1 /*- 2 * Copyright (c) 2000 Takanori Watanabe <takawata@jp.freebsd.org> 3 * Copyright (c) 2000 Mitsuru IWASAKI <iwasaki@jp.freebsd.org> 4 * Copyright (c) 2000, 2001 Michael Smith 5 * Copyright (c) 2000 BSDi 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $FreeBSD$ 30 */ 31 32 #include "opt_acpi.h" 33 #include <sys/param.h> 34 #include <sys/kernel.h> 35 #include <sys/proc.h> 36 #include <sys/fcntl.h> 37 #include <sys/malloc.h> 38 #include <sys/module.h> 39 #include <sys/bus.h> 40 #include <sys/conf.h> 41 #include <sys/ioccom.h> 42 #include <sys/reboot.h> 43 #include <sys/sysctl.h> 44 #include <sys/ctype.h> 45 #include <sys/linker.h> 46 #include <sys/power.h> 47 #include <sys/sbuf.h> 48 #include <sys/smp.h> 49 50 #include <machine/clock.h> 51 #include <machine/resource.h> 52 #include <machine/bus.h> 53 #include <sys/rman.h> 54 #include <isa/isavar.h> 55 #include <isa/pnpvar.h> 56 57 #include "acpi.h" 58 #include <dev/acpica/acpivar.h> 59 #include <dev/acpica/acpiio.h> 60 #include <contrib/dev/acpica/acnamesp.h> 61 62 #include "pci_if.h" 63 #include <dev/pci/pcivar.h> 64 #include <dev/pci/pci_private.h> 65 66 MALLOC_DEFINE(M_ACPIDEV, "acpidev", "ACPI devices"); 67 68 /* Hooks for the ACPI CA debugging infrastructure */ 69 #define _COMPONENT ACPI_BUS 70 ACPI_MODULE_NAME("ACPI") 71 72 static d_open_t acpiopen; 73 static d_close_t acpiclose; 74 static d_ioctl_t acpiioctl; 75 76 static struct cdevsw acpi_cdevsw = { 77 .d_version = D_VERSION, 78 .d_open = acpiopen, 79 .d_close = acpiclose, 80 .d_ioctl = acpiioctl, 81 .d_name = "acpi", 82 }; 83 84 /* Global mutex for locking access to the ACPI subsystem. */ 85 struct mtx acpi_mutex; 86 87 /* Bitmap of device quirks. */ 88 int acpi_quirks; 89 90 static int acpi_modevent(struct module *mod, int event, void *junk); 91 static void acpi_identify(driver_t *driver, device_t parent); 92 static int acpi_probe(device_t dev); 93 static int acpi_attach(device_t dev); 94 static int acpi_suspend(device_t dev); 95 static int acpi_resume(device_t dev); 96 static int acpi_shutdown(device_t dev); 97 static device_t acpi_add_child(device_t bus, int order, const char *name, 98 int unit); 99 static int acpi_print_child(device_t bus, device_t child); 100 static void acpi_probe_nomatch(device_t bus, device_t child); 101 static void acpi_driver_added(device_t dev, driver_t *driver); 102 static int acpi_read_ivar(device_t dev, device_t child, int index, 103 uintptr_t *result); 104 static int acpi_write_ivar(device_t dev, device_t child, int index, 105 uintptr_t value); 106 static struct resource_list *acpi_get_rlist(device_t dev, device_t child); 107 static int acpi_sysres_alloc(device_t dev); 108 static struct resource_list_entry *acpi_sysres_find(device_t dev, int type, 109 u_long addr); 110 static struct resource *acpi_alloc_resource(device_t bus, device_t child, 111 int type, int *rid, u_long start, u_long end, 112 u_long count, u_int flags); 113 static int acpi_release_resource(device_t bus, device_t child, int type, 114 int rid, struct resource *r); 115 static uint32_t acpi_isa_get_logicalid(device_t dev); 116 static int acpi_isa_get_compatid(device_t dev, uint32_t *cids, int count); 117 static char *acpi_device_id_probe(device_t bus, device_t dev, char **ids); 118 static ACPI_STATUS acpi_device_eval_obj(device_t bus, device_t dev, 119 ACPI_STRING pathname, ACPI_OBJECT_LIST *parameters, 120 ACPI_BUFFER *ret); 121 static int acpi_device_pwr_for_sleep(device_t bus, device_t dev, 122 int *dstate); 123 static ACPI_STATUS acpi_device_scan_cb(ACPI_HANDLE h, UINT32 level, 124 void *context, void **retval); 125 static ACPI_STATUS acpi_device_scan_children(device_t bus, device_t dev, 126 int max_depth, acpi_scan_cb_t user_fn, void *arg); 127 static int acpi_set_powerstate_method(device_t bus, device_t child, 128 int state); 129 static int acpi_isa_pnp_probe(device_t bus, device_t child, 130 struct isa_pnp_id *ids); 131 static void acpi_probe_children(device_t bus); 132 static int acpi_probe_order(ACPI_HANDLE handle, int *order); 133 static ACPI_STATUS acpi_probe_child(ACPI_HANDLE handle, UINT32 level, 134 void *context, void **status); 135 static BOOLEAN acpi_MatchHid(ACPI_HANDLE h, const char *hid); 136 static void acpi_shutdown_final(void *arg, int howto); 137 static void acpi_enable_fixed_events(struct acpi_softc *sc); 138 static int acpi_wake_sleep_prep(ACPI_HANDLE handle, int sstate); 139 static int acpi_wake_run_prep(ACPI_HANDLE handle, int sstate); 140 static int acpi_wake_prep_walk(int sstate); 141 static int acpi_wake_sysctl_walk(device_t dev); 142 static int acpi_wake_set_sysctl(SYSCTL_HANDLER_ARGS); 143 static void acpi_system_eventhandler_sleep(void *arg, int state); 144 static void acpi_system_eventhandler_wakeup(void *arg, int state); 145 static int acpi_supported_sleep_state_sysctl(SYSCTL_HANDLER_ARGS); 146 static int acpi_sleep_state_sysctl(SYSCTL_HANDLER_ARGS); 147 static int acpi_pm_func(u_long cmd, void *arg, ...); 148 static int acpi_child_location_str_method(device_t acdev, device_t child, 149 char *buf, size_t buflen); 150 static int acpi_child_pnpinfo_str_method(device_t acdev, device_t child, 151 char *buf, size_t buflen); 152 153 static device_method_t acpi_methods[] = { 154 /* Device interface */ 155 DEVMETHOD(device_identify, acpi_identify), 156 DEVMETHOD(device_probe, acpi_probe), 157 DEVMETHOD(device_attach, acpi_attach), 158 DEVMETHOD(device_shutdown, acpi_shutdown), 159 DEVMETHOD(device_detach, bus_generic_detach), 160 DEVMETHOD(device_suspend, acpi_suspend), 161 DEVMETHOD(device_resume, acpi_resume), 162 163 /* Bus interface */ 164 DEVMETHOD(bus_add_child, acpi_add_child), 165 DEVMETHOD(bus_print_child, acpi_print_child), 166 DEVMETHOD(bus_probe_nomatch, acpi_probe_nomatch), 167 DEVMETHOD(bus_driver_added, acpi_driver_added), 168 DEVMETHOD(bus_read_ivar, acpi_read_ivar), 169 DEVMETHOD(bus_write_ivar, acpi_write_ivar), 170 DEVMETHOD(bus_get_resource_list, acpi_get_rlist), 171 DEVMETHOD(bus_set_resource, bus_generic_rl_set_resource), 172 DEVMETHOD(bus_get_resource, bus_generic_rl_get_resource), 173 DEVMETHOD(bus_alloc_resource, acpi_alloc_resource), 174 DEVMETHOD(bus_release_resource, acpi_release_resource), 175 DEVMETHOD(bus_child_pnpinfo_str, acpi_child_pnpinfo_str_method), 176 DEVMETHOD(bus_child_location_str, acpi_child_location_str_method), 177 DEVMETHOD(bus_activate_resource, bus_generic_activate_resource), 178 DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource), 179 DEVMETHOD(bus_setup_intr, bus_generic_setup_intr), 180 DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr), 181 182 /* ACPI bus */ 183 DEVMETHOD(acpi_id_probe, acpi_device_id_probe), 184 DEVMETHOD(acpi_evaluate_object, acpi_device_eval_obj), 185 DEVMETHOD(acpi_pwr_for_sleep, acpi_device_pwr_for_sleep), 186 DEVMETHOD(acpi_scan_children, acpi_device_scan_children), 187 188 /* PCI emulation */ 189 DEVMETHOD(pci_set_powerstate, acpi_set_powerstate_method), 190 191 /* ISA emulation */ 192 DEVMETHOD(isa_pnp_probe, acpi_isa_pnp_probe), 193 194 {0, 0} 195 }; 196 197 static driver_t acpi_driver = { 198 "acpi", 199 acpi_methods, 200 sizeof(struct acpi_softc), 201 }; 202 203 static devclass_t acpi_devclass; 204 DRIVER_MODULE(acpi, nexus, acpi_driver, acpi_devclass, acpi_modevent, 0); 205 MODULE_VERSION(acpi, 1); 206 207 ACPI_SERIAL_DECL(acpi, "ACPI root bus"); 208 209 /* Local pools for managing system resources for ACPI child devices. */ 210 static struct rman acpi_rman_io, acpi_rman_mem; 211 212 #define ACPI_MINIMUM_AWAKETIME 5 213 214 static const char* sleep_state_names[] = { 215 "S0", "S1", "S2", "S3", "S4", "S5", "NONE"}; 216 217 SYSCTL_NODE(_debug, OID_AUTO, acpi, CTLFLAG_RW, NULL, "ACPI debugging"); 218 static char acpi_ca_version[12]; 219 SYSCTL_STRING(_debug_acpi, OID_AUTO, acpi_ca_version, CTLFLAG_RD, 220 acpi_ca_version, 0, "Version of Intel ACPI-CA"); 221 222 /* 223 * Allow override of whether methods execute in parallel or not. 224 * Enable this for serial behavior, which fixes "AE_ALREADY_EXISTS" 225 * errors for AML that really can't handle parallel method execution. 226 * It is off by default since this breaks recursive methods and 227 * some IBMs use such code. 228 */ 229 static int acpi_serialize_methods; 230 TUNABLE_INT("hw.acpi.serialize_methods", &acpi_serialize_methods); 231 232 /* Power devices off and on in suspend and resume. XXX Remove once tested. */ 233 static int acpi_do_powerstate = 1; 234 TUNABLE_INT("debug.acpi.do_powerstate", &acpi_do_powerstate); 235 SYSCTL_INT(_debug_acpi, OID_AUTO, do_powerstate, CTLFLAG_RW, 236 &acpi_do_powerstate, 1, "Turn off devices when suspending."); 237 238 /* 239 * ACPI can only be loaded as a module by the loader; activating it after 240 * system bootstrap time is not useful, and can be fatal to the system. 241 * It also cannot be unloaded, since the entire system bus heirarchy hangs 242 * off it. 243 */ 244 static int 245 acpi_modevent(struct module *mod, int event, void *junk) 246 { 247 switch (event) { 248 case MOD_LOAD: 249 if (!cold) { 250 printf("The ACPI driver cannot be loaded after boot.\n"); 251 return (EPERM); 252 } 253 break; 254 case MOD_UNLOAD: 255 if (!cold && power_pm_get_type() == POWER_PM_TYPE_ACPI) 256 return (EBUSY); 257 break; 258 default: 259 break; 260 } 261 return (0); 262 } 263 264 /* 265 * Perform early initialization. 266 */ 267 ACPI_STATUS 268 acpi_Startup(void) 269 { 270 static int started = 0; 271 int error, val; 272 273 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 274 275 /* Only run the startup code once. The MADT driver also calls this. */ 276 if (started) 277 return_VALUE (0); 278 started = 1; 279 280 /* Initialise the ACPI mutex */ 281 mtx_init(&acpi_mutex, "ACPI global lock", NULL, MTX_DEF); 282 283 /* 284 * Set the globals from our tunables. This is needed because ACPI-CA 285 * uses UINT8 for some values and we have no tunable_byte. 286 */ 287 AcpiGbl_AllMethodsSerialized = acpi_serialize_methods; 288 AcpiGbl_EnableInterpreterSlack = TRUE; 289 290 /* Start up the ACPI CA subsystem. */ 291 if (ACPI_FAILURE(error = AcpiInitializeSubsystem())) { 292 printf("ACPI: initialisation failed: %s\n", AcpiFormatException(error)); 293 return_VALUE (error); 294 } 295 296 if (ACPI_FAILURE(error = AcpiLoadTables())) { 297 printf("ACPI: table load failed: %s\n", AcpiFormatException(error)); 298 AcpiTerminate(); 299 return_VALUE (error); 300 } 301 302 /* Set up any quirks we have for this system. */ 303 acpi_table_quirks(&acpi_quirks); 304 305 /* If the user manually set the disabled hint to 0, override any quirk. */ 306 if (resource_int_value("acpi", 0, "disabled", &val) == 0 && val == 0) 307 acpi_quirks &= ~ACPI_Q_BROKEN; 308 if (acpi_quirks & ACPI_Q_BROKEN) { 309 printf("ACPI disabled by blacklist. Contact your BIOS vendor.\n"); 310 AcpiTerminate(); 311 return_VALUE (AE_ERROR); 312 } 313 314 return_VALUE (AE_OK); 315 } 316 317 /* 318 * Detect ACPI, perform early initialisation 319 */ 320 static void 321 acpi_identify(driver_t *driver, device_t parent) 322 { 323 device_t child; 324 325 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 326 327 if (!cold) 328 return_VOID; 329 330 /* Check that we haven't been disabled with a hint. */ 331 if (resource_disabled("acpi", 0)) 332 return_VOID; 333 334 /* Make sure we're not being doubly invoked. */ 335 if (device_find_child(parent, "acpi", 0) != NULL) 336 return_VOID; 337 338 /* Initialize ACPI-CA. */ 339 if (ACPI_FAILURE(acpi_Startup())) 340 return_VOID; 341 342 snprintf(acpi_ca_version, sizeof(acpi_ca_version), "%#x", ACPI_CA_VERSION); 343 344 /* Attach the actual ACPI device. */ 345 if ((child = BUS_ADD_CHILD(parent, 0, "acpi", 0)) == NULL) { 346 device_printf(parent, "device_identify failed\n"); 347 return_VOID; 348 } 349 } 350 351 /* 352 * Fetch some descriptive data from ACPI to put in our attach message. 353 */ 354 static int 355 acpi_probe(device_t dev) 356 { 357 ACPI_TABLE_HEADER th; 358 char buf[20]; 359 int error; 360 struct sbuf sb; 361 ACPI_STATUS status; 362 363 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 364 365 if (power_pm_get_type() != POWER_PM_TYPE_NONE && 366 power_pm_get_type() != POWER_PM_TYPE_ACPI) { 367 device_printf(dev, "probe failed, other PM system enabled.\n"); 368 return_VALUE (ENXIO); 369 } 370 371 if (ACPI_FAILURE(status = AcpiGetTableHeader(ACPI_TABLE_XSDT, 1, &th))) { 372 device_printf(dev, "couldn't get XSDT header: %s\n", 373 AcpiFormatException(status)); 374 error = ENXIO; 375 } else { 376 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN); 377 sbuf_bcat(&sb, th.OemId, 6); 378 sbuf_trim(&sb); 379 sbuf_putc(&sb, ' '); 380 sbuf_bcat(&sb, th.OemTableId, 8); 381 sbuf_trim(&sb); 382 sbuf_finish(&sb); 383 device_set_desc_copy(dev, sbuf_data(&sb)); 384 sbuf_delete(&sb); 385 error = 0; 386 } 387 388 return_VALUE (error); 389 } 390 391 static int 392 acpi_attach(device_t dev) 393 { 394 struct acpi_softc *sc; 395 ACPI_STATUS status; 396 int error, state; 397 UINT32 flags; 398 UINT8 TypeA, TypeB; 399 char *env; 400 401 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 402 403 sc = device_get_softc(dev); 404 sc->acpi_dev = dev; 405 406 /* Initialize resource manager. */ 407 acpi_rman_io.rm_type = RMAN_ARRAY; 408 acpi_rman_io.rm_start = 0; 409 acpi_rman_io.rm_end = 0xffff; 410 acpi_rman_io.rm_descr = "I/O ports"; 411 if (rman_init(&acpi_rman_io) != 0) 412 panic("acpi rman_init IO ports failed"); 413 acpi_rman_mem.rm_type = RMAN_ARRAY; 414 acpi_rman_mem.rm_start = 0; 415 acpi_rman_mem.rm_end = ~0ul; 416 acpi_rman_mem.rm_descr = "I/O memory addresses"; 417 if (rman_init(&acpi_rman_mem) != 0) 418 panic("acpi rman_init memory failed"); 419 420 /* Install the default address space handlers. */ 421 error = ENXIO; 422 status = AcpiInstallAddressSpaceHandler(ACPI_ROOT_OBJECT, 423 ACPI_ADR_SPACE_SYSTEM_MEMORY, ACPI_DEFAULT_HANDLER, NULL, NULL); 424 if (ACPI_FAILURE(status)) { 425 device_printf(dev, "Could not initialise SystemMemory handler: %s\n", 426 AcpiFormatException(status)); 427 goto out; 428 } 429 status = AcpiInstallAddressSpaceHandler(ACPI_ROOT_OBJECT, 430 ACPI_ADR_SPACE_SYSTEM_IO, ACPI_DEFAULT_HANDLER, NULL, NULL); 431 if (ACPI_FAILURE(status)) { 432 device_printf(dev, "Could not initialise SystemIO handler: %s\n", 433 AcpiFormatException(status)); 434 goto out; 435 } 436 status = AcpiInstallAddressSpaceHandler(ACPI_ROOT_OBJECT, 437 ACPI_ADR_SPACE_PCI_CONFIG, ACPI_DEFAULT_HANDLER, NULL, NULL); 438 if (ACPI_FAILURE(status)) { 439 device_printf(dev, "could not initialise PciConfig handler: %s\n", 440 AcpiFormatException(status)); 441 goto out; 442 } 443 444 /* 445 * Note that some systems (specifically, those with namespace evaluation 446 * issues that require the avoidance of parts of the namespace) must 447 * avoid running _INI and _STA on everything, as well as dodging the final 448 * object init pass. 449 * 450 * For these devices, we set ACPI_NO_DEVICE_INIT and ACPI_NO_OBJECT_INIT). 451 * 452 * XXX We should arrange for the object init pass after we have attached 453 * all our child devices, but on many systems it works here. 454 */ 455 flags = 0; 456 if (testenv("debug.acpi.avoid")) 457 flags = ACPI_NO_DEVICE_INIT | ACPI_NO_OBJECT_INIT; 458 459 /* Bring the hardware and basic handlers online. */ 460 if (ACPI_FAILURE(status = AcpiEnableSubsystem(flags))) { 461 device_printf(dev, "Could not enable ACPI: %s\n", 462 AcpiFormatException(status)); 463 goto out; 464 } 465 466 /* 467 * Call the ECDT probe function to provide EC functionality before 468 * the namespace has been evaluated. 469 */ 470 acpi_ec_ecdt_probe(dev); 471 472 /* Bring device objects and regions online. */ 473 if (ACPI_FAILURE(status = AcpiInitializeObjects(flags))) { 474 device_printf(dev, "Could not initialize ACPI objects: %s\n", 475 AcpiFormatException(status)); 476 goto out; 477 } 478 479 /* 480 * Setup our sysctl tree. 481 * 482 * XXX: This doesn't check to make sure that none of these fail. 483 */ 484 sysctl_ctx_init(&sc->acpi_sysctl_ctx); 485 sc->acpi_sysctl_tree = SYSCTL_ADD_NODE(&sc->acpi_sysctl_ctx, 486 SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO, 487 device_get_name(dev), CTLFLAG_RD, 0, ""); 488 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 489 OID_AUTO, "supported_sleep_state", CTLTYPE_STRING | CTLFLAG_RD, 490 0, 0, acpi_supported_sleep_state_sysctl, "A", ""); 491 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 492 OID_AUTO, "power_button_state", CTLTYPE_STRING | CTLFLAG_RW, 493 &sc->acpi_power_button_sx, 0, acpi_sleep_state_sysctl, "A", ""); 494 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 495 OID_AUTO, "sleep_button_state", CTLTYPE_STRING | CTLFLAG_RW, 496 &sc->acpi_sleep_button_sx, 0, acpi_sleep_state_sysctl, "A", ""); 497 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 498 OID_AUTO, "lid_switch_state", CTLTYPE_STRING | CTLFLAG_RW, 499 &sc->acpi_lid_switch_sx, 0, acpi_sleep_state_sysctl, "A", ""); 500 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 501 OID_AUTO, "standby_state", CTLTYPE_STRING | CTLFLAG_RW, 502 &sc->acpi_standby_sx, 0, acpi_sleep_state_sysctl, "A", ""); 503 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 504 OID_AUTO, "suspend_state", CTLTYPE_STRING | CTLFLAG_RW, 505 &sc->acpi_suspend_sx, 0, acpi_sleep_state_sysctl, "A", ""); 506 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 507 OID_AUTO, "sleep_delay", CTLFLAG_RD | CTLFLAG_RW, 508 &sc->acpi_sleep_delay, 0, "sleep delay"); 509 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 510 OID_AUTO, "s4bios", CTLFLAG_RD | CTLFLAG_RW, 511 &sc->acpi_s4bios, 0, "S4BIOS mode"); 512 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 513 OID_AUTO, "verbose", CTLFLAG_RD | CTLFLAG_RW, 514 &sc->acpi_verbose, 0, "verbose mode"); 515 516 /* 517 * Default to 1 second before sleeping to give some machines time to 518 * stabilize. 519 */ 520 sc->acpi_sleep_delay = 1; 521 if (bootverbose) 522 sc->acpi_verbose = 1; 523 if ((env = getenv("hw.acpi.verbose")) && strcmp(env, "0")) { 524 sc->acpi_verbose = 1; 525 freeenv(env); 526 } 527 528 /* Only enable S4BIOS by default if the FACS says it is available. */ 529 if (AcpiGbl_FACS->S4Bios_f != 0) 530 sc->acpi_s4bios = 1; 531 532 /* 533 * Dispatch the default sleep state to devices. The lid switch is set 534 * to NONE by default to avoid surprising users. 535 */ 536 sc->acpi_power_button_sx = ACPI_STATE_S5; 537 sc->acpi_lid_switch_sx = ACPI_S_STATES_MAX + 1; 538 sc->acpi_standby_sx = ACPI_STATE_S1; 539 sc->acpi_suspend_sx = ACPI_STATE_S3; 540 541 /* Pick the first valid sleep state for the sleep button default. */ 542 sc->acpi_sleep_button_sx = ACPI_S_STATES_MAX + 1; 543 for (state = ACPI_STATE_S1; state < ACPI_STATE_S5; state++) 544 if (ACPI_SUCCESS(AcpiGetSleepTypeData(state, &TypeA, &TypeB))) { 545 sc->acpi_sleep_button_sx = state; 546 break; 547 } 548 549 acpi_enable_fixed_events(sc); 550 551 /* 552 * Scan the namespace and attach/initialise children. 553 */ 554 555 /* Register our shutdown handler. */ 556 EVENTHANDLER_REGISTER(shutdown_final, acpi_shutdown_final, sc, 557 SHUTDOWN_PRI_LAST); 558 559 /* 560 * Register our acpi event handlers. 561 * XXX should be configurable eg. via userland policy manager. 562 */ 563 EVENTHANDLER_REGISTER(acpi_sleep_event, acpi_system_eventhandler_sleep, 564 sc, ACPI_EVENT_PRI_LAST); 565 EVENTHANDLER_REGISTER(acpi_wakeup_event, acpi_system_eventhandler_wakeup, 566 sc, ACPI_EVENT_PRI_LAST); 567 568 /* Flag our initial states. */ 569 sc->acpi_enabled = 1; 570 sc->acpi_sstate = ACPI_STATE_S0; 571 sc->acpi_sleep_disabled = 0; 572 573 /* Create the control device */ 574 sc->acpi_dev_t = make_dev(&acpi_cdevsw, 0, UID_ROOT, GID_WHEEL, 0644, 575 "acpi"); 576 sc->acpi_dev_t->si_drv1 = sc; 577 578 if ((error = acpi_task_thread_init())) 579 goto out; 580 581 if ((error = acpi_machdep_init(dev))) 582 goto out; 583 584 /* Register ACPI again to pass the correct argument of pm_func. */ 585 power_pm_register(POWER_PM_TYPE_ACPI, acpi_pm_func, sc); 586 587 if (!acpi_disabled("bus")) 588 acpi_probe_children(dev); 589 590 error = 0; 591 592 out: 593 return_VALUE (error); 594 } 595 596 static int 597 acpi_suspend(device_t dev) 598 { 599 struct acpi_softc *sc; 600 device_t child, *devlist; 601 int error, i, numdevs, pstate; 602 603 GIANT_REQUIRED; 604 605 /* First give child devices a chance to suspend. */ 606 error = bus_generic_suspend(dev); 607 if (error) 608 return (error); 609 610 /* 611 * Now, set them into the appropriate power state, usually D3. If the 612 * device has an _SxD method for the next sleep state, use that power 613 * state instead. 614 */ 615 sc = device_get_softc(dev); 616 device_get_children(dev, &devlist, &numdevs); 617 for (i = 0; i < numdevs; i++) { 618 /* If the device is not attached, we've powered it down elsewhere. */ 619 child = devlist[i]; 620 if (!device_is_attached(child)) 621 continue; 622 623 /* 624 * Default to D3 for all sleep states. The _SxD method is optional 625 * so set the powerstate even if it's absent. 626 */ 627 pstate = PCI_POWERSTATE_D3; 628 error = acpi_device_pwr_for_sleep(device_get_parent(child), 629 child, &pstate); 630 if ((error == 0 || error == ESRCH) && acpi_do_powerstate) 631 pci_set_powerstate(child, pstate); 632 } 633 free(devlist, M_TEMP); 634 error = 0; 635 636 return (error); 637 } 638 639 static int 640 acpi_resume(device_t dev) 641 { 642 ACPI_HANDLE handle; 643 int i, numdevs; 644 device_t child, *devlist; 645 646 GIANT_REQUIRED; 647 648 /* 649 * Put all devices in D0 before resuming them. Call _S0D on each one 650 * since some systems expect this. 651 */ 652 device_get_children(dev, &devlist, &numdevs); 653 for (i = 0; i < numdevs; i++) { 654 child = devlist[i]; 655 handle = acpi_get_handle(child); 656 if (handle) 657 AcpiEvaluateObject(handle, "_S0D", NULL, NULL); 658 if (device_is_attached(child) && acpi_do_powerstate) 659 pci_set_powerstate(child, PCI_POWERSTATE_D0); 660 } 661 free(devlist, M_TEMP); 662 663 return (bus_generic_resume(dev)); 664 } 665 666 static int 667 acpi_shutdown(device_t dev) 668 { 669 670 GIANT_REQUIRED; 671 672 /* Allow children to shutdown first. */ 673 bus_generic_shutdown(dev); 674 675 /* 676 * Enable any GPEs that are able to power-on the system (i.e., RTC). 677 * Also, disable any that are not valid for this state (most). 678 */ 679 acpi_wake_prep_walk(ACPI_STATE_S5); 680 681 return (0); 682 } 683 684 /* 685 * Handle a new device being added 686 */ 687 static device_t 688 acpi_add_child(device_t bus, int order, const char *name, int unit) 689 { 690 struct acpi_device *ad; 691 device_t child; 692 693 if ((ad = malloc(sizeof(*ad), M_ACPIDEV, M_NOWAIT | M_ZERO)) == NULL) 694 return (NULL); 695 696 resource_list_init(&ad->ad_rl); 697 698 child = device_add_child_ordered(bus, order, name, unit); 699 if (child != NULL) 700 device_set_ivars(child, ad); 701 return (child); 702 } 703 704 static int 705 acpi_print_child(device_t bus, device_t child) 706 { 707 struct acpi_device *adev = device_get_ivars(child); 708 struct resource_list *rl = &adev->ad_rl; 709 int retval = 0; 710 711 retval += bus_print_child_header(bus, child); 712 retval += resource_list_print_type(rl, "port", SYS_RES_IOPORT, "%#lx"); 713 retval += resource_list_print_type(rl, "iomem", SYS_RES_MEMORY, "%#lx"); 714 retval += resource_list_print_type(rl, "irq", SYS_RES_IRQ, "%ld"); 715 retval += resource_list_print_type(rl, "drq", SYS_RES_DRQ, "%ld"); 716 if (device_get_flags(child)) 717 retval += printf(" flags %#x", device_get_flags(child)); 718 retval += bus_print_child_footer(bus, child); 719 720 return (retval); 721 } 722 723 /* 724 * If this device is an ACPI child but no one claimed it, attempt 725 * to power it off. We'll power it back up when a driver is added. 726 * 727 * XXX Disabled for now since many necessary devices (like fdc and 728 * ATA) don't claim the devices we created for them but still expect 729 * them to be powered up. 730 */ 731 static void 732 acpi_probe_nomatch(device_t bus, device_t child) 733 { 734 735 /* pci_set_powerstate(child, PCI_POWERSTATE_D3); */ 736 } 737 738 /* 739 * If a new driver has a chance to probe a child, first power it up. 740 * 741 * XXX Disabled for now (see acpi_probe_nomatch for details). 742 */ 743 static void 744 acpi_driver_added(device_t dev, driver_t *driver) 745 { 746 device_t child, *devlist; 747 int i, numdevs; 748 749 DEVICE_IDENTIFY(driver, dev); 750 device_get_children(dev, &devlist, &numdevs); 751 for (i = 0; i < numdevs; i++) { 752 child = devlist[i]; 753 if (device_get_state(child) == DS_NOTPRESENT) { 754 /* pci_set_powerstate(child, PCI_POWERSTATE_D0); */ 755 if (device_probe_and_attach(child) != 0) 756 ; /* pci_set_powerstate(child, PCI_POWERSTATE_D3); */ 757 } 758 } 759 free(devlist, M_TEMP); 760 } 761 762 /* Location hint for devctl(8) */ 763 static int 764 acpi_child_location_str_method(device_t cbdev, device_t child, char *buf, 765 size_t buflen) 766 { 767 struct acpi_device *dinfo = device_get_ivars(child); 768 769 if (dinfo->ad_handle) 770 snprintf(buf, buflen, "handle=%s", acpi_name(dinfo->ad_handle)); 771 else 772 snprintf(buf, buflen, "unknown"); 773 return (0); 774 } 775 776 /* PnP information for devctl(8) */ 777 static int 778 acpi_child_pnpinfo_str_method(device_t cbdev, device_t child, char *buf, 779 size_t buflen) 780 { 781 ACPI_BUFFER adbuf = {ACPI_ALLOCATE_BUFFER, NULL}; 782 ACPI_DEVICE_INFO *adinfo; 783 struct acpi_device *dinfo = device_get_ivars(child); 784 char *end; 785 int error; 786 787 error = AcpiGetObjectInfo(dinfo->ad_handle, &adbuf); 788 adinfo = (ACPI_DEVICE_INFO *) adbuf.Pointer; 789 if (error) 790 snprintf(buf, buflen, "unknown"); 791 else 792 snprintf(buf, buflen, "_HID=%s _UID=%lu", 793 (adinfo->Valid & ACPI_VALID_HID) ? 794 adinfo->HardwareId.Value : "none", 795 (adinfo->Valid & ACPI_VALID_UID) ? 796 strtoul(adinfo->UniqueId.Value, &end, 10) : 0); 797 if (adinfo) 798 AcpiOsFree(adinfo); 799 800 return (0); 801 } 802 803 /* 804 * Handle per-device ivars 805 */ 806 static int 807 acpi_read_ivar(device_t dev, device_t child, int index, uintptr_t *result) 808 { 809 struct acpi_device *ad; 810 811 if ((ad = device_get_ivars(child)) == NULL) { 812 printf("device has no ivars\n"); 813 return (ENOENT); 814 } 815 816 /* ACPI and ISA compatibility ivars */ 817 switch(index) { 818 case ACPI_IVAR_HANDLE: 819 *(ACPI_HANDLE *)result = ad->ad_handle; 820 break; 821 case ACPI_IVAR_MAGIC: 822 *(int *)result = ad->ad_magic; 823 break; 824 case ACPI_IVAR_PRIVATE: 825 *(void **)result = ad->ad_private; 826 break; 827 case ACPI_IVAR_FLAGS: 828 *(int *)result = ad->ad_flags; 829 break; 830 case ISA_IVAR_VENDORID: 831 case ISA_IVAR_SERIAL: 832 case ISA_IVAR_COMPATID: 833 *(int *)result = -1; 834 break; 835 case ISA_IVAR_LOGICALID: 836 *(int *)result = acpi_isa_get_logicalid(child); 837 break; 838 default: 839 return (ENOENT); 840 } 841 842 return (0); 843 } 844 845 static int 846 acpi_write_ivar(device_t dev, device_t child, int index, uintptr_t value) 847 { 848 struct acpi_device *ad; 849 850 if ((ad = device_get_ivars(child)) == NULL) { 851 printf("device has no ivars\n"); 852 return (ENOENT); 853 } 854 855 switch(index) { 856 case ACPI_IVAR_HANDLE: 857 ad->ad_handle = (ACPI_HANDLE)value; 858 break; 859 case ACPI_IVAR_MAGIC: 860 ad->ad_magic = (int)value; 861 break; 862 case ACPI_IVAR_PRIVATE: 863 ad->ad_private = (void *)value; 864 break; 865 case ACPI_IVAR_FLAGS: 866 ad->ad_flags = (int)value; 867 break; 868 default: 869 panic("bad ivar write request (%d)", index); 870 return (ENOENT); 871 } 872 873 return (0); 874 } 875 876 /* 877 * Handle child resource allocation/removal 878 */ 879 static struct resource_list * 880 acpi_get_rlist(device_t dev, device_t child) 881 { 882 struct acpi_device *ad; 883 884 ad = device_get_ivars(child); 885 return (&ad->ad_rl); 886 } 887 888 /* 889 * Pre-allocate/manage all memory and IO resources. Since rman can't handle 890 * duplicates, we merge any in the sysresource attach routine. 891 */ 892 static int 893 acpi_sysres_alloc(device_t dev) 894 { 895 struct resource *res; 896 struct resource_list *rl; 897 struct resource_list_entry *rle; 898 struct rman *rm; 899 900 rl = BUS_GET_RESOURCE_LIST(device_get_parent(dev), dev); 901 SLIST_FOREACH(rle, rl, link) { 902 if (rle->res != NULL) { 903 device_printf(dev, "duplicate resource for %lx\n", rle->start); 904 continue; 905 } 906 907 /* Only memory and IO resources are valid here. */ 908 switch (rle->type) { 909 case SYS_RES_IOPORT: 910 rm = &acpi_rman_io; 911 break; 912 case SYS_RES_MEMORY: 913 rm = &acpi_rman_mem; 914 break; 915 default: 916 continue; 917 } 918 919 /* Pre-allocate resource and add to our rman pool. */ 920 res = BUS_ALLOC_RESOURCE(device_get_parent(dev), dev, rle->type, 921 &rle->rid, rle->start, rle->start + rle->count - 1, rle->count, 0); 922 if (res != NULL) { 923 rman_manage_region(rm, rman_get_start(res), rman_get_end(res)); 924 rle->res = res; 925 } else 926 device_printf(dev, "reservation of %lx, %lx (%d) failed\n", 927 rle->start, rle->count, rle->type); 928 } 929 return (0); 930 } 931 932 /* Find if we manage a given resource. */ 933 static struct resource_list_entry * 934 acpi_sysres_find(device_t dev, int type, u_long addr) 935 { 936 struct resource_list *rl; 937 struct resource_list_entry *rle; 938 939 ACPI_SERIAL_ASSERT(acpi); 940 941 /* We only consider IO and memory resources for our pool. */ 942 rle = NULL; 943 if (type != SYS_RES_IOPORT && type != SYS_RES_MEMORY) 944 goto out; 945 946 rl = BUS_GET_RESOURCE_LIST(device_get_parent(dev), dev); 947 SLIST_FOREACH(rle, rl, link) { 948 if (type == rle->type && addr >= rle->start && 949 addr < rle->start + rle->count) 950 break; 951 } 952 953 out: 954 return (rle); 955 } 956 957 static struct resource * 958 acpi_alloc_resource(device_t bus, device_t child, int type, int *rid, 959 u_long start, u_long end, u_long count, u_int flags) 960 { 961 ACPI_RESOURCE ares; 962 struct acpi_device *ad = device_get_ivars(child); 963 struct resource_list *rl = &ad->ad_rl; 964 struct resource_list_entry *rle; 965 struct resource *res; 966 struct rman *rm; 967 968 res = NULL; 969 ACPI_SERIAL_BEGIN(acpi); 970 971 /* 972 * If this is an allocation of the "default" range for a given RID, and 973 * we know what the resources for this device are (i.e., they're on the 974 * child's resource list), use those start/end values. 975 */ 976 if (start == 0UL && end == ~0UL) { 977 rle = resource_list_find(rl, type, *rid); 978 if (rle == NULL) 979 goto out; 980 start = rle->start; 981 end = rle->end; 982 count = rle->count; 983 } 984 985 /* If we don't manage this address, pass the request up to the parent. */ 986 rle = acpi_sysres_find(bus, type, start); 987 if (rle == NULL) { 988 res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, type, rid, 989 start, end, count, flags); 990 } else { 991 992 /* We only handle memory and IO resources through rman. */ 993 switch (type) { 994 case SYS_RES_IOPORT: 995 rm = &acpi_rman_io; 996 break; 997 case SYS_RES_MEMORY: 998 rm = &acpi_rman_mem; 999 break; 1000 default: 1001 panic("acpi_alloc_resource: invalid res type %d", type); 1002 } 1003 1004 /* If we do know it, allocate it from the local pool. */ 1005 res = rman_reserve_resource(rm, start, end, count, flags & ~RF_ACTIVE, 1006 child); 1007 if (res == NULL) 1008 goto out; 1009 1010 /* Copy the bus tag and handle from the pre-allocated resource. */ 1011 rman_set_bustag(res, rman_get_bustag(rle->res)); 1012 rman_set_bushandle(res, rman_get_start(res)); 1013 1014 /* If requested, activate the resource using the parent's method. */ 1015 if (flags & RF_ACTIVE) 1016 if (bus_activate_resource(child, type, *rid, res) != 0) { 1017 rman_release_resource(res); 1018 res = NULL; 1019 goto out; 1020 } 1021 } 1022 1023 if (res != NULL && device_get_parent(child) == bus) 1024 switch (type) { 1025 case SYS_RES_IRQ: 1026 /* 1027 * Since bus_config_intr() takes immediate effect, we cannot 1028 * configure the interrupt associated with a device when we 1029 * parse the resources but have to defer it until a driver 1030 * actually allocates the interrupt via bus_alloc_resource(). 1031 * 1032 * XXX: Should we handle the lookup failing? 1033 */ 1034 if (ACPI_SUCCESS(acpi_lookup_irq_resource(child, *rid, res, &ares))) 1035 acpi_config_intr(child, &ares); 1036 break; 1037 } 1038 1039 out: 1040 ACPI_SERIAL_END(acpi); 1041 return (res); 1042 } 1043 1044 static int 1045 acpi_release_resource(device_t bus, device_t child, int type, int rid, 1046 struct resource *r) 1047 { 1048 int ret; 1049 1050 ACPI_SERIAL_BEGIN(acpi); 1051 1052 /* 1053 * If we know about this address, deactivate it and release it to the 1054 * local pool. If we don't, pass this request up to the parent. 1055 */ 1056 if (acpi_sysres_find(bus, type, rman_get_start(r)) == NULL) { 1057 if (rman_get_flags(r) & RF_ACTIVE) { 1058 ret = bus_deactivate_resource(child, type, rid, r); 1059 if (ret != 0) 1060 goto out; 1061 } 1062 ret = rman_release_resource(r); 1063 } else 1064 ret = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, type, rid, r); 1065 1066 out: 1067 ACPI_SERIAL_END(acpi); 1068 return (ret); 1069 } 1070 1071 /* Allocate an IO port or memory resource, given its GAS. */ 1072 struct resource * 1073 acpi_bus_alloc_gas(device_t dev, int *rid, ACPI_GENERIC_ADDRESS *gas) 1074 { 1075 int type; 1076 1077 if (gas == NULL || !ACPI_VALID_ADDRESS(gas->Address) || 1078 gas->RegisterBitWidth < 8) 1079 return (NULL); 1080 1081 switch (gas->AddressSpaceId) { 1082 case ACPI_ADR_SPACE_SYSTEM_MEMORY: 1083 type = SYS_RES_MEMORY; 1084 break; 1085 case ACPI_ADR_SPACE_SYSTEM_IO: 1086 type = SYS_RES_IOPORT; 1087 break; 1088 default: 1089 return (NULL); 1090 } 1091 1092 bus_set_resource(dev, type, *rid, gas->Address, gas->RegisterBitWidth / 8); 1093 return (bus_alloc_resource_any(dev, type, rid, RF_ACTIVE)); 1094 } 1095 1096 /* Probe _HID and _CID for compatible ISA PNP ids. */ 1097 static uint32_t 1098 acpi_isa_get_logicalid(device_t dev) 1099 { 1100 ACPI_DEVICE_INFO *devinfo; 1101 ACPI_BUFFER buf; 1102 ACPI_HANDLE h; 1103 ACPI_STATUS error; 1104 u_int32_t pnpid; 1105 1106 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1107 1108 pnpid = 0; 1109 buf.Pointer = NULL; 1110 buf.Length = ACPI_ALLOCATE_BUFFER; 1111 1112 /* Fetch and validate the HID. */ 1113 if ((h = acpi_get_handle(dev)) == NULL) 1114 goto out; 1115 error = AcpiGetObjectInfo(h, &buf); 1116 if (ACPI_FAILURE(error)) 1117 goto out; 1118 devinfo = (ACPI_DEVICE_INFO *)buf.Pointer; 1119 1120 if ((devinfo->Valid & ACPI_VALID_HID) != 0) 1121 pnpid = PNP_EISAID(devinfo->HardwareId.Value); 1122 1123 out: 1124 if (buf.Pointer != NULL) 1125 AcpiOsFree(buf.Pointer); 1126 return_VALUE (pnpid); 1127 } 1128 1129 static int 1130 acpi_isa_get_compatid(device_t dev, uint32_t *cids, int count) 1131 { 1132 ACPI_DEVICE_INFO *devinfo; 1133 ACPI_BUFFER buf; 1134 ACPI_HANDLE h; 1135 ACPI_STATUS error; 1136 uint32_t *pnpid; 1137 int valid, i; 1138 1139 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1140 1141 pnpid = cids; 1142 valid = 0; 1143 buf.Pointer = NULL; 1144 buf.Length = ACPI_ALLOCATE_BUFFER; 1145 1146 /* Fetch and validate the CID */ 1147 if ((h = acpi_get_handle(dev)) == NULL) 1148 goto out; 1149 error = AcpiGetObjectInfo(h, &buf); 1150 if (ACPI_FAILURE(error)) 1151 goto out; 1152 devinfo = (ACPI_DEVICE_INFO *)buf.Pointer; 1153 if ((devinfo->Valid & ACPI_VALID_CID) == 0) 1154 goto out; 1155 1156 if (devinfo->CompatibilityId.Count < count) 1157 count = devinfo->CompatibilityId.Count; 1158 for (i = 0; i < count; i++) { 1159 if (strncmp(devinfo->CompatibilityId.Id[i].Value, "PNP", 3) != 0) 1160 continue; 1161 *pnpid++ = PNP_EISAID(devinfo->CompatibilityId.Id[i].Value); 1162 valid++; 1163 } 1164 1165 out: 1166 if (buf.Pointer != NULL) 1167 AcpiOsFree(buf.Pointer); 1168 return_VALUE (valid); 1169 } 1170 1171 static char * 1172 acpi_device_id_probe(device_t bus, device_t dev, char **ids) 1173 { 1174 ACPI_HANDLE h; 1175 int i; 1176 1177 h = acpi_get_handle(dev); 1178 if (ids == NULL || h == NULL || acpi_get_type(dev) != ACPI_TYPE_DEVICE) 1179 return (NULL); 1180 1181 /* Try to match one of the array of IDs with a HID or CID. */ 1182 for (i = 0; ids[i] != NULL; i++) { 1183 if (acpi_MatchHid(h, ids[i])) 1184 return (ids[i]); 1185 } 1186 return (NULL); 1187 } 1188 1189 static ACPI_STATUS 1190 acpi_device_eval_obj(device_t bus, device_t dev, ACPI_STRING pathname, 1191 ACPI_OBJECT_LIST *parameters, ACPI_BUFFER *ret) 1192 { 1193 ACPI_HANDLE h; 1194 1195 if (dev == NULL) 1196 h = ACPI_ROOT_OBJECT; 1197 else if ((h = acpi_get_handle(dev)) == NULL) 1198 return (AE_BAD_PARAMETER); 1199 return (AcpiEvaluateObject(h, pathname, parameters, ret)); 1200 } 1201 1202 static int 1203 acpi_device_pwr_for_sleep(device_t bus, device_t dev, int *dstate) 1204 { 1205 struct acpi_softc *sc; 1206 ACPI_HANDLE handle; 1207 ACPI_STATUS status; 1208 char sxd[8]; 1209 int error; 1210 1211 sc = device_get_softc(bus); 1212 handle = acpi_get_handle(dev); 1213 1214 /* 1215 * XXX If we find these devices, don't try to power them down. 1216 * The serial and IRDA ports on my T23 hang the system when 1217 * set to D3 and it appears that such legacy devices may 1218 * need special handling in their drivers. 1219 */ 1220 if (handle == NULL || 1221 acpi_MatchHid(handle, "PNP0500") || 1222 acpi_MatchHid(handle, "PNP0501") || 1223 acpi_MatchHid(handle, "PNP0502") || 1224 acpi_MatchHid(handle, "PNP0510") || 1225 acpi_MatchHid(handle, "PNP0511")) 1226 return (ENXIO); 1227 1228 /* 1229 * Override next state with the value from _SxD, if present. If no 1230 * dstate argument was provided, don't fetch the return value. 1231 */ 1232 snprintf(sxd, sizeof(sxd), "_S%dD", sc->acpi_sstate); 1233 if (dstate) 1234 status = acpi_GetInteger(handle, sxd, dstate); 1235 else 1236 status = AcpiEvaluateObject(handle, sxd, NULL, NULL); 1237 1238 switch (status) { 1239 case AE_OK: 1240 error = 0; 1241 break; 1242 case AE_NOT_FOUND: 1243 error = ESRCH; 1244 break; 1245 default: 1246 error = ENXIO; 1247 break; 1248 } 1249 1250 return (error); 1251 } 1252 1253 /* Callback arg for our implementation of walking the namespace. */ 1254 struct acpi_device_scan_ctx { 1255 acpi_scan_cb_t user_fn; 1256 void *arg; 1257 ACPI_HANDLE parent; 1258 }; 1259 1260 static ACPI_STATUS 1261 acpi_device_scan_cb(ACPI_HANDLE h, UINT32 level, void *arg, void **retval) 1262 { 1263 struct acpi_device_scan_ctx *ctx; 1264 device_t dev, old_dev; 1265 ACPI_STATUS status; 1266 ACPI_OBJECT_TYPE type; 1267 1268 /* 1269 * Skip this device if we think we'll have trouble with it or it is 1270 * the parent where the scan began. 1271 */ 1272 ctx = (struct acpi_device_scan_ctx *)arg; 1273 if (acpi_avoid(h) || h == ctx->parent) 1274 return (AE_OK); 1275 1276 /* If this is not a valid device type (e.g., a method), skip it. */ 1277 if (ACPI_FAILURE(AcpiGetType(h, &type))) 1278 return (AE_OK); 1279 if (type != ACPI_TYPE_DEVICE && type != ACPI_TYPE_PROCESSOR && 1280 type != ACPI_TYPE_THERMAL && type != ACPI_TYPE_POWER) 1281 return (AE_OK); 1282 1283 /* 1284 * Call the user function with the current device. If it is unchanged 1285 * afterwards, return. Otherwise, we update the handle to the new dev. 1286 */ 1287 old_dev = acpi_get_device(h); 1288 dev = old_dev; 1289 status = ctx->user_fn(h, &dev, level, ctx->arg); 1290 if (ACPI_FAILURE(status) || old_dev == dev) 1291 return (status); 1292 1293 /* Remove the old child and its connection to the handle. */ 1294 if (old_dev != NULL) { 1295 device_delete_child(device_get_parent(old_dev), old_dev); 1296 AcpiDetachData(h, acpi_fake_objhandler); 1297 } 1298 1299 /* Recreate the handle association if the user created a device. */ 1300 if (dev != NULL) 1301 AcpiAttachData(h, acpi_fake_objhandler, dev); 1302 1303 return (AE_OK); 1304 } 1305 1306 static ACPI_STATUS 1307 acpi_device_scan_children(device_t bus, device_t dev, int max_depth, 1308 acpi_scan_cb_t user_fn, void *arg) 1309 { 1310 ACPI_HANDLE h; 1311 struct acpi_device_scan_ctx ctx; 1312 1313 if (acpi_disabled("children")) 1314 return (AE_OK); 1315 1316 if (dev == NULL) 1317 h = ACPI_ROOT_OBJECT; 1318 else if ((h = acpi_get_handle(dev)) == NULL) 1319 return (AE_BAD_PARAMETER); 1320 ctx.user_fn = user_fn; 1321 ctx.arg = arg; 1322 ctx.parent = h; 1323 return (AcpiWalkNamespace(ACPI_TYPE_ANY, h, max_depth, 1324 acpi_device_scan_cb, &ctx, NULL)); 1325 } 1326 1327 /* 1328 * Even though ACPI devices are not PCI, we use the PCI approach for setting 1329 * device power states since it's close enough to ACPI. 1330 */ 1331 static int 1332 acpi_set_powerstate_method(device_t bus, device_t child, int state) 1333 { 1334 ACPI_HANDLE h; 1335 ACPI_STATUS status; 1336 int error; 1337 1338 error = 0; 1339 h = acpi_get_handle(child); 1340 if (state < ACPI_STATE_D0 || state > ACPI_STATE_D3) 1341 return (EINVAL); 1342 if (h == NULL) 1343 return (0); 1344 1345 /* Ignore errors if the power methods aren't present. */ 1346 status = acpi_pwr_switch_consumer(h, state); 1347 if (ACPI_FAILURE(status) && status != AE_NOT_FOUND 1348 && status != AE_BAD_PARAMETER) 1349 device_printf(bus, "failed to set ACPI power state D%d on %s: %s\n", 1350 state, acpi_name(h), AcpiFormatException(status)); 1351 1352 return (error); 1353 } 1354 1355 static int 1356 acpi_isa_pnp_probe(device_t bus, device_t child, struct isa_pnp_id *ids) 1357 { 1358 int result, cid_count, i; 1359 uint32_t lid, cids[8]; 1360 1361 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1362 1363 /* 1364 * ISA-style drivers attached to ACPI may persist and 1365 * probe manually if we return ENOENT. We never want 1366 * that to happen, so don't ever return it. 1367 */ 1368 result = ENXIO; 1369 1370 /* Scan the supplied IDs for a match */ 1371 lid = acpi_isa_get_logicalid(child); 1372 cid_count = acpi_isa_get_compatid(child, cids, 8); 1373 while (ids && ids->ip_id) { 1374 if (lid == ids->ip_id) { 1375 result = 0; 1376 goto out; 1377 } 1378 for (i = 0; i < cid_count; i++) { 1379 if (cids[i] == ids->ip_id) { 1380 result = 0; 1381 goto out; 1382 } 1383 } 1384 ids++; 1385 } 1386 1387 out: 1388 if (result == 0 && ids->ip_desc) 1389 device_set_desc(child, ids->ip_desc); 1390 1391 return_VALUE (result); 1392 } 1393 1394 /* 1395 * Scan all of the ACPI namespace and attach child devices. 1396 * 1397 * We should only expect to find devices in the \_PR, \_TZ, \_SI, and 1398 * \_SB scopes, and \_PR and \_TZ became obsolete in the ACPI 2.0 spec. 1399 * However, in violation of the spec, some systems place their PCI link 1400 * devices in \, so we have to walk the whole namespace. We check the 1401 * type of namespace nodes, so this should be ok. 1402 */ 1403 static void 1404 acpi_probe_children(device_t bus) 1405 { 1406 1407 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1408 1409 /* 1410 * Scan the namespace and insert placeholders for all the devices that 1411 * we find. We also probe/attach any early devices. 1412 * 1413 * Note that we use AcpiWalkNamespace rather than AcpiGetDevices because 1414 * we want to create nodes for all devices, not just those that are 1415 * currently present. (This assumes that we don't want to create/remove 1416 * devices as they appear, which might be smarter.) 1417 */ 1418 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "namespace scan\n")); 1419 AcpiWalkNamespace(ACPI_TYPE_ANY, ACPI_ROOT_OBJECT, 100, acpi_probe_child, 1420 bus, NULL); 1421 1422 /* Pre-allocate resources for our rman from any sysresource devices. */ 1423 acpi_sysres_alloc(bus); 1424 1425 /* Create any static children by calling device identify methods. */ 1426 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "device identify routines\n")); 1427 bus_generic_probe(bus); 1428 1429 /* Probe/attach all children, created staticly and from the namespace. */ 1430 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "first bus_generic_attach\n")); 1431 bus_generic_attach(bus); 1432 1433 /* 1434 * Some of these children may have attached others as part of their attach 1435 * process (eg. the root PCI bus driver), so rescan. 1436 */ 1437 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "second bus_generic_attach\n")); 1438 bus_generic_attach(bus); 1439 1440 /* Attach wake sysctls. */ 1441 acpi_wake_sysctl_walk(bus); 1442 1443 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "done attaching children\n")); 1444 return_VOID; 1445 } 1446 1447 /* 1448 * Determine the probe order for a given device and return non-zero if it 1449 * should be attached immediately. 1450 */ 1451 static int 1452 acpi_probe_order(ACPI_HANDLE handle, int *order) 1453 { 1454 int ret; 1455 1456 /* 1457 * 1. I/O port and memory system resource holders 1458 * 2. Embedded controllers (to handle early accesses) 1459 */ 1460 ret = 0; 1461 if (acpi_MatchHid(handle, "PNP0C01") || acpi_MatchHid(handle, "PNP0C02")) { 1462 *order = 1; 1463 ret = 1; 1464 } else if (acpi_MatchHid(handle, "PNP0C09")) { 1465 *order = 2; 1466 ret = 1; 1467 } 1468 1469 return (ret); 1470 } 1471 1472 /* 1473 * Evaluate a child device and determine whether we might attach a device to 1474 * it. 1475 */ 1476 static ACPI_STATUS 1477 acpi_probe_child(ACPI_HANDLE handle, UINT32 level, void *context, void **status) 1478 { 1479 ACPI_OBJECT_TYPE type; 1480 device_t bus, child; 1481 int order, probe_now; 1482 char *handle_str, **search; 1483 static char *scopes[] = {"\\_PR_", "\\_TZ_", "\\_SI_", "\\_SB_", NULL}; 1484 1485 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1486 1487 /* Skip this device if we think we'll have trouble with it. */ 1488 if (acpi_avoid(handle)) 1489 return_ACPI_STATUS (AE_OK); 1490 1491 bus = (device_t)context; 1492 if (ACPI_SUCCESS(AcpiGetType(handle, &type))) { 1493 switch (type) { 1494 case ACPI_TYPE_DEVICE: 1495 case ACPI_TYPE_PROCESSOR: 1496 case ACPI_TYPE_THERMAL: 1497 case ACPI_TYPE_POWER: 1498 if (acpi_disabled("children")) 1499 break; 1500 1501 /* 1502 * Since we scan from \, be sure to skip system scope objects. 1503 * At least \_SB and \_TZ are detected as devices (ACPI-CA bug?) 1504 */ 1505 handle_str = acpi_name(handle); 1506 for (search = scopes; *search != NULL; search++) { 1507 if (strcmp(handle_str, *search) == 0) 1508 break; 1509 } 1510 if (*search != NULL) 1511 break; 1512 1513 /* 1514 * Create a placeholder device for this node. Sort the placeholder 1515 * so that the probe/attach passes will run breadth-first. Orders 1516 * less than 10 are reserved for special objects (i.e., system 1517 * resources). Larger values are used for all other devices. 1518 */ 1519 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "scanning '%s'\n", handle_str)); 1520 order = (level + 1) * 10; 1521 probe_now = acpi_probe_order(handle, &order); 1522 child = BUS_ADD_CHILD(bus, order, NULL, -1); 1523 if (child == NULL) 1524 break; 1525 1526 /* Associate the handle with the device_t and vice versa. */ 1527 acpi_set_handle(child, handle); 1528 AcpiAttachData(handle, acpi_fake_objhandler, child); 1529 1530 /* 1531 * Check that the device is present. If it's not present, 1532 * leave it disabled (so that we have a device_t attached to 1533 * the handle, but we don't probe it). 1534 */ 1535 if (type == ACPI_TYPE_DEVICE && !acpi_DeviceIsPresent(child)) { 1536 device_disable(child); 1537 break; 1538 } 1539 1540 /* 1541 * Get the device's resource settings and attach them. 1542 * Note that if the device has _PRS but no _CRS, we need 1543 * to decide when it's appropriate to try to configure the 1544 * device. Ignore the return value here; it's OK for the 1545 * device not to have any resources. 1546 */ 1547 acpi_parse_resources(child, handle, &acpi_res_parse_set, NULL); 1548 1549 /* If order was overridden, probe/attach now rather than later. */ 1550 if (probe_now) 1551 device_probe_and_attach(child); 1552 break; 1553 } 1554 } 1555 1556 return_ACPI_STATUS (AE_OK); 1557 } 1558 1559 /* 1560 * AcpiAttachData() requires an object handler but never uses it. This is a 1561 * placeholder object handler so we can store a device_t in an ACPI_HANDLE. 1562 */ 1563 void 1564 acpi_fake_objhandler(ACPI_HANDLE h, UINT32 fn, void *data) 1565 { 1566 } 1567 1568 static void 1569 acpi_shutdown_final(void *arg, int howto) 1570 { 1571 ACPI_STATUS status; 1572 1573 /* 1574 * XXX Shutdown code should only run on the BSP (cpuid 0). 1575 * Some chipsets do not power off the system correctly if called from 1576 * an AP. 1577 */ 1578 if ((howto & RB_POWEROFF) != 0) { 1579 status = AcpiEnterSleepStatePrep(ACPI_STATE_S5); 1580 if (ACPI_FAILURE(status)) { 1581 printf("AcpiEnterSleepStatePrep failed - %s\n", 1582 AcpiFormatException(status)); 1583 return; 1584 } 1585 printf("Powering system off using ACPI\n"); 1586 ACPI_DISABLE_IRQS(); 1587 status = AcpiEnterSleepState(ACPI_STATE_S5); 1588 if (ACPI_FAILURE(status)) { 1589 printf("ACPI power-off failed - %s\n", AcpiFormatException(status)); 1590 } else { 1591 DELAY(1000000); 1592 printf("ACPI power-off failed - timeout\n"); 1593 } 1594 } else if (panicstr == NULL) { 1595 printf("Shutting down ACPI\n"); 1596 AcpiTerminate(); 1597 } 1598 } 1599 1600 static void 1601 acpi_enable_fixed_events(struct acpi_softc *sc) 1602 { 1603 static int first_time = 1; 1604 1605 /* Enable and clear fixed events and install handlers. */ 1606 if (AcpiGbl_FADT != NULL && AcpiGbl_FADT->PwrButton == 0) { 1607 AcpiClearEvent(ACPI_EVENT_POWER_BUTTON); 1608 AcpiInstallFixedEventHandler(ACPI_EVENT_POWER_BUTTON, 1609 acpi_event_power_button_sleep, sc); 1610 if (first_time) 1611 device_printf(sc->acpi_dev, "Power Button (fixed)\n"); 1612 } 1613 if (AcpiGbl_FADT != NULL && AcpiGbl_FADT->SleepButton == 0) { 1614 AcpiClearEvent(ACPI_EVENT_SLEEP_BUTTON); 1615 AcpiInstallFixedEventHandler(ACPI_EVENT_SLEEP_BUTTON, 1616 acpi_event_sleep_button_sleep, sc); 1617 if (first_time) 1618 device_printf(sc->acpi_dev, "Sleep Button (fixed)\n"); 1619 } 1620 1621 first_time = 0; 1622 } 1623 1624 /* 1625 * Returns true if the device is actually present and should 1626 * be attached to. This requires the present, enabled, UI-visible 1627 * and diagnostics-passed bits to be set. 1628 */ 1629 BOOLEAN 1630 acpi_DeviceIsPresent(device_t dev) 1631 { 1632 ACPI_DEVICE_INFO *devinfo; 1633 ACPI_HANDLE h; 1634 ACPI_BUFFER buf; 1635 ACPI_STATUS error; 1636 int ret; 1637 1638 ret = FALSE; 1639 if ((h = acpi_get_handle(dev)) == NULL) 1640 return (FALSE); 1641 buf.Pointer = NULL; 1642 buf.Length = ACPI_ALLOCATE_BUFFER; 1643 error = AcpiGetObjectInfo(h, &buf); 1644 if (ACPI_FAILURE(error)) 1645 return (FALSE); 1646 devinfo = (ACPI_DEVICE_INFO *)buf.Pointer; 1647 1648 /* If no _STA method, must be present */ 1649 if ((devinfo->Valid & ACPI_VALID_STA) == 0) 1650 ret = TRUE; 1651 1652 /* Return true for 'present' and 'functioning' */ 1653 if (ACPI_DEVICE_PRESENT(devinfo->CurrentStatus)) 1654 ret = TRUE; 1655 1656 AcpiOsFree(buf.Pointer); 1657 return (ret); 1658 } 1659 1660 /* 1661 * Returns true if the battery is actually present and inserted. 1662 */ 1663 BOOLEAN 1664 acpi_BatteryIsPresent(device_t dev) 1665 { 1666 ACPI_DEVICE_INFO *devinfo; 1667 ACPI_HANDLE h; 1668 ACPI_BUFFER buf; 1669 ACPI_STATUS error; 1670 int ret; 1671 1672 ret = FALSE; 1673 if ((h = acpi_get_handle(dev)) == NULL) 1674 return (FALSE); 1675 buf.Pointer = NULL; 1676 buf.Length = ACPI_ALLOCATE_BUFFER; 1677 error = AcpiGetObjectInfo(h, &buf); 1678 if (ACPI_FAILURE(error)) 1679 return (FALSE); 1680 devinfo = (ACPI_DEVICE_INFO *)buf.Pointer; 1681 1682 /* If no _STA method, must be present */ 1683 if ((devinfo->Valid & ACPI_VALID_STA) == 0) 1684 ret = TRUE; 1685 1686 /* Return true for 'present', 'battery present', and 'functioning' */ 1687 if (ACPI_BATTERY_PRESENT(devinfo->CurrentStatus)) 1688 ret = TRUE; 1689 1690 AcpiOsFree(buf.Pointer); 1691 return (ret); 1692 } 1693 1694 /* 1695 * Match a HID string against a handle 1696 */ 1697 static BOOLEAN 1698 acpi_MatchHid(ACPI_HANDLE h, const char *hid) 1699 { 1700 ACPI_DEVICE_INFO *devinfo; 1701 ACPI_BUFFER buf; 1702 ACPI_STATUS error; 1703 int ret, i; 1704 1705 ret = FALSE; 1706 if (hid == NULL || h == NULL) 1707 return (ret); 1708 buf.Pointer = NULL; 1709 buf.Length = ACPI_ALLOCATE_BUFFER; 1710 error = AcpiGetObjectInfo(h, &buf); 1711 if (ACPI_FAILURE(error)) 1712 return (ret); 1713 devinfo = (ACPI_DEVICE_INFO *)buf.Pointer; 1714 1715 if ((devinfo->Valid & ACPI_VALID_HID) != 0 && 1716 strcmp(hid, devinfo->HardwareId.Value) == 0) 1717 ret = TRUE; 1718 else if ((devinfo->Valid & ACPI_VALID_CID) != 0) { 1719 for (i = 0; i < devinfo->CompatibilityId.Count; i++) { 1720 if (strcmp(hid, devinfo->CompatibilityId.Id[i].Value) == 0) { 1721 ret = TRUE; 1722 break; 1723 } 1724 } 1725 } 1726 1727 AcpiOsFree(buf.Pointer); 1728 return (ret); 1729 } 1730 1731 /* 1732 * Return the handle of a named object within our scope, ie. that of (parent) 1733 * or one if its parents. 1734 */ 1735 ACPI_STATUS 1736 acpi_GetHandleInScope(ACPI_HANDLE parent, char *path, ACPI_HANDLE *result) 1737 { 1738 ACPI_HANDLE r; 1739 ACPI_STATUS status; 1740 1741 /* Walk back up the tree to the root */ 1742 for (;;) { 1743 status = AcpiGetHandle(parent, path, &r); 1744 if (ACPI_SUCCESS(status)) { 1745 *result = r; 1746 return (AE_OK); 1747 } 1748 /* XXX Return error here? */ 1749 if (status != AE_NOT_FOUND) 1750 return (AE_OK); 1751 if (ACPI_FAILURE(AcpiGetParent(parent, &r))) 1752 return (AE_NOT_FOUND); 1753 parent = r; 1754 } 1755 } 1756 1757 /* Find the difference between two PM tick counts. */ 1758 uint32_t 1759 acpi_TimerDelta(uint32_t end, uint32_t start) 1760 { 1761 uint32_t delta; 1762 1763 if (end >= start) 1764 delta = end - start; 1765 else if (AcpiGbl_FADT->TmrValExt == 0) 1766 delta = ((0x00FFFFFF - start) + end + 1) & 0x00FFFFFF; 1767 else 1768 delta = ((0xFFFFFFFF - start) + end + 1); 1769 return (delta); 1770 } 1771 1772 /* 1773 * Allocate a buffer with a preset data size. 1774 */ 1775 ACPI_BUFFER * 1776 acpi_AllocBuffer(int size) 1777 { 1778 ACPI_BUFFER *buf; 1779 1780 if ((buf = malloc(size + sizeof(*buf), M_ACPIDEV, M_NOWAIT)) == NULL) 1781 return (NULL); 1782 buf->Length = size; 1783 buf->Pointer = (void *)(buf + 1); 1784 return (buf); 1785 } 1786 1787 ACPI_STATUS 1788 acpi_SetInteger(ACPI_HANDLE handle, char *path, UINT32 number) 1789 { 1790 ACPI_OBJECT arg1; 1791 ACPI_OBJECT_LIST args; 1792 1793 arg1.Type = ACPI_TYPE_INTEGER; 1794 arg1.Integer.Value = number; 1795 args.Count = 1; 1796 args.Pointer = &arg1; 1797 1798 return (AcpiEvaluateObject(handle, path, &args, NULL)); 1799 } 1800 1801 /* 1802 * Evaluate a path that should return an integer. 1803 */ 1804 ACPI_STATUS 1805 acpi_GetInteger(ACPI_HANDLE handle, char *path, UINT32 *number) 1806 { 1807 ACPI_STATUS status; 1808 ACPI_BUFFER buf; 1809 ACPI_OBJECT param; 1810 1811 if (handle == NULL) 1812 handle = ACPI_ROOT_OBJECT; 1813 1814 /* 1815 * Assume that what we've been pointed at is an Integer object, or 1816 * a method that will return an Integer. 1817 */ 1818 buf.Pointer = ¶m; 1819 buf.Length = sizeof(param); 1820 status = AcpiEvaluateObject(handle, path, NULL, &buf); 1821 if (ACPI_SUCCESS(status)) { 1822 if (param.Type == ACPI_TYPE_INTEGER) 1823 *number = param.Integer.Value; 1824 else 1825 status = AE_TYPE; 1826 } 1827 1828 /* 1829 * In some applications, a method that's expected to return an Integer 1830 * may instead return a Buffer (probably to simplify some internal 1831 * arithmetic). We'll try to fetch whatever it is, and if it's a Buffer, 1832 * convert it into an Integer as best we can. 1833 * 1834 * This is a hack. 1835 */ 1836 if (status == AE_BUFFER_OVERFLOW) { 1837 if ((buf.Pointer = AcpiOsAllocate(buf.Length)) == NULL) { 1838 status = AE_NO_MEMORY; 1839 } else { 1840 status = AcpiEvaluateObject(handle, path, NULL, &buf); 1841 if (ACPI_SUCCESS(status)) 1842 status = acpi_ConvertBufferToInteger(&buf, number); 1843 AcpiOsFree(buf.Pointer); 1844 } 1845 } 1846 return (status); 1847 } 1848 1849 ACPI_STATUS 1850 acpi_ConvertBufferToInteger(ACPI_BUFFER *bufp, UINT32 *number) 1851 { 1852 ACPI_OBJECT *p; 1853 UINT8 *val; 1854 int i; 1855 1856 p = (ACPI_OBJECT *)bufp->Pointer; 1857 if (p->Type == ACPI_TYPE_INTEGER) { 1858 *number = p->Integer.Value; 1859 return (AE_OK); 1860 } 1861 if (p->Type != ACPI_TYPE_BUFFER) 1862 return (AE_TYPE); 1863 if (p->Buffer.Length > sizeof(int)) 1864 return (AE_BAD_DATA); 1865 1866 *number = 0; 1867 val = p->Buffer.Pointer; 1868 for (i = 0; i < p->Buffer.Length; i++) 1869 *number += val[i] << (i * 8); 1870 return (AE_OK); 1871 } 1872 1873 /* 1874 * Iterate over the elements of an a package object, calling the supplied 1875 * function for each element. 1876 * 1877 * XXX possible enhancement might be to abort traversal on error. 1878 */ 1879 ACPI_STATUS 1880 acpi_ForeachPackageObject(ACPI_OBJECT *pkg, 1881 void (*func)(ACPI_OBJECT *comp, void *arg), void *arg) 1882 { 1883 ACPI_OBJECT *comp; 1884 int i; 1885 1886 if (pkg == NULL || pkg->Type != ACPI_TYPE_PACKAGE) 1887 return (AE_BAD_PARAMETER); 1888 1889 /* Iterate over components */ 1890 i = 0; 1891 comp = pkg->Package.Elements; 1892 for (; i < pkg->Package.Count; i++, comp++) 1893 func(comp, arg); 1894 1895 return (AE_OK); 1896 } 1897 1898 /* 1899 * Find the (index)th resource object in a set. 1900 */ 1901 ACPI_STATUS 1902 acpi_FindIndexedResource(ACPI_BUFFER *buf, int index, ACPI_RESOURCE **resp) 1903 { 1904 ACPI_RESOURCE *rp; 1905 int i; 1906 1907 rp = (ACPI_RESOURCE *)buf->Pointer; 1908 i = index; 1909 while (i-- > 0) { 1910 /* Range check */ 1911 if (rp > (ACPI_RESOURCE *)((u_int8_t *)buf->Pointer + buf->Length)) 1912 return (AE_BAD_PARAMETER); 1913 1914 /* Check for terminator */ 1915 if (rp->Id == ACPI_RSTYPE_END_TAG || rp->Length == 0) 1916 return (AE_NOT_FOUND); 1917 rp = ACPI_NEXT_RESOURCE(rp); 1918 } 1919 if (resp != NULL) 1920 *resp = rp; 1921 1922 return (AE_OK); 1923 } 1924 1925 /* 1926 * Append an ACPI_RESOURCE to an ACPI_BUFFER. 1927 * 1928 * Given a pointer to an ACPI_RESOURCE structure, expand the ACPI_BUFFER 1929 * provided to contain it. If the ACPI_BUFFER is empty, allocate a sensible 1930 * backing block. If the ACPI_RESOURCE is NULL, return an empty set of 1931 * resources. 1932 */ 1933 #define ACPI_INITIAL_RESOURCE_BUFFER_SIZE 512 1934 1935 ACPI_STATUS 1936 acpi_AppendBufferResource(ACPI_BUFFER *buf, ACPI_RESOURCE *res) 1937 { 1938 ACPI_RESOURCE *rp; 1939 void *newp; 1940 1941 /* Initialise the buffer if necessary. */ 1942 if (buf->Pointer == NULL) { 1943 buf->Length = ACPI_INITIAL_RESOURCE_BUFFER_SIZE; 1944 if ((buf->Pointer = AcpiOsAllocate(buf->Length)) == NULL) 1945 return (AE_NO_MEMORY); 1946 rp = (ACPI_RESOURCE *)buf->Pointer; 1947 rp->Id = ACPI_RSTYPE_END_TAG; 1948 rp->Length = 0; 1949 } 1950 if (res == NULL) 1951 return (AE_OK); 1952 1953 /* 1954 * Scan the current buffer looking for the terminator. 1955 * This will either find the terminator or hit the end 1956 * of the buffer and return an error. 1957 */ 1958 rp = (ACPI_RESOURCE *)buf->Pointer; 1959 for (;;) { 1960 /* Range check, don't go outside the buffer */ 1961 if (rp >= (ACPI_RESOURCE *)((u_int8_t *)buf->Pointer + buf->Length)) 1962 return (AE_BAD_PARAMETER); 1963 if (rp->Id == ACPI_RSTYPE_END_TAG || rp->Length == 0) 1964 break; 1965 rp = ACPI_NEXT_RESOURCE(rp); 1966 } 1967 1968 /* 1969 * Check the size of the buffer and expand if required. 1970 * 1971 * Required size is: 1972 * size of existing resources before terminator + 1973 * size of new resource and header + 1974 * size of terminator. 1975 * 1976 * Note that this loop should really only run once, unless 1977 * for some reason we are stuffing a *really* huge resource. 1978 */ 1979 while ((((u_int8_t *)rp - (u_int8_t *)buf->Pointer) + 1980 res->Length + ACPI_RESOURCE_LENGTH_NO_DATA + 1981 ACPI_RESOURCE_LENGTH) >= buf->Length) { 1982 if ((newp = AcpiOsAllocate(buf->Length * 2)) == NULL) 1983 return (AE_NO_MEMORY); 1984 bcopy(buf->Pointer, newp, buf->Length); 1985 rp = (ACPI_RESOURCE *)((u_int8_t *)newp + 1986 ((u_int8_t *)rp - (u_int8_t *)buf->Pointer)); 1987 AcpiOsFree(buf->Pointer); 1988 buf->Pointer = newp; 1989 buf->Length += buf->Length; 1990 } 1991 1992 /* Insert the new resource. */ 1993 bcopy(res, rp, res->Length + ACPI_RESOURCE_LENGTH_NO_DATA); 1994 1995 /* And add the terminator. */ 1996 rp = ACPI_NEXT_RESOURCE(rp); 1997 rp->Id = ACPI_RSTYPE_END_TAG; 1998 rp->Length = 0; 1999 2000 return (AE_OK); 2001 } 2002 2003 /* 2004 * Set interrupt model. 2005 */ 2006 ACPI_STATUS 2007 acpi_SetIntrModel(int model) 2008 { 2009 2010 return (acpi_SetInteger(ACPI_ROOT_OBJECT, "_PIC", model)); 2011 } 2012 2013 static void 2014 acpi_sleep_enable(void *arg) 2015 { 2016 2017 ((struct acpi_softc *)arg)->acpi_sleep_disabled = 0; 2018 } 2019 2020 enum acpi_sleep_state { 2021 ACPI_SS_NONE, 2022 ACPI_SS_GPE_SET, 2023 ACPI_SS_DEV_SUSPEND, 2024 ACPI_SS_SLP_PREP, 2025 ACPI_SS_SLEPT, 2026 }; 2027 2028 /* 2029 * Set the system sleep state 2030 * 2031 * Currently we support S1-S5 but S4 is only S4BIOS 2032 */ 2033 ACPI_STATUS 2034 acpi_SetSleepState(struct acpi_softc *sc, int state) 2035 { 2036 ACPI_STATUS status; 2037 UINT8 TypeA; 2038 UINT8 TypeB; 2039 enum acpi_sleep_state slp_state; 2040 2041 ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state); 2042 2043 status = AE_OK; 2044 ACPI_LOCK(acpi); 2045 if (sc->acpi_sleep_disabled) { 2046 if (sc->acpi_sstate != ACPI_STATE_S0) 2047 status = AE_ERROR; 2048 ACPI_UNLOCK(acpi); 2049 printf("acpi: suspend request ignored (not ready yet)\n"); 2050 return (status); 2051 } 2052 sc->acpi_sleep_disabled = 1; 2053 ACPI_UNLOCK(acpi); 2054 2055 /* 2056 * Be sure to hold Giant across DEVICE_SUSPEND/RESUME since non-MPSAFE 2057 * drivers need this. 2058 */ 2059 mtx_lock(&Giant); 2060 slp_state = ACPI_SS_NONE; 2061 switch (state) { 2062 case ACPI_STATE_S1: 2063 case ACPI_STATE_S2: 2064 case ACPI_STATE_S3: 2065 case ACPI_STATE_S4: 2066 status = AcpiGetSleepTypeData(state, &TypeA, &TypeB); 2067 if (status == AE_NOT_FOUND) { 2068 device_printf(sc->acpi_dev, 2069 "Sleep state S%d not supported by BIOS\n", state); 2070 break; 2071 } else if (ACPI_FAILURE(status)) { 2072 device_printf(sc->acpi_dev, "AcpiGetSleepTypeData failed - %s\n", 2073 AcpiFormatException(status)); 2074 break; 2075 } 2076 2077 sc->acpi_sstate = state; 2078 2079 /* Enable any GPEs as appropriate and requested by the user. */ 2080 acpi_wake_prep_walk(state); 2081 slp_state = ACPI_SS_GPE_SET; 2082 2083 /* 2084 * Inform all devices that we are going to sleep. If at least one 2085 * device fails, DEVICE_SUSPEND() automatically resumes the tree. 2086 * 2087 * XXX Note that a better two-pass approach with a 'veto' pass 2088 * followed by a "real thing" pass would be better, but the current 2089 * bus interface does not provide for this. 2090 */ 2091 if (DEVICE_SUSPEND(root_bus) != 0) { 2092 device_printf(sc->acpi_dev, "device_suspend failed\n"); 2093 break; 2094 } 2095 slp_state = ACPI_SS_DEV_SUSPEND; 2096 2097 status = AcpiEnterSleepStatePrep(state); 2098 if (ACPI_FAILURE(status)) { 2099 device_printf(sc->acpi_dev, "AcpiEnterSleepStatePrep failed - %s\n", 2100 AcpiFormatException(status)); 2101 break; 2102 } 2103 slp_state = ACPI_SS_SLP_PREP; 2104 2105 if (sc->acpi_sleep_delay > 0) 2106 DELAY(sc->acpi_sleep_delay * 1000000); 2107 2108 if (state != ACPI_STATE_S1) { 2109 acpi_sleep_machdep(sc, state); 2110 2111 /* Re-enable ACPI hardware on wakeup from sleep state 4. */ 2112 if (state == ACPI_STATE_S4) 2113 AcpiEnable(); 2114 } else { 2115 ACPI_DISABLE_IRQS(); 2116 status = AcpiEnterSleepState(state); 2117 if (ACPI_FAILURE(status)) { 2118 device_printf(sc->acpi_dev, "AcpiEnterSleepState failed - %s\n", 2119 AcpiFormatException(status)); 2120 break; 2121 } 2122 } 2123 slp_state = ACPI_SS_SLEPT; 2124 break; 2125 case ACPI_STATE_S5: 2126 /* 2127 * Shut down cleanly and power off. This will call us back through the 2128 * shutdown handlers. 2129 */ 2130 shutdown_nice(RB_POWEROFF); 2131 break; 2132 case ACPI_STATE_S0: 2133 default: 2134 status = AE_BAD_PARAMETER; 2135 break; 2136 } 2137 2138 /* 2139 * Back out state according to how far along we got in the suspend 2140 * process. This handles both the error and success cases. 2141 */ 2142 if (slp_state >= ACPI_SS_GPE_SET) { 2143 acpi_wake_prep_walk(state); 2144 sc->acpi_sstate = ACPI_STATE_S0; 2145 } 2146 if (slp_state >= ACPI_SS_SLP_PREP) 2147 AcpiLeaveSleepState(state); 2148 if (slp_state >= ACPI_SS_DEV_SUSPEND) 2149 DEVICE_RESUME(root_bus); 2150 if (slp_state >= ACPI_SS_SLEPT) 2151 acpi_enable_fixed_events(sc); 2152 2153 /* Allow another sleep request after a while. */ 2154 if (state != ACPI_STATE_S5) 2155 timeout(acpi_sleep_enable, (caddr_t)sc, hz * ACPI_MINIMUM_AWAKETIME); 2156 2157 mtx_unlock(&Giant); 2158 return_ACPI_STATUS (status); 2159 } 2160 2161 /* Initialize a device's wake GPE. */ 2162 int 2163 acpi_wake_init(device_t dev, int type) 2164 { 2165 struct acpi_prw_data prw; 2166 2167 /* Evaluate _PRW to find the GPE. */ 2168 if (acpi_parse_prw(acpi_get_handle(dev), &prw) != 0) 2169 return (ENXIO); 2170 2171 /* Set the requested type for the GPE (runtime, wake, or both). */ 2172 if (ACPI_FAILURE(AcpiSetGpeType(prw.gpe_handle, prw.gpe_bit, type))) { 2173 device_printf(dev, "set GPE type failed\n"); 2174 return (ENXIO); 2175 } 2176 2177 return (0); 2178 } 2179 2180 /* Enable or disable the device's wake GPE. */ 2181 int 2182 acpi_wake_set_enable(device_t dev, int enable) 2183 { 2184 struct acpi_prw_data prw; 2185 ACPI_HANDLE handle; 2186 ACPI_STATUS status; 2187 int flags; 2188 2189 /* Make sure the device supports waking the system and get the GPE. */ 2190 handle = acpi_get_handle(dev); 2191 if (acpi_parse_prw(handle, &prw) != 0) 2192 return (ENXIO); 2193 2194 flags = acpi_get_flags(dev); 2195 if (enable) { 2196 status = AcpiEnableGpe(prw.gpe_handle, prw.gpe_bit, ACPI_NOT_ISR); 2197 if (ACPI_FAILURE(status)) { 2198 device_printf(dev, "enable wake failed\n"); 2199 return (ENXIO); 2200 } 2201 acpi_set_flags(dev, flags | ACPI_FLAG_WAKE_ENABLED); 2202 } else { 2203 status = AcpiDisableGpe(prw.gpe_handle, prw.gpe_bit, ACPI_NOT_ISR); 2204 if (ACPI_FAILURE(status)) { 2205 device_printf(dev, "disable wake failed\n"); 2206 return (ENXIO); 2207 } 2208 acpi_set_flags(dev, flags & ~ACPI_FLAG_WAKE_ENABLED); 2209 } 2210 2211 return (0); 2212 } 2213 2214 static int 2215 acpi_wake_sleep_prep(ACPI_HANDLE handle, int sstate) 2216 { 2217 struct acpi_prw_data prw; 2218 device_t dev; 2219 2220 /* Check that this is a wake-capable device and get its GPE. */ 2221 if (acpi_parse_prw(handle, &prw) != 0) 2222 return (ENXIO); 2223 dev = acpi_get_device(handle); 2224 2225 /* 2226 * The destination sleep state must be less than (i.e., higher power) 2227 * or equal to the value specified by _PRW. If this GPE cannot be 2228 * enabled for the next sleep state, then disable it. If it can and 2229 * the user requested it be enabled, turn on any required power resources 2230 * and set _PSW. 2231 */ 2232 if (sstate > prw.lowest_wake) { 2233 AcpiDisableGpe(prw.gpe_handle, prw.gpe_bit, ACPI_NOT_ISR); 2234 if (bootverbose) 2235 device_printf(dev, "wake_prep disabled wake for %s (S%d)\n", 2236 acpi_name(handle), sstate); 2237 } else if (dev && (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) != 0) { 2238 acpi_pwr_wake_enable(handle, 1); 2239 acpi_SetInteger(handle, "_PSW", 1); 2240 if (bootverbose) 2241 device_printf(dev, "wake_prep enabled for %s (S%d)\n", 2242 acpi_name(handle), sstate); 2243 } 2244 2245 return (0); 2246 } 2247 2248 static int 2249 acpi_wake_run_prep(ACPI_HANDLE handle, int sstate) 2250 { 2251 struct acpi_prw_data prw; 2252 device_t dev; 2253 2254 /* 2255 * Check that this is a wake-capable device and get its GPE. Return 2256 * now if the user didn't enable this device for wake. 2257 */ 2258 if (acpi_parse_prw(handle, &prw) != 0) 2259 return (ENXIO); 2260 dev = acpi_get_device(handle); 2261 if (dev == NULL || (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) == 0) 2262 return (0); 2263 2264 /* 2265 * If this GPE couldn't be enabled for the previous sleep state, it was 2266 * disabled before going to sleep so re-enable it. If it was enabled, 2267 * clear _PSW and turn off any power resources it used. 2268 */ 2269 if (sstate > prw.lowest_wake) { 2270 AcpiEnableGpe(prw.gpe_handle, prw.gpe_bit, ACPI_NOT_ISR); 2271 if (bootverbose) 2272 device_printf(dev, "run_prep re-enabled %s\n", acpi_name(handle)); 2273 } else { 2274 acpi_SetInteger(handle, "_PSW", 0); 2275 acpi_pwr_wake_enable(handle, 0); 2276 if (bootverbose) 2277 device_printf(dev, "run_prep cleaned up for %s\n", 2278 acpi_name(handle)); 2279 } 2280 2281 return (0); 2282 } 2283 2284 static ACPI_STATUS 2285 acpi_wake_prep(ACPI_HANDLE handle, UINT32 level, void *context, void **status) 2286 { 2287 int sstate; 2288 2289 /* If suspending, run the sleep prep function, otherwise wake. */ 2290 sstate = *(int *)context; 2291 if (AcpiGbl_SystemAwakeAndRunning) 2292 acpi_wake_sleep_prep(handle, sstate); 2293 else 2294 acpi_wake_run_prep(handle, sstate); 2295 return (AE_OK); 2296 } 2297 2298 /* Walk the tree rooted at acpi0 to prep devices for suspend/resume. */ 2299 static int 2300 acpi_wake_prep_walk(int sstate) 2301 { 2302 ACPI_HANDLE sb_handle; 2303 2304 if (ACPI_SUCCESS(AcpiGetHandle(ACPI_ROOT_OBJECT, "\\_SB_", &sb_handle))) 2305 AcpiWalkNamespace(ACPI_TYPE_DEVICE, sb_handle, 100, 2306 acpi_wake_prep, &sstate, NULL); 2307 return (0); 2308 } 2309 2310 /* Walk the tree rooted at acpi0 to attach per-device wake sysctls. */ 2311 static int 2312 acpi_wake_sysctl_walk(device_t dev) 2313 { 2314 int error, i, numdevs; 2315 device_t *devlist; 2316 device_t child; 2317 ACPI_STATUS status; 2318 2319 error = device_get_children(dev, &devlist, &numdevs); 2320 if (error != 0 || numdevs == 0) 2321 return (error); 2322 for (i = 0; i < numdevs; i++) { 2323 child = devlist[i]; 2324 acpi_wake_sysctl_walk(child); 2325 if (!device_is_attached(child)) 2326 continue; 2327 status = AcpiEvaluateObject(acpi_get_handle(child), "_PRW", NULL, NULL); 2328 if (ACPI_SUCCESS(status)) { 2329 SYSCTL_ADD_PROC(device_get_sysctl_ctx(child), 2330 SYSCTL_CHILDREN(device_get_sysctl_tree(child)), OID_AUTO, 2331 "wake", CTLTYPE_INT | CTLFLAG_RW, child, 0, 2332 acpi_wake_set_sysctl, "I", "Device set to wake the system"); 2333 } 2334 } 2335 free(devlist, M_TEMP); 2336 2337 return (0); 2338 } 2339 2340 /* Enable or disable wake from userland. */ 2341 static int 2342 acpi_wake_set_sysctl(SYSCTL_HANDLER_ARGS) 2343 { 2344 int enable, error; 2345 device_t dev; 2346 2347 dev = (device_t)arg1; 2348 enable = (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) ? 1 : 0; 2349 2350 error = sysctl_handle_int(oidp, &enable, 0, req); 2351 if (error != 0 || req->newptr == NULL) 2352 return (error); 2353 if (enable != 0 && enable != 1) 2354 return (EINVAL); 2355 2356 return (acpi_wake_set_enable(dev, enable)); 2357 } 2358 2359 /* Parse a device's _PRW into a structure. */ 2360 int 2361 acpi_parse_prw(ACPI_HANDLE h, struct acpi_prw_data *prw) 2362 { 2363 ACPI_STATUS status; 2364 ACPI_BUFFER prw_buffer; 2365 ACPI_OBJECT *res, *res2; 2366 int error, i, power_count; 2367 2368 if (h == NULL || prw == NULL) 2369 return (EINVAL); 2370 2371 /* 2372 * The _PRW object (7.2.9) is only required for devices that have the 2373 * ability to wake the system from a sleeping state. 2374 */ 2375 error = EINVAL; 2376 prw_buffer.Pointer = NULL; 2377 prw_buffer.Length = ACPI_ALLOCATE_BUFFER; 2378 status = AcpiEvaluateObject(h, "_PRW", NULL, &prw_buffer); 2379 if (ACPI_FAILURE(status)) 2380 return (ENOENT); 2381 res = (ACPI_OBJECT *)prw_buffer.Pointer; 2382 if (res == NULL) 2383 return (ENOENT); 2384 if (!ACPI_PKG_VALID(res, 2)) 2385 goto out; 2386 2387 /* 2388 * Element 1 of the _PRW object: 2389 * The lowest power system sleeping state that can be entered while still 2390 * providing wake functionality. The sleeping state being entered must 2391 * be less than (i.e., higher power) or equal to this value. 2392 */ 2393 if (acpi_PkgInt32(res, 1, &prw->lowest_wake) != 0) 2394 goto out; 2395 2396 /* 2397 * Element 0 of the _PRW object: 2398 */ 2399 switch (res->Package.Elements[0].Type) { 2400 case ACPI_TYPE_INTEGER: 2401 /* 2402 * If the data type of this package element is numeric, then this 2403 * _PRW package element is the bit index in the GPEx_EN, in the 2404 * GPE blocks described in the FADT, of the enable bit that is 2405 * enabled for the wake event. 2406 */ 2407 prw->gpe_handle = NULL; 2408 prw->gpe_bit = res->Package.Elements[0].Integer.Value; 2409 error = 0; 2410 break; 2411 case ACPI_TYPE_PACKAGE: 2412 /* 2413 * If the data type of this package element is a package, then this 2414 * _PRW package element is itself a package containing two 2415 * elements. The first is an object reference to the GPE Block 2416 * device that contains the GPE that will be triggered by the wake 2417 * event. The second element is numeric and it contains the bit 2418 * index in the GPEx_EN, in the GPE Block referenced by the 2419 * first element in the package, of the enable bit that is enabled for 2420 * the wake event. 2421 * 2422 * For example, if this field is a package then it is of the form: 2423 * Package() {\_SB.PCI0.ISA.GPE, 2} 2424 */ 2425 res2 = &res->Package.Elements[0]; 2426 if (!ACPI_PKG_VALID(res2, 2)) 2427 goto out; 2428 prw->gpe_handle = acpi_GetReference(NULL, &res2->Package.Elements[0]); 2429 if (prw->gpe_handle == NULL) 2430 goto out; 2431 if (acpi_PkgInt32(res2, 1, &prw->gpe_bit) != 0) 2432 goto out; 2433 error = 0; 2434 break; 2435 default: 2436 goto out; 2437 } 2438 2439 /* Elements 2 to N of the _PRW object are power resources. */ 2440 power_count = res->Package.Count - 2; 2441 if (power_count > ACPI_PRW_MAX_POWERRES) { 2442 printf("ACPI device %s has too many power resources\n", acpi_name(h)); 2443 power_count = 0; 2444 } 2445 prw->power_res_count = power_count; 2446 for (i = 0; i < power_count; i++) 2447 prw->power_res[i] = res->Package.Elements[i]; 2448 2449 out: 2450 if (prw_buffer.Pointer != NULL) 2451 AcpiOsFree(prw_buffer.Pointer); 2452 return (error); 2453 } 2454 2455 /* 2456 * ACPI Event Handlers 2457 */ 2458 2459 /* System Event Handlers (registered by EVENTHANDLER_REGISTER) */ 2460 2461 static void 2462 acpi_system_eventhandler_sleep(void *arg, int state) 2463 { 2464 2465 ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state); 2466 2467 if (state >= ACPI_STATE_S0 && state <= ACPI_S_STATES_MAX) 2468 acpi_SetSleepState((struct acpi_softc *)arg, state); 2469 2470 return_VOID; 2471 } 2472 2473 static void 2474 acpi_system_eventhandler_wakeup(void *arg, int state) 2475 { 2476 2477 ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state); 2478 2479 /* Currently, nothing to do for wakeup. */ 2480 2481 return_VOID; 2482 } 2483 2484 /* 2485 * ACPICA Event Handlers (FixedEvent, also called from button notify handler) 2486 */ 2487 UINT32 2488 acpi_event_power_button_sleep(void *context) 2489 { 2490 struct acpi_softc *sc = (struct acpi_softc *)context; 2491 2492 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 2493 2494 EVENTHANDLER_INVOKE(acpi_sleep_event, sc->acpi_power_button_sx); 2495 2496 return_VALUE (ACPI_INTERRUPT_HANDLED); 2497 } 2498 2499 UINT32 2500 acpi_event_power_button_wake(void *context) 2501 { 2502 struct acpi_softc *sc = (struct acpi_softc *)context; 2503 2504 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 2505 2506 EVENTHANDLER_INVOKE(acpi_wakeup_event, sc->acpi_power_button_sx); 2507 2508 return_VALUE (ACPI_INTERRUPT_HANDLED); 2509 } 2510 2511 UINT32 2512 acpi_event_sleep_button_sleep(void *context) 2513 { 2514 struct acpi_softc *sc = (struct acpi_softc *)context; 2515 2516 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 2517 2518 EVENTHANDLER_INVOKE(acpi_sleep_event, sc->acpi_sleep_button_sx); 2519 2520 return_VALUE (ACPI_INTERRUPT_HANDLED); 2521 } 2522 2523 UINT32 2524 acpi_event_sleep_button_wake(void *context) 2525 { 2526 struct acpi_softc *sc = (struct acpi_softc *)context; 2527 2528 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 2529 2530 EVENTHANDLER_INVOKE(acpi_wakeup_event, sc->acpi_sleep_button_sx); 2531 2532 return_VALUE (ACPI_INTERRUPT_HANDLED); 2533 } 2534 2535 /* 2536 * XXX This static buffer is suboptimal. There is no locking so only 2537 * use this for single-threaded callers. 2538 */ 2539 char * 2540 acpi_name(ACPI_HANDLE handle) 2541 { 2542 ACPI_BUFFER buf; 2543 static char data[256]; 2544 2545 buf.Length = sizeof(data); 2546 buf.Pointer = data; 2547 2548 if (handle && ACPI_SUCCESS(AcpiGetName(handle, ACPI_FULL_PATHNAME, &buf))) 2549 return (data); 2550 return ("(unknown)"); 2551 } 2552 2553 /* 2554 * Debugging/bug-avoidance. Avoid trying to fetch info on various 2555 * parts of the namespace. 2556 */ 2557 int 2558 acpi_avoid(ACPI_HANDLE handle) 2559 { 2560 char *cp, *env, *np; 2561 int len; 2562 2563 np = acpi_name(handle); 2564 if (*np == '\\') 2565 np++; 2566 if ((env = getenv("debug.acpi.avoid")) == NULL) 2567 return (0); 2568 2569 /* Scan the avoid list checking for a match */ 2570 cp = env; 2571 for (;;) { 2572 while (*cp != 0 && isspace(*cp)) 2573 cp++; 2574 if (*cp == 0) 2575 break; 2576 len = 0; 2577 while (cp[len] != 0 && !isspace(cp[len])) 2578 len++; 2579 if (!strncmp(cp, np, len)) { 2580 freeenv(env); 2581 return(1); 2582 } 2583 cp += len; 2584 } 2585 freeenv(env); 2586 2587 return (0); 2588 } 2589 2590 /* 2591 * Debugging/bug-avoidance. Disable ACPI subsystem components. 2592 */ 2593 int 2594 acpi_disabled(char *subsys) 2595 { 2596 char *cp, *env; 2597 int len; 2598 2599 if ((env = getenv("debug.acpi.disabled")) == NULL) 2600 return (0); 2601 if (strcmp(env, "all") == 0) { 2602 freeenv(env); 2603 return (1); 2604 } 2605 2606 /* Scan the disable list, checking for a match. */ 2607 cp = env; 2608 for (;;) { 2609 while (*cp != '\0' && isspace(*cp)) 2610 cp++; 2611 if (*cp == '\0') 2612 break; 2613 len = 0; 2614 while (cp[len] != '\0' && !isspace(cp[len])) 2615 len++; 2616 if (strncmp(cp, subsys, len) == 0) { 2617 freeenv(env); 2618 return (1); 2619 } 2620 cp += len; 2621 } 2622 freeenv(env); 2623 2624 return (0); 2625 } 2626 2627 /* 2628 * Control interface. 2629 * 2630 * We multiplex ioctls for all participating ACPI devices here. Individual 2631 * drivers wanting to be accessible via /dev/acpi should use the 2632 * register/deregister interface to make their handlers visible. 2633 */ 2634 struct acpi_ioctl_hook 2635 { 2636 TAILQ_ENTRY(acpi_ioctl_hook) link; 2637 u_long cmd; 2638 acpi_ioctl_fn fn; 2639 void *arg; 2640 }; 2641 2642 static TAILQ_HEAD(,acpi_ioctl_hook) acpi_ioctl_hooks; 2643 static int acpi_ioctl_hooks_initted; 2644 2645 int 2646 acpi_register_ioctl(u_long cmd, acpi_ioctl_fn fn, void *arg) 2647 { 2648 struct acpi_ioctl_hook *hp; 2649 2650 if ((hp = malloc(sizeof(*hp), M_ACPIDEV, M_NOWAIT)) == NULL) 2651 return (ENOMEM); 2652 hp->cmd = cmd; 2653 hp->fn = fn; 2654 hp->arg = arg; 2655 2656 ACPI_LOCK(acpi); 2657 if (acpi_ioctl_hooks_initted == 0) { 2658 TAILQ_INIT(&acpi_ioctl_hooks); 2659 acpi_ioctl_hooks_initted = 1; 2660 } 2661 TAILQ_INSERT_TAIL(&acpi_ioctl_hooks, hp, link); 2662 ACPI_UNLOCK(acpi); 2663 2664 return (0); 2665 } 2666 2667 void 2668 acpi_deregister_ioctl(u_long cmd, acpi_ioctl_fn fn) 2669 { 2670 struct acpi_ioctl_hook *hp; 2671 2672 ACPI_LOCK(acpi); 2673 TAILQ_FOREACH(hp, &acpi_ioctl_hooks, link) 2674 if (hp->cmd == cmd && hp->fn == fn) 2675 break; 2676 2677 if (hp != NULL) { 2678 TAILQ_REMOVE(&acpi_ioctl_hooks, hp, link); 2679 free(hp, M_ACPIDEV); 2680 } 2681 ACPI_UNLOCK(acpi); 2682 } 2683 2684 static int 2685 acpiopen(struct cdev *dev, int flag, int fmt, d_thread_t *td) 2686 { 2687 return (0); 2688 } 2689 2690 static int 2691 acpiclose(struct cdev *dev, int flag, int fmt, d_thread_t *td) 2692 { 2693 return (0); 2694 } 2695 2696 static int 2697 acpiioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, d_thread_t *td) 2698 { 2699 struct acpi_softc *sc; 2700 struct acpi_ioctl_hook *hp; 2701 int error, state; 2702 2703 error = 0; 2704 hp = NULL; 2705 sc = dev->si_drv1; 2706 2707 /* 2708 * Scan the list of registered ioctls, looking for handlers. 2709 */ 2710 ACPI_LOCK(acpi); 2711 if (acpi_ioctl_hooks_initted) 2712 TAILQ_FOREACH(hp, &acpi_ioctl_hooks, link) { 2713 if (hp->cmd == cmd) 2714 break; 2715 } 2716 ACPI_UNLOCK(acpi); 2717 if (hp) 2718 return (hp->fn(cmd, addr, hp->arg)); 2719 2720 /* 2721 * Core ioctls are not permitted for non-writable user. 2722 * Currently, other ioctls just fetch information. 2723 * Not changing system behavior. 2724 */ 2725 if ((flag & FWRITE) == 0) 2726 return (EPERM); 2727 2728 /* Core system ioctls. */ 2729 switch (cmd) { 2730 case ACPIIO_SETSLPSTATE: 2731 error = EINVAL; 2732 state = *(int *)addr; 2733 if (state >= ACPI_STATE_S0 && state <= ACPI_S_STATES_MAX) 2734 if (ACPI_SUCCESS(acpi_SetSleepState(sc, state))) 2735 error = 0; 2736 break; 2737 default: 2738 error = ENXIO; 2739 break; 2740 } 2741 2742 return (error); 2743 } 2744 2745 static int 2746 acpi_supported_sleep_state_sysctl(SYSCTL_HANDLER_ARGS) 2747 { 2748 int error; 2749 struct sbuf sb; 2750 UINT8 state, TypeA, TypeB; 2751 2752 sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND); 2753 for (state = ACPI_STATE_S1; state < ACPI_S_STATES_MAX + 1; state++) 2754 if (ACPI_SUCCESS(AcpiGetSleepTypeData(state, &TypeA, &TypeB))) 2755 sbuf_printf(&sb, "S%d ", state); 2756 sbuf_trim(&sb); 2757 sbuf_finish(&sb); 2758 error = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req); 2759 sbuf_delete(&sb); 2760 return (error); 2761 } 2762 2763 static int 2764 acpi_sleep_state_sysctl(SYSCTL_HANDLER_ARGS) 2765 { 2766 char sleep_state[10]; 2767 int error; 2768 u_int new_state, old_state; 2769 2770 old_state = *(u_int *)oidp->oid_arg1; 2771 if (old_state > ACPI_S_STATES_MAX + 1) 2772 strlcpy(sleep_state, "unknown", sizeof(sleep_state)); 2773 else 2774 strlcpy(sleep_state, sleep_state_names[old_state], sizeof(sleep_state)); 2775 error = sysctl_handle_string(oidp, sleep_state, sizeof(sleep_state), req); 2776 if (error == 0 && req->newptr != NULL) { 2777 new_state = ACPI_STATE_S0; 2778 for (; new_state <= ACPI_S_STATES_MAX + 1; new_state++) 2779 if (strcmp(sleep_state, sleep_state_names[new_state]) == 0) 2780 break; 2781 if (new_state <= ACPI_S_STATES_MAX + 1) { 2782 if (new_state != old_state) 2783 *(u_int *)oidp->oid_arg1 = new_state; 2784 } else 2785 error = EINVAL; 2786 } 2787 2788 return (error); 2789 } 2790 2791 /* Inform devctl(4) when we receive a Notify. */ 2792 void 2793 acpi_UserNotify(const char *subsystem, ACPI_HANDLE h, uint8_t notify) 2794 { 2795 char notify_buf[16]; 2796 ACPI_BUFFER handle_buf; 2797 ACPI_STATUS status; 2798 2799 if (subsystem == NULL) 2800 return; 2801 2802 handle_buf.Pointer = NULL; 2803 handle_buf.Length = ACPI_ALLOCATE_BUFFER; 2804 status = AcpiNsHandleToPathname(h, &handle_buf); 2805 if (ACPI_FAILURE(status)) 2806 return; 2807 snprintf(notify_buf, sizeof(notify_buf), "notify=0x%02x", notify); 2808 devctl_notify("ACPI", subsystem, handle_buf.Pointer, notify_buf); 2809 AcpiOsFree(handle_buf.Pointer); 2810 } 2811 2812 #ifdef ACPI_DEBUG 2813 /* 2814 * Support for parsing debug options from the kernel environment. 2815 * 2816 * Bits may be set in the AcpiDbgLayer and AcpiDbgLevel debug registers 2817 * by specifying the names of the bits in the debug.acpi.layer and 2818 * debug.acpi.level environment variables. Bits may be unset by 2819 * prefixing the bit name with !. 2820 */ 2821 struct debugtag 2822 { 2823 char *name; 2824 UINT32 value; 2825 }; 2826 2827 static struct debugtag dbg_layer[] = { 2828 {"ACPI_UTILITIES", ACPI_UTILITIES}, 2829 {"ACPI_HARDWARE", ACPI_HARDWARE}, 2830 {"ACPI_EVENTS", ACPI_EVENTS}, 2831 {"ACPI_TABLES", ACPI_TABLES}, 2832 {"ACPI_NAMESPACE", ACPI_NAMESPACE}, 2833 {"ACPI_PARSER", ACPI_PARSER}, 2834 {"ACPI_DISPATCHER", ACPI_DISPATCHER}, 2835 {"ACPI_EXECUTER", ACPI_EXECUTER}, 2836 {"ACPI_RESOURCES", ACPI_RESOURCES}, 2837 {"ACPI_CA_DEBUGGER", ACPI_CA_DEBUGGER}, 2838 {"ACPI_OS_SERVICES", ACPI_OS_SERVICES}, 2839 {"ACPI_CA_DISASSEMBLER", ACPI_CA_DISASSEMBLER}, 2840 {"ACPI_ALL_COMPONENTS", ACPI_ALL_COMPONENTS}, 2841 2842 {"ACPI_AC_ADAPTER", ACPI_AC_ADAPTER}, 2843 {"ACPI_BATTERY", ACPI_BATTERY}, 2844 {"ACPI_BUS", ACPI_BUS}, 2845 {"ACPI_BUTTON", ACPI_BUTTON}, 2846 {"ACPI_EC", ACPI_EC}, 2847 {"ACPI_FAN", ACPI_FAN}, 2848 {"ACPI_POWERRES", ACPI_POWERRES}, 2849 {"ACPI_PROCESSOR", ACPI_PROCESSOR}, 2850 {"ACPI_THERMAL", ACPI_THERMAL}, 2851 {"ACPI_TIMER", ACPI_TIMER}, 2852 {"ACPI_ALL_DRIVERS", ACPI_ALL_DRIVERS}, 2853 {NULL, 0} 2854 }; 2855 2856 static struct debugtag dbg_level[] = { 2857 {"ACPI_LV_ERROR", ACPI_LV_ERROR}, 2858 {"ACPI_LV_WARN", ACPI_LV_WARN}, 2859 {"ACPI_LV_INIT", ACPI_LV_INIT}, 2860 {"ACPI_LV_DEBUG_OBJECT", ACPI_LV_DEBUG_OBJECT}, 2861 {"ACPI_LV_INFO", ACPI_LV_INFO}, 2862 {"ACPI_LV_ALL_EXCEPTIONS", ACPI_LV_ALL_EXCEPTIONS}, 2863 2864 /* Trace verbosity level 1 [Standard Trace Level] */ 2865 {"ACPI_LV_INIT_NAMES", ACPI_LV_INIT_NAMES}, 2866 {"ACPI_LV_PARSE", ACPI_LV_PARSE}, 2867 {"ACPI_LV_LOAD", ACPI_LV_LOAD}, 2868 {"ACPI_LV_DISPATCH", ACPI_LV_DISPATCH}, 2869 {"ACPI_LV_EXEC", ACPI_LV_EXEC}, 2870 {"ACPI_LV_NAMES", ACPI_LV_NAMES}, 2871 {"ACPI_LV_OPREGION", ACPI_LV_OPREGION}, 2872 {"ACPI_LV_BFIELD", ACPI_LV_BFIELD}, 2873 {"ACPI_LV_TABLES", ACPI_LV_TABLES}, 2874 {"ACPI_LV_VALUES", ACPI_LV_VALUES}, 2875 {"ACPI_LV_OBJECTS", ACPI_LV_OBJECTS}, 2876 {"ACPI_LV_RESOURCES", ACPI_LV_RESOURCES}, 2877 {"ACPI_LV_USER_REQUESTS", ACPI_LV_USER_REQUESTS}, 2878 {"ACPI_LV_PACKAGE", ACPI_LV_PACKAGE}, 2879 {"ACPI_LV_VERBOSITY1", ACPI_LV_VERBOSITY1}, 2880 2881 /* Trace verbosity level 2 [Function tracing and memory allocation] */ 2882 {"ACPI_LV_ALLOCATIONS", ACPI_LV_ALLOCATIONS}, 2883 {"ACPI_LV_FUNCTIONS", ACPI_LV_FUNCTIONS}, 2884 {"ACPI_LV_OPTIMIZATIONS", ACPI_LV_OPTIMIZATIONS}, 2885 {"ACPI_LV_VERBOSITY2", ACPI_LV_VERBOSITY2}, 2886 {"ACPI_LV_ALL", ACPI_LV_ALL}, 2887 2888 /* Trace verbosity level 3 [Threading, I/O, and Interrupts] */ 2889 {"ACPI_LV_MUTEX", ACPI_LV_MUTEX}, 2890 {"ACPI_LV_THREADS", ACPI_LV_THREADS}, 2891 {"ACPI_LV_IO", ACPI_LV_IO}, 2892 {"ACPI_LV_INTERRUPTS", ACPI_LV_INTERRUPTS}, 2893 {"ACPI_LV_VERBOSITY3", ACPI_LV_VERBOSITY3}, 2894 2895 /* Exceptionally verbose output -- also used in the global "DebugLevel" */ 2896 {"ACPI_LV_AML_DISASSEMBLE", ACPI_LV_AML_DISASSEMBLE}, 2897 {"ACPI_LV_VERBOSE_INFO", ACPI_LV_VERBOSE_INFO}, 2898 {"ACPI_LV_FULL_TABLES", ACPI_LV_FULL_TABLES}, 2899 {"ACPI_LV_EVENTS", ACPI_LV_EVENTS}, 2900 {"ACPI_LV_VERBOSE", ACPI_LV_VERBOSE}, 2901 {NULL, 0} 2902 }; 2903 2904 static void 2905 acpi_parse_debug(char *cp, struct debugtag *tag, UINT32 *flag) 2906 { 2907 char *ep; 2908 int i, l; 2909 int set; 2910 2911 while (*cp) { 2912 if (isspace(*cp)) { 2913 cp++; 2914 continue; 2915 } 2916 ep = cp; 2917 while (*ep && !isspace(*ep)) 2918 ep++; 2919 if (*cp == '!') { 2920 set = 0; 2921 cp++; 2922 if (cp == ep) 2923 continue; 2924 } else { 2925 set = 1; 2926 } 2927 l = ep - cp; 2928 for (i = 0; tag[i].name != NULL; i++) { 2929 if (!strncmp(cp, tag[i].name, l)) { 2930 if (set) 2931 *flag |= tag[i].value; 2932 else 2933 *flag &= ~tag[i].value; 2934 } 2935 } 2936 cp = ep; 2937 } 2938 } 2939 2940 static void 2941 acpi_set_debugging(void *junk) 2942 { 2943 char *layer, *level; 2944 2945 if (cold) { 2946 AcpiDbgLayer = 0; 2947 AcpiDbgLevel = 0; 2948 } 2949 2950 layer = getenv("debug.acpi.layer"); 2951 level = getenv("debug.acpi.level"); 2952 if (layer == NULL && level == NULL) 2953 return; 2954 2955 printf("ACPI set debug"); 2956 if (layer != NULL) { 2957 if (strcmp("NONE", layer) != 0) 2958 printf(" layer '%s'", layer); 2959 acpi_parse_debug(layer, &dbg_layer[0], &AcpiDbgLayer); 2960 freeenv(layer); 2961 } 2962 if (level != NULL) { 2963 if (strcmp("NONE", level) != 0) 2964 printf(" level '%s'", level); 2965 acpi_parse_debug(level, &dbg_level[0], &AcpiDbgLevel); 2966 freeenv(level); 2967 } 2968 printf("\n"); 2969 } 2970 2971 SYSINIT(acpi_debugging, SI_SUB_TUNABLES, SI_ORDER_ANY, acpi_set_debugging, 2972 NULL); 2973 2974 static int 2975 acpi_debug_sysctl(SYSCTL_HANDLER_ARGS) 2976 { 2977 int error, *dbg; 2978 struct debugtag *tag; 2979 struct sbuf sb; 2980 2981 if (sbuf_new(&sb, NULL, 128, SBUF_AUTOEXTEND) == NULL) 2982 return (ENOMEM); 2983 if (strcmp(oidp->oid_arg1, "debug.acpi.layer") == 0) { 2984 tag = &dbg_layer[0]; 2985 dbg = &AcpiDbgLayer; 2986 } else { 2987 tag = &dbg_level[0]; 2988 dbg = &AcpiDbgLevel; 2989 } 2990 2991 /* Get old values if this is a get request. */ 2992 ACPI_SERIAL_BEGIN(acpi); 2993 if (*dbg == 0) { 2994 sbuf_cpy(&sb, "NONE"); 2995 } else if (req->newptr == NULL) { 2996 for (; tag->name != NULL; tag++) { 2997 if ((*dbg & tag->value) == tag->value) 2998 sbuf_printf(&sb, "%s ", tag->name); 2999 } 3000 } 3001 sbuf_trim(&sb); 3002 sbuf_finish(&sb); 3003 3004 /* Copy out the old values to the user. */ 3005 error = SYSCTL_OUT(req, sbuf_data(&sb), sbuf_len(&sb)); 3006 sbuf_delete(&sb); 3007 3008 /* If the user is setting a string, parse it. */ 3009 if (error == 0 && req->newptr != NULL) { 3010 *dbg = 0; 3011 setenv((char *)oidp->oid_arg1, (char *)req->newptr); 3012 acpi_set_debugging(NULL); 3013 } 3014 ACPI_SERIAL_END(acpi); 3015 3016 return (error); 3017 } 3018 3019 SYSCTL_PROC(_debug_acpi, OID_AUTO, layer, CTLFLAG_RW | CTLTYPE_STRING, 3020 "debug.acpi.layer", 0, acpi_debug_sysctl, "A", ""); 3021 SYSCTL_PROC(_debug_acpi, OID_AUTO, level, CTLFLAG_RW | CTLTYPE_STRING, 3022 "debug.acpi.level", 0, acpi_debug_sysctl, "A", ""); 3023 #endif /* ACPI_DEBUG */ 3024 3025 static int 3026 acpi_pm_func(u_long cmd, void *arg, ...) 3027 { 3028 int state, acpi_state; 3029 int error; 3030 struct acpi_softc *sc; 3031 va_list ap; 3032 3033 error = 0; 3034 switch (cmd) { 3035 case POWER_CMD_SUSPEND: 3036 sc = (struct acpi_softc *)arg; 3037 if (sc == NULL) { 3038 error = EINVAL; 3039 goto out; 3040 } 3041 3042 va_start(ap, arg); 3043 state = va_arg(ap, int); 3044 va_end(ap); 3045 3046 switch (state) { 3047 case POWER_SLEEP_STATE_STANDBY: 3048 acpi_state = sc->acpi_standby_sx; 3049 break; 3050 case POWER_SLEEP_STATE_SUSPEND: 3051 acpi_state = sc->acpi_suspend_sx; 3052 break; 3053 case POWER_SLEEP_STATE_HIBERNATE: 3054 acpi_state = ACPI_STATE_S4; 3055 break; 3056 default: 3057 error = EINVAL; 3058 goto out; 3059 } 3060 3061 acpi_SetSleepState(sc, acpi_state); 3062 break; 3063 default: 3064 error = EINVAL; 3065 goto out; 3066 } 3067 3068 out: 3069 return (error); 3070 } 3071 3072 static void 3073 acpi_pm_register(void *arg) 3074 { 3075 if (!cold || resource_disabled("acpi", 0)) 3076 return; 3077 3078 power_pm_register(POWER_PM_TYPE_ACPI, acpi_pm_func, NULL); 3079 } 3080 3081 SYSINIT(power, SI_SUB_KLD, SI_ORDER_ANY, acpi_pm_register, 0); 3082