1 /*- 2 * Copyright (c) 2000 Takanori Watanabe <takawata@jp.freebsd.org> 3 * Copyright (c) 2000 Mitsuru IWASAKI <iwasaki@jp.freebsd.org> 4 * Copyright (c) 2000, 2001 Michael Smith 5 * Copyright (c) 2000 BSDi 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include "opt_acpi.h" 34 #include <sys/param.h> 35 #include <sys/kernel.h> 36 #include <sys/proc.h> 37 #include <sys/fcntl.h> 38 #include <sys/malloc.h> 39 #include <sys/module.h> 40 #include <sys/bus.h> 41 #include <sys/conf.h> 42 #include <sys/ioccom.h> 43 #include <sys/reboot.h> 44 #include <sys/sysctl.h> 45 #include <sys/ctype.h> 46 #include <sys/linker.h> 47 #include <sys/power.h> 48 #include <sys/sbuf.h> 49 #include <sys/sched.h> 50 #include <sys/smp.h> 51 #include <sys/timetc.h> 52 53 #if defined(__i386__) || defined(__amd64__) 54 #include <machine/pci_cfgreg.h> 55 #endif 56 #include <machine/resource.h> 57 #include <machine/bus.h> 58 #include <sys/rman.h> 59 #include <isa/isavar.h> 60 #include <isa/pnpvar.h> 61 62 #include <contrib/dev/acpica/include/acpi.h> 63 #include <contrib/dev/acpica/include/accommon.h> 64 #include <contrib/dev/acpica/include/acnamesp.h> 65 66 #include <dev/acpica/acpivar.h> 67 #include <dev/acpica/acpiio.h> 68 69 #include <vm/vm_param.h> 70 71 static MALLOC_DEFINE(M_ACPIDEV, "acpidev", "ACPI devices"); 72 73 /* Hooks for the ACPI CA debugging infrastructure */ 74 #define _COMPONENT ACPI_BUS 75 ACPI_MODULE_NAME("ACPI") 76 77 static d_open_t acpiopen; 78 static d_close_t acpiclose; 79 static d_ioctl_t acpiioctl; 80 81 static struct cdevsw acpi_cdevsw = { 82 .d_version = D_VERSION, 83 .d_open = acpiopen, 84 .d_close = acpiclose, 85 .d_ioctl = acpiioctl, 86 .d_name = "acpi", 87 }; 88 89 struct acpi_interface { 90 ACPI_STRING *data; 91 int num; 92 }; 93 94 /* Global mutex for locking access to the ACPI subsystem. */ 95 struct mtx acpi_mutex; 96 97 /* Bitmap of device quirks. */ 98 int acpi_quirks; 99 100 /* Supported sleep states. */ 101 static BOOLEAN acpi_sleep_states[ACPI_S_STATE_COUNT]; 102 103 static int acpi_modevent(struct module *mod, int event, void *junk); 104 static int acpi_probe(device_t dev); 105 static int acpi_attach(device_t dev); 106 static int acpi_suspend(device_t dev); 107 static int acpi_resume(device_t dev); 108 static int acpi_shutdown(device_t dev); 109 static device_t acpi_add_child(device_t bus, u_int order, const char *name, 110 int unit); 111 static int acpi_print_child(device_t bus, device_t child); 112 static void acpi_probe_nomatch(device_t bus, device_t child); 113 static void acpi_driver_added(device_t dev, driver_t *driver); 114 static int acpi_read_ivar(device_t dev, device_t child, int index, 115 uintptr_t *result); 116 static int acpi_write_ivar(device_t dev, device_t child, int index, 117 uintptr_t value); 118 static struct resource_list *acpi_get_rlist(device_t dev, device_t child); 119 static void acpi_reserve_resources(device_t dev); 120 static int acpi_sysres_alloc(device_t dev); 121 static int acpi_set_resource(device_t dev, device_t child, int type, 122 int rid, u_long start, u_long count); 123 static struct resource *acpi_alloc_resource(device_t bus, device_t child, 124 int type, int *rid, u_long start, u_long end, 125 u_long count, u_int flags); 126 static int acpi_adjust_resource(device_t bus, device_t child, int type, 127 struct resource *r, u_long start, u_long end); 128 static int acpi_release_resource(device_t bus, device_t child, int type, 129 int rid, struct resource *r); 130 static void acpi_delete_resource(device_t bus, device_t child, int type, 131 int rid); 132 static uint32_t acpi_isa_get_logicalid(device_t dev); 133 static int acpi_isa_get_compatid(device_t dev, uint32_t *cids, int count); 134 static char *acpi_device_id_probe(device_t bus, device_t dev, char **ids); 135 static ACPI_STATUS acpi_device_eval_obj(device_t bus, device_t dev, 136 ACPI_STRING pathname, ACPI_OBJECT_LIST *parameters, 137 ACPI_BUFFER *ret); 138 static ACPI_STATUS acpi_device_scan_cb(ACPI_HANDLE h, UINT32 level, 139 void *context, void **retval); 140 static ACPI_STATUS acpi_device_scan_children(device_t bus, device_t dev, 141 int max_depth, acpi_scan_cb_t user_fn, void *arg); 142 static int acpi_set_powerstate(device_t child, int state); 143 static int acpi_isa_pnp_probe(device_t bus, device_t child, 144 struct isa_pnp_id *ids); 145 static void acpi_probe_children(device_t bus); 146 static void acpi_probe_order(ACPI_HANDLE handle, int *order); 147 static ACPI_STATUS acpi_probe_child(ACPI_HANDLE handle, UINT32 level, 148 void *context, void **status); 149 static void acpi_sleep_enable(void *arg); 150 static ACPI_STATUS acpi_sleep_disable(struct acpi_softc *sc); 151 static ACPI_STATUS acpi_EnterSleepState(struct acpi_softc *sc, int state); 152 static void acpi_shutdown_final(void *arg, int howto); 153 static void acpi_enable_fixed_events(struct acpi_softc *sc); 154 static BOOLEAN acpi_has_hid(ACPI_HANDLE handle); 155 static void acpi_resync_clock(struct acpi_softc *sc); 156 static int acpi_wake_sleep_prep(ACPI_HANDLE handle, int sstate); 157 static int acpi_wake_run_prep(ACPI_HANDLE handle, int sstate); 158 static int acpi_wake_prep_walk(int sstate); 159 static int acpi_wake_sysctl_walk(device_t dev); 160 static int acpi_wake_set_sysctl(SYSCTL_HANDLER_ARGS); 161 static void acpi_system_eventhandler_sleep(void *arg, int state); 162 static void acpi_system_eventhandler_wakeup(void *arg, int state); 163 static int acpi_sname2sstate(const char *sname); 164 static const char *acpi_sstate2sname(int sstate); 165 static int acpi_supported_sleep_state_sysctl(SYSCTL_HANDLER_ARGS); 166 static int acpi_sleep_state_sysctl(SYSCTL_HANDLER_ARGS); 167 static int acpi_debug_objects_sysctl(SYSCTL_HANDLER_ARGS); 168 static int acpi_pm_func(u_long cmd, void *arg, ...); 169 static int acpi_child_location_str_method(device_t acdev, device_t child, 170 char *buf, size_t buflen); 171 static int acpi_child_pnpinfo_str_method(device_t acdev, device_t child, 172 char *buf, size_t buflen); 173 #if defined(__i386__) || defined(__amd64__) 174 static void acpi_enable_pcie(void); 175 #endif 176 static void acpi_hint_device_unit(device_t acdev, device_t child, 177 const char *name, int *unitp); 178 static void acpi_reset_interfaces(device_t dev); 179 180 static device_method_t acpi_methods[] = { 181 /* Device interface */ 182 DEVMETHOD(device_probe, acpi_probe), 183 DEVMETHOD(device_attach, acpi_attach), 184 DEVMETHOD(device_shutdown, acpi_shutdown), 185 DEVMETHOD(device_detach, bus_generic_detach), 186 DEVMETHOD(device_suspend, acpi_suspend), 187 DEVMETHOD(device_resume, acpi_resume), 188 189 /* Bus interface */ 190 DEVMETHOD(bus_add_child, acpi_add_child), 191 DEVMETHOD(bus_print_child, acpi_print_child), 192 DEVMETHOD(bus_probe_nomatch, acpi_probe_nomatch), 193 DEVMETHOD(bus_driver_added, acpi_driver_added), 194 DEVMETHOD(bus_read_ivar, acpi_read_ivar), 195 DEVMETHOD(bus_write_ivar, acpi_write_ivar), 196 DEVMETHOD(bus_get_resource_list, acpi_get_rlist), 197 DEVMETHOD(bus_set_resource, acpi_set_resource), 198 DEVMETHOD(bus_get_resource, bus_generic_rl_get_resource), 199 DEVMETHOD(bus_alloc_resource, acpi_alloc_resource), 200 DEVMETHOD(bus_adjust_resource, acpi_adjust_resource), 201 DEVMETHOD(bus_release_resource, acpi_release_resource), 202 DEVMETHOD(bus_delete_resource, acpi_delete_resource), 203 DEVMETHOD(bus_child_pnpinfo_str, acpi_child_pnpinfo_str_method), 204 DEVMETHOD(bus_child_location_str, acpi_child_location_str_method), 205 DEVMETHOD(bus_activate_resource, bus_generic_activate_resource), 206 DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource), 207 DEVMETHOD(bus_setup_intr, bus_generic_setup_intr), 208 DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr), 209 DEVMETHOD(bus_hint_device_unit, acpi_hint_device_unit), 210 211 /* ACPI bus */ 212 DEVMETHOD(acpi_id_probe, acpi_device_id_probe), 213 DEVMETHOD(acpi_evaluate_object, acpi_device_eval_obj), 214 DEVMETHOD(acpi_pwr_for_sleep, acpi_device_pwr_for_sleep), 215 DEVMETHOD(acpi_scan_children, acpi_device_scan_children), 216 217 /* ISA emulation */ 218 DEVMETHOD(isa_pnp_probe, acpi_isa_pnp_probe), 219 220 DEVMETHOD_END 221 }; 222 223 static driver_t acpi_driver = { 224 "acpi", 225 acpi_methods, 226 sizeof(struct acpi_softc), 227 }; 228 229 static devclass_t acpi_devclass; 230 DRIVER_MODULE(acpi, nexus, acpi_driver, acpi_devclass, acpi_modevent, 0); 231 MODULE_VERSION(acpi, 1); 232 233 ACPI_SERIAL_DECL(acpi, "ACPI root bus"); 234 235 /* Local pools for managing system resources for ACPI child devices. */ 236 static struct rman acpi_rman_io, acpi_rman_mem; 237 238 #define ACPI_MINIMUM_AWAKETIME 5 239 240 /* Holds the description of the acpi0 device. */ 241 static char acpi_desc[ACPI_OEM_ID_SIZE + ACPI_OEM_TABLE_ID_SIZE + 2]; 242 243 SYSCTL_NODE(_debug, OID_AUTO, acpi, CTLFLAG_RD, NULL, "ACPI debugging"); 244 static char acpi_ca_version[12]; 245 SYSCTL_STRING(_debug_acpi, OID_AUTO, acpi_ca_version, CTLFLAG_RD, 246 acpi_ca_version, 0, "Version of Intel ACPI-CA"); 247 248 /* 249 * Allow overriding _OSI methods. 250 */ 251 static char acpi_install_interface[256]; 252 TUNABLE_STR("hw.acpi.install_interface", acpi_install_interface, 253 sizeof(acpi_install_interface)); 254 static char acpi_remove_interface[256]; 255 TUNABLE_STR("hw.acpi.remove_interface", acpi_remove_interface, 256 sizeof(acpi_remove_interface)); 257 258 /* 259 * Allow override of whether methods execute in parallel or not. 260 * Enable this for serial behavior, which fixes "AE_ALREADY_EXISTS" 261 * errors for AML that really can't handle parallel method execution. 262 * It is off by default since this breaks recursive methods and 263 * some IBMs use such code. 264 */ 265 static int acpi_serialize_methods; 266 TUNABLE_INT("hw.acpi.serialize_methods", &acpi_serialize_methods); 267 268 /* Allow users to dump Debug objects without ACPI debugger. */ 269 static int acpi_debug_objects; 270 TUNABLE_INT("debug.acpi.enable_debug_objects", &acpi_debug_objects); 271 SYSCTL_PROC(_debug_acpi, OID_AUTO, enable_debug_objects, 272 CTLFLAG_RW | CTLTYPE_INT, NULL, 0, acpi_debug_objects_sysctl, "I", 273 "Enable Debug objects"); 274 275 /* Allow the interpreter to ignore common mistakes in BIOS. */ 276 static int acpi_interpreter_slack = 1; 277 TUNABLE_INT("debug.acpi.interpreter_slack", &acpi_interpreter_slack); 278 SYSCTL_INT(_debug_acpi, OID_AUTO, interpreter_slack, CTLFLAG_RDTUN, 279 &acpi_interpreter_slack, 1, "Turn on interpreter slack mode."); 280 281 #ifdef __amd64__ 282 /* Reset system clock while resuming. XXX Remove once tested. */ 283 static int acpi_reset_clock = 1; 284 TUNABLE_INT("debug.acpi.reset_clock", &acpi_reset_clock); 285 SYSCTL_INT(_debug_acpi, OID_AUTO, reset_clock, CTLFLAG_RW, 286 &acpi_reset_clock, 1, "Reset system clock while resuming."); 287 #endif 288 289 /* Allow users to override quirks. */ 290 TUNABLE_INT("debug.acpi.quirks", &acpi_quirks); 291 292 static int acpi_susp_bounce; 293 SYSCTL_INT(_debug_acpi, OID_AUTO, suspend_bounce, CTLFLAG_RW, 294 &acpi_susp_bounce, 0, "Don't actually suspend, just test devices."); 295 296 /* 297 * ACPI can only be loaded as a module by the loader; activating it after 298 * system bootstrap time is not useful, and can be fatal to the system. 299 * It also cannot be unloaded, since the entire system bus hierarchy hangs 300 * off it. 301 */ 302 static int 303 acpi_modevent(struct module *mod, int event, void *junk) 304 { 305 switch (event) { 306 case MOD_LOAD: 307 if (!cold) { 308 printf("The ACPI driver cannot be loaded after boot.\n"); 309 return (EPERM); 310 } 311 break; 312 case MOD_UNLOAD: 313 if (!cold && power_pm_get_type() == POWER_PM_TYPE_ACPI) 314 return (EBUSY); 315 break; 316 default: 317 break; 318 } 319 return (0); 320 } 321 322 /* 323 * Perform early initialization. 324 */ 325 ACPI_STATUS 326 acpi_Startup(void) 327 { 328 static int started = 0; 329 ACPI_STATUS status; 330 int val; 331 332 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 333 334 /* Only run the startup code once. The MADT driver also calls this. */ 335 if (started) 336 return_VALUE (AE_OK); 337 started = 1; 338 339 /* 340 * Pre-allocate space for RSDT/XSDT and DSDT tables and allow resizing 341 * if more tables exist. 342 */ 343 if (ACPI_FAILURE(status = AcpiInitializeTables(NULL, 2, TRUE))) { 344 printf("ACPI: Table initialisation failed: %s\n", 345 AcpiFormatException(status)); 346 return_VALUE (status); 347 } 348 349 /* Set up any quirks we have for this system. */ 350 if (acpi_quirks == ACPI_Q_OK) 351 acpi_table_quirks(&acpi_quirks); 352 353 /* If the user manually set the disabled hint to 0, force-enable ACPI. */ 354 if (resource_int_value("acpi", 0, "disabled", &val) == 0 && val == 0) 355 acpi_quirks &= ~ACPI_Q_BROKEN; 356 if (acpi_quirks & ACPI_Q_BROKEN) { 357 printf("ACPI disabled by blacklist. Contact your BIOS vendor.\n"); 358 status = AE_SUPPORT; 359 } 360 361 return_VALUE (status); 362 } 363 364 /* 365 * Detect ACPI and perform early initialisation. 366 */ 367 int 368 acpi_identify(void) 369 { 370 ACPI_TABLE_RSDP *rsdp; 371 ACPI_TABLE_HEADER *rsdt; 372 ACPI_PHYSICAL_ADDRESS paddr; 373 struct sbuf sb; 374 375 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 376 377 if (!cold) 378 return (ENXIO); 379 380 /* Check that we haven't been disabled with a hint. */ 381 if (resource_disabled("acpi", 0)) 382 return (ENXIO); 383 384 /* Check for other PM systems. */ 385 if (power_pm_get_type() != POWER_PM_TYPE_NONE && 386 power_pm_get_type() != POWER_PM_TYPE_ACPI) { 387 printf("ACPI identify failed, other PM system enabled.\n"); 388 return (ENXIO); 389 } 390 391 /* Initialize root tables. */ 392 if (ACPI_FAILURE(acpi_Startup())) { 393 printf("ACPI: Try disabling either ACPI or apic support.\n"); 394 return (ENXIO); 395 } 396 397 if ((paddr = AcpiOsGetRootPointer()) == 0 || 398 (rsdp = AcpiOsMapMemory(paddr, sizeof(ACPI_TABLE_RSDP))) == NULL) 399 return (ENXIO); 400 if (rsdp->Revision > 1 && rsdp->XsdtPhysicalAddress != 0) 401 paddr = (ACPI_PHYSICAL_ADDRESS)rsdp->XsdtPhysicalAddress; 402 else 403 paddr = (ACPI_PHYSICAL_ADDRESS)rsdp->RsdtPhysicalAddress; 404 AcpiOsUnmapMemory(rsdp, sizeof(ACPI_TABLE_RSDP)); 405 406 if ((rsdt = AcpiOsMapMemory(paddr, sizeof(ACPI_TABLE_HEADER))) == NULL) 407 return (ENXIO); 408 sbuf_new(&sb, acpi_desc, sizeof(acpi_desc), SBUF_FIXEDLEN); 409 sbuf_bcat(&sb, rsdt->OemId, ACPI_OEM_ID_SIZE); 410 sbuf_trim(&sb); 411 sbuf_putc(&sb, ' '); 412 sbuf_bcat(&sb, rsdt->OemTableId, ACPI_OEM_TABLE_ID_SIZE); 413 sbuf_trim(&sb); 414 sbuf_finish(&sb); 415 sbuf_delete(&sb); 416 AcpiOsUnmapMemory(rsdt, sizeof(ACPI_TABLE_HEADER)); 417 418 snprintf(acpi_ca_version, sizeof(acpi_ca_version), "%x", ACPI_CA_VERSION); 419 420 return (0); 421 } 422 423 /* 424 * Fetch some descriptive data from ACPI to put in our attach message. 425 */ 426 static int 427 acpi_probe(device_t dev) 428 { 429 430 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 431 432 device_set_desc(dev, acpi_desc); 433 434 return_VALUE (0); 435 } 436 437 static int 438 acpi_attach(device_t dev) 439 { 440 struct acpi_softc *sc; 441 ACPI_STATUS status; 442 int error, state; 443 UINT32 flags; 444 UINT8 TypeA, TypeB; 445 char *env; 446 447 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 448 449 sc = device_get_softc(dev); 450 sc->acpi_dev = dev; 451 callout_init(&sc->susp_force_to, TRUE); 452 453 error = ENXIO; 454 455 /* Initialize resource manager. */ 456 acpi_rman_io.rm_type = RMAN_ARRAY; 457 acpi_rman_io.rm_start = 0; 458 acpi_rman_io.rm_end = 0xffff; 459 acpi_rman_io.rm_descr = "ACPI I/O ports"; 460 if (rman_init(&acpi_rman_io) != 0) 461 panic("acpi rman_init IO ports failed"); 462 acpi_rman_mem.rm_type = RMAN_ARRAY; 463 acpi_rman_mem.rm_start = 0; 464 acpi_rman_mem.rm_end = ~0ul; 465 acpi_rman_mem.rm_descr = "ACPI I/O memory addresses"; 466 if (rman_init(&acpi_rman_mem) != 0) 467 panic("acpi rman_init memory failed"); 468 469 /* Initialise the ACPI mutex */ 470 mtx_init(&acpi_mutex, "ACPI global lock", NULL, MTX_DEF); 471 472 /* 473 * Set the globals from our tunables. This is needed because ACPI-CA 474 * uses UINT8 for some values and we have no tunable_byte. 475 */ 476 AcpiGbl_AllMethodsSerialized = acpi_serialize_methods ? TRUE : FALSE; 477 AcpiGbl_EnableInterpreterSlack = acpi_interpreter_slack ? TRUE : FALSE; 478 AcpiGbl_EnableAmlDebugObject = acpi_debug_objects ? TRUE : FALSE; 479 480 #ifndef ACPI_DEBUG 481 /* 482 * Disable all debugging layers and levels. 483 */ 484 AcpiDbgLayer = 0; 485 AcpiDbgLevel = 0; 486 #endif 487 488 /* Start up the ACPI CA subsystem. */ 489 status = AcpiInitializeSubsystem(); 490 if (ACPI_FAILURE(status)) { 491 device_printf(dev, "Could not initialize Subsystem: %s\n", 492 AcpiFormatException(status)); 493 goto out; 494 } 495 496 /* Override OS interfaces if the user requested. */ 497 acpi_reset_interfaces(dev); 498 499 /* Load ACPI name space. */ 500 status = AcpiLoadTables(); 501 if (ACPI_FAILURE(status)) { 502 device_printf(dev, "Could not load Namespace: %s\n", 503 AcpiFormatException(status)); 504 goto out; 505 } 506 507 #if defined(__i386__) || defined(__amd64__) 508 /* Handle MCFG table if present. */ 509 acpi_enable_pcie(); 510 #endif 511 512 /* 513 * Note that some systems (specifically, those with namespace evaluation 514 * issues that require the avoidance of parts of the namespace) must 515 * avoid running _INI and _STA on everything, as well as dodging the final 516 * object init pass. 517 * 518 * For these devices, we set ACPI_NO_DEVICE_INIT and ACPI_NO_OBJECT_INIT). 519 * 520 * XXX We should arrange for the object init pass after we have attached 521 * all our child devices, but on many systems it works here. 522 */ 523 flags = 0; 524 if (testenv("debug.acpi.avoid")) 525 flags = ACPI_NO_DEVICE_INIT | ACPI_NO_OBJECT_INIT; 526 527 /* Bring the hardware and basic handlers online. */ 528 if (ACPI_FAILURE(status = AcpiEnableSubsystem(flags))) { 529 device_printf(dev, "Could not enable ACPI: %s\n", 530 AcpiFormatException(status)); 531 goto out; 532 } 533 534 /* 535 * Call the ECDT probe function to provide EC functionality before 536 * the namespace has been evaluated. 537 * 538 * XXX This happens before the sysresource devices have been probed and 539 * attached so its resources come from nexus0. In practice, this isn't 540 * a problem but should be addressed eventually. 541 */ 542 acpi_ec_ecdt_probe(dev); 543 544 /* Bring device objects and regions online. */ 545 if (ACPI_FAILURE(status = AcpiInitializeObjects(flags))) { 546 device_printf(dev, "Could not initialize ACPI objects: %s\n", 547 AcpiFormatException(status)); 548 goto out; 549 } 550 551 /* 552 * Setup our sysctl tree. 553 * 554 * XXX: This doesn't check to make sure that none of these fail. 555 */ 556 sysctl_ctx_init(&sc->acpi_sysctl_ctx); 557 sc->acpi_sysctl_tree = SYSCTL_ADD_NODE(&sc->acpi_sysctl_ctx, 558 SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO, 559 device_get_name(dev), CTLFLAG_RD, 0, ""); 560 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 561 OID_AUTO, "supported_sleep_state", CTLTYPE_STRING | CTLFLAG_RD, 562 0, 0, acpi_supported_sleep_state_sysctl, "A", ""); 563 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 564 OID_AUTO, "power_button_state", CTLTYPE_STRING | CTLFLAG_RW, 565 &sc->acpi_power_button_sx, 0, acpi_sleep_state_sysctl, "A", ""); 566 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 567 OID_AUTO, "sleep_button_state", CTLTYPE_STRING | CTLFLAG_RW, 568 &sc->acpi_sleep_button_sx, 0, acpi_sleep_state_sysctl, "A", ""); 569 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 570 OID_AUTO, "lid_switch_state", CTLTYPE_STRING | CTLFLAG_RW, 571 &sc->acpi_lid_switch_sx, 0, acpi_sleep_state_sysctl, "A", ""); 572 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 573 OID_AUTO, "standby_state", CTLTYPE_STRING | CTLFLAG_RW, 574 &sc->acpi_standby_sx, 0, acpi_sleep_state_sysctl, "A", ""); 575 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 576 OID_AUTO, "suspend_state", CTLTYPE_STRING | CTLFLAG_RW, 577 &sc->acpi_suspend_sx, 0, acpi_sleep_state_sysctl, "A", ""); 578 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 579 OID_AUTO, "sleep_delay", CTLFLAG_RW, &sc->acpi_sleep_delay, 0, 580 "sleep delay in seconds"); 581 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 582 OID_AUTO, "s4bios", CTLFLAG_RW, &sc->acpi_s4bios, 0, "S4BIOS mode"); 583 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 584 OID_AUTO, "verbose", CTLFLAG_RW, &sc->acpi_verbose, 0, "verbose mode"); 585 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 586 OID_AUTO, "disable_on_reboot", CTLFLAG_RW, 587 &sc->acpi_do_disable, 0, "Disable ACPI when rebooting/halting system"); 588 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 589 OID_AUTO, "handle_reboot", CTLFLAG_RW, 590 &sc->acpi_handle_reboot, 0, "Use ACPI Reset Register to reboot"); 591 592 /* 593 * Default to 1 second before sleeping to give some machines time to 594 * stabilize. 595 */ 596 sc->acpi_sleep_delay = 1; 597 if (bootverbose) 598 sc->acpi_verbose = 1; 599 if ((env = getenv("hw.acpi.verbose")) != NULL) { 600 if (strcmp(env, "0") != 0) 601 sc->acpi_verbose = 1; 602 freeenv(env); 603 } 604 605 /* Only enable reboot by default if the FADT says it is available. */ 606 if (AcpiGbl_FADT.Flags & ACPI_FADT_RESET_REGISTER) 607 sc->acpi_handle_reboot = 1; 608 609 /* Only enable S4BIOS by default if the FACS says it is available. */ 610 if (AcpiGbl_FACS->Flags & ACPI_FACS_S4_BIOS_PRESENT) 611 sc->acpi_s4bios = 1; 612 613 /* Probe all supported sleep states. */ 614 acpi_sleep_states[ACPI_STATE_S0] = TRUE; 615 for (state = ACPI_STATE_S1; state < ACPI_S_STATE_COUNT; state++) 616 if (ACPI_SUCCESS(AcpiEvaluateObject(ACPI_ROOT_OBJECT, 617 __DECONST(char *, AcpiGbl_SleepStateNames[state]), NULL, NULL)) && 618 ACPI_SUCCESS(AcpiGetSleepTypeData(state, &TypeA, &TypeB))) 619 acpi_sleep_states[state] = TRUE; 620 621 /* 622 * Dispatch the default sleep state to devices. The lid switch is set 623 * to UNKNOWN by default to avoid surprising users. 624 */ 625 sc->acpi_power_button_sx = acpi_sleep_states[ACPI_STATE_S5] ? 626 ACPI_STATE_S5 : ACPI_STATE_UNKNOWN; 627 sc->acpi_lid_switch_sx = ACPI_STATE_UNKNOWN; 628 sc->acpi_standby_sx = acpi_sleep_states[ACPI_STATE_S1] ? 629 ACPI_STATE_S1 : ACPI_STATE_UNKNOWN; 630 sc->acpi_suspend_sx = acpi_sleep_states[ACPI_STATE_S3] ? 631 ACPI_STATE_S3 : ACPI_STATE_UNKNOWN; 632 633 /* Pick the first valid sleep state for the sleep button default. */ 634 sc->acpi_sleep_button_sx = ACPI_STATE_UNKNOWN; 635 for (state = ACPI_STATE_S1; state <= ACPI_STATE_S4; state++) 636 if (acpi_sleep_states[state]) { 637 sc->acpi_sleep_button_sx = state; 638 break; 639 } 640 641 acpi_enable_fixed_events(sc); 642 643 /* 644 * Scan the namespace and attach/initialise children. 645 */ 646 647 /* Register our shutdown handler. */ 648 EVENTHANDLER_REGISTER(shutdown_final, acpi_shutdown_final, sc, 649 SHUTDOWN_PRI_LAST); 650 651 /* 652 * Register our acpi event handlers. 653 * XXX should be configurable eg. via userland policy manager. 654 */ 655 EVENTHANDLER_REGISTER(acpi_sleep_event, acpi_system_eventhandler_sleep, 656 sc, ACPI_EVENT_PRI_LAST); 657 EVENTHANDLER_REGISTER(acpi_wakeup_event, acpi_system_eventhandler_wakeup, 658 sc, ACPI_EVENT_PRI_LAST); 659 660 /* Flag our initial states. */ 661 sc->acpi_enabled = TRUE; 662 sc->acpi_sstate = ACPI_STATE_S0; 663 sc->acpi_sleep_disabled = TRUE; 664 665 /* Create the control device */ 666 sc->acpi_dev_t = make_dev(&acpi_cdevsw, 0, UID_ROOT, GID_WHEEL, 0644, 667 "acpi"); 668 sc->acpi_dev_t->si_drv1 = sc; 669 670 if ((error = acpi_machdep_init(dev))) 671 goto out; 672 673 /* Register ACPI again to pass the correct argument of pm_func. */ 674 power_pm_register(POWER_PM_TYPE_ACPI, acpi_pm_func, sc); 675 676 if (!acpi_disabled("bus")) 677 acpi_probe_children(dev); 678 679 /* Update all GPEs and enable runtime GPEs. */ 680 status = AcpiUpdateAllGpes(); 681 if (ACPI_FAILURE(status)) 682 device_printf(dev, "Could not update all GPEs: %s\n", 683 AcpiFormatException(status)); 684 685 /* Allow sleep request after a while. */ 686 timeout(acpi_sleep_enable, sc, hz * ACPI_MINIMUM_AWAKETIME); 687 688 error = 0; 689 690 out: 691 return_VALUE (error); 692 } 693 694 static void 695 acpi_set_power_children(device_t dev, int state) 696 { 697 device_t child, parent; 698 device_t *devlist; 699 struct pci_devinfo *dinfo; 700 int dstate, i, numdevs; 701 702 if (device_get_children(dev, &devlist, &numdevs) != 0) 703 return; 704 705 /* 706 * Retrieve and set D-state for the sleep state if _SxD is present. 707 * Skip children who aren't attached since they are handled separately. 708 */ 709 parent = device_get_parent(dev); 710 for (i = 0; i < numdevs; i++) { 711 child = devlist[i]; 712 dinfo = device_get_ivars(child); 713 dstate = state; 714 if (device_is_attached(child) && 715 acpi_device_pwr_for_sleep(parent, dev, &dstate) == 0) 716 acpi_set_powerstate(child, dstate); 717 } 718 free(devlist, M_TEMP); 719 } 720 721 static int 722 acpi_suspend(device_t dev) 723 { 724 int error; 725 726 GIANT_REQUIRED; 727 728 error = bus_generic_suspend(dev); 729 if (error == 0) 730 acpi_set_power_children(dev, ACPI_STATE_D3); 731 732 return (error); 733 } 734 735 static int 736 acpi_resume(device_t dev) 737 { 738 739 GIANT_REQUIRED; 740 741 acpi_set_power_children(dev, ACPI_STATE_D0); 742 743 return (bus_generic_resume(dev)); 744 } 745 746 static int 747 acpi_shutdown(device_t dev) 748 { 749 750 GIANT_REQUIRED; 751 752 /* Allow children to shutdown first. */ 753 bus_generic_shutdown(dev); 754 755 /* 756 * Enable any GPEs that are able to power-on the system (i.e., RTC). 757 * Also, disable any that are not valid for this state (most). 758 */ 759 acpi_wake_prep_walk(ACPI_STATE_S5); 760 761 return (0); 762 } 763 764 /* 765 * Handle a new device being added 766 */ 767 static device_t 768 acpi_add_child(device_t bus, u_int order, const char *name, int unit) 769 { 770 struct acpi_device *ad; 771 device_t child; 772 773 if ((ad = malloc(sizeof(*ad), M_ACPIDEV, M_NOWAIT | M_ZERO)) == NULL) 774 return (NULL); 775 776 resource_list_init(&ad->ad_rl); 777 778 child = device_add_child_ordered(bus, order, name, unit); 779 if (child != NULL) 780 device_set_ivars(child, ad); 781 else 782 free(ad, M_ACPIDEV); 783 return (child); 784 } 785 786 static int 787 acpi_print_child(device_t bus, device_t child) 788 { 789 struct acpi_device *adev = device_get_ivars(child); 790 struct resource_list *rl = &adev->ad_rl; 791 int retval = 0; 792 793 retval += bus_print_child_header(bus, child); 794 retval += resource_list_print_type(rl, "port", SYS_RES_IOPORT, "%#lx"); 795 retval += resource_list_print_type(rl, "iomem", SYS_RES_MEMORY, "%#lx"); 796 retval += resource_list_print_type(rl, "irq", SYS_RES_IRQ, "%ld"); 797 retval += resource_list_print_type(rl, "drq", SYS_RES_DRQ, "%ld"); 798 if (device_get_flags(child)) 799 retval += printf(" flags %#x", device_get_flags(child)); 800 retval += bus_print_child_footer(bus, child); 801 802 return (retval); 803 } 804 805 /* 806 * If this device is an ACPI child but no one claimed it, attempt 807 * to power it off. We'll power it back up when a driver is added. 808 * 809 * XXX Disabled for now since many necessary devices (like fdc and 810 * ATA) don't claim the devices we created for them but still expect 811 * them to be powered up. 812 */ 813 static void 814 acpi_probe_nomatch(device_t bus, device_t child) 815 { 816 #ifdef ACPI_ENABLE_POWERDOWN_NODRIVER 817 acpi_set_powerstate(child, ACPI_STATE_D3); 818 #endif 819 } 820 821 /* 822 * If a new driver has a chance to probe a child, first power it up. 823 * 824 * XXX Disabled for now (see acpi_probe_nomatch for details). 825 */ 826 static void 827 acpi_driver_added(device_t dev, driver_t *driver) 828 { 829 device_t child, *devlist; 830 int i, numdevs; 831 832 DEVICE_IDENTIFY(driver, dev); 833 if (device_get_children(dev, &devlist, &numdevs)) 834 return; 835 for (i = 0; i < numdevs; i++) { 836 child = devlist[i]; 837 if (device_get_state(child) == DS_NOTPRESENT) { 838 #ifdef ACPI_ENABLE_POWERDOWN_NODRIVER 839 acpi_set_powerstate(child, ACPI_STATE_D0); 840 if (device_probe_and_attach(child) != 0) 841 acpi_set_powerstate(child, ACPI_STATE_D3); 842 #else 843 device_probe_and_attach(child); 844 #endif 845 } 846 } 847 free(devlist, M_TEMP); 848 } 849 850 /* Location hint for devctl(8) */ 851 static int 852 acpi_child_location_str_method(device_t cbdev, device_t child, char *buf, 853 size_t buflen) 854 { 855 struct acpi_device *dinfo = device_get_ivars(child); 856 857 if (dinfo->ad_handle) 858 snprintf(buf, buflen, "handle=%s", acpi_name(dinfo->ad_handle)); 859 else 860 snprintf(buf, buflen, "unknown"); 861 return (0); 862 } 863 864 /* PnP information for devctl(8) */ 865 static int 866 acpi_child_pnpinfo_str_method(device_t cbdev, device_t child, char *buf, 867 size_t buflen) 868 { 869 struct acpi_device *dinfo = device_get_ivars(child); 870 ACPI_DEVICE_INFO *adinfo; 871 872 if (ACPI_FAILURE(AcpiGetObjectInfo(dinfo->ad_handle, &adinfo))) { 873 snprintf(buf, buflen, "unknown"); 874 return (0); 875 } 876 877 snprintf(buf, buflen, "_HID=%s _UID=%lu", 878 (adinfo->Valid & ACPI_VALID_HID) ? 879 adinfo->HardwareId.String : "none", 880 (adinfo->Valid & ACPI_VALID_UID) ? 881 strtoul(adinfo->UniqueId.String, NULL, 10) : 0UL); 882 AcpiOsFree(adinfo); 883 884 return (0); 885 } 886 887 /* 888 * Handle per-device ivars 889 */ 890 static int 891 acpi_read_ivar(device_t dev, device_t child, int index, uintptr_t *result) 892 { 893 struct acpi_device *ad; 894 895 if ((ad = device_get_ivars(child)) == NULL) { 896 device_printf(child, "device has no ivars\n"); 897 return (ENOENT); 898 } 899 900 /* ACPI and ISA compatibility ivars */ 901 switch(index) { 902 case ACPI_IVAR_HANDLE: 903 *(ACPI_HANDLE *)result = ad->ad_handle; 904 break; 905 case ACPI_IVAR_PRIVATE: 906 *(void **)result = ad->ad_private; 907 break; 908 case ACPI_IVAR_FLAGS: 909 *(int *)result = ad->ad_flags; 910 break; 911 case ISA_IVAR_VENDORID: 912 case ISA_IVAR_SERIAL: 913 case ISA_IVAR_COMPATID: 914 *(int *)result = -1; 915 break; 916 case ISA_IVAR_LOGICALID: 917 *(int *)result = acpi_isa_get_logicalid(child); 918 break; 919 default: 920 return (ENOENT); 921 } 922 923 return (0); 924 } 925 926 static int 927 acpi_write_ivar(device_t dev, device_t child, int index, uintptr_t value) 928 { 929 struct acpi_device *ad; 930 931 if ((ad = device_get_ivars(child)) == NULL) { 932 device_printf(child, "device has no ivars\n"); 933 return (ENOENT); 934 } 935 936 switch(index) { 937 case ACPI_IVAR_HANDLE: 938 ad->ad_handle = (ACPI_HANDLE)value; 939 break; 940 case ACPI_IVAR_PRIVATE: 941 ad->ad_private = (void *)value; 942 break; 943 case ACPI_IVAR_FLAGS: 944 ad->ad_flags = (int)value; 945 break; 946 default: 947 panic("bad ivar write request (%d)", index); 948 return (ENOENT); 949 } 950 951 return (0); 952 } 953 954 /* 955 * Handle child resource allocation/removal 956 */ 957 static struct resource_list * 958 acpi_get_rlist(device_t dev, device_t child) 959 { 960 struct acpi_device *ad; 961 962 ad = device_get_ivars(child); 963 return (&ad->ad_rl); 964 } 965 966 static int 967 acpi_match_resource_hint(device_t dev, int type, long value) 968 { 969 struct acpi_device *ad = device_get_ivars(dev); 970 struct resource_list *rl = &ad->ad_rl; 971 struct resource_list_entry *rle; 972 973 STAILQ_FOREACH(rle, rl, link) { 974 if (rle->type != type) 975 continue; 976 if (rle->start <= value && rle->end >= value) 977 return (1); 978 } 979 return (0); 980 } 981 982 /* 983 * Wire device unit numbers based on resource matches in hints. 984 */ 985 static void 986 acpi_hint_device_unit(device_t acdev, device_t child, const char *name, 987 int *unitp) 988 { 989 const char *s; 990 long value; 991 int line, matches, unit; 992 993 /* 994 * Iterate over all the hints for the devices with the specified 995 * name to see if one's resources are a subset of this device. 996 */ 997 line = 0; 998 for (;;) { 999 if (resource_find_dev(&line, name, &unit, "at", NULL) != 0) 1000 break; 1001 1002 /* Must have an "at" for acpi or isa. */ 1003 resource_string_value(name, unit, "at", &s); 1004 if (!(strcmp(s, "acpi0") == 0 || strcmp(s, "acpi") == 0 || 1005 strcmp(s, "isa0") == 0 || strcmp(s, "isa") == 0)) 1006 continue; 1007 1008 /* 1009 * Check for matching resources. We must have at least one match. 1010 * Since I/O and memory resources cannot be shared, if we get a 1011 * match on either of those, ignore any mismatches in IRQs or DRQs. 1012 * 1013 * XXX: We may want to revisit this to be more lenient and wire 1014 * as long as it gets one match. 1015 */ 1016 matches = 0; 1017 if (resource_long_value(name, unit, "port", &value) == 0) { 1018 /* 1019 * Floppy drive controllers are notorious for having a 1020 * wide variety of resources not all of which include the 1021 * first port that is specified by the hint (typically 1022 * 0x3f0) (see the comment above fdc_isa_alloc_resources() 1023 * in fdc_isa.c). However, they do all seem to include 1024 * port + 2 (e.g. 0x3f2) so for a floppy device, look for 1025 * 'value + 2' in the port resources instead of the hint 1026 * value. 1027 */ 1028 if (strcmp(name, "fdc") == 0) 1029 value += 2; 1030 if (acpi_match_resource_hint(child, SYS_RES_IOPORT, value)) 1031 matches++; 1032 else 1033 continue; 1034 } 1035 if (resource_long_value(name, unit, "maddr", &value) == 0) { 1036 if (acpi_match_resource_hint(child, SYS_RES_MEMORY, value)) 1037 matches++; 1038 else 1039 continue; 1040 } 1041 if (matches > 0) 1042 goto matched; 1043 if (resource_long_value(name, unit, "irq", &value) == 0) { 1044 if (acpi_match_resource_hint(child, SYS_RES_IRQ, value)) 1045 matches++; 1046 else 1047 continue; 1048 } 1049 if (resource_long_value(name, unit, "drq", &value) == 0) { 1050 if (acpi_match_resource_hint(child, SYS_RES_DRQ, value)) 1051 matches++; 1052 else 1053 continue; 1054 } 1055 1056 matched: 1057 if (matches > 0) { 1058 /* We have a winner! */ 1059 *unitp = unit; 1060 break; 1061 } 1062 } 1063 } 1064 1065 /* 1066 * Pre-allocate/manage all memory and IO resources. Since rman can't handle 1067 * duplicates, we merge any in the sysresource attach routine. 1068 */ 1069 static int 1070 acpi_sysres_alloc(device_t dev) 1071 { 1072 struct resource *res; 1073 struct resource_list *rl; 1074 struct resource_list_entry *rle; 1075 struct rman *rm; 1076 char *sysres_ids[] = { "PNP0C01", "PNP0C02", NULL }; 1077 device_t *children; 1078 int child_count, i; 1079 1080 /* 1081 * Probe/attach any sysresource devices. This would be unnecessary if we 1082 * had multi-pass probe/attach. 1083 */ 1084 if (device_get_children(dev, &children, &child_count) != 0) 1085 return (ENXIO); 1086 for (i = 0; i < child_count; i++) { 1087 if (ACPI_ID_PROBE(dev, children[i], sysres_ids) != NULL) 1088 device_probe_and_attach(children[i]); 1089 } 1090 free(children, M_TEMP); 1091 1092 rl = BUS_GET_RESOURCE_LIST(device_get_parent(dev), dev); 1093 STAILQ_FOREACH(rle, rl, link) { 1094 if (rle->res != NULL) { 1095 device_printf(dev, "duplicate resource for %lx\n", rle->start); 1096 continue; 1097 } 1098 1099 /* Only memory and IO resources are valid here. */ 1100 switch (rle->type) { 1101 case SYS_RES_IOPORT: 1102 rm = &acpi_rman_io; 1103 break; 1104 case SYS_RES_MEMORY: 1105 rm = &acpi_rman_mem; 1106 break; 1107 default: 1108 continue; 1109 } 1110 1111 /* Pre-allocate resource and add to our rman pool. */ 1112 res = BUS_ALLOC_RESOURCE(device_get_parent(dev), dev, rle->type, 1113 &rle->rid, rle->start, rle->start + rle->count - 1, rle->count, 0); 1114 if (res != NULL) { 1115 rman_manage_region(rm, rman_get_start(res), rman_get_end(res)); 1116 rle->res = res; 1117 } else 1118 device_printf(dev, "reservation of %lx, %lx (%d) failed\n", 1119 rle->start, rle->count, rle->type); 1120 } 1121 return (0); 1122 } 1123 1124 static char *pcilink_ids[] = { "PNP0C0F", NULL }; 1125 static char *sysres_ids[] = { "PNP0C01", "PNP0C02", NULL }; 1126 1127 /* 1128 * Reserve declared resources for devices found during attach once system 1129 * resources have been allocated. 1130 */ 1131 static void 1132 acpi_reserve_resources(device_t dev) 1133 { 1134 struct resource_list_entry *rle; 1135 struct resource_list *rl; 1136 struct acpi_device *ad; 1137 struct acpi_softc *sc; 1138 device_t *children; 1139 int child_count, i; 1140 1141 sc = device_get_softc(dev); 1142 if (device_get_children(dev, &children, &child_count) != 0) 1143 return; 1144 for (i = 0; i < child_count; i++) { 1145 ad = device_get_ivars(children[i]); 1146 rl = &ad->ad_rl; 1147 1148 /* Don't reserve system resources. */ 1149 if (ACPI_ID_PROBE(dev, children[i], sysres_ids) != NULL) 1150 continue; 1151 1152 STAILQ_FOREACH(rle, rl, link) { 1153 /* 1154 * Don't reserve IRQ resources. There are many sticky things 1155 * to get right otherwise (e.g. IRQs for psm, atkbd, and HPET 1156 * when using legacy routing). 1157 */ 1158 if (rle->type == SYS_RES_IRQ) 1159 continue; 1160 1161 /* 1162 * Don't reserve the resource if it is already allocated. 1163 * The acpi_ec(4) driver can allocate its resources early 1164 * if ECDT is present. 1165 */ 1166 if (rle->res != NULL) 1167 continue; 1168 1169 /* 1170 * Try to reserve the resource from our parent. If this 1171 * fails because the resource is a system resource, just 1172 * let it be. The resource range is already reserved so 1173 * that other devices will not use it. If the driver 1174 * needs to allocate the resource, then 1175 * acpi_alloc_resource() will sub-alloc from the system 1176 * resource. 1177 */ 1178 resource_list_reserve(rl, dev, children[i], rle->type, &rle->rid, 1179 rle->start, rle->end, rle->count, 0); 1180 } 1181 } 1182 free(children, M_TEMP); 1183 sc->acpi_resources_reserved = 1; 1184 } 1185 1186 static int 1187 acpi_set_resource(device_t dev, device_t child, int type, int rid, 1188 u_long start, u_long count) 1189 { 1190 struct acpi_softc *sc = device_get_softc(dev); 1191 struct acpi_device *ad = device_get_ivars(child); 1192 struct resource_list *rl = &ad->ad_rl; 1193 u_long end; 1194 1195 /* Ignore IRQ resources for PCI link devices. */ 1196 if (type == SYS_RES_IRQ && ACPI_ID_PROBE(dev, child, pcilink_ids) != NULL) 1197 return (0); 1198 1199 /* If the resource is already allocated, fail. */ 1200 if (resource_list_busy(rl, type, rid)) 1201 return (EBUSY); 1202 1203 /* If the resource is already reserved, release it. */ 1204 if (resource_list_reserved(rl, type, rid)) 1205 resource_list_unreserve(rl, dev, child, type, rid); 1206 1207 /* Add the resource. */ 1208 end = (start + count - 1); 1209 resource_list_add(rl, type, rid, start, end, count); 1210 1211 /* Don't reserve resources until the system resources are allocated. */ 1212 if (!sc->acpi_resources_reserved) 1213 return (0); 1214 1215 /* Don't reserve system resources. */ 1216 if (ACPI_ID_PROBE(dev, child, sysres_ids) != NULL) 1217 return (0); 1218 1219 /* 1220 * Don't reserve IRQ resources. There are many sticky things to 1221 * get right otherwise (e.g. IRQs for psm, atkbd, and HPET when 1222 * using legacy routing). 1223 */ 1224 if (type == SYS_RES_IRQ) 1225 return (0); 1226 1227 /* 1228 * Reserve the resource. 1229 * 1230 * XXX: Ignores failure for now. Failure here is probably a 1231 * BIOS/firmware bug? 1232 */ 1233 resource_list_reserve(rl, dev, child, type, &rid, start, end, count, 0); 1234 return (0); 1235 } 1236 1237 static struct resource * 1238 acpi_alloc_resource(device_t bus, device_t child, int type, int *rid, 1239 u_long start, u_long end, u_long count, u_int flags) 1240 { 1241 ACPI_RESOURCE ares; 1242 struct acpi_device *ad; 1243 struct resource_list_entry *rle; 1244 struct resource_list *rl; 1245 struct resource *res; 1246 int isdefault = (start == 0UL && end == ~0UL); 1247 1248 /* 1249 * First attempt at allocating the resource. For direct children, 1250 * use resource_list_alloc() to handle reserved resources. For 1251 * other devices, pass the request up to our parent. 1252 */ 1253 if (bus == device_get_parent(child)) { 1254 ad = device_get_ivars(child); 1255 rl = &ad->ad_rl; 1256 1257 /* 1258 * Simulate the behavior of the ISA bus for direct children 1259 * devices. That is, if a non-default range is specified for 1260 * a resource that doesn't exist, use bus_set_resource() to 1261 * add the resource before allocating it. Note that these 1262 * resources will not be reserved. 1263 */ 1264 if (!isdefault && resource_list_find(rl, type, *rid) == NULL) 1265 resource_list_add(rl, type, *rid, start, end, count); 1266 res = resource_list_alloc(rl, bus, child, type, rid, start, end, count, 1267 flags); 1268 if (res != NULL && type == SYS_RES_IRQ) { 1269 /* 1270 * Since bus_config_intr() takes immediate effect, we cannot 1271 * configure the interrupt associated with a device when we 1272 * parse the resources but have to defer it until a driver 1273 * actually allocates the interrupt via bus_alloc_resource(). 1274 * 1275 * XXX: Should we handle the lookup failing? 1276 */ 1277 if (ACPI_SUCCESS(acpi_lookup_irq_resource(child, *rid, res, &ares))) 1278 acpi_config_intr(child, &ares); 1279 } 1280 1281 /* 1282 * If this is an allocation of the "default" range for a given 1283 * RID, fetch the exact bounds for this resource from the 1284 * resource list entry to try to allocate the range from the 1285 * system resource regions. 1286 */ 1287 if (res == NULL && isdefault) { 1288 rle = resource_list_find(rl, type, *rid); 1289 if (rle != NULL) { 1290 start = rle->start; 1291 end = rle->end; 1292 count = rle->count; 1293 } 1294 } 1295 } else 1296 res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, type, rid, 1297 start, end, count, flags); 1298 1299 /* 1300 * If the first attempt failed and this is an allocation of a 1301 * specific range, try to satisfy the request via a suballocation 1302 * from our system resource regions. 1303 */ 1304 if (res == NULL && start + count - 1 == end) 1305 res = acpi_alloc_sysres(child, type, rid, start, end, count, flags); 1306 return (res); 1307 } 1308 1309 /* 1310 * Attempt to allocate a specific resource range from the system 1311 * resource ranges. Note that we only handle memory and I/O port 1312 * system resources. 1313 */ 1314 struct resource * 1315 acpi_alloc_sysres(device_t child, int type, int *rid, u_long start, u_long end, 1316 u_long count, u_int flags) 1317 { 1318 struct rman *rm; 1319 struct resource *res; 1320 1321 switch (type) { 1322 case SYS_RES_IOPORT: 1323 rm = &acpi_rman_io; 1324 break; 1325 case SYS_RES_MEMORY: 1326 rm = &acpi_rman_mem; 1327 break; 1328 default: 1329 return (NULL); 1330 } 1331 1332 KASSERT(start + count - 1 == end, ("wildcard resource range")); 1333 res = rman_reserve_resource(rm, start, end, count, flags & ~RF_ACTIVE, 1334 child); 1335 if (res == NULL) 1336 return (NULL); 1337 1338 rman_set_rid(res, *rid); 1339 1340 /* If requested, activate the resource using the parent's method. */ 1341 if (flags & RF_ACTIVE) 1342 if (bus_activate_resource(child, type, *rid, res) != 0) { 1343 rman_release_resource(res); 1344 return (NULL); 1345 } 1346 1347 return (res); 1348 } 1349 1350 static int 1351 acpi_is_resource_managed(int type, struct resource *r) 1352 { 1353 1354 /* We only handle memory and IO resources through rman. */ 1355 switch (type) { 1356 case SYS_RES_IOPORT: 1357 return (rman_is_region_manager(r, &acpi_rman_io)); 1358 case SYS_RES_MEMORY: 1359 return (rman_is_region_manager(r, &acpi_rman_mem)); 1360 } 1361 return (0); 1362 } 1363 1364 static int 1365 acpi_adjust_resource(device_t bus, device_t child, int type, struct resource *r, 1366 u_long start, u_long end) 1367 { 1368 1369 if (acpi_is_resource_managed(type, r)) 1370 return (rman_adjust_resource(r, start, end)); 1371 return (bus_generic_adjust_resource(bus, child, type, r, start, end)); 1372 } 1373 1374 static int 1375 acpi_release_resource(device_t bus, device_t child, int type, int rid, 1376 struct resource *r) 1377 { 1378 int ret; 1379 1380 /* 1381 * If this resource belongs to one of our internal managers, 1382 * deactivate it and release it to the local pool. 1383 */ 1384 if (acpi_is_resource_managed(type, r)) { 1385 if (rman_get_flags(r) & RF_ACTIVE) { 1386 ret = bus_deactivate_resource(child, type, rid, r); 1387 if (ret != 0) 1388 return (ret); 1389 } 1390 return (rman_release_resource(r)); 1391 } 1392 1393 return (bus_generic_rl_release_resource(bus, child, type, rid, r)); 1394 } 1395 1396 static void 1397 acpi_delete_resource(device_t bus, device_t child, int type, int rid) 1398 { 1399 struct resource_list *rl; 1400 1401 rl = acpi_get_rlist(bus, child); 1402 if (resource_list_busy(rl, type, rid)) { 1403 device_printf(bus, "delete_resource: Resource still owned by child" 1404 " (type=%d, rid=%d)\n", type, rid); 1405 return; 1406 } 1407 resource_list_unreserve(rl, bus, child, type, rid); 1408 resource_list_delete(rl, type, rid); 1409 } 1410 1411 /* Allocate an IO port or memory resource, given its GAS. */ 1412 int 1413 acpi_bus_alloc_gas(device_t dev, int *type, int *rid, ACPI_GENERIC_ADDRESS *gas, 1414 struct resource **res, u_int flags) 1415 { 1416 int error, res_type; 1417 1418 error = ENOMEM; 1419 if (type == NULL || rid == NULL || gas == NULL || res == NULL) 1420 return (EINVAL); 1421 1422 /* We only support memory and IO spaces. */ 1423 switch (gas->SpaceId) { 1424 case ACPI_ADR_SPACE_SYSTEM_MEMORY: 1425 res_type = SYS_RES_MEMORY; 1426 break; 1427 case ACPI_ADR_SPACE_SYSTEM_IO: 1428 res_type = SYS_RES_IOPORT; 1429 break; 1430 default: 1431 return (EOPNOTSUPP); 1432 } 1433 1434 /* 1435 * If the register width is less than 8, assume the BIOS author means 1436 * it is a bit field and just allocate a byte. 1437 */ 1438 if (gas->BitWidth && gas->BitWidth < 8) 1439 gas->BitWidth = 8; 1440 1441 /* Validate the address after we're sure we support the space. */ 1442 if (gas->Address == 0 || gas->BitWidth == 0) 1443 return (EINVAL); 1444 1445 bus_set_resource(dev, res_type, *rid, gas->Address, 1446 gas->BitWidth / 8); 1447 *res = bus_alloc_resource_any(dev, res_type, rid, RF_ACTIVE | flags); 1448 if (*res != NULL) { 1449 *type = res_type; 1450 error = 0; 1451 } else 1452 bus_delete_resource(dev, res_type, *rid); 1453 1454 return (error); 1455 } 1456 1457 /* Probe _HID and _CID for compatible ISA PNP ids. */ 1458 static uint32_t 1459 acpi_isa_get_logicalid(device_t dev) 1460 { 1461 ACPI_DEVICE_INFO *devinfo; 1462 ACPI_HANDLE h; 1463 uint32_t pnpid; 1464 1465 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1466 1467 /* Fetch and validate the HID. */ 1468 if ((h = acpi_get_handle(dev)) == NULL || 1469 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 1470 return_VALUE (0); 1471 1472 pnpid = (devinfo->Valid & ACPI_VALID_HID) != 0 && 1473 devinfo->HardwareId.Length >= ACPI_EISAID_STRING_SIZE ? 1474 PNP_EISAID(devinfo->HardwareId.String) : 0; 1475 AcpiOsFree(devinfo); 1476 1477 return_VALUE (pnpid); 1478 } 1479 1480 static int 1481 acpi_isa_get_compatid(device_t dev, uint32_t *cids, int count) 1482 { 1483 ACPI_DEVICE_INFO *devinfo; 1484 ACPI_PNP_DEVICE_ID *ids; 1485 ACPI_HANDLE h; 1486 uint32_t *pnpid; 1487 int i, valid; 1488 1489 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1490 1491 pnpid = cids; 1492 1493 /* Fetch and validate the CID */ 1494 if ((h = acpi_get_handle(dev)) == NULL || 1495 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 1496 return_VALUE (0); 1497 1498 if ((devinfo->Valid & ACPI_VALID_CID) == 0) { 1499 AcpiOsFree(devinfo); 1500 return_VALUE (0); 1501 } 1502 1503 if (devinfo->CompatibleIdList.Count < count) 1504 count = devinfo->CompatibleIdList.Count; 1505 ids = devinfo->CompatibleIdList.Ids; 1506 for (i = 0, valid = 0; i < count; i++) 1507 if (ids[i].Length >= ACPI_EISAID_STRING_SIZE && 1508 strncmp(ids[i].String, "PNP", 3) == 0) { 1509 *pnpid++ = PNP_EISAID(ids[i].String); 1510 valid++; 1511 } 1512 AcpiOsFree(devinfo); 1513 1514 return_VALUE (valid); 1515 } 1516 1517 static char * 1518 acpi_device_id_probe(device_t bus, device_t dev, char **ids) 1519 { 1520 ACPI_HANDLE h; 1521 ACPI_OBJECT_TYPE t; 1522 int i; 1523 1524 h = acpi_get_handle(dev); 1525 if (ids == NULL || h == NULL) 1526 return (NULL); 1527 t = acpi_get_type(dev); 1528 if (t != ACPI_TYPE_DEVICE && t != ACPI_TYPE_PROCESSOR) 1529 return (NULL); 1530 1531 /* Try to match one of the array of IDs with a HID or CID. */ 1532 for (i = 0; ids[i] != NULL; i++) { 1533 if (acpi_MatchHid(h, ids[i])) 1534 return (ids[i]); 1535 } 1536 return (NULL); 1537 } 1538 1539 static ACPI_STATUS 1540 acpi_device_eval_obj(device_t bus, device_t dev, ACPI_STRING pathname, 1541 ACPI_OBJECT_LIST *parameters, ACPI_BUFFER *ret) 1542 { 1543 ACPI_HANDLE h; 1544 1545 if (dev == NULL) 1546 h = ACPI_ROOT_OBJECT; 1547 else if ((h = acpi_get_handle(dev)) == NULL) 1548 return (AE_BAD_PARAMETER); 1549 return (AcpiEvaluateObject(h, pathname, parameters, ret)); 1550 } 1551 1552 int 1553 acpi_device_pwr_for_sleep(device_t bus, device_t dev, int *dstate) 1554 { 1555 struct acpi_softc *sc; 1556 ACPI_HANDLE handle; 1557 ACPI_STATUS status; 1558 char sxd[8]; 1559 1560 handle = acpi_get_handle(dev); 1561 1562 /* 1563 * XXX If we find these devices, don't try to power them down. 1564 * The serial and IRDA ports on my T23 hang the system when 1565 * set to D3 and it appears that such legacy devices may 1566 * need special handling in their drivers. 1567 */ 1568 if (dstate == NULL || handle == NULL || 1569 acpi_MatchHid(handle, "PNP0500") || 1570 acpi_MatchHid(handle, "PNP0501") || 1571 acpi_MatchHid(handle, "PNP0502") || 1572 acpi_MatchHid(handle, "PNP0510") || 1573 acpi_MatchHid(handle, "PNP0511")) 1574 return (ENXIO); 1575 1576 /* 1577 * Override next state with the value from _SxD, if present. 1578 * Note illegal _S0D is evaluated because some systems expect this. 1579 */ 1580 sc = device_get_softc(bus); 1581 snprintf(sxd, sizeof(sxd), "_S%dD", sc->acpi_sstate); 1582 status = acpi_GetInteger(handle, sxd, dstate); 1583 if (ACPI_FAILURE(status) && status != AE_NOT_FOUND) { 1584 device_printf(dev, "failed to get %s on %s: %s\n", sxd, 1585 acpi_name(handle), AcpiFormatException(status)); 1586 return (ENXIO); 1587 } 1588 1589 return (0); 1590 } 1591 1592 /* Callback arg for our implementation of walking the namespace. */ 1593 struct acpi_device_scan_ctx { 1594 acpi_scan_cb_t user_fn; 1595 void *arg; 1596 ACPI_HANDLE parent; 1597 }; 1598 1599 static ACPI_STATUS 1600 acpi_device_scan_cb(ACPI_HANDLE h, UINT32 level, void *arg, void **retval) 1601 { 1602 struct acpi_device_scan_ctx *ctx; 1603 device_t dev, old_dev; 1604 ACPI_STATUS status; 1605 ACPI_OBJECT_TYPE type; 1606 1607 /* 1608 * Skip this device if we think we'll have trouble with it or it is 1609 * the parent where the scan began. 1610 */ 1611 ctx = (struct acpi_device_scan_ctx *)arg; 1612 if (acpi_avoid(h) || h == ctx->parent) 1613 return (AE_OK); 1614 1615 /* If this is not a valid device type (e.g., a method), skip it. */ 1616 if (ACPI_FAILURE(AcpiGetType(h, &type))) 1617 return (AE_OK); 1618 if (type != ACPI_TYPE_DEVICE && type != ACPI_TYPE_PROCESSOR && 1619 type != ACPI_TYPE_THERMAL && type != ACPI_TYPE_POWER) 1620 return (AE_OK); 1621 1622 /* 1623 * Call the user function with the current device. If it is unchanged 1624 * afterwards, return. Otherwise, we update the handle to the new dev. 1625 */ 1626 old_dev = acpi_get_device(h); 1627 dev = old_dev; 1628 status = ctx->user_fn(h, &dev, level, ctx->arg); 1629 if (ACPI_FAILURE(status) || old_dev == dev) 1630 return (status); 1631 1632 /* Remove the old child and its connection to the handle. */ 1633 if (old_dev != NULL) { 1634 device_delete_child(device_get_parent(old_dev), old_dev); 1635 AcpiDetachData(h, acpi_fake_objhandler); 1636 } 1637 1638 /* Recreate the handle association if the user created a device. */ 1639 if (dev != NULL) 1640 AcpiAttachData(h, acpi_fake_objhandler, dev); 1641 1642 return (AE_OK); 1643 } 1644 1645 static ACPI_STATUS 1646 acpi_device_scan_children(device_t bus, device_t dev, int max_depth, 1647 acpi_scan_cb_t user_fn, void *arg) 1648 { 1649 ACPI_HANDLE h; 1650 struct acpi_device_scan_ctx ctx; 1651 1652 if (acpi_disabled("children")) 1653 return (AE_OK); 1654 1655 if (dev == NULL) 1656 h = ACPI_ROOT_OBJECT; 1657 else if ((h = acpi_get_handle(dev)) == NULL) 1658 return (AE_BAD_PARAMETER); 1659 ctx.user_fn = user_fn; 1660 ctx.arg = arg; 1661 ctx.parent = h; 1662 return (AcpiWalkNamespace(ACPI_TYPE_ANY, h, max_depth, 1663 acpi_device_scan_cb, NULL, &ctx, NULL)); 1664 } 1665 1666 /* 1667 * Even though ACPI devices are not PCI, we use the PCI approach for setting 1668 * device power states since it's close enough to ACPI. 1669 */ 1670 static int 1671 acpi_set_powerstate(device_t child, int state) 1672 { 1673 ACPI_HANDLE h; 1674 ACPI_STATUS status; 1675 1676 h = acpi_get_handle(child); 1677 if (state < ACPI_STATE_D0 || state > ACPI_D_STATES_MAX) 1678 return (EINVAL); 1679 if (h == NULL) 1680 return (0); 1681 1682 /* Ignore errors if the power methods aren't present. */ 1683 status = acpi_pwr_switch_consumer(h, state); 1684 if (ACPI_SUCCESS(status)) { 1685 if (bootverbose) 1686 device_printf(child, "set ACPI power state D%d on %s\n", 1687 state, acpi_name(h)); 1688 } else if (status != AE_NOT_FOUND) 1689 device_printf(child, 1690 "failed to set ACPI power state D%d on %s: %s\n", state, 1691 acpi_name(h), AcpiFormatException(status)); 1692 1693 return (0); 1694 } 1695 1696 static int 1697 acpi_isa_pnp_probe(device_t bus, device_t child, struct isa_pnp_id *ids) 1698 { 1699 int result, cid_count, i; 1700 uint32_t lid, cids[8]; 1701 1702 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1703 1704 /* 1705 * ISA-style drivers attached to ACPI may persist and 1706 * probe manually if we return ENOENT. We never want 1707 * that to happen, so don't ever return it. 1708 */ 1709 result = ENXIO; 1710 1711 /* Scan the supplied IDs for a match */ 1712 lid = acpi_isa_get_logicalid(child); 1713 cid_count = acpi_isa_get_compatid(child, cids, 8); 1714 while (ids && ids->ip_id) { 1715 if (lid == ids->ip_id) { 1716 result = 0; 1717 goto out; 1718 } 1719 for (i = 0; i < cid_count; i++) { 1720 if (cids[i] == ids->ip_id) { 1721 result = 0; 1722 goto out; 1723 } 1724 } 1725 ids++; 1726 } 1727 1728 out: 1729 if (result == 0 && ids->ip_desc) 1730 device_set_desc(child, ids->ip_desc); 1731 1732 return_VALUE (result); 1733 } 1734 1735 #if defined(__i386__) || defined(__amd64__) 1736 /* 1737 * Look for a MCFG table. If it is present, use the settings for 1738 * domain (segment) 0 to setup PCI config space access via the memory 1739 * map. 1740 */ 1741 static void 1742 acpi_enable_pcie(void) 1743 { 1744 ACPI_TABLE_HEADER *hdr; 1745 ACPI_MCFG_ALLOCATION *alloc, *end; 1746 ACPI_STATUS status; 1747 1748 status = AcpiGetTable(ACPI_SIG_MCFG, 1, &hdr); 1749 if (ACPI_FAILURE(status)) 1750 return; 1751 1752 end = (ACPI_MCFG_ALLOCATION *)((char *)hdr + hdr->Length); 1753 alloc = (ACPI_MCFG_ALLOCATION *)((ACPI_TABLE_MCFG *)hdr + 1); 1754 while (alloc < end) { 1755 if (alloc->PciSegment == 0) { 1756 pcie_cfgregopen(alloc->Address, alloc->StartBusNumber, 1757 alloc->EndBusNumber); 1758 return; 1759 } 1760 alloc++; 1761 } 1762 } 1763 #endif 1764 1765 /* 1766 * Scan all of the ACPI namespace and attach child devices. 1767 * 1768 * We should only expect to find devices in the \_PR, \_TZ, \_SI, and 1769 * \_SB scopes, and \_PR and \_TZ became obsolete in the ACPI 2.0 spec. 1770 * However, in violation of the spec, some systems place their PCI link 1771 * devices in \, so we have to walk the whole namespace. We check the 1772 * type of namespace nodes, so this should be ok. 1773 */ 1774 static void 1775 acpi_probe_children(device_t bus) 1776 { 1777 1778 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1779 1780 /* 1781 * Scan the namespace and insert placeholders for all the devices that 1782 * we find. We also probe/attach any early devices. 1783 * 1784 * Note that we use AcpiWalkNamespace rather than AcpiGetDevices because 1785 * we want to create nodes for all devices, not just those that are 1786 * currently present. (This assumes that we don't want to create/remove 1787 * devices as they appear, which might be smarter.) 1788 */ 1789 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "namespace scan\n")); 1790 AcpiWalkNamespace(ACPI_TYPE_ANY, ACPI_ROOT_OBJECT, 100, acpi_probe_child, 1791 NULL, bus, NULL); 1792 1793 /* Pre-allocate resources for our rman from any sysresource devices. */ 1794 acpi_sysres_alloc(bus); 1795 1796 /* Reserve resources already allocated to children. */ 1797 acpi_reserve_resources(bus); 1798 1799 /* Create any static children by calling device identify methods. */ 1800 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "device identify routines\n")); 1801 bus_generic_probe(bus); 1802 1803 /* Probe/attach all children, created statically and from the namespace. */ 1804 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "acpi bus_generic_attach\n")); 1805 bus_generic_attach(bus); 1806 1807 /* Attach wake sysctls. */ 1808 acpi_wake_sysctl_walk(bus); 1809 1810 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "done attaching children\n")); 1811 return_VOID; 1812 } 1813 1814 /* 1815 * Determine the probe order for a given device. 1816 */ 1817 static void 1818 acpi_probe_order(ACPI_HANDLE handle, int *order) 1819 { 1820 ACPI_OBJECT_TYPE type; 1821 1822 /* 1823 * 0. CPUs 1824 * 1. I/O port and memory system resource holders 1825 * 2. Clocks and timers (to handle early accesses) 1826 * 3. Embedded controllers (to handle early accesses) 1827 * 4. PCI Link Devices 1828 */ 1829 AcpiGetType(handle, &type); 1830 if (type == ACPI_TYPE_PROCESSOR) 1831 *order = 0; 1832 else if (acpi_MatchHid(handle, "PNP0C01") || 1833 acpi_MatchHid(handle, "PNP0C02")) 1834 *order = 1; 1835 else if (acpi_MatchHid(handle, "PNP0100") || 1836 acpi_MatchHid(handle, "PNP0103") || 1837 acpi_MatchHid(handle, "PNP0B00")) 1838 *order = 2; 1839 else if (acpi_MatchHid(handle, "PNP0C09")) 1840 *order = 3; 1841 else if (acpi_MatchHid(handle, "PNP0C0F")) 1842 *order = 4; 1843 } 1844 1845 /* 1846 * Evaluate a child device and determine whether we might attach a device to 1847 * it. 1848 */ 1849 static ACPI_STATUS 1850 acpi_probe_child(ACPI_HANDLE handle, UINT32 level, void *context, void **status) 1851 { 1852 struct acpi_prw_data prw; 1853 ACPI_OBJECT_TYPE type; 1854 ACPI_HANDLE h; 1855 device_t bus, child; 1856 char *handle_str; 1857 int order; 1858 1859 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1860 1861 if (acpi_disabled("children")) 1862 return_ACPI_STATUS (AE_OK); 1863 1864 /* Skip this device if we think we'll have trouble with it. */ 1865 if (acpi_avoid(handle)) 1866 return_ACPI_STATUS (AE_OK); 1867 1868 bus = (device_t)context; 1869 if (ACPI_SUCCESS(AcpiGetType(handle, &type))) { 1870 handle_str = acpi_name(handle); 1871 switch (type) { 1872 case ACPI_TYPE_DEVICE: 1873 /* 1874 * Since we scan from \, be sure to skip system scope objects. 1875 * \_SB_ and \_TZ_ are defined in ACPICA as devices to work around 1876 * BIOS bugs. For example, \_SB_ is to allow \_SB_._INI to be run 1877 * during the intialization and \_TZ_ is to support Notify() on it. 1878 */ 1879 if (strcmp(handle_str, "\\_SB_") == 0 || 1880 strcmp(handle_str, "\\_TZ_") == 0) 1881 break; 1882 if (acpi_parse_prw(handle, &prw) == 0) 1883 AcpiSetupGpeForWake(handle, prw.gpe_handle, prw.gpe_bit); 1884 1885 /* 1886 * Ignore devices that do not have a _HID or _CID. They should 1887 * be discovered by other buses (e.g. the PCI bus driver). 1888 */ 1889 if (!acpi_has_hid(handle)) 1890 break; 1891 /* FALLTHROUGH */ 1892 case ACPI_TYPE_PROCESSOR: 1893 case ACPI_TYPE_THERMAL: 1894 case ACPI_TYPE_POWER: 1895 /* 1896 * Create a placeholder device for this node. Sort the 1897 * placeholder so that the probe/attach passes will run 1898 * breadth-first. Orders less than ACPI_DEV_BASE_ORDER 1899 * are reserved for special objects (i.e., system 1900 * resources). 1901 */ 1902 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "scanning '%s'\n", handle_str)); 1903 order = level * 10 + ACPI_DEV_BASE_ORDER; 1904 acpi_probe_order(handle, &order); 1905 child = BUS_ADD_CHILD(bus, order, NULL, -1); 1906 if (child == NULL) 1907 break; 1908 1909 /* Associate the handle with the device_t and vice versa. */ 1910 acpi_set_handle(child, handle); 1911 AcpiAttachData(handle, acpi_fake_objhandler, child); 1912 1913 /* 1914 * Check that the device is present. If it's not present, 1915 * leave it disabled (so that we have a device_t attached to 1916 * the handle, but we don't probe it). 1917 * 1918 * XXX PCI link devices sometimes report "present" but not 1919 * "functional" (i.e. if disabled). Go ahead and probe them 1920 * anyway since we may enable them later. 1921 */ 1922 if (type == ACPI_TYPE_DEVICE && !acpi_DeviceIsPresent(child)) { 1923 /* Never disable PCI link devices. */ 1924 if (acpi_MatchHid(handle, "PNP0C0F")) 1925 break; 1926 /* 1927 * Docking stations should remain enabled since the system 1928 * may be undocked at boot. 1929 */ 1930 if (ACPI_SUCCESS(AcpiGetHandle(handle, "_DCK", &h))) 1931 break; 1932 1933 device_disable(child); 1934 break; 1935 } 1936 1937 /* 1938 * Get the device's resource settings and attach them. 1939 * Note that if the device has _PRS but no _CRS, we need 1940 * to decide when it's appropriate to try to configure the 1941 * device. Ignore the return value here; it's OK for the 1942 * device not to have any resources. 1943 */ 1944 acpi_parse_resources(child, handle, &acpi_res_parse_set, NULL); 1945 break; 1946 } 1947 } 1948 1949 return_ACPI_STATUS (AE_OK); 1950 } 1951 1952 /* 1953 * AcpiAttachData() requires an object handler but never uses it. This is a 1954 * placeholder object handler so we can store a device_t in an ACPI_HANDLE. 1955 */ 1956 void 1957 acpi_fake_objhandler(ACPI_HANDLE h, void *data) 1958 { 1959 } 1960 1961 static void 1962 acpi_shutdown_final(void *arg, int howto) 1963 { 1964 struct acpi_softc *sc = (struct acpi_softc *)arg; 1965 register_t intr; 1966 ACPI_STATUS status; 1967 1968 /* 1969 * XXX Shutdown code should only run on the BSP (cpuid 0). 1970 * Some chipsets do not power off the system correctly if called from 1971 * an AP. 1972 */ 1973 if ((howto & RB_POWEROFF) != 0) { 1974 status = AcpiEnterSleepStatePrep(ACPI_STATE_S5); 1975 if (ACPI_FAILURE(status)) { 1976 device_printf(sc->acpi_dev, "AcpiEnterSleepStatePrep failed - %s\n", 1977 AcpiFormatException(status)); 1978 return; 1979 } 1980 device_printf(sc->acpi_dev, "Powering system off\n"); 1981 intr = intr_disable(); 1982 status = AcpiEnterSleepState(ACPI_STATE_S5); 1983 if (ACPI_FAILURE(status)) { 1984 intr_restore(intr); 1985 device_printf(sc->acpi_dev, "power-off failed - %s\n", 1986 AcpiFormatException(status)); 1987 } else { 1988 DELAY(1000000); 1989 intr_restore(intr); 1990 device_printf(sc->acpi_dev, "power-off failed - timeout\n"); 1991 } 1992 } else if ((howto & RB_HALT) == 0 && sc->acpi_handle_reboot) { 1993 /* Reboot using the reset register. */ 1994 status = AcpiReset(); 1995 if (ACPI_SUCCESS(status)) { 1996 DELAY(1000000); 1997 device_printf(sc->acpi_dev, "reset failed - timeout\n"); 1998 } else if (status != AE_NOT_EXIST) 1999 device_printf(sc->acpi_dev, "reset failed - %s\n", 2000 AcpiFormatException(status)); 2001 } else if (sc->acpi_do_disable && panicstr == NULL) { 2002 /* 2003 * Only disable ACPI if the user requested. On some systems, writing 2004 * the disable value to SMI_CMD hangs the system. 2005 */ 2006 device_printf(sc->acpi_dev, "Shutting down\n"); 2007 AcpiTerminate(); 2008 } 2009 } 2010 2011 static void 2012 acpi_enable_fixed_events(struct acpi_softc *sc) 2013 { 2014 static int first_time = 1; 2015 2016 /* Enable and clear fixed events and install handlers. */ 2017 if ((AcpiGbl_FADT.Flags & ACPI_FADT_POWER_BUTTON) == 0) { 2018 AcpiClearEvent(ACPI_EVENT_POWER_BUTTON); 2019 AcpiInstallFixedEventHandler(ACPI_EVENT_POWER_BUTTON, 2020 acpi_event_power_button_sleep, sc); 2021 if (first_time) 2022 device_printf(sc->acpi_dev, "Power Button (fixed)\n"); 2023 } 2024 if ((AcpiGbl_FADT.Flags & ACPI_FADT_SLEEP_BUTTON) == 0) { 2025 AcpiClearEvent(ACPI_EVENT_SLEEP_BUTTON); 2026 AcpiInstallFixedEventHandler(ACPI_EVENT_SLEEP_BUTTON, 2027 acpi_event_sleep_button_sleep, sc); 2028 if (first_time) 2029 device_printf(sc->acpi_dev, "Sleep Button (fixed)\n"); 2030 } 2031 2032 first_time = 0; 2033 } 2034 2035 /* 2036 * Returns true if the device is actually present and should 2037 * be attached to. This requires the present, enabled, UI-visible 2038 * and diagnostics-passed bits to be set. 2039 */ 2040 BOOLEAN 2041 acpi_DeviceIsPresent(device_t dev) 2042 { 2043 ACPI_DEVICE_INFO *devinfo; 2044 ACPI_HANDLE h; 2045 BOOLEAN present; 2046 2047 if ((h = acpi_get_handle(dev)) == NULL || 2048 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 2049 return (FALSE); 2050 2051 /* If no _STA method, must be present */ 2052 present = (devinfo->Valid & ACPI_VALID_STA) == 0 || 2053 ACPI_DEVICE_PRESENT(devinfo->CurrentStatus) ? TRUE : FALSE; 2054 2055 AcpiOsFree(devinfo); 2056 return (present); 2057 } 2058 2059 /* 2060 * Returns true if the battery is actually present and inserted. 2061 */ 2062 BOOLEAN 2063 acpi_BatteryIsPresent(device_t dev) 2064 { 2065 ACPI_DEVICE_INFO *devinfo; 2066 ACPI_HANDLE h; 2067 BOOLEAN present; 2068 2069 if ((h = acpi_get_handle(dev)) == NULL || 2070 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 2071 return (FALSE); 2072 2073 /* If no _STA method, must be present */ 2074 present = (devinfo->Valid & ACPI_VALID_STA) == 0 || 2075 ACPI_BATTERY_PRESENT(devinfo->CurrentStatus) ? TRUE : FALSE; 2076 2077 AcpiOsFree(devinfo); 2078 return (present); 2079 } 2080 2081 /* 2082 * Returns true if a device has at least one valid device ID. 2083 */ 2084 static BOOLEAN 2085 acpi_has_hid(ACPI_HANDLE h) 2086 { 2087 ACPI_DEVICE_INFO *devinfo; 2088 BOOLEAN ret; 2089 2090 if (h == NULL || 2091 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 2092 return (FALSE); 2093 2094 ret = FALSE; 2095 if ((devinfo->Valid & ACPI_VALID_HID) != 0) 2096 ret = TRUE; 2097 else if ((devinfo->Valid & ACPI_VALID_CID) != 0) 2098 if (devinfo->CompatibleIdList.Count > 0) 2099 ret = TRUE; 2100 2101 AcpiOsFree(devinfo); 2102 return (ret); 2103 } 2104 2105 /* 2106 * Match a HID string against a handle 2107 */ 2108 BOOLEAN 2109 acpi_MatchHid(ACPI_HANDLE h, const char *hid) 2110 { 2111 ACPI_DEVICE_INFO *devinfo; 2112 BOOLEAN ret; 2113 int i; 2114 2115 if (hid == NULL || h == NULL || 2116 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 2117 return (FALSE); 2118 2119 ret = FALSE; 2120 if ((devinfo->Valid & ACPI_VALID_HID) != 0 && 2121 strcmp(hid, devinfo->HardwareId.String) == 0) 2122 ret = TRUE; 2123 else if ((devinfo->Valid & ACPI_VALID_CID) != 0) 2124 for (i = 0; i < devinfo->CompatibleIdList.Count; i++) { 2125 if (strcmp(hid, devinfo->CompatibleIdList.Ids[i].String) == 0) { 2126 ret = TRUE; 2127 break; 2128 } 2129 } 2130 2131 AcpiOsFree(devinfo); 2132 return (ret); 2133 } 2134 2135 /* 2136 * Return the handle of a named object within our scope, ie. that of (parent) 2137 * or one if its parents. 2138 */ 2139 ACPI_STATUS 2140 acpi_GetHandleInScope(ACPI_HANDLE parent, char *path, ACPI_HANDLE *result) 2141 { 2142 ACPI_HANDLE r; 2143 ACPI_STATUS status; 2144 2145 /* Walk back up the tree to the root */ 2146 for (;;) { 2147 status = AcpiGetHandle(parent, path, &r); 2148 if (ACPI_SUCCESS(status)) { 2149 *result = r; 2150 return (AE_OK); 2151 } 2152 /* XXX Return error here? */ 2153 if (status != AE_NOT_FOUND) 2154 return (AE_OK); 2155 if (ACPI_FAILURE(AcpiGetParent(parent, &r))) 2156 return (AE_NOT_FOUND); 2157 parent = r; 2158 } 2159 } 2160 2161 /* 2162 * Allocate a buffer with a preset data size. 2163 */ 2164 ACPI_BUFFER * 2165 acpi_AllocBuffer(int size) 2166 { 2167 ACPI_BUFFER *buf; 2168 2169 if ((buf = malloc(size + sizeof(*buf), M_ACPIDEV, M_NOWAIT)) == NULL) 2170 return (NULL); 2171 buf->Length = size; 2172 buf->Pointer = (void *)(buf + 1); 2173 return (buf); 2174 } 2175 2176 ACPI_STATUS 2177 acpi_SetInteger(ACPI_HANDLE handle, char *path, UINT32 number) 2178 { 2179 ACPI_OBJECT arg1; 2180 ACPI_OBJECT_LIST args; 2181 2182 arg1.Type = ACPI_TYPE_INTEGER; 2183 arg1.Integer.Value = number; 2184 args.Count = 1; 2185 args.Pointer = &arg1; 2186 2187 return (AcpiEvaluateObject(handle, path, &args, NULL)); 2188 } 2189 2190 /* 2191 * Evaluate a path that should return an integer. 2192 */ 2193 ACPI_STATUS 2194 acpi_GetInteger(ACPI_HANDLE handle, char *path, UINT32 *number) 2195 { 2196 ACPI_STATUS status; 2197 ACPI_BUFFER buf; 2198 ACPI_OBJECT param; 2199 2200 if (handle == NULL) 2201 handle = ACPI_ROOT_OBJECT; 2202 2203 /* 2204 * Assume that what we've been pointed at is an Integer object, or 2205 * a method that will return an Integer. 2206 */ 2207 buf.Pointer = ¶m; 2208 buf.Length = sizeof(param); 2209 status = AcpiEvaluateObject(handle, path, NULL, &buf); 2210 if (ACPI_SUCCESS(status)) { 2211 if (param.Type == ACPI_TYPE_INTEGER) 2212 *number = param.Integer.Value; 2213 else 2214 status = AE_TYPE; 2215 } 2216 2217 /* 2218 * In some applications, a method that's expected to return an Integer 2219 * may instead return a Buffer (probably to simplify some internal 2220 * arithmetic). We'll try to fetch whatever it is, and if it's a Buffer, 2221 * convert it into an Integer as best we can. 2222 * 2223 * This is a hack. 2224 */ 2225 if (status == AE_BUFFER_OVERFLOW) { 2226 if ((buf.Pointer = AcpiOsAllocate(buf.Length)) == NULL) { 2227 status = AE_NO_MEMORY; 2228 } else { 2229 status = AcpiEvaluateObject(handle, path, NULL, &buf); 2230 if (ACPI_SUCCESS(status)) 2231 status = acpi_ConvertBufferToInteger(&buf, number); 2232 AcpiOsFree(buf.Pointer); 2233 } 2234 } 2235 return (status); 2236 } 2237 2238 ACPI_STATUS 2239 acpi_ConvertBufferToInteger(ACPI_BUFFER *bufp, UINT32 *number) 2240 { 2241 ACPI_OBJECT *p; 2242 UINT8 *val; 2243 int i; 2244 2245 p = (ACPI_OBJECT *)bufp->Pointer; 2246 if (p->Type == ACPI_TYPE_INTEGER) { 2247 *number = p->Integer.Value; 2248 return (AE_OK); 2249 } 2250 if (p->Type != ACPI_TYPE_BUFFER) 2251 return (AE_TYPE); 2252 if (p->Buffer.Length > sizeof(int)) 2253 return (AE_BAD_DATA); 2254 2255 *number = 0; 2256 val = p->Buffer.Pointer; 2257 for (i = 0; i < p->Buffer.Length; i++) 2258 *number += val[i] << (i * 8); 2259 return (AE_OK); 2260 } 2261 2262 /* 2263 * Iterate over the elements of an a package object, calling the supplied 2264 * function for each element. 2265 * 2266 * XXX possible enhancement might be to abort traversal on error. 2267 */ 2268 ACPI_STATUS 2269 acpi_ForeachPackageObject(ACPI_OBJECT *pkg, 2270 void (*func)(ACPI_OBJECT *comp, void *arg), void *arg) 2271 { 2272 ACPI_OBJECT *comp; 2273 int i; 2274 2275 if (pkg == NULL || pkg->Type != ACPI_TYPE_PACKAGE) 2276 return (AE_BAD_PARAMETER); 2277 2278 /* Iterate over components */ 2279 i = 0; 2280 comp = pkg->Package.Elements; 2281 for (; i < pkg->Package.Count; i++, comp++) 2282 func(comp, arg); 2283 2284 return (AE_OK); 2285 } 2286 2287 /* 2288 * Find the (index)th resource object in a set. 2289 */ 2290 ACPI_STATUS 2291 acpi_FindIndexedResource(ACPI_BUFFER *buf, int index, ACPI_RESOURCE **resp) 2292 { 2293 ACPI_RESOURCE *rp; 2294 int i; 2295 2296 rp = (ACPI_RESOURCE *)buf->Pointer; 2297 i = index; 2298 while (i-- > 0) { 2299 /* Range check */ 2300 if (rp > (ACPI_RESOURCE *)((u_int8_t *)buf->Pointer + buf->Length)) 2301 return (AE_BAD_PARAMETER); 2302 2303 /* Check for terminator */ 2304 if (rp->Type == ACPI_RESOURCE_TYPE_END_TAG || rp->Length == 0) 2305 return (AE_NOT_FOUND); 2306 rp = ACPI_NEXT_RESOURCE(rp); 2307 } 2308 if (resp != NULL) 2309 *resp = rp; 2310 2311 return (AE_OK); 2312 } 2313 2314 /* 2315 * Append an ACPI_RESOURCE to an ACPI_BUFFER. 2316 * 2317 * Given a pointer to an ACPI_RESOURCE structure, expand the ACPI_BUFFER 2318 * provided to contain it. If the ACPI_BUFFER is empty, allocate a sensible 2319 * backing block. If the ACPI_RESOURCE is NULL, return an empty set of 2320 * resources. 2321 */ 2322 #define ACPI_INITIAL_RESOURCE_BUFFER_SIZE 512 2323 2324 ACPI_STATUS 2325 acpi_AppendBufferResource(ACPI_BUFFER *buf, ACPI_RESOURCE *res) 2326 { 2327 ACPI_RESOURCE *rp; 2328 void *newp; 2329 2330 /* Initialise the buffer if necessary. */ 2331 if (buf->Pointer == NULL) { 2332 buf->Length = ACPI_INITIAL_RESOURCE_BUFFER_SIZE; 2333 if ((buf->Pointer = AcpiOsAllocate(buf->Length)) == NULL) 2334 return (AE_NO_MEMORY); 2335 rp = (ACPI_RESOURCE *)buf->Pointer; 2336 rp->Type = ACPI_RESOURCE_TYPE_END_TAG; 2337 rp->Length = ACPI_RS_SIZE_MIN; 2338 } 2339 if (res == NULL) 2340 return (AE_OK); 2341 2342 /* 2343 * Scan the current buffer looking for the terminator. 2344 * This will either find the terminator or hit the end 2345 * of the buffer and return an error. 2346 */ 2347 rp = (ACPI_RESOURCE *)buf->Pointer; 2348 for (;;) { 2349 /* Range check, don't go outside the buffer */ 2350 if (rp >= (ACPI_RESOURCE *)((u_int8_t *)buf->Pointer + buf->Length)) 2351 return (AE_BAD_PARAMETER); 2352 if (rp->Type == ACPI_RESOURCE_TYPE_END_TAG || rp->Length == 0) 2353 break; 2354 rp = ACPI_NEXT_RESOURCE(rp); 2355 } 2356 2357 /* 2358 * Check the size of the buffer and expand if required. 2359 * 2360 * Required size is: 2361 * size of existing resources before terminator + 2362 * size of new resource and header + 2363 * size of terminator. 2364 * 2365 * Note that this loop should really only run once, unless 2366 * for some reason we are stuffing a *really* huge resource. 2367 */ 2368 while ((((u_int8_t *)rp - (u_int8_t *)buf->Pointer) + 2369 res->Length + ACPI_RS_SIZE_NO_DATA + 2370 ACPI_RS_SIZE_MIN) >= buf->Length) { 2371 if ((newp = AcpiOsAllocate(buf->Length * 2)) == NULL) 2372 return (AE_NO_MEMORY); 2373 bcopy(buf->Pointer, newp, buf->Length); 2374 rp = (ACPI_RESOURCE *)((u_int8_t *)newp + 2375 ((u_int8_t *)rp - (u_int8_t *)buf->Pointer)); 2376 AcpiOsFree(buf->Pointer); 2377 buf->Pointer = newp; 2378 buf->Length += buf->Length; 2379 } 2380 2381 /* Insert the new resource. */ 2382 bcopy(res, rp, res->Length + ACPI_RS_SIZE_NO_DATA); 2383 2384 /* And add the terminator. */ 2385 rp = ACPI_NEXT_RESOURCE(rp); 2386 rp->Type = ACPI_RESOURCE_TYPE_END_TAG; 2387 rp->Length = ACPI_RS_SIZE_MIN; 2388 2389 return (AE_OK); 2390 } 2391 2392 /* 2393 * Set interrupt model. 2394 */ 2395 ACPI_STATUS 2396 acpi_SetIntrModel(int model) 2397 { 2398 2399 return (acpi_SetInteger(ACPI_ROOT_OBJECT, "_PIC", model)); 2400 } 2401 2402 /* 2403 * Walk subtables of a table and call a callback routine for each 2404 * subtable. The caller should provide the first subtable and a 2405 * pointer to the end of the table. This can be used to walk tables 2406 * such as MADT and SRAT that use subtable entries. 2407 */ 2408 void 2409 acpi_walk_subtables(void *first, void *end, acpi_subtable_handler *handler, 2410 void *arg) 2411 { 2412 ACPI_SUBTABLE_HEADER *entry; 2413 2414 for (entry = first; (void *)entry < end; ) { 2415 /* Avoid an infinite loop if we hit a bogus entry. */ 2416 if (entry->Length < sizeof(ACPI_SUBTABLE_HEADER)) 2417 return; 2418 2419 handler(entry, arg); 2420 entry = ACPI_ADD_PTR(ACPI_SUBTABLE_HEADER, entry, entry->Length); 2421 } 2422 } 2423 2424 /* 2425 * DEPRECATED. This interface has serious deficiencies and will be 2426 * removed. 2427 * 2428 * Immediately enter the sleep state. In the old model, acpiconf(8) ran 2429 * rc.suspend and rc.resume so we don't have to notify devd(8) to do this. 2430 */ 2431 ACPI_STATUS 2432 acpi_SetSleepState(struct acpi_softc *sc, int state) 2433 { 2434 static int once; 2435 2436 if (!once) { 2437 device_printf(sc->acpi_dev, 2438 "warning: acpi_SetSleepState() deprecated, need to update your software\n"); 2439 once = 1; 2440 } 2441 return (acpi_EnterSleepState(sc, state)); 2442 } 2443 2444 #if defined(__amd64__) || defined(__i386__) 2445 static void 2446 acpi_sleep_force_task(void *context) 2447 { 2448 struct acpi_softc *sc = (struct acpi_softc *)context; 2449 2450 if (ACPI_FAILURE(acpi_EnterSleepState(sc, sc->acpi_next_sstate))) 2451 device_printf(sc->acpi_dev, "force sleep state S%d failed\n", 2452 sc->acpi_next_sstate); 2453 } 2454 2455 static void 2456 acpi_sleep_force(void *arg) 2457 { 2458 struct acpi_softc *sc = (struct acpi_softc *)arg; 2459 2460 device_printf(sc->acpi_dev, 2461 "suspend request timed out, forcing sleep now\n"); 2462 /* 2463 * XXX Suspending from callout cause the freeze in DEVICE_SUSPEND(). 2464 * Suspend from acpi_task thread in stead. 2465 */ 2466 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 2467 acpi_sleep_force_task, sc))) 2468 device_printf(sc->acpi_dev, "AcpiOsExecute() for sleeping failed\n"); 2469 } 2470 #endif 2471 2472 /* 2473 * Request that the system enter the given suspend state. All /dev/apm 2474 * devices and devd(8) will be notified. Userland then has a chance to 2475 * save state and acknowledge the request. The system sleeps once all 2476 * acks are in. 2477 */ 2478 int 2479 acpi_ReqSleepState(struct acpi_softc *sc, int state) 2480 { 2481 #if defined(__amd64__) || defined(__i386__) 2482 struct apm_clone_data *clone; 2483 ACPI_STATUS status; 2484 2485 if (state < ACPI_STATE_S1 || state > ACPI_S_STATES_MAX) 2486 return (EINVAL); 2487 if (!acpi_sleep_states[state]) 2488 return (EOPNOTSUPP); 2489 2490 /* If a suspend request is already in progress, just return. */ 2491 if (sc->acpi_next_sstate != 0) { 2492 return (0); 2493 } 2494 2495 /* Wait until sleep is enabled. */ 2496 while (sc->acpi_sleep_disabled) { 2497 AcpiOsSleep(1000); 2498 } 2499 2500 ACPI_LOCK(acpi); 2501 2502 sc->acpi_next_sstate = state; 2503 2504 /* S5 (soft-off) should be entered directly with no waiting. */ 2505 if (state == ACPI_STATE_S5) { 2506 ACPI_UNLOCK(acpi); 2507 status = acpi_EnterSleepState(sc, state); 2508 return (ACPI_SUCCESS(status) ? 0 : ENXIO); 2509 } 2510 2511 /* Record the pending state and notify all apm devices. */ 2512 STAILQ_FOREACH(clone, &sc->apm_cdevs, entries) { 2513 clone->notify_status = APM_EV_NONE; 2514 if ((clone->flags & ACPI_EVF_DEVD) == 0) { 2515 selwakeuppri(&clone->sel_read, PZERO); 2516 KNOTE_LOCKED(&clone->sel_read.si_note, 0); 2517 } 2518 } 2519 2520 /* If devd(8) is not running, immediately enter the sleep state. */ 2521 if (!devctl_process_running()) { 2522 ACPI_UNLOCK(acpi); 2523 status = acpi_EnterSleepState(sc, state); 2524 return (ACPI_SUCCESS(status) ? 0 : ENXIO); 2525 } 2526 2527 /* 2528 * Set a timeout to fire if userland doesn't ack the suspend request 2529 * in time. This way we still eventually go to sleep if we were 2530 * overheating or running low on battery, even if userland is hung. 2531 * We cancel this timeout once all userland acks are in or the 2532 * suspend request is aborted. 2533 */ 2534 callout_reset(&sc->susp_force_to, 10 * hz, acpi_sleep_force, sc); 2535 ACPI_UNLOCK(acpi); 2536 2537 /* Now notify devd(8) also. */ 2538 acpi_UserNotify("Suspend", ACPI_ROOT_OBJECT, state); 2539 2540 return (0); 2541 #else 2542 /* This platform does not support acpi suspend/resume. */ 2543 return (EOPNOTSUPP); 2544 #endif 2545 } 2546 2547 /* 2548 * Acknowledge (or reject) a pending sleep state. The caller has 2549 * prepared for suspend and is now ready for it to proceed. If the 2550 * error argument is non-zero, it indicates suspend should be cancelled 2551 * and gives an errno value describing why. Once all votes are in, 2552 * we suspend the system. 2553 */ 2554 int 2555 acpi_AckSleepState(struct apm_clone_data *clone, int error) 2556 { 2557 #if defined(__amd64__) || defined(__i386__) 2558 struct acpi_softc *sc; 2559 int ret, sleeping; 2560 2561 /* If no pending sleep state, return an error. */ 2562 ACPI_LOCK(acpi); 2563 sc = clone->acpi_sc; 2564 if (sc->acpi_next_sstate == 0) { 2565 ACPI_UNLOCK(acpi); 2566 return (ENXIO); 2567 } 2568 2569 /* Caller wants to abort suspend process. */ 2570 if (error) { 2571 sc->acpi_next_sstate = 0; 2572 callout_stop(&sc->susp_force_to); 2573 device_printf(sc->acpi_dev, 2574 "listener on %s cancelled the pending suspend\n", 2575 devtoname(clone->cdev)); 2576 ACPI_UNLOCK(acpi); 2577 return (0); 2578 } 2579 2580 /* 2581 * Mark this device as acking the suspend request. Then, walk through 2582 * all devices, seeing if they agree yet. We only count devices that 2583 * are writable since read-only devices couldn't ack the request. 2584 */ 2585 sleeping = TRUE; 2586 clone->notify_status = APM_EV_ACKED; 2587 STAILQ_FOREACH(clone, &sc->apm_cdevs, entries) { 2588 if ((clone->flags & ACPI_EVF_WRITE) != 0 && 2589 clone->notify_status != APM_EV_ACKED) { 2590 sleeping = FALSE; 2591 break; 2592 } 2593 } 2594 2595 /* If all devices have voted "yes", we will suspend now. */ 2596 if (sleeping) 2597 callout_stop(&sc->susp_force_to); 2598 ACPI_UNLOCK(acpi); 2599 ret = 0; 2600 if (sleeping) { 2601 if (ACPI_FAILURE(acpi_EnterSleepState(sc, sc->acpi_next_sstate))) 2602 ret = ENODEV; 2603 } 2604 return (ret); 2605 #else 2606 /* This platform does not support acpi suspend/resume. */ 2607 return (EOPNOTSUPP); 2608 #endif 2609 } 2610 2611 static void 2612 acpi_sleep_enable(void *arg) 2613 { 2614 struct acpi_softc *sc = (struct acpi_softc *)arg; 2615 2616 /* Reschedule if the system is not fully up and running. */ 2617 if (!AcpiGbl_SystemAwakeAndRunning) { 2618 timeout(acpi_sleep_enable, sc, hz * ACPI_MINIMUM_AWAKETIME); 2619 return; 2620 } 2621 2622 ACPI_LOCK(acpi); 2623 sc->acpi_sleep_disabled = FALSE; 2624 ACPI_UNLOCK(acpi); 2625 } 2626 2627 static ACPI_STATUS 2628 acpi_sleep_disable(struct acpi_softc *sc) 2629 { 2630 ACPI_STATUS status; 2631 2632 /* Fail if the system is not fully up and running. */ 2633 if (!AcpiGbl_SystemAwakeAndRunning) 2634 return (AE_ERROR); 2635 2636 ACPI_LOCK(acpi); 2637 status = sc->acpi_sleep_disabled ? AE_ERROR : AE_OK; 2638 sc->acpi_sleep_disabled = TRUE; 2639 ACPI_UNLOCK(acpi); 2640 2641 return (status); 2642 } 2643 2644 enum acpi_sleep_state { 2645 ACPI_SS_NONE, 2646 ACPI_SS_GPE_SET, 2647 ACPI_SS_DEV_SUSPEND, 2648 ACPI_SS_SLP_PREP, 2649 ACPI_SS_SLEPT, 2650 }; 2651 2652 /* 2653 * Enter the desired system sleep state. 2654 * 2655 * Currently we support S1-S5 but S4 is only S4BIOS 2656 */ 2657 static ACPI_STATUS 2658 acpi_EnterSleepState(struct acpi_softc *sc, int state) 2659 { 2660 register_t intr; 2661 ACPI_STATUS status; 2662 ACPI_EVENT_STATUS power_button_status; 2663 enum acpi_sleep_state slp_state; 2664 int sleep_result; 2665 2666 ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state); 2667 2668 if (state < ACPI_STATE_S1 || state > ACPI_S_STATES_MAX) 2669 return_ACPI_STATUS (AE_BAD_PARAMETER); 2670 if (!acpi_sleep_states[state]) { 2671 device_printf(sc->acpi_dev, "Sleep state S%d not supported by BIOS\n", 2672 state); 2673 return (AE_SUPPORT); 2674 } 2675 2676 /* Re-entry once we're suspending is not allowed. */ 2677 status = acpi_sleep_disable(sc); 2678 if (ACPI_FAILURE(status)) { 2679 device_printf(sc->acpi_dev, 2680 "suspend request ignored (not ready yet)\n"); 2681 return (status); 2682 } 2683 2684 if (state == ACPI_STATE_S5) { 2685 /* 2686 * Shut down cleanly and power off. This will call us back through the 2687 * shutdown handlers. 2688 */ 2689 shutdown_nice(RB_POWEROFF); 2690 return_ACPI_STATUS (AE_OK); 2691 } 2692 2693 EVENTHANDLER_INVOKE(power_suspend); 2694 2695 if (smp_started) { 2696 thread_lock(curthread); 2697 sched_bind(curthread, 0); 2698 thread_unlock(curthread); 2699 } 2700 2701 /* 2702 * Be sure to hold Giant across DEVICE_SUSPEND/RESUME since non-MPSAFE 2703 * drivers need this. 2704 */ 2705 mtx_lock(&Giant); 2706 2707 slp_state = ACPI_SS_NONE; 2708 2709 sc->acpi_sstate = state; 2710 2711 /* Enable any GPEs as appropriate and requested by the user. */ 2712 acpi_wake_prep_walk(state); 2713 slp_state = ACPI_SS_GPE_SET; 2714 2715 /* 2716 * Inform all devices that we are going to sleep. If at least one 2717 * device fails, DEVICE_SUSPEND() automatically resumes the tree. 2718 * 2719 * XXX Note that a better two-pass approach with a 'veto' pass 2720 * followed by a "real thing" pass would be better, but the current 2721 * bus interface does not provide for this. 2722 */ 2723 if (DEVICE_SUSPEND(root_bus) != 0) { 2724 device_printf(sc->acpi_dev, "device_suspend failed\n"); 2725 goto backout; 2726 } 2727 slp_state = ACPI_SS_DEV_SUSPEND; 2728 2729 /* If testing device suspend only, back out of everything here. */ 2730 if (acpi_susp_bounce) 2731 goto backout; 2732 2733 status = AcpiEnterSleepStatePrep(state); 2734 if (ACPI_FAILURE(status)) { 2735 device_printf(sc->acpi_dev, "AcpiEnterSleepStatePrep failed - %s\n", 2736 AcpiFormatException(status)); 2737 goto backout; 2738 } 2739 slp_state = ACPI_SS_SLP_PREP; 2740 2741 if (sc->acpi_sleep_delay > 0) 2742 DELAY(sc->acpi_sleep_delay * 1000000); 2743 2744 intr = intr_disable(); 2745 if (state != ACPI_STATE_S1) { 2746 sleep_result = acpi_sleep_machdep(sc, state); 2747 acpi_wakeup_machdep(sc, state, sleep_result, 0); 2748 2749 /* 2750 * XXX According to ACPI specification SCI_EN bit should be restored 2751 * by ACPI platform (BIOS, firmware) to its pre-sleep state. 2752 * Unfortunately some BIOSes fail to do that and that leads to 2753 * unexpected and serious consequences during wake up like a system 2754 * getting stuck in SMI handlers. 2755 * This hack is picked up from Linux, which claims that it follows 2756 * Windows behavior. 2757 */ 2758 if (sleep_result == 1 && state != ACPI_STATE_S4) 2759 AcpiWriteBitRegister(ACPI_BITREG_SCI_ENABLE, ACPI_ENABLE_EVENT); 2760 2761 AcpiLeaveSleepStatePrep(state); 2762 2763 if (sleep_result == 1 && state == ACPI_STATE_S3) { 2764 /* 2765 * Prevent mis-interpretation of the wakeup by power button 2766 * as a request for power off. 2767 * Ideally we should post an appropriate wakeup event, 2768 * perhaps using acpi_event_power_button_wake or alike. 2769 * 2770 * Clearing of power button status after wakeup is mandated 2771 * by ACPI specification in section "Fixed Power Button". 2772 * 2773 * XXX As of ACPICA 20121114 AcpiGetEventStatus provides 2774 * status as 0/1 corressponding to inactive/active despite 2775 * its type being ACPI_EVENT_STATUS. In other words, 2776 * we should not test for ACPI_EVENT_FLAG_SET for time being. 2777 */ 2778 if (ACPI_SUCCESS(AcpiGetEventStatus(ACPI_EVENT_POWER_BUTTON, 2779 &power_button_status)) && power_button_status != 0) { 2780 AcpiClearEvent(ACPI_EVENT_POWER_BUTTON); 2781 device_printf(sc->acpi_dev, 2782 "cleared fixed power button status\n"); 2783 } 2784 } 2785 2786 intr_restore(intr); 2787 2788 /* call acpi_wakeup_machdep() again with interrupt enabled */ 2789 acpi_wakeup_machdep(sc, state, sleep_result, 1); 2790 2791 if (sleep_result == -1) 2792 goto backout; 2793 2794 /* Re-enable ACPI hardware on wakeup from sleep state 4. */ 2795 if (state == ACPI_STATE_S4) 2796 AcpiEnable(); 2797 } else { 2798 status = AcpiEnterSleepState(state); 2799 AcpiLeaveSleepStatePrep(state); 2800 intr_restore(intr); 2801 if (ACPI_FAILURE(status)) { 2802 device_printf(sc->acpi_dev, "AcpiEnterSleepState failed - %s\n", 2803 AcpiFormatException(status)); 2804 goto backout; 2805 } 2806 } 2807 slp_state = ACPI_SS_SLEPT; 2808 2809 /* 2810 * Back out state according to how far along we got in the suspend 2811 * process. This handles both the error and success cases. 2812 */ 2813 backout: 2814 if (slp_state >= ACPI_SS_GPE_SET) { 2815 acpi_wake_prep_walk(state); 2816 sc->acpi_sstate = ACPI_STATE_S0; 2817 } 2818 if (slp_state >= ACPI_SS_DEV_SUSPEND) 2819 DEVICE_RESUME(root_bus); 2820 if (slp_state >= ACPI_SS_SLP_PREP) 2821 AcpiLeaveSleepState(state); 2822 if (slp_state >= ACPI_SS_SLEPT) { 2823 acpi_resync_clock(sc); 2824 acpi_enable_fixed_events(sc); 2825 } 2826 sc->acpi_next_sstate = 0; 2827 2828 mtx_unlock(&Giant); 2829 2830 if (smp_started) { 2831 thread_lock(curthread); 2832 sched_unbind(curthread); 2833 thread_unlock(curthread); 2834 } 2835 2836 EVENTHANDLER_INVOKE(power_resume); 2837 2838 /* Allow another sleep request after a while. */ 2839 timeout(acpi_sleep_enable, sc, hz * ACPI_MINIMUM_AWAKETIME); 2840 2841 /* Run /etc/rc.resume after we are back. */ 2842 if (devctl_process_running()) 2843 acpi_UserNotify("Resume", ACPI_ROOT_OBJECT, state); 2844 2845 return_ACPI_STATUS (status); 2846 } 2847 2848 static void 2849 acpi_resync_clock(struct acpi_softc *sc) 2850 { 2851 #ifdef __amd64__ 2852 if (!acpi_reset_clock) 2853 return; 2854 2855 /* 2856 * Warm up timecounter again and reset system clock. 2857 */ 2858 (void)timecounter->tc_get_timecount(timecounter); 2859 (void)timecounter->tc_get_timecount(timecounter); 2860 inittodr(time_second + sc->acpi_sleep_delay); 2861 #endif 2862 } 2863 2864 /* Enable or disable the device's wake GPE. */ 2865 int 2866 acpi_wake_set_enable(device_t dev, int enable) 2867 { 2868 struct acpi_prw_data prw; 2869 ACPI_STATUS status; 2870 int flags; 2871 2872 /* Make sure the device supports waking the system and get the GPE. */ 2873 if (acpi_parse_prw(acpi_get_handle(dev), &prw) != 0) 2874 return (ENXIO); 2875 2876 flags = acpi_get_flags(dev); 2877 if (enable) { 2878 status = AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, 2879 ACPI_GPE_ENABLE); 2880 if (ACPI_FAILURE(status)) { 2881 device_printf(dev, "enable wake failed\n"); 2882 return (ENXIO); 2883 } 2884 acpi_set_flags(dev, flags | ACPI_FLAG_WAKE_ENABLED); 2885 } else { 2886 status = AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, 2887 ACPI_GPE_DISABLE); 2888 if (ACPI_FAILURE(status)) { 2889 device_printf(dev, "disable wake failed\n"); 2890 return (ENXIO); 2891 } 2892 acpi_set_flags(dev, flags & ~ACPI_FLAG_WAKE_ENABLED); 2893 } 2894 2895 return (0); 2896 } 2897 2898 static int 2899 acpi_wake_sleep_prep(ACPI_HANDLE handle, int sstate) 2900 { 2901 struct acpi_prw_data prw; 2902 device_t dev; 2903 2904 /* Check that this is a wake-capable device and get its GPE. */ 2905 if (acpi_parse_prw(handle, &prw) != 0) 2906 return (ENXIO); 2907 dev = acpi_get_device(handle); 2908 2909 /* 2910 * The destination sleep state must be less than (i.e., higher power) 2911 * or equal to the value specified by _PRW. If this GPE cannot be 2912 * enabled for the next sleep state, then disable it. If it can and 2913 * the user requested it be enabled, turn on any required power resources 2914 * and set _PSW. 2915 */ 2916 if (sstate > prw.lowest_wake) { 2917 AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, ACPI_GPE_DISABLE); 2918 if (bootverbose) 2919 device_printf(dev, "wake_prep disabled wake for %s (S%d)\n", 2920 acpi_name(handle), sstate); 2921 } else if (dev && (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) != 0) { 2922 acpi_pwr_wake_enable(handle, 1); 2923 acpi_SetInteger(handle, "_PSW", 1); 2924 if (bootverbose) 2925 device_printf(dev, "wake_prep enabled for %s (S%d)\n", 2926 acpi_name(handle), sstate); 2927 } 2928 2929 return (0); 2930 } 2931 2932 static int 2933 acpi_wake_run_prep(ACPI_HANDLE handle, int sstate) 2934 { 2935 struct acpi_prw_data prw; 2936 device_t dev; 2937 2938 /* 2939 * Check that this is a wake-capable device and get its GPE. Return 2940 * now if the user didn't enable this device for wake. 2941 */ 2942 if (acpi_parse_prw(handle, &prw) != 0) 2943 return (ENXIO); 2944 dev = acpi_get_device(handle); 2945 if (dev == NULL || (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) == 0) 2946 return (0); 2947 2948 /* 2949 * If this GPE couldn't be enabled for the previous sleep state, it was 2950 * disabled before going to sleep so re-enable it. If it was enabled, 2951 * clear _PSW and turn off any power resources it used. 2952 */ 2953 if (sstate > prw.lowest_wake) { 2954 AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, ACPI_GPE_ENABLE); 2955 if (bootverbose) 2956 device_printf(dev, "run_prep re-enabled %s\n", acpi_name(handle)); 2957 } else { 2958 acpi_SetInteger(handle, "_PSW", 0); 2959 acpi_pwr_wake_enable(handle, 0); 2960 if (bootverbose) 2961 device_printf(dev, "run_prep cleaned up for %s\n", 2962 acpi_name(handle)); 2963 } 2964 2965 return (0); 2966 } 2967 2968 static ACPI_STATUS 2969 acpi_wake_prep(ACPI_HANDLE handle, UINT32 level, void *context, void **status) 2970 { 2971 int sstate; 2972 2973 /* If suspending, run the sleep prep function, otherwise wake. */ 2974 sstate = *(int *)context; 2975 if (AcpiGbl_SystemAwakeAndRunning) 2976 acpi_wake_sleep_prep(handle, sstate); 2977 else 2978 acpi_wake_run_prep(handle, sstate); 2979 return (AE_OK); 2980 } 2981 2982 /* Walk the tree rooted at acpi0 to prep devices for suspend/resume. */ 2983 static int 2984 acpi_wake_prep_walk(int sstate) 2985 { 2986 ACPI_HANDLE sb_handle; 2987 2988 if (ACPI_SUCCESS(AcpiGetHandle(ACPI_ROOT_OBJECT, "\\_SB_", &sb_handle))) 2989 AcpiWalkNamespace(ACPI_TYPE_DEVICE, sb_handle, 100, 2990 acpi_wake_prep, NULL, &sstate, NULL); 2991 return (0); 2992 } 2993 2994 /* Walk the tree rooted at acpi0 to attach per-device wake sysctls. */ 2995 static int 2996 acpi_wake_sysctl_walk(device_t dev) 2997 { 2998 int error, i, numdevs; 2999 device_t *devlist; 3000 device_t child; 3001 ACPI_STATUS status; 3002 3003 error = device_get_children(dev, &devlist, &numdevs); 3004 if (error != 0 || numdevs == 0) { 3005 if (numdevs == 0) 3006 free(devlist, M_TEMP); 3007 return (error); 3008 } 3009 for (i = 0; i < numdevs; i++) { 3010 child = devlist[i]; 3011 acpi_wake_sysctl_walk(child); 3012 if (!device_is_attached(child)) 3013 continue; 3014 status = AcpiEvaluateObject(acpi_get_handle(child), "_PRW", NULL, NULL); 3015 if (ACPI_SUCCESS(status)) { 3016 SYSCTL_ADD_PROC(device_get_sysctl_ctx(child), 3017 SYSCTL_CHILDREN(device_get_sysctl_tree(child)), OID_AUTO, 3018 "wake", CTLTYPE_INT | CTLFLAG_RW, child, 0, 3019 acpi_wake_set_sysctl, "I", "Device set to wake the system"); 3020 } 3021 } 3022 free(devlist, M_TEMP); 3023 3024 return (0); 3025 } 3026 3027 /* Enable or disable wake from userland. */ 3028 static int 3029 acpi_wake_set_sysctl(SYSCTL_HANDLER_ARGS) 3030 { 3031 int enable, error; 3032 device_t dev; 3033 3034 dev = (device_t)arg1; 3035 enable = (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) ? 1 : 0; 3036 3037 error = sysctl_handle_int(oidp, &enable, 0, req); 3038 if (error != 0 || req->newptr == NULL) 3039 return (error); 3040 if (enable != 0 && enable != 1) 3041 return (EINVAL); 3042 3043 return (acpi_wake_set_enable(dev, enable)); 3044 } 3045 3046 /* Parse a device's _PRW into a structure. */ 3047 int 3048 acpi_parse_prw(ACPI_HANDLE h, struct acpi_prw_data *prw) 3049 { 3050 ACPI_STATUS status; 3051 ACPI_BUFFER prw_buffer; 3052 ACPI_OBJECT *res, *res2; 3053 int error, i, power_count; 3054 3055 if (h == NULL || prw == NULL) 3056 return (EINVAL); 3057 3058 /* 3059 * The _PRW object (7.2.9) is only required for devices that have the 3060 * ability to wake the system from a sleeping state. 3061 */ 3062 error = EINVAL; 3063 prw_buffer.Pointer = NULL; 3064 prw_buffer.Length = ACPI_ALLOCATE_BUFFER; 3065 status = AcpiEvaluateObject(h, "_PRW", NULL, &prw_buffer); 3066 if (ACPI_FAILURE(status)) 3067 return (ENOENT); 3068 res = (ACPI_OBJECT *)prw_buffer.Pointer; 3069 if (res == NULL) 3070 return (ENOENT); 3071 if (!ACPI_PKG_VALID(res, 2)) 3072 goto out; 3073 3074 /* 3075 * Element 1 of the _PRW object: 3076 * The lowest power system sleeping state that can be entered while still 3077 * providing wake functionality. The sleeping state being entered must 3078 * be less than (i.e., higher power) or equal to this value. 3079 */ 3080 if (acpi_PkgInt32(res, 1, &prw->lowest_wake) != 0) 3081 goto out; 3082 3083 /* 3084 * Element 0 of the _PRW object: 3085 */ 3086 switch (res->Package.Elements[0].Type) { 3087 case ACPI_TYPE_INTEGER: 3088 /* 3089 * If the data type of this package element is numeric, then this 3090 * _PRW package element is the bit index in the GPEx_EN, in the 3091 * GPE blocks described in the FADT, of the enable bit that is 3092 * enabled for the wake event. 3093 */ 3094 prw->gpe_handle = NULL; 3095 prw->gpe_bit = res->Package.Elements[0].Integer.Value; 3096 error = 0; 3097 break; 3098 case ACPI_TYPE_PACKAGE: 3099 /* 3100 * If the data type of this package element is a package, then this 3101 * _PRW package element is itself a package containing two 3102 * elements. The first is an object reference to the GPE Block 3103 * device that contains the GPE that will be triggered by the wake 3104 * event. The second element is numeric and it contains the bit 3105 * index in the GPEx_EN, in the GPE Block referenced by the 3106 * first element in the package, of the enable bit that is enabled for 3107 * the wake event. 3108 * 3109 * For example, if this field is a package then it is of the form: 3110 * Package() {\_SB.PCI0.ISA.GPE, 2} 3111 */ 3112 res2 = &res->Package.Elements[0]; 3113 if (!ACPI_PKG_VALID(res2, 2)) 3114 goto out; 3115 prw->gpe_handle = acpi_GetReference(NULL, &res2->Package.Elements[0]); 3116 if (prw->gpe_handle == NULL) 3117 goto out; 3118 if (acpi_PkgInt32(res2, 1, &prw->gpe_bit) != 0) 3119 goto out; 3120 error = 0; 3121 break; 3122 default: 3123 goto out; 3124 } 3125 3126 /* Elements 2 to N of the _PRW object are power resources. */ 3127 power_count = res->Package.Count - 2; 3128 if (power_count > ACPI_PRW_MAX_POWERRES) { 3129 printf("ACPI device %s has too many power resources\n", acpi_name(h)); 3130 power_count = 0; 3131 } 3132 prw->power_res_count = power_count; 3133 for (i = 0; i < power_count; i++) 3134 prw->power_res[i] = res->Package.Elements[i]; 3135 3136 out: 3137 if (prw_buffer.Pointer != NULL) 3138 AcpiOsFree(prw_buffer.Pointer); 3139 return (error); 3140 } 3141 3142 /* 3143 * ACPI Event Handlers 3144 */ 3145 3146 /* System Event Handlers (registered by EVENTHANDLER_REGISTER) */ 3147 3148 static void 3149 acpi_system_eventhandler_sleep(void *arg, int state) 3150 { 3151 struct acpi_softc *sc = (struct acpi_softc *)arg; 3152 int ret; 3153 3154 ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state); 3155 3156 /* Check if button action is disabled or unknown. */ 3157 if (state == ACPI_STATE_UNKNOWN) 3158 return; 3159 3160 /* Request that the system prepare to enter the given suspend state. */ 3161 ret = acpi_ReqSleepState(sc, state); 3162 if (ret != 0) 3163 device_printf(sc->acpi_dev, 3164 "request to enter state S%d failed (err %d)\n", state, ret); 3165 3166 return_VOID; 3167 } 3168 3169 static void 3170 acpi_system_eventhandler_wakeup(void *arg, int state) 3171 { 3172 3173 ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state); 3174 3175 /* Currently, nothing to do for wakeup. */ 3176 3177 return_VOID; 3178 } 3179 3180 /* 3181 * ACPICA Event Handlers (FixedEvent, also called from button notify handler) 3182 */ 3183 static void 3184 acpi_invoke_sleep_eventhandler(void *context) 3185 { 3186 3187 EVENTHANDLER_INVOKE(acpi_sleep_event, *(int *)context); 3188 } 3189 3190 static void 3191 acpi_invoke_wake_eventhandler(void *context) 3192 { 3193 3194 EVENTHANDLER_INVOKE(acpi_wakeup_event, *(int *)context); 3195 } 3196 3197 UINT32 3198 acpi_event_power_button_sleep(void *context) 3199 { 3200 struct acpi_softc *sc = (struct acpi_softc *)context; 3201 3202 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3203 3204 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3205 acpi_invoke_sleep_eventhandler, &sc->acpi_power_button_sx))) 3206 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); 3207 return_VALUE (ACPI_INTERRUPT_HANDLED); 3208 } 3209 3210 UINT32 3211 acpi_event_power_button_wake(void *context) 3212 { 3213 struct acpi_softc *sc = (struct acpi_softc *)context; 3214 3215 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3216 3217 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3218 acpi_invoke_wake_eventhandler, &sc->acpi_power_button_sx))) 3219 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); 3220 return_VALUE (ACPI_INTERRUPT_HANDLED); 3221 } 3222 3223 UINT32 3224 acpi_event_sleep_button_sleep(void *context) 3225 { 3226 struct acpi_softc *sc = (struct acpi_softc *)context; 3227 3228 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3229 3230 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3231 acpi_invoke_sleep_eventhandler, &sc->acpi_sleep_button_sx))) 3232 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); 3233 return_VALUE (ACPI_INTERRUPT_HANDLED); 3234 } 3235 3236 UINT32 3237 acpi_event_sleep_button_wake(void *context) 3238 { 3239 struct acpi_softc *sc = (struct acpi_softc *)context; 3240 3241 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3242 3243 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3244 acpi_invoke_wake_eventhandler, &sc->acpi_sleep_button_sx))) 3245 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); 3246 return_VALUE (ACPI_INTERRUPT_HANDLED); 3247 } 3248 3249 /* 3250 * XXX This static buffer is suboptimal. There is no locking so only 3251 * use this for single-threaded callers. 3252 */ 3253 char * 3254 acpi_name(ACPI_HANDLE handle) 3255 { 3256 ACPI_BUFFER buf; 3257 static char data[256]; 3258 3259 buf.Length = sizeof(data); 3260 buf.Pointer = data; 3261 3262 if (handle && ACPI_SUCCESS(AcpiGetName(handle, ACPI_FULL_PATHNAME, &buf))) 3263 return (data); 3264 return ("(unknown)"); 3265 } 3266 3267 /* 3268 * Debugging/bug-avoidance. Avoid trying to fetch info on various 3269 * parts of the namespace. 3270 */ 3271 int 3272 acpi_avoid(ACPI_HANDLE handle) 3273 { 3274 char *cp, *env, *np; 3275 int len; 3276 3277 np = acpi_name(handle); 3278 if (*np == '\\') 3279 np++; 3280 if ((env = getenv("debug.acpi.avoid")) == NULL) 3281 return (0); 3282 3283 /* Scan the avoid list checking for a match */ 3284 cp = env; 3285 for (;;) { 3286 while (*cp != 0 && isspace(*cp)) 3287 cp++; 3288 if (*cp == 0) 3289 break; 3290 len = 0; 3291 while (cp[len] != 0 && !isspace(cp[len])) 3292 len++; 3293 if (!strncmp(cp, np, len)) { 3294 freeenv(env); 3295 return(1); 3296 } 3297 cp += len; 3298 } 3299 freeenv(env); 3300 3301 return (0); 3302 } 3303 3304 /* 3305 * Debugging/bug-avoidance. Disable ACPI subsystem components. 3306 */ 3307 int 3308 acpi_disabled(char *subsys) 3309 { 3310 char *cp, *env; 3311 int len; 3312 3313 if ((env = getenv("debug.acpi.disabled")) == NULL) 3314 return (0); 3315 if (strcmp(env, "all") == 0) { 3316 freeenv(env); 3317 return (1); 3318 } 3319 3320 /* Scan the disable list, checking for a match. */ 3321 cp = env; 3322 for (;;) { 3323 while (*cp != '\0' && isspace(*cp)) 3324 cp++; 3325 if (*cp == '\0') 3326 break; 3327 len = 0; 3328 while (cp[len] != '\0' && !isspace(cp[len])) 3329 len++; 3330 if (strncmp(cp, subsys, len) == 0) { 3331 freeenv(env); 3332 return (1); 3333 } 3334 cp += len; 3335 } 3336 freeenv(env); 3337 3338 return (0); 3339 } 3340 3341 /* 3342 * Control interface. 3343 * 3344 * We multiplex ioctls for all participating ACPI devices here. Individual 3345 * drivers wanting to be accessible via /dev/acpi should use the 3346 * register/deregister interface to make their handlers visible. 3347 */ 3348 struct acpi_ioctl_hook 3349 { 3350 TAILQ_ENTRY(acpi_ioctl_hook) link; 3351 u_long cmd; 3352 acpi_ioctl_fn fn; 3353 void *arg; 3354 }; 3355 3356 static TAILQ_HEAD(,acpi_ioctl_hook) acpi_ioctl_hooks; 3357 static int acpi_ioctl_hooks_initted; 3358 3359 int 3360 acpi_register_ioctl(u_long cmd, acpi_ioctl_fn fn, void *arg) 3361 { 3362 struct acpi_ioctl_hook *hp; 3363 3364 if ((hp = malloc(sizeof(*hp), M_ACPIDEV, M_NOWAIT)) == NULL) 3365 return (ENOMEM); 3366 hp->cmd = cmd; 3367 hp->fn = fn; 3368 hp->arg = arg; 3369 3370 ACPI_LOCK(acpi); 3371 if (acpi_ioctl_hooks_initted == 0) { 3372 TAILQ_INIT(&acpi_ioctl_hooks); 3373 acpi_ioctl_hooks_initted = 1; 3374 } 3375 TAILQ_INSERT_TAIL(&acpi_ioctl_hooks, hp, link); 3376 ACPI_UNLOCK(acpi); 3377 3378 return (0); 3379 } 3380 3381 void 3382 acpi_deregister_ioctl(u_long cmd, acpi_ioctl_fn fn) 3383 { 3384 struct acpi_ioctl_hook *hp; 3385 3386 ACPI_LOCK(acpi); 3387 TAILQ_FOREACH(hp, &acpi_ioctl_hooks, link) 3388 if (hp->cmd == cmd && hp->fn == fn) 3389 break; 3390 3391 if (hp != NULL) { 3392 TAILQ_REMOVE(&acpi_ioctl_hooks, hp, link); 3393 free(hp, M_ACPIDEV); 3394 } 3395 ACPI_UNLOCK(acpi); 3396 } 3397 3398 static int 3399 acpiopen(struct cdev *dev, int flag, int fmt, struct thread *td) 3400 { 3401 return (0); 3402 } 3403 3404 static int 3405 acpiclose(struct cdev *dev, int flag, int fmt, struct thread *td) 3406 { 3407 return (0); 3408 } 3409 3410 static int 3411 acpiioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 3412 { 3413 struct acpi_softc *sc; 3414 struct acpi_ioctl_hook *hp; 3415 int error, state; 3416 3417 error = 0; 3418 hp = NULL; 3419 sc = dev->si_drv1; 3420 3421 /* 3422 * Scan the list of registered ioctls, looking for handlers. 3423 */ 3424 ACPI_LOCK(acpi); 3425 if (acpi_ioctl_hooks_initted) 3426 TAILQ_FOREACH(hp, &acpi_ioctl_hooks, link) { 3427 if (hp->cmd == cmd) 3428 break; 3429 } 3430 ACPI_UNLOCK(acpi); 3431 if (hp) 3432 return (hp->fn(cmd, addr, hp->arg)); 3433 3434 /* 3435 * Core ioctls are not permitted for non-writable user. 3436 * Currently, other ioctls just fetch information. 3437 * Not changing system behavior. 3438 */ 3439 if ((flag & FWRITE) == 0) 3440 return (EPERM); 3441 3442 /* Core system ioctls. */ 3443 switch (cmd) { 3444 case ACPIIO_REQSLPSTATE: 3445 state = *(int *)addr; 3446 if (state != ACPI_STATE_S5) 3447 return (acpi_ReqSleepState(sc, state)); 3448 device_printf(sc->acpi_dev, "power off via acpi ioctl not supported\n"); 3449 error = EOPNOTSUPP; 3450 break; 3451 case ACPIIO_ACKSLPSTATE: 3452 error = *(int *)addr; 3453 error = acpi_AckSleepState(sc->acpi_clone, error); 3454 break; 3455 case ACPIIO_SETSLPSTATE: /* DEPRECATED */ 3456 state = *(int *)addr; 3457 if (state < ACPI_STATE_S0 || state > ACPI_S_STATES_MAX) 3458 return (EINVAL); 3459 if (!acpi_sleep_states[state]) 3460 return (EOPNOTSUPP); 3461 if (ACPI_FAILURE(acpi_SetSleepState(sc, state))) 3462 error = ENXIO; 3463 break; 3464 default: 3465 error = ENXIO; 3466 break; 3467 } 3468 3469 return (error); 3470 } 3471 3472 static int 3473 acpi_sname2sstate(const char *sname) 3474 { 3475 int sstate; 3476 3477 if (toupper(sname[0]) == 'S') { 3478 sstate = sname[1] - '0'; 3479 if (sstate >= ACPI_STATE_S0 && sstate <= ACPI_STATE_S5 && 3480 sname[2] == '\0') 3481 return (sstate); 3482 } else if (strcasecmp(sname, "NONE") == 0) 3483 return (ACPI_STATE_UNKNOWN); 3484 return (-1); 3485 } 3486 3487 static const char * 3488 acpi_sstate2sname(int sstate) 3489 { 3490 static const char *snames[] = { "S0", "S1", "S2", "S3", "S4", "S5" }; 3491 3492 if (sstate >= ACPI_STATE_S0 && sstate <= ACPI_STATE_S5) 3493 return (snames[sstate]); 3494 else if (sstate == ACPI_STATE_UNKNOWN) 3495 return ("NONE"); 3496 return (NULL); 3497 } 3498 3499 static int 3500 acpi_supported_sleep_state_sysctl(SYSCTL_HANDLER_ARGS) 3501 { 3502 int error; 3503 struct sbuf sb; 3504 UINT8 state; 3505 3506 sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND); 3507 for (state = ACPI_STATE_S1; state < ACPI_S_STATE_COUNT; state++) 3508 if (acpi_sleep_states[state]) 3509 sbuf_printf(&sb, "%s ", acpi_sstate2sname(state)); 3510 sbuf_trim(&sb); 3511 sbuf_finish(&sb); 3512 error = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req); 3513 sbuf_delete(&sb); 3514 return (error); 3515 } 3516 3517 static int 3518 acpi_sleep_state_sysctl(SYSCTL_HANDLER_ARGS) 3519 { 3520 char sleep_state[10]; 3521 int error, new_state, old_state; 3522 3523 old_state = *(int *)oidp->oid_arg1; 3524 strlcpy(sleep_state, acpi_sstate2sname(old_state), sizeof(sleep_state)); 3525 error = sysctl_handle_string(oidp, sleep_state, sizeof(sleep_state), req); 3526 if (error == 0 && req->newptr != NULL) { 3527 new_state = acpi_sname2sstate(sleep_state); 3528 if (new_state < ACPI_STATE_S1) 3529 return (EINVAL); 3530 if (new_state < ACPI_S_STATE_COUNT && !acpi_sleep_states[new_state]) 3531 return (EOPNOTSUPP); 3532 if (new_state != old_state) 3533 *(int *)oidp->oid_arg1 = new_state; 3534 } 3535 return (error); 3536 } 3537 3538 /* Inform devctl(4) when we receive a Notify. */ 3539 void 3540 acpi_UserNotify(const char *subsystem, ACPI_HANDLE h, uint8_t notify) 3541 { 3542 char notify_buf[16]; 3543 ACPI_BUFFER handle_buf; 3544 ACPI_STATUS status; 3545 3546 if (subsystem == NULL) 3547 return; 3548 3549 handle_buf.Pointer = NULL; 3550 handle_buf.Length = ACPI_ALLOCATE_BUFFER; 3551 status = AcpiNsHandleToPathname(h, &handle_buf); 3552 if (ACPI_FAILURE(status)) 3553 return; 3554 snprintf(notify_buf, sizeof(notify_buf), "notify=0x%02x", notify); 3555 devctl_notify("ACPI", subsystem, handle_buf.Pointer, notify_buf); 3556 AcpiOsFree(handle_buf.Pointer); 3557 } 3558 3559 #ifdef ACPI_DEBUG 3560 /* 3561 * Support for parsing debug options from the kernel environment. 3562 * 3563 * Bits may be set in the AcpiDbgLayer and AcpiDbgLevel debug registers 3564 * by specifying the names of the bits in the debug.acpi.layer and 3565 * debug.acpi.level environment variables. Bits may be unset by 3566 * prefixing the bit name with !. 3567 */ 3568 struct debugtag 3569 { 3570 char *name; 3571 UINT32 value; 3572 }; 3573 3574 static struct debugtag dbg_layer[] = { 3575 {"ACPI_UTILITIES", ACPI_UTILITIES}, 3576 {"ACPI_HARDWARE", ACPI_HARDWARE}, 3577 {"ACPI_EVENTS", ACPI_EVENTS}, 3578 {"ACPI_TABLES", ACPI_TABLES}, 3579 {"ACPI_NAMESPACE", ACPI_NAMESPACE}, 3580 {"ACPI_PARSER", ACPI_PARSER}, 3581 {"ACPI_DISPATCHER", ACPI_DISPATCHER}, 3582 {"ACPI_EXECUTER", ACPI_EXECUTER}, 3583 {"ACPI_RESOURCES", ACPI_RESOURCES}, 3584 {"ACPI_CA_DEBUGGER", ACPI_CA_DEBUGGER}, 3585 {"ACPI_OS_SERVICES", ACPI_OS_SERVICES}, 3586 {"ACPI_CA_DISASSEMBLER", ACPI_CA_DISASSEMBLER}, 3587 {"ACPI_ALL_COMPONENTS", ACPI_ALL_COMPONENTS}, 3588 3589 {"ACPI_AC_ADAPTER", ACPI_AC_ADAPTER}, 3590 {"ACPI_BATTERY", ACPI_BATTERY}, 3591 {"ACPI_BUS", ACPI_BUS}, 3592 {"ACPI_BUTTON", ACPI_BUTTON}, 3593 {"ACPI_EC", ACPI_EC}, 3594 {"ACPI_FAN", ACPI_FAN}, 3595 {"ACPI_POWERRES", ACPI_POWERRES}, 3596 {"ACPI_PROCESSOR", ACPI_PROCESSOR}, 3597 {"ACPI_THERMAL", ACPI_THERMAL}, 3598 {"ACPI_TIMER", ACPI_TIMER}, 3599 {"ACPI_ALL_DRIVERS", ACPI_ALL_DRIVERS}, 3600 {NULL, 0} 3601 }; 3602 3603 static struct debugtag dbg_level[] = { 3604 {"ACPI_LV_INIT", ACPI_LV_INIT}, 3605 {"ACPI_LV_DEBUG_OBJECT", ACPI_LV_DEBUG_OBJECT}, 3606 {"ACPI_LV_INFO", ACPI_LV_INFO}, 3607 {"ACPI_LV_REPAIR", ACPI_LV_REPAIR}, 3608 {"ACPI_LV_ALL_EXCEPTIONS", ACPI_LV_ALL_EXCEPTIONS}, 3609 3610 /* Trace verbosity level 1 [Standard Trace Level] */ 3611 {"ACPI_LV_INIT_NAMES", ACPI_LV_INIT_NAMES}, 3612 {"ACPI_LV_PARSE", ACPI_LV_PARSE}, 3613 {"ACPI_LV_LOAD", ACPI_LV_LOAD}, 3614 {"ACPI_LV_DISPATCH", ACPI_LV_DISPATCH}, 3615 {"ACPI_LV_EXEC", ACPI_LV_EXEC}, 3616 {"ACPI_LV_NAMES", ACPI_LV_NAMES}, 3617 {"ACPI_LV_OPREGION", ACPI_LV_OPREGION}, 3618 {"ACPI_LV_BFIELD", ACPI_LV_BFIELD}, 3619 {"ACPI_LV_TABLES", ACPI_LV_TABLES}, 3620 {"ACPI_LV_VALUES", ACPI_LV_VALUES}, 3621 {"ACPI_LV_OBJECTS", ACPI_LV_OBJECTS}, 3622 {"ACPI_LV_RESOURCES", ACPI_LV_RESOURCES}, 3623 {"ACPI_LV_USER_REQUESTS", ACPI_LV_USER_REQUESTS}, 3624 {"ACPI_LV_PACKAGE", ACPI_LV_PACKAGE}, 3625 {"ACPI_LV_VERBOSITY1", ACPI_LV_VERBOSITY1}, 3626 3627 /* Trace verbosity level 2 [Function tracing and memory allocation] */ 3628 {"ACPI_LV_ALLOCATIONS", ACPI_LV_ALLOCATIONS}, 3629 {"ACPI_LV_FUNCTIONS", ACPI_LV_FUNCTIONS}, 3630 {"ACPI_LV_OPTIMIZATIONS", ACPI_LV_OPTIMIZATIONS}, 3631 {"ACPI_LV_VERBOSITY2", ACPI_LV_VERBOSITY2}, 3632 {"ACPI_LV_ALL", ACPI_LV_ALL}, 3633 3634 /* Trace verbosity level 3 [Threading, I/O, and Interrupts] */ 3635 {"ACPI_LV_MUTEX", ACPI_LV_MUTEX}, 3636 {"ACPI_LV_THREADS", ACPI_LV_THREADS}, 3637 {"ACPI_LV_IO", ACPI_LV_IO}, 3638 {"ACPI_LV_INTERRUPTS", ACPI_LV_INTERRUPTS}, 3639 {"ACPI_LV_VERBOSITY3", ACPI_LV_VERBOSITY3}, 3640 3641 /* Exceptionally verbose output -- also used in the global "DebugLevel" */ 3642 {"ACPI_LV_AML_DISASSEMBLE", ACPI_LV_AML_DISASSEMBLE}, 3643 {"ACPI_LV_VERBOSE_INFO", ACPI_LV_VERBOSE_INFO}, 3644 {"ACPI_LV_FULL_TABLES", ACPI_LV_FULL_TABLES}, 3645 {"ACPI_LV_EVENTS", ACPI_LV_EVENTS}, 3646 {"ACPI_LV_VERBOSE", ACPI_LV_VERBOSE}, 3647 {NULL, 0} 3648 }; 3649 3650 static void 3651 acpi_parse_debug(char *cp, struct debugtag *tag, UINT32 *flag) 3652 { 3653 char *ep; 3654 int i, l; 3655 int set; 3656 3657 while (*cp) { 3658 if (isspace(*cp)) { 3659 cp++; 3660 continue; 3661 } 3662 ep = cp; 3663 while (*ep && !isspace(*ep)) 3664 ep++; 3665 if (*cp == '!') { 3666 set = 0; 3667 cp++; 3668 if (cp == ep) 3669 continue; 3670 } else { 3671 set = 1; 3672 } 3673 l = ep - cp; 3674 for (i = 0; tag[i].name != NULL; i++) { 3675 if (!strncmp(cp, tag[i].name, l)) { 3676 if (set) 3677 *flag |= tag[i].value; 3678 else 3679 *flag &= ~tag[i].value; 3680 } 3681 } 3682 cp = ep; 3683 } 3684 } 3685 3686 static void 3687 acpi_set_debugging(void *junk) 3688 { 3689 char *layer, *level; 3690 3691 if (cold) { 3692 AcpiDbgLayer = 0; 3693 AcpiDbgLevel = 0; 3694 } 3695 3696 layer = getenv("debug.acpi.layer"); 3697 level = getenv("debug.acpi.level"); 3698 if (layer == NULL && level == NULL) 3699 return; 3700 3701 printf("ACPI set debug"); 3702 if (layer != NULL) { 3703 if (strcmp("NONE", layer) != 0) 3704 printf(" layer '%s'", layer); 3705 acpi_parse_debug(layer, &dbg_layer[0], &AcpiDbgLayer); 3706 freeenv(layer); 3707 } 3708 if (level != NULL) { 3709 if (strcmp("NONE", level) != 0) 3710 printf(" level '%s'", level); 3711 acpi_parse_debug(level, &dbg_level[0], &AcpiDbgLevel); 3712 freeenv(level); 3713 } 3714 printf("\n"); 3715 } 3716 3717 SYSINIT(acpi_debugging, SI_SUB_TUNABLES, SI_ORDER_ANY, acpi_set_debugging, 3718 NULL); 3719 3720 static int 3721 acpi_debug_sysctl(SYSCTL_HANDLER_ARGS) 3722 { 3723 int error, *dbg; 3724 struct debugtag *tag; 3725 struct sbuf sb; 3726 3727 if (sbuf_new(&sb, NULL, 128, SBUF_AUTOEXTEND) == NULL) 3728 return (ENOMEM); 3729 if (strcmp(oidp->oid_arg1, "debug.acpi.layer") == 0) { 3730 tag = &dbg_layer[0]; 3731 dbg = &AcpiDbgLayer; 3732 } else { 3733 tag = &dbg_level[0]; 3734 dbg = &AcpiDbgLevel; 3735 } 3736 3737 /* Get old values if this is a get request. */ 3738 ACPI_SERIAL_BEGIN(acpi); 3739 if (*dbg == 0) { 3740 sbuf_cpy(&sb, "NONE"); 3741 } else if (req->newptr == NULL) { 3742 for (; tag->name != NULL; tag++) { 3743 if ((*dbg & tag->value) == tag->value) 3744 sbuf_printf(&sb, "%s ", tag->name); 3745 } 3746 } 3747 sbuf_trim(&sb); 3748 sbuf_finish(&sb); 3749 3750 /* Copy out the old values to the user. */ 3751 error = SYSCTL_OUT(req, sbuf_data(&sb), sbuf_len(&sb)); 3752 sbuf_delete(&sb); 3753 3754 /* If the user is setting a string, parse it. */ 3755 if (error == 0 && req->newptr != NULL) { 3756 *dbg = 0; 3757 setenv((char *)oidp->oid_arg1, (char *)req->newptr); 3758 acpi_set_debugging(NULL); 3759 } 3760 ACPI_SERIAL_END(acpi); 3761 3762 return (error); 3763 } 3764 3765 SYSCTL_PROC(_debug_acpi, OID_AUTO, layer, CTLFLAG_RW | CTLTYPE_STRING, 3766 "debug.acpi.layer", 0, acpi_debug_sysctl, "A", ""); 3767 SYSCTL_PROC(_debug_acpi, OID_AUTO, level, CTLFLAG_RW | CTLTYPE_STRING, 3768 "debug.acpi.level", 0, acpi_debug_sysctl, "A", ""); 3769 #endif /* ACPI_DEBUG */ 3770 3771 static int 3772 acpi_debug_objects_sysctl(SYSCTL_HANDLER_ARGS) 3773 { 3774 int error; 3775 int old; 3776 3777 old = acpi_debug_objects; 3778 error = sysctl_handle_int(oidp, &acpi_debug_objects, 0, req); 3779 if (error != 0 || req->newptr == NULL) 3780 return (error); 3781 if (old == acpi_debug_objects || (old && acpi_debug_objects)) 3782 return (0); 3783 3784 ACPI_SERIAL_BEGIN(acpi); 3785 AcpiGbl_EnableAmlDebugObject = acpi_debug_objects ? TRUE : FALSE; 3786 ACPI_SERIAL_END(acpi); 3787 3788 return (0); 3789 } 3790 3791 static int 3792 acpi_parse_interfaces(char *str, struct acpi_interface *iface) 3793 { 3794 char *p; 3795 size_t len; 3796 int i, j; 3797 3798 p = str; 3799 while (isspace(*p) || *p == ',') 3800 p++; 3801 len = strlen(p); 3802 if (len == 0) 3803 return (0); 3804 p = strdup(p, M_TEMP); 3805 for (i = 0; i < len; i++) 3806 if (p[i] == ',') 3807 p[i] = '\0'; 3808 i = j = 0; 3809 while (i < len) 3810 if (isspace(p[i]) || p[i] == '\0') 3811 i++; 3812 else { 3813 i += strlen(p + i) + 1; 3814 j++; 3815 } 3816 if (j == 0) { 3817 free(p, M_TEMP); 3818 return (0); 3819 } 3820 iface->data = malloc(sizeof(*iface->data) * j, M_TEMP, M_WAITOK); 3821 iface->num = j; 3822 i = j = 0; 3823 while (i < len) 3824 if (isspace(p[i]) || p[i] == '\0') 3825 i++; 3826 else { 3827 iface->data[j] = p + i; 3828 i += strlen(p + i) + 1; 3829 j++; 3830 } 3831 3832 return (j); 3833 } 3834 3835 static void 3836 acpi_free_interfaces(struct acpi_interface *iface) 3837 { 3838 3839 free(iface->data[0], M_TEMP); 3840 free(iface->data, M_TEMP); 3841 } 3842 3843 static void 3844 acpi_reset_interfaces(device_t dev) 3845 { 3846 struct acpi_interface list; 3847 ACPI_STATUS status; 3848 int i; 3849 3850 if (acpi_parse_interfaces(acpi_install_interface, &list) > 0) { 3851 for (i = 0; i < list.num; i++) { 3852 status = AcpiInstallInterface(list.data[i]); 3853 if (ACPI_FAILURE(status)) 3854 device_printf(dev, 3855 "failed to install _OSI(\"%s\"): %s\n", 3856 list.data[i], AcpiFormatException(status)); 3857 else if (bootverbose) 3858 device_printf(dev, "installed _OSI(\"%s\")\n", 3859 list.data[i]); 3860 } 3861 acpi_free_interfaces(&list); 3862 } 3863 if (acpi_parse_interfaces(acpi_remove_interface, &list) > 0) { 3864 for (i = 0; i < list.num; i++) { 3865 status = AcpiRemoveInterface(list.data[i]); 3866 if (ACPI_FAILURE(status)) 3867 device_printf(dev, 3868 "failed to remove _OSI(\"%s\"): %s\n", 3869 list.data[i], AcpiFormatException(status)); 3870 else if (bootverbose) 3871 device_printf(dev, "removed _OSI(\"%s\")\n", 3872 list.data[i]); 3873 } 3874 acpi_free_interfaces(&list); 3875 } 3876 } 3877 3878 static int 3879 acpi_pm_func(u_long cmd, void *arg, ...) 3880 { 3881 int state, acpi_state; 3882 int error; 3883 struct acpi_softc *sc; 3884 va_list ap; 3885 3886 error = 0; 3887 switch (cmd) { 3888 case POWER_CMD_SUSPEND: 3889 sc = (struct acpi_softc *)arg; 3890 if (sc == NULL) { 3891 error = EINVAL; 3892 goto out; 3893 } 3894 3895 va_start(ap, arg); 3896 state = va_arg(ap, int); 3897 va_end(ap); 3898 3899 switch (state) { 3900 case POWER_SLEEP_STATE_STANDBY: 3901 acpi_state = sc->acpi_standby_sx; 3902 break; 3903 case POWER_SLEEP_STATE_SUSPEND: 3904 acpi_state = sc->acpi_suspend_sx; 3905 break; 3906 case POWER_SLEEP_STATE_HIBERNATE: 3907 acpi_state = ACPI_STATE_S4; 3908 break; 3909 default: 3910 error = EINVAL; 3911 goto out; 3912 } 3913 3914 if (ACPI_FAILURE(acpi_EnterSleepState(sc, acpi_state))) 3915 error = ENXIO; 3916 break; 3917 default: 3918 error = EINVAL; 3919 goto out; 3920 } 3921 3922 out: 3923 return (error); 3924 } 3925 3926 static void 3927 acpi_pm_register(void *arg) 3928 { 3929 if (!cold || resource_disabled("acpi", 0)) 3930 return; 3931 3932 power_pm_register(POWER_PM_TYPE_ACPI, acpi_pm_func, NULL); 3933 } 3934 3935 SYSINIT(power, SI_SUB_KLD, SI_ORDER_ANY, acpi_pm_register, 0); 3936