1 /*- 2 * Copyright (c) 2000 Takanori Watanabe <takawata@jp.freebsd.org> 3 * Copyright (c) 2000 Mitsuru IWASAKI <iwasaki@jp.freebsd.org> 4 * Copyright (c) 2000, 2001 Michael Smith 5 * Copyright (c) 2000 BSDi 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include "opt_acpi.h" 34 35 #include <sys/param.h> 36 #include <sys/eventhandler.h> 37 #include <sys/kernel.h> 38 #include <sys/proc.h> 39 #include <sys/fcntl.h> 40 #include <sys/malloc.h> 41 #include <sys/module.h> 42 #include <sys/bus.h> 43 #include <sys/conf.h> 44 #include <sys/ioccom.h> 45 #include <sys/reboot.h> 46 #include <sys/sysctl.h> 47 #include <sys/ctype.h> 48 #include <sys/linker.h> 49 #include <sys/power.h> 50 #include <sys/sbuf.h> 51 #include <sys/sched.h> 52 #include <sys/smp.h> 53 #include <sys/timetc.h> 54 55 #if defined(__i386__) || defined(__amd64__) 56 #include <machine/clock.h> 57 #include <machine/pci_cfgreg.h> 58 #endif 59 #include <machine/resource.h> 60 #include <machine/bus.h> 61 #include <sys/rman.h> 62 #include <isa/isavar.h> 63 #include <isa/pnpvar.h> 64 65 #include <contrib/dev/acpica/include/acpi.h> 66 #include <contrib/dev/acpica/include/accommon.h> 67 #include <contrib/dev/acpica/include/acnamesp.h> 68 69 #include <dev/acpica/acpivar.h> 70 #include <dev/acpica/acpiio.h> 71 72 #include <dev/pci/pcivar.h> 73 74 #include <vm/vm_param.h> 75 76 static MALLOC_DEFINE(M_ACPIDEV, "acpidev", "ACPI devices"); 77 78 /* Hooks for the ACPI CA debugging infrastructure */ 79 #define _COMPONENT ACPI_BUS 80 ACPI_MODULE_NAME("ACPI") 81 82 static d_open_t acpiopen; 83 static d_close_t acpiclose; 84 static d_ioctl_t acpiioctl; 85 86 static struct cdevsw acpi_cdevsw = { 87 .d_version = D_VERSION, 88 .d_open = acpiopen, 89 .d_close = acpiclose, 90 .d_ioctl = acpiioctl, 91 .d_name = "acpi", 92 }; 93 94 struct acpi_interface { 95 ACPI_STRING *data; 96 int num; 97 }; 98 99 static char *sysres_ids[] = { "PNP0C01", "PNP0C02", NULL }; 100 static char *pcilink_ids[] = { "PNP0C0F", NULL }; 101 102 /* Global mutex for locking access to the ACPI subsystem. */ 103 struct mtx acpi_mutex; 104 struct callout acpi_sleep_timer; 105 106 /* Bitmap of device quirks. */ 107 int acpi_quirks; 108 109 /* Supported sleep states. */ 110 static BOOLEAN acpi_sleep_states[ACPI_S_STATE_COUNT]; 111 112 static void acpi_lookup(void *arg, const char *name, device_t *dev); 113 static int acpi_modevent(struct module *mod, int event, void *junk); 114 static int acpi_probe(device_t dev); 115 static int acpi_attach(device_t dev); 116 static int acpi_suspend(device_t dev); 117 static int acpi_resume(device_t dev); 118 static int acpi_shutdown(device_t dev); 119 static device_t acpi_add_child(device_t bus, u_int order, const char *name, 120 int unit); 121 static int acpi_print_child(device_t bus, device_t child); 122 static void acpi_probe_nomatch(device_t bus, device_t child); 123 static void acpi_driver_added(device_t dev, driver_t *driver); 124 static int acpi_read_ivar(device_t dev, device_t child, int index, 125 uintptr_t *result); 126 static int acpi_write_ivar(device_t dev, device_t child, int index, 127 uintptr_t value); 128 static struct resource_list *acpi_get_rlist(device_t dev, device_t child); 129 static void acpi_reserve_resources(device_t dev); 130 static int acpi_sysres_alloc(device_t dev); 131 static int acpi_set_resource(device_t dev, device_t child, int type, 132 int rid, rman_res_t start, rman_res_t count); 133 static struct resource *acpi_alloc_resource(device_t bus, device_t child, 134 int type, int *rid, rman_res_t start, rman_res_t end, 135 rman_res_t count, u_int flags); 136 static int acpi_adjust_resource(device_t bus, device_t child, int type, 137 struct resource *r, rman_res_t start, rman_res_t end); 138 static int acpi_release_resource(device_t bus, device_t child, int type, 139 int rid, struct resource *r); 140 static void acpi_delete_resource(device_t bus, device_t child, int type, 141 int rid); 142 static uint32_t acpi_isa_get_logicalid(device_t dev); 143 static int acpi_isa_get_compatid(device_t dev, uint32_t *cids, int count); 144 static int acpi_device_id_probe(device_t bus, device_t dev, char **ids, char **match); 145 static ACPI_STATUS acpi_device_eval_obj(device_t bus, device_t dev, 146 ACPI_STRING pathname, ACPI_OBJECT_LIST *parameters, 147 ACPI_BUFFER *ret); 148 static ACPI_STATUS acpi_device_scan_cb(ACPI_HANDLE h, UINT32 level, 149 void *context, void **retval); 150 static ACPI_STATUS acpi_device_scan_children(device_t bus, device_t dev, 151 int max_depth, acpi_scan_cb_t user_fn, void *arg); 152 static int acpi_set_powerstate(device_t child, int state); 153 static int acpi_isa_pnp_probe(device_t bus, device_t child, 154 struct isa_pnp_id *ids); 155 static void acpi_probe_children(device_t bus); 156 static void acpi_probe_order(ACPI_HANDLE handle, int *order); 157 static ACPI_STATUS acpi_probe_child(ACPI_HANDLE handle, UINT32 level, 158 void *context, void **status); 159 static void acpi_sleep_enable(void *arg); 160 static ACPI_STATUS acpi_sleep_disable(struct acpi_softc *sc); 161 static ACPI_STATUS acpi_EnterSleepState(struct acpi_softc *sc, int state); 162 static void acpi_shutdown_final(void *arg, int howto); 163 static void acpi_enable_fixed_events(struct acpi_softc *sc); 164 static BOOLEAN acpi_has_hid(ACPI_HANDLE handle); 165 static void acpi_resync_clock(struct acpi_softc *sc); 166 static int acpi_wake_sleep_prep(ACPI_HANDLE handle, int sstate); 167 static int acpi_wake_run_prep(ACPI_HANDLE handle, int sstate); 168 static int acpi_wake_prep_walk(int sstate); 169 static int acpi_wake_sysctl_walk(device_t dev); 170 static int acpi_wake_set_sysctl(SYSCTL_HANDLER_ARGS); 171 static void acpi_system_eventhandler_sleep(void *arg, int state); 172 static void acpi_system_eventhandler_wakeup(void *arg, int state); 173 static int acpi_sname2sstate(const char *sname); 174 static const char *acpi_sstate2sname(int sstate); 175 static int acpi_supported_sleep_state_sysctl(SYSCTL_HANDLER_ARGS); 176 static int acpi_sleep_state_sysctl(SYSCTL_HANDLER_ARGS); 177 static int acpi_debug_objects_sysctl(SYSCTL_HANDLER_ARGS); 178 static int acpi_pm_func(u_long cmd, void *arg, ...); 179 static int acpi_child_location_str_method(device_t acdev, device_t child, 180 char *buf, size_t buflen); 181 static int acpi_child_pnpinfo_str_method(device_t acdev, device_t child, 182 char *buf, size_t buflen); 183 static void acpi_enable_pcie(void); 184 static void acpi_hint_device_unit(device_t acdev, device_t child, 185 const char *name, int *unitp); 186 static void acpi_reset_interfaces(device_t dev); 187 188 static device_method_t acpi_methods[] = { 189 /* Device interface */ 190 DEVMETHOD(device_probe, acpi_probe), 191 DEVMETHOD(device_attach, acpi_attach), 192 DEVMETHOD(device_shutdown, acpi_shutdown), 193 DEVMETHOD(device_detach, bus_generic_detach), 194 DEVMETHOD(device_suspend, acpi_suspend), 195 DEVMETHOD(device_resume, acpi_resume), 196 197 /* Bus interface */ 198 DEVMETHOD(bus_add_child, acpi_add_child), 199 DEVMETHOD(bus_print_child, acpi_print_child), 200 DEVMETHOD(bus_probe_nomatch, acpi_probe_nomatch), 201 DEVMETHOD(bus_driver_added, acpi_driver_added), 202 DEVMETHOD(bus_read_ivar, acpi_read_ivar), 203 DEVMETHOD(bus_write_ivar, acpi_write_ivar), 204 DEVMETHOD(bus_get_resource_list, acpi_get_rlist), 205 DEVMETHOD(bus_set_resource, acpi_set_resource), 206 DEVMETHOD(bus_get_resource, bus_generic_rl_get_resource), 207 DEVMETHOD(bus_alloc_resource, acpi_alloc_resource), 208 DEVMETHOD(bus_adjust_resource, acpi_adjust_resource), 209 DEVMETHOD(bus_release_resource, acpi_release_resource), 210 DEVMETHOD(bus_delete_resource, acpi_delete_resource), 211 DEVMETHOD(bus_child_pnpinfo_str, acpi_child_pnpinfo_str_method), 212 DEVMETHOD(bus_child_location_str, acpi_child_location_str_method), 213 DEVMETHOD(bus_activate_resource, bus_generic_activate_resource), 214 DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource), 215 DEVMETHOD(bus_setup_intr, bus_generic_setup_intr), 216 DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr), 217 DEVMETHOD(bus_hint_device_unit, acpi_hint_device_unit), 218 DEVMETHOD(bus_get_cpus, acpi_get_cpus), 219 DEVMETHOD(bus_get_domain, acpi_get_domain), 220 221 /* ACPI bus */ 222 DEVMETHOD(acpi_id_probe, acpi_device_id_probe), 223 DEVMETHOD(acpi_evaluate_object, acpi_device_eval_obj), 224 DEVMETHOD(acpi_pwr_for_sleep, acpi_device_pwr_for_sleep), 225 DEVMETHOD(acpi_scan_children, acpi_device_scan_children), 226 227 /* ISA emulation */ 228 DEVMETHOD(isa_pnp_probe, acpi_isa_pnp_probe), 229 230 DEVMETHOD_END 231 }; 232 233 static driver_t acpi_driver = { 234 "acpi", 235 acpi_methods, 236 sizeof(struct acpi_softc), 237 }; 238 239 static devclass_t acpi_devclass; 240 DRIVER_MODULE(acpi, nexus, acpi_driver, acpi_devclass, acpi_modevent, 0); 241 MODULE_VERSION(acpi, 1); 242 243 ACPI_SERIAL_DECL(acpi, "ACPI root bus"); 244 245 /* Local pools for managing system resources for ACPI child devices. */ 246 static struct rman acpi_rman_io, acpi_rman_mem; 247 248 #define ACPI_MINIMUM_AWAKETIME 5 249 250 /* Holds the description of the acpi0 device. */ 251 static char acpi_desc[ACPI_OEM_ID_SIZE + ACPI_OEM_TABLE_ID_SIZE + 2]; 252 253 SYSCTL_NODE(_debug, OID_AUTO, acpi, CTLFLAG_RD, NULL, "ACPI debugging"); 254 static char acpi_ca_version[12]; 255 SYSCTL_STRING(_debug_acpi, OID_AUTO, acpi_ca_version, CTLFLAG_RD, 256 acpi_ca_version, 0, "Version of Intel ACPI-CA"); 257 258 /* 259 * Allow overriding _OSI methods. 260 */ 261 static char acpi_install_interface[256]; 262 TUNABLE_STR("hw.acpi.install_interface", acpi_install_interface, 263 sizeof(acpi_install_interface)); 264 static char acpi_remove_interface[256]; 265 TUNABLE_STR("hw.acpi.remove_interface", acpi_remove_interface, 266 sizeof(acpi_remove_interface)); 267 268 /* Allow users to dump Debug objects without ACPI debugger. */ 269 static int acpi_debug_objects; 270 TUNABLE_INT("debug.acpi.enable_debug_objects", &acpi_debug_objects); 271 SYSCTL_PROC(_debug_acpi, OID_AUTO, enable_debug_objects, 272 CTLFLAG_RW | CTLTYPE_INT, NULL, 0, acpi_debug_objects_sysctl, "I", 273 "Enable Debug objects"); 274 275 /* Allow the interpreter to ignore common mistakes in BIOS. */ 276 static int acpi_interpreter_slack = 1; 277 TUNABLE_INT("debug.acpi.interpreter_slack", &acpi_interpreter_slack); 278 SYSCTL_INT(_debug_acpi, OID_AUTO, interpreter_slack, CTLFLAG_RDTUN, 279 &acpi_interpreter_slack, 1, "Turn on interpreter slack mode."); 280 281 /* Ignore register widths set by FADT and use default widths instead. */ 282 static int acpi_ignore_reg_width = 1; 283 TUNABLE_INT("debug.acpi.default_register_width", &acpi_ignore_reg_width); 284 SYSCTL_INT(_debug_acpi, OID_AUTO, default_register_width, CTLFLAG_RDTUN, 285 &acpi_ignore_reg_width, 1, "Ignore register widths set by FADT"); 286 287 /* Allow users to override quirks. */ 288 TUNABLE_INT("debug.acpi.quirks", &acpi_quirks); 289 290 int acpi_susp_bounce; 291 SYSCTL_INT(_debug_acpi, OID_AUTO, suspend_bounce, CTLFLAG_RW, 292 &acpi_susp_bounce, 0, "Don't actually suspend, just test devices."); 293 294 /* 295 * ACPI can only be loaded as a module by the loader; activating it after 296 * system bootstrap time is not useful, and can be fatal to the system. 297 * It also cannot be unloaded, since the entire system bus hierarchy hangs 298 * off it. 299 */ 300 static int 301 acpi_modevent(struct module *mod, int event, void *junk) 302 { 303 switch (event) { 304 case MOD_LOAD: 305 if (!cold) { 306 printf("The ACPI driver cannot be loaded after boot.\n"); 307 return (EPERM); 308 } 309 break; 310 case MOD_UNLOAD: 311 if (!cold && power_pm_get_type() == POWER_PM_TYPE_ACPI) 312 return (EBUSY); 313 break; 314 default: 315 break; 316 } 317 return (0); 318 } 319 320 /* 321 * Perform early initialization. 322 */ 323 ACPI_STATUS 324 acpi_Startup(void) 325 { 326 static int started = 0; 327 ACPI_STATUS status; 328 int val; 329 330 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 331 332 /* Only run the startup code once. The MADT driver also calls this. */ 333 if (started) 334 return_VALUE (AE_OK); 335 started = 1; 336 337 /* 338 * Initialize the ACPICA subsystem. 339 */ 340 if (ACPI_FAILURE(status = AcpiInitializeSubsystem())) { 341 printf("ACPI: Could not initialize Subsystem: %s\n", 342 AcpiFormatException(status)); 343 return_VALUE (status); 344 } 345 346 /* 347 * Pre-allocate space for RSDT/XSDT and DSDT tables and allow resizing 348 * if more tables exist. 349 */ 350 if (ACPI_FAILURE(status = AcpiInitializeTables(NULL, 2, TRUE))) { 351 printf("ACPI: Table initialisation failed: %s\n", 352 AcpiFormatException(status)); 353 return_VALUE (status); 354 } 355 356 /* Set up any quirks we have for this system. */ 357 if (acpi_quirks == ACPI_Q_OK) 358 acpi_table_quirks(&acpi_quirks); 359 360 /* If the user manually set the disabled hint to 0, force-enable ACPI. */ 361 if (resource_int_value("acpi", 0, "disabled", &val) == 0 && val == 0) 362 acpi_quirks &= ~ACPI_Q_BROKEN; 363 if (acpi_quirks & ACPI_Q_BROKEN) { 364 printf("ACPI disabled by blacklist. Contact your BIOS vendor.\n"); 365 status = AE_SUPPORT; 366 } 367 368 return_VALUE (status); 369 } 370 371 /* 372 * Detect ACPI and perform early initialisation. 373 */ 374 int 375 acpi_identify(void) 376 { 377 ACPI_TABLE_RSDP *rsdp; 378 ACPI_TABLE_HEADER *rsdt; 379 ACPI_PHYSICAL_ADDRESS paddr; 380 struct sbuf sb; 381 382 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 383 384 if (!cold) 385 return (ENXIO); 386 387 /* Check that we haven't been disabled with a hint. */ 388 if (resource_disabled("acpi", 0)) 389 return (ENXIO); 390 391 /* Check for other PM systems. */ 392 if (power_pm_get_type() != POWER_PM_TYPE_NONE && 393 power_pm_get_type() != POWER_PM_TYPE_ACPI) { 394 printf("ACPI identify failed, other PM system enabled.\n"); 395 return (ENXIO); 396 } 397 398 /* Initialize root tables. */ 399 if (ACPI_FAILURE(acpi_Startup())) { 400 printf("ACPI: Try disabling either ACPI or apic support.\n"); 401 return (ENXIO); 402 } 403 404 if ((paddr = AcpiOsGetRootPointer()) == 0 || 405 (rsdp = AcpiOsMapMemory(paddr, sizeof(ACPI_TABLE_RSDP))) == NULL) 406 return (ENXIO); 407 if (rsdp->Revision > 1 && rsdp->XsdtPhysicalAddress != 0) 408 paddr = (ACPI_PHYSICAL_ADDRESS)rsdp->XsdtPhysicalAddress; 409 else 410 paddr = (ACPI_PHYSICAL_ADDRESS)rsdp->RsdtPhysicalAddress; 411 AcpiOsUnmapMemory(rsdp, sizeof(ACPI_TABLE_RSDP)); 412 413 if ((rsdt = AcpiOsMapMemory(paddr, sizeof(ACPI_TABLE_HEADER))) == NULL) 414 return (ENXIO); 415 sbuf_new(&sb, acpi_desc, sizeof(acpi_desc), SBUF_FIXEDLEN); 416 sbuf_bcat(&sb, rsdt->OemId, ACPI_OEM_ID_SIZE); 417 sbuf_trim(&sb); 418 sbuf_putc(&sb, ' '); 419 sbuf_bcat(&sb, rsdt->OemTableId, ACPI_OEM_TABLE_ID_SIZE); 420 sbuf_trim(&sb); 421 sbuf_finish(&sb); 422 sbuf_delete(&sb); 423 AcpiOsUnmapMemory(rsdt, sizeof(ACPI_TABLE_HEADER)); 424 425 snprintf(acpi_ca_version, sizeof(acpi_ca_version), "%x", ACPI_CA_VERSION); 426 427 return (0); 428 } 429 430 /* 431 * Fetch some descriptive data from ACPI to put in our attach message. 432 */ 433 static int 434 acpi_probe(device_t dev) 435 { 436 437 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 438 439 device_set_desc(dev, acpi_desc); 440 441 return_VALUE (BUS_PROBE_NOWILDCARD); 442 } 443 444 static int 445 acpi_attach(device_t dev) 446 { 447 struct acpi_softc *sc; 448 ACPI_STATUS status; 449 int error, state; 450 UINT32 flags; 451 UINT8 TypeA, TypeB; 452 char *env; 453 454 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 455 456 sc = device_get_softc(dev); 457 sc->acpi_dev = dev; 458 callout_init(&sc->susp_force_to, 1); 459 460 error = ENXIO; 461 462 /* Initialize resource manager. */ 463 acpi_rman_io.rm_type = RMAN_ARRAY; 464 acpi_rman_io.rm_start = 0; 465 acpi_rman_io.rm_end = 0xffff; 466 acpi_rman_io.rm_descr = "ACPI I/O ports"; 467 if (rman_init(&acpi_rman_io) != 0) 468 panic("acpi rman_init IO ports failed"); 469 acpi_rman_mem.rm_type = RMAN_ARRAY; 470 acpi_rman_mem.rm_descr = "ACPI I/O memory addresses"; 471 if (rman_init(&acpi_rman_mem) != 0) 472 panic("acpi rman_init memory failed"); 473 474 /* Initialise the ACPI mutex */ 475 mtx_init(&acpi_mutex, "ACPI global lock", NULL, MTX_DEF); 476 477 /* 478 * Set the globals from our tunables. This is needed because ACPI-CA 479 * uses UINT8 for some values and we have no tunable_byte. 480 */ 481 AcpiGbl_EnableInterpreterSlack = acpi_interpreter_slack ? TRUE : FALSE; 482 AcpiGbl_EnableAmlDebugObject = acpi_debug_objects ? TRUE : FALSE; 483 AcpiGbl_UseDefaultRegisterWidths = acpi_ignore_reg_width ? TRUE : FALSE; 484 485 #ifndef ACPI_DEBUG 486 /* 487 * Disable all debugging layers and levels. 488 */ 489 AcpiDbgLayer = 0; 490 AcpiDbgLevel = 0; 491 #endif 492 493 /* Override OS interfaces if the user requested. */ 494 acpi_reset_interfaces(dev); 495 496 /* Load ACPI name space. */ 497 status = AcpiLoadTables(); 498 if (ACPI_FAILURE(status)) { 499 device_printf(dev, "Could not load Namespace: %s\n", 500 AcpiFormatException(status)); 501 goto out; 502 } 503 504 /* Handle MCFG table if present. */ 505 acpi_enable_pcie(); 506 507 /* 508 * Note that some systems (specifically, those with namespace evaluation 509 * issues that require the avoidance of parts of the namespace) must 510 * avoid running _INI and _STA on everything, as well as dodging the final 511 * object init pass. 512 * 513 * For these devices, we set ACPI_NO_DEVICE_INIT and ACPI_NO_OBJECT_INIT). 514 * 515 * XXX We should arrange for the object init pass after we have attached 516 * all our child devices, but on many systems it works here. 517 */ 518 flags = 0; 519 if (testenv("debug.acpi.avoid")) 520 flags = ACPI_NO_DEVICE_INIT | ACPI_NO_OBJECT_INIT; 521 522 /* Bring the hardware and basic handlers online. */ 523 if (ACPI_FAILURE(status = AcpiEnableSubsystem(flags))) { 524 device_printf(dev, "Could not enable ACPI: %s\n", 525 AcpiFormatException(status)); 526 goto out; 527 } 528 529 /* 530 * Call the ECDT probe function to provide EC functionality before 531 * the namespace has been evaluated. 532 * 533 * XXX This happens before the sysresource devices have been probed and 534 * attached so its resources come from nexus0. In practice, this isn't 535 * a problem but should be addressed eventually. 536 */ 537 acpi_ec_ecdt_probe(dev); 538 539 /* Bring device objects and regions online. */ 540 if (ACPI_FAILURE(status = AcpiInitializeObjects(flags))) { 541 device_printf(dev, "Could not initialize ACPI objects: %s\n", 542 AcpiFormatException(status)); 543 goto out; 544 } 545 546 /* 547 * Setup our sysctl tree. 548 * 549 * XXX: This doesn't check to make sure that none of these fail. 550 */ 551 sysctl_ctx_init(&sc->acpi_sysctl_ctx); 552 sc->acpi_sysctl_tree = SYSCTL_ADD_NODE(&sc->acpi_sysctl_ctx, 553 SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO, 554 device_get_name(dev), CTLFLAG_RD, 0, ""); 555 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 556 OID_AUTO, "supported_sleep_state", CTLTYPE_STRING | CTLFLAG_RD, 557 0, 0, acpi_supported_sleep_state_sysctl, "A", 558 "List supported ACPI sleep states."); 559 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 560 OID_AUTO, "power_button_state", CTLTYPE_STRING | CTLFLAG_RW, 561 &sc->acpi_power_button_sx, 0, acpi_sleep_state_sysctl, "A", 562 "Power button ACPI sleep state."); 563 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 564 OID_AUTO, "sleep_button_state", CTLTYPE_STRING | CTLFLAG_RW, 565 &sc->acpi_sleep_button_sx, 0, acpi_sleep_state_sysctl, "A", 566 "Sleep button ACPI sleep state."); 567 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 568 OID_AUTO, "lid_switch_state", CTLTYPE_STRING | CTLFLAG_RW, 569 &sc->acpi_lid_switch_sx, 0, acpi_sleep_state_sysctl, "A", 570 "Lid ACPI sleep state. Set to S3 if you want to suspend your laptop when close the Lid."); 571 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 572 OID_AUTO, "standby_state", CTLTYPE_STRING | CTLFLAG_RW, 573 &sc->acpi_standby_sx, 0, acpi_sleep_state_sysctl, "A", ""); 574 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 575 OID_AUTO, "suspend_state", CTLTYPE_STRING | CTLFLAG_RW, 576 &sc->acpi_suspend_sx, 0, acpi_sleep_state_sysctl, "A", ""); 577 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 578 OID_AUTO, "sleep_delay", CTLFLAG_RW, &sc->acpi_sleep_delay, 0, 579 "sleep delay in seconds"); 580 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 581 OID_AUTO, "s4bios", CTLFLAG_RW, &sc->acpi_s4bios, 0, "S4BIOS mode"); 582 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 583 OID_AUTO, "verbose", CTLFLAG_RW, &sc->acpi_verbose, 0, "verbose mode"); 584 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 585 OID_AUTO, "disable_on_reboot", CTLFLAG_RW, 586 &sc->acpi_do_disable, 0, "Disable ACPI when rebooting/halting system"); 587 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 588 OID_AUTO, "handle_reboot", CTLFLAG_RW, 589 &sc->acpi_handle_reboot, 0, "Use ACPI Reset Register to reboot"); 590 591 /* 592 * Default to 1 second before sleeping to give some machines time to 593 * stabilize. 594 */ 595 sc->acpi_sleep_delay = 1; 596 if (bootverbose) 597 sc->acpi_verbose = 1; 598 if ((env = kern_getenv("hw.acpi.verbose")) != NULL) { 599 if (strcmp(env, "0") != 0) 600 sc->acpi_verbose = 1; 601 freeenv(env); 602 } 603 604 /* Only enable reboot by default if the FADT says it is available. */ 605 if (AcpiGbl_FADT.Flags & ACPI_FADT_RESET_REGISTER) 606 sc->acpi_handle_reboot = 1; 607 608 #if !ACPI_REDUCED_HARDWARE 609 /* Only enable S4BIOS by default if the FACS says it is available. */ 610 if (AcpiGbl_FACS != NULL && AcpiGbl_FACS->Flags & ACPI_FACS_S4_BIOS_PRESENT) 611 sc->acpi_s4bios = 1; 612 #endif 613 614 /* Probe all supported sleep states. */ 615 acpi_sleep_states[ACPI_STATE_S0] = TRUE; 616 for (state = ACPI_STATE_S1; state < ACPI_S_STATE_COUNT; state++) 617 if (ACPI_SUCCESS(AcpiEvaluateObject(ACPI_ROOT_OBJECT, 618 __DECONST(char *, AcpiGbl_SleepStateNames[state]), NULL, NULL)) && 619 ACPI_SUCCESS(AcpiGetSleepTypeData(state, &TypeA, &TypeB))) 620 acpi_sleep_states[state] = TRUE; 621 622 /* 623 * Dispatch the default sleep state to devices. The lid switch is set 624 * to UNKNOWN by default to avoid surprising users. 625 */ 626 sc->acpi_power_button_sx = acpi_sleep_states[ACPI_STATE_S5] ? 627 ACPI_STATE_S5 : ACPI_STATE_UNKNOWN; 628 sc->acpi_lid_switch_sx = ACPI_STATE_UNKNOWN; 629 sc->acpi_standby_sx = acpi_sleep_states[ACPI_STATE_S1] ? 630 ACPI_STATE_S1 : ACPI_STATE_UNKNOWN; 631 sc->acpi_suspend_sx = acpi_sleep_states[ACPI_STATE_S3] ? 632 ACPI_STATE_S3 : ACPI_STATE_UNKNOWN; 633 634 /* Pick the first valid sleep state for the sleep button default. */ 635 sc->acpi_sleep_button_sx = ACPI_STATE_UNKNOWN; 636 for (state = ACPI_STATE_S1; state <= ACPI_STATE_S4; state++) 637 if (acpi_sleep_states[state]) { 638 sc->acpi_sleep_button_sx = state; 639 break; 640 } 641 642 acpi_enable_fixed_events(sc); 643 644 /* 645 * Scan the namespace and attach/initialise children. 646 */ 647 648 /* Register our shutdown handler. */ 649 EVENTHANDLER_REGISTER(shutdown_final, acpi_shutdown_final, sc, 650 SHUTDOWN_PRI_LAST); 651 652 /* 653 * Register our acpi event handlers. 654 * XXX should be configurable eg. via userland policy manager. 655 */ 656 EVENTHANDLER_REGISTER(acpi_sleep_event, acpi_system_eventhandler_sleep, 657 sc, ACPI_EVENT_PRI_LAST); 658 EVENTHANDLER_REGISTER(acpi_wakeup_event, acpi_system_eventhandler_wakeup, 659 sc, ACPI_EVENT_PRI_LAST); 660 661 /* Flag our initial states. */ 662 sc->acpi_enabled = TRUE; 663 sc->acpi_sstate = ACPI_STATE_S0; 664 sc->acpi_sleep_disabled = TRUE; 665 666 /* Create the control device */ 667 sc->acpi_dev_t = make_dev(&acpi_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0664, 668 "acpi"); 669 sc->acpi_dev_t->si_drv1 = sc; 670 671 if ((error = acpi_machdep_init(dev))) 672 goto out; 673 674 /* Register ACPI again to pass the correct argument of pm_func. */ 675 power_pm_register(POWER_PM_TYPE_ACPI, acpi_pm_func, sc); 676 677 if (!acpi_disabled("bus")) { 678 EVENTHANDLER_REGISTER(dev_lookup, acpi_lookup, NULL, 1000); 679 acpi_probe_children(dev); 680 } 681 682 /* Update all GPEs and enable runtime GPEs. */ 683 status = AcpiUpdateAllGpes(); 684 if (ACPI_FAILURE(status)) 685 device_printf(dev, "Could not update all GPEs: %s\n", 686 AcpiFormatException(status)); 687 688 /* Allow sleep request after a while. */ 689 callout_init_mtx(&acpi_sleep_timer, &acpi_mutex, 0); 690 callout_reset(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME, 691 acpi_sleep_enable, sc); 692 693 error = 0; 694 695 out: 696 return_VALUE (error); 697 } 698 699 static void 700 acpi_set_power_children(device_t dev, int state) 701 { 702 device_t child; 703 device_t *devlist; 704 int dstate, i, numdevs; 705 706 if (device_get_children(dev, &devlist, &numdevs) != 0) 707 return; 708 709 /* 710 * Retrieve and set D-state for the sleep state if _SxD is present. 711 * Skip children who aren't attached since they are handled separately. 712 */ 713 for (i = 0; i < numdevs; i++) { 714 child = devlist[i]; 715 dstate = state; 716 if (device_is_attached(child) && 717 acpi_device_pwr_for_sleep(dev, child, &dstate) == 0) 718 acpi_set_powerstate(child, dstate); 719 } 720 free(devlist, M_TEMP); 721 } 722 723 static int 724 acpi_suspend(device_t dev) 725 { 726 int error; 727 728 GIANT_REQUIRED; 729 730 error = bus_generic_suspend(dev); 731 if (error == 0) 732 acpi_set_power_children(dev, ACPI_STATE_D3); 733 734 return (error); 735 } 736 737 static int 738 acpi_resume(device_t dev) 739 { 740 741 GIANT_REQUIRED; 742 743 acpi_set_power_children(dev, ACPI_STATE_D0); 744 745 return (bus_generic_resume(dev)); 746 } 747 748 static int 749 acpi_shutdown(device_t dev) 750 { 751 752 GIANT_REQUIRED; 753 754 /* Allow children to shutdown first. */ 755 bus_generic_shutdown(dev); 756 757 /* 758 * Enable any GPEs that are able to power-on the system (i.e., RTC). 759 * Also, disable any that are not valid for this state (most). 760 */ 761 acpi_wake_prep_walk(ACPI_STATE_S5); 762 763 return (0); 764 } 765 766 /* 767 * Handle a new device being added 768 */ 769 static device_t 770 acpi_add_child(device_t bus, u_int order, const char *name, int unit) 771 { 772 struct acpi_device *ad; 773 device_t child; 774 775 if ((ad = malloc(sizeof(*ad), M_ACPIDEV, M_NOWAIT | M_ZERO)) == NULL) 776 return (NULL); 777 778 resource_list_init(&ad->ad_rl); 779 780 child = device_add_child_ordered(bus, order, name, unit); 781 if (child != NULL) 782 device_set_ivars(child, ad); 783 else 784 free(ad, M_ACPIDEV); 785 return (child); 786 } 787 788 static int 789 acpi_print_child(device_t bus, device_t child) 790 { 791 struct acpi_device *adev = device_get_ivars(child); 792 struct resource_list *rl = &adev->ad_rl; 793 int retval = 0; 794 795 retval += bus_print_child_header(bus, child); 796 retval += resource_list_print_type(rl, "port", SYS_RES_IOPORT, "%#jx"); 797 retval += resource_list_print_type(rl, "iomem", SYS_RES_MEMORY, "%#jx"); 798 retval += resource_list_print_type(rl, "irq", SYS_RES_IRQ, "%jd"); 799 retval += resource_list_print_type(rl, "drq", SYS_RES_DRQ, "%jd"); 800 if (device_get_flags(child)) 801 retval += printf(" flags %#x", device_get_flags(child)); 802 retval += bus_print_child_domain(bus, child); 803 retval += bus_print_child_footer(bus, child); 804 805 return (retval); 806 } 807 808 /* 809 * If this device is an ACPI child but no one claimed it, attempt 810 * to power it off. We'll power it back up when a driver is added. 811 * 812 * XXX Disabled for now since many necessary devices (like fdc and 813 * ATA) don't claim the devices we created for them but still expect 814 * them to be powered up. 815 */ 816 static void 817 acpi_probe_nomatch(device_t bus, device_t child) 818 { 819 #ifdef ACPI_ENABLE_POWERDOWN_NODRIVER 820 acpi_set_powerstate(child, ACPI_STATE_D3); 821 #endif 822 } 823 824 /* 825 * If a new driver has a chance to probe a child, first power it up. 826 * 827 * XXX Disabled for now (see acpi_probe_nomatch for details). 828 */ 829 static void 830 acpi_driver_added(device_t dev, driver_t *driver) 831 { 832 device_t child, *devlist; 833 int i, numdevs; 834 835 DEVICE_IDENTIFY(driver, dev); 836 if (device_get_children(dev, &devlist, &numdevs)) 837 return; 838 for (i = 0; i < numdevs; i++) { 839 child = devlist[i]; 840 if (device_get_state(child) == DS_NOTPRESENT) { 841 #ifdef ACPI_ENABLE_POWERDOWN_NODRIVER 842 acpi_set_powerstate(child, ACPI_STATE_D0); 843 if (device_probe_and_attach(child) != 0) 844 acpi_set_powerstate(child, ACPI_STATE_D3); 845 #else 846 device_probe_and_attach(child); 847 #endif 848 } 849 } 850 free(devlist, M_TEMP); 851 } 852 853 /* Location hint for devctl(8) */ 854 static int 855 acpi_child_location_str_method(device_t cbdev, device_t child, char *buf, 856 size_t buflen) 857 { 858 struct acpi_device *dinfo = device_get_ivars(child); 859 char buf2[32]; 860 int pxm; 861 862 if (dinfo->ad_handle) { 863 snprintf(buf, buflen, "handle=%s", acpi_name(dinfo->ad_handle)); 864 if (ACPI_SUCCESS(acpi_GetInteger(dinfo->ad_handle, "_PXM", &pxm))) { 865 snprintf(buf2, 32, " _PXM=%d", pxm); 866 strlcat(buf, buf2, buflen); 867 } 868 } else { 869 snprintf(buf, buflen, ""); 870 } 871 return (0); 872 } 873 874 /* PnP information for devctl(8) */ 875 static int 876 acpi_child_pnpinfo_str_method(device_t cbdev, device_t child, char *buf, 877 size_t buflen) 878 { 879 struct acpi_device *dinfo = device_get_ivars(child); 880 ACPI_DEVICE_INFO *adinfo; 881 882 if (ACPI_FAILURE(AcpiGetObjectInfo(dinfo->ad_handle, &adinfo))) { 883 snprintf(buf, buflen, "unknown"); 884 return (0); 885 } 886 887 snprintf(buf, buflen, "_HID=%s _UID=%lu", 888 (adinfo->Valid & ACPI_VALID_HID) ? 889 adinfo->HardwareId.String : "none", 890 (adinfo->Valid & ACPI_VALID_UID) ? 891 strtoul(adinfo->UniqueId.String, NULL, 10) : 0UL); 892 AcpiOsFree(adinfo); 893 894 return (0); 895 } 896 897 /* 898 * Handle per-device ivars 899 */ 900 static int 901 acpi_read_ivar(device_t dev, device_t child, int index, uintptr_t *result) 902 { 903 struct acpi_device *ad; 904 905 if ((ad = device_get_ivars(child)) == NULL) { 906 device_printf(child, "device has no ivars\n"); 907 return (ENOENT); 908 } 909 910 /* ACPI and ISA compatibility ivars */ 911 switch(index) { 912 case ACPI_IVAR_HANDLE: 913 *(ACPI_HANDLE *)result = ad->ad_handle; 914 break; 915 case ACPI_IVAR_PRIVATE: 916 *(void **)result = ad->ad_private; 917 break; 918 case ACPI_IVAR_FLAGS: 919 *(int *)result = ad->ad_flags; 920 break; 921 case ISA_IVAR_VENDORID: 922 case ISA_IVAR_SERIAL: 923 case ISA_IVAR_COMPATID: 924 *(int *)result = -1; 925 break; 926 case ISA_IVAR_LOGICALID: 927 *(int *)result = acpi_isa_get_logicalid(child); 928 break; 929 case PCI_IVAR_CLASS: 930 *(uint8_t*)result = (ad->ad_cls_class >> 16) & 0xff; 931 break; 932 case PCI_IVAR_SUBCLASS: 933 *(uint8_t*)result = (ad->ad_cls_class >> 8) & 0xff; 934 break; 935 case PCI_IVAR_PROGIF: 936 *(uint8_t*)result = (ad->ad_cls_class >> 0) & 0xff; 937 break; 938 default: 939 return (ENOENT); 940 } 941 942 return (0); 943 } 944 945 static int 946 acpi_write_ivar(device_t dev, device_t child, int index, uintptr_t value) 947 { 948 struct acpi_device *ad; 949 950 if ((ad = device_get_ivars(child)) == NULL) { 951 device_printf(child, "device has no ivars\n"); 952 return (ENOENT); 953 } 954 955 switch(index) { 956 case ACPI_IVAR_HANDLE: 957 ad->ad_handle = (ACPI_HANDLE)value; 958 break; 959 case ACPI_IVAR_PRIVATE: 960 ad->ad_private = (void *)value; 961 break; 962 case ACPI_IVAR_FLAGS: 963 ad->ad_flags = (int)value; 964 break; 965 default: 966 panic("bad ivar write request (%d)", index); 967 return (ENOENT); 968 } 969 970 return (0); 971 } 972 973 /* 974 * Handle child resource allocation/removal 975 */ 976 static struct resource_list * 977 acpi_get_rlist(device_t dev, device_t child) 978 { 979 struct acpi_device *ad; 980 981 ad = device_get_ivars(child); 982 return (&ad->ad_rl); 983 } 984 985 static int 986 acpi_match_resource_hint(device_t dev, int type, long value) 987 { 988 struct acpi_device *ad = device_get_ivars(dev); 989 struct resource_list *rl = &ad->ad_rl; 990 struct resource_list_entry *rle; 991 992 STAILQ_FOREACH(rle, rl, link) { 993 if (rle->type != type) 994 continue; 995 if (rle->start <= value && rle->end >= value) 996 return (1); 997 } 998 return (0); 999 } 1000 1001 /* 1002 * Wire device unit numbers based on resource matches in hints. 1003 */ 1004 static void 1005 acpi_hint_device_unit(device_t acdev, device_t child, const char *name, 1006 int *unitp) 1007 { 1008 const char *s; 1009 long value; 1010 int line, matches, unit; 1011 1012 /* 1013 * Iterate over all the hints for the devices with the specified 1014 * name to see if one's resources are a subset of this device. 1015 */ 1016 line = 0; 1017 while (resource_find_dev(&line, name, &unit, "at", NULL) == 0) { 1018 /* Must have an "at" for acpi or isa. */ 1019 resource_string_value(name, unit, "at", &s); 1020 if (!(strcmp(s, "acpi0") == 0 || strcmp(s, "acpi") == 0 || 1021 strcmp(s, "isa0") == 0 || strcmp(s, "isa") == 0)) 1022 continue; 1023 1024 /* 1025 * Check for matching resources. We must have at least one match. 1026 * Since I/O and memory resources cannot be shared, if we get a 1027 * match on either of those, ignore any mismatches in IRQs or DRQs. 1028 * 1029 * XXX: We may want to revisit this to be more lenient and wire 1030 * as long as it gets one match. 1031 */ 1032 matches = 0; 1033 if (resource_long_value(name, unit, "port", &value) == 0) { 1034 /* 1035 * Floppy drive controllers are notorious for having a 1036 * wide variety of resources not all of which include the 1037 * first port that is specified by the hint (typically 1038 * 0x3f0) (see the comment above fdc_isa_alloc_resources() 1039 * in fdc_isa.c). However, they do all seem to include 1040 * port + 2 (e.g. 0x3f2) so for a floppy device, look for 1041 * 'value + 2' in the port resources instead of the hint 1042 * value. 1043 */ 1044 if (strcmp(name, "fdc") == 0) 1045 value += 2; 1046 if (acpi_match_resource_hint(child, SYS_RES_IOPORT, value)) 1047 matches++; 1048 else 1049 continue; 1050 } 1051 if (resource_long_value(name, unit, "maddr", &value) == 0) { 1052 if (acpi_match_resource_hint(child, SYS_RES_MEMORY, value)) 1053 matches++; 1054 else 1055 continue; 1056 } 1057 if (matches > 0) 1058 goto matched; 1059 if (resource_long_value(name, unit, "irq", &value) == 0) { 1060 if (acpi_match_resource_hint(child, SYS_RES_IRQ, value)) 1061 matches++; 1062 else 1063 continue; 1064 } 1065 if (resource_long_value(name, unit, "drq", &value) == 0) { 1066 if (acpi_match_resource_hint(child, SYS_RES_DRQ, value)) 1067 matches++; 1068 else 1069 continue; 1070 } 1071 1072 matched: 1073 if (matches > 0) { 1074 /* We have a winner! */ 1075 *unitp = unit; 1076 break; 1077 } 1078 } 1079 } 1080 1081 /* 1082 * Fetch the NUMA domain for a device by mapping the value returned by 1083 * _PXM to a NUMA domain. If the device does not have a _PXM method, 1084 * -2 is returned. If any other error occurs, -1 is returned. 1085 */ 1086 static int 1087 acpi_parse_pxm(device_t dev) 1088 { 1089 #ifdef NUMA 1090 #if defined(__i386__) || defined(__amd64__) 1091 ACPI_HANDLE handle; 1092 ACPI_STATUS status; 1093 int pxm; 1094 1095 handle = acpi_get_handle(dev); 1096 if (handle == NULL) 1097 return (-2); 1098 status = acpi_GetInteger(handle, "_PXM", &pxm); 1099 if (ACPI_SUCCESS(status)) 1100 return (acpi_map_pxm_to_vm_domainid(pxm)); 1101 if (status == AE_NOT_FOUND) 1102 return (-2); 1103 #endif 1104 #endif 1105 return (-1); 1106 } 1107 1108 int 1109 acpi_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize, 1110 cpuset_t *cpuset) 1111 { 1112 int d, error; 1113 1114 d = acpi_parse_pxm(child); 1115 if (d < 0) 1116 return (bus_generic_get_cpus(dev, child, op, setsize, cpuset)); 1117 1118 switch (op) { 1119 case LOCAL_CPUS: 1120 if (setsize != sizeof(cpuset_t)) 1121 return (EINVAL); 1122 *cpuset = cpuset_domain[d]; 1123 return (0); 1124 case INTR_CPUS: 1125 error = bus_generic_get_cpus(dev, child, op, setsize, cpuset); 1126 if (error != 0) 1127 return (error); 1128 if (setsize != sizeof(cpuset_t)) 1129 return (EINVAL); 1130 CPU_AND(cpuset, &cpuset_domain[d]); 1131 return (0); 1132 default: 1133 return (bus_generic_get_cpus(dev, child, op, setsize, cpuset)); 1134 } 1135 } 1136 1137 /* 1138 * Fetch the NUMA domain for the given device 'dev'. 1139 * 1140 * If a device has a _PXM method, map that to a NUMA domain. 1141 * Otherwise, pass the request up to the parent. 1142 * If there's no matching domain or the domain cannot be 1143 * determined, return ENOENT. 1144 */ 1145 int 1146 acpi_get_domain(device_t dev, device_t child, int *domain) 1147 { 1148 int d; 1149 1150 d = acpi_parse_pxm(child); 1151 if (d >= 0) { 1152 *domain = d; 1153 return (0); 1154 } 1155 if (d == -1) 1156 return (ENOENT); 1157 1158 /* No _PXM node; go up a level */ 1159 return (bus_generic_get_domain(dev, child, domain)); 1160 } 1161 1162 /* 1163 * Pre-allocate/manage all memory and IO resources. Since rman can't handle 1164 * duplicates, we merge any in the sysresource attach routine. 1165 */ 1166 static int 1167 acpi_sysres_alloc(device_t dev) 1168 { 1169 struct resource *res; 1170 struct resource_list *rl; 1171 struct resource_list_entry *rle; 1172 struct rman *rm; 1173 device_t *children; 1174 int child_count, i; 1175 1176 /* 1177 * Probe/attach any sysresource devices. This would be unnecessary if we 1178 * had multi-pass probe/attach. 1179 */ 1180 if (device_get_children(dev, &children, &child_count) != 0) 1181 return (ENXIO); 1182 for (i = 0; i < child_count; i++) { 1183 if (ACPI_ID_PROBE(dev, children[i], sysres_ids, NULL) <= 0) 1184 device_probe_and_attach(children[i]); 1185 } 1186 free(children, M_TEMP); 1187 1188 rl = BUS_GET_RESOURCE_LIST(device_get_parent(dev), dev); 1189 STAILQ_FOREACH(rle, rl, link) { 1190 if (rle->res != NULL) { 1191 device_printf(dev, "duplicate resource for %jx\n", rle->start); 1192 continue; 1193 } 1194 1195 /* Only memory and IO resources are valid here. */ 1196 switch (rle->type) { 1197 case SYS_RES_IOPORT: 1198 rm = &acpi_rman_io; 1199 break; 1200 case SYS_RES_MEMORY: 1201 rm = &acpi_rman_mem; 1202 break; 1203 default: 1204 continue; 1205 } 1206 1207 /* Pre-allocate resource and add to our rman pool. */ 1208 res = BUS_ALLOC_RESOURCE(device_get_parent(dev), dev, rle->type, 1209 &rle->rid, rle->start, rle->start + rle->count - 1, rle->count, 0); 1210 if (res != NULL) { 1211 rman_manage_region(rm, rman_get_start(res), rman_get_end(res)); 1212 rle->res = res; 1213 } else if (bootverbose) 1214 device_printf(dev, "reservation of %jx, %jx (%d) failed\n", 1215 rle->start, rle->count, rle->type); 1216 } 1217 return (0); 1218 } 1219 1220 /* 1221 * Reserve declared resources for devices found during attach once system 1222 * resources have been allocated. 1223 */ 1224 static void 1225 acpi_reserve_resources(device_t dev) 1226 { 1227 struct resource_list_entry *rle; 1228 struct resource_list *rl; 1229 struct acpi_device *ad; 1230 struct acpi_softc *sc; 1231 device_t *children; 1232 int child_count, i; 1233 1234 sc = device_get_softc(dev); 1235 if (device_get_children(dev, &children, &child_count) != 0) 1236 return; 1237 for (i = 0; i < child_count; i++) { 1238 ad = device_get_ivars(children[i]); 1239 rl = &ad->ad_rl; 1240 1241 /* Don't reserve system resources. */ 1242 if (ACPI_ID_PROBE(dev, children[i], sysres_ids, NULL) <= 0) 1243 continue; 1244 1245 STAILQ_FOREACH(rle, rl, link) { 1246 /* 1247 * Don't reserve IRQ resources. There are many sticky things 1248 * to get right otherwise (e.g. IRQs for psm, atkbd, and HPET 1249 * when using legacy routing). 1250 */ 1251 if (rle->type == SYS_RES_IRQ) 1252 continue; 1253 1254 /* 1255 * Don't reserve the resource if it is already allocated. 1256 * The acpi_ec(4) driver can allocate its resources early 1257 * if ECDT is present. 1258 */ 1259 if (rle->res != NULL) 1260 continue; 1261 1262 /* 1263 * Try to reserve the resource from our parent. If this 1264 * fails because the resource is a system resource, just 1265 * let it be. The resource range is already reserved so 1266 * that other devices will not use it. If the driver 1267 * needs to allocate the resource, then 1268 * acpi_alloc_resource() will sub-alloc from the system 1269 * resource. 1270 */ 1271 resource_list_reserve(rl, dev, children[i], rle->type, &rle->rid, 1272 rle->start, rle->end, rle->count, 0); 1273 } 1274 } 1275 free(children, M_TEMP); 1276 sc->acpi_resources_reserved = 1; 1277 } 1278 1279 static int 1280 acpi_set_resource(device_t dev, device_t child, int type, int rid, 1281 rman_res_t start, rman_res_t count) 1282 { 1283 struct acpi_softc *sc = device_get_softc(dev); 1284 struct acpi_device *ad = device_get_ivars(child); 1285 struct resource_list *rl = &ad->ad_rl; 1286 ACPI_DEVICE_INFO *devinfo; 1287 rman_res_t end; 1288 int allow; 1289 1290 /* Ignore IRQ resources for PCI link devices. */ 1291 if (type == SYS_RES_IRQ && 1292 ACPI_ID_PROBE(dev, child, pcilink_ids, NULL) <= 0) 1293 return (0); 1294 1295 /* 1296 * Ignore most resources for PCI root bridges. Some BIOSes 1297 * incorrectly enumerate the memory ranges they decode as plain 1298 * memory resources instead of as ResourceProducer ranges. Other 1299 * BIOSes incorrectly list system resource entries for I/O ranges 1300 * under the PCI bridge. Do allow the one known-correct case on 1301 * x86 of a PCI bridge claiming the I/O ports used for PCI config 1302 * access. 1303 */ 1304 if (type == SYS_RES_MEMORY || type == SYS_RES_IOPORT) { 1305 if (ACPI_SUCCESS(AcpiGetObjectInfo(ad->ad_handle, &devinfo))) { 1306 if ((devinfo->Flags & ACPI_PCI_ROOT_BRIDGE) != 0) { 1307 #if defined(__i386__) || defined(__amd64__) 1308 allow = (type == SYS_RES_IOPORT && start == CONF1_ADDR_PORT); 1309 #else 1310 allow = 0; 1311 #endif 1312 if (!allow) { 1313 AcpiOsFree(devinfo); 1314 return (0); 1315 } 1316 } 1317 AcpiOsFree(devinfo); 1318 } 1319 } 1320 1321 #ifdef INTRNG 1322 /* map with default for now */ 1323 if (type == SYS_RES_IRQ) 1324 start = (rman_res_t)acpi_map_intr(child, (u_int)start, 1325 acpi_get_handle(child)); 1326 #endif 1327 1328 /* If the resource is already allocated, fail. */ 1329 if (resource_list_busy(rl, type, rid)) 1330 return (EBUSY); 1331 1332 /* If the resource is already reserved, release it. */ 1333 if (resource_list_reserved(rl, type, rid)) 1334 resource_list_unreserve(rl, dev, child, type, rid); 1335 1336 /* Add the resource. */ 1337 end = (start + count - 1); 1338 resource_list_add(rl, type, rid, start, end, count); 1339 1340 /* Don't reserve resources until the system resources are allocated. */ 1341 if (!sc->acpi_resources_reserved) 1342 return (0); 1343 1344 /* Don't reserve system resources. */ 1345 if (ACPI_ID_PROBE(dev, child, sysres_ids, NULL) <= 0) 1346 return (0); 1347 1348 /* 1349 * Don't reserve IRQ resources. There are many sticky things to 1350 * get right otherwise (e.g. IRQs for psm, atkbd, and HPET when 1351 * using legacy routing). 1352 */ 1353 if (type == SYS_RES_IRQ) 1354 return (0); 1355 1356 /* 1357 * Don't reserve resources for CPU devices. Some of these 1358 * resources need to be allocated as shareable, but reservations 1359 * are always non-shareable. 1360 */ 1361 if (device_get_devclass(child) == devclass_find("cpu")) 1362 return (0); 1363 1364 /* 1365 * Reserve the resource. 1366 * 1367 * XXX: Ignores failure for now. Failure here is probably a 1368 * BIOS/firmware bug? 1369 */ 1370 resource_list_reserve(rl, dev, child, type, &rid, start, end, count, 0); 1371 return (0); 1372 } 1373 1374 static struct resource * 1375 acpi_alloc_resource(device_t bus, device_t child, int type, int *rid, 1376 rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 1377 { 1378 #ifndef INTRNG 1379 ACPI_RESOURCE ares; 1380 #endif 1381 struct acpi_device *ad; 1382 struct resource_list_entry *rle; 1383 struct resource_list *rl; 1384 struct resource *res; 1385 int isdefault = RMAN_IS_DEFAULT_RANGE(start, end); 1386 1387 /* 1388 * First attempt at allocating the resource. For direct children, 1389 * use resource_list_alloc() to handle reserved resources. For 1390 * other devices, pass the request up to our parent. 1391 */ 1392 if (bus == device_get_parent(child)) { 1393 ad = device_get_ivars(child); 1394 rl = &ad->ad_rl; 1395 1396 /* 1397 * Simulate the behavior of the ISA bus for direct children 1398 * devices. That is, if a non-default range is specified for 1399 * a resource that doesn't exist, use bus_set_resource() to 1400 * add the resource before allocating it. Note that these 1401 * resources will not be reserved. 1402 */ 1403 if (!isdefault && resource_list_find(rl, type, *rid) == NULL) 1404 resource_list_add(rl, type, *rid, start, end, count); 1405 res = resource_list_alloc(rl, bus, child, type, rid, start, end, count, 1406 flags); 1407 #ifndef INTRNG 1408 if (res != NULL && type == SYS_RES_IRQ) { 1409 /* 1410 * Since bus_config_intr() takes immediate effect, we cannot 1411 * configure the interrupt associated with a device when we 1412 * parse the resources but have to defer it until a driver 1413 * actually allocates the interrupt via bus_alloc_resource(). 1414 * 1415 * XXX: Should we handle the lookup failing? 1416 */ 1417 if (ACPI_SUCCESS(acpi_lookup_irq_resource(child, *rid, res, &ares))) 1418 acpi_config_intr(child, &ares); 1419 } 1420 #endif 1421 1422 /* 1423 * If this is an allocation of the "default" range for a given 1424 * RID, fetch the exact bounds for this resource from the 1425 * resource list entry to try to allocate the range from the 1426 * system resource regions. 1427 */ 1428 if (res == NULL && isdefault) { 1429 rle = resource_list_find(rl, type, *rid); 1430 if (rle != NULL) { 1431 start = rle->start; 1432 end = rle->end; 1433 count = rle->count; 1434 } 1435 } 1436 } else 1437 res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, type, rid, 1438 start, end, count, flags); 1439 1440 /* 1441 * If the first attempt failed and this is an allocation of a 1442 * specific range, try to satisfy the request via a suballocation 1443 * from our system resource regions. 1444 */ 1445 if (res == NULL && start + count - 1 == end) 1446 res = acpi_alloc_sysres(child, type, rid, start, end, count, flags); 1447 return (res); 1448 } 1449 1450 /* 1451 * Attempt to allocate a specific resource range from the system 1452 * resource ranges. Note that we only handle memory and I/O port 1453 * system resources. 1454 */ 1455 struct resource * 1456 acpi_alloc_sysres(device_t child, int type, int *rid, rman_res_t start, 1457 rman_res_t end, rman_res_t count, u_int flags) 1458 { 1459 struct rman *rm; 1460 struct resource *res; 1461 1462 switch (type) { 1463 case SYS_RES_IOPORT: 1464 rm = &acpi_rman_io; 1465 break; 1466 case SYS_RES_MEMORY: 1467 rm = &acpi_rman_mem; 1468 break; 1469 default: 1470 return (NULL); 1471 } 1472 1473 KASSERT(start + count - 1 == end, ("wildcard resource range")); 1474 res = rman_reserve_resource(rm, start, end, count, flags & ~RF_ACTIVE, 1475 child); 1476 if (res == NULL) 1477 return (NULL); 1478 1479 rman_set_rid(res, *rid); 1480 1481 /* If requested, activate the resource using the parent's method. */ 1482 if (flags & RF_ACTIVE) 1483 if (bus_activate_resource(child, type, *rid, res) != 0) { 1484 rman_release_resource(res); 1485 return (NULL); 1486 } 1487 1488 return (res); 1489 } 1490 1491 static int 1492 acpi_is_resource_managed(int type, struct resource *r) 1493 { 1494 1495 /* We only handle memory and IO resources through rman. */ 1496 switch (type) { 1497 case SYS_RES_IOPORT: 1498 return (rman_is_region_manager(r, &acpi_rman_io)); 1499 case SYS_RES_MEMORY: 1500 return (rman_is_region_manager(r, &acpi_rman_mem)); 1501 } 1502 return (0); 1503 } 1504 1505 static int 1506 acpi_adjust_resource(device_t bus, device_t child, int type, struct resource *r, 1507 rman_res_t start, rman_res_t end) 1508 { 1509 1510 if (acpi_is_resource_managed(type, r)) 1511 return (rman_adjust_resource(r, start, end)); 1512 return (bus_generic_adjust_resource(bus, child, type, r, start, end)); 1513 } 1514 1515 static int 1516 acpi_release_resource(device_t bus, device_t child, int type, int rid, 1517 struct resource *r) 1518 { 1519 int ret; 1520 1521 /* 1522 * If this resource belongs to one of our internal managers, 1523 * deactivate it and release it to the local pool. 1524 */ 1525 if (acpi_is_resource_managed(type, r)) { 1526 if (rman_get_flags(r) & RF_ACTIVE) { 1527 ret = bus_deactivate_resource(child, type, rid, r); 1528 if (ret != 0) 1529 return (ret); 1530 } 1531 return (rman_release_resource(r)); 1532 } 1533 1534 return (bus_generic_rl_release_resource(bus, child, type, rid, r)); 1535 } 1536 1537 static void 1538 acpi_delete_resource(device_t bus, device_t child, int type, int rid) 1539 { 1540 struct resource_list *rl; 1541 1542 rl = acpi_get_rlist(bus, child); 1543 if (resource_list_busy(rl, type, rid)) { 1544 device_printf(bus, "delete_resource: Resource still owned by child" 1545 " (type=%d, rid=%d)\n", type, rid); 1546 return; 1547 } 1548 resource_list_unreserve(rl, bus, child, type, rid); 1549 resource_list_delete(rl, type, rid); 1550 } 1551 1552 /* Allocate an IO port or memory resource, given its GAS. */ 1553 int 1554 acpi_bus_alloc_gas(device_t dev, int *type, int *rid, ACPI_GENERIC_ADDRESS *gas, 1555 struct resource **res, u_int flags) 1556 { 1557 int error, res_type; 1558 1559 error = ENOMEM; 1560 if (type == NULL || rid == NULL || gas == NULL || res == NULL) 1561 return (EINVAL); 1562 1563 /* We only support memory and IO spaces. */ 1564 switch (gas->SpaceId) { 1565 case ACPI_ADR_SPACE_SYSTEM_MEMORY: 1566 res_type = SYS_RES_MEMORY; 1567 break; 1568 case ACPI_ADR_SPACE_SYSTEM_IO: 1569 res_type = SYS_RES_IOPORT; 1570 break; 1571 default: 1572 return (EOPNOTSUPP); 1573 } 1574 1575 /* 1576 * If the register width is less than 8, assume the BIOS author means 1577 * it is a bit field and just allocate a byte. 1578 */ 1579 if (gas->BitWidth && gas->BitWidth < 8) 1580 gas->BitWidth = 8; 1581 1582 /* Validate the address after we're sure we support the space. */ 1583 if (gas->Address == 0 || gas->BitWidth == 0) 1584 return (EINVAL); 1585 1586 bus_set_resource(dev, res_type, *rid, gas->Address, 1587 gas->BitWidth / 8); 1588 *res = bus_alloc_resource_any(dev, res_type, rid, RF_ACTIVE | flags); 1589 if (*res != NULL) { 1590 *type = res_type; 1591 error = 0; 1592 } else 1593 bus_delete_resource(dev, res_type, *rid); 1594 1595 return (error); 1596 } 1597 1598 /* Probe _HID and _CID for compatible ISA PNP ids. */ 1599 static uint32_t 1600 acpi_isa_get_logicalid(device_t dev) 1601 { 1602 ACPI_DEVICE_INFO *devinfo; 1603 ACPI_HANDLE h; 1604 uint32_t pnpid; 1605 1606 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1607 1608 /* Fetch and validate the HID. */ 1609 if ((h = acpi_get_handle(dev)) == NULL || 1610 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 1611 return_VALUE (0); 1612 1613 pnpid = (devinfo->Valid & ACPI_VALID_HID) != 0 && 1614 devinfo->HardwareId.Length >= ACPI_EISAID_STRING_SIZE ? 1615 PNP_EISAID(devinfo->HardwareId.String) : 0; 1616 AcpiOsFree(devinfo); 1617 1618 return_VALUE (pnpid); 1619 } 1620 1621 static int 1622 acpi_isa_get_compatid(device_t dev, uint32_t *cids, int count) 1623 { 1624 ACPI_DEVICE_INFO *devinfo; 1625 ACPI_PNP_DEVICE_ID *ids; 1626 ACPI_HANDLE h; 1627 uint32_t *pnpid; 1628 int i, valid; 1629 1630 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1631 1632 pnpid = cids; 1633 1634 /* Fetch and validate the CID */ 1635 if ((h = acpi_get_handle(dev)) == NULL || 1636 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 1637 return_VALUE (0); 1638 1639 if ((devinfo->Valid & ACPI_VALID_CID) == 0) { 1640 AcpiOsFree(devinfo); 1641 return_VALUE (0); 1642 } 1643 1644 if (devinfo->CompatibleIdList.Count < count) 1645 count = devinfo->CompatibleIdList.Count; 1646 ids = devinfo->CompatibleIdList.Ids; 1647 for (i = 0, valid = 0; i < count; i++) 1648 if (ids[i].Length >= ACPI_EISAID_STRING_SIZE && 1649 strncmp(ids[i].String, "PNP", 3) == 0) { 1650 *pnpid++ = PNP_EISAID(ids[i].String); 1651 valid++; 1652 } 1653 AcpiOsFree(devinfo); 1654 1655 return_VALUE (valid); 1656 } 1657 1658 static int 1659 acpi_device_id_probe(device_t bus, device_t dev, char **ids, char **match) 1660 { 1661 ACPI_HANDLE h; 1662 ACPI_OBJECT_TYPE t; 1663 int rv; 1664 int i; 1665 1666 h = acpi_get_handle(dev); 1667 if (ids == NULL || h == NULL) 1668 return (ENXIO); 1669 t = acpi_get_type(dev); 1670 if (t != ACPI_TYPE_DEVICE && t != ACPI_TYPE_PROCESSOR) 1671 return (ENXIO); 1672 1673 /* Try to match one of the array of IDs with a HID or CID. */ 1674 for (i = 0; ids[i] != NULL; i++) { 1675 rv = acpi_MatchHid(h, ids[i]); 1676 if (rv == ACPI_MATCHHID_NOMATCH) 1677 continue; 1678 1679 if (match != NULL) { 1680 *match = ids[i]; 1681 } 1682 return ((rv == ACPI_MATCHHID_HID)? 1683 BUS_PROBE_DEFAULT : BUS_PROBE_LOW_PRIORITY); 1684 } 1685 return (ENXIO); 1686 } 1687 1688 static ACPI_STATUS 1689 acpi_device_eval_obj(device_t bus, device_t dev, ACPI_STRING pathname, 1690 ACPI_OBJECT_LIST *parameters, ACPI_BUFFER *ret) 1691 { 1692 ACPI_HANDLE h; 1693 1694 if (dev == NULL) 1695 h = ACPI_ROOT_OBJECT; 1696 else if ((h = acpi_get_handle(dev)) == NULL) 1697 return (AE_BAD_PARAMETER); 1698 return (AcpiEvaluateObject(h, pathname, parameters, ret)); 1699 } 1700 1701 int 1702 acpi_device_pwr_for_sleep(device_t bus, device_t dev, int *dstate) 1703 { 1704 struct acpi_softc *sc; 1705 ACPI_HANDLE handle; 1706 ACPI_STATUS status; 1707 char sxd[8]; 1708 1709 handle = acpi_get_handle(dev); 1710 1711 /* 1712 * XXX If we find these devices, don't try to power them down. 1713 * The serial and IRDA ports on my T23 hang the system when 1714 * set to D3 and it appears that such legacy devices may 1715 * need special handling in their drivers. 1716 */ 1717 if (dstate == NULL || handle == NULL || 1718 acpi_MatchHid(handle, "PNP0500") || 1719 acpi_MatchHid(handle, "PNP0501") || 1720 acpi_MatchHid(handle, "PNP0502") || 1721 acpi_MatchHid(handle, "PNP0510") || 1722 acpi_MatchHid(handle, "PNP0511")) 1723 return (ENXIO); 1724 1725 /* 1726 * Override next state with the value from _SxD, if present. 1727 * Note illegal _S0D is evaluated because some systems expect this. 1728 */ 1729 sc = device_get_softc(bus); 1730 snprintf(sxd, sizeof(sxd), "_S%dD", sc->acpi_sstate); 1731 status = acpi_GetInteger(handle, sxd, dstate); 1732 if (ACPI_FAILURE(status) && status != AE_NOT_FOUND) { 1733 device_printf(dev, "failed to get %s on %s: %s\n", sxd, 1734 acpi_name(handle), AcpiFormatException(status)); 1735 return (ENXIO); 1736 } 1737 1738 return (0); 1739 } 1740 1741 /* Callback arg for our implementation of walking the namespace. */ 1742 struct acpi_device_scan_ctx { 1743 acpi_scan_cb_t user_fn; 1744 void *arg; 1745 ACPI_HANDLE parent; 1746 }; 1747 1748 static ACPI_STATUS 1749 acpi_device_scan_cb(ACPI_HANDLE h, UINT32 level, void *arg, void **retval) 1750 { 1751 struct acpi_device_scan_ctx *ctx; 1752 device_t dev, old_dev; 1753 ACPI_STATUS status; 1754 ACPI_OBJECT_TYPE type; 1755 1756 /* 1757 * Skip this device if we think we'll have trouble with it or it is 1758 * the parent where the scan began. 1759 */ 1760 ctx = (struct acpi_device_scan_ctx *)arg; 1761 if (acpi_avoid(h) || h == ctx->parent) 1762 return (AE_OK); 1763 1764 /* If this is not a valid device type (e.g., a method), skip it. */ 1765 if (ACPI_FAILURE(AcpiGetType(h, &type))) 1766 return (AE_OK); 1767 if (type != ACPI_TYPE_DEVICE && type != ACPI_TYPE_PROCESSOR && 1768 type != ACPI_TYPE_THERMAL && type != ACPI_TYPE_POWER) 1769 return (AE_OK); 1770 1771 /* 1772 * Call the user function with the current device. If it is unchanged 1773 * afterwards, return. Otherwise, we update the handle to the new dev. 1774 */ 1775 old_dev = acpi_get_device(h); 1776 dev = old_dev; 1777 status = ctx->user_fn(h, &dev, level, ctx->arg); 1778 if (ACPI_FAILURE(status) || old_dev == dev) 1779 return (status); 1780 1781 /* Remove the old child and its connection to the handle. */ 1782 if (old_dev != NULL) { 1783 device_delete_child(device_get_parent(old_dev), old_dev); 1784 AcpiDetachData(h, acpi_fake_objhandler); 1785 } 1786 1787 /* Recreate the handle association if the user created a device. */ 1788 if (dev != NULL) 1789 AcpiAttachData(h, acpi_fake_objhandler, dev); 1790 1791 return (AE_OK); 1792 } 1793 1794 static ACPI_STATUS 1795 acpi_device_scan_children(device_t bus, device_t dev, int max_depth, 1796 acpi_scan_cb_t user_fn, void *arg) 1797 { 1798 ACPI_HANDLE h; 1799 struct acpi_device_scan_ctx ctx; 1800 1801 if (acpi_disabled("children")) 1802 return (AE_OK); 1803 1804 if (dev == NULL) 1805 h = ACPI_ROOT_OBJECT; 1806 else if ((h = acpi_get_handle(dev)) == NULL) 1807 return (AE_BAD_PARAMETER); 1808 ctx.user_fn = user_fn; 1809 ctx.arg = arg; 1810 ctx.parent = h; 1811 return (AcpiWalkNamespace(ACPI_TYPE_ANY, h, max_depth, 1812 acpi_device_scan_cb, NULL, &ctx, NULL)); 1813 } 1814 1815 /* 1816 * Even though ACPI devices are not PCI, we use the PCI approach for setting 1817 * device power states since it's close enough to ACPI. 1818 */ 1819 static int 1820 acpi_set_powerstate(device_t child, int state) 1821 { 1822 ACPI_HANDLE h; 1823 ACPI_STATUS status; 1824 1825 h = acpi_get_handle(child); 1826 if (state < ACPI_STATE_D0 || state > ACPI_D_STATES_MAX) 1827 return (EINVAL); 1828 if (h == NULL) 1829 return (0); 1830 1831 /* Ignore errors if the power methods aren't present. */ 1832 status = acpi_pwr_switch_consumer(h, state); 1833 if (ACPI_SUCCESS(status)) { 1834 if (bootverbose) 1835 device_printf(child, "set ACPI power state D%d on %s\n", 1836 state, acpi_name(h)); 1837 } else if (status != AE_NOT_FOUND) 1838 device_printf(child, 1839 "failed to set ACPI power state D%d on %s: %s\n", state, 1840 acpi_name(h), AcpiFormatException(status)); 1841 1842 return (0); 1843 } 1844 1845 static int 1846 acpi_isa_pnp_probe(device_t bus, device_t child, struct isa_pnp_id *ids) 1847 { 1848 int result, cid_count, i; 1849 uint32_t lid, cids[8]; 1850 1851 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1852 1853 /* 1854 * ISA-style drivers attached to ACPI may persist and 1855 * probe manually if we return ENOENT. We never want 1856 * that to happen, so don't ever return it. 1857 */ 1858 result = ENXIO; 1859 1860 /* Scan the supplied IDs for a match */ 1861 lid = acpi_isa_get_logicalid(child); 1862 cid_count = acpi_isa_get_compatid(child, cids, 8); 1863 while (ids && ids->ip_id) { 1864 if (lid == ids->ip_id) { 1865 result = 0; 1866 goto out; 1867 } 1868 for (i = 0; i < cid_count; i++) { 1869 if (cids[i] == ids->ip_id) { 1870 result = 0; 1871 goto out; 1872 } 1873 } 1874 ids++; 1875 } 1876 1877 out: 1878 if (result == 0 && ids->ip_desc) 1879 device_set_desc(child, ids->ip_desc); 1880 1881 return_VALUE (result); 1882 } 1883 1884 /* 1885 * Look for a MCFG table. If it is present, use the settings for 1886 * domain (segment) 0 to setup PCI config space access via the memory 1887 * map. 1888 * 1889 * On non-x86 architectures (arm64 for now), this will be done from the 1890 * PCI host bridge driver. 1891 */ 1892 static void 1893 acpi_enable_pcie(void) 1894 { 1895 #if defined(__i386__) || defined(__amd64__) 1896 ACPI_TABLE_HEADER *hdr; 1897 ACPI_MCFG_ALLOCATION *alloc, *end; 1898 ACPI_STATUS status; 1899 1900 status = AcpiGetTable(ACPI_SIG_MCFG, 1, &hdr); 1901 if (ACPI_FAILURE(status)) 1902 return; 1903 1904 end = (ACPI_MCFG_ALLOCATION *)((char *)hdr + hdr->Length); 1905 alloc = (ACPI_MCFG_ALLOCATION *)((ACPI_TABLE_MCFG *)hdr + 1); 1906 while (alloc < end) { 1907 if (alloc->PciSegment == 0) { 1908 pcie_cfgregopen(alloc->Address, alloc->StartBusNumber, 1909 alloc->EndBusNumber); 1910 return; 1911 } 1912 alloc++; 1913 } 1914 #endif 1915 } 1916 1917 /* 1918 * Scan all of the ACPI namespace and attach child devices. 1919 * 1920 * We should only expect to find devices in the \_PR, \_TZ, \_SI, and 1921 * \_SB scopes, and \_PR and \_TZ became obsolete in the ACPI 2.0 spec. 1922 * However, in violation of the spec, some systems place their PCI link 1923 * devices in \, so we have to walk the whole namespace. We check the 1924 * type of namespace nodes, so this should be ok. 1925 */ 1926 static void 1927 acpi_probe_children(device_t bus) 1928 { 1929 1930 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1931 1932 /* 1933 * Scan the namespace and insert placeholders for all the devices that 1934 * we find. We also probe/attach any early devices. 1935 * 1936 * Note that we use AcpiWalkNamespace rather than AcpiGetDevices because 1937 * we want to create nodes for all devices, not just those that are 1938 * currently present. (This assumes that we don't want to create/remove 1939 * devices as they appear, which might be smarter.) 1940 */ 1941 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "namespace scan\n")); 1942 AcpiWalkNamespace(ACPI_TYPE_ANY, ACPI_ROOT_OBJECT, 100, acpi_probe_child, 1943 NULL, bus, NULL); 1944 1945 /* Pre-allocate resources for our rman from any sysresource devices. */ 1946 acpi_sysres_alloc(bus); 1947 1948 /* Reserve resources already allocated to children. */ 1949 acpi_reserve_resources(bus); 1950 1951 /* Create any static children by calling device identify methods. */ 1952 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "device identify routines\n")); 1953 bus_generic_probe(bus); 1954 1955 /* Probe/attach all children, created statically and from the namespace. */ 1956 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "acpi bus_generic_attach\n")); 1957 bus_generic_attach(bus); 1958 1959 /* Attach wake sysctls. */ 1960 acpi_wake_sysctl_walk(bus); 1961 1962 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "done attaching children\n")); 1963 return_VOID; 1964 } 1965 1966 /* 1967 * Determine the probe order for a given device. 1968 */ 1969 static void 1970 acpi_probe_order(ACPI_HANDLE handle, int *order) 1971 { 1972 ACPI_OBJECT_TYPE type; 1973 1974 /* 1975 * 0. CPUs 1976 * 1. I/O port and memory system resource holders 1977 * 2. Clocks and timers (to handle early accesses) 1978 * 3. Embedded controllers (to handle early accesses) 1979 * 4. PCI Link Devices 1980 */ 1981 AcpiGetType(handle, &type); 1982 if (type == ACPI_TYPE_PROCESSOR) 1983 *order = 0; 1984 else if (acpi_MatchHid(handle, "PNP0C01") || 1985 acpi_MatchHid(handle, "PNP0C02")) 1986 *order = 1; 1987 else if (acpi_MatchHid(handle, "PNP0100") || 1988 acpi_MatchHid(handle, "PNP0103") || 1989 acpi_MatchHid(handle, "PNP0B00")) 1990 *order = 2; 1991 else if (acpi_MatchHid(handle, "PNP0C09")) 1992 *order = 3; 1993 else if (acpi_MatchHid(handle, "PNP0C0F")) 1994 *order = 4; 1995 } 1996 1997 /* 1998 * Evaluate a child device and determine whether we might attach a device to 1999 * it. 2000 */ 2001 static ACPI_STATUS 2002 acpi_probe_child(ACPI_HANDLE handle, UINT32 level, void *context, void **status) 2003 { 2004 ACPI_DEVICE_INFO *devinfo; 2005 struct acpi_device *ad; 2006 struct acpi_prw_data prw; 2007 ACPI_OBJECT_TYPE type; 2008 ACPI_HANDLE h; 2009 device_t bus, child; 2010 char *handle_str; 2011 int order; 2012 2013 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 2014 2015 if (acpi_disabled("children")) 2016 return_ACPI_STATUS (AE_OK); 2017 2018 /* Skip this device if we think we'll have trouble with it. */ 2019 if (acpi_avoid(handle)) 2020 return_ACPI_STATUS (AE_OK); 2021 2022 bus = (device_t)context; 2023 if (ACPI_SUCCESS(AcpiGetType(handle, &type))) { 2024 handle_str = acpi_name(handle); 2025 switch (type) { 2026 case ACPI_TYPE_DEVICE: 2027 /* 2028 * Since we scan from \, be sure to skip system scope objects. 2029 * \_SB_ and \_TZ_ are defined in ACPICA as devices to work around 2030 * BIOS bugs. For example, \_SB_ is to allow \_SB_._INI to be run 2031 * during the initialization and \_TZ_ is to support Notify() on it. 2032 */ 2033 if (strcmp(handle_str, "\\_SB_") == 0 || 2034 strcmp(handle_str, "\\_TZ_") == 0) 2035 break; 2036 if (acpi_parse_prw(handle, &prw) == 0) 2037 AcpiSetupGpeForWake(handle, prw.gpe_handle, prw.gpe_bit); 2038 2039 /* 2040 * Ignore devices that do not have a _HID or _CID. They should 2041 * be discovered by other buses (e.g. the PCI bus driver). 2042 */ 2043 if (!acpi_has_hid(handle)) 2044 break; 2045 /* FALLTHROUGH */ 2046 case ACPI_TYPE_PROCESSOR: 2047 case ACPI_TYPE_THERMAL: 2048 case ACPI_TYPE_POWER: 2049 /* 2050 * Create a placeholder device for this node. Sort the 2051 * placeholder so that the probe/attach passes will run 2052 * breadth-first. Orders less than ACPI_DEV_BASE_ORDER 2053 * are reserved for special objects (i.e., system 2054 * resources). 2055 */ 2056 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "scanning '%s'\n", handle_str)); 2057 order = level * 10 + ACPI_DEV_BASE_ORDER; 2058 acpi_probe_order(handle, &order); 2059 child = BUS_ADD_CHILD(bus, order, NULL, -1); 2060 if (child == NULL) 2061 break; 2062 2063 /* Associate the handle with the device_t and vice versa. */ 2064 acpi_set_handle(child, handle); 2065 AcpiAttachData(handle, acpi_fake_objhandler, child); 2066 2067 /* 2068 * Check that the device is present. If it's not present, 2069 * leave it disabled (so that we have a device_t attached to 2070 * the handle, but we don't probe it). 2071 * 2072 * XXX PCI link devices sometimes report "present" but not 2073 * "functional" (i.e. if disabled). Go ahead and probe them 2074 * anyway since we may enable them later. 2075 */ 2076 if (type == ACPI_TYPE_DEVICE && !acpi_DeviceIsPresent(child)) { 2077 /* Never disable PCI link devices. */ 2078 if (acpi_MatchHid(handle, "PNP0C0F")) 2079 break; 2080 /* 2081 * Docking stations should remain enabled since the system 2082 * may be undocked at boot. 2083 */ 2084 if (ACPI_SUCCESS(AcpiGetHandle(handle, "_DCK", &h))) 2085 break; 2086 2087 device_disable(child); 2088 break; 2089 } 2090 2091 /* 2092 * Get the device's resource settings and attach them. 2093 * Note that if the device has _PRS but no _CRS, we need 2094 * to decide when it's appropriate to try to configure the 2095 * device. Ignore the return value here; it's OK for the 2096 * device not to have any resources. 2097 */ 2098 acpi_parse_resources(child, handle, &acpi_res_parse_set, NULL); 2099 2100 ad = device_get_ivars(child); 2101 ad->ad_cls_class = 0xffffff; 2102 if (ACPI_SUCCESS(AcpiGetObjectInfo(handle, &devinfo))) { 2103 if ((devinfo->Valid & ACPI_VALID_CLS) != 0 && 2104 devinfo->ClassCode.Length >= ACPI_PCICLS_STRING_SIZE) { 2105 ad->ad_cls_class = strtoul(devinfo->ClassCode.String, 2106 NULL, 16); 2107 } 2108 AcpiOsFree(devinfo); 2109 } 2110 break; 2111 } 2112 } 2113 2114 return_ACPI_STATUS (AE_OK); 2115 } 2116 2117 /* 2118 * AcpiAttachData() requires an object handler but never uses it. This is a 2119 * placeholder object handler so we can store a device_t in an ACPI_HANDLE. 2120 */ 2121 void 2122 acpi_fake_objhandler(ACPI_HANDLE h, void *data) 2123 { 2124 } 2125 2126 static void 2127 acpi_shutdown_final(void *arg, int howto) 2128 { 2129 struct acpi_softc *sc = (struct acpi_softc *)arg; 2130 register_t intr; 2131 ACPI_STATUS status; 2132 2133 /* 2134 * XXX Shutdown code should only run on the BSP (cpuid 0). 2135 * Some chipsets do not power off the system correctly if called from 2136 * an AP. 2137 */ 2138 if ((howto & RB_POWEROFF) != 0) { 2139 status = AcpiEnterSleepStatePrep(ACPI_STATE_S5); 2140 if (ACPI_FAILURE(status)) { 2141 device_printf(sc->acpi_dev, "AcpiEnterSleepStatePrep failed - %s\n", 2142 AcpiFormatException(status)); 2143 return; 2144 } 2145 device_printf(sc->acpi_dev, "Powering system off\n"); 2146 intr = intr_disable(); 2147 status = AcpiEnterSleepState(ACPI_STATE_S5); 2148 if (ACPI_FAILURE(status)) { 2149 intr_restore(intr); 2150 device_printf(sc->acpi_dev, "power-off failed - %s\n", 2151 AcpiFormatException(status)); 2152 } else { 2153 DELAY(1000000); 2154 intr_restore(intr); 2155 device_printf(sc->acpi_dev, "power-off failed - timeout\n"); 2156 } 2157 } else if ((howto & RB_HALT) == 0 && sc->acpi_handle_reboot) { 2158 /* Reboot using the reset register. */ 2159 status = AcpiReset(); 2160 if (ACPI_SUCCESS(status)) { 2161 DELAY(1000000); 2162 device_printf(sc->acpi_dev, "reset failed - timeout\n"); 2163 } else if (status != AE_NOT_EXIST) 2164 device_printf(sc->acpi_dev, "reset failed - %s\n", 2165 AcpiFormatException(status)); 2166 } else if (sc->acpi_do_disable && panicstr == NULL) { 2167 /* 2168 * Only disable ACPI if the user requested. On some systems, writing 2169 * the disable value to SMI_CMD hangs the system. 2170 */ 2171 device_printf(sc->acpi_dev, "Shutting down\n"); 2172 AcpiTerminate(); 2173 } 2174 } 2175 2176 static void 2177 acpi_enable_fixed_events(struct acpi_softc *sc) 2178 { 2179 static int first_time = 1; 2180 2181 /* Enable and clear fixed events and install handlers. */ 2182 if ((AcpiGbl_FADT.Flags & ACPI_FADT_POWER_BUTTON) == 0) { 2183 AcpiClearEvent(ACPI_EVENT_POWER_BUTTON); 2184 AcpiInstallFixedEventHandler(ACPI_EVENT_POWER_BUTTON, 2185 acpi_event_power_button_sleep, sc); 2186 if (first_time) 2187 device_printf(sc->acpi_dev, "Power Button (fixed)\n"); 2188 } 2189 if ((AcpiGbl_FADT.Flags & ACPI_FADT_SLEEP_BUTTON) == 0) { 2190 AcpiClearEvent(ACPI_EVENT_SLEEP_BUTTON); 2191 AcpiInstallFixedEventHandler(ACPI_EVENT_SLEEP_BUTTON, 2192 acpi_event_sleep_button_sleep, sc); 2193 if (first_time) 2194 device_printf(sc->acpi_dev, "Sleep Button (fixed)\n"); 2195 } 2196 2197 first_time = 0; 2198 } 2199 2200 /* 2201 * Returns true if the device is actually present and should 2202 * be attached to. This requires the present, enabled, UI-visible 2203 * and diagnostics-passed bits to be set. 2204 */ 2205 BOOLEAN 2206 acpi_DeviceIsPresent(device_t dev) 2207 { 2208 ACPI_HANDLE h; 2209 UINT32 s; 2210 ACPI_STATUS status; 2211 2212 h = acpi_get_handle(dev); 2213 if (h == NULL) 2214 return (FALSE); 2215 /* 2216 * Certain Treadripper boards always returns 0 for FreeBSD because it 2217 * only returns non-zero for the OS string "Windows 2015". Otherwise it 2218 * will return zero. Force them to always be treated as present. 2219 * Beata versions were worse: they always returned 0. 2220 */ 2221 if (acpi_MatchHid(h, "AMDI0020") || acpi_MatchHid(h, "AMDI0010")) 2222 return (TRUE); 2223 2224 status = acpi_GetInteger(h, "_STA", &s); 2225 2226 /* 2227 * If no _STA method or if it failed, then assume that 2228 * the device is present. 2229 */ 2230 if (ACPI_FAILURE(status)) 2231 return (TRUE); 2232 2233 return (ACPI_DEVICE_PRESENT(s) ? TRUE : FALSE); 2234 } 2235 2236 /* 2237 * Returns true if the battery is actually present and inserted. 2238 */ 2239 BOOLEAN 2240 acpi_BatteryIsPresent(device_t dev) 2241 { 2242 ACPI_HANDLE h; 2243 UINT32 s; 2244 ACPI_STATUS status; 2245 2246 h = acpi_get_handle(dev); 2247 if (h == NULL) 2248 return (FALSE); 2249 status = acpi_GetInteger(h, "_STA", &s); 2250 2251 /* 2252 * If no _STA method or if it failed, then assume that 2253 * the device is present. 2254 */ 2255 if (ACPI_FAILURE(status)) 2256 return (TRUE); 2257 2258 return (ACPI_BATTERY_PRESENT(s) ? TRUE : FALSE); 2259 } 2260 2261 /* 2262 * Returns true if a device has at least one valid device ID. 2263 */ 2264 static BOOLEAN 2265 acpi_has_hid(ACPI_HANDLE h) 2266 { 2267 ACPI_DEVICE_INFO *devinfo; 2268 BOOLEAN ret; 2269 2270 if (h == NULL || 2271 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 2272 return (FALSE); 2273 2274 ret = FALSE; 2275 if ((devinfo->Valid & ACPI_VALID_HID) != 0) 2276 ret = TRUE; 2277 else if ((devinfo->Valid & ACPI_VALID_CID) != 0) 2278 if (devinfo->CompatibleIdList.Count > 0) 2279 ret = TRUE; 2280 2281 AcpiOsFree(devinfo); 2282 return (ret); 2283 } 2284 2285 /* 2286 * Match a HID string against a handle 2287 * returns ACPI_MATCHHID_HID if _HID match 2288 * ACPI_MATCHHID_CID if _CID match and not _HID match. 2289 * ACPI_MATCHHID_NOMATCH=0 if no match. 2290 */ 2291 int 2292 acpi_MatchHid(ACPI_HANDLE h, const char *hid) 2293 { 2294 ACPI_DEVICE_INFO *devinfo; 2295 BOOLEAN ret; 2296 int i; 2297 2298 if (hid == NULL || h == NULL || 2299 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 2300 return (ACPI_MATCHHID_NOMATCH); 2301 2302 ret = ACPI_MATCHHID_NOMATCH; 2303 if ((devinfo->Valid & ACPI_VALID_HID) != 0 && 2304 strcmp(hid, devinfo->HardwareId.String) == 0) 2305 ret = ACPI_MATCHHID_HID; 2306 else if ((devinfo->Valid & ACPI_VALID_CID) != 0) 2307 for (i = 0; i < devinfo->CompatibleIdList.Count; i++) { 2308 if (strcmp(hid, devinfo->CompatibleIdList.Ids[i].String) == 0) { 2309 ret = ACPI_MATCHHID_CID; 2310 break; 2311 } 2312 } 2313 2314 AcpiOsFree(devinfo); 2315 return (ret); 2316 } 2317 2318 /* 2319 * Return the handle of a named object within our scope, ie. that of (parent) 2320 * or one if its parents. 2321 */ 2322 ACPI_STATUS 2323 acpi_GetHandleInScope(ACPI_HANDLE parent, char *path, ACPI_HANDLE *result) 2324 { 2325 ACPI_HANDLE r; 2326 ACPI_STATUS status; 2327 2328 /* Walk back up the tree to the root */ 2329 for (;;) { 2330 status = AcpiGetHandle(parent, path, &r); 2331 if (ACPI_SUCCESS(status)) { 2332 *result = r; 2333 return (AE_OK); 2334 } 2335 /* XXX Return error here? */ 2336 if (status != AE_NOT_FOUND) 2337 return (AE_OK); 2338 if (ACPI_FAILURE(AcpiGetParent(parent, &r))) 2339 return (AE_NOT_FOUND); 2340 parent = r; 2341 } 2342 } 2343 2344 /* 2345 * Allocate a buffer with a preset data size. 2346 */ 2347 ACPI_BUFFER * 2348 acpi_AllocBuffer(int size) 2349 { 2350 ACPI_BUFFER *buf; 2351 2352 if ((buf = malloc(size + sizeof(*buf), M_ACPIDEV, M_NOWAIT)) == NULL) 2353 return (NULL); 2354 buf->Length = size; 2355 buf->Pointer = (void *)(buf + 1); 2356 return (buf); 2357 } 2358 2359 ACPI_STATUS 2360 acpi_SetInteger(ACPI_HANDLE handle, char *path, UINT32 number) 2361 { 2362 ACPI_OBJECT arg1; 2363 ACPI_OBJECT_LIST args; 2364 2365 arg1.Type = ACPI_TYPE_INTEGER; 2366 arg1.Integer.Value = number; 2367 args.Count = 1; 2368 args.Pointer = &arg1; 2369 2370 return (AcpiEvaluateObject(handle, path, &args, NULL)); 2371 } 2372 2373 /* 2374 * Evaluate a path that should return an integer. 2375 */ 2376 ACPI_STATUS 2377 acpi_GetInteger(ACPI_HANDLE handle, char *path, UINT32 *number) 2378 { 2379 ACPI_STATUS status; 2380 ACPI_BUFFER buf; 2381 ACPI_OBJECT param; 2382 2383 if (handle == NULL) 2384 handle = ACPI_ROOT_OBJECT; 2385 2386 /* 2387 * Assume that what we've been pointed at is an Integer object, or 2388 * a method that will return an Integer. 2389 */ 2390 buf.Pointer = ¶m; 2391 buf.Length = sizeof(param); 2392 status = AcpiEvaluateObject(handle, path, NULL, &buf); 2393 if (ACPI_SUCCESS(status)) { 2394 if (param.Type == ACPI_TYPE_INTEGER) 2395 *number = param.Integer.Value; 2396 else 2397 status = AE_TYPE; 2398 } 2399 2400 /* 2401 * In some applications, a method that's expected to return an Integer 2402 * may instead return a Buffer (probably to simplify some internal 2403 * arithmetic). We'll try to fetch whatever it is, and if it's a Buffer, 2404 * convert it into an Integer as best we can. 2405 * 2406 * This is a hack. 2407 */ 2408 if (status == AE_BUFFER_OVERFLOW) { 2409 if ((buf.Pointer = AcpiOsAllocate(buf.Length)) == NULL) { 2410 status = AE_NO_MEMORY; 2411 } else { 2412 status = AcpiEvaluateObject(handle, path, NULL, &buf); 2413 if (ACPI_SUCCESS(status)) 2414 status = acpi_ConvertBufferToInteger(&buf, number); 2415 AcpiOsFree(buf.Pointer); 2416 } 2417 } 2418 return (status); 2419 } 2420 2421 ACPI_STATUS 2422 acpi_ConvertBufferToInteger(ACPI_BUFFER *bufp, UINT32 *number) 2423 { 2424 ACPI_OBJECT *p; 2425 UINT8 *val; 2426 int i; 2427 2428 p = (ACPI_OBJECT *)bufp->Pointer; 2429 if (p->Type == ACPI_TYPE_INTEGER) { 2430 *number = p->Integer.Value; 2431 return (AE_OK); 2432 } 2433 if (p->Type != ACPI_TYPE_BUFFER) 2434 return (AE_TYPE); 2435 if (p->Buffer.Length > sizeof(int)) 2436 return (AE_BAD_DATA); 2437 2438 *number = 0; 2439 val = p->Buffer.Pointer; 2440 for (i = 0; i < p->Buffer.Length; i++) 2441 *number += val[i] << (i * 8); 2442 return (AE_OK); 2443 } 2444 2445 /* 2446 * Iterate over the elements of an a package object, calling the supplied 2447 * function for each element. 2448 * 2449 * XXX possible enhancement might be to abort traversal on error. 2450 */ 2451 ACPI_STATUS 2452 acpi_ForeachPackageObject(ACPI_OBJECT *pkg, 2453 void (*func)(ACPI_OBJECT *comp, void *arg), void *arg) 2454 { 2455 ACPI_OBJECT *comp; 2456 int i; 2457 2458 if (pkg == NULL || pkg->Type != ACPI_TYPE_PACKAGE) 2459 return (AE_BAD_PARAMETER); 2460 2461 /* Iterate over components */ 2462 i = 0; 2463 comp = pkg->Package.Elements; 2464 for (; i < pkg->Package.Count; i++, comp++) 2465 func(comp, arg); 2466 2467 return (AE_OK); 2468 } 2469 2470 /* 2471 * Find the (index)th resource object in a set. 2472 */ 2473 ACPI_STATUS 2474 acpi_FindIndexedResource(ACPI_BUFFER *buf, int index, ACPI_RESOURCE **resp) 2475 { 2476 ACPI_RESOURCE *rp; 2477 int i; 2478 2479 rp = (ACPI_RESOURCE *)buf->Pointer; 2480 i = index; 2481 while (i-- > 0) { 2482 /* Range check */ 2483 if (rp > (ACPI_RESOURCE *)((u_int8_t *)buf->Pointer + buf->Length)) 2484 return (AE_BAD_PARAMETER); 2485 2486 /* Check for terminator */ 2487 if (rp->Type == ACPI_RESOURCE_TYPE_END_TAG || rp->Length == 0) 2488 return (AE_NOT_FOUND); 2489 rp = ACPI_NEXT_RESOURCE(rp); 2490 } 2491 if (resp != NULL) 2492 *resp = rp; 2493 2494 return (AE_OK); 2495 } 2496 2497 /* 2498 * Append an ACPI_RESOURCE to an ACPI_BUFFER. 2499 * 2500 * Given a pointer to an ACPI_RESOURCE structure, expand the ACPI_BUFFER 2501 * provided to contain it. If the ACPI_BUFFER is empty, allocate a sensible 2502 * backing block. If the ACPI_RESOURCE is NULL, return an empty set of 2503 * resources. 2504 */ 2505 #define ACPI_INITIAL_RESOURCE_BUFFER_SIZE 512 2506 2507 ACPI_STATUS 2508 acpi_AppendBufferResource(ACPI_BUFFER *buf, ACPI_RESOURCE *res) 2509 { 2510 ACPI_RESOURCE *rp; 2511 void *newp; 2512 2513 /* Initialise the buffer if necessary. */ 2514 if (buf->Pointer == NULL) { 2515 buf->Length = ACPI_INITIAL_RESOURCE_BUFFER_SIZE; 2516 if ((buf->Pointer = AcpiOsAllocate(buf->Length)) == NULL) 2517 return (AE_NO_MEMORY); 2518 rp = (ACPI_RESOURCE *)buf->Pointer; 2519 rp->Type = ACPI_RESOURCE_TYPE_END_TAG; 2520 rp->Length = ACPI_RS_SIZE_MIN; 2521 } 2522 if (res == NULL) 2523 return (AE_OK); 2524 2525 /* 2526 * Scan the current buffer looking for the terminator. 2527 * This will either find the terminator or hit the end 2528 * of the buffer and return an error. 2529 */ 2530 rp = (ACPI_RESOURCE *)buf->Pointer; 2531 for (;;) { 2532 /* Range check, don't go outside the buffer */ 2533 if (rp >= (ACPI_RESOURCE *)((u_int8_t *)buf->Pointer + buf->Length)) 2534 return (AE_BAD_PARAMETER); 2535 if (rp->Type == ACPI_RESOURCE_TYPE_END_TAG || rp->Length == 0) 2536 break; 2537 rp = ACPI_NEXT_RESOURCE(rp); 2538 } 2539 2540 /* 2541 * Check the size of the buffer and expand if required. 2542 * 2543 * Required size is: 2544 * size of existing resources before terminator + 2545 * size of new resource and header + 2546 * size of terminator. 2547 * 2548 * Note that this loop should really only run once, unless 2549 * for some reason we are stuffing a *really* huge resource. 2550 */ 2551 while ((((u_int8_t *)rp - (u_int8_t *)buf->Pointer) + 2552 res->Length + ACPI_RS_SIZE_NO_DATA + 2553 ACPI_RS_SIZE_MIN) >= buf->Length) { 2554 if ((newp = AcpiOsAllocate(buf->Length * 2)) == NULL) 2555 return (AE_NO_MEMORY); 2556 bcopy(buf->Pointer, newp, buf->Length); 2557 rp = (ACPI_RESOURCE *)((u_int8_t *)newp + 2558 ((u_int8_t *)rp - (u_int8_t *)buf->Pointer)); 2559 AcpiOsFree(buf->Pointer); 2560 buf->Pointer = newp; 2561 buf->Length += buf->Length; 2562 } 2563 2564 /* Insert the new resource. */ 2565 bcopy(res, rp, res->Length + ACPI_RS_SIZE_NO_DATA); 2566 2567 /* And add the terminator. */ 2568 rp = ACPI_NEXT_RESOURCE(rp); 2569 rp->Type = ACPI_RESOURCE_TYPE_END_TAG; 2570 rp->Length = ACPI_RS_SIZE_MIN; 2571 2572 return (AE_OK); 2573 } 2574 2575 UINT8 2576 acpi_DSMQuery(ACPI_HANDLE h, uint8_t *uuid, int revision) 2577 { 2578 /* 2579 * ACPI spec 9.1.1 defines this. 2580 * 2581 * "Arg2: Function Index Represents a specific function whose meaning is 2582 * specific to the UUID and Revision ID. Function indices should start 2583 * with 1. Function number zero is a query function (see the special 2584 * return code defined below)." 2585 */ 2586 ACPI_BUFFER buf; 2587 ACPI_OBJECT *obj; 2588 UINT8 ret = 0; 2589 2590 if (!ACPI_SUCCESS(acpi_EvaluateDSM(h, uuid, revision, 0, NULL, &buf))) { 2591 ACPI_INFO(("Failed to enumerate DSM functions\n")); 2592 return (0); 2593 } 2594 2595 obj = (ACPI_OBJECT *)buf.Pointer; 2596 KASSERT(obj, ("Object not allowed to be NULL\n")); 2597 2598 /* 2599 * From ACPI 6.2 spec 9.1.1: 2600 * If Function Index = 0, a Buffer containing a function index bitfield. 2601 * Otherwise, the return value and type depends on the UUID and revision 2602 * ID (see below). 2603 */ 2604 switch (obj->Type) { 2605 case ACPI_TYPE_BUFFER: 2606 ret = *(uint8_t *)obj->Buffer.Pointer; 2607 break; 2608 case ACPI_TYPE_INTEGER: 2609 ACPI_BIOS_WARNING((AE_INFO, 2610 "Possibly buggy BIOS with ACPI_TYPE_INTEGER for function enumeration\n")); 2611 ret = obj->Integer.Value & 0xFF; 2612 break; 2613 default: 2614 ACPI_WARNING((AE_INFO, "Unexpected return type %u\n", obj->Type)); 2615 }; 2616 2617 AcpiOsFree(obj); 2618 return ret; 2619 } 2620 2621 /* 2622 * DSM may return multiple types depending on the function. It is therefore 2623 * unsafe to use the typed evaluation. It is highly recommended that the caller 2624 * check the type of the returned object. 2625 */ 2626 ACPI_STATUS 2627 acpi_EvaluateDSM(ACPI_HANDLE handle, uint8_t *uuid, int revision, 2628 uint64_t function, union acpi_object *package, ACPI_BUFFER *out_buf) 2629 { 2630 ACPI_OBJECT arg[4]; 2631 ACPI_OBJECT_LIST arglist; 2632 ACPI_BUFFER buf; 2633 ACPI_STATUS status; 2634 2635 if (out_buf == NULL) 2636 return (AE_NO_MEMORY); 2637 2638 arg[0].Type = ACPI_TYPE_BUFFER; 2639 arg[0].Buffer.Length = ACPI_UUID_LENGTH; 2640 arg[0].Buffer.Pointer = uuid; 2641 arg[1].Type = ACPI_TYPE_INTEGER; 2642 arg[1].Integer.Value = revision; 2643 arg[2].Type = ACPI_TYPE_INTEGER; 2644 arg[2].Integer.Value = function; 2645 if (package) { 2646 arg[3] = *package; 2647 } else { 2648 arg[3].Type = ACPI_TYPE_PACKAGE; 2649 arg[3].Package.Count = 0; 2650 arg[3].Package.Elements = NULL; 2651 } 2652 2653 arglist.Pointer = arg; 2654 arglist.Count = 4; 2655 buf.Pointer = NULL; 2656 buf.Length = ACPI_ALLOCATE_BUFFER; 2657 status = AcpiEvaluateObject(handle, "_DSM", &arglist, &buf); 2658 if (ACPI_FAILURE(status)) 2659 return (status); 2660 2661 KASSERT(ACPI_SUCCESS(status), ("Unexpected status")); 2662 2663 *out_buf = buf; 2664 return (status); 2665 } 2666 2667 ACPI_STATUS 2668 acpi_EvaluateOSC(ACPI_HANDLE handle, uint8_t *uuid, int revision, int count, 2669 uint32_t *caps_in, uint32_t *caps_out, bool query) 2670 { 2671 ACPI_OBJECT arg[4], *ret; 2672 ACPI_OBJECT_LIST arglist; 2673 ACPI_BUFFER buf; 2674 ACPI_STATUS status; 2675 2676 arglist.Pointer = arg; 2677 arglist.Count = 4; 2678 arg[0].Type = ACPI_TYPE_BUFFER; 2679 arg[0].Buffer.Length = ACPI_UUID_LENGTH; 2680 arg[0].Buffer.Pointer = uuid; 2681 arg[1].Type = ACPI_TYPE_INTEGER; 2682 arg[1].Integer.Value = revision; 2683 arg[2].Type = ACPI_TYPE_INTEGER; 2684 arg[2].Integer.Value = count; 2685 arg[3].Type = ACPI_TYPE_BUFFER; 2686 arg[3].Buffer.Length = count * sizeof(*caps_in); 2687 arg[3].Buffer.Pointer = (uint8_t *)caps_in; 2688 caps_in[0] = query ? 1 : 0; 2689 buf.Pointer = NULL; 2690 buf.Length = ACPI_ALLOCATE_BUFFER; 2691 status = AcpiEvaluateObjectTyped(handle, "_OSC", &arglist, &buf, 2692 ACPI_TYPE_BUFFER); 2693 if (ACPI_FAILURE(status)) 2694 return (status); 2695 if (caps_out != NULL) { 2696 ret = buf.Pointer; 2697 if (ret->Buffer.Length != count * sizeof(*caps_out)) { 2698 AcpiOsFree(buf.Pointer); 2699 return (AE_BUFFER_OVERFLOW); 2700 } 2701 bcopy(ret->Buffer.Pointer, caps_out, ret->Buffer.Length); 2702 } 2703 AcpiOsFree(buf.Pointer); 2704 return (status); 2705 } 2706 2707 /* 2708 * Set interrupt model. 2709 */ 2710 ACPI_STATUS 2711 acpi_SetIntrModel(int model) 2712 { 2713 2714 return (acpi_SetInteger(ACPI_ROOT_OBJECT, "_PIC", model)); 2715 } 2716 2717 /* 2718 * Walk subtables of a table and call a callback routine for each 2719 * subtable. The caller should provide the first subtable and a 2720 * pointer to the end of the table. This can be used to walk tables 2721 * such as MADT and SRAT that use subtable entries. 2722 */ 2723 void 2724 acpi_walk_subtables(void *first, void *end, acpi_subtable_handler *handler, 2725 void *arg) 2726 { 2727 ACPI_SUBTABLE_HEADER *entry; 2728 2729 for (entry = first; (void *)entry < end; ) { 2730 /* Avoid an infinite loop if we hit a bogus entry. */ 2731 if (entry->Length < sizeof(ACPI_SUBTABLE_HEADER)) 2732 return; 2733 2734 handler(entry, arg); 2735 entry = ACPI_ADD_PTR(ACPI_SUBTABLE_HEADER, entry, entry->Length); 2736 } 2737 } 2738 2739 /* 2740 * DEPRECATED. This interface has serious deficiencies and will be 2741 * removed. 2742 * 2743 * Immediately enter the sleep state. In the old model, acpiconf(8) ran 2744 * rc.suspend and rc.resume so we don't have to notify devd(8) to do this. 2745 */ 2746 ACPI_STATUS 2747 acpi_SetSleepState(struct acpi_softc *sc, int state) 2748 { 2749 static int once; 2750 2751 if (!once) { 2752 device_printf(sc->acpi_dev, 2753 "warning: acpi_SetSleepState() deprecated, need to update your software\n"); 2754 once = 1; 2755 } 2756 return (acpi_EnterSleepState(sc, state)); 2757 } 2758 2759 #if defined(__amd64__) || defined(__i386__) 2760 static void 2761 acpi_sleep_force_task(void *context) 2762 { 2763 struct acpi_softc *sc = (struct acpi_softc *)context; 2764 2765 if (ACPI_FAILURE(acpi_EnterSleepState(sc, sc->acpi_next_sstate))) 2766 device_printf(sc->acpi_dev, "force sleep state S%d failed\n", 2767 sc->acpi_next_sstate); 2768 } 2769 2770 static void 2771 acpi_sleep_force(void *arg) 2772 { 2773 struct acpi_softc *sc = (struct acpi_softc *)arg; 2774 2775 device_printf(sc->acpi_dev, 2776 "suspend request timed out, forcing sleep now\n"); 2777 /* 2778 * XXX Suspending from callout causes freezes in DEVICE_SUSPEND(). 2779 * Suspend from acpi_task thread instead. 2780 */ 2781 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 2782 acpi_sleep_force_task, sc))) 2783 device_printf(sc->acpi_dev, "AcpiOsExecute() for sleeping failed\n"); 2784 } 2785 #endif 2786 2787 /* 2788 * Request that the system enter the given suspend state. All /dev/apm 2789 * devices and devd(8) will be notified. Userland then has a chance to 2790 * save state and acknowledge the request. The system sleeps once all 2791 * acks are in. 2792 */ 2793 int 2794 acpi_ReqSleepState(struct acpi_softc *sc, int state) 2795 { 2796 #if defined(__amd64__) || defined(__i386__) 2797 struct apm_clone_data *clone; 2798 ACPI_STATUS status; 2799 2800 if (state < ACPI_STATE_S1 || state > ACPI_S_STATES_MAX) 2801 return (EINVAL); 2802 if (!acpi_sleep_states[state]) 2803 return (EOPNOTSUPP); 2804 2805 /* 2806 * If a reboot/shutdown/suspend request is already in progress or 2807 * suspend is blocked due to an upcoming shutdown, just return. 2808 */ 2809 if (rebooting || sc->acpi_next_sstate != 0 || suspend_blocked) { 2810 return (0); 2811 } 2812 2813 /* Wait until sleep is enabled. */ 2814 while (sc->acpi_sleep_disabled) { 2815 AcpiOsSleep(1000); 2816 } 2817 2818 ACPI_LOCK(acpi); 2819 2820 sc->acpi_next_sstate = state; 2821 2822 /* S5 (soft-off) should be entered directly with no waiting. */ 2823 if (state == ACPI_STATE_S5) { 2824 ACPI_UNLOCK(acpi); 2825 status = acpi_EnterSleepState(sc, state); 2826 return (ACPI_SUCCESS(status) ? 0 : ENXIO); 2827 } 2828 2829 /* Record the pending state and notify all apm devices. */ 2830 STAILQ_FOREACH(clone, &sc->apm_cdevs, entries) { 2831 clone->notify_status = APM_EV_NONE; 2832 if ((clone->flags & ACPI_EVF_DEVD) == 0) { 2833 selwakeuppri(&clone->sel_read, PZERO); 2834 KNOTE_LOCKED(&clone->sel_read.si_note, 0); 2835 } 2836 } 2837 2838 /* If devd(8) is not running, immediately enter the sleep state. */ 2839 if (!devctl_process_running()) { 2840 ACPI_UNLOCK(acpi); 2841 status = acpi_EnterSleepState(sc, state); 2842 return (ACPI_SUCCESS(status) ? 0 : ENXIO); 2843 } 2844 2845 /* 2846 * Set a timeout to fire if userland doesn't ack the suspend request 2847 * in time. This way we still eventually go to sleep if we were 2848 * overheating or running low on battery, even if userland is hung. 2849 * We cancel this timeout once all userland acks are in or the 2850 * suspend request is aborted. 2851 */ 2852 callout_reset(&sc->susp_force_to, 10 * hz, acpi_sleep_force, sc); 2853 ACPI_UNLOCK(acpi); 2854 2855 /* Now notify devd(8) also. */ 2856 acpi_UserNotify("Suspend", ACPI_ROOT_OBJECT, state); 2857 2858 return (0); 2859 #else 2860 /* This platform does not support acpi suspend/resume. */ 2861 return (EOPNOTSUPP); 2862 #endif 2863 } 2864 2865 /* 2866 * Acknowledge (or reject) a pending sleep state. The caller has 2867 * prepared for suspend and is now ready for it to proceed. If the 2868 * error argument is non-zero, it indicates suspend should be cancelled 2869 * and gives an errno value describing why. Once all votes are in, 2870 * we suspend the system. 2871 */ 2872 int 2873 acpi_AckSleepState(struct apm_clone_data *clone, int error) 2874 { 2875 #if defined(__amd64__) || defined(__i386__) 2876 struct acpi_softc *sc; 2877 int ret, sleeping; 2878 2879 /* If no pending sleep state, return an error. */ 2880 ACPI_LOCK(acpi); 2881 sc = clone->acpi_sc; 2882 if (sc->acpi_next_sstate == 0) { 2883 ACPI_UNLOCK(acpi); 2884 return (ENXIO); 2885 } 2886 2887 /* Caller wants to abort suspend process. */ 2888 if (error) { 2889 sc->acpi_next_sstate = 0; 2890 callout_stop(&sc->susp_force_to); 2891 device_printf(sc->acpi_dev, 2892 "listener on %s cancelled the pending suspend\n", 2893 devtoname(clone->cdev)); 2894 ACPI_UNLOCK(acpi); 2895 return (0); 2896 } 2897 2898 /* 2899 * Mark this device as acking the suspend request. Then, walk through 2900 * all devices, seeing if they agree yet. We only count devices that 2901 * are writable since read-only devices couldn't ack the request. 2902 */ 2903 sleeping = TRUE; 2904 clone->notify_status = APM_EV_ACKED; 2905 STAILQ_FOREACH(clone, &sc->apm_cdevs, entries) { 2906 if ((clone->flags & ACPI_EVF_WRITE) != 0 && 2907 clone->notify_status != APM_EV_ACKED) { 2908 sleeping = FALSE; 2909 break; 2910 } 2911 } 2912 2913 /* If all devices have voted "yes", we will suspend now. */ 2914 if (sleeping) 2915 callout_stop(&sc->susp_force_to); 2916 ACPI_UNLOCK(acpi); 2917 ret = 0; 2918 if (sleeping) { 2919 if (ACPI_FAILURE(acpi_EnterSleepState(sc, sc->acpi_next_sstate))) 2920 ret = ENODEV; 2921 } 2922 return (ret); 2923 #else 2924 /* This platform does not support acpi suspend/resume. */ 2925 return (EOPNOTSUPP); 2926 #endif 2927 } 2928 2929 static void 2930 acpi_sleep_enable(void *arg) 2931 { 2932 struct acpi_softc *sc = (struct acpi_softc *)arg; 2933 2934 ACPI_LOCK_ASSERT(acpi); 2935 2936 /* Reschedule if the system is not fully up and running. */ 2937 if (!AcpiGbl_SystemAwakeAndRunning) { 2938 callout_schedule(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME); 2939 return; 2940 } 2941 2942 sc->acpi_sleep_disabled = FALSE; 2943 } 2944 2945 static ACPI_STATUS 2946 acpi_sleep_disable(struct acpi_softc *sc) 2947 { 2948 ACPI_STATUS status; 2949 2950 /* Fail if the system is not fully up and running. */ 2951 if (!AcpiGbl_SystemAwakeAndRunning) 2952 return (AE_ERROR); 2953 2954 ACPI_LOCK(acpi); 2955 status = sc->acpi_sleep_disabled ? AE_ERROR : AE_OK; 2956 sc->acpi_sleep_disabled = TRUE; 2957 ACPI_UNLOCK(acpi); 2958 2959 return (status); 2960 } 2961 2962 enum acpi_sleep_state { 2963 ACPI_SS_NONE, 2964 ACPI_SS_GPE_SET, 2965 ACPI_SS_DEV_SUSPEND, 2966 ACPI_SS_SLP_PREP, 2967 ACPI_SS_SLEPT, 2968 }; 2969 2970 /* 2971 * Enter the desired system sleep state. 2972 * 2973 * Currently we support S1-S5 but S4 is only S4BIOS 2974 */ 2975 static ACPI_STATUS 2976 acpi_EnterSleepState(struct acpi_softc *sc, int state) 2977 { 2978 register_t intr; 2979 ACPI_STATUS status; 2980 ACPI_EVENT_STATUS power_button_status; 2981 enum acpi_sleep_state slp_state; 2982 int sleep_result; 2983 2984 ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state); 2985 2986 if (state < ACPI_STATE_S1 || state > ACPI_S_STATES_MAX) 2987 return_ACPI_STATUS (AE_BAD_PARAMETER); 2988 if (!acpi_sleep_states[state]) { 2989 device_printf(sc->acpi_dev, "Sleep state S%d not supported by BIOS\n", 2990 state); 2991 return (AE_SUPPORT); 2992 } 2993 2994 /* Re-entry once we're suspending is not allowed. */ 2995 status = acpi_sleep_disable(sc); 2996 if (ACPI_FAILURE(status)) { 2997 device_printf(sc->acpi_dev, 2998 "suspend request ignored (not ready yet)\n"); 2999 return (status); 3000 } 3001 3002 if (state == ACPI_STATE_S5) { 3003 /* 3004 * Shut down cleanly and power off. This will call us back through the 3005 * shutdown handlers. 3006 */ 3007 shutdown_nice(RB_POWEROFF); 3008 return_ACPI_STATUS (AE_OK); 3009 } 3010 3011 EVENTHANDLER_INVOKE(power_suspend_early); 3012 stop_all_proc(); 3013 EVENTHANDLER_INVOKE(power_suspend); 3014 3015 #ifdef EARLY_AP_STARTUP 3016 MPASS(mp_ncpus == 1 || smp_started); 3017 thread_lock(curthread); 3018 sched_bind(curthread, 0); 3019 thread_unlock(curthread); 3020 #else 3021 if (smp_started) { 3022 thread_lock(curthread); 3023 sched_bind(curthread, 0); 3024 thread_unlock(curthread); 3025 } 3026 #endif 3027 3028 /* 3029 * Be sure to hold Giant across DEVICE_SUSPEND/RESUME since non-MPSAFE 3030 * drivers need this. 3031 */ 3032 mtx_lock(&Giant); 3033 3034 slp_state = ACPI_SS_NONE; 3035 3036 sc->acpi_sstate = state; 3037 3038 /* Enable any GPEs as appropriate and requested by the user. */ 3039 acpi_wake_prep_walk(state); 3040 slp_state = ACPI_SS_GPE_SET; 3041 3042 /* 3043 * Inform all devices that we are going to sleep. If at least one 3044 * device fails, DEVICE_SUSPEND() automatically resumes the tree. 3045 * 3046 * XXX Note that a better two-pass approach with a 'veto' pass 3047 * followed by a "real thing" pass would be better, but the current 3048 * bus interface does not provide for this. 3049 */ 3050 if (DEVICE_SUSPEND(root_bus) != 0) { 3051 device_printf(sc->acpi_dev, "device_suspend failed\n"); 3052 goto backout; 3053 } 3054 slp_state = ACPI_SS_DEV_SUSPEND; 3055 3056 status = AcpiEnterSleepStatePrep(state); 3057 if (ACPI_FAILURE(status)) { 3058 device_printf(sc->acpi_dev, "AcpiEnterSleepStatePrep failed - %s\n", 3059 AcpiFormatException(status)); 3060 goto backout; 3061 } 3062 slp_state = ACPI_SS_SLP_PREP; 3063 3064 if (sc->acpi_sleep_delay > 0) 3065 DELAY(sc->acpi_sleep_delay * 1000000); 3066 3067 suspendclock(); 3068 intr = intr_disable(); 3069 if (state != ACPI_STATE_S1) { 3070 sleep_result = acpi_sleep_machdep(sc, state); 3071 acpi_wakeup_machdep(sc, state, sleep_result, 0); 3072 3073 /* 3074 * XXX According to ACPI specification SCI_EN bit should be restored 3075 * by ACPI platform (BIOS, firmware) to its pre-sleep state. 3076 * Unfortunately some BIOSes fail to do that and that leads to 3077 * unexpected and serious consequences during wake up like a system 3078 * getting stuck in SMI handlers. 3079 * This hack is picked up from Linux, which claims that it follows 3080 * Windows behavior. 3081 */ 3082 if (sleep_result == 1 && state != ACPI_STATE_S4) 3083 AcpiWriteBitRegister(ACPI_BITREG_SCI_ENABLE, ACPI_ENABLE_EVENT); 3084 3085 if (sleep_result == 1 && state == ACPI_STATE_S3) { 3086 /* 3087 * Prevent mis-interpretation of the wakeup by power button 3088 * as a request for power off. 3089 * Ideally we should post an appropriate wakeup event, 3090 * perhaps using acpi_event_power_button_wake or alike. 3091 * 3092 * Clearing of power button status after wakeup is mandated 3093 * by ACPI specification in section "Fixed Power Button". 3094 * 3095 * XXX As of ACPICA 20121114 AcpiGetEventStatus provides 3096 * status as 0/1 corressponding to inactive/active despite 3097 * its type being ACPI_EVENT_STATUS. In other words, 3098 * we should not test for ACPI_EVENT_FLAG_SET for time being. 3099 */ 3100 if (ACPI_SUCCESS(AcpiGetEventStatus(ACPI_EVENT_POWER_BUTTON, 3101 &power_button_status)) && power_button_status != 0) { 3102 AcpiClearEvent(ACPI_EVENT_POWER_BUTTON); 3103 device_printf(sc->acpi_dev, 3104 "cleared fixed power button status\n"); 3105 } 3106 } 3107 3108 intr_restore(intr); 3109 3110 /* call acpi_wakeup_machdep() again with interrupt enabled */ 3111 acpi_wakeup_machdep(sc, state, sleep_result, 1); 3112 3113 AcpiLeaveSleepStatePrep(state); 3114 3115 if (sleep_result == -1) 3116 goto backout; 3117 3118 /* Re-enable ACPI hardware on wakeup from sleep state 4. */ 3119 if (state == ACPI_STATE_S4) 3120 AcpiEnable(); 3121 } else { 3122 status = AcpiEnterSleepState(state); 3123 intr_restore(intr); 3124 AcpiLeaveSleepStatePrep(state); 3125 if (ACPI_FAILURE(status)) { 3126 device_printf(sc->acpi_dev, "AcpiEnterSleepState failed - %s\n", 3127 AcpiFormatException(status)); 3128 goto backout; 3129 } 3130 } 3131 slp_state = ACPI_SS_SLEPT; 3132 3133 /* 3134 * Back out state according to how far along we got in the suspend 3135 * process. This handles both the error and success cases. 3136 */ 3137 backout: 3138 if (slp_state >= ACPI_SS_SLP_PREP) 3139 resumeclock(); 3140 if (slp_state >= ACPI_SS_GPE_SET) { 3141 acpi_wake_prep_walk(state); 3142 sc->acpi_sstate = ACPI_STATE_S0; 3143 } 3144 if (slp_state >= ACPI_SS_DEV_SUSPEND) 3145 DEVICE_RESUME(root_bus); 3146 if (slp_state >= ACPI_SS_SLP_PREP) 3147 AcpiLeaveSleepState(state); 3148 if (slp_state >= ACPI_SS_SLEPT) { 3149 #if defined(__i386__) || defined(__amd64__) 3150 /* NB: we are still using ACPI timecounter at this point. */ 3151 resume_TSC(); 3152 #endif 3153 acpi_resync_clock(sc); 3154 acpi_enable_fixed_events(sc); 3155 } 3156 sc->acpi_next_sstate = 0; 3157 3158 mtx_unlock(&Giant); 3159 3160 #ifdef EARLY_AP_STARTUP 3161 thread_lock(curthread); 3162 sched_unbind(curthread); 3163 thread_unlock(curthread); 3164 #else 3165 if (smp_started) { 3166 thread_lock(curthread); 3167 sched_unbind(curthread); 3168 thread_unlock(curthread); 3169 } 3170 #endif 3171 3172 resume_all_proc(); 3173 3174 EVENTHANDLER_INVOKE(power_resume); 3175 3176 /* Allow another sleep request after a while. */ 3177 callout_schedule(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME); 3178 3179 /* Run /etc/rc.resume after we are back. */ 3180 if (devctl_process_running()) 3181 acpi_UserNotify("Resume", ACPI_ROOT_OBJECT, state); 3182 3183 return_ACPI_STATUS (status); 3184 } 3185 3186 static void 3187 acpi_resync_clock(struct acpi_softc *sc) 3188 { 3189 3190 /* 3191 * Warm up timecounter again and reset system clock. 3192 */ 3193 (void)timecounter->tc_get_timecount(timecounter); 3194 (void)timecounter->tc_get_timecount(timecounter); 3195 inittodr(time_second + sc->acpi_sleep_delay); 3196 } 3197 3198 /* Enable or disable the device's wake GPE. */ 3199 int 3200 acpi_wake_set_enable(device_t dev, int enable) 3201 { 3202 struct acpi_prw_data prw; 3203 ACPI_STATUS status; 3204 int flags; 3205 3206 /* Make sure the device supports waking the system and get the GPE. */ 3207 if (acpi_parse_prw(acpi_get_handle(dev), &prw) != 0) 3208 return (ENXIO); 3209 3210 flags = acpi_get_flags(dev); 3211 if (enable) { 3212 status = AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, 3213 ACPI_GPE_ENABLE); 3214 if (ACPI_FAILURE(status)) { 3215 device_printf(dev, "enable wake failed\n"); 3216 return (ENXIO); 3217 } 3218 acpi_set_flags(dev, flags | ACPI_FLAG_WAKE_ENABLED); 3219 } else { 3220 status = AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, 3221 ACPI_GPE_DISABLE); 3222 if (ACPI_FAILURE(status)) { 3223 device_printf(dev, "disable wake failed\n"); 3224 return (ENXIO); 3225 } 3226 acpi_set_flags(dev, flags & ~ACPI_FLAG_WAKE_ENABLED); 3227 } 3228 3229 return (0); 3230 } 3231 3232 static int 3233 acpi_wake_sleep_prep(ACPI_HANDLE handle, int sstate) 3234 { 3235 struct acpi_prw_data prw; 3236 device_t dev; 3237 3238 /* Check that this is a wake-capable device and get its GPE. */ 3239 if (acpi_parse_prw(handle, &prw) != 0) 3240 return (ENXIO); 3241 dev = acpi_get_device(handle); 3242 3243 /* 3244 * The destination sleep state must be less than (i.e., higher power) 3245 * or equal to the value specified by _PRW. If this GPE cannot be 3246 * enabled for the next sleep state, then disable it. If it can and 3247 * the user requested it be enabled, turn on any required power resources 3248 * and set _PSW. 3249 */ 3250 if (sstate > prw.lowest_wake) { 3251 AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, ACPI_GPE_DISABLE); 3252 if (bootverbose) 3253 device_printf(dev, "wake_prep disabled wake for %s (S%d)\n", 3254 acpi_name(handle), sstate); 3255 } else if (dev && (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) != 0) { 3256 acpi_pwr_wake_enable(handle, 1); 3257 acpi_SetInteger(handle, "_PSW", 1); 3258 if (bootverbose) 3259 device_printf(dev, "wake_prep enabled for %s (S%d)\n", 3260 acpi_name(handle), sstate); 3261 } 3262 3263 return (0); 3264 } 3265 3266 static int 3267 acpi_wake_run_prep(ACPI_HANDLE handle, int sstate) 3268 { 3269 struct acpi_prw_data prw; 3270 device_t dev; 3271 3272 /* 3273 * Check that this is a wake-capable device and get its GPE. Return 3274 * now if the user didn't enable this device for wake. 3275 */ 3276 if (acpi_parse_prw(handle, &prw) != 0) 3277 return (ENXIO); 3278 dev = acpi_get_device(handle); 3279 if (dev == NULL || (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) == 0) 3280 return (0); 3281 3282 /* 3283 * If this GPE couldn't be enabled for the previous sleep state, it was 3284 * disabled before going to sleep so re-enable it. If it was enabled, 3285 * clear _PSW and turn off any power resources it used. 3286 */ 3287 if (sstate > prw.lowest_wake) { 3288 AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, ACPI_GPE_ENABLE); 3289 if (bootverbose) 3290 device_printf(dev, "run_prep re-enabled %s\n", acpi_name(handle)); 3291 } else { 3292 acpi_SetInteger(handle, "_PSW", 0); 3293 acpi_pwr_wake_enable(handle, 0); 3294 if (bootverbose) 3295 device_printf(dev, "run_prep cleaned up for %s\n", 3296 acpi_name(handle)); 3297 } 3298 3299 return (0); 3300 } 3301 3302 static ACPI_STATUS 3303 acpi_wake_prep(ACPI_HANDLE handle, UINT32 level, void *context, void **status) 3304 { 3305 int sstate; 3306 3307 /* If suspending, run the sleep prep function, otherwise wake. */ 3308 sstate = *(int *)context; 3309 if (AcpiGbl_SystemAwakeAndRunning) 3310 acpi_wake_sleep_prep(handle, sstate); 3311 else 3312 acpi_wake_run_prep(handle, sstate); 3313 return (AE_OK); 3314 } 3315 3316 /* Walk the tree rooted at acpi0 to prep devices for suspend/resume. */ 3317 static int 3318 acpi_wake_prep_walk(int sstate) 3319 { 3320 ACPI_HANDLE sb_handle; 3321 3322 if (ACPI_SUCCESS(AcpiGetHandle(ACPI_ROOT_OBJECT, "\\_SB_", &sb_handle))) 3323 AcpiWalkNamespace(ACPI_TYPE_DEVICE, sb_handle, 100, 3324 acpi_wake_prep, NULL, &sstate, NULL); 3325 return (0); 3326 } 3327 3328 /* Walk the tree rooted at acpi0 to attach per-device wake sysctls. */ 3329 static int 3330 acpi_wake_sysctl_walk(device_t dev) 3331 { 3332 int error, i, numdevs; 3333 device_t *devlist; 3334 device_t child; 3335 ACPI_STATUS status; 3336 3337 error = device_get_children(dev, &devlist, &numdevs); 3338 if (error != 0 || numdevs == 0) { 3339 if (numdevs == 0) 3340 free(devlist, M_TEMP); 3341 return (error); 3342 } 3343 for (i = 0; i < numdevs; i++) { 3344 child = devlist[i]; 3345 acpi_wake_sysctl_walk(child); 3346 if (!device_is_attached(child)) 3347 continue; 3348 status = AcpiEvaluateObject(acpi_get_handle(child), "_PRW", NULL, NULL); 3349 if (ACPI_SUCCESS(status)) { 3350 SYSCTL_ADD_PROC(device_get_sysctl_ctx(child), 3351 SYSCTL_CHILDREN(device_get_sysctl_tree(child)), OID_AUTO, 3352 "wake", CTLTYPE_INT | CTLFLAG_RW, child, 0, 3353 acpi_wake_set_sysctl, "I", "Device set to wake the system"); 3354 } 3355 } 3356 free(devlist, M_TEMP); 3357 3358 return (0); 3359 } 3360 3361 /* Enable or disable wake from userland. */ 3362 static int 3363 acpi_wake_set_sysctl(SYSCTL_HANDLER_ARGS) 3364 { 3365 int enable, error; 3366 device_t dev; 3367 3368 dev = (device_t)arg1; 3369 enable = (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) ? 1 : 0; 3370 3371 error = sysctl_handle_int(oidp, &enable, 0, req); 3372 if (error != 0 || req->newptr == NULL) 3373 return (error); 3374 if (enable != 0 && enable != 1) 3375 return (EINVAL); 3376 3377 return (acpi_wake_set_enable(dev, enable)); 3378 } 3379 3380 /* Parse a device's _PRW into a structure. */ 3381 int 3382 acpi_parse_prw(ACPI_HANDLE h, struct acpi_prw_data *prw) 3383 { 3384 ACPI_STATUS status; 3385 ACPI_BUFFER prw_buffer; 3386 ACPI_OBJECT *res, *res2; 3387 int error, i, power_count; 3388 3389 if (h == NULL || prw == NULL) 3390 return (EINVAL); 3391 3392 /* 3393 * The _PRW object (7.2.9) is only required for devices that have the 3394 * ability to wake the system from a sleeping state. 3395 */ 3396 error = EINVAL; 3397 prw_buffer.Pointer = NULL; 3398 prw_buffer.Length = ACPI_ALLOCATE_BUFFER; 3399 status = AcpiEvaluateObject(h, "_PRW", NULL, &prw_buffer); 3400 if (ACPI_FAILURE(status)) 3401 return (ENOENT); 3402 res = (ACPI_OBJECT *)prw_buffer.Pointer; 3403 if (res == NULL) 3404 return (ENOENT); 3405 if (!ACPI_PKG_VALID(res, 2)) 3406 goto out; 3407 3408 /* 3409 * Element 1 of the _PRW object: 3410 * The lowest power system sleeping state that can be entered while still 3411 * providing wake functionality. The sleeping state being entered must 3412 * be less than (i.e., higher power) or equal to this value. 3413 */ 3414 if (acpi_PkgInt32(res, 1, &prw->lowest_wake) != 0) 3415 goto out; 3416 3417 /* 3418 * Element 0 of the _PRW object: 3419 */ 3420 switch (res->Package.Elements[0].Type) { 3421 case ACPI_TYPE_INTEGER: 3422 /* 3423 * If the data type of this package element is numeric, then this 3424 * _PRW package element is the bit index in the GPEx_EN, in the 3425 * GPE blocks described in the FADT, of the enable bit that is 3426 * enabled for the wake event. 3427 */ 3428 prw->gpe_handle = NULL; 3429 prw->gpe_bit = res->Package.Elements[0].Integer.Value; 3430 error = 0; 3431 break; 3432 case ACPI_TYPE_PACKAGE: 3433 /* 3434 * If the data type of this package element is a package, then this 3435 * _PRW package element is itself a package containing two 3436 * elements. The first is an object reference to the GPE Block 3437 * device that contains the GPE that will be triggered by the wake 3438 * event. The second element is numeric and it contains the bit 3439 * index in the GPEx_EN, in the GPE Block referenced by the 3440 * first element in the package, of the enable bit that is enabled for 3441 * the wake event. 3442 * 3443 * For example, if this field is a package then it is of the form: 3444 * Package() {\_SB.PCI0.ISA.GPE, 2} 3445 */ 3446 res2 = &res->Package.Elements[0]; 3447 if (!ACPI_PKG_VALID(res2, 2)) 3448 goto out; 3449 prw->gpe_handle = acpi_GetReference(NULL, &res2->Package.Elements[0]); 3450 if (prw->gpe_handle == NULL) 3451 goto out; 3452 if (acpi_PkgInt32(res2, 1, &prw->gpe_bit) != 0) 3453 goto out; 3454 error = 0; 3455 break; 3456 default: 3457 goto out; 3458 } 3459 3460 /* Elements 2 to N of the _PRW object are power resources. */ 3461 power_count = res->Package.Count - 2; 3462 if (power_count > ACPI_PRW_MAX_POWERRES) { 3463 printf("ACPI device %s has too many power resources\n", acpi_name(h)); 3464 power_count = 0; 3465 } 3466 prw->power_res_count = power_count; 3467 for (i = 0; i < power_count; i++) 3468 prw->power_res[i] = res->Package.Elements[i]; 3469 3470 out: 3471 if (prw_buffer.Pointer != NULL) 3472 AcpiOsFree(prw_buffer.Pointer); 3473 return (error); 3474 } 3475 3476 /* 3477 * ACPI Event Handlers 3478 */ 3479 3480 /* System Event Handlers (registered by EVENTHANDLER_REGISTER) */ 3481 3482 static void 3483 acpi_system_eventhandler_sleep(void *arg, int state) 3484 { 3485 struct acpi_softc *sc = (struct acpi_softc *)arg; 3486 int ret; 3487 3488 ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state); 3489 3490 /* Check if button action is disabled or unknown. */ 3491 if (state == ACPI_STATE_UNKNOWN) 3492 return; 3493 3494 /* Request that the system prepare to enter the given suspend state. */ 3495 ret = acpi_ReqSleepState(sc, state); 3496 if (ret != 0) 3497 device_printf(sc->acpi_dev, 3498 "request to enter state S%d failed (err %d)\n", state, ret); 3499 3500 return_VOID; 3501 } 3502 3503 static void 3504 acpi_system_eventhandler_wakeup(void *arg, int state) 3505 { 3506 3507 ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state); 3508 3509 /* Currently, nothing to do for wakeup. */ 3510 3511 return_VOID; 3512 } 3513 3514 /* 3515 * ACPICA Event Handlers (FixedEvent, also called from button notify handler) 3516 */ 3517 static void 3518 acpi_invoke_sleep_eventhandler(void *context) 3519 { 3520 3521 EVENTHANDLER_INVOKE(acpi_sleep_event, *(int *)context); 3522 } 3523 3524 static void 3525 acpi_invoke_wake_eventhandler(void *context) 3526 { 3527 3528 EVENTHANDLER_INVOKE(acpi_wakeup_event, *(int *)context); 3529 } 3530 3531 UINT32 3532 acpi_event_power_button_sleep(void *context) 3533 { 3534 struct acpi_softc *sc = (struct acpi_softc *)context; 3535 3536 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3537 3538 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3539 acpi_invoke_sleep_eventhandler, &sc->acpi_power_button_sx))) 3540 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); 3541 return_VALUE (ACPI_INTERRUPT_HANDLED); 3542 } 3543 3544 UINT32 3545 acpi_event_power_button_wake(void *context) 3546 { 3547 struct acpi_softc *sc = (struct acpi_softc *)context; 3548 3549 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3550 3551 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3552 acpi_invoke_wake_eventhandler, &sc->acpi_power_button_sx))) 3553 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); 3554 return_VALUE (ACPI_INTERRUPT_HANDLED); 3555 } 3556 3557 UINT32 3558 acpi_event_sleep_button_sleep(void *context) 3559 { 3560 struct acpi_softc *sc = (struct acpi_softc *)context; 3561 3562 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3563 3564 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3565 acpi_invoke_sleep_eventhandler, &sc->acpi_sleep_button_sx))) 3566 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); 3567 return_VALUE (ACPI_INTERRUPT_HANDLED); 3568 } 3569 3570 UINT32 3571 acpi_event_sleep_button_wake(void *context) 3572 { 3573 struct acpi_softc *sc = (struct acpi_softc *)context; 3574 3575 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3576 3577 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3578 acpi_invoke_wake_eventhandler, &sc->acpi_sleep_button_sx))) 3579 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); 3580 return_VALUE (ACPI_INTERRUPT_HANDLED); 3581 } 3582 3583 /* 3584 * XXX This static buffer is suboptimal. There is no locking so only 3585 * use this for single-threaded callers. 3586 */ 3587 char * 3588 acpi_name(ACPI_HANDLE handle) 3589 { 3590 ACPI_BUFFER buf; 3591 static char data[256]; 3592 3593 buf.Length = sizeof(data); 3594 buf.Pointer = data; 3595 3596 if (handle && ACPI_SUCCESS(AcpiGetName(handle, ACPI_FULL_PATHNAME, &buf))) 3597 return (data); 3598 return ("(unknown)"); 3599 } 3600 3601 /* 3602 * Debugging/bug-avoidance. Avoid trying to fetch info on various 3603 * parts of the namespace. 3604 */ 3605 int 3606 acpi_avoid(ACPI_HANDLE handle) 3607 { 3608 char *cp, *env, *np; 3609 int len; 3610 3611 np = acpi_name(handle); 3612 if (*np == '\\') 3613 np++; 3614 if ((env = kern_getenv("debug.acpi.avoid")) == NULL) 3615 return (0); 3616 3617 /* Scan the avoid list checking for a match */ 3618 cp = env; 3619 for (;;) { 3620 while (*cp != 0 && isspace(*cp)) 3621 cp++; 3622 if (*cp == 0) 3623 break; 3624 len = 0; 3625 while (cp[len] != 0 && !isspace(cp[len])) 3626 len++; 3627 if (!strncmp(cp, np, len)) { 3628 freeenv(env); 3629 return(1); 3630 } 3631 cp += len; 3632 } 3633 freeenv(env); 3634 3635 return (0); 3636 } 3637 3638 /* 3639 * Debugging/bug-avoidance. Disable ACPI subsystem components. 3640 */ 3641 int 3642 acpi_disabled(char *subsys) 3643 { 3644 char *cp, *env; 3645 int len; 3646 3647 if ((env = kern_getenv("debug.acpi.disabled")) == NULL) 3648 return (0); 3649 if (strcmp(env, "all") == 0) { 3650 freeenv(env); 3651 return (1); 3652 } 3653 3654 /* Scan the disable list, checking for a match. */ 3655 cp = env; 3656 for (;;) { 3657 while (*cp != '\0' && isspace(*cp)) 3658 cp++; 3659 if (*cp == '\0') 3660 break; 3661 len = 0; 3662 while (cp[len] != '\0' && !isspace(cp[len])) 3663 len++; 3664 if (strncmp(cp, subsys, len) == 0) { 3665 freeenv(env); 3666 return (1); 3667 } 3668 cp += len; 3669 } 3670 freeenv(env); 3671 3672 return (0); 3673 } 3674 3675 static void 3676 acpi_lookup(void *arg, const char *name, device_t *dev) 3677 { 3678 ACPI_HANDLE handle; 3679 3680 if (*dev != NULL) 3681 return; 3682 3683 /* 3684 * Allow any handle name that is specified as an absolute path and 3685 * starts with '\'. We could restrict this to \_SB and friends, 3686 * but see acpi_probe_children() for notes on why we scan the entire 3687 * namespace for devices. 3688 * 3689 * XXX: The pathname argument to AcpiGetHandle() should be fixed to 3690 * be const. 3691 */ 3692 if (name[0] != '\\') 3693 return; 3694 if (ACPI_FAILURE(AcpiGetHandle(ACPI_ROOT_OBJECT, __DECONST(char *, name), 3695 &handle))) 3696 return; 3697 *dev = acpi_get_device(handle); 3698 } 3699 3700 /* 3701 * Control interface. 3702 * 3703 * We multiplex ioctls for all participating ACPI devices here. Individual 3704 * drivers wanting to be accessible via /dev/acpi should use the 3705 * register/deregister interface to make their handlers visible. 3706 */ 3707 struct acpi_ioctl_hook 3708 { 3709 TAILQ_ENTRY(acpi_ioctl_hook) link; 3710 u_long cmd; 3711 acpi_ioctl_fn fn; 3712 void *arg; 3713 }; 3714 3715 static TAILQ_HEAD(,acpi_ioctl_hook) acpi_ioctl_hooks; 3716 static int acpi_ioctl_hooks_initted; 3717 3718 int 3719 acpi_register_ioctl(u_long cmd, acpi_ioctl_fn fn, void *arg) 3720 { 3721 struct acpi_ioctl_hook *hp; 3722 3723 if ((hp = malloc(sizeof(*hp), M_ACPIDEV, M_NOWAIT)) == NULL) 3724 return (ENOMEM); 3725 hp->cmd = cmd; 3726 hp->fn = fn; 3727 hp->arg = arg; 3728 3729 ACPI_LOCK(acpi); 3730 if (acpi_ioctl_hooks_initted == 0) { 3731 TAILQ_INIT(&acpi_ioctl_hooks); 3732 acpi_ioctl_hooks_initted = 1; 3733 } 3734 TAILQ_INSERT_TAIL(&acpi_ioctl_hooks, hp, link); 3735 ACPI_UNLOCK(acpi); 3736 3737 return (0); 3738 } 3739 3740 void 3741 acpi_deregister_ioctl(u_long cmd, acpi_ioctl_fn fn) 3742 { 3743 struct acpi_ioctl_hook *hp; 3744 3745 ACPI_LOCK(acpi); 3746 TAILQ_FOREACH(hp, &acpi_ioctl_hooks, link) 3747 if (hp->cmd == cmd && hp->fn == fn) 3748 break; 3749 3750 if (hp != NULL) { 3751 TAILQ_REMOVE(&acpi_ioctl_hooks, hp, link); 3752 free(hp, M_ACPIDEV); 3753 } 3754 ACPI_UNLOCK(acpi); 3755 } 3756 3757 static int 3758 acpiopen(struct cdev *dev, int flag, int fmt, struct thread *td) 3759 { 3760 return (0); 3761 } 3762 3763 static int 3764 acpiclose(struct cdev *dev, int flag, int fmt, struct thread *td) 3765 { 3766 return (0); 3767 } 3768 3769 static int 3770 acpiioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 3771 { 3772 struct acpi_softc *sc; 3773 struct acpi_ioctl_hook *hp; 3774 int error, state; 3775 3776 error = 0; 3777 hp = NULL; 3778 sc = dev->si_drv1; 3779 3780 /* 3781 * Scan the list of registered ioctls, looking for handlers. 3782 */ 3783 ACPI_LOCK(acpi); 3784 if (acpi_ioctl_hooks_initted) 3785 TAILQ_FOREACH(hp, &acpi_ioctl_hooks, link) { 3786 if (hp->cmd == cmd) 3787 break; 3788 } 3789 ACPI_UNLOCK(acpi); 3790 if (hp) 3791 return (hp->fn(cmd, addr, hp->arg)); 3792 3793 /* 3794 * Core ioctls are not permitted for non-writable user. 3795 * Currently, other ioctls just fetch information. 3796 * Not changing system behavior. 3797 */ 3798 if ((flag & FWRITE) == 0) 3799 return (EPERM); 3800 3801 /* Core system ioctls. */ 3802 switch (cmd) { 3803 case ACPIIO_REQSLPSTATE: 3804 state = *(int *)addr; 3805 if (state != ACPI_STATE_S5) 3806 return (acpi_ReqSleepState(sc, state)); 3807 device_printf(sc->acpi_dev, "power off via acpi ioctl not supported\n"); 3808 error = EOPNOTSUPP; 3809 break; 3810 case ACPIIO_ACKSLPSTATE: 3811 error = *(int *)addr; 3812 error = acpi_AckSleepState(sc->acpi_clone, error); 3813 break; 3814 case ACPIIO_SETSLPSTATE: /* DEPRECATED */ 3815 state = *(int *)addr; 3816 if (state < ACPI_STATE_S0 || state > ACPI_S_STATES_MAX) 3817 return (EINVAL); 3818 if (!acpi_sleep_states[state]) 3819 return (EOPNOTSUPP); 3820 if (ACPI_FAILURE(acpi_SetSleepState(sc, state))) 3821 error = ENXIO; 3822 break; 3823 default: 3824 error = ENXIO; 3825 break; 3826 } 3827 3828 return (error); 3829 } 3830 3831 static int 3832 acpi_sname2sstate(const char *sname) 3833 { 3834 int sstate; 3835 3836 if (toupper(sname[0]) == 'S') { 3837 sstate = sname[1] - '0'; 3838 if (sstate >= ACPI_STATE_S0 && sstate <= ACPI_STATE_S5 && 3839 sname[2] == '\0') 3840 return (sstate); 3841 } else if (strcasecmp(sname, "NONE") == 0) 3842 return (ACPI_STATE_UNKNOWN); 3843 return (-1); 3844 } 3845 3846 static const char * 3847 acpi_sstate2sname(int sstate) 3848 { 3849 static const char *snames[] = { "S0", "S1", "S2", "S3", "S4", "S5" }; 3850 3851 if (sstate >= ACPI_STATE_S0 && sstate <= ACPI_STATE_S5) 3852 return (snames[sstate]); 3853 else if (sstate == ACPI_STATE_UNKNOWN) 3854 return ("NONE"); 3855 return (NULL); 3856 } 3857 3858 static int 3859 acpi_supported_sleep_state_sysctl(SYSCTL_HANDLER_ARGS) 3860 { 3861 int error; 3862 struct sbuf sb; 3863 UINT8 state; 3864 3865 sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND); 3866 for (state = ACPI_STATE_S1; state < ACPI_S_STATE_COUNT; state++) 3867 if (acpi_sleep_states[state]) 3868 sbuf_printf(&sb, "%s ", acpi_sstate2sname(state)); 3869 sbuf_trim(&sb); 3870 sbuf_finish(&sb); 3871 error = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req); 3872 sbuf_delete(&sb); 3873 return (error); 3874 } 3875 3876 static int 3877 acpi_sleep_state_sysctl(SYSCTL_HANDLER_ARGS) 3878 { 3879 char sleep_state[10]; 3880 int error, new_state, old_state; 3881 3882 old_state = *(int *)oidp->oid_arg1; 3883 strlcpy(sleep_state, acpi_sstate2sname(old_state), sizeof(sleep_state)); 3884 error = sysctl_handle_string(oidp, sleep_state, sizeof(sleep_state), req); 3885 if (error == 0 && req->newptr != NULL) { 3886 new_state = acpi_sname2sstate(sleep_state); 3887 if (new_state < ACPI_STATE_S1) 3888 return (EINVAL); 3889 if (new_state < ACPI_S_STATE_COUNT && !acpi_sleep_states[new_state]) 3890 return (EOPNOTSUPP); 3891 if (new_state != old_state) 3892 *(int *)oidp->oid_arg1 = new_state; 3893 } 3894 return (error); 3895 } 3896 3897 /* Inform devctl(4) when we receive a Notify. */ 3898 void 3899 acpi_UserNotify(const char *subsystem, ACPI_HANDLE h, uint8_t notify) 3900 { 3901 char notify_buf[16]; 3902 ACPI_BUFFER handle_buf; 3903 ACPI_STATUS status; 3904 3905 if (subsystem == NULL) 3906 return; 3907 3908 handle_buf.Pointer = NULL; 3909 handle_buf.Length = ACPI_ALLOCATE_BUFFER; 3910 status = AcpiNsHandleToPathname(h, &handle_buf, FALSE); 3911 if (ACPI_FAILURE(status)) 3912 return; 3913 snprintf(notify_buf, sizeof(notify_buf), "notify=0x%02x", notify); 3914 devctl_notify("ACPI", subsystem, handle_buf.Pointer, notify_buf); 3915 AcpiOsFree(handle_buf.Pointer); 3916 } 3917 3918 #ifdef ACPI_DEBUG 3919 /* 3920 * Support for parsing debug options from the kernel environment. 3921 * 3922 * Bits may be set in the AcpiDbgLayer and AcpiDbgLevel debug registers 3923 * by specifying the names of the bits in the debug.acpi.layer and 3924 * debug.acpi.level environment variables. Bits may be unset by 3925 * prefixing the bit name with !. 3926 */ 3927 struct debugtag 3928 { 3929 char *name; 3930 UINT32 value; 3931 }; 3932 3933 static struct debugtag dbg_layer[] = { 3934 {"ACPI_UTILITIES", ACPI_UTILITIES}, 3935 {"ACPI_HARDWARE", ACPI_HARDWARE}, 3936 {"ACPI_EVENTS", ACPI_EVENTS}, 3937 {"ACPI_TABLES", ACPI_TABLES}, 3938 {"ACPI_NAMESPACE", ACPI_NAMESPACE}, 3939 {"ACPI_PARSER", ACPI_PARSER}, 3940 {"ACPI_DISPATCHER", ACPI_DISPATCHER}, 3941 {"ACPI_EXECUTER", ACPI_EXECUTER}, 3942 {"ACPI_RESOURCES", ACPI_RESOURCES}, 3943 {"ACPI_CA_DEBUGGER", ACPI_CA_DEBUGGER}, 3944 {"ACPI_OS_SERVICES", ACPI_OS_SERVICES}, 3945 {"ACPI_CA_DISASSEMBLER", ACPI_CA_DISASSEMBLER}, 3946 {"ACPI_ALL_COMPONENTS", ACPI_ALL_COMPONENTS}, 3947 3948 {"ACPI_AC_ADAPTER", ACPI_AC_ADAPTER}, 3949 {"ACPI_BATTERY", ACPI_BATTERY}, 3950 {"ACPI_BUS", ACPI_BUS}, 3951 {"ACPI_BUTTON", ACPI_BUTTON}, 3952 {"ACPI_EC", ACPI_EC}, 3953 {"ACPI_FAN", ACPI_FAN}, 3954 {"ACPI_POWERRES", ACPI_POWERRES}, 3955 {"ACPI_PROCESSOR", ACPI_PROCESSOR}, 3956 {"ACPI_THERMAL", ACPI_THERMAL}, 3957 {"ACPI_TIMER", ACPI_TIMER}, 3958 {"ACPI_ALL_DRIVERS", ACPI_ALL_DRIVERS}, 3959 {NULL, 0} 3960 }; 3961 3962 static struct debugtag dbg_level[] = { 3963 {"ACPI_LV_INIT", ACPI_LV_INIT}, 3964 {"ACPI_LV_DEBUG_OBJECT", ACPI_LV_DEBUG_OBJECT}, 3965 {"ACPI_LV_INFO", ACPI_LV_INFO}, 3966 {"ACPI_LV_REPAIR", ACPI_LV_REPAIR}, 3967 {"ACPI_LV_ALL_EXCEPTIONS", ACPI_LV_ALL_EXCEPTIONS}, 3968 3969 /* Trace verbosity level 1 [Standard Trace Level] */ 3970 {"ACPI_LV_INIT_NAMES", ACPI_LV_INIT_NAMES}, 3971 {"ACPI_LV_PARSE", ACPI_LV_PARSE}, 3972 {"ACPI_LV_LOAD", ACPI_LV_LOAD}, 3973 {"ACPI_LV_DISPATCH", ACPI_LV_DISPATCH}, 3974 {"ACPI_LV_EXEC", ACPI_LV_EXEC}, 3975 {"ACPI_LV_NAMES", ACPI_LV_NAMES}, 3976 {"ACPI_LV_OPREGION", ACPI_LV_OPREGION}, 3977 {"ACPI_LV_BFIELD", ACPI_LV_BFIELD}, 3978 {"ACPI_LV_TABLES", ACPI_LV_TABLES}, 3979 {"ACPI_LV_VALUES", ACPI_LV_VALUES}, 3980 {"ACPI_LV_OBJECTS", ACPI_LV_OBJECTS}, 3981 {"ACPI_LV_RESOURCES", ACPI_LV_RESOURCES}, 3982 {"ACPI_LV_USER_REQUESTS", ACPI_LV_USER_REQUESTS}, 3983 {"ACPI_LV_PACKAGE", ACPI_LV_PACKAGE}, 3984 {"ACPI_LV_VERBOSITY1", ACPI_LV_VERBOSITY1}, 3985 3986 /* Trace verbosity level 2 [Function tracing and memory allocation] */ 3987 {"ACPI_LV_ALLOCATIONS", ACPI_LV_ALLOCATIONS}, 3988 {"ACPI_LV_FUNCTIONS", ACPI_LV_FUNCTIONS}, 3989 {"ACPI_LV_OPTIMIZATIONS", ACPI_LV_OPTIMIZATIONS}, 3990 {"ACPI_LV_VERBOSITY2", ACPI_LV_VERBOSITY2}, 3991 {"ACPI_LV_ALL", ACPI_LV_ALL}, 3992 3993 /* Trace verbosity level 3 [Threading, I/O, and Interrupts] */ 3994 {"ACPI_LV_MUTEX", ACPI_LV_MUTEX}, 3995 {"ACPI_LV_THREADS", ACPI_LV_THREADS}, 3996 {"ACPI_LV_IO", ACPI_LV_IO}, 3997 {"ACPI_LV_INTERRUPTS", ACPI_LV_INTERRUPTS}, 3998 {"ACPI_LV_VERBOSITY3", ACPI_LV_VERBOSITY3}, 3999 4000 /* Exceptionally verbose output -- also used in the global "DebugLevel" */ 4001 {"ACPI_LV_AML_DISASSEMBLE", ACPI_LV_AML_DISASSEMBLE}, 4002 {"ACPI_LV_VERBOSE_INFO", ACPI_LV_VERBOSE_INFO}, 4003 {"ACPI_LV_FULL_TABLES", ACPI_LV_FULL_TABLES}, 4004 {"ACPI_LV_EVENTS", ACPI_LV_EVENTS}, 4005 {"ACPI_LV_VERBOSE", ACPI_LV_VERBOSE}, 4006 {NULL, 0} 4007 }; 4008 4009 static void 4010 acpi_parse_debug(char *cp, struct debugtag *tag, UINT32 *flag) 4011 { 4012 char *ep; 4013 int i, l; 4014 int set; 4015 4016 while (*cp) { 4017 if (isspace(*cp)) { 4018 cp++; 4019 continue; 4020 } 4021 ep = cp; 4022 while (*ep && !isspace(*ep)) 4023 ep++; 4024 if (*cp == '!') { 4025 set = 0; 4026 cp++; 4027 if (cp == ep) 4028 continue; 4029 } else { 4030 set = 1; 4031 } 4032 l = ep - cp; 4033 for (i = 0; tag[i].name != NULL; i++) { 4034 if (!strncmp(cp, tag[i].name, l)) { 4035 if (set) 4036 *flag |= tag[i].value; 4037 else 4038 *flag &= ~tag[i].value; 4039 } 4040 } 4041 cp = ep; 4042 } 4043 } 4044 4045 static void 4046 acpi_set_debugging(void *junk) 4047 { 4048 char *layer, *level; 4049 4050 if (cold) { 4051 AcpiDbgLayer = 0; 4052 AcpiDbgLevel = 0; 4053 } 4054 4055 layer = kern_getenv("debug.acpi.layer"); 4056 level = kern_getenv("debug.acpi.level"); 4057 if (layer == NULL && level == NULL) 4058 return; 4059 4060 printf("ACPI set debug"); 4061 if (layer != NULL) { 4062 if (strcmp("NONE", layer) != 0) 4063 printf(" layer '%s'", layer); 4064 acpi_parse_debug(layer, &dbg_layer[0], &AcpiDbgLayer); 4065 freeenv(layer); 4066 } 4067 if (level != NULL) { 4068 if (strcmp("NONE", level) != 0) 4069 printf(" level '%s'", level); 4070 acpi_parse_debug(level, &dbg_level[0], &AcpiDbgLevel); 4071 freeenv(level); 4072 } 4073 printf("\n"); 4074 } 4075 4076 SYSINIT(acpi_debugging, SI_SUB_TUNABLES, SI_ORDER_ANY, acpi_set_debugging, 4077 NULL); 4078 4079 static int 4080 acpi_debug_sysctl(SYSCTL_HANDLER_ARGS) 4081 { 4082 int error, *dbg; 4083 struct debugtag *tag; 4084 struct sbuf sb; 4085 char temp[128]; 4086 4087 if (sbuf_new(&sb, NULL, 128, SBUF_AUTOEXTEND) == NULL) 4088 return (ENOMEM); 4089 if (strcmp(oidp->oid_arg1, "debug.acpi.layer") == 0) { 4090 tag = &dbg_layer[0]; 4091 dbg = &AcpiDbgLayer; 4092 } else { 4093 tag = &dbg_level[0]; 4094 dbg = &AcpiDbgLevel; 4095 } 4096 4097 /* Get old values if this is a get request. */ 4098 ACPI_SERIAL_BEGIN(acpi); 4099 if (*dbg == 0) { 4100 sbuf_cpy(&sb, "NONE"); 4101 } else if (req->newptr == NULL) { 4102 for (; tag->name != NULL; tag++) { 4103 if ((*dbg & tag->value) == tag->value) 4104 sbuf_printf(&sb, "%s ", tag->name); 4105 } 4106 } 4107 sbuf_trim(&sb); 4108 sbuf_finish(&sb); 4109 strlcpy(temp, sbuf_data(&sb), sizeof(temp)); 4110 sbuf_delete(&sb); 4111 4112 error = sysctl_handle_string(oidp, temp, sizeof(temp), req); 4113 4114 /* Check for error or no change */ 4115 if (error == 0 && req->newptr != NULL) { 4116 *dbg = 0; 4117 kern_setenv((char *)oidp->oid_arg1, temp); 4118 acpi_set_debugging(NULL); 4119 } 4120 ACPI_SERIAL_END(acpi); 4121 4122 return (error); 4123 } 4124 4125 SYSCTL_PROC(_debug_acpi, OID_AUTO, layer, CTLFLAG_RW | CTLTYPE_STRING, 4126 "debug.acpi.layer", 0, acpi_debug_sysctl, "A", ""); 4127 SYSCTL_PROC(_debug_acpi, OID_AUTO, level, CTLFLAG_RW | CTLTYPE_STRING, 4128 "debug.acpi.level", 0, acpi_debug_sysctl, "A", ""); 4129 #endif /* ACPI_DEBUG */ 4130 4131 static int 4132 acpi_debug_objects_sysctl(SYSCTL_HANDLER_ARGS) 4133 { 4134 int error; 4135 int old; 4136 4137 old = acpi_debug_objects; 4138 error = sysctl_handle_int(oidp, &acpi_debug_objects, 0, req); 4139 if (error != 0 || req->newptr == NULL) 4140 return (error); 4141 if (old == acpi_debug_objects || (old && acpi_debug_objects)) 4142 return (0); 4143 4144 ACPI_SERIAL_BEGIN(acpi); 4145 AcpiGbl_EnableAmlDebugObject = acpi_debug_objects ? TRUE : FALSE; 4146 ACPI_SERIAL_END(acpi); 4147 4148 return (0); 4149 } 4150 4151 static int 4152 acpi_parse_interfaces(char *str, struct acpi_interface *iface) 4153 { 4154 char *p; 4155 size_t len; 4156 int i, j; 4157 4158 p = str; 4159 while (isspace(*p) || *p == ',') 4160 p++; 4161 len = strlen(p); 4162 if (len == 0) 4163 return (0); 4164 p = strdup(p, M_TEMP); 4165 for (i = 0; i < len; i++) 4166 if (p[i] == ',') 4167 p[i] = '\0'; 4168 i = j = 0; 4169 while (i < len) 4170 if (isspace(p[i]) || p[i] == '\0') 4171 i++; 4172 else { 4173 i += strlen(p + i) + 1; 4174 j++; 4175 } 4176 if (j == 0) { 4177 free(p, M_TEMP); 4178 return (0); 4179 } 4180 iface->data = malloc(sizeof(*iface->data) * j, M_TEMP, M_WAITOK); 4181 iface->num = j; 4182 i = j = 0; 4183 while (i < len) 4184 if (isspace(p[i]) || p[i] == '\0') 4185 i++; 4186 else { 4187 iface->data[j] = p + i; 4188 i += strlen(p + i) + 1; 4189 j++; 4190 } 4191 4192 return (j); 4193 } 4194 4195 static void 4196 acpi_free_interfaces(struct acpi_interface *iface) 4197 { 4198 4199 free(iface->data[0], M_TEMP); 4200 free(iface->data, M_TEMP); 4201 } 4202 4203 static void 4204 acpi_reset_interfaces(device_t dev) 4205 { 4206 struct acpi_interface list; 4207 ACPI_STATUS status; 4208 int i; 4209 4210 if (acpi_parse_interfaces(acpi_install_interface, &list) > 0) { 4211 for (i = 0; i < list.num; i++) { 4212 status = AcpiInstallInterface(list.data[i]); 4213 if (ACPI_FAILURE(status)) 4214 device_printf(dev, 4215 "failed to install _OSI(\"%s\"): %s\n", 4216 list.data[i], AcpiFormatException(status)); 4217 else if (bootverbose) 4218 device_printf(dev, "installed _OSI(\"%s\")\n", 4219 list.data[i]); 4220 } 4221 acpi_free_interfaces(&list); 4222 } 4223 if (acpi_parse_interfaces(acpi_remove_interface, &list) > 0) { 4224 for (i = 0; i < list.num; i++) { 4225 status = AcpiRemoveInterface(list.data[i]); 4226 if (ACPI_FAILURE(status)) 4227 device_printf(dev, 4228 "failed to remove _OSI(\"%s\"): %s\n", 4229 list.data[i], AcpiFormatException(status)); 4230 else if (bootverbose) 4231 device_printf(dev, "removed _OSI(\"%s\")\n", 4232 list.data[i]); 4233 } 4234 acpi_free_interfaces(&list); 4235 } 4236 } 4237 4238 static int 4239 acpi_pm_func(u_long cmd, void *arg, ...) 4240 { 4241 int state, acpi_state; 4242 int error; 4243 struct acpi_softc *sc; 4244 va_list ap; 4245 4246 error = 0; 4247 switch (cmd) { 4248 case POWER_CMD_SUSPEND: 4249 sc = (struct acpi_softc *)arg; 4250 if (sc == NULL) { 4251 error = EINVAL; 4252 goto out; 4253 } 4254 4255 va_start(ap, arg); 4256 state = va_arg(ap, int); 4257 va_end(ap); 4258 4259 switch (state) { 4260 case POWER_SLEEP_STATE_STANDBY: 4261 acpi_state = sc->acpi_standby_sx; 4262 break; 4263 case POWER_SLEEP_STATE_SUSPEND: 4264 acpi_state = sc->acpi_suspend_sx; 4265 break; 4266 case POWER_SLEEP_STATE_HIBERNATE: 4267 acpi_state = ACPI_STATE_S4; 4268 break; 4269 default: 4270 error = EINVAL; 4271 goto out; 4272 } 4273 4274 if (ACPI_FAILURE(acpi_EnterSleepState(sc, acpi_state))) 4275 error = ENXIO; 4276 break; 4277 default: 4278 error = EINVAL; 4279 goto out; 4280 } 4281 4282 out: 4283 return (error); 4284 } 4285 4286 static void 4287 acpi_pm_register(void *arg) 4288 { 4289 if (!cold || resource_disabled("acpi", 0)) 4290 return; 4291 4292 power_pm_register(POWER_PM_TYPE_ACPI, acpi_pm_func, NULL); 4293 } 4294 4295 SYSINIT(power, SI_SUB_KLD, SI_ORDER_ANY, acpi_pm_register, NULL); 4296