeout\n"); 2161 } 2162 } else if ((howto & RB_HALT) == 0 && sc->acpi_handle_reboot) { 2163 /* Reboot using the reset register. */ 2164 status = AcpiReset(); 2165 if (ACPI_SUCCESS(status)) { 2166 DELAY(1000000); 2167 device_printf(sc->acpi_dev, "reset failed - timeout\n"); 2168 } else if (status != AE_NOT_EXIST) 2169 device_printf(sc->acpi_dev, "reset failed - %s\n", 2170 AcpiFormatException(status)); 2171 } else if (sc->acpi_do_disable && panicstr == NULL) { 2172 /* 2173 * Only disable ACPI if the user requested. On some systems, writing 2174 * the disable value to SMI_CMD hangs the system. 2175 */ 2176 device_printf(sc->acpi_dev, "Shutting down\n"); 2177 AcpiTerminate(); 2178 } 2179 } 2180 2181 static void 2182 acpi_enable_fixed_events(struct acpi_softc *sc) 2183 { 2184 static int first_time = 1; 2185 2186 /* Enable and clear fixed events and install handlers. */ 2187 if ((AcpiGbl_FADT.Flags & ACPI_FADT_POWER_BUTTON) == 0) { 2188 AcpiClearEvent(ACPI_EVENT_POWER_BUTTON); 2189 AcpiInstallFixedEventHandler(ACPI_EVENT_POWER_BUTTON, 2190 acpi_event_power_button_sleep, sc); 2191 if (first_time) 2192 device_printf(sc->acpi_dev, "Power Button (fixed)\n"); 2193 } 2194 if ((AcpiGbl_FADT.Flags & ACPI_FADT_SLEEP_BUTTON) == 0) { 2195 AcpiClearEvent(ACPI_EVENT_SLEEP_BUTTON); 2196 AcpiInstallFixedEventHandler(ACPI_EVENT_SLEEP_BUTTON, 2197 acpi_event_sleep_button_sleep, sc); 2198 if (first_time) 2199 device_printf(sc->acpi_dev, "Sleep Button (fixed)\n"); 2200 } 2201 2202 first_time = 0; 2203 } 2204 2205 /* 2206 * Returns true if the device is actually present and should 2207 * be attached to. This requires the present, enabled, UI-visible 2208 * and diagnostics-passed bits to be set. 2209 */ 2210 BOOLEAN 2211 acpi_DeviceIsPresent(device_t dev) 2212 { 2213 ACPI_HANDLE h; 2214 UINT32 s; 2215 ACPI_STATUS status; 2216 2217 h = acpi_get_handle(dev); 2218 if (h == NULL) 2219 return (FALSE); 2220 status = acpi_GetInteger(h, "_STA", &s); 2221 2222 /* If no _STA method, must be present */ 2223 if (ACPI_FAILURE(status)) 2224 return (status == AE_NOT_FOUND ? TRUE : FALSE); 2225 2226 return (ACPI_DEVICE_PRESENT(s) ? TRUE : FALSE); 2227 } 2228 2229 /* 2230 * Returns true if the battery is actually present and inserted. 2231 */ 2232 BOOLEAN 2233 acpi_BatteryIsPresent(device_t dev) 2234 { 2235 ACPI_HANDLE h; 2236 UINT32 s; 2237 ACPI_STATUS status; 2238 2239 h = acpi_get_handle(dev); 2240 if (h == NULL) 2241 return (FALSE); 2242 status = acpi_GetInteger(h, "_STA", &s); 2243 2244 /* If no _STA method, must be present */ 2245 if (ACPI_FAILURE(status)) 2246 return (status == AE_NOT_FOUND ? TRUE : FALSE); 2247 2248 return (ACPI_BATTERY_PRESENT(s) ? TRUE : FALSE); 2249 } 2250 2251 /* 2252 * Returns true if a device has at least one valid device ID. 2253 */ 2254 static BOOLEAN 2255 acpi_has_hid(ACPI_HANDLE h) 2256 { 2257 ACPI_DEVICE_INFO *devinfo; 2258 BOOLEAN ret; 2259 2260 if (h == NULL || 2261 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 2262 return (FALSE); 2263 2264 ret = FALSE; 2265 if ((devinfo->Valid & ACPI_VALID_HID) != 0) 2266 ret = TRUE; 2267 else if ((devinfo->Valid & ACPI_VALID_CID) != 0) 2268 if (devinfo->CompatibleIdList.Count > 0) 2269 ret = TRUE; 2270 2271 AcpiOsFree(devinfo); 2272 return (ret); 2273 } 2274 2275 /* 2276 * Match a HID string against a handle 2277 */ 2278 BOOLEAN 2279 acpi_MatchHid(ACPI_HANDLE h, const char *hid) 2280 { 2281 ACPI_DEVICE_INFO *devinfo; 2282 BOOLEAN ret; 2283 int i; 2284 2285 if (hid == NULL || h == NULL || 2286 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 2287 return (FALSE); 2288 2289 ret = FALSE; 2290 if ((devinfo->Valid & ACPI_VALID_HID) != 0 && 2291 strcmp(hid, devinfo->HardwareId.String) == 0) 2292 ret = TRUE; 2293 else if ((devinfo->Valid & ACPI_VALID_CID) != 0) 2294 for (i = 0; i < devinfo->CompatibleIdList.Count; i++) { 2295 if (strcmp(hid, devinfo->CompatibleIdList.Ids[i].String) == 0) { 2296 ret = TRUE; 2297 break; 2298 } 2299 } 2300 2301 AcpiOsFree(devinfo); 2302 return (ret); 2303 } 2304 2305 /* 2306 * Return the handle of a named object within our scope, ie. that of (parent) 2307 * or one if its parents. 2308 */ 2309 ACPI_STATUS 2310 acpi_GetHandleInScope(ACPI_HANDLE parent, char *path, ACPI_HANDLE *result) 2311 { 2312 ACPI_HANDLE r; 2313 ACPI_STATUS status; 2314 2315 /* Walk back up the tree to the root */ 2316 for (;;) { 2317 status = AcpiGetHandle(parent, path, &r); 2318 if (ACPI_SUCCESS(status)) { 2319 *result = r; 2320 return (AE_OK); 2321 } 2322 /* XXX Return error here? */ 2323 if (status != AE_NOT_FOUND) 2324 return (AE_OK); 2325 if (ACPI_FAILURE(AcpiGetParent(parent, &r))) 2326 return (AE_NOT_FOUND); 2327 parent = r; 2328 } 2329 } 2330 2331 /* 2332 * Allocate a buffer with a preset data size. 2333 */ 2334 ACPI_BUFFER * 2335 acpi_AllocBuffer(int size) 2336 { 2337 ACPI_BUFFER *buf; 2338 2339 if ((buf = malloc(size + sizeof(*buf), M_ACPIDEV, M_NOWAIT)) == NULL) 2340 return (NULL); 2341 buf->Length = size; 2342 buf->Pointer = (void *)(buf + 1); 2343 return (buf); 2344 } 2345 2346 ACPI_STATUS 2347 acpi_SetInteger(ACPI_HANDLE handle, char *path, UINT32 number) 2348 { 2349 ACPI_OBJECT arg1; 2350 ACPI_OBJECT_LIST args; 2351 2352 arg1.Type = ACPI_TYPE_INTEGER; 2353 arg1.Integer.Value = number; 2354 args.Count = 1; 2355 args.Pointer = &arg1; 2356 2357 return (AcpiEvaluateObject(handle, path, &args, NULL)); 2358 } 2359 2360 /* 2361 * Evaluate a path that should return an integer. 2362 */ 2363 ACPI_STATUS 2364 acpi_GetInteger(ACPI_HANDLE handle, char *path, UINT32 *number) 2365 { 2366 ACPI_STATUS status; 2367 ACPI_BUFFER buf; 2368 ACPI_OBJECT param; 2369 2370 if (handle == NULL) 2371 handle = ACPI_ROOT_OBJECT; 2372 2373 /* 2374 * Assume that what we've been pointed at is an Integer object, or 2375 * a method that will return an Integer. 2376 */ 2377 buf.Pointer = ¶m; 2378 buf.Length = sizeof(param); 2379 status = AcpiEvaluateObject(handle, path, NULL, &buf); 2380 if (ACPI_SUCCESS(status)) { 2381 if (param.Type == ACPI_TYPE_INTEGER) 2382 *number = param.Integer.Value; 2383 else 2384 status = AE_TYPE; 2385 } 2386 2387 /* 2388 * In some applications, a method that's expected to return an Integer 2389 * may instead return a Buffer (probably to simplify some internal 2390 * arithmetic). We'll try to fetch whatever it is, and if it's a Buffer, 2391 * convert it into an Integer as best we can. 2392 * 2393 * This is a hack. 2394 */ 2395 if (status == AE_BUFFER_OVERFLOW) { 2396 if ((buf.Pointer = AcpiOsAllocate(buf.Length)) == NULL) { 2397 status = AE_NO_MEMORY; 2398 } else { 2399 status = AcpiEvaluateObject(handle, path, NULL, &buf); 2400 if (ACPI_SUCCESS(status)) 2401 status = acpi_ConvertBufferToInteger(&buf, number); 2402 AcpiOsFree(buf.Pointer); 2403 } 2404 } 2405 return (status); 2406 } 2407 2408 ACPI_STATUS 2409 acpi_ConvertBufferToInteger(ACPI_BUFFER *bufp, UINT32 *number) 2410 { 2411 ACPI_OBJECT *p; 2412 UINT8 *val; 2413 int i; 2414 2415 p = (ACPI_OBJECT *)bufp->Pointer; 2416 if (p->Type == ACPI_TYPE_INTEGER) { 2417 *number = p->Integer.Value; 2418 return (AE_OK); 2419 } 2420 if (p->Type != ACPI_TYPE_BUFFER) 2421 return (AE_TYPE); 2422 if (p->Buffer.Length > sizeof(int)) 2423 return (AE_BAD_DATA); 2424 2425 *number = 0; 2426 val = p->Buffer.Pointer; 2427 for (i = 0; i < p->Buffer.Length; i++) 2428 *number += val[i] << (i * 8); 2429 return (AE_OK); 2430 } 2431 2432 /* 2433 * Iterate over the elements of an a package object, calling the supplied 2434 * function for each element. 2435 * 2436 * XXX possible enhancement might be to abort traversal on error. 2437 */ 2438 ACPI_STATUS 2439 acpi_ForeachPackageObject(ACPI_OBJECT *pkg, 2440 void (*func)(ACPI_OBJECT *comp, void *arg), void *arg) 2441 { 2442 ACPI_OBJECT *comp; 2443 int i; 2444 2445 if (pkg == NULL || pkg->Type != ACPI_TYPE_PACKAGE) 2446 return (AE_BAD_PARAMETER); 2447 2448 /* Iterate over components */ 2449 i = 0; 2450 comp = pkg->Package.Elements; 2451 for (; i < pkg->Package.Count; i++, comp++) 2452 func(comp, arg); 2453 2454 return (AE_OK); 2455 } 2456 2457 /* 2458 * Find the (index)th resource object in a set. 2459 */ 2460 ACPI_STATUS 2461 acpi_FindIndexedResource(ACPI_BUFFER *buf, int index, ACPI_RESOURCE **resp) 2462 { 2463 ACPI_RESOURCE *rp; 2464 int i; 2465 2466 rp = (ACPI_RESOURCE *)buf->Pointer; 2467 i = index; 2468 while (i-- > 0) { 2469 /* Range check */ 2470 if (rp > (ACPI_RESOURCE *)((u_int8_t *)buf->Pointer + buf->Length)) 2471 return (AE_BAD_PARAMETER); 2472 2473 /* Check for terminator */ 2474 if (rp->Type == ACPI_RESOURCE_TYPE_END_TAG || rp->Length == 0) 2475 return (AE_NOT_FOUND); 2476 rp = ACPI_NEXT_RESOURCE(rp); 2477 } 2478 if (resp != NULL) 2479 *resp = rp; 2480 2481 return (AE_OK); 2482 } 2483 2484 /* 2485 * Append an ACPI_RESOURCE to an ACPI_BUFFER. 2486 * 2487 * Given a pointer to an ACPI_RESOURCE structure, expand the ACPI_BUFFER 2488 * provided to contain it. If the ACPI_BUFFER is empty, allocate a sensible 2489 * backing block. If the ACPI_RESOURCE is NULL, return an empty set of 2490 * resources. 2491 */ 2492 #define ACPI_INITIAL_RESOURCE_BUFFER_SIZE 512 2493 2494 ACPI_STATUS 2495 acpi_AppendBufferResource(ACPI_BUFFER *buf, ACPI_RESOURCE *res) 2496 { 2497 ACPI_RESOURCE *rp; 2498 void *newp; 2499 2500 /* Initialise the buffer if necessary. */ 2501 if (buf->Pointer == NULL) { 2502 buf->Length = ACPI_INITIAL_RESOURCE_BUFFER_SIZE; 2503 if ((buf->Pointer = AcpiOsAllocate(buf->Length)) == NULL) 2504 return (AE_NO_MEMORY); 2505 rp = (ACPI_RESOURCE *)buf->Pointer; 2506 rp->Type = ACPI_RESOURCE_TYPE_END_TAG; 2507 rp->Length = ACPI_RS_SIZE_MIN; 2508 } 2509 if (res == NULL) 2510 return (AE_OK); 2511 2512 /* 2513 * Scan the current buffer looking for the terminator. 2514 * This will either find the terminator or hit the end 2515 * of the buffer and return an error. 2516 */ 2517 rp = (ACPI_RESOURCE *)buf->Pointer; 2518 for (;;) { 2519 /* Range check, don't go outside the buffer */ 2520 if (rp >= (ACPI_RESOURCE *)((u_int8_t *)buf->Pointer + buf->Length)) 2521 return (AE_BAD_PARAMETER); 2522 if (rp->Type == ACPI_RESOURCE_TYPE_END_TAG || rp->Length == 0) 2523 break; 2524 rp = ACPI_NEXT_RESOURCE(rp); 2525 } 2526 2527 /* 2528 * Check the size of the buffer and expand if required. 2529 * 2530 * Required size is: 2531 * size of existing resources before terminator + 2532 * size of new resource and header + 2533 * size of terminator. 2534 * 2535 * Note that this loop should really only run once, unless 2536 * for some reason we are stuffing a *really* huge resource. 2537 */ 2538 while ((((u_int8_t *)rp - (u_int8_t *)buf->Pointer) + 2539 res->Length + ACPI_RS_SIZE_NO_DATA + 2540 ACPI_RS_SIZE_MIN) >= buf->Length) { 2541 if ((newp = AcpiOsAllocate(buf->Length * 2)) == NULL) 2542 return (AE_NO_MEMORY); 2543 bcopy(buf->Pointer, newp, buf->Length); 2544 rp = (ACPI_RESOURCE *)((u_int8_t *)newp + 2545 ((u_int8_t *)rp - (u_int8_t *)buf->Pointer)); 2546 AcpiOsFree(buf->Pointer); 2547 buf->Pointer = newp; 2548 buf->Length += buf->Length; 2549 } 2550 2551 /* Insert the new resource. */ 2552 bcopy(res, rp, res->Length + ACPI_RS_SIZE_NO_DATA); 2553 2554 /* And add the terminator. */ 2555 rp = ACPI_NEXT_RESOURCE(rp); 2556 rp->Type = ACPI_RESOURCE_TYPE_END_TAG; 2557 rp->Length = ACPI_RS_SIZE_MIN; 2558 2559 return (AE_OK); 2560 } 2561 2562 ACPI_STATUS 2563 acpi_EvaluateOSC(ACPI_HANDLE handle, uint8_t *uuid, int revision, int count, 2564 uint32_t *caps_in, uint32_t *caps_out, bool query) 2565 { 2566 ACPI_OBJECT arg[4], *ret; 2567 ACPI_OBJECT_LIST arglist; 2568 ACPI_BUFFER buf; 2569 ACPI_STATUS status; 2570 2571 arglist.Pointer = arg; 2572 arglist.Count = 4; 2573 arg[0].Type = ACPI_TYPE_BUFFER; 2574 arg[0].Buffer.Length = ACPI_UUID_LENGTH; 2575 arg[0].Buffer.Pointer = uuid; 2576 arg[1].Type = ACPI_TYPE_INTEGER; 2577 arg[1].Integer.Value = revision; 2578 arg[2].Type = ACPI_TYPE_INTEGER; 2579 arg[2].Integer.Value = count; 2580 arg[3].Type = ACPI_TYPE_BUFFER; 2581 arg[3].Buffer.Length = count * sizeof(*caps_in); 2582 arg[3].Buffer.Pointer = (uint8_t *)caps_in; 2583 caps_in[0] = query ? 1 : 0; 2584 buf.Pointer = NULL; 2585 buf.Length = ACPI_ALLOCATE_BUFFER; 2586 status = AcpiEvaluateObjectTyped(handle, "_OSC", &arglist, &buf, 2587 ACPI_TYPE_BUFFER); 2588 if (ACPI_FAILURE(status)) 2589 return (status); 2590 if (caps_out != NULL) { 2591 ret = buf.Pointer; 2592 if (ret->Buffer.Length != count * sizeof(*caps_out)) { 2593 AcpiOsFree(buf.Pointer); 2594 return (AE_BUFFER_OVERFLOW); 2595 } 2596 bcopy(ret->Buffer.Pointer, caps_out, ret->Buffer.Length); 2597 } 2598 AcpiOsFree(buf.Pointer); 2599 return (status); 2600 } 2601 2602 /* 2603 * Set interrupt model. 2604 */ 2605 ACPI_STATUS 2606 acpi_SetIntrModel(int model) 2607 { 2608 2609 return (acpi_SetInteger(ACPI_ROOT_OBJECT, "_PIC", model)); 2610 } 2611 2612 /* 2613 * Walk subtables of a table and call a callback routine for each 2614 * subtable. The caller should provide the first subtable and a 2615 * pointer to the end of the table. This can be used to walk tables 2616 * such as MADT and SRAT that use subtable entries. 2617 */ 2618 void 2619 acpi_walk_subtables(void *first, void *end, acpi_subtable_handler *handler, 2620 void *arg) 2621 { 2622 ACPI_SUBTABLE_HEADER *entry; 2623 2624 for (entry = first; (void *)entry < end; ) { 2625 /* Avoid an infinite loop if we hit a bogus entry. */ 2626 if (entry->Length < sizeof(ACPI_SUBTABLE_HEADER)) 2627 return; 2628 2629 handler(entry, arg); 2630 entry = ACPI_ADD_PTR(ACPI_SUBTABLE_HEADER, entry, entry->Length); 2631 } 2632 } 2633 2634 /* 2635 * DEPRECATED. This interface has serious deficiencies and will be 2636 * removed. 2637 * 2638 * Immediately enter the sleep state. In the old model, acpiconf(8) ran 2639 * rc.suspend and rc.resume so we don't have to notify devd(8) to do this. 2640 */ 2641 ACPI_STATUS 2642 acpi_SetSleepState(struct acpi_softc *sc, int state) 2643 { 2644 static int once; 2645 2646 if (!once) { 2647 device_printf(sc->acpi_dev, 2648 "warning: acpi_SetSleepState() deprecated, need to update your software\n"); 2649 once = 1; 2650 } 2651 return (acpi_EnterSleepState(sc, state)); 2652 } 2653 2654 #if defined(__amd64__) || defined(__i386__) 2655 static void 2656 acpi_sleep_force_task(void *context) 2657 { 2658 struct acpi_softc *sc = (struct acpi_softc *)context; 2659 2660 if (ACPI_FAILURE(acpi_EnterSleepState(sc, sc->acpi_next_sstate))) 2661 device_printf(sc->acpi_dev, "force sleep state S%d failed\n", 2662 sc->acpi_next_sstate); 2663 } 2664 2665 static void 2666 acpi_sleep_force(void *arg) 2667 { 2668 struct acpi_softc *sc = (struct acpi_softc *)arg; 2669 2670 device_printf(sc->acpi_dev, 2671 "suspend request timed out, forcing sleep now\n"); 2672 /* 2673 * XXX Suspending from callout causes freezes in DEVICE_SUSPEND(). 2674 * Suspend from acpi_task thread instead. 2675 */ 2676 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 2677 acpi_sleep_force_task, sc))) 2678 device_printf(sc->acpi_dev, "AcpiOsExecute() for sleeping failed\n"); 2679 } 2680 #endif 2681 2682 /* 2683 * Request that the system enter the given suspend state. All /dev/apm 2684 * devices and devd(8) will be notified. Userland then has a chance to 2685 * save state and acknowledge the request. The system sleeps once all 2686 * acks are in. 2687 */ 2688 int 2689 acpi_ReqSleepState(struct acpi_softc *sc, int state) 2690 { 2691 #if defined(__amd64__) || defined(__i386__) 2692 struct apm_clone_data *clone; 2693 ACPI_STATUS status; 2694 2695 if (state < ACPI_STATE_S1 || state > ACPI_S_STATES_MAX) 2696 return (EINVAL); 2697 if (!acpi_sleep_states[state]) 2698 return (EOPNOTSUPP); 2699 2700 /* 2701 * If a reboot/shutdown/suspend request is already in progress or 2702 * suspend is blocked due to an upcoming shutdown, just return. 2703 */ 2704 if (rebooting || sc->acpi_next_sstate != 0 || suspend_blocked) { 2705 return (0); 2706 } 2707 2708 /* Wait until sleep is enabled. */ 2709 while (sc->acpi_sleep_disabled) { 2710 AcpiOsSleep(1000); 2711 } 2712 2713 ACPI_LOCK(acpi); 2714 2715 sc->acpi_next_sstate = state; 2716 2717 /* S5 (soft-off) should be entered directly with no waiting. */ 2718 if (state == ACPI_STATE_S5) { 2719 ACPI_UNLOCK(acpi); 2720 status = acpi_EnterSleepState(sc, state); 2721 return (ACPI_SUCCESS(status) ? 0 : ENXIO); 2722 } 2723 2724 /* Record the pending state and notify all apm devices. */ 2725 STAILQ_FOREACH(clone, &sc->apm_cdevs, entries) { 2726 clone->notify_status = APM_EV_NONE; 2727 if ((clone->flags & ACPI_EVF_DEVD) == 0) { 2728 selwakeuppri(&clone->sel_read, PZERO); 2729 KNOTE_LOCKED(&clone->sel_read.si_note, 0); 2730 } 2731 } 2732 2733 /* If devd(8) is not running, immediately enter the sleep state. */ 2734 if (!devctl_process_running()) { 2735 ACPI_UNLOCK(acpi); 2736 status = acpi_EnterSleepState(sc, state); 2737 return (ACPI_SUCCESS(status) ? 0 : ENXIO); 2738 } 2739 2740 /* 2741 * Set a timeout to fire if userland doesn't ack the suspend request 2742 * in time. This way we still eventually go to sleep if we were 2743 * overheating or running low on battery, even if userland is hung. 2744 * We cancel this timeout once all userland acks are in or the 2745 * suspend request is aborted. 2746 */ 2747 callout_reset(&sc->susp_force_to, 10 * hz, acpi_sleep_force, sc); 2748 ACPI_UNLOCK(acpi); 2749 2750 /* Now notify devd(8) also. */ 2751 acpi_UserNotify("Suspend", ACPI_ROOT_OBJECT, state); 2752 2753 return (0); 2754 #else 2755 /* This platform does not support acpi suspend/resume. */ 2756 return (EOPNOTSUPP); 2757 #endif 2758 } 2759 2760 /* 2761 * Acknowledge (or reject) a pending sleep state. The caller has 2762 * prepared for suspend and is now ready for it to proceed. If the 2763 * error argument is non-zero, it indicates suspend should be cancelled 2764 * and gives an errno value describing why. Once all votes are in, 2765 * we suspend the system. 2766 */ 2767 int 2768 acpi_AckSleepState(struct apm_clone_data *clone, int error) 2769 { 2770 #if defined(__amd64__) || defined(__i386__) 2771 struct acpi_softc *sc; 2772 int ret, sleeping; 2773 2774 /* If no pending sleep state, return an error. */ 2775 ACPI_LOCK(acpi); 2776 sc = clone->acpi_sc; 2777 if (sc->acpi_next_sstate == 0) { 2778 ACPI_UNLOCK(acpi); 2779 return (ENXIO); 2780 } 2781 2782 /* Caller wants to abort suspend process. */ 2783 if (error) { 2784 sc->acpi_next_sstate = 0; 2785 callout_stop(&sc->susp_force_to); 2786 device_printf(sc->acpi_dev, 2787 "listener on %s cancelled the pending suspend\n", 2788 devtoname(clone->cdev)); 2789 ACPI_UNLOCK(acpi); 2790 return (0); 2791 } 2792 2793 /* 2794 * Mark this device as acking the suspend request. Then, walk through 2795 * all devices, seeing if they agree yet. We only count devices that 2796 * are writable since read-only devices couldn't ack the request. 2797 */ 2798 sleeping = TRUE; 2799 clone->notify_status = APM_EV_ACKED; 2800 STAILQ_FOREACH(clone, &sc->apm_cdevs, entries) { 2801 if ((clone->flags & ACPI_EVF_WRITE) != 0 && 2802 clone->notify_status != APM_EV_ACKED) { 2803 sleeping = FALSE; 2804 break; 2805 } 2806 } 2807 2808 /* If all devices have voted "yes", we will suspend now. */ 2809 if (sleeping) 2810 callout_stop(&sc->susp_force_to); 2811 ACPI_UNLOCK(acpi); 2812 ret = 0; 2813 if (sleeping) { 2814 if (ACPI_FAILURE(acpi_EnterSleepState(sc, sc->acpi_next_sstate))) 2815 ret = ENODEV; 2816 } 2817 return (ret); 2818 #else 2819 /* This platform does not support acpi suspend/resume. */ 2820 return (EOPNOTSUPP); 2821 #endif 2822 } 2823 2824 static void 2825 acpi_sleep_enable(void *arg) 2826 { 2827 struct acpi_softc *sc = (struct acpi_softc *)arg; 2828 2829 ACPI_LOCK_ASSERT(acpi); 2830 2831 /* Reschedule if the system is not fully up and running. */ 2832 if (!AcpiGbl_SystemAwakeAndRunning) { 2833 callout_schedule(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME); 2834 return; 2835 } 2836 2837 sc->acpi_sleep_disabled = FALSE; 2838 } 2839 2840 static ACPI_STATUS 2841 acpi_sleep_disable(struct acpi_softc *sc) 2842 { 2843 ACPI_STATUS status; 2844 2845 /* Fail if the system is not fully up and running. */ 2846 if (!AcpiGbl_SystemAwakeAndRunning) 2847 return (AE_ERROR); 2848 2849 ACPI_LOCK(acpi); 2850 status = sc->acpi_sleep_disabled ? AE_ERROR : AE_OK; 2851 sc->acpi_sleep_disabled = TRUE; 2852 ACPI_UNLOCK(acpi); 2853 2854 return (status); 2855 } 2856 2857 enum acpi_sleep_state { 2858 ACPI_SS_NONE, 2859 ACPI_SS_GPE_SET, 2860 ACPI_SS_DEV_SUSPEND, 2861 ACPI_SS_SLP_PREP, 2862 ACPI_SS_SLEPT, 2863 }; 2864 2865 /* 2866 * Enter the desired system sleep state. 2867 * 2868 * Currently we support S1-S5 but S4 is only S4BIOS 2869 */ 2870 static ACPI_STATUS 2871 acpi_EnterSleepState(struct acpi_softc *sc, int state) 2872 { 2873 register_t intr; 2874 ACPI_STATUS status; 2875 ACPI_EVENT_STATUS power_button_status; 2876 enum acpi_sleep_state slp_state; 2877 int sleep_result; 2878 2879 ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state); 2880 2881 if (state < ACPI_STATE_S1 || state > ACPI_S_STATES_MAX) 2882 return_ACPI_STATUS (AE_BAD_PARAMETER); 2883 if (!acpi_sleep_states[state]) { 2884 device_printf(sc->acpi_dev, "Sleep state S%d not supported by BIOS\n", 2885 state); 2886 return (AE_SUPPORT); 2887 } 2888 2889 /* Re-entry once we're suspending is not allowed. */ 2890 status = acpi_sleep_disable(sc); 2891 if (ACPI_FAILURE(status)) { 2892 device_printf(sc->acpi_dev, 2893 "suspend request ignored (not ready yet)\n"); 2894 return (status); 2895 } 2896 2897 if (state == ACPI_STATE_S5) { 2898 /* 2899 * Shut down cleanly and power off. This will call us back through the 2900 * shutdown handlers. 2901 */ 2902 shutdown_nice(RB_POWEROFF); 2903 return_ACPI_STATUS (AE_OK); 2904 } 2905 2906 EVENTHANDLER_INVOKE(power_suspend_early); 2907 stop_all_proc(); 2908 EVENTHANDLER_INVOKE(power_suspend); 2909 2910 #ifdef EARLY_AP_STARTUP 2911 MPASS(mp_ncpus == 1 || smp_started); 2912 thread_lock(curthread); 2913 sched_bind(curthread, 0); 2914 thread_unlock(curthread); 2915 #else 2916 if (smp_started) { 2917 thread_lock(curthread); 2918 sched_bind(curthread, 0); 2919 thread_unlock(curthread); 2920 } 2921 #endif 2922 2923 /* 2924 * Be sure to hold Giant across DEVICE_SUSPEND/RESUME since non-MPSAFE 2925 * drivers need this. 2926 */ 2927 mtx_lock(&Giant); 2928 2929 slp_state = ACPI_SS_NONE; 2930 2931 sc->acpi_sstate = state; 2932 2933 /* Enable any GPEs as appropriate and requested by the user. */ 2934 acpi_wake_prep_walk(state); 2935 slp_state = ACPI_SS_GPE_SET; 2936 2937 /* 2938 * Inform all devices that we are going to sleep. If at least one 2939 * device fails, DEVICE_SUSPEND() automatically resumes the tree. 2940 * 2941 * XXX Note that a better two-pass approach with a 'veto' pass 2942 * followed by a "real thing" pass would be better, but the current 2943 * bus interface does not provide for this. 2944 */ 2945 if (DEVICE_SUSPEND(root_bus) != 0) { 2946 device_printf(sc->acpi_dev, "device_suspend failed\n"); 2947 goto backout; 2948 } 2949 slp_state = ACPI_SS_DEV_SUSPEND; 2950 2951 status = AcpiEnterSleepStatePrep(state); 2952 if (ACPI_FAILURE(status)) { 2953 device_printf(sc->acpi_dev, "AcpiEnterSleepStatePrep failed - %s\n", 2954 AcpiFormatException(status)); 2955 goto backout; 2956 } 2957 slp_state = ACPI_SS_SLP_PREP; 2958 2959 if (sc->acpi_sleep_delay > 0) 2960 DELAY(sc->acpi_sleep_delay * 1000000); 2961 2962 suspendclock(); 2963 intr = intr_disable(); 2964 if (state != ACPI_STATE_S1) { 2965 sleep_result = acpi_sleep_machdep(sc, state); 2966 acpi_wakeup_machdep(sc, state, sleep_result, 0); 2967 2968 /* 2969 * XXX According to ACPI specification SCI_EN bit should be restored 2970 * by ACPI platform (BIOS, firmware) to its pre-sleep state. 2971 * Unfortunately some BIOSes fail to do that and that leads to 2972 * unexpected and serious consequences during wake up like a system 2973 * getting stuck in SMI handlers. 2974 * This hack is picked up from Linux, which claims that it follows 2975 * Windows behavior. 2976 */ 2977 if (sleep_result == 1 && state != ACPI_STATE_S4) 2978 AcpiWriteBitRegister(ACPI_BITREG_SCI_ENABLE, ACPI_ENABLE_EVENT); 2979 2980 AcpiLeaveSleepStatePrep(state); 2981 2982 if (sleep_result == 1 && state == ACPI_STATE_S3) { 2983 /* 2984 * Prevent mis-interpretation of the wakeup by power button 2985 * as a request for power off. 2986 * Ideally we should post an appropriate wakeup event, 2987 * perhaps using acpi_event_power_button_wake or alike. 2988 * 2989 * Clearing of power button status after wakeup is mandated 2990 * by ACPI specification in section "Fixed Power Button". 2991 * 2992 * XXX As of ACPICA 20121114 AcpiGetEventStatus provides 2993 * status as 0/1 corressponding to inactive/active despite 2994 * its type being ACPI_EVENT_STATUS. In other words, 2995 * we should not test for ACPI_EVENT_FLAG_SET for time being. 2996 */ 2997 if (ACPI_SUCCESS(AcpiGetEventStatus(ACPI_EVENT_POWER_BUTTON, 2998 &power_button_status)) && power_button_status != 0) { 2999 AcpiClearEvent(ACPI_EVENT_POWER_BUTTON); 3000 device_printf(sc->acpi_dev, 3001 "cleared fixed power button status\n"); 3002 } 3003 } 3004 3005 intr_restore(intr); 3006 3007 /* call acpi_wakeup_machdep() again with interrupt enabled */ 3008 acpi_wakeup_machdep(sc, state, sleep_result, 1); 3009 3010 if (sleep_result == -1) 3011 goto backout; 3012 3013 /* Re-enable ACPI hardware on wakeup from sleep state 4. */ 3014 if (state == ACPI_STATE_S4) 3015 AcpiEnable(); 3016 } else { 3017 status = AcpiEnterSleepState(state); 3018 AcpiLeaveSleepStatePrep(state); 3019 intr_restore(intr); 3020 if (ACPI_FAILURE(status)) { 3021 device_printf(sc->acpi_dev, "AcpiEnterSleepState failed - %s\n", 3022 AcpiFormatException(status)); 3023 goto backout; 3024 } 3025 } 3026 slp_state = ACPI_SS_SLEPT; 3027 3028 /* 3029 * Back out state according to how far along we got in the suspend 3030 * process. This handles both the error and success cases. 3031 */ 3032 backout: 3033 if (slp_state >= ACPI_SS_SLP_PREP) 3034 resumeclock(); 3035 if (slp_state >= ACPI_SS_GPE_SET) { 3036 acpi_wake_prep_walk(state); 3037 sc->acpi_sstate = ACPI_STATE_S0; 3038 } 3039 if (slp_state >= ACPI_SS_DEV_SUSPEND) 3040 DEVICE_RESUME(root_bus); 3041 if (slp_state >= ACPI_SS_SLP_PREP) 3042 AcpiLeaveSleepState(state); 3043 if (slp_state >= ACPI_SS_SLEPT) { 3044 #if defined(__i386__) || defined(__amd64__) 3045 /* NB: we are still using ACPI timecounter at this point. */ 3046 resume_TSC(); 3047 #endif 3048 acpi_resync_clock(sc); 3049 acpi_enable_fixed_events(sc); 3050 } 3051 sc->acpi_next_sstate = 0; 3052 3053 mtx_unlock(&Giant); 3054 3055 #ifdef EARLY_AP_STARTUP 3056 thread_lock(curthread); 3057 sched_unbind(curthread); 3058 thread_unlock(curthread); 3059 #else 3060 if (smp_started) { 3061 thread_lock(curthread); 3062 sched_unbind(curthread); 3063 thread_unlock(curthread); 3064 } 3065 #endif 3066 3067 resume_all_proc(); 3068 3069 EVENTHANDLER_INVOKE(power_resume); 3070 3071 /* Allow another sleep request after a while. */ 3072 callout_schedule(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME); 3073 3074 /* Run /etc/rc.resume after we are back. */ 3075 if (devctl_process_running()) 3076 acpi_UserNotify("Resume", ACPI_ROOT_OBJECT, state); 3077 3078 return_ACPI_STATUS (status); 3079 } 3080 3081 static void 3082 acpi_resync_clock(struct acpi_softc *sc) 3083 { 3084 3085 /* 3086 * Warm up timecounter again and reset system clock. 3087 */ 3088 (void)timecounter->tc_get_timecount(timecounter); 3089 (void)timecounter->tc_get_timecount(timecounter); 3090 inittodr(time_second + sc->acpi_sleep_delay); 3091 } 3092 3093 /* Enable or disable the device's wake GPE. */ 3094 int 3095 acpi_wake_set_enable(device_t dev, int enable) 3096 { 3097 struct acpi_prw_data prw; 3098 ACPI_STATUS status; 3099 int flags; 3100 3101 /* Make sure the device supports waking the system and get the GPE. */ 3102 if (acpi_parse_prw(acpi_get_handle(dev), &prw) != 0) 3103 return (ENXIO); 3104 3105 flags = acpi_get_flags(dev); 3106 if (enable) { 3107 status = AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, 3108 ACPI_GPE_ENABLE); 3109 if (ACPI_FAILURE(status)) { 3110 device_printf(dev, "enable wake failed\n"); 3111 return (ENXIO); 3112 } 3113 acpi_set_flags(dev, flags | ACPI_FLAG_WAKE_ENABLED); 3114 } else { 3115 status = AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, 3116 ACPI_GPE_DISABLE); 3117 if (ACPI_FAILURE(status)) { 3118 device_printf(dev, "disable wake failed\n"); 3119 return (ENXIO); 3120 } 3121 acpi_set_flags(dev, flags & ~ACPI_FLAG_WAKE_ENABLED); 3122 } 3123 3124 return (0); 3125 } 3126 3127 static int 3128 acpi_wake_sleep_prep(ACPI_HANDLE handle, int sstate) 3129 { 3130 struct acpi_prw_data prw; 3131 device_t dev; 3132 3133 /* Check that this is a wake-capable device and get its GPE. */ 3134 if (acpi_parse_prw(handle, &prw) != 0) 3135 return (ENXIO); 3136 dev = acpi_get_device(handle); 3137 3138 /* 3139 * The destination sleep state must be less than (i.e., higher power) 3140 * or equal to the value specified by _PRW. If this GPE cannot be 3141 * enabled for the next sleep state, then disable it. If it can and 3142 * the user requested it be enabled, turn on any required power resources 3143 * and set _PSW. 3144 */ 3145 if (sstate > prw.lowest_wake) { 3146 AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, ACPI_GPE_DISABLE); 3147 if (bootverbose) 3148 device_printf(dev, "wake_prep disabled wake for %s (S%d)\n", 3149 acpi_name(handle), sstate); 3150 } else if (dev && (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) != 0) { 3151 acpi_pwr_wake_enable(handle, 1); 3152 acpi_SetInteger(handle, "_PSW", 1); 3153 if (bootverbose) 3154 device_printf(dev, "wake_prep enabled for %s (S%d)\n", 3155 acpi_name(handle), sstate); 3156 } 3157 3158 return (0); 3159 } 3160 3161 static int 3162 acpi_wake_run_prep(ACPI_HANDLE handle, int sstate) 3163 { 3164 struct acpi_prw_data prw; 3165 device_t dev; 3166 3167 /* 3168 * Check that this is a wake-capable device and get its GPE. Return 3169 * now if the user didn't enable this device for wake. 3170 */ 3171 if (acpi_parse_prw(handle, &prw) != 0) 3172 return (ENXIO); 3173 dev = acpi_get_device(handle); 3174 if (dev == NULL || (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) == 0) 3175 return (0); 3176 3177 /* 3178 * If this GPE couldn't be enabled for the previous sleep state, it was 3179 * disabled before going to sleep so re-enable it. If it was enabled, 3180 * clear _PSW and turn off any power resources it used. 3181 */ 3182 if (sstate > prw.lowest_wake) { 3183 AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, ACPI_GPE_ENABLE); 3184 if (bootverbose) 3185 device_printf(dev, "run_prep re-enabled %s\n", acpi_name(handle)); 3186 } else { 3187 acpi_SetInteger(handle, "_PSW", 0); 3188 acpi_pwr_wake_enable(handle, 0); 3189 if (bootverbose) 3190 device_printf(dev, "run_prep cleaned up for %s\n", 3191 acpi_name(handle)); 3192 } 3193 3194 return (0); 3195 } 3196 3197 static ACPI_STATUS 3198 acpi_wake_prep(ACPI_HANDLE handle, UINT32 level, void *context, void **status) 3199 { 3200 int sstate; 3201 3202 /* If suspending, run the sleep prep function, otherwise wake. */ 3203 sstate = *(int *)context; 3204 if (AcpiGbl_SystemAwakeAndRunning) 3205 acpi_wake_sleep_prep(handle, sstate); 3206 else 3207 acpi_wake_run_prep(handle, sstate); 3208 return (AE_OK); 3209 } 3210 3211 /* Walk the tree rooted at acpi0 to prep devices for suspend/resume. */ 3212 static int 3213 acpi_wake_prep_walk(int sstate) 3214 { 3215 ACPI_HANDLE sb_handle; 3216 3217 if (ACPI_SUCCESS(AcpiGetHandle(ACPI_ROOT_OBJECT, "\\_SB_", &sb_handle))) 3218 AcpiWalkNamespace(ACPI_TYPE_DEVICE, sb_handle, 100, 3219 acpi_wake_prep, NULL, &sstate, NULL); 3220 return (0); 3221 } 3222 3223 /* Walk the tree rooted at acpi0 to attach per-device wake sysctls. */ 3224 static int 3225 acpi_wake_sysctl_walk(device_t dev) 3226 { 3227 int error, i, numdevs; 3228 device_t *devlist; 3229 device_t child; 3230 ACPI_STATUS status; 3231 3232 error = device_get_children(dev, &devlist, &numdevs); 3233 if (error != 0 || numdevs == 0) { 3234 if (numdevs == 0) 3235 free(devlist, M_TEMP); 3236 return (error); 3237 } 3238 for (i = 0; i < numdevs; i++) { 3239 child = devlist[i]; 3240 acpi_wake_sysctl_walk(child); 3241 if (!device_is_attached(child)) 3242 continue; 3243 status = AcpiEvaluateObject(acpi_get_handle(child), "_PRW", NULL, NULL); 3244 if (ACPI_SUCCESS(status)) { 3245 SYSCTL_ADD_PROC(device_get_sysctl_ctx(child), 3246 SYSCTL_CHILDREN(device_get_sysctl_tree(child)), OID_AUTO, 3247 "wake", CTLTYPE_INT | CTLFLAG_RW, child, 0, 3248 acpi_wake_set_sysctl, "I", "Device set to wake the system"); 3249 } 3250 } 3251 free(devlist, M_TEMP); 3252 3253 return (0); 3254 } 3255 3256 /* Enable or disable wake from userland. */ 3257 static int 3258 acpi_wake_set_sysctl(SYSCTL_HANDLER_ARGS) 3259 { 3260 int enable, error; 3261 device_t dev; 3262 3263 dev = (device_t)arg1; 3264 enable = (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) ? 1 : 0; 3265 3266 error = sysctl_handle_int(oidp, &enable, 0, req); 3267 if (error != 0 || req->newptr == NULL) 3268 return (error); 3269 if (enable != 0 && enable != 1) 3270 return (EINVAL); 3271 3272 return (acpi_wake_set_enable(dev, enable)); 3273 } 3274 3275 /* Parse a device's _PRW into a structure. */ 3276 int 3277 acpi_parse_prw(ACPI_HANDLE h, struct acpi_prw_data *prw) 3278 { 3279 ACPI_STATUS status; 3280 ACPI_BUFFER prw_buffer; 3281 ACPI_OBJECT *res, *res2; 3282 int error, i, power_count; 3283 3284 if (h == NULL || prw == NULL) 3285 return (EINVAL); 3286 3287 /* 3288 * The _PRW object (7.2.9) is only required for devices that have the 3289 * ability to wake the system from a sleeping state. 3290 */ 3291 error = EINVAL; 3292 prw_buffer.Pointer = NULL; 3293 prw_buffer.Length = ACPI_ALLOCATE_BUFFER; 3294 status = AcpiEvaluateObject(h, "_PRW", NULL, &prw_buffer); 3295 if (ACPI_FAILURE(status)) 3296 return (ENOENT); 3297 res = (ACPI_OBJECT *)prw_buffer.Pointer; 3298 if (res == NULL) 3299 return (ENOENT); 3300 if (!ACPI_PKG_VALID(res, 2)) 3301 goto out; 3302 3303 /* 3304 * Element 1 of the _PRW object: 3305 * The lowest power system sleeping state that can be entered while still 3306 * providing wake functionality. The sleeping state being entered must 3307 * be less than (i.e., higher power) or equal to this value. 3308 */ 3309 if (acpi_PkgInt32(res, 1, &prw->lowest_wake) != 0) 3310 goto out; 3311 3312 /* 3313 * Element 0 of the _PRW object: 3314 */ 3315 switch (res->Package.Elements[0].Type) { 3316 case ACPI_TYPE_INTEGER: 3317 /* 3318 * If the data type of this package element is numeric, then this 3319 * _PRW package element is the bit index in the GPEx_EN, in the 3320 * GPE blocks described in the FADT, of the enable bit that is 3321 * enabled for the wake event. 3322 */ 3323 prw->gpe_handle = NULL; 3324 prw->gpe_bit = res->Package.Elements[0].Integer.Value; 3325 error = 0; 3326 break; 3327 case ACPI_TYPE_PACKAGE: 3328 /* 3329 * If the data type of this package element is a package, then this 3330 * _PRW package element is itself a package containing two 3331 * elements. The first is an object reference to the GPE Block 3332 * device that contains the GPE that will be triggered by the wake 3333 * event. The second element is numeric and it contains the bit 3334 * index in the GPEx_EN, in the GPE Block referenced by the 3335 * first element in the package, of the enable bit that is enabled for 3336 * the wake event. 3337 * 3338 * For example, if this field is a package then it is of the form: 3339 * Package() {\_SB.PCI0.ISA.GPE, 2} 3340 */ 3341 res2 = &res->Package.Elements[0]; 3342 if (!ACPI_PKG_VALID(res2, 2)) 3343 goto out; 3344 prw->gpe_handle = acpi_GetReference(NULL, &res2->Package.Elements[0]); 3345 if (prw->gpe_handle == NULL) 3346 goto out; 3347 if (acpi_PkgInt32(res2, 1, &prw->gpe_bit) != 0) 3348 goto out; 3349 error = 0; 3350 break; 3351 default: 3352 goto out; 3353 } 3354 3355 /* Elements 2 to N of the _PRW object are power resources. */ 3356 power_count = res->Package.Count - 2; 3357 if (power_count > ACPI_PRW_MAX_POWERRES) { 3358 printf("ACPI device %s has too many power resources\n", acpi_name(h)); 3359 power_count = 0; 3360 } 3361 prw->power_res_count = power_count; 3362 for (i = 0; i < power_count; i++) 3363 prw->power_res[i] = res->Package.Elements[i]; 3364 3365 out: 3366 if (prw_buffer.Pointer != NULL) 3367 AcpiOsFree(prw_buffer.Pointer); 3368 return (error); 3369 } 3370 3371 /* 3372 * ACPI Event Handlers 3373 */ 3374 3375 /* System Event Handlers (registered by EVENTHANDLER_REGISTER) */ 3376 3377 static void 3378 acpi_system_eventhandler_sleep(void *arg, int state) 3379 { 3380 struct acpi_softc *sc = (struct acpi_softc *)arg; 3381 int ret; 3382 3383 ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state); 3384 3385 /* Check if button action is disabled or unknown. */ 3386 if (state == ACPI_STATE_UNKNOWN) 3387 return; 3388 3389 /* Request that the system prepare to enter the given suspend state. */ 3390 ret = acpi_ReqSleepState(sc, state); 3391 if (ret != 0) 3392 device_printf(sc->acpi_dev, 3393 "request to enter state S%d failed (err %d)\n", state, ret); 3394 3395 return_VOID; 3396 } 3397 3398 static void 3399 acpi_system_eventhandler_wakeup(void *arg, int state) 3400 { 3401 3402 ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state); 3403 3404 /* Currently, nothing to do for wakeup. */ 3405 3406 return_VOID; 3407 } 3408 3409 /* 3410 * ACPICA Event Handlers (FixedEvent, also called from button notify handler) 3411 */ 3412 static void 3413 acpi_invoke_sleep_eventhandler(void *context) 3414 { 3415 3416 EVENTHANDLER_INVOKE(acpi_sleep_event, *(int *)context); 3417 } 3418 3419 static void 3420 acpi_invoke_wake_eventhandler(void *context) 3421 { 3422 3423 EVENTHANDLER_INVOKE(acpi_wakeup_event, *(int *)context); 3424 } 3425 3426 UINT32 3427 acpi_event_power_button_sleep(void *context) 3428 { 3429 struct acpi_softc *sc = (struct acpi_softc *)context; 3430 3431 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3432 3433 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3434 acpi_invoke_sleep_eventhandler, &sc->acpi_power_button_sx))) 3435 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); 3436 return_VALUE (ACPI_INTERRUPT_HANDLED); 3437 } 3438 3439 UINT32 3440 acpi_event_power_button_wake(void *context) 3441 { 3442 struct acpi_softc *sc = (struct acpi_softc *)context; 3443 3444 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3445 3446 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3447 acpi_invoke_wake_eventhandler, &sc->acpi_power_button_sx))) 3448 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); 3449 return_VALUE (ACPI_INTERRUPT_HANDLED); 3450 } 3451 3452 UINT32 3453 acpi_event_sleep_button_sleep(void *context) 3454 { 3455 struct acpi_softc *sc = (struct acpi_softc *)context; 3456 3457 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3458 3459 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3460 acpi_invoke_sleep_eventhandler, &sc->acpi_sleep_button_sx))) 3461 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); 3462 return_VALUE (ACPI_INTERRUPT_HANDLED); 3463 } 3464 3465 UINT32 3466 acpi_event_sleep_button_wake(void *context) 3467 { 3468 struct acpi_softc *sc = (struct acpi_softc *)context; 3469 3470 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3471 3472 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3473 acpi_invoke_wake_eventhandler, &sc->acpi_sleep_button_sx))) 3474 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); 3475 return_VALUE (ACPI_INTERRUPT_HANDLED); 3476 } 3477 3478 /* 3479 * XXX This static buffer is suboptimal. There is no locking so only 3480 * use this for single-threaded callers. 3481 */ 3482 char * 3483 acpi_name(ACPI_HANDLE handle) 3484 { 3485 ACPI_BUFFER buf; 3486 static char data[256]; 3487 3488 buf.Length = sizeof(data); 3489 buf.Pointer = data; 3490 3491 if (handle && ACPI_SUCCESS(AcpiGetName(handle, ACPI_FULL_PATHNAME, &buf))) 3492 return (data); 3493 return ("(unknown)"); 3494 } 3495 3496 /* 3497 * Debugging/bug-avoidance. Avoid trying to fetch info on various 3498 * parts of the namespace. 3499 */ 3500 int 3501 acpi_avoid(ACPI_HANDLE handle) 3502 { 3503 char *cp, *env, *np; 3504 int len; 3505 3506 np = acpi_name(handle); 3507 if (*np == '\\') 3508 np++; 3509 if ((env = kern_getenv("debug.acpi.avoid")) == NULL) 3510 return (0); 3511 3512 /* Scan the avoid list checking for a match */ 3513 cp = env; 3514 for (;;) { 3515 while (*cp != 0 && isspace(*cp)) 3516 cp++; 3517 if (*cp == 0) 3518 break; 3519 len = 0; 3520 while (cp[len] != 0 && !isspace(cp[len])) 3521 len++; 3522 if (!strncmp(cp, np, len)) { 3523 freeenv(env); 3524 return(1); 3525 } 3526 cp += len; 3527 } 3528 freeenv(env); 3529 3530 return (0); 3531 } 3532 3533 /* 3534 * Debugging/bug-avoidance. Disable ACPI subsystem components. 3535 */ 3536 int 3537 acpi_disabled(char *subsys) 3538 { 3539 char *cp, *env; 3540 int len; 3541 3542 if ((env = kern_getenv("debug.acpi.disabled")) == NULL) 3543 return (0); 3544 if (strcmp(env, "all") == 0) { 3545 freeenv(env); 3546 return (1); 3547 } 3548 3549 /* Scan the disable list, checking for a match. */ 3550 cp = env; 3551 for (;;) { 3552 while (*cp != '\0' && isspace(*cp)) 3553 cp++; 3554 if (*cp == '\0') 3555 break; 3556 len = 0; 3557 while (cp[len] != '\0' && !isspace(cp[len])) 3558 len++; 3559 if (strncmp(cp, subsys, len) == 0) { 3560 freeenv(env); 3561 return (1); 3562 } 3563 cp += len; 3564 } 3565 freeenv(env); 3566 3567 return (0); 3568 } 3569 3570 static void 3571 acpi_lookup(void *arg, const char *name, device_t *dev) 3572 { 3573 ACPI_HANDLE handle; 3574 3575 if (*dev != NULL) 3576 return; 3577 3578 /* 3579 * Allow any handle name that is specified as an absolute path and 3580 * starts with '\'. We could restrict this to \_SB and friends, 3581 * but see acpi_probe_children() for notes on why we scan the entire 3582 * namespace for devices. 3583 * 3584 * XXX: The pathname argument to AcpiGetHandle() should be fixed to 3585 * be const. 3586 */ 3587 if (name[0] != '\\') 3588 return; 3589 if (ACPI_FAILURE(AcpiGetHandle(ACPI_ROOT_OBJECT, __DECONST(char *, name), 3590 &handle))) 3591 return; 3592 *dev = acpi_get_device(handle); 3593 } 3594 3595 /* 3596 * Control interface. 3597 * 3598 * We multiplex ioctls for all participating ACPI devices here. Individual 3599 * drivers wanting to be accessible via /dev/acpi should use the 3600 * register/deregister interface to make their handlers visible. 3601 */ 3602 struct acpi_ioctl_hook 3603 { 3604 TAILQ_ENTRY(acpi_ioctl_hook) link; 3605 u_long cmd; 3606 acpi_ioctl_fn fn; 3607 void *arg; 3608 }; 3609 3610 static TAILQ_HEAD(,acpi_ioctl_hook) acpi_ioctl_hooks; 3611 static int acpi_ioctl_hooks_initted; 3612 3613 int 3614 acpi_register_ioctl(u_long cmd, acpi_ioctl_fn fn, void *arg) 3615 { 3616 struct acpi_ioctl_hook *hp; 3617 3618 if ((hp = malloc(sizeof(*hp), M_ACPIDEV, M_NOWAIT)) == NULL) 3619 return (ENOMEM); 3620 hp->cmd = cmd; 3621 hp->fn = fn; 3622 hp->arg = arg; 3623 3624 ACPI_LOCK(acpi); 3625 if (acpi_ioctl_hooks_initted == 0) { 3626 TAILQ_INIT(&acpi_ioctl_hooks); 3627 acpi_ioctl_hooks_initted = 1; 3628 } 3629 TAILQ_INSERT_TAIL(&acpi_ioctl_hooks, hp, link); 3630 ACPI_UNLOCK(acpi); 3631 3632 return (0); 3633 } 3634 3635 void 3636 acpi_deregister_ioctl(u_long cmd, acpi_ioctl_fn fn) 3637 { 3638 struct acpi_ioctl_hook *hp; 3639 3640 ACPI_LOCK(acpi); 3641 TAILQ_FOREACH(hp, &acpi_ioctl_hooks, link) 3642 if (hp->cmd == cmd && hp->fn == fn) 3643 break; 3644 3645 if (hp != NULL) { 3646 TAILQ_REMOVE(&acpi_ioctl_hooks, hp, link); 3647 free(hp, M_ACPIDEV); 3648 } 3649 ACPI_UNLOCK(acpi); 3650 } 3651 3652 static int 3653 acpiopen(struct cdev *dev, int flag, int fmt, struct thread *td) 3654 { 3655 return (0); 3656 } 3657 3658 static int 3659 acpiclose(struct cdev *dev, int flag, int fmt, struct thread *td) 3660 { 3661 return (0); 3662 } 3663 3664 static int 3665 acpiioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 3666 { 3667 struct acpi_softc *sc; 3668 struct acpi_ioctl_hook *hp; 3669 int error, state; 3670 3671 error = 0; 3672 hp = NULL; 3673 sc = dev->si_drv1; 3674 3675 /* 3676 * Scan the list of registered ioctls, looking for handlers. 3677 */ 3678 ACPI_LOCK(acpi); 3679 if (acpi_ioctl_hooks_initted) 3680 TAILQ_FOREACH(hp, &acpi_ioctl_hooks, link) { 3681 if (hp->cmd == cmd) 3682 break; 3683 } 3684 ACPI_UNLOCK(acpi); 3685 if (hp) 3686 return (hp->fn(cmd, addr, hp->arg)); 3687 3688 /* 3689 * Core ioctls are not permitted for non-writable user. 3690 * Currently, other ioctls just fetch information. 3691 * Not changing system behavior. 3692 */ 3693 if ((flag & FWRITE) == 0) 3694 return (EPERM); 3695 3696 /* Core system ioctls. */ 3697 switch (cmd) { 3698 case ACPIIO_REQSLPSTATE: 3699 state = *(int *)addr; 3700 if (state != ACPI_STATE_S5) 3701 return (acpi_ReqSleepState(sc, state)); 3702 device_printf(sc->acpi_dev, "power off via acpi ioctl not supported\n"); 3703 error = EOPNOTSUPP; 3704 break; 3705 case ACPIIO_ACKSLPSTATE: 3706 error = *(int *)addr; 3707 error = acpi_AckSleepState(sc->acpi_clone, error); 3708 break; 3709 case ACPIIO_SETSLPSTATE: /* DEPRECATED */ 3710 state = *(int *)addr; 3711 if (state < ACPI_STATE_S0 || state > ACPI_S_STATES_MAX) 3712 return (EINVAL); 3713 if (!acpi_sleep_states[state]) 3714 return (EOPNOTSUPP); 3715 if (ACPI_FAILURE(acpi_SetSleepState(sc, state))) 3716 error = ENXIO; 3717 break; 3718 default: 3719 error = ENXIO; 3720 break; 3721 } 3722 3723 return (error); 3724 } 3725 3726 static int 3727 acpi_sname2sstate(const char *sname) 3728 { 3729 int sstate; 3730 3731 if (toupper(sname[0]) == 'S') { 3732 sstate = sname[1] - '0'; 3733 if (sstate >= ACPI_STATE_S0 && sstate <= ACPI_STATE_S5 && 3734 sname[2] == '\0') 3735 return (sstate); 3736 } else if (strcasecmp(sname, "NONE") == 0) 3737 return (ACPI_STATE_UNKNOWN); 3738 return (-1); 3739 } 3740 3741 static const char * 3742 acpi_sstate2sname(int sstate) 3743 { 3744 static const char *snames[] = { "S0", "S1", "S2", "S3", "S4", "S5" }; 3745 3746 if (sstate >= ACPI_STATE_S0 && sstate <= ACPI_STATE_S5) 3747 return (snames[sstate]); 3748 else if (sstate == ACPI_STATE_UNKNOWN) 3749 return ("NONE"); 3750 return (NULL); 3751 } 3752 3753 static int 3754 acpi_supported_sleep_state_sysctl(SYSCTL_HANDLER_ARGS) 3755 { 3756 int error; 3757 struct sbuf sb; 3758 UINT8 state; 3759 3760 sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND); 3761 for (state = ACPI_STATE_S1; state < ACPI_S_STATE_COUNT; state++) 3762 if (acpi_sleep_states[state]) 3763 sbuf_printf(&sb, "%s ", acpi_sstate2sname(state)); 3764 sbuf_trim(&sb); 3765 sbuf_finish(&sb); 3766 error = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req); 3767 sbuf_delete(&sb); 3768 return (error); 3769 } 3770 3771 static int 3772 acpi_sleep_state_sysctl(SYSCTL_HANDLER_ARGS) 3773 { 3774 char sleep_state[10]; 3775 int error, new_state, old_state; 3776 3777 old_state = *(int *)oidp->oid_arg1; 3778 strlcpy(sleep_state, acpi_sstate2sname(old_state), sizeof(sleep_state)); 3779 error = sysctl_handle_string(oidp, sleep_state, sizeof(sleep_state), req); 3780 if (error == 0 && req->newptr != NULL) { 3781 new_state = acpi_sname2sstate(sleep_state); 3782 if (new_state < ACPI_STATE_S1) 3783 return (EINVAL); 3784 if (new_state < ACPI_S_STATE_COUNT && !acpi_sleep_states[new_state]) 3785 return (EOPNOTSUPP); 3786 if (new_state != old_state) 3787 *(int *)oidp->oid_arg1 = new_state; 3788 } 3789 return (error); 3790 } 3791 3792 /* Inform devctl(4) when we receive a Notify. */ 3793 void 3794 acpi_UserNotify(const char *subsystem, ACPI_HANDLE h, uint8_t notify) 3795 { 3796 char notify_buf[16]; 3797 ACPI_BUFFER handle_buf; 3798 ACPI_STATUS status; 3799 3800 if (subsystem == NULL) 3801 return; 3802 3803 handle_buf.Pointer = NULL; 3804 handle_buf.Length = ACPI_ALLOCATE_BUFFER; 3805 status = AcpiNsHandleToPathname(h, &handle_buf, FALSE); 3806 if (ACPI_FAILURE(status)) 3807 return; 3808 snprintf(notify_buf, sizeof(notify_buf), "notify=0x%02x", notify); 3809 devctl_notify("ACPI", subsystem, handle_buf.Pointer, notify_buf); 3810 AcpiOsFree(handle_buf.Pointer); 3811 } 3812 3813 #ifdef ACPI_DEBUG 3814 /* 3815 * Support for parsing debug options from the kernel environment. 3816 * 3817 * Bits may be set in the AcpiDbgLayer and AcpiDbgLevel debug registers 3818 * by specifying the names of the bits in the debug.acpi.layer and 3819 * debug.acpi.level environment variables. Bits may be unset by 3820 * prefixing the bit name with !. 3821 */ 3822 struct debugtag 3823 { 3824 char *name; 3825 UINT32 value; 3826 }; 3827 3828 static struct debugtag dbg_layer[] = { 3829 {"ACPI_UTILITIES", ACPI_UTILITIES}, 3830 {"ACPI_HARDWARE", ACPI_HARDWARE}, 3831 {"ACPI_EVENTS", ACPI_EVENTS}, 3832 {"ACPI_TABLES", ACPI_TABLES}, 3833 {"ACPI_NAMESPACE", ACPI_NAMESPACE}, 3834 {"ACPI_PARSER", ACPI_PARSER}, 3835 {"ACPI_DISPATCHER", ACPI_DISPATCHER}, 3836 {"ACPI_EXECUTER", ACPI_EXECUTER}, 3837 {"ACPI_RESOURCES", ACPI_RESOURCES}, 3838 {"ACPI_CA_DEBUGGER", ACPI_CA_DEBUGGER}, 3839 {"ACPI_OS_SERVICES", ACPI_OS_SERVICES}, 3840 {"ACPI_CA_DISASSEMBLER", ACPI_CA_DISASSEMBLER}, 3841 {"ACPI_ALL_COMPONENTS", ACPI_ALL_COMPONENTS}, 3842 3843 {"ACPI_AC_ADAPTER", ACPI_AC_ADAPTER}, 3844 {"ACPI_BATTERY", ACPI_BATTERY}, 3845 {"ACPI_BUS", ACPI_BUS}, 3846 {"ACPI_BUTTON", ACPI_BUTTON}, 3847 {"ACPI_EC", ACPI_EC}, 3848 {"ACPI_FAN", ACPI_FAN}, 3849 {"ACPI_POWERRES", ACPI_POWERRES}, 3850 {"ACPI_PROCESSOR", ACPI_PROCESSOR}, 3851 {"ACPI_THERMAL", ACPI_THERMAL}, 3852 {"ACPI_TIMER", ACPI_TIMER}, 3853 {"ACPI_ALL_DRIVERS", ACPI_ALL_DRIVERS}, 3854 {NULL, 0} 3855 }; 3856 3857 static struct debugtag dbg_level[] = { 3858 {"ACPI_LV_INIT", ACPI_LV_INIT}, 3859 {"ACPI_LV_DEBUG_OBJECT", ACPI_LV_DEBUG_OBJECT}, 3860 {"ACPI_LV_INFO", ACPI_LV_INFO}, 3861 {"ACPI_LV_REPAIR", ACPI_LV_REPAIR}, 3862 {"ACPI_LV_ALL_EXCEPTIONS", ACPI_LV_ALL_EXCEPTIONS}, 3863 3864 /* Trace verbosity level 1 [Standard Trace Level] */ 3865 {"ACPI_LV_INIT_NAMES", ACPI_LV_INIT_NAMES}, 3866 {"ACPI_LV_PARSE", ACPI_LV_PARSE}, 3867 {"ACPI_LV_LOAD", ACPI_LV_LOAD}, 3868 {"ACPI_LV_DISPATCH", ACPI_LV_DISPATCH}, 3869 {"ACPI_LV_EXEC", ACPI_LV_EXEC}, 3870 {"ACPI_LV_NAMES", ACPI_LV_NAMES}, 3871 {"ACPI_LV_OPREGION", ACPI_LV_OPREGION}, 3872 {"ACPI_LV_BFIELD", ACPI_LV_BFIELD}, 3873 {"ACPI_LV_TABLES", ACPI_LV_TABLES}, 3874 {"ACPI_LV_VALUES", ACPI_LV_VALUES}, 3875 {"ACPI_LV_OBJECTS", ACPI_LV_OBJECTS}, 3876 {"ACPI_LV_RESOURCES", ACPI_LV_RESOURCES}, 3877 {"ACPI_LV_USER_REQUESTS", ACPI_LV_USER_REQUESTS}, 3878 {"ACPI_LV_PACKAGE", ACPI_LV_PACKAGE}, 3879 {"ACPI_LV_VERBOSITY1", ACPI_LV_VERBOSITY1}, 3880 3881 /* Trace verbosity level 2 [Function tracing and memory allocation] */ 3882 {"ACPI_LV_ALLOCATIONS", ACPI_LV_ALLOCATIONS}, 3883 {"ACPI_LV_FUNCTIONS", ACPI_LV_FUNCTIONS}, 3884 {"ACPI_LV_OPTIMIZATIONS", ACPI_LV_OPTIMIZATIONS}, 3885 {"ACPI_LV_VERBOSITY2", ACPI_LV_VERBOSITY2}, 3886 {"ACPI_LV_ALL", ACPI_LV_ALL}, 3887 3888 /* Trace verbosity level 3 [Threading, I/O, and Interrupts] */ 3889 {"ACPI_LV_MUTEX", ACPI_LV_MUTEX}, 3890 {"ACPI_LV_THREADS", ACPI_LV_THREADS}, 3891 {"ACPI_LV_IO", ACPI_LV_IO}, 3892 {"ACPI_LV_INTERRUPTS", ACPI_LV_INTERRUPTS}, 3893 {"ACPI_LV_VERBOSITY3", ACPI_LV_VERBOSITY3}, 3894 3895 /* Exceptionally verbose output -- also used in the global "DebugLevel" */ 3896 {"ACPI_LV_AML_DISASSEMBLE", ACPI_LV_AML_DISASSEMBLE}, 3897 {"ACPI_LV_VERBOSE_INFO", ACPI_LV_VERBOSE_INFO}, 3898 {"ACPI_LV_FULL_TABLES", ACPI_LV_FULL_TABLES}, 3899 {"ACPI_LV_EVENTS", ACPI_LV_EVENTS}, 3900 {"ACPI_LV_VERBOSE", ACPI_LV_VERBOSE}, 3901 {NULL, 0} 3902 }; 3903 3904 static void 3905 acpi_parse_debug(char *cp, struct debugtag *tag, UINT32 *flag) 3906 { 3907 char *ep; 3908 int i, l; 3909 int set; 3910 3911 while (*cp) { 3912 if (isspace(*cp)) { 3913 cp++; 3914 continue; 3915 } 3916 ep = cp; 3917 while (*ep && !isspace(*ep)) 3918 ep++; 3919 if (*cp == '!') { 3920 set = 0; 3921 cp++; 3922 if (cp == ep) 3923 continue; 3924 } else { 3925 set = 1; 3926 } 3927 l = ep - cp; 3928 for (i = 0; tag[i].name != NULL; i++) { 3929 if (!strncmp(cp, tag[i].name, l)) { 3930 if (set) 3931 *flag |= tag[i].value; 3932 else 3933 *flag &= ~tag[i].value; 3934 } 3935 } 3936 cp = ep; 3937 } 3938 } 3939 3940 static void 3941 acpi_set_debugging(void *junk) 3942 { 3943 char *layer, *level; 3944 3945 if (cold) { 3946 AcpiDbgLayer = 0; 3947 AcpiDbgLevel = 0; 3948 } 3949 3950 layer = kern_getenv("debug.acpi.layer"); 3951 level = kern_getenv("debug.acpi.level"); 3952 if (layer == NULL && level == NULL) 3953 return; 3954 3955 printf("ACPI set debug"); 3956 if (layer != NULL) { 3957 if (strcmp("NONE", layer) != 0) 3958 printf(" layer '%s'", layer); 3959 acpi_parse_debug(layer, &dbg_layer[0], &AcpiDbgLayer); 3960 freeenv(layer); 3961 } 3962 if (level != NULL) { 3963 if (strcmp("NONE", level) != 0) 3964 printf(" level '%s'", level); 3965 acpi_parse_debug(level, &dbg_level[0], &AcpiDbgLevel); 3966 freeenv(level); 3967 } 3968 printf("\n"); 3969 } 3970 3971 SYSINIT(acpi_debugging, SI_SUB_TUNABLES, SI_ORDER_ANY, acpi_set_debugging, 3972 NULL); 3973 3974 static int 3975 acpi_debug_sysctl(SYSCTL_HANDLER_ARGS) 3976 { 3977 int error, *dbg; 3978 struct debugtag *tag; 3979 struct sbuf sb; 3980 char temp[128]; 3981 3982 if (sbuf_new(&sb, NULL, 128, SBUF_AUTOEXTEND) == NULL) 3983 return (ENOMEM); 3984 if (strcmp(oidp->oid_arg1, "debug.acpi.layer") == 0) { 3985 tag = &dbg_layer[0]; 3986 dbg = &AcpiDbgLayer; 3987 } else { 3988 tag = &dbg_level[0]; 3989 dbg = &AcpiDbgLevel; 3990 } 3991 3992 /* Get old values if this is a get request. */ 3993 ACPI_SERIAL_BEGIN(acpi); 3994 if (*dbg == 0) { 3995 sbuf_cpy(&sb, "NONE"); 3996 } else if (req->newptr == NULL) { 3997 for (; tag->name != NULL; tag++) { 3998 if ((*dbg & tag->value) == tag->value) 3999 sbuf_printf(&sb, "%s ", tag->name); 4000 } 4001 } 4002 sbuf_trim(&sb); 4003 sbuf_finish(&sb); 4004 strlcpy(temp, sbuf_data(&sb), sizeof(temp)); 4005 sbuf_delete(&sb); 4006 4007 error = sysctl_handle_string(oidp, temp, sizeof(temp), req); 4008 4009 /* Check for error or no change */ 4010 if (error == 0 && req->newptr != NULL) { 4011 *dbg = 0; 4012 kern_setenv((char *)oidp->oid_arg1, temp); 4013 acpi_set_debugging(NULL); 4014 } 4015 ACPI_SERIAL_END(acpi); 4016 4017 return (error); 4018 } 4019 4020 SYSCTL_PROC(_debug_acpi, OID_AUTO, layer, CTLFLAG_RW | CTLTYPE_STRING, 4021 "debug.acpi.layer", 0, acpi_debug_sysctl, "A", ""); 4022 SYSCTL_PROC(_debug_acpi, OID_AUTO, level, CTLFLAG_RW | CTLTYPE_STRING, 4023 "debug.acpi.level", 0, acpi_debug_sysctl, "A", ""); 4024 #endif /* ACPI_DEBUG */ 4025 4026 static int 4027 acpi_debug_objects_sysctl(SYSCTL_HANDLER_ARGS) 4028 { 4029 int error; 4030 int old; 4031 4032 old = acpi_debug_objects; 4033 error = sysctl_handle_int(oidp, &acpi_debug_objects, 0, req); 4034 if (error != 0 || req->newptr == NULL) 4035 return (error); 4036 if (old == acpi_debug_objects || (old && acpi_debug_objects)) 4037 return (0); 4038 4039 ACPI_SERIAL_BEGIN(acpi); 4040 AcpiGbl_EnableAmlDebugObject = acpi_debug_objects ? TRUE : FALSE; 4041 ACPI_SERIAL_END(acpi); 4042 4043 return (0); 4044 } 4045 4046 static int 4047 acpi_parse_interfaces(char *str, struct acpi_interface *iface) 4048 { 4049 char *p; 4050 size_t len; 4051 int i, j; 4052 4053 p = str; 4054 while (isspace(*p) || *p == ',') 4055 p++; 4056 len = strlen(p); 4057 if (len == 0) 4058 return (0); 4059 p = strdup(p, M_TEMP); 4060 for (i = 0; i < len; i++) 4061 if (p[i] == ',') 4062 p[i] = '\0'; 4063 i = j = 0; 4064 while (i < len) 4065 if (isspace(p[i]) || p[i] == '\0') 4066 i++; 4067 else { 4068 i += strlen(p + i) + 1; 4069 j++; 4070 } 4071 if (j == 0) { 4072 free(p, M_TEMP); 4073 return (0); 4074 } 4075 iface->data = malloc(sizeof(*iface->data) * j, M_TEMP, M_WAITOK); 4076 iface->num = j; 4077 i = j = 0; 4078 while (i < len) 4079 if (isspace(p[i]) || p[i] == '\0') 4080 i++; 4081 else { 4082 iface->data[j] = p + i; 4083 i += strlen(p + i) + 1; 4084 j++; 4085 } 4086 4087 return (j); 4088 } 4089 4090 static void 4091 acpi_free_interfaces(struct acpi_interface *iface) 4092 { 4093 4094 free(iface->data[0], M_TEMP); 4095 free(iface->data, M_TEMP); 4096 } 4097 4098 static void 4099 acpi_reset_interfaces(device_t dev) 4100 { 4101 struct acpi_interface list; 4102 ACPI_STATUS status; 4103 int i; 4104 4105 if (acpi_parse_interfaces(acpi_install_interface, &list) > 0) { 4106 for (i = 0; i < list.num; i++) { 4107 status = AcpiInstallInterface(list.data[i]); 4108 if (ACPI_FAILURE(status)) 4109 device_printf(dev, 4110 "failed to install _OSI(\"%s\"): %s\n", 4111 list.data[i], AcpiFormatException(status)); 4112 else if (bootverbose) 4113 device_printf(dev, "installed _OSI(\"%s\")\n", 4114 list.data[i]); 4115 } 4116 acpi_free_interfaces(&list); 4117 } 4118 if (acpi_parse_interfaces(acpi_remove_interface, &list) > 0) { 4119 for (i = 0; i < list.num; i++) { 4120 status = AcpiRemoveInterface(list.data[i]); 4121 if (ACPI_FAILURE(status)) 4122 device_printf(dev, 4123 "failed to remove _OSI(\"%s\"): %s\n", 4124 list.data[i], AcpiFormatException(status)); 4125 else if (bootverbose) 4126 device_printf(dev, "removed _OSI(\"%s\")\n", 4127 list.data[i]); 4128 } 4129 acpi_free_interfaces(&list); 4130 } 4131 } 4132 4133 static int 4134 acpi_pm_func(u_long cmd, void *arg, ...) 4135 { 4136 int state, acpi_state; 4137 int error; 4138 struct acpi_softc *sc; 4139 va_list ap; 4140 4141 error = 0; 4142 switch (cmd) { 4143 case POWER_CMD_SUSPEND: 4144 sc = (struct acpi_softc *)arg; 4145 if (sc == NULL) { 4146 error = EINVAL; 4147 goto out; 4148 } 4149 4150 va_start(ap, arg); 4151 state = va_arg(ap, int); 4152 va_end(ap); 4153 4154 switch (state) { 4155 case POWER_SLEEP_STATE_STANDBY: 4156 acpi_state = sc->acpi_standby_sx; 4157 break; 4158 case POWER_SLEEP_STATE_SUSPEND: 4159 acpi_state = sc->acpi_suspend_sx; 4160 break; 4161 case POWER_SLEEP_STATE_HIBERNATE: 4162 acpi_state = ACPI_STATE_S4; 4163 break; 4164 default: 4165 error = EINVAL; 4166 goto out; 4167 } 4168 4169 if (ACPI_FAILURE(acpi_EnterSleepState(sc, acpi_state))) 4170 error = ENXIO; 4171 break; 4172 default: 4173 error = EINVAL; 4174 goto out; 4175 } 4176 4177 out: 4178 return (error); 4179 } 4180 4181 static void 4182 acpi_pm_register(void *arg) 4183 { 4184 if (!cold || resource_disabled("acpi", 0)) 4185 return; 4186 4187 power_pm_register(POWER_PM_TYPE_ACPI, acpi_pm_func, NULL); 4188 } 4189 4190 SYSINIT(power, SI_SUB_KLD, SI_ORDER_ANY, acpi_pm_register, NULL); 4191