1 /*- 2 * Copyright (c) 2000 Takanori Watanabe <takawata@jp.freebsd.org> 3 * Copyright (c) 2000 Mitsuru IWASAKI <iwasaki@jp.freebsd.org> 4 * Copyright (c) 2000, 2001 Michael Smith 5 * Copyright (c) 2000 BSDi 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include "opt_acpi.h" 34 #include <sys/param.h> 35 #include <sys/kernel.h> 36 #include <sys/proc.h> 37 #include <sys/fcntl.h> 38 #include <sys/malloc.h> 39 #include <sys/module.h> 40 #include <sys/bus.h> 41 #include <sys/conf.h> 42 #include <sys/ioccom.h> 43 #include <sys/reboot.h> 44 #include <sys/sysctl.h> 45 #include <sys/ctype.h> 46 #include <sys/linker.h> 47 #include <sys/power.h> 48 #include <sys/sbuf.h> 49 #include <sys/sched.h> 50 #include <sys/smp.h> 51 #include <sys/timetc.h> 52 53 #if defined(__i386__) || defined(__amd64__) 54 #include <machine/pci_cfgreg.h> 55 #endif 56 #include <machine/resource.h> 57 #include <machine/bus.h> 58 #include <sys/rman.h> 59 #include <isa/isavar.h> 60 #include <isa/pnpvar.h> 61 62 #include <contrib/dev/acpica/include/acpi.h> 63 #include <contrib/dev/acpica/include/accommon.h> 64 #include <contrib/dev/acpica/include/acnamesp.h> 65 66 #include <dev/acpica/acpivar.h> 67 #include <dev/acpica/acpiio.h> 68 69 #include "pci_if.h" 70 #include <dev/pci/pcivar.h> 71 #include <dev/pci/pci_private.h> 72 73 #include <vm/vm_param.h> 74 75 MALLOC_DEFINE(M_ACPIDEV, "acpidev", "ACPI devices"); 76 77 /* Hooks for the ACPI CA debugging infrastructure */ 78 #define _COMPONENT ACPI_BUS 79 ACPI_MODULE_NAME("ACPI") 80 81 static d_open_t acpiopen; 82 static d_close_t acpiclose; 83 static d_ioctl_t acpiioctl; 84 85 static struct cdevsw acpi_cdevsw = { 86 .d_version = D_VERSION, 87 .d_open = acpiopen, 88 .d_close = acpiclose, 89 .d_ioctl = acpiioctl, 90 .d_name = "acpi", 91 }; 92 93 /* Global mutex for locking access to the ACPI subsystem. */ 94 struct mtx acpi_mutex; 95 96 /* Bitmap of device quirks. */ 97 int acpi_quirks; 98 99 /* Supported sleep states. */ 100 static BOOLEAN acpi_sleep_states[ACPI_S_STATE_COUNT]; 101 102 static int acpi_modevent(struct module *mod, int event, void *junk); 103 static int acpi_probe(device_t dev); 104 static int acpi_attach(device_t dev); 105 static int acpi_suspend(device_t dev); 106 static int acpi_resume(device_t dev); 107 static int acpi_shutdown(device_t dev); 108 static device_t acpi_add_child(device_t bus, u_int order, const char *name, 109 int unit); 110 static int acpi_print_child(device_t bus, device_t child); 111 static void acpi_probe_nomatch(device_t bus, device_t child); 112 static void acpi_driver_added(device_t dev, driver_t *driver); 113 static int acpi_read_ivar(device_t dev, device_t child, int index, 114 uintptr_t *result); 115 static int acpi_write_ivar(device_t dev, device_t child, int index, 116 uintptr_t value); 117 static struct resource_list *acpi_get_rlist(device_t dev, device_t child); 118 static int acpi_sysres_alloc(device_t dev); 119 static struct resource *acpi_alloc_resource(device_t bus, device_t child, 120 int type, int *rid, u_long start, u_long end, 121 u_long count, u_int flags); 122 static int acpi_release_resource(device_t bus, device_t child, int type, 123 int rid, struct resource *r); 124 static void acpi_delete_resource(device_t bus, device_t child, int type, 125 int rid); 126 static uint32_t acpi_isa_get_logicalid(device_t dev); 127 static int acpi_isa_get_compatid(device_t dev, uint32_t *cids, int count); 128 static char *acpi_device_id_probe(device_t bus, device_t dev, char **ids); 129 static ACPI_STATUS acpi_device_eval_obj(device_t bus, device_t dev, 130 ACPI_STRING pathname, ACPI_OBJECT_LIST *parameters, 131 ACPI_BUFFER *ret); 132 static ACPI_STATUS acpi_device_scan_cb(ACPI_HANDLE h, UINT32 level, 133 void *context, void **retval); 134 static ACPI_STATUS acpi_device_scan_children(device_t bus, device_t dev, 135 int max_depth, acpi_scan_cb_t user_fn, void *arg); 136 static int acpi_set_powerstate_method(device_t bus, device_t child, 137 int state); 138 static int acpi_isa_pnp_probe(device_t bus, device_t child, 139 struct isa_pnp_id *ids); 140 static void acpi_probe_children(device_t bus); 141 static void acpi_probe_order(ACPI_HANDLE handle, int *order); 142 static ACPI_STATUS acpi_probe_child(ACPI_HANDLE handle, UINT32 level, 143 void *context, void **status); 144 static void acpi_sleep_enable(void *arg); 145 static ACPI_STATUS acpi_sleep_disable(struct acpi_softc *sc); 146 static ACPI_STATUS acpi_EnterSleepState(struct acpi_softc *sc, int state); 147 static void acpi_shutdown_final(void *arg, int howto); 148 static void acpi_enable_fixed_events(struct acpi_softc *sc); 149 static int acpi_wake_sleep_prep(ACPI_HANDLE handle, int sstate); 150 static int acpi_wake_run_prep(ACPI_HANDLE handle, int sstate); 151 static int acpi_wake_prep_walk(int sstate); 152 static int acpi_wake_sysctl_walk(device_t dev); 153 static int acpi_wake_set_sysctl(SYSCTL_HANDLER_ARGS); 154 static void acpi_system_eventhandler_sleep(void *arg, int state); 155 static void acpi_system_eventhandler_wakeup(void *arg, int state); 156 static int acpi_sname2sstate(const char *sname); 157 static const char *acpi_sstate2sname(int sstate); 158 static int acpi_supported_sleep_state_sysctl(SYSCTL_HANDLER_ARGS); 159 static int acpi_sleep_state_sysctl(SYSCTL_HANDLER_ARGS); 160 static int acpi_debug_objects_sysctl(SYSCTL_HANDLER_ARGS); 161 static int acpi_pm_func(u_long cmd, void *arg, ...); 162 static int acpi_child_location_str_method(device_t acdev, device_t child, 163 char *buf, size_t buflen); 164 static int acpi_child_pnpinfo_str_method(device_t acdev, device_t child, 165 char *buf, size_t buflen); 166 #if defined(__i386__) || defined(__amd64__) 167 static void acpi_enable_pcie(void); 168 #endif 169 static void acpi_hint_device_unit(device_t acdev, device_t child, 170 const char *name, int *unitp); 171 172 static device_method_t acpi_methods[] = { 173 /* Device interface */ 174 DEVMETHOD(device_probe, acpi_probe), 175 DEVMETHOD(device_attach, acpi_attach), 176 DEVMETHOD(device_shutdown, acpi_shutdown), 177 DEVMETHOD(device_detach, bus_generic_detach), 178 DEVMETHOD(device_suspend, acpi_suspend), 179 DEVMETHOD(device_resume, acpi_resume), 180 181 /* Bus interface */ 182 DEVMETHOD(bus_add_child, acpi_add_child), 183 DEVMETHOD(bus_print_child, acpi_print_child), 184 DEVMETHOD(bus_probe_nomatch, acpi_probe_nomatch), 185 DEVMETHOD(bus_driver_added, acpi_driver_added), 186 DEVMETHOD(bus_read_ivar, acpi_read_ivar), 187 DEVMETHOD(bus_write_ivar, acpi_write_ivar), 188 DEVMETHOD(bus_get_resource_list, acpi_get_rlist), 189 DEVMETHOD(bus_set_resource, bus_generic_rl_set_resource), 190 DEVMETHOD(bus_get_resource, bus_generic_rl_get_resource), 191 DEVMETHOD(bus_alloc_resource, acpi_alloc_resource), 192 DEVMETHOD(bus_release_resource, acpi_release_resource), 193 DEVMETHOD(bus_delete_resource, acpi_delete_resource), 194 DEVMETHOD(bus_child_pnpinfo_str, acpi_child_pnpinfo_str_method), 195 DEVMETHOD(bus_child_location_str, acpi_child_location_str_method), 196 DEVMETHOD(bus_activate_resource, bus_generic_activate_resource), 197 DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource), 198 DEVMETHOD(bus_setup_intr, bus_generic_setup_intr), 199 DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr), 200 DEVMETHOD(bus_hint_device_unit, acpi_hint_device_unit), 201 202 /* ACPI bus */ 203 DEVMETHOD(acpi_id_probe, acpi_device_id_probe), 204 DEVMETHOD(acpi_evaluate_object, acpi_device_eval_obj), 205 DEVMETHOD(acpi_pwr_for_sleep, acpi_device_pwr_for_sleep), 206 DEVMETHOD(acpi_scan_children, acpi_device_scan_children), 207 208 /* PCI emulation */ 209 DEVMETHOD(pci_set_powerstate, acpi_set_powerstate_method), 210 211 /* ISA emulation */ 212 DEVMETHOD(isa_pnp_probe, acpi_isa_pnp_probe), 213 214 {0, 0} 215 }; 216 217 static driver_t acpi_driver = { 218 "acpi", 219 acpi_methods, 220 sizeof(struct acpi_softc), 221 }; 222 223 static devclass_t acpi_devclass; 224 DRIVER_MODULE(acpi, nexus, acpi_driver, acpi_devclass, acpi_modevent, 0); 225 MODULE_VERSION(acpi, 1); 226 227 ACPI_SERIAL_DECL(acpi, "ACPI root bus"); 228 229 /* Local pools for managing system resources for ACPI child devices. */ 230 static struct rman acpi_rman_io, acpi_rman_mem; 231 232 #define ACPI_MINIMUM_AWAKETIME 5 233 234 /* Holds the description of the acpi0 device. */ 235 static char acpi_desc[ACPI_OEM_ID_SIZE + ACPI_OEM_TABLE_ID_SIZE + 2]; 236 237 SYSCTL_NODE(_debug, OID_AUTO, acpi, CTLFLAG_RD, NULL, "ACPI debugging"); 238 static char acpi_ca_version[12]; 239 SYSCTL_STRING(_debug_acpi, OID_AUTO, acpi_ca_version, CTLFLAG_RD, 240 acpi_ca_version, 0, "Version of Intel ACPI-CA"); 241 242 /* 243 * Allow override of whether methods execute in parallel or not. 244 * Enable this for serial behavior, which fixes "AE_ALREADY_EXISTS" 245 * errors for AML that really can't handle parallel method execution. 246 * It is off by default since this breaks recursive methods and 247 * some IBMs use such code. 248 */ 249 static int acpi_serialize_methods; 250 TUNABLE_INT("hw.acpi.serialize_methods", &acpi_serialize_methods); 251 252 /* Allow users to dump Debug objects without ACPI debugger. */ 253 static int acpi_debug_objects; 254 TUNABLE_INT("debug.acpi.enable_debug_objects", &acpi_debug_objects); 255 SYSCTL_PROC(_debug_acpi, OID_AUTO, enable_debug_objects, 256 CTLFLAG_RW | CTLTYPE_INT, NULL, 0, acpi_debug_objects_sysctl, "I", 257 "Enable Debug objects"); 258 259 /* Allow the interpreter to ignore common mistakes in BIOS. */ 260 static int acpi_interpreter_slack = 1; 261 TUNABLE_INT("debug.acpi.interpreter_slack", &acpi_interpreter_slack); 262 SYSCTL_INT(_debug_acpi, OID_AUTO, interpreter_slack, CTLFLAG_RDTUN, 263 &acpi_interpreter_slack, 1, "Turn on interpreter slack mode."); 264 265 /* Power devices off and on in suspend and resume. XXX Remove once tested. */ 266 static int acpi_do_powerstate = 1; 267 TUNABLE_INT("debug.acpi.do_powerstate", &acpi_do_powerstate); 268 SYSCTL_INT(_debug_acpi, OID_AUTO, do_powerstate, CTLFLAG_RW, 269 &acpi_do_powerstate, 1, "Turn off devices when suspending."); 270 271 /* Reset system clock while resuming. XXX Remove once tested. */ 272 static int acpi_reset_clock = 1; 273 TUNABLE_INT("debug.acpi.reset_clock", &acpi_reset_clock); 274 SYSCTL_INT(_debug_acpi, OID_AUTO, reset_clock, CTLFLAG_RW, 275 &acpi_reset_clock, 1, "Reset system clock while resuming."); 276 277 /* Allow users to override quirks. */ 278 TUNABLE_INT("debug.acpi.quirks", &acpi_quirks); 279 280 static int acpi_susp_bounce; 281 SYSCTL_INT(_debug_acpi, OID_AUTO, suspend_bounce, CTLFLAG_RW, 282 &acpi_susp_bounce, 0, "Don't actually suspend, just test devices."); 283 284 /* 285 * ACPI can only be loaded as a module by the loader; activating it after 286 * system bootstrap time is not useful, and can be fatal to the system. 287 * It also cannot be unloaded, since the entire system bus hierarchy hangs 288 * off it. 289 */ 290 static int 291 acpi_modevent(struct module *mod, int event, void *junk) 292 { 293 switch (event) { 294 case MOD_LOAD: 295 if (!cold) { 296 printf("The ACPI driver cannot be loaded after boot.\n"); 297 return (EPERM); 298 } 299 break; 300 case MOD_UNLOAD: 301 if (!cold && power_pm_get_type() == POWER_PM_TYPE_ACPI) 302 return (EBUSY); 303 break; 304 default: 305 break; 306 } 307 return (0); 308 } 309 310 /* 311 * Perform early initialization. 312 */ 313 ACPI_STATUS 314 acpi_Startup(void) 315 { 316 static int started = 0; 317 ACPI_STATUS status; 318 int val; 319 320 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 321 322 /* Only run the startup code once. The MADT driver also calls this. */ 323 if (started) 324 return_VALUE (AE_OK); 325 started = 1; 326 327 /* 328 * Pre-allocate space for RSDT/XSDT and DSDT tables and allow resizing 329 * if more tables exist. 330 */ 331 if (ACPI_FAILURE(status = AcpiInitializeTables(NULL, 2, TRUE))) { 332 printf("ACPI: Table initialisation failed: %s\n", 333 AcpiFormatException(status)); 334 return_VALUE (status); 335 } 336 337 /* Set up any quirks we have for this system. */ 338 if (acpi_quirks == ACPI_Q_OK) 339 acpi_table_quirks(&acpi_quirks); 340 341 /* If the user manually set the disabled hint to 0, force-enable ACPI. */ 342 if (resource_int_value("acpi", 0, "disabled", &val) == 0 && val == 0) 343 acpi_quirks &= ~ACPI_Q_BROKEN; 344 if (acpi_quirks & ACPI_Q_BROKEN) { 345 printf("ACPI disabled by blacklist. Contact your BIOS vendor.\n"); 346 status = AE_SUPPORT; 347 } 348 349 return_VALUE (status); 350 } 351 352 /* 353 * Detect ACPI and perform early initialisation. 354 */ 355 int 356 acpi_identify(void) 357 { 358 ACPI_TABLE_RSDP *rsdp; 359 ACPI_TABLE_HEADER *rsdt; 360 ACPI_PHYSICAL_ADDRESS paddr; 361 struct sbuf sb; 362 363 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 364 365 if (!cold) 366 return (ENXIO); 367 368 /* Check that we haven't been disabled with a hint. */ 369 if (resource_disabled("acpi", 0)) 370 return (ENXIO); 371 372 /* Check for other PM systems. */ 373 if (power_pm_get_type() != POWER_PM_TYPE_NONE && 374 power_pm_get_type() != POWER_PM_TYPE_ACPI) { 375 printf("ACPI identify failed, other PM system enabled.\n"); 376 return (ENXIO); 377 } 378 379 /* Initialize root tables. */ 380 if (ACPI_FAILURE(acpi_Startup())) { 381 printf("ACPI: Try disabling either ACPI or apic support.\n"); 382 return (ENXIO); 383 } 384 385 if ((paddr = AcpiOsGetRootPointer()) == 0 || 386 (rsdp = AcpiOsMapMemory(paddr, sizeof(ACPI_TABLE_RSDP))) == NULL) 387 return (ENXIO); 388 if (rsdp->Revision > 1 && rsdp->XsdtPhysicalAddress != 0) 389 paddr = (ACPI_PHYSICAL_ADDRESS)rsdp->XsdtPhysicalAddress; 390 else 391 paddr = (ACPI_PHYSICAL_ADDRESS)rsdp->RsdtPhysicalAddress; 392 AcpiOsUnmapMemory(rsdp, sizeof(ACPI_TABLE_RSDP)); 393 394 if ((rsdt = AcpiOsMapMemory(paddr, sizeof(ACPI_TABLE_HEADER))) == NULL) 395 return (ENXIO); 396 sbuf_new(&sb, acpi_desc, sizeof(acpi_desc), SBUF_FIXEDLEN); 397 sbuf_bcat(&sb, rsdt->OemId, ACPI_OEM_ID_SIZE); 398 sbuf_trim(&sb); 399 sbuf_putc(&sb, ' '); 400 sbuf_bcat(&sb, rsdt->OemTableId, ACPI_OEM_TABLE_ID_SIZE); 401 sbuf_trim(&sb); 402 sbuf_finish(&sb); 403 sbuf_delete(&sb); 404 AcpiOsUnmapMemory(rsdt, sizeof(ACPI_TABLE_HEADER)); 405 406 snprintf(acpi_ca_version, sizeof(acpi_ca_version), "%x", ACPI_CA_VERSION); 407 408 return (0); 409 } 410 411 /* 412 * Fetch some descriptive data from ACPI to put in our attach message. 413 */ 414 static int 415 acpi_probe(device_t dev) 416 { 417 418 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 419 420 device_set_desc(dev, acpi_desc); 421 422 return_VALUE (0); 423 } 424 425 static int 426 acpi_attach(device_t dev) 427 { 428 struct acpi_softc *sc; 429 ACPI_STATUS status; 430 int error, state; 431 UINT32 flags; 432 UINT8 TypeA, TypeB; 433 char *env; 434 435 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 436 437 sc = device_get_softc(dev); 438 sc->acpi_dev = dev; 439 callout_init(&sc->susp_force_to, TRUE); 440 441 error = ENXIO; 442 443 /* Initialize resource manager. */ 444 acpi_rman_io.rm_type = RMAN_ARRAY; 445 acpi_rman_io.rm_start = 0; 446 acpi_rman_io.rm_end = 0xffff; 447 acpi_rman_io.rm_descr = "ACPI I/O ports"; 448 if (rman_init(&acpi_rman_io) != 0) 449 panic("acpi rman_init IO ports failed"); 450 acpi_rman_mem.rm_type = RMAN_ARRAY; 451 acpi_rman_mem.rm_start = 0; 452 acpi_rman_mem.rm_end = ~0ul; 453 acpi_rman_mem.rm_descr = "ACPI I/O memory addresses"; 454 if (rman_init(&acpi_rman_mem) != 0) 455 panic("acpi rman_init memory failed"); 456 457 /* Initialise the ACPI mutex */ 458 mtx_init(&acpi_mutex, "ACPI global lock", NULL, MTX_DEF); 459 460 /* 461 * Set the globals from our tunables. This is needed because ACPI-CA 462 * uses UINT8 for some values and we have no tunable_byte. 463 */ 464 AcpiGbl_AllMethodsSerialized = acpi_serialize_methods ? TRUE : FALSE; 465 AcpiGbl_EnableInterpreterSlack = acpi_interpreter_slack ? TRUE : FALSE; 466 AcpiGbl_EnableAmlDebugObject = acpi_debug_objects ? TRUE : FALSE; 467 468 #ifndef ACPI_DEBUG 469 /* 470 * Disable all debugging layers and levels. 471 */ 472 AcpiDbgLayer = 0; 473 AcpiDbgLevel = 0; 474 #endif 475 476 /* Start up the ACPI CA subsystem. */ 477 status = AcpiInitializeSubsystem(); 478 if (ACPI_FAILURE(status)) { 479 device_printf(dev, "Could not initialize Subsystem: %s\n", 480 AcpiFormatException(status)); 481 goto out; 482 } 483 484 /* Load ACPI name space. */ 485 status = AcpiLoadTables(); 486 if (ACPI_FAILURE(status)) { 487 device_printf(dev, "Could not load Namespace: %s\n", 488 AcpiFormatException(status)); 489 goto out; 490 } 491 492 #if defined(__i386__) || defined(__amd64__) 493 /* Handle MCFG table if present. */ 494 acpi_enable_pcie(); 495 #endif 496 497 /* 498 * Note that some systems (specifically, those with namespace evaluation 499 * issues that require the avoidance of parts of the namespace) must 500 * avoid running _INI and _STA on everything, as well as dodging the final 501 * object init pass. 502 * 503 * For these devices, we set ACPI_NO_DEVICE_INIT and ACPI_NO_OBJECT_INIT). 504 * 505 * XXX We should arrange for the object init pass after we have attached 506 * all our child devices, but on many systems it works here. 507 */ 508 flags = 0; 509 if (testenv("debug.acpi.avoid")) 510 flags = ACPI_NO_DEVICE_INIT | ACPI_NO_OBJECT_INIT; 511 512 /* Bring the hardware and basic handlers online. */ 513 if (ACPI_FAILURE(status = AcpiEnableSubsystem(flags))) { 514 device_printf(dev, "Could not enable ACPI: %s\n", 515 AcpiFormatException(status)); 516 goto out; 517 } 518 519 /* 520 * Call the ECDT probe function to provide EC functionality before 521 * the namespace has been evaluated. 522 * 523 * XXX This happens before the sysresource devices have been probed and 524 * attached so its resources come from nexus0. In practice, this isn't 525 * a problem but should be addressed eventually. 526 */ 527 acpi_ec_ecdt_probe(dev); 528 529 /* Bring device objects and regions online. */ 530 if (ACPI_FAILURE(status = AcpiInitializeObjects(flags))) { 531 device_printf(dev, "Could not initialize ACPI objects: %s\n", 532 AcpiFormatException(status)); 533 goto out; 534 } 535 536 /* 537 * Setup our sysctl tree. 538 * 539 * XXX: This doesn't check to make sure that none of these fail. 540 */ 541 sysctl_ctx_init(&sc->acpi_sysctl_ctx); 542 sc->acpi_sysctl_tree = SYSCTL_ADD_NODE(&sc->acpi_sysctl_ctx, 543 SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO, 544 device_get_name(dev), CTLFLAG_RD, 0, ""); 545 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 546 OID_AUTO, "supported_sleep_state", CTLTYPE_STRING | CTLFLAG_RD, 547 0, 0, acpi_supported_sleep_state_sysctl, "A", ""); 548 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 549 OID_AUTO, "power_button_state", CTLTYPE_STRING | CTLFLAG_RW, 550 &sc->acpi_power_button_sx, 0, acpi_sleep_state_sysctl, "A", ""); 551 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 552 OID_AUTO, "sleep_button_state", CTLTYPE_STRING | CTLFLAG_RW, 553 &sc->acpi_sleep_button_sx, 0, acpi_sleep_state_sysctl, "A", ""); 554 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 555 OID_AUTO, "lid_switch_state", CTLTYPE_STRING | CTLFLAG_RW, 556 &sc->acpi_lid_switch_sx, 0, acpi_sleep_state_sysctl, "A", ""); 557 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 558 OID_AUTO, "standby_state", CTLTYPE_STRING | CTLFLAG_RW, 559 &sc->acpi_standby_sx, 0, acpi_sleep_state_sysctl, "A", ""); 560 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 561 OID_AUTO, "suspend_state", CTLTYPE_STRING | CTLFLAG_RW, 562 &sc->acpi_suspend_sx, 0, acpi_sleep_state_sysctl, "A", ""); 563 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 564 OID_AUTO, "sleep_delay", CTLFLAG_RW, &sc->acpi_sleep_delay, 0, 565 "sleep delay"); 566 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 567 OID_AUTO, "s4bios", CTLFLAG_RW, &sc->acpi_s4bios, 0, "S4BIOS mode"); 568 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 569 OID_AUTO, "verbose", CTLFLAG_RW, &sc->acpi_verbose, 0, "verbose mode"); 570 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 571 OID_AUTO, "disable_on_reboot", CTLFLAG_RW, 572 &sc->acpi_do_disable, 0, "Disable ACPI when rebooting/halting system"); 573 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 574 OID_AUTO, "handle_reboot", CTLFLAG_RW, 575 &sc->acpi_handle_reboot, 0, "Use ACPI Reset Register to reboot"); 576 577 /* 578 * Default to 1 second before sleeping to give some machines time to 579 * stabilize. 580 */ 581 sc->acpi_sleep_delay = 1; 582 if (bootverbose) 583 sc->acpi_verbose = 1; 584 if ((env = getenv("hw.acpi.verbose")) != NULL) { 585 if (strcmp(env, "0") != 0) 586 sc->acpi_verbose = 1; 587 freeenv(env); 588 } 589 590 /* Only enable reboot by default if the FADT says it is available. */ 591 if (AcpiGbl_FADT.Flags & ACPI_FADT_RESET_REGISTER) 592 sc->acpi_handle_reboot = 1; 593 594 /* Only enable S4BIOS by default if the FACS says it is available. */ 595 if (AcpiGbl_FACS->Flags & ACPI_FACS_S4_BIOS_PRESENT) 596 sc->acpi_s4bios = 1; 597 598 /* Probe all supported sleep states. */ 599 acpi_sleep_states[ACPI_STATE_S0] = TRUE; 600 for (state = ACPI_STATE_S1; state < ACPI_S_STATE_COUNT; state++) 601 if (ACPI_SUCCESS(AcpiGetSleepTypeData(state, &TypeA, &TypeB))) 602 acpi_sleep_states[state] = TRUE; 603 604 /* 605 * Dispatch the default sleep state to devices. The lid switch is set 606 * to UNKNOWN by default to avoid surprising users. 607 */ 608 sc->acpi_power_button_sx = acpi_sleep_states[ACPI_STATE_S5] ? 609 ACPI_STATE_S5 : ACPI_STATE_UNKNOWN; 610 sc->acpi_lid_switch_sx = ACPI_STATE_UNKNOWN; 611 sc->acpi_standby_sx = acpi_sleep_states[ACPI_STATE_S1] ? 612 ACPI_STATE_S1 : ACPI_STATE_UNKNOWN; 613 sc->acpi_suspend_sx = acpi_sleep_states[ACPI_STATE_S3] ? 614 ACPI_STATE_S3 : ACPI_STATE_UNKNOWN; 615 616 /* Pick the first valid sleep state for the sleep button default. */ 617 sc->acpi_sleep_button_sx = ACPI_STATE_UNKNOWN; 618 for (state = ACPI_STATE_S1; state <= ACPI_STATE_S4; state++) 619 if (acpi_sleep_states[state]) { 620 sc->acpi_sleep_button_sx = state; 621 break; 622 } 623 624 acpi_enable_fixed_events(sc); 625 626 /* 627 * Scan the namespace and attach/initialise children. 628 */ 629 630 /* Register our shutdown handler. */ 631 EVENTHANDLER_REGISTER(shutdown_final, acpi_shutdown_final, sc, 632 SHUTDOWN_PRI_LAST); 633 634 /* 635 * Register our acpi event handlers. 636 * XXX should be configurable eg. via userland policy manager. 637 */ 638 EVENTHANDLER_REGISTER(acpi_sleep_event, acpi_system_eventhandler_sleep, 639 sc, ACPI_EVENT_PRI_LAST); 640 EVENTHANDLER_REGISTER(acpi_wakeup_event, acpi_system_eventhandler_wakeup, 641 sc, ACPI_EVENT_PRI_LAST); 642 643 /* Flag our initial states. */ 644 sc->acpi_enabled = TRUE; 645 sc->acpi_sstate = ACPI_STATE_S0; 646 sc->acpi_sleep_disabled = TRUE; 647 648 /* Create the control device */ 649 sc->acpi_dev_t = make_dev(&acpi_cdevsw, 0, UID_ROOT, GID_WHEEL, 0644, 650 "acpi"); 651 sc->acpi_dev_t->si_drv1 = sc; 652 653 if ((error = acpi_machdep_init(dev))) 654 goto out; 655 656 /* Register ACPI again to pass the correct argument of pm_func. */ 657 power_pm_register(POWER_PM_TYPE_ACPI, acpi_pm_func, sc); 658 659 if (!acpi_disabled("bus")) 660 acpi_probe_children(dev); 661 662 /* Allow sleep request after a while. */ 663 timeout(acpi_sleep_enable, sc, hz * ACPI_MINIMUM_AWAKETIME); 664 665 error = 0; 666 667 out: 668 return_VALUE (error); 669 } 670 671 static int 672 acpi_suspend(device_t dev) 673 { 674 device_t child, *devlist; 675 int error, i, numdevs, pstate; 676 677 GIANT_REQUIRED; 678 679 /* First give child devices a chance to suspend. */ 680 error = bus_generic_suspend(dev); 681 if (error) 682 return (error); 683 684 /* 685 * Now, set them into the appropriate power state, usually D3. If the 686 * device has an _SxD method for the next sleep state, use that power 687 * state instead. 688 */ 689 error = device_get_children(dev, &devlist, &numdevs); 690 if (error) 691 return (error); 692 for (i = 0; i < numdevs; i++) { 693 /* If the device is not attached, we've powered it down elsewhere. */ 694 child = devlist[i]; 695 if (!device_is_attached(child)) 696 continue; 697 698 /* 699 * Default to D3 for all sleep states. The _SxD method is optional 700 * so set the powerstate even if it's absent. 701 */ 702 pstate = PCI_POWERSTATE_D3; 703 error = acpi_device_pwr_for_sleep(device_get_parent(child), 704 child, &pstate); 705 if ((error == 0 || error == ESRCH) && acpi_do_powerstate) 706 pci_set_powerstate(child, pstate); 707 } 708 free(devlist, M_TEMP); 709 error = 0; 710 711 return (error); 712 } 713 714 static int 715 acpi_resume(device_t dev) 716 { 717 ACPI_HANDLE handle; 718 int i, numdevs, error; 719 device_t child, *devlist; 720 721 GIANT_REQUIRED; 722 723 /* 724 * Put all devices in D0 before resuming them. Call _S0D on each one 725 * since some systems expect this. 726 */ 727 error = device_get_children(dev, &devlist, &numdevs); 728 if (error) 729 return (error); 730 for (i = 0; i < numdevs; i++) { 731 child = devlist[i]; 732 handle = acpi_get_handle(child); 733 if (handle) 734 AcpiEvaluateObject(handle, "_S0D", NULL, NULL); 735 if (device_is_attached(child) && acpi_do_powerstate) 736 pci_set_powerstate(child, PCI_POWERSTATE_D0); 737 } 738 free(devlist, M_TEMP); 739 740 return (bus_generic_resume(dev)); 741 } 742 743 static int 744 acpi_shutdown(device_t dev) 745 { 746 747 GIANT_REQUIRED; 748 749 /* Allow children to shutdown first. */ 750 bus_generic_shutdown(dev); 751 752 /* 753 * Enable any GPEs that are able to power-on the system (i.e., RTC). 754 * Also, disable any that are not valid for this state (most). 755 */ 756 acpi_wake_prep_walk(ACPI_STATE_S5); 757 758 return (0); 759 } 760 761 /* 762 * Handle a new device being added 763 */ 764 static device_t 765 acpi_add_child(device_t bus, u_int order, const char *name, int unit) 766 { 767 struct acpi_device *ad; 768 device_t child; 769 770 if ((ad = malloc(sizeof(*ad), M_ACPIDEV, M_NOWAIT | M_ZERO)) == NULL) 771 return (NULL); 772 773 resource_list_init(&ad->ad_rl); 774 775 child = device_add_child_ordered(bus, order, name, unit); 776 if (child != NULL) 777 device_set_ivars(child, ad); 778 else 779 free(ad, M_ACPIDEV); 780 return (child); 781 } 782 783 static int 784 acpi_print_child(device_t bus, device_t child) 785 { 786 struct acpi_device *adev = device_get_ivars(child); 787 struct resource_list *rl = &adev->ad_rl; 788 int retval = 0; 789 790 retval += bus_print_child_header(bus, child); 791 retval += resource_list_print_type(rl, "port", SYS_RES_IOPORT, "%#lx"); 792 retval += resource_list_print_type(rl, "iomem", SYS_RES_MEMORY, "%#lx"); 793 retval += resource_list_print_type(rl, "irq", SYS_RES_IRQ, "%ld"); 794 retval += resource_list_print_type(rl, "drq", SYS_RES_DRQ, "%ld"); 795 if (device_get_flags(child)) 796 retval += printf(" flags %#x", device_get_flags(child)); 797 retval += bus_print_child_footer(bus, child); 798 799 return (retval); 800 } 801 802 /* 803 * If this device is an ACPI child but no one claimed it, attempt 804 * to power it off. We'll power it back up when a driver is added. 805 * 806 * XXX Disabled for now since many necessary devices (like fdc and 807 * ATA) don't claim the devices we created for them but still expect 808 * them to be powered up. 809 */ 810 static void 811 acpi_probe_nomatch(device_t bus, device_t child) 812 { 813 #ifdef ACPI_ENABLE_POWERDOWN_NODRIVER 814 pci_set_powerstate(child, PCI_POWERSTATE_D3); 815 #endif 816 } 817 818 /* 819 * If a new driver has a chance to probe a child, first power it up. 820 * 821 * XXX Disabled for now (see acpi_probe_nomatch for details). 822 */ 823 static void 824 acpi_driver_added(device_t dev, driver_t *driver) 825 { 826 device_t child, *devlist; 827 int i, numdevs; 828 829 DEVICE_IDENTIFY(driver, dev); 830 if (device_get_children(dev, &devlist, &numdevs)) 831 return; 832 for (i = 0; i < numdevs; i++) { 833 child = devlist[i]; 834 if (device_get_state(child) == DS_NOTPRESENT) { 835 #ifdef ACPI_ENABLE_POWERDOWN_NODRIVER 836 pci_set_powerstate(child, PCI_POWERSTATE_D0); 837 if (device_probe_and_attach(child) != 0) 838 pci_set_powerstate(child, PCI_POWERSTATE_D3); 839 #else 840 device_probe_and_attach(child); 841 #endif 842 } 843 } 844 free(devlist, M_TEMP); 845 } 846 847 /* Location hint for devctl(8) */ 848 static int 849 acpi_child_location_str_method(device_t cbdev, device_t child, char *buf, 850 size_t buflen) 851 { 852 struct acpi_device *dinfo = device_get_ivars(child); 853 854 if (dinfo->ad_handle) 855 snprintf(buf, buflen, "handle=%s", acpi_name(dinfo->ad_handle)); 856 else 857 snprintf(buf, buflen, "unknown"); 858 return (0); 859 } 860 861 /* PnP information for devctl(8) */ 862 static int 863 acpi_child_pnpinfo_str_method(device_t cbdev, device_t child, char *buf, 864 size_t buflen) 865 { 866 struct acpi_device *dinfo = device_get_ivars(child); 867 ACPI_DEVICE_INFO *adinfo; 868 869 if (ACPI_FAILURE(AcpiGetObjectInfo(dinfo->ad_handle, &adinfo))) { 870 snprintf(buf, buflen, "unknown"); 871 return (0); 872 } 873 874 snprintf(buf, buflen, "_HID=%s _UID=%lu", 875 (adinfo->Valid & ACPI_VALID_HID) ? 876 adinfo->HardwareId.String : "none", 877 (adinfo->Valid & ACPI_VALID_UID) ? 878 strtoul(adinfo->UniqueId.String, NULL, 10) : 0UL); 879 AcpiOsFree(adinfo); 880 881 return (0); 882 } 883 884 /* 885 * Handle per-device ivars 886 */ 887 static int 888 acpi_read_ivar(device_t dev, device_t child, int index, uintptr_t *result) 889 { 890 struct acpi_device *ad; 891 892 if ((ad = device_get_ivars(child)) == NULL) { 893 device_printf(child, "device has no ivars\n"); 894 return (ENOENT); 895 } 896 897 /* ACPI and ISA compatibility ivars */ 898 switch(index) { 899 case ACPI_IVAR_HANDLE: 900 *(ACPI_HANDLE *)result = ad->ad_handle; 901 break; 902 case ACPI_IVAR_PRIVATE: 903 *(void **)result = ad->ad_private; 904 break; 905 case ACPI_IVAR_FLAGS: 906 *(int *)result = ad->ad_flags; 907 break; 908 case ISA_IVAR_VENDORID: 909 case ISA_IVAR_SERIAL: 910 case ISA_IVAR_COMPATID: 911 *(int *)result = -1; 912 break; 913 case ISA_IVAR_LOGICALID: 914 *(int *)result = acpi_isa_get_logicalid(child); 915 break; 916 default: 917 return (ENOENT); 918 } 919 920 return (0); 921 } 922 923 static int 924 acpi_write_ivar(device_t dev, device_t child, int index, uintptr_t value) 925 { 926 struct acpi_device *ad; 927 928 if ((ad = device_get_ivars(child)) == NULL) { 929 device_printf(child, "device has no ivars\n"); 930 return (ENOENT); 931 } 932 933 switch(index) { 934 case ACPI_IVAR_HANDLE: 935 ad->ad_handle = (ACPI_HANDLE)value; 936 break; 937 case ACPI_IVAR_PRIVATE: 938 ad->ad_private = (void *)value; 939 break; 940 case ACPI_IVAR_FLAGS: 941 ad->ad_flags = (int)value; 942 break; 943 default: 944 panic("bad ivar write request (%d)", index); 945 return (ENOENT); 946 } 947 948 return (0); 949 } 950 951 /* 952 * Handle child resource allocation/removal 953 */ 954 static struct resource_list * 955 acpi_get_rlist(device_t dev, device_t child) 956 { 957 struct acpi_device *ad; 958 959 ad = device_get_ivars(child); 960 return (&ad->ad_rl); 961 } 962 963 static int 964 acpi_match_resource_hint(device_t dev, int type, long value) 965 { 966 struct acpi_device *ad = device_get_ivars(dev); 967 struct resource_list *rl = &ad->ad_rl; 968 struct resource_list_entry *rle; 969 970 STAILQ_FOREACH(rle, rl, link) { 971 if (rle->type != type) 972 continue; 973 if (rle->start <= value && rle->end >= value) 974 return (1); 975 } 976 return (0); 977 } 978 979 /* 980 * Wire device unit numbers based on resource matches in hints. 981 */ 982 static void 983 acpi_hint_device_unit(device_t acdev, device_t child, const char *name, 984 int *unitp) 985 { 986 const char *s; 987 long value; 988 int line, matches, unit; 989 990 /* 991 * Iterate over all the hints for the devices with the specified 992 * name to see if one's resources are a subset of this device. 993 */ 994 line = 0; 995 for (;;) { 996 if (resource_find_dev(&line, name, &unit, "at", NULL) != 0) 997 break; 998 999 /* Must have an "at" for acpi or isa. */ 1000 resource_string_value(name, unit, "at", &s); 1001 if (!(strcmp(s, "acpi0") == 0 || strcmp(s, "acpi") == 0 || 1002 strcmp(s, "isa0") == 0 || strcmp(s, "isa") == 0)) 1003 continue; 1004 1005 /* 1006 * Check for matching resources. We must have at least one match. 1007 * Since I/O and memory resources cannot be shared, if we get a 1008 * match on either of those, ignore any mismatches in IRQs or DRQs. 1009 * 1010 * XXX: We may want to revisit this to be more lenient and wire 1011 * as long as it gets one match. 1012 */ 1013 matches = 0; 1014 if (resource_long_value(name, unit, "port", &value) == 0) { 1015 /* 1016 * Floppy drive controllers are notorious for having a 1017 * wide variety of resources not all of which include the 1018 * first port that is specified by the hint (typically 1019 * 0x3f0) (see the comment above fdc_isa_alloc_resources() 1020 * in fdc_isa.c). However, they do all seem to include 1021 * port + 2 (e.g. 0x3f2) so for a floppy device, look for 1022 * 'value + 2' in the port resources instead of the hint 1023 * value. 1024 */ 1025 if (strcmp(name, "fdc") == 0) 1026 value += 2; 1027 if (acpi_match_resource_hint(child, SYS_RES_IOPORT, value)) 1028 matches++; 1029 else 1030 continue; 1031 } 1032 if (resource_long_value(name, unit, "maddr", &value) == 0) { 1033 if (acpi_match_resource_hint(child, SYS_RES_MEMORY, value)) 1034 matches++; 1035 else 1036 continue; 1037 } 1038 if (matches > 0) 1039 goto matched; 1040 if (resource_long_value(name, unit, "irq", &value) == 0) { 1041 if (acpi_match_resource_hint(child, SYS_RES_IRQ, value)) 1042 matches++; 1043 else 1044 continue; 1045 } 1046 if (resource_long_value(name, unit, "drq", &value) == 0) { 1047 if (acpi_match_resource_hint(child, SYS_RES_DRQ, value)) 1048 matches++; 1049 else 1050 continue; 1051 } 1052 1053 matched: 1054 if (matches > 0) { 1055 /* We have a winner! */ 1056 *unitp = unit; 1057 break; 1058 } 1059 } 1060 } 1061 1062 /* 1063 * Pre-allocate/manage all memory and IO resources. Since rman can't handle 1064 * duplicates, we merge any in the sysresource attach routine. 1065 */ 1066 static int 1067 acpi_sysres_alloc(device_t dev) 1068 { 1069 struct resource *res; 1070 struct resource_list *rl; 1071 struct resource_list_entry *rle; 1072 struct rman *rm; 1073 char *sysres_ids[] = { "PNP0C01", "PNP0C02", NULL }; 1074 device_t *children; 1075 int child_count, i; 1076 1077 /* 1078 * Probe/attach any sysresource devices. This would be unnecessary if we 1079 * had multi-pass probe/attach. 1080 */ 1081 if (device_get_children(dev, &children, &child_count) != 0) 1082 return (ENXIO); 1083 for (i = 0; i < child_count; i++) { 1084 if (ACPI_ID_PROBE(dev, children[i], sysres_ids) != NULL) 1085 device_probe_and_attach(children[i]); 1086 } 1087 free(children, M_TEMP); 1088 1089 rl = BUS_GET_RESOURCE_LIST(device_get_parent(dev), dev); 1090 STAILQ_FOREACH(rle, rl, link) { 1091 if (rle->res != NULL) { 1092 device_printf(dev, "duplicate resource for %lx\n", rle->start); 1093 continue; 1094 } 1095 1096 /* Only memory and IO resources are valid here. */ 1097 switch (rle->type) { 1098 case SYS_RES_IOPORT: 1099 rm = &acpi_rman_io; 1100 break; 1101 case SYS_RES_MEMORY: 1102 rm = &acpi_rman_mem; 1103 break; 1104 default: 1105 continue; 1106 } 1107 1108 /* Pre-allocate resource and add to our rman pool. */ 1109 res = BUS_ALLOC_RESOURCE(device_get_parent(dev), dev, rle->type, 1110 &rle->rid, rle->start, rle->start + rle->count - 1, rle->count, 0); 1111 if (res != NULL) { 1112 rman_manage_region(rm, rman_get_start(res), rman_get_end(res)); 1113 rle->res = res; 1114 } else 1115 device_printf(dev, "reservation of %lx, %lx (%d) failed\n", 1116 rle->start, rle->count, rle->type); 1117 } 1118 return (0); 1119 } 1120 1121 static struct resource * 1122 acpi_alloc_resource(device_t bus, device_t child, int type, int *rid, 1123 u_long start, u_long end, u_long count, u_int flags) 1124 { 1125 ACPI_RESOURCE ares; 1126 struct acpi_device *ad = device_get_ivars(child); 1127 struct resource_list *rl = &ad->ad_rl; 1128 struct resource_list_entry *rle; 1129 struct resource *res; 1130 struct rman *rm; 1131 1132 res = NULL; 1133 1134 /* We only handle memory and IO resources through rman. */ 1135 switch (type) { 1136 case SYS_RES_IOPORT: 1137 rm = &acpi_rman_io; 1138 break; 1139 case SYS_RES_MEMORY: 1140 rm = &acpi_rman_mem; 1141 break; 1142 default: 1143 rm = NULL; 1144 } 1145 1146 ACPI_SERIAL_BEGIN(acpi); 1147 1148 /* 1149 * If this is an allocation of the "default" range for a given RID, and 1150 * we know what the resources for this device are (i.e., they're on the 1151 * child's resource list), use those start/end values. 1152 */ 1153 if (bus == device_get_parent(child) && start == 0UL && end == ~0UL) { 1154 rle = resource_list_find(rl, type, *rid); 1155 if (rle == NULL) 1156 goto out; 1157 start = rle->start; 1158 end = rle->end; 1159 count = rle->count; 1160 } 1161 1162 /* 1163 * If this is an allocation of a specific range, see if we can satisfy 1164 * the request from our system resource regions. If we can't, pass the 1165 * request up to the parent. 1166 */ 1167 if (start + count - 1 == end && rm != NULL) 1168 res = rman_reserve_resource(rm, start, end, count, flags & ~RF_ACTIVE, 1169 child); 1170 if (res == NULL) { 1171 res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, type, rid, 1172 start, end, count, flags); 1173 } else { 1174 rman_set_rid(res, *rid); 1175 1176 /* If requested, activate the resource using the parent's method. */ 1177 if (flags & RF_ACTIVE) 1178 if (bus_activate_resource(child, type, *rid, res) != 0) { 1179 rman_release_resource(res); 1180 res = NULL; 1181 goto out; 1182 } 1183 } 1184 1185 if (res != NULL && device_get_parent(child) == bus) 1186 switch (type) { 1187 case SYS_RES_IRQ: 1188 /* 1189 * Since bus_config_intr() takes immediate effect, we cannot 1190 * configure the interrupt associated with a device when we 1191 * parse the resources but have to defer it until a driver 1192 * actually allocates the interrupt via bus_alloc_resource(). 1193 * 1194 * XXX: Should we handle the lookup failing? 1195 */ 1196 if (ACPI_SUCCESS(acpi_lookup_irq_resource(child, *rid, res, &ares))) 1197 acpi_config_intr(child, &ares); 1198 break; 1199 } 1200 1201 out: 1202 ACPI_SERIAL_END(acpi); 1203 return (res); 1204 } 1205 1206 static int 1207 acpi_release_resource(device_t bus, device_t child, int type, int rid, 1208 struct resource *r) 1209 { 1210 struct rman *rm; 1211 int ret; 1212 1213 /* We only handle memory and IO resources through rman. */ 1214 switch (type) { 1215 case SYS_RES_IOPORT: 1216 rm = &acpi_rman_io; 1217 break; 1218 case SYS_RES_MEMORY: 1219 rm = &acpi_rman_mem; 1220 break; 1221 default: 1222 rm = NULL; 1223 } 1224 1225 ACPI_SERIAL_BEGIN(acpi); 1226 1227 /* 1228 * If this resource belongs to one of our internal managers, 1229 * deactivate it and release it to the local pool. If it doesn't, 1230 * pass this request up to the parent. 1231 */ 1232 if (rm != NULL && rman_is_region_manager(r, rm)) { 1233 if (rman_get_flags(r) & RF_ACTIVE) { 1234 ret = bus_deactivate_resource(child, type, rid, r); 1235 if (ret != 0) 1236 goto out; 1237 } 1238 ret = rman_release_resource(r); 1239 } else 1240 ret = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, type, rid, r); 1241 1242 out: 1243 ACPI_SERIAL_END(acpi); 1244 return (ret); 1245 } 1246 1247 static void 1248 acpi_delete_resource(device_t bus, device_t child, int type, int rid) 1249 { 1250 struct resource_list *rl; 1251 1252 rl = acpi_get_rlist(bus, child); 1253 resource_list_delete(rl, type, rid); 1254 } 1255 1256 /* Allocate an IO port or memory resource, given its GAS. */ 1257 int 1258 acpi_bus_alloc_gas(device_t dev, int *type, int *rid, ACPI_GENERIC_ADDRESS *gas, 1259 struct resource **res, u_int flags) 1260 { 1261 int error, res_type; 1262 1263 error = ENOMEM; 1264 if (type == NULL || rid == NULL || gas == NULL || res == NULL) 1265 return (EINVAL); 1266 1267 /* We only support memory and IO spaces. */ 1268 switch (gas->SpaceId) { 1269 case ACPI_ADR_SPACE_SYSTEM_MEMORY: 1270 res_type = SYS_RES_MEMORY; 1271 break; 1272 case ACPI_ADR_SPACE_SYSTEM_IO: 1273 res_type = SYS_RES_IOPORT; 1274 break; 1275 default: 1276 return (EOPNOTSUPP); 1277 } 1278 1279 /* 1280 * If the register width is less than 8, assume the BIOS author means 1281 * it is a bit field and just allocate a byte. 1282 */ 1283 if (gas->BitWidth && gas->BitWidth < 8) 1284 gas->BitWidth = 8; 1285 1286 /* Validate the address after we're sure we support the space. */ 1287 if (gas->Address == 0 || gas->BitWidth == 0) 1288 return (EINVAL); 1289 1290 bus_set_resource(dev, res_type, *rid, gas->Address, 1291 gas->BitWidth / 8); 1292 *res = bus_alloc_resource_any(dev, res_type, rid, RF_ACTIVE | flags); 1293 if (*res != NULL) { 1294 *type = res_type; 1295 error = 0; 1296 } else 1297 bus_delete_resource(dev, res_type, *rid); 1298 1299 return (error); 1300 } 1301 1302 /* Probe _HID and _CID for compatible ISA PNP ids. */ 1303 static uint32_t 1304 acpi_isa_get_logicalid(device_t dev) 1305 { 1306 ACPI_DEVICE_INFO *devinfo; 1307 ACPI_HANDLE h; 1308 uint32_t pnpid; 1309 1310 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1311 1312 /* Fetch and validate the HID. */ 1313 if ((h = acpi_get_handle(dev)) == NULL || 1314 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 1315 return_VALUE (0); 1316 1317 pnpid = (devinfo->Valid & ACPI_VALID_HID) != 0 && 1318 devinfo->HardwareId.Length >= ACPI_EISAID_STRING_SIZE ? 1319 PNP_EISAID(devinfo->HardwareId.String) : 0; 1320 AcpiOsFree(devinfo); 1321 1322 return_VALUE (pnpid); 1323 } 1324 1325 static int 1326 acpi_isa_get_compatid(device_t dev, uint32_t *cids, int count) 1327 { 1328 ACPI_DEVICE_INFO *devinfo; 1329 ACPI_DEVICE_ID *ids; 1330 ACPI_HANDLE h; 1331 uint32_t *pnpid; 1332 int i, valid; 1333 1334 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1335 1336 pnpid = cids; 1337 1338 /* Fetch and validate the CID */ 1339 if ((h = acpi_get_handle(dev)) == NULL || 1340 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 1341 return_VALUE (0); 1342 1343 if ((devinfo->Valid & ACPI_VALID_CID) == 0) { 1344 AcpiOsFree(devinfo); 1345 return_VALUE (0); 1346 } 1347 1348 if (devinfo->CompatibleIdList.Count < count) 1349 count = devinfo->CompatibleIdList.Count; 1350 ids = devinfo->CompatibleIdList.Ids; 1351 for (i = 0, valid = 0; i < count; i++) 1352 if (ids[i].Length >= ACPI_EISAID_STRING_SIZE && 1353 strncmp(ids[i].String, "PNP", 3) == 0) { 1354 *pnpid++ = PNP_EISAID(ids[i].String); 1355 valid++; 1356 } 1357 AcpiOsFree(devinfo); 1358 1359 return_VALUE (valid); 1360 } 1361 1362 static char * 1363 acpi_device_id_probe(device_t bus, device_t dev, char **ids) 1364 { 1365 ACPI_HANDLE h; 1366 ACPI_OBJECT_TYPE t; 1367 int i; 1368 1369 h = acpi_get_handle(dev); 1370 if (ids == NULL || h == NULL) 1371 return (NULL); 1372 t = acpi_get_type(dev); 1373 if (t != ACPI_TYPE_DEVICE && t != ACPI_TYPE_PROCESSOR) 1374 return (NULL); 1375 1376 /* Try to match one of the array of IDs with a HID or CID. */ 1377 for (i = 0; ids[i] != NULL; i++) { 1378 if (acpi_MatchHid(h, ids[i])) 1379 return (ids[i]); 1380 } 1381 return (NULL); 1382 } 1383 1384 static ACPI_STATUS 1385 acpi_device_eval_obj(device_t bus, device_t dev, ACPI_STRING pathname, 1386 ACPI_OBJECT_LIST *parameters, ACPI_BUFFER *ret) 1387 { 1388 ACPI_HANDLE h; 1389 1390 if (dev == NULL) 1391 h = ACPI_ROOT_OBJECT; 1392 else if ((h = acpi_get_handle(dev)) == NULL) 1393 return (AE_BAD_PARAMETER); 1394 return (AcpiEvaluateObject(h, pathname, parameters, ret)); 1395 } 1396 1397 int 1398 acpi_device_pwr_for_sleep(device_t bus, device_t dev, int *dstate) 1399 { 1400 struct acpi_softc *sc; 1401 ACPI_HANDLE handle; 1402 ACPI_STATUS status; 1403 char sxd[8]; 1404 int error; 1405 1406 sc = device_get_softc(bus); 1407 handle = acpi_get_handle(dev); 1408 1409 /* 1410 * XXX If we find these devices, don't try to power them down. 1411 * The serial and IRDA ports on my T23 hang the system when 1412 * set to D3 and it appears that such legacy devices may 1413 * need special handling in their drivers. 1414 */ 1415 if (handle == NULL || 1416 acpi_MatchHid(handle, "PNP0500") || 1417 acpi_MatchHid(handle, "PNP0501") || 1418 acpi_MatchHid(handle, "PNP0502") || 1419 acpi_MatchHid(handle, "PNP0510") || 1420 acpi_MatchHid(handle, "PNP0511")) 1421 return (ENXIO); 1422 1423 /* 1424 * Override next state with the value from _SxD, if present. If no 1425 * dstate argument was provided, don't fetch the return value. 1426 */ 1427 snprintf(sxd, sizeof(sxd), "_S%dD", sc->acpi_sstate); 1428 if (dstate) 1429 status = acpi_GetInteger(handle, sxd, dstate); 1430 else 1431 status = AcpiEvaluateObject(handle, sxd, NULL, NULL); 1432 1433 switch (status) { 1434 case AE_OK: 1435 error = 0; 1436 break; 1437 case AE_NOT_FOUND: 1438 error = ESRCH; 1439 break; 1440 default: 1441 error = ENXIO; 1442 break; 1443 } 1444 1445 return (error); 1446 } 1447 1448 /* Callback arg for our implementation of walking the namespace. */ 1449 struct acpi_device_scan_ctx { 1450 acpi_scan_cb_t user_fn; 1451 void *arg; 1452 ACPI_HANDLE parent; 1453 }; 1454 1455 static ACPI_STATUS 1456 acpi_device_scan_cb(ACPI_HANDLE h, UINT32 level, void *arg, void **retval) 1457 { 1458 struct acpi_device_scan_ctx *ctx; 1459 device_t dev, old_dev; 1460 ACPI_STATUS status; 1461 ACPI_OBJECT_TYPE type; 1462 1463 /* 1464 * Skip this device if we think we'll have trouble with it or it is 1465 * the parent where the scan began. 1466 */ 1467 ctx = (struct acpi_device_scan_ctx *)arg; 1468 if (acpi_avoid(h) || h == ctx->parent) 1469 return (AE_OK); 1470 1471 /* If this is not a valid device type (e.g., a method), skip it. */ 1472 if (ACPI_FAILURE(AcpiGetType(h, &type))) 1473 return (AE_OK); 1474 if (type != ACPI_TYPE_DEVICE && type != ACPI_TYPE_PROCESSOR && 1475 type != ACPI_TYPE_THERMAL && type != ACPI_TYPE_POWER) 1476 return (AE_OK); 1477 1478 /* 1479 * Call the user function with the current device. If it is unchanged 1480 * afterwards, return. Otherwise, we update the handle to the new dev. 1481 */ 1482 old_dev = acpi_get_device(h); 1483 dev = old_dev; 1484 status = ctx->user_fn(h, &dev, level, ctx->arg); 1485 if (ACPI_FAILURE(status) || old_dev == dev) 1486 return (status); 1487 1488 /* Remove the old child and its connection to the handle. */ 1489 if (old_dev != NULL) { 1490 device_delete_child(device_get_parent(old_dev), old_dev); 1491 AcpiDetachData(h, acpi_fake_objhandler); 1492 } 1493 1494 /* Recreate the handle association if the user created a device. */ 1495 if (dev != NULL) 1496 AcpiAttachData(h, acpi_fake_objhandler, dev); 1497 1498 return (AE_OK); 1499 } 1500 1501 static ACPI_STATUS 1502 acpi_device_scan_children(device_t bus, device_t dev, int max_depth, 1503 acpi_scan_cb_t user_fn, void *arg) 1504 { 1505 ACPI_HANDLE h; 1506 struct acpi_device_scan_ctx ctx; 1507 1508 if (acpi_disabled("children")) 1509 return (AE_OK); 1510 1511 if (dev == NULL) 1512 h = ACPI_ROOT_OBJECT; 1513 else if ((h = acpi_get_handle(dev)) == NULL) 1514 return (AE_BAD_PARAMETER); 1515 ctx.user_fn = user_fn; 1516 ctx.arg = arg; 1517 ctx.parent = h; 1518 return (AcpiWalkNamespace(ACPI_TYPE_ANY, h, max_depth, 1519 acpi_device_scan_cb, NULL, &ctx, NULL)); 1520 } 1521 1522 /* 1523 * Even though ACPI devices are not PCI, we use the PCI approach for setting 1524 * device power states since it's close enough to ACPI. 1525 */ 1526 static int 1527 acpi_set_powerstate_method(device_t bus, device_t child, int state) 1528 { 1529 ACPI_HANDLE h; 1530 ACPI_STATUS status; 1531 int error; 1532 1533 error = 0; 1534 h = acpi_get_handle(child); 1535 if (state < ACPI_STATE_D0 || state > ACPI_D_STATES_MAX) 1536 return (EINVAL); 1537 if (h == NULL) 1538 return (0); 1539 1540 /* Ignore errors if the power methods aren't present. */ 1541 status = acpi_pwr_switch_consumer(h, state); 1542 if (ACPI_FAILURE(status) && status != AE_NOT_FOUND 1543 && status != AE_BAD_PARAMETER) 1544 device_printf(bus, "failed to set ACPI power state D%d on %s: %s\n", 1545 state, acpi_name(h), AcpiFormatException(status)); 1546 1547 return (error); 1548 } 1549 1550 static int 1551 acpi_isa_pnp_probe(device_t bus, device_t child, struct isa_pnp_id *ids) 1552 { 1553 int result, cid_count, i; 1554 uint32_t lid, cids[8]; 1555 1556 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1557 1558 /* 1559 * ISA-style drivers attached to ACPI may persist and 1560 * probe manually if we return ENOENT. We never want 1561 * that to happen, so don't ever return it. 1562 */ 1563 result = ENXIO; 1564 1565 /* Scan the supplied IDs for a match */ 1566 lid = acpi_isa_get_logicalid(child); 1567 cid_count = acpi_isa_get_compatid(child, cids, 8); 1568 while (ids && ids->ip_id) { 1569 if (lid == ids->ip_id) { 1570 result = 0; 1571 goto out; 1572 } 1573 for (i = 0; i < cid_count; i++) { 1574 if (cids[i] == ids->ip_id) { 1575 result = 0; 1576 goto out; 1577 } 1578 } 1579 ids++; 1580 } 1581 1582 out: 1583 if (result == 0 && ids->ip_desc) 1584 device_set_desc(child, ids->ip_desc); 1585 1586 return_VALUE (result); 1587 } 1588 1589 #if defined(__i386__) || defined(__amd64__) 1590 /* 1591 * Look for a MCFG table. If it is present, use the settings for 1592 * domain (segment) 0 to setup PCI config space access via the memory 1593 * map. 1594 */ 1595 static void 1596 acpi_enable_pcie(void) 1597 { 1598 ACPI_TABLE_HEADER *hdr; 1599 ACPI_MCFG_ALLOCATION *alloc, *end; 1600 ACPI_STATUS status; 1601 1602 status = AcpiGetTable(ACPI_SIG_MCFG, 1, &hdr); 1603 if (ACPI_FAILURE(status)) 1604 return; 1605 1606 end = (ACPI_MCFG_ALLOCATION *)((char *)hdr + hdr->Length); 1607 alloc = (ACPI_MCFG_ALLOCATION *)((ACPI_TABLE_MCFG *)hdr + 1); 1608 while (alloc < end) { 1609 if (alloc->PciSegment == 0) { 1610 pcie_cfgregopen(alloc->Address, alloc->StartBusNumber, 1611 alloc->EndBusNumber); 1612 return; 1613 } 1614 alloc++; 1615 } 1616 } 1617 #endif 1618 1619 /* 1620 * Scan all of the ACPI namespace and attach child devices. 1621 * 1622 * We should only expect to find devices in the \_PR, \_TZ, \_SI, and 1623 * \_SB scopes, and \_PR and \_TZ became obsolete in the ACPI 2.0 spec. 1624 * However, in violation of the spec, some systems place their PCI link 1625 * devices in \, so we have to walk the whole namespace. We check the 1626 * type of namespace nodes, so this should be ok. 1627 */ 1628 static void 1629 acpi_probe_children(device_t bus) 1630 { 1631 1632 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1633 1634 /* 1635 * Scan the namespace and insert placeholders for all the devices that 1636 * we find. We also probe/attach any early devices. 1637 * 1638 * Note that we use AcpiWalkNamespace rather than AcpiGetDevices because 1639 * we want to create nodes for all devices, not just those that are 1640 * currently present. (This assumes that we don't want to create/remove 1641 * devices as they appear, which might be smarter.) 1642 */ 1643 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "namespace scan\n")); 1644 AcpiWalkNamespace(ACPI_TYPE_ANY, ACPI_ROOT_OBJECT, 100, acpi_probe_child, 1645 NULL, bus, NULL); 1646 1647 /* Pre-allocate resources for our rman from any sysresource devices. */ 1648 acpi_sysres_alloc(bus); 1649 1650 /* Create any static children by calling device identify methods. */ 1651 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "device identify routines\n")); 1652 bus_generic_probe(bus); 1653 1654 /* Probe/attach all children, created staticly and from the namespace. */ 1655 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "acpi bus_generic_attach\n")); 1656 bus_generic_attach(bus); 1657 1658 /* Attach wake sysctls. */ 1659 acpi_wake_sysctl_walk(bus); 1660 1661 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "done attaching children\n")); 1662 return_VOID; 1663 } 1664 1665 /* 1666 * Determine the probe order for a given device. 1667 */ 1668 static void 1669 acpi_probe_order(ACPI_HANDLE handle, int *order) 1670 { 1671 ACPI_OBJECT_TYPE type; 1672 1673 /* 1674 * 1. CPUs 1675 * 2. I/O port and memory system resource holders 1676 * 3. Embedded controllers (to handle early accesses) 1677 * 4. PCI Link Devices 1678 */ 1679 AcpiGetType(handle, &type); 1680 if (type == ACPI_TYPE_PROCESSOR) 1681 *order = 1; 1682 else if (acpi_MatchHid(handle, "PNP0C01") || acpi_MatchHid(handle, "PNP0C02")) 1683 *order = 2; 1684 else if (acpi_MatchHid(handle, "PNP0C09")) 1685 *order = 3; 1686 else if (acpi_MatchHid(handle, "PNP0C0F")) 1687 *order = 4; 1688 } 1689 1690 /* 1691 * Evaluate a child device and determine whether we might attach a device to 1692 * it. 1693 */ 1694 static ACPI_STATUS 1695 acpi_probe_child(ACPI_HANDLE handle, UINT32 level, void *context, void **status) 1696 { 1697 ACPI_OBJECT_TYPE type; 1698 ACPI_HANDLE h; 1699 device_t bus, child; 1700 int order; 1701 char *handle_str, **search; 1702 static char *scopes[] = {"\\_PR_", "\\_TZ_", "\\_SI_", "\\_SB_", NULL}; 1703 1704 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1705 1706 /* Skip this device if we think we'll have trouble with it. */ 1707 if (acpi_avoid(handle)) 1708 return_ACPI_STATUS (AE_OK); 1709 1710 bus = (device_t)context; 1711 if (ACPI_SUCCESS(AcpiGetType(handle, &type))) { 1712 switch (type) { 1713 case ACPI_TYPE_DEVICE: 1714 case ACPI_TYPE_PROCESSOR: 1715 case ACPI_TYPE_THERMAL: 1716 case ACPI_TYPE_POWER: 1717 if (acpi_disabled("children")) 1718 break; 1719 1720 /* 1721 * Since we scan from \, be sure to skip system scope objects. 1722 * At least \_SB and \_TZ are detected as devices (ACPI-CA bug?) 1723 */ 1724 handle_str = acpi_name(handle); 1725 for (search = scopes; *search != NULL; search++) { 1726 if (strcmp(handle_str, *search) == 0) 1727 break; 1728 } 1729 if (*search != NULL) 1730 break; 1731 1732 /* 1733 * Create a placeholder device for this node. Sort the 1734 * placeholder so that the probe/attach passes will run 1735 * breadth-first. Orders less than ACPI_DEV_BASE_ORDER 1736 * are reserved for special objects (i.e., system 1737 * resources). 1738 */ 1739 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "scanning '%s'\n", handle_str)); 1740 order = level * 10 + 100; 1741 acpi_probe_order(handle, &order); 1742 child = BUS_ADD_CHILD(bus, order, NULL, -1); 1743 if (child == NULL) 1744 break; 1745 1746 /* Associate the handle with the device_t and vice versa. */ 1747 acpi_set_handle(child, handle); 1748 AcpiAttachData(handle, acpi_fake_objhandler, child); 1749 1750 /* 1751 * Check that the device is present. If it's not present, 1752 * leave it disabled (so that we have a device_t attached to 1753 * the handle, but we don't probe it). 1754 * 1755 * XXX PCI link devices sometimes report "present" but not 1756 * "functional" (i.e. if disabled). Go ahead and probe them 1757 * anyway since we may enable them later. 1758 */ 1759 if (type == ACPI_TYPE_DEVICE && !acpi_DeviceIsPresent(child)) { 1760 /* Never disable PCI link devices. */ 1761 if (acpi_MatchHid(handle, "PNP0C0F")) 1762 break; 1763 /* 1764 * Docking stations should remain enabled since the system 1765 * may be undocked at boot. 1766 */ 1767 if (ACPI_SUCCESS(AcpiGetHandle(handle, "_DCK", &h))) 1768 break; 1769 1770 device_disable(child); 1771 break; 1772 } 1773 1774 /* 1775 * Get the device's resource settings and attach them. 1776 * Note that if the device has _PRS but no _CRS, we need 1777 * to decide when it's appropriate to try to configure the 1778 * device. Ignore the return value here; it's OK for the 1779 * device not to have any resources. 1780 */ 1781 acpi_parse_resources(child, handle, &acpi_res_parse_set, NULL); 1782 break; 1783 } 1784 } 1785 1786 return_ACPI_STATUS (AE_OK); 1787 } 1788 1789 /* 1790 * AcpiAttachData() requires an object handler but never uses it. This is a 1791 * placeholder object handler so we can store a device_t in an ACPI_HANDLE. 1792 */ 1793 void 1794 acpi_fake_objhandler(ACPI_HANDLE h, void *data) 1795 { 1796 } 1797 1798 static void 1799 acpi_shutdown_final(void *arg, int howto) 1800 { 1801 struct acpi_softc *sc = (struct acpi_softc *)arg; 1802 ACPI_STATUS status; 1803 1804 /* 1805 * XXX Shutdown code should only run on the BSP (cpuid 0). 1806 * Some chipsets do not power off the system correctly if called from 1807 * an AP. 1808 */ 1809 if ((howto & RB_POWEROFF) != 0) { 1810 status = AcpiEnterSleepStatePrep(ACPI_STATE_S5); 1811 if (ACPI_FAILURE(status)) { 1812 device_printf(sc->acpi_dev, "AcpiEnterSleepStatePrep failed - %s\n", 1813 AcpiFormatException(status)); 1814 return; 1815 } 1816 device_printf(sc->acpi_dev, "Powering system off\n"); 1817 ACPI_DISABLE_IRQS(); 1818 status = AcpiEnterSleepState(ACPI_STATE_S5); 1819 if (ACPI_FAILURE(status)) 1820 device_printf(sc->acpi_dev, "power-off failed - %s\n", 1821 AcpiFormatException(status)); 1822 else { 1823 DELAY(1000000); 1824 device_printf(sc->acpi_dev, "power-off failed - timeout\n"); 1825 } 1826 } else if ((howto & RB_HALT) == 0 && sc->acpi_handle_reboot) { 1827 /* Reboot using the reset register. */ 1828 status = AcpiReset(); 1829 if (ACPI_SUCCESS(status)) { 1830 DELAY(1000000); 1831 device_printf(sc->acpi_dev, "reset failed - timeout\n"); 1832 } else if (status != AE_NOT_EXIST) 1833 device_printf(sc->acpi_dev, "reset failed - %s\n", 1834 AcpiFormatException(status)); 1835 } else if (sc->acpi_do_disable && panicstr == NULL) { 1836 /* 1837 * Only disable ACPI if the user requested. On some systems, writing 1838 * the disable value to SMI_CMD hangs the system. 1839 */ 1840 device_printf(sc->acpi_dev, "Shutting down\n"); 1841 AcpiTerminate(); 1842 } 1843 } 1844 1845 static void 1846 acpi_enable_fixed_events(struct acpi_softc *sc) 1847 { 1848 static int first_time = 1; 1849 1850 /* Enable and clear fixed events and install handlers. */ 1851 if ((AcpiGbl_FADT.Flags & ACPI_FADT_POWER_BUTTON) == 0) { 1852 AcpiClearEvent(ACPI_EVENT_POWER_BUTTON); 1853 AcpiInstallFixedEventHandler(ACPI_EVENT_POWER_BUTTON, 1854 acpi_event_power_button_sleep, sc); 1855 if (first_time) 1856 device_printf(sc->acpi_dev, "Power Button (fixed)\n"); 1857 } 1858 if ((AcpiGbl_FADT.Flags & ACPI_FADT_SLEEP_BUTTON) == 0) { 1859 AcpiClearEvent(ACPI_EVENT_SLEEP_BUTTON); 1860 AcpiInstallFixedEventHandler(ACPI_EVENT_SLEEP_BUTTON, 1861 acpi_event_sleep_button_sleep, sc); 1862 if (first_time) 1863 device_printf(sc->acpi_dev, "Sleep Button (fixed)\n"); 1864 } 1865 1866 first_time = 0; 1867 } 1868 1869 /* 1870 * Returns true if the device is actually present and should 1871 * be attached to. This requires the present, enabled, UI-visible 1872 * and diagnostics-passed bits to be set. 1873 */ 1874 BOOLEAN 1875 acpi_DeviceIsPresent(device_t dev) 1876 { 1877 ACPI_DEVICE_INFO *devinfo; 1878 ACPI_HANDLE h; 1879 BOOLEAN present; 1880 1881 if ((h = acpi_get_handle(dev)) == NULL || 1882 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 1883 return (FALSE); 1884 1885 /* If no _STA method, must be present */ 1886 present = (devinfo->Valid & ACPI_VALID_STA) == 0 || 1887 ACPI_DEVICE_PRESENT(devinfo->CurrentStatus) ? TRUE : FALSE; 1888 1889 AcpiOsFree(devinfo); 1890 return (present); 1891 } 1892 1893 /* 1894 * Returns true if the battery is actually present and inserted. 1895 */ 1896 BOOLEAN 1897 acpi_BatteryIsPresent(device_t dev) 1898 { 1899 ACPI_DEVICE_INFO *devinfo; 1900 ACPI_HANDLE h; 1901 BOOLEAN present; 1902 1903 if ((h = acpi_get_handle(dev)) == NULL || 1904 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 1905 return (FALSE); 1906 1907 /* If no _STA method, must be present */ 1908 present = (devinfo->Valid & ACPI_VALID_STA) == 0 || 1909 ACPI_BATTERY_PRESENT(devinfo->CurrentStatus) ? TRUE : FALSE; 1910 1911 AcpiOsFree(devinfo); 1912 return (present); 1913 } 1914 1915 /* 1916 * Match a HID string against a handle 1917 */ 1918 BOOLEAN 1919 acpi_MatchHid(ACPI_HANDLE h, const char *hid) 1920 { 1921 ACPI_DEVICE_INFO *devinfo; 1922 BOOLEAN ret; 1923 int i; 1924 1925 if (hid == NULL || h == NULL || 1926 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 1927 return (FALSE); 1928 1929 ret = FALSE; 1930 if ((devinfo->Valid & ACPI_VALID_HID) != 0 && 1931 strcmp(hid, devinfo->HardwareId.String) == 0) 1932 ret = TRUE; 1933 else if ((devinfo->Valid & ACPI_VALID_CID) != 0) 1934 for (i = 0; i < devinfo->CompatibleIdList.Count; i++) { 1935 if (strcmp(hid, devinfo->CompatibleIdList.Ids[i].String) == 0) { 1936 ret = TRUE; 1937 break; 1938 } 1939 } 1940 1941 AcpiOsFree(devinfo); 1942 return (ret); 1943 } 1944 1945 /* 1946 * Return the handle of a named object within our scope, ie. that of (parent) 1947 * or one if its parents. 1948 */ 1949 ACPI_STATUS 1950 acpi_GetHandleInScope(ACPI_HANDLE parent, char *path, ACPI_HANDLE *result) 1951 { 1952 ACPI_HANDLE r; 1953 ACPI_STATUS status; 1954 1955 /* Walk back up the tree to the root */ 1956 for (;;) { 1957 status = AcpiGetHandle(parent, path, &r); 1958 if (ACPI_SUCCESS(status)) { 1959 *result = r; 1960 return (AE_OK); 1961 } 1962 /* XXX Return error here? */ 1963 if (status != AE_NOT_FOUND) 1964 return (AE_OK); 1965 if (ACPI_FAILURE(AcpiGetParent(parent, &r))) 1966 return (AE_NOT_FOUND); 1967 parent = r; 1968 } 1969 } 1970 1971 /* Find the difference between two PM tick counts. */ 1972 uint32_t 1973 acpi_TimerDelta(uint32_t end, uint32_t start) 1974 { 1975 uint32_t delta; 1976 1977 if (end >= start) 1978 delta = end - start; 1979 else if (AcpiGbl_FADT.Flags & ACPI_FADT_32BIT_TIMER) 1980 delta = ((0xFFFFFFFF - start) + end + 1); 1981 else 1982 delta = ((0x00FFFFFF - start) + end + 1) & 0x00FFFFFF; 1983 return (delta); 1984 } 1985 1986 /* 1987 * Allocate a buffer with a preset data size. 1988 */ 1989 ACPI_BUFFER * 1990 acpi_AllocBuffer(int size) 1991 { 1992 ACPI_BUFFER *buf; 1993 1994 if ((buf = malloc(size + sizeof(*buf), M_ACPIDEV, M_NOWAIT)) == NULL) 1995 return (NULL); 1996 buf->Length = size; 1997 buf->Pointer = (void *)(buf + 1); 1998 return (buf); 1999 } 2000 2001 ACPI_STATUS 2002 acpi_SetInteger(ACPI_HANDLE handle, char *path, UINT32 number) 2003 { 2004 ACPI_OBJECT arg1; 2005 ACPI_OBJECT_LIST args; 2006 2007 arg1.Type = ACPI_TYPE_INTEGER; 2008 arg1.Integer.Value = number; 2009 args.Count = 1; 2010 args.Pointer = &arg1; 2011 2012 return (AcpiEvaluateObject(handle, path, &args, NULL)); 2013 } 2014 2015 /* 2016 * Evaluate a path that should return an integer. 2017 */ 2018 ACPI_STATUS 2019 acpi_GetInteger(ACPI_HANDLE handle, char *path, UINT32 *number) 2020 { 2021 ACPI_STATUS status; 2022 ACPI_BUFFER buf; 2023 ACPI_OBJECT param; 2024 2025 if (handle == NULL) 2026 handle = ACPI_ROOT_OBJECT; 2027 2028 /* 2029 * Assume that what we've been pointed at is an Integer object, or 2030 * a method that will return an Integer. 2031 */ 2032 buf.Pointer = ¶m; 2033 buf.Length = sizeof(param); 2034 status = AcpiEvaluateObject(handle, path, NULL, &buf); 2035 if (ACPI_SUCCESS(status)) { 2036 if (param.Type == ACPI_TYPE_INTEGER) 2037 *number = param.Integer.Value; 2038 else 2039 status = AE_TYPE; 2040 } 2041 2042 /* 2043 * In some applications, a method that's expected to return an Integer 2044 * may instead return a Buffer (probably to simplify some internal 2045 * arithmetic). We'll try to fetch whatever it is, and if it's a Buffer, 2046 * convert it into an Integer as best we can. 2047 * 2048 * This is a hack. 2049 */ 2050 if (status == AE_BUFFER_OVERFLOW) { 2051 if ((buf.Pointer = AcpiOsAllocate(buf.Length)) == NULL) { 2052 status = AE_NO_MEMORY; 2053 } else { 2054 status = AcpiEvaluateObject(handle, path, NULL, &buf); 2055 if (ACPI_SUCCESS(status)) 2056 status = acpi_ConvertBufferToInteger(&buf, number); 2057 AcpiOsFree(buf.Pointer); 2058 } 2059 } 2060 return (status); 2061 } 2062 2063 ACPI_STATUS 2064 acpi_ConvertBufferToInteger(ACPI_BUFFER *bufp, UINT32 *number) 2065 { 2066 ACPI_OBJECT *p; 2067 UINT8 *val; 2068 int i; 2069 2070 p = (ACPI_OBJECT *)bufp->Pointer; 2071 if (p->Type == ACPI_TYPE_INTEGER) { 2072 *number = p->Integer.Value; 2073 return (AE_OK); 2074 } 2075 if (p->Type != ACPI_TYPE_BUFFER) 2076 return (AE_TYPE); 2077 if (p->Buffer.Length > sizeof(int)) 2078 return (AE_BAD_DATA); 2079 2080 *number = 0; 2081 val = p->Buffer.Pointer; 2082 for (i = 0; i < p->Buffer.Length; i++) 2083 *number += val[i] << (i * 8); 2084 return (AE_OK); 2085 } 2086 2087 /* 2088 * Iterate over the elements of an a package object, calling the supplied 2089 * function for each element. 2090 * 2091 * XXX possible enhancement might be to abort traversal on error. 2092 */ 2093 ACPI_STATUS 2094 acpi_ForeachPackageObject(ACPI_OBJECT *pkg, 2095 void (*func)(ACPI_OBJECT *comp, void *arg), void *arg) 2096 { 2097 ACPI_OBJECT *comp; 2098 int i; 2099 2100 if (pkg == NULL || pkg->Type != ACPI_TYPE_PACKAGE) 2101 return (AE_BAD_PARAMETER); 2102 2103 /* Iterate over components */ 2104 i = 0; 2105 comp = pkg->Package.Elements; 2106 for (; i < pkg->Package.Count; i++, comp++) 2107 func(comp, arg); 2108 2109 return (AE_OK); 2110 } 2111 2112 /* 2113 * Find the (index)th resource object in a set. 2114 */ 2115 ACPI_STATUS 2116 acpi_FindIndexedResource(ACPI_BUFFER *buf, int index, ACPI_RESOURCE **resp) 2117 { 2118 ACPI_RESOURCE *rp; 2119 int i; 2120 2121 rp = (ACPI_RESOURCE *)buf->Pointer; 2122 i = index; 2123 while (i-- > 0) { 2124 /* Range check */ 2125 if (rp > (ACPI_RESOURCE *)((u_int8_t *)buf->Pointer + buf->Length)) 2126 return (AE_BAD_PARAMETER); 2127 2128 /* Check for terminator */ 2129 if (rp->Type == ACPI_RESOURCE_TYPE_END_TAG || rp->Length == 0) 2130 return (AE_NOT_FOUND); 2131 rp = ACPI_NEXT_RESOURCE(rp); 2132 } 2133 if (resp != NULL) 2134 *resp = rp; 2135 2136 return (AE_OK); 2137 } 2138 2139 /* 2140 * Append an ACPI_RESOURCE to an ACPI_BUFFER. 2141 * 2142 * Given a pointer to an ACPI_RESOURCE structure, expand the ACPI_BUFFER 2143 * provided to contain it. If the ACPI_BUFFER is empty, allocate a sensible 2144 * backing block. If the ACPI_RESOURCE is NULL, return an empty set of 2145 * resources. 2146 */ 2147 #define ACPI_INITIAL_RESOURCE_BUFFER_SIZE 512 2148 2149 ACPI_STATUS 2150 acpi_AppendBufferResource(ACPI_BUFFER *buf, ACPI_RESOURCE *res) 2151 { 2152 ACPI_RESOURCE *rp; 2153 void *newp; 2154 2155 /* Initialise the buffer if necessary. */ 2156 if (buf->Pointer == NULL) { 2157 buf->Length = ACPI_INITIAL_RESOURCE_BUFFER_SIZE; 2158 if ((buf->Pointer = AcpiOsAllocate(buf->Length)) == NULL) 2159 return (AE_NO_MEMORY); 2160 rp = (ACPI_RESOURCE *)buf->Pointer; 2161 rp->Type = ACPI_RESOURCE_TYPE_END_TAG; 2162 rp->Length = 0; 2163 } 2164 if (res == NULL) 2165 return (AE_OK); 2166 2167 /* 2168 * Scan the current buffer looking for the terminator. 2169 * This will either find the terminator or hit the end 2170 * of the buffer and return an error. 2171 */ 2172 rp = (ACPI_RESOURCE *)buf->Pointer; 2173 for (;;) { 2174 /* Range check, don't go outside the buffer */ 2175 if (rp >= (ACPI_RESOURCE *)((u_int8_t *)buf->Pointer + buf->Length)) 2176 return (AE_BAD_PARAMETER); 2177 if (rp->Type == ACPI_RESOURCE_TYPE_END_TAG || rp->Length == 0) 2178 break; 2179 rp = ACPI_NEXT_RESOURCE(rp); 2180 } 2181 2182 /* 2183 * Check the size of the buffer and expand if required. 2184 * 2185 * Required size is: 2186 * size of existing resources before terminator + 2187 * size of new resource and header + 2188 * size of terminator. 2189 * 2190 * Note that this loop should really only run once, unless 2191 * for some reason we are stuffing a *really* huge resource. 2192 */ 2193 while ((((u_int8_t *)rp - (u_int8_t *)buf->Pointer) + 2194 res->Length + ACPI_RS_SIZE_NO_DATA + 2195 ACPI_RS_SIZE_MIN) >= buf->Length) { 2196 if ((newp = AcpiOsAllocate(buf->Length * 2)) == NULL) 2197 return (AE_NO_MEMORY); 2198 bcopy(buf->Pointer, newp, buf->Length); 2199 rp = (ACPI_RESOURCE *)((u_int8_t *)newp + 2200 ((u_int8_t *)rp - (u_int8_t *)buf->Pointer)); 2201 AcpiOsFree(buf->Pointer); 2202 buf->Pointer = newp; 2203 buf->Length += buf->Length; 2204 } 2205 2206 /* Insert the new resource. */ 2207 bcopy(res, rp, res->Length + ACPI_RS_SIZE_NO_DATA); 2208 2209 /* And add the terminator. */ 2210 rp = ACPI_NEXT_RESOURCE(rp); 2211 rp->Type = ACPI_RESOURCE_TYPE_END_TAG; 2212 rp->Length = 0; 2213 2214 return (AE_OK); 2215 } 2216 2217 /* 2218 * Set interrupt model. 2219 */ 2220 ACPI_STATUS 2221 acpi_SetIntrModel(int model) 2222 { 2223 2224 return (acpi_SetInteger(ACPI_ROOT_OBJECT, "_PIC", model)); 2225 } 2226 2227 /* 2228 * Walk subtables of a table and call a callback routine for each 2229 * subtable. The caller should provide the first subtable and a 2230 * pointer to the end of the table. This can be used to walk tables 2231 * such as MADT and SRAT that use subtable entries. 2232 */ 2233 void 2234 acpi_walk_subtables(void *first, void *end, acpi_subtable_handler *handler, 2235 void *arg) 2236 { 2237 ACPI_SUBTABLE_HEADER *entry; 2238 2239 for (entry = first; (void *)entry < end; ) { 2240 /* Avoid an infinite loop if we hit a bogus entry. */ 2241 if (entry->Length < sizeof(ACPI_SUBTABLE_HEADER)) 2242 return; 2243 2244 handler(entry, arg); 2245 entry = ACPI_ADD_PTR(ACPI_SUBTABLE_HEADER, entry, entry->Length); 2246 } 2247 } 2248 2249 /* 2250 * DEPRECATED. This interface has serious deficiencies and will be 2251 * removed. 2252 * 2253 * Immediately enter the sleep state. In the old model, acpiconf(8) ran 2254 * rc.suspend and rc.resume so we don't have to notify devd(8) to do this. 2255 */ 2256 ACPI_STATUS 2257 acpi_SetSleepState(struct acpi_softc *sc, int state) 2258 { 2259 static int once; 2260 2261 if (!once) { 2262 device_printf(sc->acpi_dev, 2263 "warning: acpi_SetSleepState() deprecated, need to update your software\n"); 2264 once = 1; 2265 } 2266 return (acpi_EnterSleepState(sc, state)); 2267 } 2268 2269 #if defined(__amd64__) || defined(__i386__) 2270 static void 2271 acpi_sleep_force(void *arg) 2272 { 2273 struct acpi_softc *sc = (struct acpi_softc *)arg; 2274 2275 device_printf(sc->acpi_dev, 2276 "suspend request timed out, forcing sleep now\n"); 2277 if (ACPI_FAILURE(acpi_EnterSleepState(sc, sc->acpi_next_sstate))) 2278 device_printf(sc->acpi_dev, "force sleep state S%d failed\n", 2279 sc->acpi_next_sstate); 2280 } 2281 #endif 2282 2283 /* 2284 * Request that the system enter the given suspend state. All /dev/apm 2285 * devices and devd(8) will be notified. Userland then has a chance to 2286 * save state and acknowledge the request. The system sleeps once all 2287 * acks are in. 2288 */ 2289 int 2290 acpi_ReqSleepState(struct acpi_softc *sc, int state) 2291 { 2292 #if defined(__amd64__) || defined(__i386__) 2293 struct apm_clone_data *clone; 2294 ACPI_STATUS status; 2295 2296 if (state < ACPI_STATE_S1 || state > ACPI_S_STATES_MAX) 2297 return (EINVAL); 2298 if (!acpi_sleep_states[state]) 2299 return (EOPNOTSUPP); 2300 2301 ACPI_LOCK(acpi); 2302 2303 /* If a suspend request is already in progress, just return. */ 2304 if (sc->acpi_next_sstate != 0) { 2305 ACPI_UNLOCK(acpi); 2306 return (0); 2307 } 2308 2309 /* S5 (soft-off) should be entered directly with no waiting. */ 2310 if (state == ACPI_STATE_S5) { 2311 ACPI_UNLOCK(acpi); 2312 status = acpi_EnterSleepState(sc, state); 2313 return (ACPI_SUCCESS(status) ? 0 : ENXIO); 2314 } 2315 2316 /* Record the pending state and notify all apm devices. */ 2317 sc->acpi_next_sstate = state; 2318 STAILQ_FOREACH(clone, &sc->apm_cdevs, entries) { 2319 clone->notify_status = APM_EV_NONE; 2320 if ((clone->flags & ACPI_EVF_DEVD) == 0) { 2321 selwakeuppri(&clone->sel_read, PZERO); 2322 KNOTE_LOCKED(&clone->sel_read.si_note, 0); 2323 } 2324 } 2325 2326 /* If devd(8) is not running, immediately enter the sleep state. */ 2327 if (!devctl_process_running()) { 2328 ACPI_UNLOCK(acpi); 2329 status = acpi_EnterSleepState(sc, state); 2330 return (ACPI_SUCCESS(status) ? 0 : ENXIO); 2331 } 2332 2333 /* 2334 * Set a timeout to fire if userland doesn't ack the suspend request 2335 * in time. This way we still eventually go to sleep if we were 2336 * overheating or running low on battery, even if userland is hung. 2337 * We cancel this timeout once all userland acks are in or the 2338 * suspend request is aborted. 2339 */ 2340 callout_reset(&sc->susp_force_to, 10 * hz, acpi_sleep_force, sc); 2341 ACPI_UNLOCK(acpi); 2342 2343 /* Now notify devd(8) also. */ 2344 acpi_UserNotify("Suspend", ACPI_ROOT_OBJECT, state); 2345 2346 return (0); 2347 #else 2348 /* This platform does not support acpi suspend/resume. */ 2349 return (EOPNOTSUPP); 2350 #endif 2351 } 2352 2353 /* 2354 * Acknowledge (or reject) a pending sleep state. The caller has 2355 * prepared for suspend and is now ready for it to proceed. If the 2356 * error argument is non-zero, it indicates suspend should be cancelled 2357 * and gives an errno value describing why. Once all votes are in, 2358 * we suspend the system. 2359 */ 2360 int 2361 acpi_AckSleepState(struct apm_clone_data *clone, int error) 2362 { 2363 #if defined(__amd64__) || defined(__i386__) 2364 struct acpi_softc *sc; 2365 int ret, sleeping; 2366 2367 /* If no pending sleep state, return an error. */ 2368 ACPI_LOCK(acpi); 2369 sc = clone->acpi_sc; 2370 if (sc->acpi_next_sstate == 0) { 2371 ACPI_UNLOCK(acpi); 2372 return (ENXIO); 2373 } 2374 2375 /* Caller wants to abort suspend process. */ 2376 if (error) { 2377 sc->acpi_next_sstate = 0; 2378 callout_stop(&sc->susp_force_to); 2379 device_printf(sc->acpi_dev, 2380 "listener on %s cancelled the pending suspend\n", 2381 devtoname(clone->cdev)); 2382 ACPI_UNLOCK(acpi); 2383 return (0); 2384 } 2385 2386 /* 2387 * Mark this device as acking the suspend request. Then, walk through 2388 * all devices, seeing if they agree yet. We only count devices that 2389 * are writable since read-only devices couldn't ack the request. 2390 */ 2391 sleeping = TRUE; 2392 clone->notify_status = APM_EV_ACKED; 2393 STAILQ_FOREACH(clone, &sc->apm_cdevs, entries) { 2394 if ((clone->flags & ACPI_EVF_WRITE) != 0 && 2395 clone->notify_status != APM_EV_ACKED) { 2396 sleeping = FALSE; 2397 break; 2398 } 2399 } 2400 2401 /* If all devices have voted "yes", we will suspend now. */ 2402 if (sleeping) 2403 callout_stop(&sc->susp_force_to); 2404 ACPI_UNLOCK(acpi); 2405 ret = 0; 2406 if (sleeping) { 2407 if (ACPI_FAILURE(acpi_EnterSleepState(sc, sc->acpi_next_sstate))) 2408 ret = ENODEV; 2409 } 2410 return (ret); 2411 #else 2412 /* This platform does not support acpi suspend/resume. */ 2413 return (EOPNOTSUPP); 2414 #endif 2415 } 2416 2417 static void 2418 acpi_sleep_enable(void *arg) 2419 { 2420 struct acpi_softc *sc = (struct acpi_softc *)arg; 2421 2422 /* Reschedule if the system is not fully up and running. */ 2423 if (!AcpiGbl_SystemAwakeAndRunning) { 2424 timeout(acpi_sleep_enable, sc, hz * ACPI_MINIMUM_AWAKETIME); 2425 return; 2426 } 2427 2428 ACPI_LOCK(acpi); 2429 sc->acpi_sleep_disabled = FALSE; 2430 ACPI_UNLOCK(acpi); 2431 } 2432 2433 static ACPI_STATUS 2434 acpi_sleep_disable(struct acpi_softc *sc) 2435 { 2436 ACPI_STATUS status; 2437 2438 /* Fail if the system is not fully up and running. */ 2439 if (!AcpiGbl_SystemAwakeAndRunning) 2440 return (AE_ERROR); 2441 2442 ACPI_LOCK(acpi); 2443 status = sc->acpi_sleep_disabled ? AE_ERROR : AE_OK; 2444 sc->acpi_sleep_disabled = TRUE; 2445 ACPI_UNLOCK(acpi); 2446 2447 return (status); 2448 } 2449 2450 enum acpi_sleep_state { 2451 ACPI_SS_NONE, 2452 ACPI_SS_GPE_SET, 2453 ACPI_SS_DEV_SUSPEND, 2454 ACPI_SS_SLP_PREP, 2455 ACPI_SS_SLEPT, 2456 }; 2457 2458 /* 2459 * Enter the desired system sleep state. 2460 * 2461 * Currently we support S1-S5 but S4 is only S4BIOS 2462 */ 2463 static ACPI_STATUS 2464 acpi_EnterSleepState(struct acpi_softc *sc, int state) 2465 { 2466 ACPI_STATUS status; 2467 enum acpi_sleep_state slp_state; 2468 2469 ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state); 2470 2471 if (state < ACPI_STATE_S1 || state > ACPI_S_STATES_MAX) 2472 return_ACPI_STATUS (AE_BAD_PARAMETER); 2473 if (!acpi_sleep_states[state]) { 2474 device_printf(sc->acpi_dev, "Sleep state S%d not supported by BIOS\n", 2475 state); 2476 return (AE_SUPPORT); 2477 } 2478 2479 /* Re-entry once we're suspending is not allowed. */ 2480 status = acpi_sleep_disable(sc); 2481 if (ACPI_FAILURE(status)) { 2482 device_printf(sc->acpi_dev, 2483 "suspend request ignored (not ready yet)\n"); 2484 return (status); 2485 } 2486 2487 if (state == ACPI_STATE_S5) { 2488 /* 2489 * Shut down cleanly and power off. This will call us back through the 2490 * shutdown handlers. 2491 */ 2492 shutdown_nice(RB_POWEROFF); 2493 return_ACPI_STATUS (AE_OK); 2494 } 2495 2496 if (smp_started) { 2497 thread_lock(curthread); 2498 sched_bind(curthread, 0); 2499 thread_unlock(curthread); 2500 } 2501 2502 /* 2503 * Be sure to hold Giant across DEVICE_SUSPEND/RESUME since non-MPSAFE 2504 * drivers need this. 2505 */ 2506 mtx_lock(&Giant); 2507 2508 slp_state = ACPI_SS_NONE; 2509 2510 sc->acpi_sstate = state; 2511 2512 /* Enable any GPEs as appropriate and requested by the user. */ 2513 acpi_wake_prep_walk(state); 2514 slp_state = ACPI_SS_GPE_SET; 2515 2516 /* 2517 * Inform all devices that we are going to sleep. If at least one 2518 * device fails, DEVICE_SUSPEND() automatically resumes the tree. 2519 * 2520 * XXX Note that a better two-pass approach with a 'veto' pass 2521 * followed by a "real thing" pass would be better, but the current 2522 * bus interface does not provide for this. 2523 */ 2524 if (DEVICE_SUSPEND(root_bus) != 0) { 2525 device_printf(sc->acpi_dev, "device_suspend failed\n"); 2526 goto backout; 2527 } 2528 slp_state = ACPI_SS_DEV_SUSPEND; 2529 2530 /* If testing device suspend only, back out of everything here. */ 2531 if (acpi_susp_bounce) 2532 goto backout; 2533 2534 status = AcpiEnterSleepStatePrep(state); 2535 if (ACPI_FAILURE(status)) { 2536 device_printf(sc->acpi_dev, "AcpiEnterSleepStatePrep failed - %s\n", 2537 AcpiFormatException(status)); 2538 goto backout; 2539 } 2540 slp_state = ACPI_SS_SLP_PREP; 2541 2542 if (sc->acpi_sleep_delay > 0) 2543 DELAY(sc->acpi_sleep_delay * 1000000); 2544 2545 if (state != ACPI_STATE_S1) { 2546 acpi_sleep_machdep(sc, state); 2547 2548 /* Re-enable ACPI hardware on wakeup from sleep state 4. */ 2549 if (state == ACPI_STATE_S4) 2550 AcpiEnable(); 2551 } else { 2552 ACPI_DISABLE_IRQS(); 2553 status = AcpiEnterSleepState(state); 2554 if (ACPI_FAILURE(status)) { 2555 device_printf(sc->acpi_dev, "AcpiEnterSleepState failed - %s\n", 2556 AcpiFormatException(status)); 2557 goto backout; 2558 } 2559 } 2560 slp_state = ACPI_SS_SLEPT; 2561 2562 /* 2563 * Back out state according to how far along we got in the suspend 2564 * process. This handles both the error and success cases. 2565 */ 2566 backout: 2567 if (slp_state >= ACPI_SS_GPE_SET) { 2568 acpi_wake_prep_walk(state); 2569 sc->acpi_sstate = ACPI_STATE_S0; 2570 } 2571 if (slp_state >= ACPI_SS_SLP_PREP) 2572 AcpiLeaveSleepState(state); 2573 if (slp_state >= ACPI_SS_DEV_SUSPEND) 2574 DEVICE_RESUME(root_bus); 2575 if (slp_state >= ACPI_SS_SLEPT) 2576 acpi_enable_fixed_events(sc); 2577 sc->acpi_next_sstate = 0; 2578 2579 mtx_unlock(&Giant); 2580 2581 if (smp_started) { 2582 thread_lock(curthread); 2583 sched_unbind(curthread); 2584 thread_unlock(curthread); 2585 } 2586 2587 /* Allow another sleep request after a while. */ 2588 timeout(acpi_sleep_enable, sc, hz * ACPI_MINIMUM_AWAKETIME); 2589 2590 /* Run /etc/rc.resume after we are back. */ 2591 if (devctl_process_running()) 2592 acpi_UserNotify("Resume", ACPI_ROOT_OBJECT, state); 2593 2594 return_ACPI_STATUS (status); 2595 } 2596 2597 void 2598 acpi_resync_clock(struct acpi_softc *sc) 2599 { 2600 2601 if (!acpi_reset_clock) 2602 return; 2603 2604 /* 2605 * Warm up timecounter again and reset system clock. 2606 */ 2607 (void)timecounter->tc_get_timecount(timecounter); 2608 (void)timecounter->tc_get_timecount(timecounter); 2609 inittodr(time_second + sc->acpi_sleep_delay); 2610 } 2611 2612 /* Enable or disable the device's wake GPE. */ 2613 int 2614 acpi_wake_set_enable(device_t dev, int enable) 2615 { 2616 struct acpi_prw_data prw; 2617 ACPI_STATUS status; 2618 int flags; 2619 2620 /* Make sure the device supports waking the system and get the GPE. */ 2621 if (acpi_parse_prw(acpi_get_handle(dev), &prw) != 0) 2622 return (ENXIO); 2623 2624 flags = acpi_get_flags(dev); 2625 if (enable) { 2626 status = AcpiGpeWakeup(prw.gpe_handle, prw.gpe_bit, ACPI_GPE_ENABLE); 2627 if (ACPI_FAILURE(status)) { 2628 device_printf(dev, "enable wake failed\n"); 2629 return (ENXIO); 2630 } 2631 acpi_set_flags(dev, flags | ACPI_FLAG_WAKE_ENABLED); 2632 } else { 2633 status = AcpiGpeWakeup(prw.gpe_handle, prw.gpe_bit, ACPI_GPE_DISABLE); 2634 if (ACPI_FAILURE(status)) { 2635 device_printf(dev, "disable wake failed\n"); 2636 return (ENXIO); 2637 } 2638 acpi_set_flags(dev, flags & ~ACPI_FLAG_WAKE_ENABLED); 2639 } 2640 2641 return (0); 2642 } 2643 2644 static int 2645 acpi_wake_sleep_prep(ACPI_HANDLE handle, int sstate) 2646 { 2647 struct acpi_prw_data prw; 2648 device_t dev; 2649 2650 /* Check that this is a wake-capable device and get its GPE. */ 2651 if (acpi_parse_prw(handle, &prw) != 0) 2652 return (ENXIO); 2653 dev = acpi_get_device(handle); 2654 2655 /* 2656 * The destination sleep state must be less than (i.e., higher power) 2657 * or equal to the value specified by _PRW. If this GPE cannot be 2658 * enabled for the next sleep state, then disable it. If it can and 2659 * the user requested it be enabled, turn on any required power resources 2660 * and set _PSW. 2661 */ 2662 if (sstate > prw.lowest_wake) { 2663 AcpiGpeWakeup(prw.gpe_handle, prw.gpe_bit, ACPI_GPE_DISABLE); 2664 if (bootverbose) 2665 device_printf(dev, "wake_prep disabled wake for %s (S%d)\n", 2666 acpi_name(handle), sstate); 2667 } else if (dev && (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) != 0) { 2668 acpi_pwr_wake_enable(handle, 1); 2669 acpi_SetInteger(handle, "_PSW", 1); 2670 if (bootverbose) 2671 device_printf(dev, "wake_prep enabled for %s (S%d)\n", 2672 acpi_name(handle), sstate); 2673 } 2674 2675 return (0); 2676 } 2677 2678 static int 2679 acpi_wake_run_prep(ACPI_HANDLE handle, int sstate) 2680 { 2681 struct acpi_prw_data prw; 2682 device_t dev; 2683 2684 /* 2685 * Check that this is a wake-capable device and get its GPE. Return 2686 * now if the user didn't enable this device for wake. 2687 */ 2688 if (acpi_parse_prw(handle, &prw) != 0) 2689 return (ENXIO); 2690 dev = acpi_get_device(handle); 2691 if (dev == NULL || (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) == 0) 2692 return (0); 2693 2694 /* 2695 * If this GPE couldn't be enabled for the previous sleep state, it was 2696 * disabled before going to sleep so re-enable it. If it was enabled, 2697 * clear _PSW and turn off any power resources it used. 2698 */ 2699 if (sstate > prw.lowest_wake) { 2700 AcpiGpeWakeup(prw.gpe_handle, prw.gpe_bit, ACPI_GPE_ENABLE); 2701 if (bootverbose) 2702 device_printf(dev, "run_prep re-enabled %s\n", acpi_name(handle)); 2703 } else { 2704 acpi_SetInteger(handle, "_PSW", 0); 2705 acpi_pwr_wake_enable(handle, 0); 2706 if (bootverbose) 2707 device_printf(dev, "run_prep cleaned up for %s\n", 2708 acpi_name(handle)); 2709 } 2710 2711 return (0); 2712 } 2713 2714 static ACPI_STATUS 2715 acpi_wake_prep(ACPI_HANDLE handle, UINT32 level, void *context, void **status) 2716 { 2717 int sstate; 2718 2719 /* If suspending, run the sleep prep function, otherwise wake. */ 2720 sstate = *(int *)context; 2721 if (AcpiGbl_SystemAwakeAndRunning) 2722 acpi_wake_sleep_prep(handle, sstate); 2723 else 2724 acpi_wake_run_prep(handle, sstate); 2725 return (AE_OK); 2726 } 2727 2728 /* Walk the tree rooted at acpi0 to prep devices for suspend/resume. */ 2729 static int 2730 acpi_wake_prep_walk(int sstate) 2731 { 2732 ACPI_HANDLE sb_handle; 2733 2734 if (ACPI_SUCCESS(AcpiGetHandle(ACPI_ROOT_OBJECT, "\\_SB_", &sb_handle))) 2735 AcpiWalkNamespace(ACPI_TYPE_DEVICE, sb_handle, 100, 2736 acpi_wake_prep, NULL, &sstate, NULL); 2737 return (0); 2738 } 2739 2740 /* Walk the tree rooted at acpi0 to attach per-device wake sysctls. */ 2741 static int 2742 acpi_wake_sysctl_walk(device_t dev) 2743 { 2744 int error, i, numdevs; 2745 device_t *devlist; 2746 device_t child; 2747 ACPI_STATUS status; 2748 2749 error = device_get_children(dev, &devlist, &numdevs); 2750 if (error != 0 || numdevs == 0) { 2751 if (numdevs == 0) 2752 free(devlist, M_TEMP); 2753 return (error); 2754 } 2755 for (i = 0; i < numdevs; i++) { 2756 child = devlist[i]; 2757 acpi_wake_sysctl_walk(child); 2758 if (!device_is_attached(child)) 2759 continue; 2760 status = AcpiEvaluateObject(acpi_get_handle(child), "_PRW", NULL, NULL); 2761 if (ACPI_SUCCESS(status)) { 2762 SYSCTL_ADD_PROC(device_get_sysctl_ctx(child), 2763 SYSCTL_CHILDREN(device_get_sysctl_tree(child)), OID_AUTO, 2764 "wake", CTLTYPE_INT | CTLFLAG_RW, child, 0, 2765 acpi_wake_set_sysctl, "I", "Device set to wake the system"); 2766 } 2767 } 2768 free(devlist, M_TEMP); 2769 2770 return (0); 2771 } 2772 2773 /* Enable or disable wake from userland. */ 2774 static int 2775 acpi_wake_set_sysctl(SYSCTL_HANDLER_ARGS) 2776 { 2777 int enable, error; 2778 device_t dev; 2779 2780 dev = (device_t)arg1; 2781 enable = (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) ? 1 : 0; 2782 2783 error = sysctl_handle_int(oidp, &enable, 0, req); 2784 if (error != 0 || req->newptr == NULL) 2785 return (error); 2786 if (enable != 0 && enable != 1) 2787 return (EINVAL); 2788 2789 return (acpi_wake_set_enable(dev, enable)); 2790 } 2791 2792 /* Parse a device's _PRW into a structure. */ 2793 int 2794 acpi_parse_prw(ACPI_HANDLE h, struct acpi_prw_data *prw) 2795 { 2796 ACPI_STATUS status; 2797 ACPI_BUFFER prw_buffer; 2798 ACPI_OBJECT *res, *res2; 2799 int error, i, power_count; 2800 2801 if (h == NULL || prw == NULL) 2802 return (EINVAL); 2803 2804 /* 2805 * The _PRW object (7.2.9) is only required for devices that have the 2806 * ability to wake the system from a sleeping state. 2807 */ 2808 error = EINVAL; 2809 prw_buffer.Pointer = NULL; 2810 prw_buffer.Length = ACPI_ALLOCATE_BUFFER; 2811 status = AcpiEvaluateObject(h, "_PRW", NULL, &prw_buffer); 2812 if (ACPI_FAILURE(status)) 2813 return (ENOENT); 2814 res = (ACPI_OBJECT *)prw_buffer.Pointer; 2815 if (res == NULL) 2816 return (ENOENT); 2817 if (!ACPI_PKG_VALID(res, 2)) 2818 goto out; 2819 2820 /* 2821 * Element 1 of the _PRW object: 2822 * The lowest power system sleeping state that can be entered while still 2823 * providing wake functionality. The sleeping state being entered must 2824 * be less than (i.e., higher power) or equal to this value. 2825 */ 2826 if (acpi_PkgInt32(res, 1, &prw->lowest_wake) != 0) 2827 goto out; 2828 2829 /* 2830 * Element 0 of the _PRW object: 2831 */ 2832 switch (res->Package.Elements[0].Type) { 2833 case ACPI_TYPE_INTEGER: 2834 /* 2835 * If the data type of this package element is numeric, then this 2836 * _PRW package element is the bit index in the GPEx_EN, in the 2837 * GPE blocks described in the FADT, of the enable bit that is 2838 * enabled for the wake event. 2839 */ 2840 prw->gpe_handle = NULL; 2841 prw->gpe_bit = res->Package.Elements[0].Integer.Value; 2842 error = 0; 2843 break; 2844 case ACPI_TYPE_PACKAGE: 2845 /* 2846 * If the data type of this package element is a package, then this 2847 * _PRW package element is itself a package containing two 2848 * elements. The first is an object reference to the GPE Block 2849 * device that contains the GPE that will be triggered by the wake 2850 * event. The second element is numeric and it contains the bit 2851 * index in the GPEx_EN, in the GPE Block referenced by the 2852 * first element in the package, of the enable bit that is enabled for 2853 * the wake event. 2854 * 2855 * For example, if this field is a package then it is of the form: 2856 * Package() {\_SB.PCI0.ISA.GPE, 2} 2857 */ 2858 res2 = &res->Package.Elements[0]; 2859 if (!ACPI_PKG_VALID(res2, 2)) 2860 goto out; 2861 prw->gpe_handle = acpi_GetReference(NULL, &res2->Package.Elements[0]); 2862 if (prw->gpe_handle == NULL) 2863 goto out; 2864 if (acpi_PkgInt32(res2, 1, &prw->gpe_bit) != 0) 2865 goto out; 2866 error = 0; 2867 break; 2868 default: 2869 goto out; 2870 } 2871 2872 /* Elements 2 to N of the _PRW object are power resources. */ 2873 power_count = res->Package.Count - 2; 2874 if (power_count > ACPI_PRW_MAX_POWERRES) { 2875 printf("ACPI device %s has too many power resources\n", acpi_name(h)); 2876 power_count = 0; 2877 } 2878 prw->power_res_count = power_count; 2879 for (i = 0; i < power_count; i++) 2880 prw->power_res[i] = res->Package.Elements[i]; 2881 2882 out: 2883 if (prw_buffer.Pointer != NULL) 2884 AcpiOsFree(prw_buffer.Pointer); 2885 return (error); 2886 } 2887 2888 /* 2889 * ACPI Event Handlers 2890 */ 2891 2892 /* System Event Handlers (registered by EVENTHANDLER_REGISTER) */ 2893 2894 static void 2895 acpi_system_eventhandler_sleep(void *arg, int state) 2896 { 2897 struct acpi_softc *sc = (struct acpi_softc *)arg; 2898 int ret; 2899 2900 ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state); 2901 2902 /* Check if button action is disabled or unknown. */ 2903 if (state == ACPI_STATE_UNKNOWN) 2904 return; 2905 2906 /* Request that the system prepare to enter the given suspend state. */ 2907 ret = acpi_ReqSleepState(sc, state); 2908 if (ret != 0) 2909 device_printf(sc->acpi_dev, 2910 "request to enter state S%d failed (err %d)\n", state, ret); 2911 2912 return_VOID; 2913 } 2914 2915 static void 2916 acpi_system_eventhandler_wakeup(void *arg, int state) 2917 { 2918 2919 ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state); 2920 2921 /* Currently, nothing to do for wakeup. */ 2922 2923 return_VOID; 2924 } 2925 2926 /* 2927 * ACPICA Event Handlers (FixedEvent, also called from button notify handler) 2928 */ 2929 UINT32 2930 acpi_event_power_button_sleep(void *context) 2931 { 2932 struct acpi_softc *sc = (struct acpi_softc *)context; 2933 2934 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 2935 2936 EVENTHANDLER_INVOKE(acpi_sleep_event, sc->acpi_power_button_sx); 2937 2938 return_VALUE (ACPI_INTERRUPT_HANDLED); 2939 } 2940 2941 UINT32 2942 acpi_event_power_button_wake(void *context) 2943 { 2944 struct acpi_softc *sc = (struct acpi_softc *)context; 2945 2946 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 2947 2948 EVENTHANDLER_INVOKE(acpi_wakeup_event, sc->acpi_power_button_sx); 2949 2950 return_VALUE (ACPI_INTERRUPT_HANDLED); 2951 } 2952 2953 UINT32 2954 acpi_event_sleep_button_sleep(void *context) 2955 { 2956 struct acpi_softc *sc = (struct acpi_softc *)context; 2957 2958 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 2959 2960 EVENTHANDLER_INVOKE(acpi_sleep_event, sc->acpi_sleep_button_sx); 2961 2962 return_VALUE (ACPI_INTERRUPT_HANDLED); 2963 } 2964 2965 UINT32 2966 acpi_event_sleep_button_wake(void *context) 2967 { 2968 struct acpi_softc *sc = (struct acpi_softc *)context; 2969 2970 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 2971 2972 EVENTHANDLER_INVOKE(acpi_wakeup_event, sc->acpi_sleep_button_sx); 2973 2974 return_VALUE (ACPI_INTERRUPT_HANDLED); 2975 } 2976 2977 /* 2978 * XXX This static buffer is suboptimal. There is no locking so only 2979 * use this for single-threaded callers. 2980 */ 2981 char * 2982 acpi_name(ACPI_HANDLE handle) 2983 { 2984 ACPI_BUFFER buf; 2985 static char data[256]; 2986 2987 buf.Length = sizeof(data); 2988 buf.Pointer = data; 2989 2990 if (handle && ACPI_SUCCESS(AcpiGetName(handle, ACPI_FULL_PATHNAME, &buf))) 2991 return (data); 2992 return ("(unknown)"); 2993 } 2994 2995 /* 2996 * Debugging/bug-avoidance. Avoid trying to fetch info on various 2997 * parts of the namespace. 2998 */ 2999 int 3000 acpi_avoid(ACPI_HANDLE handle) 3001 { 3002 char *cp, *env, *np; 3003 int len; 3004 3005 np = acpi_name(handle); 3006 if (*np == '\\') 3007 np++; 3008 if ((env = getenv("debug.acpi.avoid")) == NULL) 3009 return (0); 3010 3011 /* Scan the avoid list checking for a match */ 3012 cp = env; 3013 for (;;) { 3014 while (*cp != 0 && isspace(*cp)) 3015 cp++; 3016 if (*cp == 0) 3017 break; 3018 len = 0; 3019 while (cp[len] != 0 && !isspace(cp[len])) 3020 len++; 3021 if (!strncmp(cp, np, len)) { 3022 freeenv(env); 3023 return(1); 3024 } 3025 cp += len; 3026 } 3027 freeenv(env); 3028 3029 return (0); 3030 } 3031 3032 /* 3033 * Debugging/bug-avoidance. Disable ACPI subsystem components. 3034 */ 3035 int 3036 acpi_disabled(char *subsys) 3037 { 3038 char *cp, *env; 3039 int len; 3040 3041 if ((env = getenv("debug.acpi.disabled")) == NULL) 3042 return (0); 3043 if (strcmp(env, "all") == 0) { 3044 freeenv(env); 3045 return (1); 3046 } 3047 3048 /* Scan the disable list, checking for a match. */ 3049 cp = env; 3050 for (;;) { 3051 while (*cp != '\0' && isspace(*cp)) 3052 cp++; 3053 if (*cp == '\0') 3054 break; 3055 len = 0; 3056 while (cp[len] != '\0' && !isspace(cp[len])) 3057 len++; 3058 if (strncmp(cp, subsys, len) == 0) { 3059 freeenv(env); 3060 return (1); 3061 } 3062 cp += len; 3063 } 3064 freeenv(env); 3065 3066 return (0); 3067 } 3068 3069 /* 3070 * Control interface. 3071 * 3072 * We multiplex ioctls for all participating ACPI devices here. Individual 3073 * drivers wanting to be accessible via /dev/acpi should use the 3074 * register/deregister interface to make their handlers visible. 3075 */ 3076 struct acpi_ioctl_hook 3077 { 3078 TAILQ_ENTRY(acpi_ioctl_hook) link; 3079 u_long cmd; 3080 acpi_ioctl_fn fn; 3081 void *arg; 3082 }; 3083 3084 static TAILQ_HEAD(,acpi_ioctl_hook) acpi_ioctl_hooks; 3085 static int acpi_ioctl_hooks_initted; 3086 3087 int 3088 acpi_register_ioctl(u_long cmd, acpi_ioctl_fn fn, void *arg) 3089 { 3090 struct acpi_ioctl_hook *hp; 3091 3092 if ((hp = malloc(sizeof(*hp), M_ACPIDEV, M_NOWAIT)) == NULL) 3093 return (ENOMEM); 3094 hp->cmd = cmd; 3095 hp->fn = fn; 3096 hp->arg = arg; 3097 3098 ACPI_LOCK(acpi); 3099 if (acpi_ioctl_hooks_initted == 0) { 3100 TAILQ_INIT(&acpi_ioctl_hooks); 3101 acpi_ioctl_hooks_initted = 1; 3102 } 3103 TAILQ_INSERT_TAIL(&acpi_ioctl_hooks, hp, link); 3104 ACPI_UNLOCK(acpi); 3105 3106 return (0); 3107 } 3108 3109 void 3110 acpi_deregister_ioctl(u_long cmd, acpi_ioctl_fn fn) 3111 { 3112 struct acpi_ioctl_hook *hp; 3113 3114 ACPI_LOCK(acpi); 3115 TAILQ_FOREACH(hp, &acpi_ioctl_hooks, link) 3116 if (hp->cmd == cmd && hp->fn == fn) 3117 break; 3118 3119 if (hp != NULL) { 3120 TAILQ_REMOVE(&acpi_ioctl_hooks, hp, link); 3121 free(hp, M_ACPIDEV); 3122 } 3123 ACPI_UNLOCK(acpi); 3124 } 3125 3126 static int 3127 acpiopen(struct cdev *dev, int flag, int fmt, struct thread *td) 3128 { 3129 return (0); 3130 } 3131 3132 static int 3133 acpiclose(struct cdev *dev, int flag, int fmt, struct thread *td) 3134 { 3135 return (0); 3136 } 3137 3138 static int 3139 acpiioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 3140 { 3141 struct acpi_softc *sc; 3142 struct acpi_ioctl_hook *hp; 3143 int error, state; 3144 3145 error = 0; 3146 hp = NULL; 3147 sc = dev->si_drv1; 3148 3149 /* 3150 * Scan the list of registered ioctls, looking for handlers. 3151 */ 3152 ACPI_LOCK(acpi); 3153 if (acpi_ioctl_hooks_initted) 3154 TAILQ_FOREACH(hp, &acpi_ioctl_hooks, link) { 3155 if (hp->cmd == cmd) 3156 break; 3157 } 3158 ACPI_UNLOCK(acpi); 3159 if (hp) 3160 return (hp->fn(cmd, addr, hp->arg)); 3161 3162 /* 3163 * Core ioctls are not permitted for non-writable user. 3164 * Currently, other ioctls just fetch information. 3165 * Not changing system behavior. 3166 */ 3167 if ((flag & FWRITE) == 0) 3168 return (EPERM); 3169 3170 /* Core system ioctls. */ 3171 switch (cmd) { 3172 case ACPIIO_REQSLPSTATE: 3173 state = *(int *)addr; 3174 if (state != ACPI_STATE_S5) 3175 return (acpi_ReqSleepState(sc, state)); 3176 device_printf(sc->acpi_dev, "power off via acpi ioctl not supported\n"); 3177 error = EOPNOTSUPP; 3178 break; 3179 case ACPIIO_ACKSLPSTATE: 3180 error = *(int *)addr; 3181 error = acpi_AckSleepState(sc->acpi_clone, error); 3182 break; 3183 case ACPIIO_SETSLPSTATE: /* DEPRECATED */ 3184 state = *(int *)addr; 3185 if (state < ACPI_STATE_S0 || state > ACPI_S_STATES_MAX) 3186 return (EINVAL); 3187 if (!acpi_sleep_states[state]) 3188 return (EOPNOTSUPP); 3189 if (ACPI_FAILURE(acpi_SetSleepState(sc, state))) 3190 error = ENXIO; 3191 break; 3192 default: 3193 error = ENXIO; 3194 break; 3195 } 3196 3197 return (error); 3198 } 3199 3200 static int 3201 acpi_sname2sstate(const char *sname) 3202 { 3203 int sstate; 3204 3205 if (toupper(sname[0]) == 'S') { 3206 sstate = sname[1] - '0'; 3207 if (sstate >= ACPI_STATE_S0 && sstate <= ACPI_STATE_S5 && 3208 sname[2] == '\0') 3209 return (sstate); 3210 } else if (strcasecmp(sname, "NONE") == 0) 3211 return (ACPI_STATE_UNKNOWN); 3212 return (-1); 3213 } 3214 3215 static const char * 3216 acpi_sstate2sname(int sstate) 3217 { 3218 static const char *snames[] = { "S0", "S1", "S2", "S3", "S4", "S5" }; 3219 3220 if (sstate >= ACPI_STATE_S0 && sstate <= ACPI_STATE_S5) 3221 return (snames[sstate]); 3222 else if (sstate == ACPI_STATE_UNKNOWN) 3223 return ("NONE"); 3224 return (NULL); 3225 } 3226 3227 static int 3228 acpi_supported_sleep_state_sysctl(SYSCTL_HANDLER_ARGS) 3229 { 3230 int error; 3231 struct sbuf sb; 3232 UINT8 state; 3233 3234 sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND); 3235 for (state = ACPI_STATE_S1; state < ACPI_S_STATE_COUNT; state++) 3236 if (acpi_sleep_states[state]) 3237 sbuf_printf(&sb, "%s ", acpi_sstate2sname(state)); 3238 sbuf_trim(&sb); 3239 sbuf_finish(&sb); 3240 error = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req); 3241 sbuf_delete(&sb); 3242 return (error); 3243 } 3244 3245 static int 3246 acpi_sleep_state_sysctl(SYSCTL_HANDLER_ARGS) 3247 { 3248 char sleep_state[10]; 3249 int error, new_state, old_state; 3250 3251 old_state = *(int *)oidp->oid_arg1; 3252 strlcpy(sleep_state, acpi_sstate2sname(old_state), sizeof(sleep_state)); 3253 error = sysctl_handle_string(oidp, sleep_state, sizeof(sleep_state), req); 3254 if (error == 0 && req->newptr != NULL) { 3255 new_state = acpi_sname2sstate(sleep_state); 3256 if (new_state < ACPI_STATE_S1) 3257 return (EINVAL); 3258 if (new_state < ACPI_S_STATE_COUNT && !acpi_sleep_states[new_state]) 3259 return (EOPNOTSUPP); 3260 if (new_state != old_state) 3261 *(int *)oidp->oid_arg1 = new_state; 3262 } 3263 return (error); 3264 } 3265 3266 /* Inform devctl(4) when we receive a Notify. */ 3267 void 3268 acpi_UserNotify(const char *subsystem, ACPI_HANDLE h, uint8_t notify) 3269 { 3270 char notify_buf[16]; 3271 ACPI_BUFFER handle_buf; 3272 ACPI_STATUS status; 3273 3274 if (subsystem == NULL) 3275 return; 3276 3277 handle_buf.Pointer = NULL; 3278 handle_buf.Length = ACPI_ALLOCATE_BUFFER; 3279 status = AcpiNsHandleToPathname(h, &handle_buf); 3280 if (ACPI_FAILURE(status)) 3281 return; 3282 snprintf(notify_buf, sizeof(notify_buf), "notify=0x%02x", notify); 3283 devctl_notify("ACPI", subsystem, handle_buf.Pointer, notify_buf); 3284 AcpiOsFree(handle_buf.Pointer); 3285 } 3286 3287 #ifdef ACPI_DEBUG 3288 /* 3289 * Support for parsing debug options from the kernel environment. 3290 * 3291 * Bits may be set in the AcpiDbgLayer and AcpiDbgLevel debug registers 3292 * by specifying the names of the bits in the debug.acpi.layer and 3293 * debug.acpi.level environment variables. Bits may be unset by 3294 * prefixing the bit name with !. 3295 */ 3296 struct debugtag 3297 { 3298 char *name; 3299 UINT32 value; 3300 }; 3301 3302 static struct debugtag dbg_layer[] = { 3303 {"ACPI_UTILITIES", ACPI_UTILITIES}, 3304 {"ACPI_HARDWARE", ACPI_HARDWARE}, 3305 {"ACPI_EVENTS", ACPI_EVENTS}, 3306 {"ACPI_TABLES", ACPI_TABLES}, 3307 {"ACPI_NAMESPACE", ACPI_NAMESPACE}, 3308 {"ACPI_PARSER", ACPI_PARSER}, 3309 {"ACPI_DISPATCHER", ACPI_DISPATCHER}, 3310 {"ACPI_EXECUTER", ACPI_EXECUTER}, 3311 {"ACPI_RESOURCES", ACPI_RESOURCES}, 3312 {"ACPI_CA_DEBUGGER", ACPI_CA_DEBUGGER}, 3313 {"ACPI_OS_SERVICES", ACPI_OS_SERVICES}, 3314 {"ACPI_CA_DISASSEMBLER", ACPI_CA_DISASSEMBLER}, 3315 {"ACPI_ALL_COMPONENTS", ACPI_ALL_COMPONENTS}, 3316 3317 {"ACPI_AC_ADAPTER", ACPI_AC_ADAPTER}, 3318 {"ACPI_BATTERY", ACPI_BATTERY}, 3319 {"ACPI_BUS", ACPI_BUS}, 3320 {"ACPI_BUTTON", ACPI_BUTTON}, 3321 {"ACPI_EC", ACPI_EC}, 3322 {"ACPI_FAN", ACPI_FAN}, 3323 {"ACPI_POWERRES", ACPI_POWERRES}, 3324 {"ACPI_PROCESSOR", ACPI_PROCESSOR}, 3325 {"ACPI_THERMAL", ACPI_THERMAL}, 3326 {"ACPI_TIMER", ACPI_TIMER}, 3327 {"ACPI_ALL_DRIVERS", ACPI_ALL_DRIVERS}, 3328 {NULL, 0} 3329 }; 3330 3331 static struct debugtag dbg_level[] = { 3332 {"ACPI_LV_INIT", ACPI_LV_INIT}, 3333 {"ACPI_LV_DEBUG_OBJECT", ACPI_LV_DEBUG_OBJECT}, 3334 {"ACPI_LV_INFO", ACPI_LV_INFO}, 3335 {"ACPI_LV_ALL_EXCEPTIONS", ACPI_LV_ALL_EXCEPTIONS}, 3336 3337 /* Trace verbosity level 1 [Standard Trace Level] */ 3338 {"ACPI_LV_INIT_NAMES", ACPI_LV_INIT_NAMES}, 3339 {"ACPI_LV_PARSE", ACPI_LV_PARSE}, 3340 {"ACPI_LV_LOAD", ACPI_LV_LOAD}, 3341 {"ACPI_LV_DISPATCH", ACPI_LV_DISPATCH}, 3342 {"ACPI_LV_EXEC", ACPI_LV_EXEC}, 3343 {"ACPI_LV_NAMES", ACPI_LV_NAMES}, 3344 {"ACPI_LV_OPREGION", ACPI_LV_OPREGION}, 3345 {"ACPI_LV_BFIELD", ACPI_LV_BFIELD}, 3346 {"ACPI_LV_TABLES", ACPI_LV_TABLES}, 3347 {"ACPI_LV_VALUES", ACPI_LV_VALUES}, 3348 {"ACPI_LV_OBJECTS", ACPI_LV_OBJECTS}, 3349 {"ACPI_LV_RESOURCES", ACPI_LV_RESOURCES}, 3350 {"ACPI_LV_USER_REQUESTS", ACPI_LV_USER_REQUESTS}, 3351 {"ACPI_LV_PACKAGE", ACPI_LV_PACKAGE}, 3352 {"ACPI_LV_VERBOSITY1", ACPI_LV_VERBOSITY1}, 3353 3354 /* Trace verbosity level 2 [Function tracing and memory allocation] */ 3355 {"ACPI_LV_ALLOCATIONS", ACPI_LV_ALLOCATIONS}, 3356 {"ACPI_LV_FUNCTIONS", ACPI_LV_FUNCTIONS}, 3357 {"ACPI_LV_OPTIMIZATIONS", ACPI_LV_OPTIMIZATIONS}, 3358 {"ACPI_LV_VERBOSITY2", ACPI_LV_VERBOSITY2}, 3359 {"ACPI_LV_ALL", ACPI_LV_ALL}, 3360 3361 /* Trace verbosity level 3 [Threading, I/O, and Interrupts] */ 3362 {"ACPI_LV_MUTEX", ACPI_LV_MUTEX}, 3363 {"ACPI_LV_THREADS", ACPI_LV_THREADS}, 3364 {"ACPI_LV_IO", ACPI_LV_IO}, 3365 {"ACPI_LV_INTERRUPTS", ACPI_LV_INTERRUPTS}, 3366 {"ACPI_LV_VERBOSITY3", ACPI_LV_VERBOSITY3}, 3367 3368 /* Exceptionally verbose output -- also used in the global "DebugLevel" */ 3369 {"ACPI_LV_AML_DISASSEMBLE", ACPI_LV_AML_DISASSEMBLE}, 3370 {"ACPI_LV_VERBOSE_INFO", ACPI_LV_VERBOSE_INFO}, 3371 {"ACPI_LV_FULL_TABLES", ACPI_LV_FULL_TABLES}, 3372 {"ACPI_LV_EVENTS", ACPI_LV_EVENTS}, 3373 {"ACPI_LV_VERBOSE", ACPI_LV_VERBOSE}, 3374 {NULL, 0} 3375 }; 3376 3377 static void 3378 acpi_parse_debug(char *cp, struct debugtag *tag, UINT32 *flag) 3379 { 3380 char *ep; 3381 int i, l; 3382 int set; 3383 3384 while (*cp) { 3385 if (isspace(*cp)) { 3386 cp++; 3387 continue; 3388 } 3389 ep = cp; 3390 while (*ep && !isspace(*ep)) 3391 ep++; 3392 if (*cp == '!') { 3393 set = 0; 3394 cp++; 3395 if (cp == ep) 3396 continue; 3397 } else { 3398 set = 1; 3399 } 3400 l = ep - cp; 3401 for (i = 0; tag[i].name != NULL; i++) { 3402 if (!strncmp(cp, tag[i].name, l)) { 3403 if (set) 3404 *flag |= tag[i].value; 3405 else 3406 *flag &= ~tag[i].value; 3407 } 3408 } 3409 cp = ep; 3410 } 3411 } 3412 3413 static void 3414 acpi_set_debugging(void *junk) 3415 { 3416 char *layer, *level; 3417 3418 if (cold) { 3419 AcpiDbgLayer = 0; 3420 AcpiDbgLevel = 0; 3421 } 3422 3423 layer = getenv("debug.acpi.layer"); 3424 level = getenv("debug.acpi.level"); 3425 if (layer == NULL && level == NULL) 3426 return; 3427 3428 printf("ACPI set debug"); 3429 if (layer != NULL) { 3430 if (strcmp("NONE", layer) != 0) 3431 printf(" layer '%s'", layer); 3432 acpi_parse_debug(layer, &dbg_layer[0], &AcpiDbgLayer); 3433 freeenv(layer); 3434 } 3435 if (level != NULL) { 3436 if (strcmp("NONE", level) != 0) 3437 printf(" level '%s'", level); 3438 acpi_parse_debug(level, &dbg_level[0], &AcpiDbgLevel); 3439 freeenv(level); 3440 } 3441 printf("\n"); 3442 } 3443 3444 SYSINIT(acpi_debugging, SI_SUB_TUNABLES, SI_ORDER_ANY, acpi_set_debugging, 3445 NULL); 3446 3447 static int 3448 acpi_debug_sysctl(SYSCTL_HANDLER_ARGS) 3449 { 3450 int error, *dbg; 3451 struct debugtag *tag; 3452 struct sbuf sb; 3453 3454 if (sbuf_new(&sb, NULL, 128, SBUF_AUTOEXTEND) == NULL) 3455 return (ENOMEM); 3456 if (strcmp(oidp->oid_arg1, "debug.acpi.layer") == 0) { 3457 tag = &dbg_layer[0]; 3458 dbg = &AcpiDbgLayer; 3459 } else { 3460 tag = &dbg_level[0]; 3461 dbg = &AcpiDbgLevel; 3462 } 3463 3464 /* Get old values if this is a get request. */ 3465 ACPI_SERIAL_BEGIN(acpi); 3466 if (*dbg == 0) { 3467 sbuf_cpy(&sb, "NONE"); 3468 } else if (req->newptr == NULL) { 3469 for (; tag->name != NULL; tag++) { 3470 if ((*dbg & tag->value) == tag->value) 3471 sbuf_printf(&sb, "%s ", tag->name); 3472 } 3473 } 3474 sbuf_trim(&sb); 3475 sbuf_finish(&sb); 3476 3477 /* Copy out the old values to the user. */ 3478 error = SYSCTL_OUT(req, sbuf_data(&sb), sbuf_len(&sb)); 3479 sbuf_delete(&sb); 3480 3481 /* If the user is setting a string, parse it. */ 3482 if (error == 0 && req->newptr != NULL) { 3483 *dbg = 0; 3484 setenv((char *)oidp->oid_arg1, (char *)req->newptr); 3485 acpi_set_debugging(NULL); 3486 } 3487 ACPI_SERIAL_END(acpi); 3488 3489 return (error); 3490 } 3491 3492 SYSCTL_PROC(_debug_acpi, OID_AUTO, layer, CTLFLAG_RW | CTLTYPE_STRING, 3493 "debug.acpi.layer", 0, acpi_debug_sysctl, "A", ""); 3494 SYSCTL_PROC(_debug_acpi, OID_AUTO, level, CTLFLAG_RW | CTLTYPE_STRING, 3495 "debug.acpi.level", 0, acpi_debug_sysctl, "A", ""); 3496 #endif /* ACPI_DEBUG */ 3497 3498 static int 3499 acpi_debug_objects_sysctl(SYSCTL_HANDLER_ARGS) 3500 { 3501 int error; 3502 int old; 3503 3504 old = acpi_debug_objects; 3505 error = sysctl_handle_int(oidp, &acpi_debug_objects, 0, req); 3506 if (error != 0 || req->newptr == NULL) 3507 return (error); 3508 if (old == acpi_debug_objects || (old && acpi_debug_objects)) 3509 return (0); 3510 3511 ACPI_SERIAL_BEGIN(acpi); 3512 AcpiGbl_EnableAmlDebugObject = acpi_debug_objects ? TRUE : FALSE; 3513 ACPI_SERIAL_END(acpi); 3514 3515 return (0); 3516 } 3517 3518 static int 3519 acpi_pm_func(u_long cmd, void *arg, ...) 3520 { 3521 int state, acpi_state; 3522 int error; 3523 struct acpi_softc *sc; 3524 va_list ap; 3525 3526 error = 0; 3527 switch (cmd) { 3528 case POWER_CMD_SUSPEND: 3529 sc = (struct acpi_softc *)arg; 3530 if (sc == NULL) { 3531 error = EINVAL; 3532 goto out; 3533 } 3534 3535 va_start(ap, arg); 3536 state = va_arg(ap, int); 3537 va_end(ap); 3538 3539 switch (state) { 3540 case POWER_SLEEP_STATE_STANDBY: 3541 acpi_state = sc->acpi_standby_sx; 3542 break; 3543 case POWER_SLEEP_STATE_SUSPEND: 3544 acpi_state = sc->acpi_suspend_sx; 3545 break; 3546 case POWER_SLEEP_STATE_HIBERNATE: 3547 acpi_state = ACPI_STATE_S4; 3548 break; 3549 default: 3550 error = EINVAL; 3551 goto out; 3552 } 3553 3554 if (ACPI_FAILURE(acpi_EnterSleepState(sc, acpi_state))) 3555 error = ENXIO; 3556 break; 3557 default: 3558 error = EINVAL; 3559 goto out; 3560 } 3561 3562 out: 3563 return (error); 3564 } 3565 3566 static void 3567 acpi_pm_register(void *arg) 3568 { 3569 if (!cold || resource_disabled("acpi", 0)) 3570 return; 3571 3572 power_pm_register(POWER_PM_TYPE_ACPI, acpi_pm_func, NULL); 3573 } 3574 3575 SYSINIT(power, SI_SUB_KLD, SI_ORDER_ANY, acpi_pm_register, 0); 3576