1 /*- 2 * Copyright (c) 2000 Takanori Watanabe <takawata@jp.freebsd.org> 3 * Copyright (c) 2000 Mitsuru IWASAKI <iwasaki@jp.freebsd.org> 4 * Copyright (c) 2000, 2001 Michael Smith 5 * Copyright (c) 2000 BSDi 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include "opt_acpi.h" 34 35 #include <sys/param.h> 36 #include <sys/eventhandler.h> 37 #include <sys/kernel.h> 38 #include <sys/proc.h> 39 #include <sys/fcntl.h> 40 #include <sys/malloc.h> 41 #include <sys/module.h> 42 #include <sys/bus.h> 43 #include <sys/conf.h> 44 #include <sys/ioccom.h> 45 #include <sys/reboot.h> 46 #include <sys/sysctl.h> 47 #include <sys/ctype.h> 48 #include <sys/linker.h> 49 #include <sys/power.h> 50 #include <sys/sbuf.h> 51 #include <sys/sched.h> 52 #include <sys/smp.h> 53 #include <sys/timetc.h> 54 55 #if defined(__i386__) || defined(__amd64__) 56 #include <machine/clock.h> 57 #include <machine/pci_cfgreg.h> 58 #endif 59 #include <machine/resource.h> 60 #include <machine/bus.h> 61 #include <sys/rman.h> 62 #include <isa/isavar.h> 63 #include <isa/pnpvar.h> 64 65 #include <contrib/dev/acpica/include/acpi.h> 66 #include <contrib/dev/acpica/include/accommon.h> 67 #include <contrib/dev/acpica/include/acnamesp.h> 68 69 #include <dev/acpica/acpivar.h> 70 #include <dev/acpica/acpiio.h> 71 72 #include <dev/pci/pcivar.h> 73 74 #include <vm/vm_param.h> 75 76 static MALLOC_DEFINE(M_ACPIDEV, "acpidev", "ACPI devices"); 77 78 /* Hooks for the ACPI CA debugging infrastructure */ 79 #define _COMPONENT ACPI_BUS 80 ACPI_MODULE_NAME("ACPI") 81 82 static d_open_t acpiopen; 83 static d_close_t acpiclose; 84 static d_ioctl_t acpiioctl; 85 86 static struct cdevsw acpi_cdevsw = { 87 .d_version = D_VERSION, 88 .d_open = acpiopen, 89 .d_close = acpiclose, 90 .d_ioctl = acpiioctl, 91 .d_name = "acpi", 92 }; 93 94 struct acpi_interface { 95 ACPI_STRING *data; 96 int num; 97 }; 98 99 static char *sysres_ids[] = { "PNP0C01", "PNP0C02", NULL }; 100 static char *pcilink_ids[] = { "PNP0C0F", NULL }; 101 102 /* Global mutex for locking access to the ACPI subsystem. */ 103 struct mtx acpi_mutex; 104 struct callout acpi_sleep_timer; 105 106 /* Bitmap of device quirks. */ 107 int acpi_quirks; 108 109 /* Supported sleep states. */ 110 static BOOLEAN acpi_sleep_states[ACPI_S_STATE_COUNT]; 111 112 static void acpi_lookup(void *arg, const char *name, device_t *dev); 113 static int acpi_modevent(struct module *mod, int event, void *junk); 114 static int acpi_probe(device_t dev); 115 static int acpi_attach(device_t dev); 116 static int acpi_suspend(device_t dev); 117 static int acpi_resume(device_t dev); 118 static int acpi_shutdown(device_t dev); 119 static device_t acpi_add_child(device_t bus, u_int order, const char *name, 120 int unit); 121 static int acpi_print_child(device_t bus, device_t child); 122 static void acpi_probe_nomatch(device_t bus, device_t child); 123 static void acpi_driver_added(device_t dev, driver_t *driver); 124 static int acpi_read_ivar(device_t dev, device_t child, int index, 125 uintptr_t *result); 126 static int acpi_write_ivar(device_t dev, device_t child, int index, 127 uintptr_t value); 128 static struct resource_list *acpi_get_rlist(device_t dev, device_t child); 129 static void acpi_reserve_resources(device_t dev); 130 static int acpi_sysres_alloc(device_t dev); 131 static int acpi_set_resource(device_t dev, device_t child, int type, 132 int rid, rman_res_t start, rman_res_t count); 133 static struct resource *acpi_alloc_resource(device_t bus, device_t child, 134 int type, int *rid, rman_res_t start, rman_res_t end, 135 rman_res_t count, u_int flags); 136 static int acpi_adjust_resource(device_t bus, device_t child, int type, 137 struct resource *r, rman_res_t start, rman_res_t end); 138 static int acpi_release_resource(device_t bus, device_t child, int type, 139 int rid, struct resource *r); 140 static void acpi_delete_resource(device_t bus, device_t child, int type, 141 int rid); 142 static uint32_t acpi_isa_get_logicalid(device_t dev); 143 static int acpi_isa_get_compatid(device_t dev, uint32_t *cids, int count); 144 static int acpi_device_id_probe(device_t bus, device_t dev, char **ids, char **match); 145 static ACPI_STATUS acpi_device_eval_obj(device_t bus, device_t dev, 146 ACPI_STRING pathname, ACPI_OBJECT_LIST *parameters, 147 ACPI_BUFFER *ret); 148 static ACPI_STATUS acpi_device_scan_cb(ACPI_HANDLE h, UINT32 level, 149 void *context, void **retval); 150 static ACPI_STATUS acpi_device_scan_children(device_t bus, device_t dev, 151 int max_depth, acpi_scan_cb_t user_fn, void *arg); 152 static int acpi_set_powerstate(device_t child, int state); 153 static int acpi_isa_pnp_probe(device_t bus, device_t child, 154 struct isa_pnp_id *ids); 155 static void acpi_probe_children(device_t bus); 156 static void acpi_probe_order(ACPI_HANDLE handle, int *order); 157 static ACPI_STATUS acpi_probe_child(ACPI_HANDLE handle, UINT32 level, 158 void *context, void **status); 159 static void acpi_sleep_enable(void *arg); 160 static ACPI_STATUS acpi_sleep_disable(struct acpi_softc *sc); 161 static ACPI_STATUS acpi_EnterSleepState(struct acpi_softc *sc, int state); 162 static void acpi_shutdown_final(void *arg, int howto); 163 static void acpi_enable_fixed_events(struct acpi_softc *sc); 164 static BOOLEAN acpi_has_hid(ACPI_HANDLE handle); 165 static void acpi_resync_clock(struct acpi_softc *sc); 166 static int acpi_wake_sleep_prep(ACPI_HANDLE handle, int sstate); 167 static int acpi_wake_run_prep(ACPI_HANDLE handle, int sstate); 168 static int acpi_wake_prep_walk(int sstate); 169 static int acpi_wake_sysctl_walk(device_t dev); 170 static int acpi_wake_set_sysctl(SYSCTL_HANDLER_ARGS); 171 static void acpi_system_eventhandler_sleep(void *arg, int state); 172 static void acpi_system_eventhandler_wakeup(void *arg, int state); 173 static int acpi_sname2sstate(const char *sname); 174 static const char *acpi_sstate2sname(int sstate); 175 static int acpi_supported_sleep_state_sysctl(SYSCTL_HANDLER_ARGS); 176 static int acpi_sleep_state_sysctl(SYSCTL_HANDLER_ARGS); 177 static int acpi_debug_objects_sysctl(SYSCTL_HANDLER_ARGS); 178 static int acpi_pm_func(u_long cmd, void *arg, ...); 179 static int acpi_child_location_str_method(device_t acdev, device_t child, 180 char *buf, size_t buflen); 181 static int acpi_child_pnpinfo_str_method(device_t acdev, device_t child, 182 char *buf, size_t buflen); 183 static void acpi_enable_pcie(void); 184 static void acpi_hint_device_unit(device_t acdev, device_t child, 185 const char *name, int *unitp); 186 static void acpi_reset_interfaces(device_t dev); 187 188 static device_method_t acpi_methods[] = { 189 /* Device interface */ 190 DEVMETHOD(device_probe, acpi_probe), 191 DEVMETHOD(device_attach, acpi_attach), 192 DEVMETHOD(device_shutdown, acpi_shutdown), 193 DEVMETHOD(device_detach, bus_generic_detach), 194 DEVMETHOD(device_suspend, acpi_suspend), 195 DEVMETHOD(device_resume, acpi_resume), 196 197 /* Bus interface */ 198 DEVMETHOD(bus_add_child, acpi_add_child), 199 DEVMETHOD(bus_print_child, acpi_print_child), 200 DEVMETHOD(bus_probe_nomatch, acpi_probe_nomatch), 201 DEVMETHOD(bus_driver_added, acpi_driver_added), 202 DEVMETHOD(bus_read_ivar, acpi_read_ivar), 203 DEVMETHOD(bus_write_ivar, acpi_write_ivar), 204 DEVMETHOD(bus_get_resource_list, acpi_get_rlist), 205 DEVMETHOD(bus_set_resource, acpi_set_resource), 206 DEVMETHOD(bus_get_resource, bus_generic_rl_get_resource), 207 DEVMETHOD(bus_alloc_resource, acpi_alloc_resource), 208 DEVMETHOD(bus_adjust_resource, acpi_adjust_resource), 209 DEVMETHOD(bus_release_resource, acpi_release_resource), 210 DEVMETHOD(bus_delete_resource, acpi_delete_resource), 211 DEVMETHOD(bus_child_pnpinfo_str, acpi_child_pnpinfo_str_method), 212 DEVMETHOD(bus_child_location_str, acpi_child_location_str_method), 213 DEVMETHOD(bus_activate_resource, bus_generic_activate_resource), 214 DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource), 215 DEVMETHOD(bus_setup_intr, bus_generic_setup_intr), 216 DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr), 217 DEVMETHOD(bus_hint_device_unit, acpi_hint_device_unit), 218 DEVMETHOD(bus_get_cpus, acpi_get_cpus), 219 DEVMETHOD(bus_get_domain, acpi_get_domain), 220 221 /* ACPI bus */ 222 DEVMETHOD(acpi_id_probe, acpi_device_id_probe), 223 DEVMETHOD(acpi_evaluate_object, acpi_device_eval_obj), 224 DEVMETHOD(acpi_pwr_for_sleep, acpi_device_pwr_for_sleep), 225 DEVMETHOD(acpi_scan_children, acpi_device_scan_children), 226 227 /* ISA emulation */ 228 DEVMETHOD(isa_pnp_probe, acpi_isa_pnp_probe), 229 230 DEVMETHOD_END 231 }; 232 233 static driver_t acpi_driver = { 234 "acpi", 235 acpi_methods, 236 sizeof(struct acpi_softc), 237 }; 238 239 static devclass_t acpi_devclass; 240 DRIVER_MODULE(acpi, nexus, acpi_driver, acpi_devclass, acpi_modevent, 0); 241 MODULE_VERSION(acpi, 1); 242 243 ACPI_SERIAL_DECL(acpi, "ACPI root bus"); 244 245 /* Local pools for managing system resources for ACPI child devices. */ 246 static struct rman acpi_rman_io, acpi_rman_mem; 247 248 #define ACPI_MINIMUM_AWAKETIME 5 249 250 /* Holds the description of the acpi0 device. */ 251 static char acpi_desc[ACPI_OEM_ID_SIZE + ACPI_OEM_TABLE_ID_SIZE + 2]; 252 253 SYSCTL_NODE(_debug, OID_AUTO, acpi, CTLFLAG_RD, NULL, "ACPI debugging"); 254 static char acpi_ca_version[12]; 255 SYSCTL_STRING(_debug_acpi, OID_AUTO, acpi_ca_version, CTLFLAG_RD, 256 acpi_ca_version, 0, "Version of Intel ACPI-CA"); 257 258 /* 259 * Allow overriding _OSI methods. 260 */ 261 static char acpi_install_interface[256]; 262 TUNABLE_STR("hw.acpi.install_interface", acpi_install_interface, 263 sizeof(acpi_install_interface)); 264 static char acpi_remove_interface[256]; 265 TUNABLE_STR("hw.acpi.remove_interface", acpi_remove_interface, 266 sizeof(acpi_remove_interface)); 267 268 /* Allow users to dump Debug objects without ACPI debugger. */ 269 static int acpi_debug_objects; 270 TUNABLE_INT("debug.acpi.enable_debug_objects", &acpi_debug_objects); 271 SYSCTL_PROC(_debug_acpi, OID_AUTO, enable_debug_objects, 272 CTLFLAG_RW | CTLTYPE_INT, NULL, 0, acpi_debug_objects_sysctl, "I", 273 "Enable Debug objects"); 274 275 /* Allow the interpreter to ignore common mistakes in BIOS. */ 276 static int acpi_interpreter_slack = 1; 277 TUNABLE_INT("debug.acpi.interpreter_slack", &acpi_interpreter_slack); 278 SYSCTL_INT(_debug_acpi, OID_AUTO, interpreter_slack, CTLFLAG_RDTUN, 279 &acpi_interpreter_slack, 1, "Turn on interpreter slack mode."); 280 281 /* Ignore register widths set by FADT and use default widths instead. */ 282 static int acpi_ignore_reg_width = 1; 283 TUNABLE_INT("debug.acpi.default_register_width", &acpi_ignore_reg_width); 284 SYSCTL_INT(_debug_acpi, OID_AUTO, default_register_width, CTLFLAG_RDTUN, 285 &acpi_ignore_reg_width, 1, "Ignore register widths set by FADT"); 286 287 /* Allow users to override quirks. */ 288 TUNABLE_INT("debug.acpi.quirks", &acpi_quirks); 289 290 int acpi_susp_bounce; 291 SYSCTL_INT(_debug_acpi, OID_AUTO, suspend_bounce, CTLFLAG_RW, 292 &acpi_susp_bounce, 0, "Don't actually suspend, just test devices."); 293 294 /* 295 * ACPI can only be loaded as a module by the loader; activating it after 296 * system bootstrap time is not useful, and can be fatal to the system. 297 * It also cannot be unloaded, since the entire system bus hierarchy hangs 298 * off it. 299 */ 300 static int 301 acpi_modevent(struct module *mod, int event, void *junk) 302 { 303 switch (event) { 304 case MOD_LOAD: 305 if (!cold) { 306 printf("The ACPI driver cannot be loaded after boot.\n"); 307 return (EPERM); 308 } 309 break; 310 case MOD_UNLOAD: 311 if (!cold && power_pm_get_type() == POWER_PM_TYPE_ACPI) 312 return (EBUSY); 313 break; 314 default: 315 break; 316 } 317 return (0); 318 } 319 320 /* 321 * Perform early initialization. 322 */ 323 ACPI_STATUS 324 acpi_Startup(void) 325 { 326 static int started = 0; 327 ACPI_STATUS status; 328 int val; 329 330 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 331 332 /* Only run the startup code once. The MADT driver also calls this. */ 333 if (started) 334 return_VALUE (AE_OK); 335 started = 1; 336 337 /* 338 * Initialize the ACPICA subsystem. 339 */ 340 if (ACPI_FAILURE(status = AcpiInitializeSubsystem())) { 341 printf("ACPI: Could not initialize Subsystem: %s\n", 342 AcpiFormatException(status)); 343 return_VALUE (status); 344 } 345 346 /* 347 * Pre-allocate space for RSDT/XSDT and DSDT tables and allow resizing 348 * if more tables exist. 349 */ 350 if (ACPI_FAILURE(status = AcpiInitializeTables(NULL, 2, TRUE))) { 351 printf("ACPI: Table initialisation failed: %s\n", 352 AcpiFormatException(status)); 353 return_VALUE (status); 354 } 355 356 /* Set up any quirks we have for this system. */ 357 if (acpi_quirks == ACPI_Q_OK) 358 acpi_table_quirks(&acpi_quirks); 359 360 /* If the user manually set the disabled hint to 0, force-enable ACPI. */ 361 if (resource_int_value("acpi", 0, "disabled", &val) == 0 && val == 0) 362 acpi_quirks &= ~ACPI_Q_BROKEN; 363 if (acpi_quirks & ACPI_Q_BROKEN) { 364 printf("ACPI disabled by blacklist. Contact your BIOS vendor.\n"); 365 status = AE_SUPPORT; 366 } 367 368 return_VALUE (status); 369 } 370 371 /* 372 * Detect ACPI and perform early initialisation. 373 */ 374 int 375 acpi_identify(void) 376 { 377 ACPI_TABLE_RSDP *rsdp; 378 ACPI_TABLE_HEADER *rsdt; 379 ACPI_PHYSICAL_ADDRESS paddr; 380 struct sbuf sb; 381 382 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 383 384 if (!cold) 385 return (ENXIO); 386 387 /* Check that we haven't been disabled with a hint. */ 388 if (resource_disabled("acpi", 0)) 389 return (ENXIO); 390 391 /* Check for other PM systems. */ 392 if (power_pm_get_type() != POWER_PM_TYPE_NONE && 393 power_pm_get_type() != POWER_PM_TYPE_ACPI) { 394 printf("ACPI identify failed, other PM system enabled.\n"); 395 return (ENXIO); 396 } 397 398 /* Initialize root tables. */ 399 if (ACPI_FAILURE(acpi_Startup())) { 400 printf("ACPI: Try disabling either ACPI or apic support.\n"); 401 return (ENXIO); 402 } 403 404 if ((paddr = AcpiOsGetRootPointer()) == 0 || 405 (rsdp = AcpiOsMapMemory(paddr, sizeof(ACPI_TABLE_RSDP))) == NULL) 406 return (ENXIO); 407 if (rsdp->Revision > 1 && rsdp->XsdtPhysicalAddress != 0) 408 paddr = (ACPI_PHYSICAL_ADDRESS)rsdp->XsdtPhysicalAddress; 409 else 410 paddr = (ACPI_PHYSICAL_ADDRESS)rsdp->RsdtPhysicalAddress; 411 AcpiOsUnmapMemory(rsdp, sizeof(ACPI_TABLE_RSDP)); 412 413 if ((rsdt = AcpiOsMapMemory(paddr, sizeof(ACPI_TABLE_HEADER))) == NULL) 414 return (ENXIO); 415 sbuf_new(&sb, acpi_desc, sizeof(acpi_desc), SBUF_FIXEDLEN); 416 sbuf_bcat(&sb, rsdt->OemId, ACPI_OEM_ID_SIZE); 417 sbuf_trim(&sb); 418 sbuf_putc(&sb, ' '); 419 sbuf_bcat(&sb, rsdt->OemTableId, ACPI_OEM_TABLE_ID_SIZE); 420 sbuf_trim(&sb); 421 sbuf_finish(&sb); 422 sbuf_delete(&sb); 423 AcpiOsUnmapMemory(rsdt, sizeof(ACPI_TABLE_HEADER)); 424 425 snprintf(acpi_ca_version, sizeof(acpi_ca_version), "%x", ACPI_CA_VERSION); 426 427 return (0); 428 } 429 430 /* 431 * Fetch some descriptive data from ACPI to put in our attach message. 432 */ 433 static int 434 acpi_probe(device_t dev) 435 { 436 437 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 438 439 device_set_desc(dev, acpi_desc); 440 441 return_VALUE (BUS_PROBE_NOWILDCARD); 442 } 443 444 static int 445 acpi_attach(device_t dev) 446 { 447 struct acpi_softc *sc; 448 ACPI_STATUS status; 449 int error, state; 450 UINT32 flags; 451 UINT8 TypeA, TypeB; 452 char *env; 453 454 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 455 456 sc = device_get_softc(dev); 457 sc->acpi_dev = dev; 458 callout_init(&sc->susp_force_to, 1); 459 460 error = ENXIO; 461 462 /* Initialize resource manager. */ 463 acpi_rman_io.rm_type = RMAN_ARRAY; 464 acpi_rman_io.rm_start = 0; 465 acpi_rman_io.rm_end = 0xffff; 466 acpi_rman_io.rm_descr = "ACPI I/O ports"; 467 if (rman_init(&acpi_rman_io) != 0) 468 panic("acpi rman_init IO ports failed"); 469 acpi_rman_mem.rm_type = RMAN_ARRAY; 470 acpi_rman_mem.rm_descr = "ACPI I/O memory addresses"; 471 if (rman_init(&acpi_rman_mem) != 0) 472 panic("acpi rman_init memory failed"); 473 474 /* Initialise the ACPI mutex */ 475 mtx_init(&acpi_mutex, "ACPI global lock", NULL, MTX_DEF); 476 477 /* 478 * Set the globals from our tunables. This is needed because ACPI-CA 479 * uses UINT8 for some values and we have no tunable_byte. 480 */ 481 AcpiGbl_EnableInterpreterSlack = acpi_interpreter_slack ? TRUE : FALSE; 482 AcpiGbl_EnableAmlDebugObject = acpi_debug_objects ? TRUE : FALSE; 483 AcpiGbl_UseDefaultRegisterWidths = acpi_ignore_reg_width ? TRUE : FALSE; 484 485 #ifndef ACPI_DEBUG 486 /* 487 * Disable all debugging layers and levels. 488 */ 489 AcpiDbgLayer = 0; 490 AcpiDbgLevel = 0; 491 #endif 492 493 /* Override OS interfaces if the user requested. */ 494 acpi_reset_interfaces(dev); 495 496 /* Load ACPI name space. */ 497 status = AcpiLoadTables(); 498 if (ACPI_FAILURE(status)) { 499 device_printf(dev, "Could not load Namespace: %s\n", 500 AcpiFormatException(status)); 501 goto out; 502 } 503 504 /* Handle MCFG table if present. */ 505 acpi_enable_pcie(); 506 507 /* 508 * Note that some systems (specifically, those with namespace evaluation 509 * issues that require the avoidance of parts of the namespace) must 510 * avoid running _INI and _STA on everything, as well as dodging the final 511 * object init pass. 512 * 513 * For these devices, we set ACPI_NO_DEVICE_INIT and ACPI_NO_OBJECT_INIT). 514 * 515 * XXX We should arrange for the object init pass after we have attached 516 * all our child devices, but on many systems it works here. 517 */ 518 flags = 0; 519 if (testenv("debug.acpi.avoid")) 520 flags = ACPI_NO_DEVICE_INIT | ACPI_NO_OBJECT_INIT; 521 522 /* Bring the hardware and basic handlers online. */ 523 if (ACPI_FAILURE(status = AcpiEnableSubsystem(flags))) { 524 device_printf(dev, "Could not enable ACPI: %s\n", 525 AcpiFormatException(status)); 526 goto out; 527 } 528 529 /* 530 * Call the ECDT probe function to provide EC functionality before 531 * the namespace has been evaluated. 532 * 533 * XXX This happens before the sysresource devices have been probed and 534 * attached so its resources come from nexus0. In practice, this isn't 535 * a problem but should be addressed eventually. 536 */ 537 acpi_ec_ecdt_probe(dev); 538 539 /* Bring device objects and regions online. */ 540 if (ACPI_FAILURE(status = AcpiInitializeObjects(flags))) { 541 device_printf(dev, "Could not initialize ACPI objects: %s\n", 542 AcpiFormatException(status)); 543 goto out; 544 } 545 546 /* 547 * Setup our sysctl tree. 548 * 549 * XXX: This doesn't check to make sure that none of these fail. 550 */ 551 sysctl_ctx_init(&sc->acpi_sysctl_ctx); 552 sc->acpi_sysctl_tree = SYSCTL_ADD_NODE(&sc->acpi_sysctl_ctx, 553 SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO, 554 device_get_name(dev), CTLFLAG_RD, 0, ""); 555 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 556 OID_AUTO, "supported_sleep_state", CTLTYPE_STRING | CTLFLAG_RD, 557 0, 0, acpi_supported_sleep_state_sysctl, "A", 558 "List supported ACPI sleep states."); 559 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 560 OID_AUTO, "power_button_state", CTLTYPE_STRING | CTLFLAG_RW, 561 &sc->acpi_power_button_sx, 0, acpi_sleep_state_sysctl, "A", 562 "Power button ACPI sleep state."); 563 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 564 OID_AUTO, "sleep_button_state", CTLTYPE_STRING | CTLFLAG_RW, 565 &sc->acpi_sleep_button_sx, 0, acpi_sleep_state_sysctl, "A", 566 "Sleep button ACPI sleep state."); 567 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 568 OID_AUTO, "lid_switch_state", CTLTYPE_STRING | CTLFLAG_RW, 569 &sc->acpi_lid_switch_sx, 0, acpi_sleep_state_sysctl, "A", 570 "Lid ACPI sleep state. Set to S3 if you want to suspend your laptop when close the Lid."); 571 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 572 OID_AUTO, "standby_state", CTLTYPE_STRING | CTLFLAG_RW, 573 &sc->acpi_standby_sx, 0, acpi_sleep_state_sysctl, "A", ""); 574 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 575 OID_AUTO, "suspend_state", CTLTYPE_STRING | CTLFLAG_RW, 576 &sc->acpi_suspend_sx, 0, acpi_sleep_state_sysctl, "A", ""); 577 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 578 OID_AUTO, "sleep_delay", CTLFLAG_RW, &sc->acpi_sleep_delay, 0, 579 "sleep delay in seconds"); 580 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 581 OID_AUTO, "s4bios", CTLFLAG_RW, &sc->acpi_s4bios, 0, "S4BIOS mode"); 582 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 583 OID_AUTO, "verbose", CTLFLAG_RW, &sc->acpi_verbose, 0, "verbose mode"); 584 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 585 OID_AUTO, "disable_on_reboot", CTLFLAG_RW, 586 &sc->acpi_do_disable, 0, "Disable ACPI when rebooting/halting system"); 587 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 588 OID_AUTO, "handle_reboot", CTLFLAG_RW, 589 &sc->acpi_handle_reboot, 0, "Use ACPI Reset Register to reboot"); 590 591 /* 592 * Default to 1 second before sleeping to give some machines time to 593 * stabilize. 594 */ 595 sc->acpi_sleep_delay = 1; 596 if (bootverbose) 597 sc->acpi_verbose = 1; 598 if ((env = kern_getenv("hw.acpi.verbose")) != NULL) { 599 if (strcmp(env, "0") != 0) 600 sc->acpi_verbose = 1; 601 freeenv(env); 602 } 603 604 /* Only enable reboot by default if the FADT says it is available. */ 605 if (AcpiGbl_FADT.Flags & ACPI_FADT_RESET_REGISTER) 606 sc->acpi_handle_reboot = 1; 607 608 #if !ACPI_REDUCED_HARDWARE 609 /* Only enable S4BIOS by default if the FACS says it is available. */ 610 if (AcpiGbl_FACS != NULL && AcpiGbl_FACS->Flags & ACPI_FACS_S4_BIOS_PRESENT) 611 sc->acpi_s4bios = 1; 612 #endif 613 614 /* Probe all supported sleep states. */ 615 acpi_sleep_states[ACPI_STATE_S0] = TRUE; 616 for (state = ACPI_STATE_S1; state < ACPI_S_STATE_COUNT; state++) 617 if (ACPI_SUCCESS(AcpiEvaluateObject(ACPI_ROOT_OBJECT, 618 __DECONST(char *, AcpiGbl_SleepStateNames[state]), NULL, NULL)) && 619 ACPI_SUCCESS(AcpiGetSleepTypeData(state, &TypeA, &TypeB))) 620 acpi_sleep_states[state] = TRUE; 621 622 /* 623 * Dispatch the default sleep state to devices. The lid switch is set 624 * to UNKNOWN by default to avoid surprising users. 625 */ 626 sc->acpi_power_button_sx = acpi_sleep_states[ACPI_STATE_S5] ? 627 ACPI_STATE_S5 : ACPI_STATE_UNKNOWN; 628 sc->acpi_lid_switch_sx = ACPI_STATE_UNKNOWN; 629 sc->acpi_standby_sx = acpi_sleep_states[ACPI_STATE_S1] ? 630 ACPI_STATE_S1 : ACPI_STATE_UNKNOWN; 631 sc->acpi_suspend_sx = acpi_sleep_states[ACPI_STATE_S3] ? 632 ACPI_STATE_S3 : ACPI_STATE_UNKNOWN; 633 634 /* Pick the first valid sleep state for the sleep button default. */ 635 sc->acpi_sleep_button_sx = ACPI_STATE_UNKNOWN; 636 for (state = ACPI_STATE_S1; state <= ACPI_STATE_S4; state++) 637 if (acpi_sleep_states[state]) { 638 sc->acpi_sleep_button_sx = state; 639 break; 640 } 641 642 acpi_enable_fixed_events(sc); 643 644 /* 645 * Scan the namespace and attach/initialise children. 646 */ 647 648 /* Register our shutdown handler. */ 649 EVENTHANDLER_REGISTER(shutdown_final, acpi_shutdown_final, sc, 650 SHUTDOWN_PRI_LAST); 651 652 /* 653 * Register our acpi event handlers. 654 * XXX should be configurable eg. via userland policy manager. 655 */ 656 EVENTHANDLER_REGISTER(acpi_sleep_event, acpi_system_eventhandler_sleep, 657 sc, ACPI_EVENT_PRI_LAST); 658 EVENTHANDLER_REGISTER(acpi_wakeup_event, acpi_system_eventhandler_wakeup, 659 sc, ACPI_EVENT_PRI_LAST); 660 661 /* Flag our initial states. */ 662 sc->acpi_enabled = TRUE; 663 sc->acpi_sstate = ACPI_STATE_S0; 664 sc->acpi_sleep_disabled = TRUE; 665 666 /* Create the control device */ 667 sc->acpi_dev_t = make_dev(&acpi_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0664, 668 "acpi"); 669 sc->acpi_dev_t->si_drv1 = sc; 670 671 if ((error = acpi_machdep_init(dev))) 672 goto out; 673 674 /* Register ACPI again to pass the correct argument of pm_func. */ 675 power_pm_register(POWER_PM_TYPE_ACPI, acpi_pm_func, sc); 676 677 if (!acpi_disabled("bus")) { 678 EVENTHANDLER_REGISTER(dev_lookup, acpi_lookup, NULL, 1000); 679 acpi_probe_children(dev); 680 } 681 682 /* Update all GPEs and enable runtime GPEs. */ 683 status = AcpiUpdateAllGpes(); 684 if (ACPI_FAILURE(status)) 685 device_printf(dev, "Could not update all GPEs: %s\n", 686 AcpiFormatException(status)); 687 688 /* Allow sleep request after a while. */ 689 callout_init_mtx(&acpi_sleep_timer, &acpi_mutex, 0); 690 callout_reset(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME, 691 acpi_sleep_enable, sc); 692 693 error = 0; 694 695 out: 696 return_VALUE (error); 697 } 698 699 static void 700 acpi_set_power_children(device_t dev, int state) 701 { 702 device_t child; 703 device_t *devlist; 704 int dstate, i, numdevs; 705 706 if (device_get_children(dev, &devlist, &numdevs) != 0) 707 return; 708 709 /* 710 * Retrieve and set D-state for the sleep state if _SxD is present. 711 * Skip children who aren't attached since they are handled separately. 712 */ 713 for (i = 0; i < numdevs; i++) { 714 child = devlist[i]; 715 dstate = state; 716 if (device_is_attached(child) && 717 acpi_device_pwr_for_sleep(dev, child, &dstate) == 0) 718 acpi_set_powerstate(child, dstate); 719 } 720 free(devlist, M_TEMP); 721 } 722 723 static int 724 acpi_suspend(device_t dev) 725 { 726 int error; 727 728 GIANT_REQUIRED; 729 730 error = bus_generic_suspend(dev); 731 if (error == 0) 732 acpi_set_power_children(dev, ACPI_STATE_D3); 733 734 return (error); 735 } 736 737 static int 738 acpi_resume(device_t dev) 739 { 740 741 GIANT_REQUIRED; 742 743 acpi_set_power_children(dev, ACPI_STATE_D0); 744 745 return (bus_generic_resume(dev)); 746 } 747 748 static int 749 acpi_shutdown(device_t dev) 750 { 751 752 GIANT_REQUIRED; 753 754 /* Allow children to shutdown first. */ 755 bus_generic_shutdown(dev); 756 757 /* 758 * Enable any GPEs that are able to power-on the system (i.e., RTC). 759 * Also, disable any that are not valid for this state (most). 760 */ 761 acpi_wake_prep_walk(ACPI_STATE_S5); 762 763 return (0); 764 } 765 766 /* 767 * Handle a new device being added 768 */ 769 static device_t 770 acpi_add_child(device_t bus, u_int order, const char *name, int unit) 771 { 772 struct acpi_device *ad; 773 device_t child; 774 775 if ((ad = malloc(sizeof(*ad), M_ACPIDEV, M_NOWAIT | M_ZERO)) == NULL) 776 return (NULL); 777 778 resource_list_init(&ad->ad_rl); 779 780 child = device_add_child_ordered(bus, order, name, unit); 781 if (child != NULL) 782 device_set_ivars(child, ad); 783 else 784 free(ad, M_ACPIDEV); 785 return (child); 786 } 787 788 static int 789 acpi_print_child(device_t bus, device_t child) 790 { 791 struct acpi_device *adev = device_get_ivars(child); 792 struct resource_list *rl = &adev->ad_rl; 793 int retval = 0; 794 795 retval += bus_print_child_header(bus, child); 796 retval += resource_list_print_type(rl, "port", SYS_RES_IOPORT, "%#jx"); 797 retval += resource_list_print_type(rl, "iomem", SYS_RES_MEMORY, "%#jx"); 798 retval += resource_list_print_type(rl, "irq", SYS_RES_IRQ, "%jd"); 799 retval += resource_list_print_type(rl, "drq", SYS_RES_DRQ, "%jd"); 800 if (device_get_flags(child)) 801 retval += printf(" flags %#x", device_get_flags(child)); 802 retval += bus_print_child_domain(bus, child); 803 retval += bus_print_child_footer(bus, child); 804 805 return (retval); 806 } 807 808 /* 809 * If this device is an ACPI child but no one claimed it, attempt 810 * to power it off. We'll power it back up when a driver is added. 811 * 812 * XXX Disabled for now since many necessary devices (like fdc and 813 * ATA) don't claim the devices we created for them but still expect 814 * them to be powered up. 815 */ 816 static void 817 acpi_probe_nomatch(device_t bus, device_t child) 818 { 819 #ifdef ACPI_ENABLE_POWERDOWN_NODRIVER 820 acpi_set_powerstate(child, ACPI_STATE_D3); 821 #endif 822 } 823 824 /* 825 * If a new driver has a chance to probe a child, first power it up. 826 * 827 * XXX Disabled for now (see acpi_probe_nomatch for details). 828 */ 829 static void 830 acpi_driver_added(device_t dev, driver_t *driver) 831 { 832 device_t child, *devlist; 833 int i, numdevs; 834 835 DEVICE_IDENTIFY(driver, dev); 836 if (device_get_children(dev, &devlist, &numdevs)) 837 return; 838 for (i = 0; i < numdevs; i++) { 839 child = devlist[i]; 840 if (device_get_state(child) == DS_NOTPRESENT) { 841 #ifdef ACPI_ENABLE_POWERDOWN_NODRIVER 842 acpi_set_powerstate(child, ACPI_STATE_D0); 843 if (device_probe_and_attach(child) != 0) 844 acpi_set_powerstate(child, ACPI_STATE_D3); 845 #else 846 device_probe_and_attach(child); 847 #endif 848 } 849 } 850 free(devlist, M_TEMP); 851 } 852 853 /* Location hint for devctl(8) */ 854 static int 855 acpi_child_location_str_method(device_t cbdev, device_t child, char *buf, 856 size_t buflen) 857 { 858 struct acpi_device *dinfo = device_get_ivars(child); 859 char buf2[32]; 860 int pxm; 861 862 if (dinfo->ad_handle) { 863 snprintf(buf, buflen, "handle=%s", acpi_name(dinfo->ad_handle)); 864 if (ACPI_SUCCESS(acpi_GetInteger(dinfo->ad_handle, "_PXM", &pxm))) { 865 snprintf(buf2, 32, " _PXM=%d", pxm); 866 strlcat(buf, buf2, buflen); 867 } 868 } else { 869 snprintf(buf, buflen, ""); 870 } 871 return (0); 872 } 873 874 /* PnP information for devctl(8) */ 875 static int 876 acpi_child_pnpinfo_str_method(device_t cbdev, device_t child, char *buf, 877 size_t buflen) 878 { 879 struct acpi_device *dinfo = device_get_ivars(child); 880 ACPI_DEVICE_INFO *adinfo; 881 882 if (ACPI_FAILURE(AcpiGetObjectInfo(dinfo->ad_handle, &adinfo))) { 883 snprintf(buf, buflen, "unknown"); 884 return (0); 885 } 886 887 snprintf(buf, buflen, "_HID=%s _UID=%lu _CID=%s", 888 (adinfo->Valid & ACPI_VALID_HID) ? 889 adinfo->HardwareId.String : "none", 890 (adinfo->Valid & ACPI_VALID_UID) ? 891 strtoul(adinfo->UniqueId.String, NULL, 10) : 0UL, 892 ((adinfo->Valid & ACPI_VALID_CID) && 893 adinfo->CompatibleIdList.Count > 0) ? 894 adinfo->CompatibleIdList.Ids[0].String : "none"); 895 AcpiOsFree(adinfo); 896 897 return (0); 898 } 899 900 /* 901 * Handle per-device ivars 902 */ 903 static int 904 acpi_read_ivar(device_t dev, device_t child, int index, uintptr_t *result) 905 { 906 struct acpi_device *ad; 907 908 if ((ad = device_get_ivars(child)) == NULL) { 909 device_printf(child, "device has no ivars\n"); 910 return (ENOENT); 911 } 912 913 /* ACPI and ISA compatibility ivars */ 914 switch(index) { 915 case ACPI_IVAR_HANDLE: 916 *(ACPI_HANDLE *)result = ad->ad_handle; 917 break; 918 case ACPI_IVAR_PRIVATE: 919 *(void **)result = ad->ad_private; 920 break; 921 case ACPI_IVAR_FLAGS: 922 *(int *)result = ad->ad_flags; 923 break; 924 case ISA_IVAR_VENDORID: 925 case ISA_IVAR_SERIAL: 926 case ISA_IVAR_COMPATID: 927 *(int *)result = -1; 928 break; 929 case ISA_IVAR_LOGICALID: 930 *(int *)result = acpi_isa_get_logicalid(child); 931 break; 932 case PCI_IVAR_CLASS: 933 *(uint8_t*)result = (ad->ad_cls_class >> 16) & 0xff; 934 break; 935 case PCI_IVAR_SUBCLASS: 936 *(uint8_t*)result = (ad->ad_cls_class >> 8) & 0xff; 937 break; 938 case PCI_IVAR_PROGIF: 939 *(uint8_t*)result = (ad->ad_cls_class >> 0) & 0xff; 940 break; 941 default: 942 return (ENOENT); 943 } 944 945 return (0); 946 } 947 948 static int 949 acpi_write_ivar(device_t dev, device_t child, int index, uintptr_t value) 950 { 951 struct acpi_device *ad; 952 953 if ((ad = device_get_ivars(child)) == NULL) { 954 device_printf(child, "device has no ivars\n"); 955 return (ENOENT); 956 } 957 958 switch(index) { 959 case ACPI_IVAR_HANDLE: 960 ad->ad_handle = (ACPI_HANDLE)value; 961 break; 962 case ACPI_IVAR_PRIVATE: 963 ad->ad_private = (void *)value; 964 break; 965 case ACPI_IVAR_FLAGS: 966 ad->ad_flags = (int)value; 967 break; 968 default: 969 panic("bad ivar write request (%d)", index); 970 return (ENOENT); 971 } 972 973 return (0); 974 } 975 976 /* 977 * Handle child resource allocation/removal 978 */ 979 static struct resource_list * 980 acpi_get_rlist(device_t dev, device_t child) 981 { 982 struct acpi_device *ad; 983 984 ad = device_get_ivars(child); 985 return (&ad->ad_rl); 986 } 987 988 static int 989 acpi_match_resource_hint(device_t dev, int type, long value) 990 { 991 struct acpi_device *ad = device_get_ivars(dev); 992 struct resource_list *rl = &ad->ad_rl; 993 struct resource_list_entry *rle; 994 995 STAILQ_FOREACH(rle, rl, link) { 996 if (rle->type != type) 997 continue; 998 if (rle->start <= value && rle->end >= value) 999 return (1); 1000 } 1001 return (0); 1002 } 1003 1004 /* 1005 * Wire device unit numbers based on resource matches in hints. 1006 */ 1007 static void 1008 acpi_hint_device_unit(device_t acdev, device_t child, const char *name, 1009 int *unitp) 1010 { 1011 const char *s; 1012 long value; 1013 int line, matches, unit; 1014 1015 /* 1016 * Iterate over all the hints for the devices with the specified 1017 * name to see if one's resources are a subset of this device. 1018 */ 1019 line = 0; 1020 while (resource_find_dev(&line, name, &unit, "at", NULL) == 0) { 1021 /* Must have an "at" for acpi or isa. */ 1022 resource_string_value(name, unit, "at", &s); 1023 if (!(strcmp(s, "acpi0") == 0 || strcmp(s, "acpi") == 0 || 1024 strcmp(s, "isa0") == 0 || strcmp(s, "isa") == 0)) 1025 continue; 1026 1027 /* 1028 * Check for matching resources. We must have at least one match. 1029 * Since I/O and memory resources cannot be shared, if we get a 1030 * match on either of those, ignore any mismatches in IRQs or DRQs. 1031 * 1032 * XXX: We may want to revisit this to be more lenient and wire 1033 * as long as it gets one match. 1034 */ 1035 matches = 0; 1036 if (resource_long_value(name, unit, "port", &value) == 0) { 1037 /* 1038 * Floppy drive controllers are notorious for having a 1039 * wide variety of resources not all of which include the 1040 * first port that is specified by the hint (typically 1041 * 0x3f0) (see the comment above fdc_isa_alloc_resources() 1042 * in fdc_isa.c). However, they do all seem to include 1043 * port + 2 (e.g. 0x3f2) so for a floppy device, look for 1044 * 'value + 2' in the port resources instead of the hint 1045 * value. 1046 */ 1047 if (strcmp(name, "fdc") == 0) 1048 value += 2; 1049 if (acpi_match_resource_hint(child, SYS_RES_IOPORT, value)) 1050 matches++; 1051 else 1052 continue; 1053 } 1054 if (resource_long_value(name, unit, "maddr", &value) == 0) { 1055 if (acpi_match_resource_hint(child, SYS_RES_MEMORY, value)) 1056 matches++; 1057 else 1058 continue; 1059 } 1060 if (matches > 0) 1061 goto matched; 1062 if (resource_long_value(name, unit, "irq", &value) == 0) { 1063 if (acpi_match_resource_hint(child, SYS_RES_IRQ, value)) 1064 matches++; 1065 else 1066 continue; 1067 } 1068 if (resource_long_value(name, unit, "drq", &value) == 0) { 1069 if (acpi_match_resource_hint(child, SYS_RES_DRQ, value)) 1070 matches++; 1071 else 1072 continue; 1073 } 1074 1075 matched: 1076 if (matches > 0) { 1077 /* We have a winner! */ 1078 *unitp = unit; 1079 break; 1080 } 1081 } 1082 } 1083 1084 /* 1085 * Fetch the NUMA domain for a device by mapping the value returned by 1086 * _PXM to a NUMA domain. If the device does not have a _PXM method, 1087 * -2 is returned. If any other error occurs, -1 is returned. 1088 */ 1089 static int 1090 acpi_parse_pxm(device_t dev) 1091 { 1092 #ifdef NUMA 1093 #if defined(__i386__) || defined(__amd64__) 1094 ACPI_HANDLE handle; 1095 ACPI_STATUS status; 1096 int pxm; 1097 1098 handle = acpi_get_handle(dev); 1099 if (handle == NULL) 1100 return (-2); 1101 status = acpi_GetInteger(handle, "_PXM", &pxm); 1102 if (ACPI_SUCCESS(status)) 1103 return (acpi_map_pxm_to_vm_domainid(pxm)); 1104 if (status == AE_NOT_FOUND) 1105 return (-2); 1106 #endif 1107 #endif 1108 return (-1); 1109 } 1110 1111 int 1112 acpi_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize, 1113 cpuset_t *cpuset) 1114 { 1115 int d, error; 1116 1117 d = acpi_parse_pxm(child); 1118 if (d < 0) 1119 return (bus_generic_get_cpus(dev, child, op, setsize, cpuset)); 1120 1121 switch (op) { 1122 case LOCAL_CPUS: 1123 if (setsize != sizeof(cpuset_t)) 1124 return (EINVAL); 1125 *cpuset = cpuset_domain[d]; 1126 return (0); 1127 case INTR_CPUS: 1128 error = bus_generic_get_cpus(dev, child, op, setsize, cpuset); 1129 if (error != 0) 1130 return (error); 1131 if (setsize != sizeof(cpuset_t)) 1132 return (EINVAL); 1133 CPU_AND(cpuset, &cpuset_domain[d]); 1134 return (0); 1135 default: 1136 return (bus_generic_get_cpus(dev, child, op, setsize, cpuset)); 1137 } 1138 } 1139 1140 /* 1141 * Fetch the NUMA domain for the given device 'dev'. 1142 * 1143 * If a device has a _PXM method, map that to a NUMA domain. 1144 * Otherwise, pass the request up to the parent. 1145 * If there's no matching domain or the domain cannot be 1146 * determined, return ENOENT. 1147 */ 1148 int 1149 acpi_get_domain(device_t dev, device_t child, int *domain) 1150 { 1151 int d; 1152 1153 d = acpi_parse_pxm(child); 1154 if (d >= 0) { 1155 *domain = d; 1156 return (0); 1157 } 1158 if (d == -1) 1159 return (ENOENT); 1160 1161 /* No _PXM node; go up a level */ 1162 return (bus_generic_get_domain(dev, child, domain)); 1163 } 1164 1165 /* 1166 * Pre-allocate/manage all memory and IO resources. Since rman can't handle 1167 * duplicates, we merge any in the sysresource attach routine. 1168 */ 1169 static int 1170 acpi_sysres_alloc(device_t dev) 1171 { 1172 struct resource *res; 1173 struct resource_list *rl; 1174 struct resource_list_entry *rle; 1175 struct rman *rm; 1176 device_t *children; 1177 int child_count, i; 1178 1179 /* 1180 * Probe/attach any sysresource devices. This would be unnecessary if we 1181 * had multi-pass probe/attach. 1182 */ 1183 if (device_get_children(dev, &children, &child_count) != 0) 1184 return (ENXIO); 1185 for (i = 0; i < child_count; i++) { 1186 if (ACPI_ID_PROBE(dev, children[i], sysres_ids, NULL) <= 0) 1187 device_probe_and_attach(children[i]); 1188 } 1189 free(children, M_TEMP); 1190 1191 rl = BUS_GET_RESOURCE_LIST(device_get_parent(dev), dev); 1192 STAILQ_FOREACH(rle, rl, link) { 1193 if (rle->res != NULL) { 1194 device_printf(dev, "duplicate resource for %jx\n", rle->start); 1195 continue; 1196 } 1197 1198 /* Only memory and IO resources are valid here. */ 1199 switch (rle->type) { 1200 case SYS_RES_IOPORT: 1201 rm = &acpi_rman_io; 1202 break; 1203 case SYS_RES_MEMORY: 1204 rm = &acpi_rman_mem; 1205 break; 1206 default: 1207 continue; 1208 } 1209 1210 /* Pre-allocate resource and add to our rman pool. */ 1211 res = BUS_ALLOC_RESOURCE(device_get_parent(dev), dev, rle->type, 1212 &rle->rid, rle->start, rle->start + rle->count - 1, rle->count, 0); 1213 if (res != NULL) { 1214 rman_manage_region(rm, rman_get_start(res), rman_get_end(res)); 1215 rle->res = res; 1216 } else if (bootverbose) 1217 device_printf(dev, "reservation of %jx, %jx (%d) failed\n", 1218 rle->start, rle->count, rle->type); 1219 } 1220 return (0); 1221 } 1222 1223 /* 1224 * Reserve declared resources for devices found during attach once system 1225 * resources have been allocated. 1226 */ 1227 static void 1228 acpi_reserve_resources(device_t dev) 1229 { 1230 struct resource_list_entry *rle; 1231 struct resource_list *rl; 1232 struct acpi_device *ad; 1233 struct acpi_softc *sc; 1234 device_t *children; 1235 int child_count, i; 1236 1237 sc = device_get_softc(dev); 1238 if (device_get_children(dev, &children, &child_count) != 0) 1239 return; 1240 for (i = 0; i < child_count; i++) { 1241 ad = device_get_ivars(children[i]); 1242 rl = &ad->ad_rl; 1243 1244 /* Don't reserve system resources. */ 1245 if (ACPI_ID_PROBE(dev, children[i], sysres_ids, NULL) <= 0) 1246 continue; 1247 1248 STAILQ_FOREACH(rle, rl, link) { 1249 /* 1250 * Don't reserve IRQ resources. There are many sticky things 1251 * to get right otherwise (e.g. IRQs for psm, atkbd, and HPET 1252 * when using legacy routing). 1253 */ 1254 if (rle->type == SYS_RES_IRQ) 1255 continue; 1256 1257 /* 1258 * Don't reserve the resource if it is already allocated. 1259 * The acpi_ec(4) driver can allocate its resources early 1260 * if ECDT is present. 1261 */ 1262 if (rle->res != NULL) 1263 continue; 1264 1265 /* 1266 * Try to reserve the resource from our parent. If this 1267 * fails because the resource is a system resource, just 1268 * let it be. The resource range is already reserved so 1269 * that other devices will not use it. If the driver 1270 * needs to allocate the resource, then 1271 * acpi_alloc_resource() will sub-alloc from the system 1272 * resource. 1273 */ 1274 resource_list_reserve(rl, dev, children[i], rle->type, &rle->rid, 1275 rle->start, rle->end, rle->count, 0); 1276 } 1277 } 1278 free(children, M_TEMP); 1279 sc->acpi_resources_reserved = 1; 1280 } 1281 1282 static int 1283 acpi_set_resource(device_t dev, device_t child, int type, int rid, 1284 rman_res_t start, rman_res_t count) 1285 { 1286 struct acpi_softc *sc = device_get_softc(dev); 1287 struct acpi_device *ad = device_get_ivars(child); 1288 struct resource_list *rl = &ad->ad_rl; 1289 ACPI_DEVICE_INFO *devinfo; 1290 rman_res_t end; 1291 int allow; 1292 1293 /* Ignore IRQ resources for PCI link devices. */ 1294 if (type == SYS_RES_IRQ && 1295 ACPI_ID_PROBE(dev, child, pcilink_ids, NULL) <= 0) 1296 return (0); 1297 1298 /* 1299 * Ignore most resources for PCI root bridges. Some BIOSes 1300 * incorrectly enumerate the memory ranges they decode as plain 1301 * memory resources instead of as ResourceProducer ranges. Other 1302 * BIOSes incorrectly list system resource entries for I/O ranges 1303 * under the PCI bridge. Do allow the one known-correct case on 1304 * x86 of a PCI bridge claiming the I/O ports used for PCI config 1305 * access. 1306 */ 1307 if (type == SYS_RES_MEMORY || type == SYS_RES_IOPORT) { 1308 if (ACPI_SUCCESS(AcpiGetObjectInfo(ad->ad_handle, &devinfo))) { 1309 if ((devinfo->Flags & ACPI_PCI_ROOT_BRIDGE) != 0) { 1310 #if defined(__i386__) || defined(__amd64__) 1311 allow = (type == SYS_RES_IOPORT && start == CONF1_ADDR_PORT); 1312 #else 1313 allow = 0; 1314 #endif 1315 if (!allow) { 1316 AcpiOsFree(devinfo); 1317 return (0); 1318 } 1319 } 1320 AcpiOsFree(devinfo); 1321 } 1322 } 1323 1324 #ifdef INTRNG 1325 /* map with default for now */ 1326 if (type == SYS_RES_IRQ) 1327 start = (rman_res_t)acpi_map_intr(child, (u_int)start, 1328 acpi_get_handle(child)); 1329 #endif 1330 1331 /* If the resource is already allocated, fail. */ 1332 if (resource_list_busy(rl, type, rid)) 1333 return (EBUSY); 1334 1335 /* If the resource is already reserved, release it. */ 1336 if (resource_list_reserved(rl, type, rid)) 1337 resource_list_unreserve(rl, dev, child, type, rid); 1338 1339 /* Add the resource. */ 1340 end = (start + count - 1); 1341 resource_list_add(rl, type, rid, start, end, count); 1342 1343 /* Don't reserve resources until the system resources are allocated. */ 1344 if (!sc->acpi_resources_reserved) 1345 return (0); 1346 1347 /* Don't reserve system resources. */ 1348 if (ACPI_ID_PROBE(dev, child, sysres_ids, NULL) <= 0) 1349 return (0); 1350 1351 /* 1352 * Don't reserve IRQ resources. There are many sticky things to 1353 * get right otherwise (e.g. IRQs for psm, atkbd, and HPET when 1354 * using legacy routing). 1355 */ 1356 if (type == SYS_RES_IRQ) 1357 return (0); 1358 1359 /* 1360 * Don't reserve resources for CPU devices. Some of these 1361 * resources need to be allocated as shareable, but reservations 1362 * are always non-shareable. 1363 */ 1364 if (device_get_devclass(child) == devclass_find("cpu")) 1365 return (0); 1366 1367 /* 1368 * Reserve the resource. 1369 * 1370 * XXX: Ignores failure for now. Failure here is probably a 1371 * BIOS/firmware bug? 1372 */ 1373 resource_list_reserve(rl, dev, child, type, &rid, start, end, count, 0); 1374 return (0); 1375 } 1376 1377 static struct resource * 1378 acpi_alloc_resource(device_t bus, device_t child, int type, int *rid, 1379 rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 1380 { 1381 #ifndef INTRNG 1382 ACPI_RESOURCE ares; 1383 #endif 1384 struct acpi_device *ad; 1385 struct resource_list_entry *rle; 1386 struct resource_list *rl; 1387 struct resource *res; 1388 int isdefault = RMAN_IS_DEFAULT_RANGE(start, end); 1389 1390 /* 1391 * First attempt at allocating the resource. For direct children, 1392 * use resource_list_alloc() to handle reserved resources. For 1393 * other devices, pass the request up to our parent. 1394 */ 1395 if (bus == device_get_parent(child)) { 1396 ad = device_get_ivars(child); 1397 rl = &ad->ad_rl; 1398 1399 /* 1400 * Simulate the behavior of the ISA bus for direct children 1401 * devices. That is, if a non-default range is specified for 1402 * a resource that doesn't exist, use bus_set_resource() to 1403 * add the resource before allocating it. Note that these 1404 * resources will not be reserved. 1405 */ 1406 if (!isdefault && resource_list_find(rl, type, *rid) == NULL) 1407 resource_list_add(rl, type, *rid, start, end, count); 1408 res = resource_list_alloc(rl, bus, child, type, rid, start, end, count, 1409 flags); 1410 #ifndef INTRNG 1411 if (res != NULL && type == SYS_RES_IRQ) { 1412 /* 1413 * Since bus_config_intr() takes immediate effect, we cannot 1414 * configure the interrupt associated with a device when we 1415 * parse the resources but have to defer it until a driver 1416 * actually allocates the interrupt via bus_alloc_resource(). 1417 * 1418 * XXX: Should we handle the lookup failing? 1419 */ 1420 if (ACPI_SUCCESS(acpi_lookup_irq_resource(child, *rid, res, &ares))) 1421 acpi_config_intr(child, &ares); 1422 } 1423 #endif 1424 1425 /* 1426 * If this is an allocation of the "default" range for a given 1427 * RID, fetch the exact bounds for this resource from the 1428 * resource list entry to try to allocate the range from the 1429 * system resource regions. 1430 */ 1431 if (res == NULL && isdefault) { 1432 rle = resource_list_find(rl, type, *rid); 1433 if (rle != NULL) { 1434 start = rle->start; 1435 end = rle->end; 1436 count = rle->count; 1437 } 1438 } 1439 } else 1440 res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, type, rid, 1441 start, end, count, flags); 1442 1443 /* 1444 * If the first attempt failed and this is an allocation of a 1445 * specific range, try to satisfy the request via a suballocation 1446 * from our system resource regions. 1447 */ 1448 if (res == NULL && start + count - 1 == end) 1449 res = acpi_alloc_sysres(child, type, rid, start, end, count, flags); 1450 return (res); 1451 } 1452 1453 /* 1454 * Attempt to allocate a specific resource range from the system 1455 * resource ranges. Note that we only handle memory and I/O port 1456 * system resources. 1457 */ 1458 struct resource * 1459 acpi_alloc_sysres(device_t child, int type, int *rid, rman_res_t start, 1460 rman_res_t end, rman_res_t count, u_int flags) 1461 { 1462 struct rman *rm; 1463 struct resource *res; 1464 1465 switch (type) { 1466 case SYS_RES_IOPORT: 1467 rm = &acpi_rman_io; 1468 break; 1469 case SYS_RES_MEMORY: 1470 rm = &acpi_rman_mem; 1471 break; 1472 default: 1473 return (NULL); 1474 } 1475 1476 KASSERT(start + count - 1 == end, ("wildcard resource range")); 1477 res = rman_reserve_resource(rm, start, end, count, flags & ~RF_ACTIVE, 1478 child); 1479 if (res == NULL) 1480 return (NULL); 1481 1482 rman_set_rid(res, *rid); 1483 1484 /* If requested, activate the resource using the parent's method. */ 1485 if (flags & RF_ACTIVE) 1486 if (bus_activate_resource(child, type, *rid, res) != 0) { 1487 rman_release_resource(res); 1488 return (NULL); 1489 } 1490 1491 return (res); 1492 } 1493 1494 static int 1495 acpi_is_resource_managed(int type, struct resource *r) 1496 { 1497 1498 /* We only handle memory and IO resources through rman. */ 1499 switch (type) { 1500 case SYS_RES_IOPORT: 1501 return (rman_is_region_manager(r, &acpi_rman_io)); 1502 case SYS_RES_MEMORY: 1503 return (rman_is_region_manager(r, &acpi_rman_mem)); 1504 } 1505 return (0); 1506 } 1507 1508 static int 1509 acpi_adjust_resource(device_t bus, device_t child, int type, struct resource *r, 1510 rman_res_t start, rman_res_t end) 1511 { 1512 1513 if (acpi_is_resource_managed(type, r)) 1514 return (rman_adjust_resource(r, start, end)); 1515 return (bus_generic_adjust_resource(bus, child, type, r, start, end)); 1516 } 1517 1518 static int 1519 acpi_release_resource(device_t bus, device_t child, int type, int rid, 1520 struct resource *r) 1521 { 1522 int ret; 1523 1524 /* 1525 * If this resource belongs to one of our internal managers, 1526 * deactivate it and release it to the local pool. 1527 */ 1528 if (acpi_is_resource_managed(type, r)) { 1529 if (rman_get_flags(r) & RF_ACTIVE) { 1530 ret = bus_deactivate_resource(child, type, rid, r); 1531 if (ret != 0) 1532 return (ret); 1533 } 1534 return (rman_release_resource(r)); 1535 } 1536 1537 return (bus_generic_rl_release_resource(bus, child, type, rid, r)); 1538 } 1539 1540 static void 1541 acpi_delete_resource(device_t bus, device_t child, int type, int rid) 1542 { 1543 struct resource_list *rl; 1544 1545 rl = acpi_get_rlist(bus, child); 1546 if (resource_list_busy(rl, type, rid)) { 1547 device_printf(bus, "delete_resource: Resource still owned by child" 1548 " (type=%d, rid=%d)\n", type, rid); 1549 return; 1550 } 1551 resource_list_unreserve(rl, bus, child, type, rid); 1552 resource_list_delete(rl, type, rid); 1553 } 1554 1555 /* Allocate an IO port or memory resource, given its GAS. */ 1556 int 1557 acpi_bus_alloc_gas(device_t dev, int *type, int *rid, ACPI_GENERIC_ADDRESS *gas, 1558 struct resource **res, u_int flags) 1559 { 1560 int error, res_type; 1561 1562 error = ENOMEM; 1563 if (type == NULL || rid == NULL || gas == NULL || res == NULL) 1564 return (EINVAL); 1565 1566 /* We only support memory and IO spaces. */ 1567 switch (gas->SpaceId) { 1568 case ACPI_ADR_SPACE_SYSTEM_MEMORY: 1569 res_type = SYS_RES_MEMORY; 1570 break; 1571 case ACPI_ADR_SPACE_SYSTEM_IO: 1572 res_type = SYS_RES_IOPORT; 1573 break; 1574 default: 1575 return (EOPNOTSUPP); 1576 } 1577 1578 /* 1579 * If the register width is less than 8, assume the BIOS author means 1580 * it is a bit field and just allocate a byte. 1581 */ 1582 if (gas->BitWidth && gas->BitWidth < 8) 1583 gas->BitWidth = 8; 1584 1585 /* Validate the address after we're sure we support the space. */ 1586 if (gas->Address == 0 || gas->BitWidth == 0) 1587 return (EINVAL); 1588 1589 bus_set_resource(dev, res_type, *rid, gas->Address, 1590 gas->BitWidth / 8); 1591 *res = bus_alloc_resource_any(dev, res_type, rid, RF_ACTIVE | flags); 1592 if (*res != NULL) { 1593 *type = res_type; 1594 error = 0; 1595 } else 1596 bus_delete_resource(dev, res_type, *rid); 1597 1598 return (error); 1599 } 1600 1601 /* Probe _HID and _CID for compatible ISA PNP ids. */ 1602 static uint32_t 1603 acpi_isa_get_logicalid(device_t dev) 1604 { 1605 ACPI_DEVICE_INFO *devinfo; 1606 ACPI_HANDLE h; 1607 uint32_t pnpid; 1608 1609 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1610 1611 /* Fetch and validate the HID. */ 1612 if ((h = acpi_get_handle(dev)) == NULL || 1613 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 1614 return_VALUE (0); 1615 1616 pnpid = (devinfo->Valid & ACPI_VALID_HID) != 0 && 1617 devinfo->HardwareId.Length >= ACPI_EISAID_STRING_SIZE ? 1618 PNP_EISAID(devinfo->HardwareId.String) : 0; 1619 AcpiOsFree(devinfo); 1620 1621 return_VALUE (pnpid); 1622 } 1623 1624 static int 1625 acpi_isa_get_compatid(device_t dev, uint32_t *cids, int count) 1626 { 1627 ACPI_DEVICE_INFO *devinfo; 1628 ACPI_PNP_DEVICE_ID *ids; 1629 ACPI_HANDLE h; 1630 uint32_t *pnpid; 1631 int i, valid; 1632 1633 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1634 1635 pnpid = cids; 1636 1637 /* Fetch and validate the CID */ 1638 if ((h = acpi_get_handle(dev)) == NULL || 1639 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 1640 return_VALUE (0); 1641 1642 if ((devinfo->Valid & ACPI_VALID_CID) == 0) { 1643 AcpiOsFree(devinfo); 1644 return_VALUE (0); 1645 } 1646 1647 if (devinfo->CompatibleIdList.Count < count) 1648 count = devinfo->CompatibleIdList.Count; 1649 ids = devinfo->CompatibleIdList.Ids; 1650 for (i = 0, valid = 0; i < count; i++) 1651 if (ids[i].Length >= ACPI_EISAID_STRING_SIZE && 1652 strncmp(ids[i].String, "PNP", 3) == 0) { 1653 *pnpid++ = PNP_EISAID(ids[i].String); 1654 valid++; 1655 } 1656 AcpiOsFree(devinfo); 1657 1658 return_VALUE (valid); 1659 } 1660 1661 static int 1662 acpi_device_id_probe(device_t bus, device_t dev, char **ids, char **match) 1663 { 1664 ACPI_HANDLE h; 1665 ACPI_OBJECT_TYPE t; 1666 int rv; 1667 int i; 1668 1669 h = acpi_get_handle(dev); 1670 if (ids == NULL || h == NULL) 1671 return (ENXIO); 1672 t = acpi_get_type(dev); 1673 if (t != ACPI_TYPE_DEVICE && t != ACPI_TYPE_PROCESSOR) 1674 return (ENXIO); 1675 1676 /* Try to match one of the array of IDs with a HID or CID. */ 1677 for (i = 0; ids[i] != NULL; i++) { 1678 rv = acpi_MatchHid(h, ids[i]); 1679 if (rv == ACPI_MATCHHID_NOMATCH) 1680 continue; 1681 1682 if (match != NULL) { 1683 *match = ids[i]; 1684 } 1685 return ((rv == ACPI_MATCHHID_HID)? 1686 BUS_PROBE_DEFAULT : BUS_PROBE_LOW_PRIORITY); 1687 } 1688 return (ENXIO); 1689 } 1690 1691 static ACPI_STATUS 1692 acpi_device_eval_obj(device_t bus, device_t dev, ACPI_STRING pathname, 1693 ACPI_OBJECT_LIST *parameters, ACPI_BUFFER *ret) 1694 { 1695 ACPI_HANDLE h; 1696 1697 if (dev == NULL) 1698 h = ACPI_ROOT_OBJECT; 1699 else if ((h = acpi_get_handle(dev)) == NULL) 1700 return (AE_BAD_PARAMETER); 1701 return (AcpiEvaluateObject(h, pathname, parameters, ret)); 1702 } 1703 1704 int 1705 acpi_device_pwr_for_sleep(device_t bus, device_t dev, int *dstate) 1706 { 1707 struct acpi_softc *sc; 1708 ACPI_HANDLE handle; 1709 ACPI_STATUS status; 1710 char sxd[8]; 1711 1712 handle = acpi_get_handle(dev); 1713 1714 /* 1715 * XXX If we find these devices, don't try to power them down. 1716 * The serial and IRDA ports on my T23 hang the system when 1717 * set to D3 and it appears that such legacy devices may 1718 * need special handling in their drivers. 1719 */ 1720 if (dstate == NULL || handle == NULL || 1721 acpi_MatchHid(handle, "PNP0500") || 1722 acpi_MatchHid(handle, "PNP0501") || 1723 acpi_MatchHid(handle, "PNP0502") || 1724 acpi_MatchHid(handle, "PNP0510") || 1725 acpi_MatchHid(handle, "PNP0511")) 1726 return (ENXIO); 1727 1728 /* 1729 * Override next state with the value from _SxD, if present. 1730 * Note illegal _S0D is evaluated because some systems expect this. 1731 */ 1732 sc = device_get_softc(bus); 1733 snprintf(sxd, sizeof(sxd), "_S%dD", sc->acpi_sstate); 1734 status = acpi_GetInteger(handle, sxd, dstate); 1735 if (ACPI_FAILURE(status) && status != AE_NOT_FOUND) { 1736 device_printf(dev, "failed to get %s on %s: %s\n", sxd, 1737 acpi_name(handle), AcpiFormatException(status)); 1738 return (ENXIO); 1739 } 1740 1741 return (0); 1742 } 1743 1744 /* Callback arg for our implementation of walking the namespace. */ 1745 struct acpi_device_scan_ctx { 1746 acpi_scan_cb_t user_fn; 1747 void *arg; 1748 ACPI_HANDLE parent; 1749 }; 1750 1751 static ACPI_STATUS 1752 acpi_device_scan_cb(ACPI_HANDLE h, UINT32 level, void *arg, void **retval) 1753 { 1754 struct acpi_device_scan_ctx *ctx; 1755 device_t dev, old_dev; 1756 ACPI_STATUS status; 1757 ACPI_OBJECT_TYPE type; 1758 1759 /* 1760 * Skip this device if we think we'll have trouble with it or it is 1761 * the parent where the scan began. 1762 */ 1763 ctx = (struct acpi_device_scan_ctx *)arg; 1764 if (acpi_avoid(h) || h == ctx->parent) 1765 return (AE_OK); 1766 1767 /* If this is not a valid device type (e.g., a method), skip it. */ 1768 if (ACPI_FAILURE(AcpiGetType(h, &type))) 1769 return (AE_OK); 1770 if (type != ACPI_TYPE_DEVICE && type != ACPI_TYPE_PROCESSOR && 1771 type != ACPI_TYPE_THERMAL && type != ACPI_TYPE_POWER) 1772 return (AE_OK); 1773 1774 /* 1775 * Call the user function with the current device. If it is unchanged 1776 * afterwards, return. Otherwise, we update the handle to the new dev. 1777 */ 1778 old_dev = acpi_get_device(h); 1779 dev = old_dev; 1780 status = ctx->user_fn(h, &dev, level, ctx->arg); 1781 if (ACPI_FAILURE(status) || old_dev == dev) 1782 return (status); 1783 1784 /* Remove the old child and its connection to the handle. */ 1785 if (old_dev != NULL) { 1786 device_delete_child(device_get_parent(old_dev), old_dev); 1787 AcpiDetachData(h, acpi_fake_objhandler); 1788 } 1789 1790 /* Recreate the handle association if the user created a device. */ 1791 if (dev != NULL) 1792 AcpiAttachData(h, acpi_fake_objhandler, dev); 1793 1794 return (AE_OK); 1795 } 1796 1797 static ACPI_STATUS 1798 acpi_device_scan_children(device_t bus, device_t dev, int max_depth, 1799 acpi_scan_cb_t user_fn, void *arg) 1800 { 1801 ACPI_HANDLE h; 1802 struct acpi_device_scan_ctx ctx; 1803 1804 if (acpi_disabled("children")) 1805 return (AE_OK); 1806 1807 if (dev == NULL) 1808 h = ACPI_ROOT_OBJECT; 1809 else if ((h = acpi_get_handle(dev)) == NULL) 1810 return (AE_BAD_PARAMETER); 1811 ctx.user_fn = user_fn; 1812 ctx.arg = arg; 1813 ctx.parent = h; 1814 return (AcpiWalkNamespace(ACPI_TYPE_ANY, h, max_depth, 1815 acpi_device_scan_cb, NULL, &ctx, NULL)); 1816 } 1817 1818 /* 1819 * Even though ACPI devices are not PCI, we use the PCI approach for setting 1820 * device power states since it's close enough to ACPI. 1821 */ 1822 static int 1823 acpi_set_powerstate(device_t child, int state) 1824 { 1825 ACPI_HANDLE h; 1826 ACPI_STATUS status; 1827 1828 h = acpi_get_handle(child); 1829 if (state < ACPI_STATE_D0 || state > ACPI_D_STATES_MAX) 1830 return (EINVAL); 1831 if (h == NULL) 1832 return (0); 1833 1834 /* Ignore errors if the power methods aren't present. */ 1835 status = acpi_pwr_switch_consumer(h, state); 1836 if (ACPI_SUCCESS(status)) { 1837 if (bootverbose) 1838 device_printf(child, "set ACPI power state D%d on %s\n", 1839 state, acpi_name(h)); 1840 } else if (status != AE_NOT_FOUND) 1841 device_printf(child, 1842 "failed to set ACPI power state D%d on %s: %s\n", state, 1843 acpi_name(h), AcpiFormatException(status)); 1844 1845 return (0); 1846 } 1847 1848 static int 1849 acpi_isa_pnp_probe(device_t bus, device_t child, struct isa_pnp_id *ids) 1850 { 1851 int result, cid_count, i; 1852 uint32_t lid, cids[8]; 1853 1854 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1855 1856 /* 1857 * ISA-style drivers attached to ACPI may persist and 1858 * probe manually if we return ENOENT. We never want 1859 * that to happen, so don't ever return it. 1860 */ 1861 result = ENXIO; 1862 1863 /* Scan the supplied IDs for a match */ 1864 lid = acpi_isa_get_logicalid(child); 1865 cid_count = acpi_isa_get_compatid(child, cids, 8); 1866 while (ids && ids->ip_id) { 1867 if (lid == ids->ip_id) { 1868 result = 0; 1869 goto out; 1870 } 1871 for (i = 0; i < cid_count; i++) { 1872 if (cids[i] == ids->ip_id) { 1873 result = 0; 1874 goto out; 1875 } 1876 } 1877 ids++; 1878 } 1879 1880 out: 1881 if (result == 0 && ids->ip_desc) 1882 device_set_desc(child, ids->ip_desc); 1883 1884 return_VALUE (result); 1885 } 1886 1887 /* 1888 * Look for a MCFG table. If it is present, use the settings for 1889 * domain (segment) 0 to setup PCI config space access via the memory 1890 * map. 1891 * 1892 * On non-x86 architectures (arm64 for now), this will be done from the 1893 * PCI host bridge driver. 1894 */ 1895 static void 1896 acpi_enable_pcie(void) 1897 { 1898 #if defined(__i386__) || defined(__amd64__) 1899 ACPI_TABLE_HEADER *hdr; 1900 ACPI_MCFG_ALLOCATION *alloc, *end; 1901 ACPI_STATUS status; 1902 1903 status = AcpiGetTable(ACPI_SIG_MCFG, 1, &hdr); 1904 if (ACPI_FAILURE(status)) 1905 return; 1906 1907 end = (ACPI_MCFG_ALLOCATION *)((char *)hdr + hdr->Length); 1908 alloc = (ACPI_MCFG_ALLOCATION *)((ACPI_TABLE_MCFG *)hdr + 1); 1909 while (alloc < end) { 1910 if (alloc->PciSegment == 0) { 1911 pcie_cfgregopen(alloc->Address, alloc->StartBusNumber, 1912 alloc->EndBusNumber); 1913 return; 1914 } 1915 alloc++; 1916 } 1917 #endif 1918 } 1919 1920 /* 1921 * Scan all of the ACPI namespace and attach child devices. 1922 * 1923 * We should only expect to find devices in the \_PR, \_TZ, \_SI, and 1924 * \_SB scopes, and \_PR and \_TZ became obsolete in the ACPI 2.0 spec. 1925 * However, in violation of the spec, some systems place their PCI link 1926 * devices in \, so we have to walk the whole namespace. We check the 1927 * type of namespace nodes, so this should be ok. 1928 */ 1929 static void 1930 acpi_probe_children(device_t bus) 1931 { 1932 1933 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1934 1935 /* 1936 * Scan the namespace and insert placeholders for all the devices that 1937 * we find. We also probe/attach any early devices. 1938 * 1939 * Note that we use AcpiWalkNamespace rather than AcpiGetDevices because 1940 * we want to create nodes for all devices, not just those that are 1941 * currently present. (This assumes that we don't want to create/remove 1942 * devices as they appear, which might be smarter.) 1943 */ 1944 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "namespace scan\n")); 1945 AcpiWalkNamespace(ACPI_TYPE_ANY, ACPI_ROOT_OBJECT, 100, acpi_probe_child, 1946 NULL, bus, NULL); 1947 1948 /* Pre-allocate resources for our rman from any sysresource devices. */ 1949 acpi_sysres_alloc(bus); 1950 1951 /* Reserve resources already allocated to children. */ 1952 acpi_reserve_resources(bus); 1953 1954 /* Create any static children by calling device identify methods. */ 1955 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "device identify routines\n")); 1956 bus_generic_probe(bus); 1957 1958 /* Probe/attach all children, created statically and from the namespace. */ 1959 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "acpi bus_generic_attach\n")); 1960 bus_generic_attach(bus); 1961 1962 /* Attach wake sysctls. */ 1963 acpi_wake_sysctl_walk(bus); 1964 1965 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "done attaching children\n")); 1966 return_VOID; 1967 } 1968 1969 /* 1970 * Determine the probe order for a given device. 1971 */ 1972 static void 1973 acpi_probe_order(ACPI_HANDLE handle, int *order) 1974 { 1975 ACPI_OBJECT_TYPE type; 1976 1977 /* 1978 * 0. CPUs 1979 * 1. I/O port and memory system resource holders 1980 * 2. Clocks and timers (to handle early accesses) 1981 * 3. Embedded controllers (to handle early accesses) 1982 * 4. PCI Link Devices 1983 */ 1984 AcpiGetType(handle, &type); 1985 if (type == ACPI_TYPE_PROCESSOR) 1986 *order = 0; 1987 else if (acpi_MatchHid(handle, "PNP0C01") || 1988 acpi_MatchHid(handle, "PNP0C02")) 1989 *order = 1; 1990 else if (acpi_MatchHid(handle, "PNP0100") || 1991 acpi_MatchHid(handle, "PNP0103") || 1992 acpi_MatchHid(handle, "PNP0B00")) 1993 *order = 2; 1994 else if (acpi_MatchHid(handle, "PNP0C09")) 1995 *order = 3; 1996 else if (acpi_MatchHid(handle, "PNP0C0F")) 1997 *order = 4; 1998 } 1999 2000 /* 2001 * Evaluate a child device and determine whether we might attach a device to 2002 * it. 2003 */ 2004 static ACPI_STATUS 2005 acpi_probe_child(ACPI_HANDLE handle, UINT32 level, void *context, void **status) 2006 { 2007 ACPI_DEVICE_INFO *devinfo; 2008 struct acpi_device *ad; 2009 struct acpi_prw_data prw; 2010 ACPI_OBJECT_TYPE type; 2011 ACPI_HANDLE h; 2012 device_t bus, child; 2013 char *handle_str; 2014 int order; 2015 2016 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 2017 2018 if (acpi_disabled("children")) 2019 return_ACPI_STATUS (AE_OK); 2020 2021 /* Skip this device if we think we'll have trouble with it. */ 2022 if (acpi_avoid(handle)) 2023 return_ACPI_STATUS (AE_OK); 2024 2025 bus = (device_t)context; 2026 if (ACPI_SUCCESS(AcpiGetType(handle, &type))) { 2027 handle_str = acpi_name(handle); 2028 switch (type) { 2029 case ACPI_TYPE_DEVICE: 2030 /* 2031 * Since we scan from \, be sure to skip system scope objects. 2032 * \_SB_ and \_TZ_ are defined in ACPICA as devices to work around 2033 * BIOS bugs. For example, \_SB_ is to allow \_SB_._INI to be run 2034 * during the initialization and \_TZ_ is to support Notify() on it. 2035 */ 2036 if (strcmp(handle_str, "\\_SB_") == 0 || 2037 strcmp(handle_str, "\\_TZ_") == 0) 2038 break; 2039 if (acpi_parse_prw(handle, &prw) == 0) 2040 AcpiSetupGpeForWake(handle, prw.gpe_handle, prw.gpe_bit); 2041 2042 /* 2043 * Ignore devices that do not have a _HID or _CID. They should 2044 * be discovered by other buses (e.g. the PCI bus driver). 2045 */ 2046 if (!acpi_has_hid(handle)) 2047 break; 2048 /* FALLTHROUGH */ 2049 case ACPI_TYPE_PROCESSOR: 2050 case ACPI_TYPE_THERMAL: 2051 case ACPI_TYPE_POWER: 2052 /* 2053 * Create a placeholder device for this node. Sort the 2054 * placeholder so that the probe/attach passes will run 2055 * breadth-first. Orders less than ACPI_DEV_BASE_ORDER 2056 * are reserved for special objects (i.e., system 2057 * resources). 2058 */ 2059 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "scanning '%s'\n", handle_str)); 2060 order = level * 10 + ACPI_DEV_BASE_ORDER; 2061 acpi_probe_order(handle, &order); 2062 child = BUS_ADD_CHILD(bus, order, NULL, -1); 2063 if (child == NULL) 2064 break; 2065 2066 /* Associate the handle with the device_t and vice versa. */ 2067 acpi_set_handle(child, handle); 2068 AcpiAttachData(handle, acpi_fake_objhandler, child); 2069 2070 /* 2071 * Check that the device is present. If it's not present, 2072 * leave it disabled (so that we have a device_t attached to 2073 * the handle, but we don't probe it). 2074 * 2075 * XXX PCI link devices sometimes report "present" but not 2076 * "functional" (i.e. if disabled). Go ahead and probe them 2077 * anyway since we may enable them later. 2078 */ 2079 if (type == ACPI_TYPE_DEVICE && !acpi_DeviceIsPresent(child)) { 2080 /* Never disable PCI link devices. */ 2081 if (acpi_MatchHid(handle, "PNP0C0F")) 2082 break; 2083 /* 2084 * Docking stations should remain enabled since the system 2085 * may be undocked at boot. 2086 */ 2087 if (ACPI_SUCCESS(AcpiGetHandle(handle, "_DCK", &h))) 2088 break; 2089 2090 device_disable(child); 2091 break; 2092 } 2093 2094 /* 2095 * Get the device's resource settings and attach them. 2096 * Note that if the device has _PRS but no _CRS, we need 2097 * to decide when it's appropriate to try to configure the 2098 * device. Ignore the return value here; it's OK for the 2099 * device not to have any resources. 2100 */ 2101 acpi_parse_resources(child, handle, &acpi_res_parse_set, NULL); 2102 2103 ad = device_get_ivars(child); 2104 ad->ad_cls_class = 0xffffff; 2105 if (ACPI_SUCCESS(AcpiGetObjectInfo(handle, &devinfo))) { 2106 if ((devinfo->Valid & ACPI_VALID_CLS) != 0 && 2107 devinfo->ClassCode.Length >= ACPI_PCICLS_STRING_SIZE) { 2108 ad->ad_cls_class = strtoul(devinfo->ClassCode.String, 2109 NULL, 16); 2110 } 2111 AcpiOsFree(devinfo); 2112 } 2113 break; 2114 } 2115 } 2116 2117 return_ACPI_STATUS (AE_OK); 2118 } 2119 2120 /* 2121 * AcpiAttachData() requires an object handler but never uses it. This is a 2122 * placeholder object handler so we can store a device_t in an ACPI_HANDLE. 2123 */ 2124 void 2125 acpi_fake_objhandler(ACPI_HANDLE h, void *data) 2126 { 2127 } 2128 2129 static void 2130 acpi_shutdown_final(void *arg, int howto) 2131 { 2132 struct acpi_softc *sc = (struct acpi_softc *)arg; 2133 register_t intr; 2134 ACPI_STATUS status; 2135 2136 /* 2137 * XXX Shutdown code should only run on the BSP (cpuid 0). 2138 * Some chipsets do not power off the system correctly if called from 2139 * an AP. 2140 */ 2141 if ((howto & RB_POWEROFF) != 0) { 2142 status = AcpiEnterSleepStatePrep(ACPI_STATE_S5); 2143 if (ACPI_FAILURE(status)) { 2144 device_printf(sc->acpi_dev, "AcpiEnterSleepStatePrep failed - %s\n", 2145 AcpiFormatException(status)); 2146 return; 2147 } 2148 device_printf(sc->acpi_dev, "Powering system off\n"); 2149 intr = intr_disable(); 2150 status = AcpiEnterSleepState(ACPI_STATE_S5); 2151 if (ACPI_FAILURE(status)) { 2152 intr_restore(intr); 2153 device_printf(sc->acpi_dev, "power-off failed - %s\n", 2154 AcpiFormatException(status)); 2155 } else { 2156 DELAY(1000000); 2157 intr_restore(intr); 2158 device_printf(sc->acpi_dev, "power-off failed - timeout\n"); 2159 } 2160 } else if ((howto & RB_HALT) == 0 && sc->acpi_handle_reboot) { 2161 /* Reboot using the reset register. */ 2162 status = AcpiReset(); 2163 if (ACPI_SUCCESS(status)) { 2164 DELAY(1000000); 2165 device_printf(sc->acpi_dev, "reset failed - timeout\n"); 2166 } else if (status != AE_NOT_EXIST) 2167 device_printf(sc->acpi_dev, "reset failed - %s\n", 2168 AcpiFormatException(status)); 2169 } else if (sc->acpi_do_disable && !KERNEL_PANICKED()) { 2170 /* 2171 * Only disable ACPI if the user requested. On some systems, writing 2172 * the disable value to SMI_CMD hangs the system. 2173 */ 2174 device_printf(sc->acpi_dev, "Shutting down\n"); 2175 AcpiTerminate(); 2176 } 2177 } 2178 2179 static void 2180 acpi_enable_fixed_events(struct acpi_softc *sc) 2181 { 2182 static int first_time = 1; 2183 2184 /* Enable and clear fixed events and install handlers. */ 2185 if ((AcpiGbl_FADT.Flags & ACPI_FADT_POWER_BUTTON) == 0) { 2186 AcpiClearEvent(ACPI_EVENT_POWER_BUTTON); 2187 AcpiInstallFixedEventHandler(ACPI_EVENT_POWER_BUTTON, 2188 acpi_event_power_button_sleep, sc); 2189 if (first_time) 2190 device_printf(sc->acpi_dev, "Power Button (fixed)\n"); 2191 } 2192 if ((AcpiGbl_FADT.Flags & ACPI_FADT_SLEEP_BUTTON) == 0) { 2193 AcpiClearEvent(ACPI_EVENT_SLEEP_BUTTON); 2194 AcpiInstallFixedEventHandler(ACPI_EVENT_SLEEP_BUTTON, 2195 acpi_event_sleep_button_sleep, sc); 2196 if (first_time) 2197 device_printf(sc->acpi_dev, "Sleep Button (fixed)\n"); 2198 } 2199 2200 first_time = 0; 2201 } 2202 2203 /* 2204 * Returns true if the device is actually present and should 2205 * be attached to. This requires the present, enabled, UI-visible 2206 * and diagnostics-passed bits to be set. 2207 */ 2208 BOOLEAN 2209 acpi_DeviceIsPresent(device_t dev) 2210 { 2211 ACPI_HANDLE h; 2212 UINT32 s; 2213 ACPI_STATUS status; 2214 2215 h = acpi_get_handle(dev); 2216 if (h == NULL) 2217 return (FALSE); 2218 /* 2219 * Certain Treadripper boards always returns 0 for FreeBSD because it 2220 * only returns non-zero for the OS string "Windows 2015". Otherwise it 2221 * will return zero. Force them to always be treated as present. 2222 * Beata versions were worse: they always returned 0. 2223 */ 2224 if (acpi_MatchHid(h, "AMDI0020") || acpi_MatchHid(h, "AMDI0010")) 2225 return (TRUE); 2226 2227 status = acpi_GetInteger(h, "_STA", &s); 2228 2229 /* 2230 * If no _STA method or if it failed, then assume that 2231 * the device is present. 2232 */ 2233 if (ACPI_FAILURE(status)) 2234 return (TRUE); 2235 2236 return (ACPI_DEVICE_PRESENT(s) ? TRUE : FALSE); 2237 } 2238 2239 /* 2240 * Returns true if the battery is actually present and inserted. 2241 */ 2242 BOOLEAN 2243 acpi_BatteryIsPresent(device_t dev) 2244 { 2245 ACPI_HANDLE h; 2246 UINT32 s; 2247 ACPI_STATUS status; 2248 2249 h = acpi_get_handle(dev); 2250 if (h == NULL) 2251 return (FALSE); 2252 status = acpi_GetInteger(h, "_STA", &s); 2253 2254 /* 2255 * If no _STA method or if it failed, then assume that 2256 * the device is present. 2257 */ 2258 if (ACPI_FAILURE(status)) 2259 return (TRUE); 2260 2261 return (ACPI_BATTERY_PRESENT(s) ? TRUE : FALSE); 2262 } 2263 2264 /* 2265 * Returns true if a device has at least one valid device ID. 2266 */ 2267 static BOOLEAN 2268 acpi_has_hid(ACPI_HANDLE h) 2269 { 2270 ACPI_DEVICE_INFO *devinfo; 2271 BOOLEAN ret; 2272 2273 if (h == NULL || 2274 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 2275 return (FALSE); 2276 2277 ret = FALSE; 2278 if ((devinfo->Valid & ACPI_VALID_HID) != 0) 2279 ret = TRUE; 2280 else if ((devinfo->Valid & ACPI_VALID_CID) != 0) 2281 if (devinfo->CompatibleIdList.Count > 0) 2282 ret = TRUE; 2283 2284 AcpiOsFree(devinfo); 2285 return (ret); 2286 } 2287 2288 /* 2289 * Match a HID string against a handle 2290 * returns ACPI_MATCHHID_HID if _HID match 2291 * ACPI_MATCHHID_CID if _CID match and not _HID match. 2292 * ACPI_MATCHHID_NOMATCH=0 if no match. 2293 */ 2294 int 2295 acpi_MatchHid(ACPI_HANDLE h, const char *hid) 2296 { 2297 ACPI_DEVICE_INFO *devinfo; 2298 BOOLEAN ret; 2299 int i; 2300 2301 if (hid == NULL || h == NULL || 2302 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 2303 return (ACPI_MATCHHID_NOMATCH); 2304 2305 ret = ACPI_MATCHHID_NOMATCH; 2306 if ((devinfo->Valid & ACPI_VALID_HID) != 0 && 2307 strcmp(hid, devinfo->HardwareId.String) == 0) 2308 ret = ACPI_MATCHHID_HID; 2309 else if ((devinfo->Valid & ACPI_VALID_CID) != 0) 2310 for (i = 0; i < devinfo->CompatibleIdList.Count; i++) { 2311 if (strcmp(hid, devinfo->CompatibleIdList.Ids[i].String) == 0) { 2312 ret = ACPI_MATCHHID_CID; 2313 break; 2314 } 2315 } 2316 2317 AcpiOsFree(devinfo); 2318 return (ret); 2319 } 2320 2321 /* 2322 * Return the handle of a named object within our scope, ie. that of (parent) 2323 * or one if its parents. 2324 */ 2325 ACPI_STATUS 2326 acpi_GetHandleInScope(ACPI_HANDLE parent, char *path, ACPI_HANDLE *result) 2327 { 2328 ACPI_HANDLE r; 2329 ACPI_STATUS status; 2330 2331 /* Walk back up the tree to the root */ 2332 for (;;) { 2333 status = AcpiGetHandle(parent, path, &r); 2334 if (ACPI_SUCCESS(status)) { 2335 *result = r; 2336 return (AE_OK); 2337 } 2338 /* XXX Return error here? */ 2339 if (status != AE_NOT_FOUND) 2340 return (AE_OK); 2341 if (ACPI_FAILURE(AcpiGetParent(parent, &r))) 2342 return (AE_NOT_FOUND); 2343 parent = r; 2344 } 2345 } 2346 2347 /* 2348 * Allocate a buffer with a preset data size. 2349 */ 2350 ACPI_BUFFER * 2351 acpi_AllocBuffer(int size) 2352 { 2353 ACPI_BUFFER *buf; 2354 2355 if ((buf = malloc(size + sizeof(*buf), M_ACPIDEV, M_NOWAIT)) == NULL) 2356 return (NULL); 2357 buf->Length = size; 2358 buf->Pointer = (void *)(buf + 1); 2359 return (buf); 2360 } 2361 2362 ACPI_STATUS 2363 acpi_SetInteger(ACPI_HANDLE handle, char *path, UINT32 number) 2364 { 2365 ACPI_OBJECT arg1; 2366 ACPI_OBJECT_LIST args; 2367 2368 arg1.Type = ACPI_TYPE_INTEGER; 2369 arg1.Integer.Value = number; 2370 args.Count = 1; 2371 args.Pointer = &arg1; 2372 2373 return (AcpiEvaluateObject(handle, path, &args, NULL)); 2374 } 2375 2376 /* 2377 * Evaluate a path that should return an integer. 2378 */ 2379 ACPI_STATUS 2380 acpi_GetInteger(ACPI_HANDLE handle, char *path, UINT32 *number) 2381 { 2382 ACPI_STATUS status; 2383 ACPI_BUFFER buf; 2384 ACPI_OBJECT param; 2385 2386 if (handle == NULL) 2387 handle = ACPI_ROOT_OBJECT; 2388 2389 /* 2390 * Assume that what we've been pointed at is an Integer object, or 2391 * a method that will return an Integer. 2392 */ 2393 buf.Pointer = ¶m; 2394 buf.Length = sizeof(param); 2395 status = AcpiEvaluateObject(handle, path, NULL, &buf); 2396 if (ACPI_SUCCESS(status)) { 2397 if (param.Type == ACPI_TYPE_INTEGER) 2398 *number = param.Integer.Value; 2399 else 2400 status = AE_TYPE; 2401 } 2402 2403 /* 2404 * In some applications, a method that's expected to return an Integer 2405 * may instead return a Buffer (probably to simplify some internal 2406 * arithmetic). We'll try to fetch whatever it is, and if it's a Buffer, 2407 * convert it into an Integer as best we can. 2408 * 2409 * This is a hack. 2410 */ 2411 if (status == AE_BUFFER_OVERFLOW) { 2412 if ((buf.Pointer = AcpiOsAllocate(buf.Length)) == NULL) { 2413 status = AE_NO_MEMORY; 2414 } else { 2415 status = AcpiEvaluateObject(handle, path, NULL, &buf); 2416 if (ACPI_SUCCESS(status)) 2417 status = acpi_ConvertBufferToInteger(&buf, number); 2418 AcpiOsFree(buf.Pointer); 2419 } 2420 } 2421 return (status); 2422 } 2423 2424 ACPI_STATUS 2425 acpi_ConvertBufferToInteger(ACPI_BUFFER *bufp, UINT32 *number) 2426 { 2427 ACPI_OBJECT *p; 2428 UINT8 *val; 2429 int i; 2430 2431 p = (ACPI_OBJECT *)bufp->Pointer; 2432 if (p->Type == ACPI_TYPE_INTEGER) { 2433 *number = p->Integer.Value; 2434 return (AE_OK); 2435 } 2436 if (p->Type != ACPI_TYPE_BUFFER) 2437 return (AE_TYPE); 2438 if (p->Buffer.Length > sizeof(int)) 2439 return (AE_BAD_DATA); 2440 2441 *number = 0; 2442 val = p->Buffer.Pointer; 2443 for (i = 0; i < p->Buffer.Length; i++) 2444 *number += val[i] << (i * 8); 2445 return (AE_OK); 2446 } 2447 2448 /* 2449 * Iterate over the elements of an a package object, calling the supplied 2450 * function for each element. 2451 * 2452 * XXX possible enhancement might be to abort traversal on error. 2453 */ 2454 ACPI_STATUS 2455 acpi_ForeachPackageObject(ACPI_OBJECT *pkg, 2456 void (*func)(ACPI_OBJECT *comp, void *arg), void *arg) 2457 { 2458 ACPI_OBJECT *comp; 2459 int i; 2460 2461 if (pkg == NULL || pkg->Type != ACPI_TYPE_PACKAGE) 2462 return (AE_BAD_PARAMETER); 2463 2464 /* Iterate over components */ 2465 i = 0; 2466 comp = pkg->Package.Elements; 2467 for (; i < pkg->Package.Count; i++, comp++) 2468 func(comp, arg); 2469 2470 return (AE_OK); 2471 } 2472 2473 /* 2474 * Find the (index)th resource object in a set. 2475 */ 2476 ACPI_STATUS 2477 acpi_FindIndexedResource(ACPI_BUFFER *buf, int index, ACPI_RESOURCE **resp) 2478 { 2479 ACPI_RESOURCE *rp; 2480 int i; 2481 2482 rp = (ACPI_RESOURCE *)buf->Pointer; 2483 i = index; 2484 while (i-- > 0) { 2485 /* Range check */ 2486 if (rp > (ACPI_RESOURCE *)((u_int8_t *)buf->Pointer + buf->Length)) 2487 return (AE_BAD_PARAMETER); 2488 2489 /* Check for terminator */ 2490 if (rp->Type == ACPI_RESOURCE_TYPE_END_TAG || rp->Length == 0) 2491 return (AE_NOT_FOUND); 2492 rp = ACPI_NEXT_RESOURCE(rp); 2493 } 2494 if (resp != NULL) 2495 *resp = rp; 2496 2497 return (AE_OK); 2498 } 2499 2500 /* 2501 * Append an ACPI_RESOURCE to an ACPI_BUFFER. 2502 * 2503 * Given a pointer to an ACPI_RESOURCE structure, expand the ACPI_BUFFER 2504 * provided to contain it. If the ACPI_BUFFER is empty, allocate a sensible 2505 * backing block. If the ACPI_RESOURCE is NULL, return an empty set of 2506 * resources. 2507 */ 2508 #define ACPI_INITIAL_RESOURCE_BUFFER_SIZE 512 2509 2510 ACPI_STATUS 2511 acpi_AppendBufferResource(ACPI_BUFFER *buf, ACPI_RESOURCE *res) 2512 { 2513 ACPI_RESOURCE *rp; 2514 void *newp; 2515 2516 /* Initialise the buffer if necessary. */ 2517 if (buf->Pointer == NULL) { 2518 buf->Length = ACPI_INITIAL_RESOURCE_BUFFER_SIZE; 2519 if ((buf->Pointer = AcpiOsAllocate(buf->Length)) == NULL) 2520 return (AE_NO_MEMORY); 2521 rp = (ACPI_RESOURCE *)buf->Pointer; 2522 rp->Type = ACPI_RESOURCE_TYPE_END_TAG; 2523 rp->Length = ACPI_RS_SIZE_MIN; 2524 } 2525 if (res == NULL) 2526 return (AE_OK); 2527 2528 /* 2529 * Scan the current buffer looking for the terminator. 2530 * This will either find the terminator or hit the end 2531 * of the buffer and return an error. 2532 */ 2533 rp = (ACPI_RESOURCE *)buf->Pointer; 2534 for (;;) { 2535 /* Range check, don't go outside the buffer */ 2536 if (rp >= (ACPI_RESOURCE *)((u_int8_t *)buf->Pointer + buf->Length)) 2537 return (AE_BAD_PARAMETER); 2538 if (rp->Type == ACPI_RESOURCE_TYPE_END_TAG || rp->Length == 0) 2539 break; 2540 rp = ACPI_NEXT_RESOURCE(rp); 2541 } 2542 2543 /* 2544 * Check the size of the buffer and expand if required. 2545 * 2546 * Required size is: 2547 * size of existing resources before terminator + 2548 * size of new resource and header + 2549 * size of terminator. 2550 * 2551 * Note that this loop should really only run once, unless 2552 * for some reason we are stuffing a *really* huge resource. 2553 */ 2554 while ((((u_int8_t *)rp - (u_int8_t *)buf->Pointer) + 2555 res->Length + ACPI_RS_SIZE_NO_DATA + 2556 ACPI_RS_SIZE_MIN) >= buf->Length) { 2557 if ((newp = AcpiOsAllocate(buf->Length * 2)) == NULL) 2558 return (AE_NO_MEMORY); 2559 bcopy(buf->Pointer, newp, buf->Length); 2560 rp = (ACPI_RESOURCE *)((u_int8_t *)newp + 2561 ((u_int8_t *)rp - (u_int8_t *)buf->Pointer)); 2562 AcpiOsFree(buf->Pointer); 2563 buf->Pointer = newp; 2564 buf->Length += buf->Length; 2565 } 2566 2567 /* Insert the new resource. */ 2568 bcopy(res, rp, res->Length + ACPI_RS_SIZE_NO_DATA); 2569 2570 /* And add the terminator. */ 2571 rp = ACPI_NEXT_RESOURCE(rp); 2572 rp->Type = ACPI_RESOURCE_TYPE_END_TAG; 2573 rp->Length = ACPI_RS_SIZE_MIN; 2574 2575 return (AE_OK); 2576 } 2577 2578 UINT8 2579 acpi_DSMQuery(ACPI_HANDLE h, uint8_t *uuid, int revision) 2580 { 2581 /* 2582 * ACPI spec 9.1.1 defines this. 2583 * 2584 * "Arg2: Function Index Represents a specific function whose meaning is 2585 * specific to the UUID and Revision ID. Function indices should start 2586 * with 1. Function number zero is a query function (see the special 2587 * return code defined below)." 2588 */ 2589 ACPI_BUFFER buf; 2590 ACPI_OBJECT *obj; 2591 UINT8 ret = 0; 2592 2593 if (!ACPI_SUCCESS(acpi_EvaluateDSM(h, uuid, revision, 0, NULL, &buf))) { 2594 ACPI_INFO(("Failed to enumerate DSM functions\n")); 2595 return (0); 2596 } 2597 2598 obj = (ACPI_OBJECT *)buf.Pointer; 2599 KASSERT(obj, ("Object not allowed to be NULL\n")); 2600 2601 /* 2602 * From ACPI 6.2 spec 9.1.1: 2603 * If Function Index = 0, a Buffer containing a function index bitfield. 2604 * Otherwise, the return value and type depends on the UUID and revision 2605 * ID (see below). 2606 */ 2607 switch (obj->Type) { 2608 case ACPI_TYPE_BUFFER: 2609 ret = *(uint8_t *)obj->Buffer.Pointer; 2610 break; 2611 case ACPI_TYPE_INTEGER: 2612 ACPI_BIOS_WARNING((AE_INFO, 2613 "Possibly buggy BIOS with ACPI_TYPE_INTEGER for function enumeration\n")); 2614 ret = obj->Integer.Value & 0xFF; 2615 break; 2616 default: 2617 ACPI_WARNING((AE_INFO, "Unexpected return type %u\n", obj->Type)); 2618 }; 2619 2620 AcpiOsFree(obj); 2621 return ret; 2622 } 2623 2624 /* 2625 * DSM may return multiple types depending on the function. It is therefore 2626 * unsafe to use the typed evaluation. It is highly recommended that the caller 2627 * check the type of the returned object. 2628 */ 2629 ACPI_STATUS 2630 acpi_EvaluateDSM(ACPI_HANDLE handle, uint8_t *uuid, int revision, 2631 uint64_t function, union acpi_object *package, ACPI_BUFFER *out_buf) 2632 { 2633 ACPI_OBJECT arg[4]; 2634 ACPI_OBJECT_LIST arglist; 2635 ACPI_BUFFER buf; 2636 ACPI_STATUS status; 2637 2638 if (out_buf == NULL) 2639 return (AE_NO_MEMORY); 2640 2641 arg[0].Type = ACPI_TYPE_BUFFER; 2642 arg[0].Buffer.Length = ACPI_UUID_LENGTH; 2643 arg[0].Buffer.Pointer = uuid; 2644 arg[1].Type = ACPI_TYPE_INTEGER; 2645 arg[1].Integer.Value = revision; 2646 arg[2].Type = ACPI_TYPE_INTEGER; 2647 arg[2].Integer.Value = function; 2648 if (package) { 2649 arg[3] = *package; 2650 } else { 2651 arg[3].Type = ACPI_TYPE_PACKAGE; 2652 arg[3].Package.Count = 0; 2653 arg[3].Package.Elements = NULL; 2654 } 2655 2656 arglist.Pointer = arg; 2657 arglist.Count = 4; 2658 buf.Pointer = NULL; 2659 buf.Length = ACPI_ALLOCATE_BUFFER; 2660 status = AcpiEvaluateObject(handle, "_DSM", &arglist, &buf); 2661 if (ACPI_FAILURE(status)) 2662 return (status); 2663 2664 KASSERT(ACPI_SUCCESS(status), ("Unexpected status")); 2665 2666 *out_buf = buf; 2667 return (status); 2668 } 2669 2670 ACPI_STATUS 2671 acpi_EvaluateOSC(ACPI_HANDLE handle, uint8_t *uuid, int revision, int count, 2672 uint32_t *caps_in, uint32_t *caps_out, bool query) 2673 { 2674 ACPI_OBJECT arg[4], *ret; 2675 ACPI_OBJECT_LIST arglist; 2676 ACPI_BUFFER buf; 2677 ACPI_STATUS status; 2678 2679 arglist.Pointer = arg; 2680 arglist.Count = 4; 2681 arg[0].Type = ACPI_TYPE_BUFFER; 2682 arg[0].Buffer.Length = ACPI_UUID_LENGTH; 2683 arg[0].Buffer.Pointer = uuid; 2684 arg[1].Type = ACPI_TYPE_INTEGER; 2685 arg[1].Integer.Value = revision; 2686 arg[2].Type = ACPI_TYPE_INTEGER; 2687 arg[2].Integer.Value = count; 2688 arg[3].Type = ACPI_TYPE_BUFFER; 2689 arg[3].Buffer.Length = count * sizeof(*caps_in); 2690 arg[3].Buffer.Pointer = (uint8_t *)caps_in; 2691 caps_in[0] = query ? 1 : 0; 2692 buf.Pointer = NULL; 2693 buf.Length = ACPI_ALLOCATE_BUFFER; 2694 status = AcpiEvaluateObjectTyped(handle, "_OSC", &arglist, &buf, 2695 ACPI_TYPE_BUFFER); 2696 if (ACPI_FAILURE(status)) 2697 return (status); 2698 if (caps_out != NULL) { 2699 ret = buf.Pointer; 2700 if (ret->Buffer.Length != count * sizeof(*caps_out)) { 2701 AcpiOsFree(buf.Pointer); 2702 return (AE_BUFFER_OVERFLOW); 2703 } 2704 bcopy(ret->Buffer.Pointer, caps_out, ret->Buffer.Length); 2705 } 2706 AcpiOsFree(buf.Pointer); 2707 return (status); 2708 } 2709 2710 /* 2711 * Set interrupt model. 2712 */ 2713 ACPI_STATUS 2714 acpi_SetIntrModel(int model) 2715 { 2716 2717 return (acpi_SetInteger(ACPI_ROOT_OBJECT, "_PIC", model)); 2718 } 2719 2720 /* 2721 * Walk subtables of a table and call a callback routine for each 2722 * subtable. The caller should provide the first subtable and a 2723 * pointer to the end of the table. This can be used to walk tables 2724 * such as MADT and SRAT that use subtable entries. 2725 */ 2726 void 2727 acpi_walk_subtables(void *first, void *end, acpi_subtable_handler *handler, 2728 void *arg) 2729 { 2730 ACPI_SUBTABLE_HEADER *entry; 2731 2732 for (entry = first; (void *)entry < end; ) { 2733 /* Avoid an infinite loop if we hit a bogus entry. */ 2734 if (entry->Length < sizeof(ACPI_SUBTABLE_HEADER)) 2735 return; 2736 2737 handler(entry, arg); 2738 entry = ACPI_ADD_PTR(ACPI_SUBTABLE_HEADER, entry, entry->Length); 2739 } 2740 } 2741 2742 /* 2743 * DEPRECATED. This interface has serious deficiencies and will be 2744 * removed. 2745 * 2746 * Immediately enter the sleep state. In the old model, acpiconf(8) ran 2747 * rc.suspend and rc.resume so we don't have to notify devd(8) to do this. 2748 */ 2749 ACPI_STATUS 2750 acpi_SetSleepState(struct acpi_softc *sc, int state) 2751 { 2752 static int once; 2753 2754 if (!once) { 2755 device_printf(sc->acpi_dev, 2756 "warning: acpi_SetSleepState() deprecated, need to update your software\n"); 2757 once = 1; 2758 } 2759 return (acpi_EnterSleepState(sc, state)); 2760 } 2761 2762 #if defined(__amd64__) || defined(__i386__) 2763 static void 2764 acpi_sleep_force_task(void *context) 2765 { 2766 struct acpi_softc *sc = (struct acpi_softc *)context; 2767 2768 if (ACPI_FAILURE(acpi_EnterSleepState(sc, sc->acpi_next_sstate))) 2769 device_printf(sc->acpi_dev, "force sleep state S%d failed\n", 2770 sc->acpi_next_sstate); 2771 } 2772 2773 static void 2774 acpi_sleep_force(void *arg) 2775 { 2776 struct acpi_softc *sc = (struct acpi_softc *)arg; 2777 2778 device_printf(sc->acpi_dev, 2779 "suspend request timed out, forcing sleep now\n"); 2780 /* 2781 * XXX Suspending from callout causes freezes in DEVICE_SUSPEND(). 2782 * Suspend from acpi_task thread instead. 2783 */ 2784 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 2785 acpi_sleep_force_task, sc))) 2786 device_printf(sc->acpi_dev, "AcpiOsExecute() for sleeping failed\n"); 2787 } 2788 #endif 2789 2790 /* 2791 * Request that the system enter the given suspend state. All /dev/apm 2792 * devices and devd(8) will be notified. Userland then has a chance to 2793 * save state and acknowledge the request. The system sleeps once all 2794 * acks are in. 2795 */ 2796 int 2797 acpi_ReqSleepState(struct acpi_softc *sc, int state) 2798 { 2799 #if defined(__amd64__) || defined(__i386__) 2800 struct apm_clone_data *clone; 2801 ACPI_STATUS status; 2802 2803 if (state < ACPI_STATE_S1 || state > ACPI_S_STATES_MAX) 2804 return (EINVAL); 2805 if (!acpi_sleep_states[state]) 2806 return (EOPNOTSUPP); 2807 2808 /* 2809 * If a reboot/shutdown/suspend request is already in progress or 2810 * suspend is blocked due to an upcoming shutdown, just return. 2811 */ 2812 if (rebooting || sc->acpi_next_sstate != 0 || suspend_blocked) { 2813 return (0); 2814 } 2815 2816 /* Wait until sleep is enabled. */ 2817 while (sc->acpi_sleep_disabled) { 2818 AcpiOsSleep(1000); 2819 } 2820 2821 ACPI_LOCK(acpi); 2822 2823 sc->acpi_next_sstate = state; 2824 2825 /* S5 (soft-off) should be entered directly with no waiting. */ 2826 if (state == ACPI_STATE_S5) { 2827 ACPI_UNLOCK(acpi); 2828 status = acpi_EnterSleepState(sc, state); 2829 return (ACPI_SUCCESS(status) ? 0 : ENXIO); 2830 } 2831 2832 /* Record the pending state and notify all apm devices. */ 2833 STAILQ_FOREACH(clone, &sc->apm_cdevs, entries) { 2834 clone->notify_status = APM_EV_NONE; 2835 if ((clone->flags & ACPI_EVF_DEVD) == 0) { 2836 selwakeuppri(&clone->sel_read, PZERO); 2837 KNOTE_LOCKED(&clone->sel_read.si_note, 0); 2838 } 2839 } 2840 2841 /* If devd(8) is not running, immediately enter the sleep state. */ 2842 if (!devctl_process_running()) { 2843 ACPI_UNLOCK(acpi); 2844 status = acpi_EnterSleepState(sc, state); 2845 return (ACPI_SUCCESS(status) ? 0 : ENXIO); 2846 } 2847 2848 /* 2849 * Set a timeout to fire if userland doesn't ack the suspend request 2850 * in time. This way we still eventually go to sleep if we were 2851 * overheating or running low on battery, even if userland is hung. 2852 * We cancel this timeout once all userland acks are in or the 2853 * suspend request is aborted. 2854 */ 2855 callout_reset(&sc->susp_force_to, 10 * hz, acpi_sleep_force, sc); 2856 ACPI_UNLOCK(acpi); 2857 2858 /* Now notify devd(8) also. */ 2859 acpi_UserNotify("Suspend", ACPI_ROOT_OBJECT, state); 2860 2861 return (0); 2862 #else 2863 /* This platform does not support acpi suspend/resume. */ 2864 return (EOPNOTSUPP); 2865 #endif 2866 } 2867 2868 /* 2869 * Acknowledge (or reject) a pending sleep state. The caller has 2870 * prepared for suspend and is now ready for it to proceed. If the 2871 * error argument is non-zero, it indicates suspend should be cancelled 2872 * and gives an errno value describing why. Once all votes are in, 2873 * we suspend the system. 2874 */ 2875 int 2876 acpi_AckSleepState(struct apm_clone_data *clone, int error) 2877 { 2878 #if defined(__amd64__) || defined(__i386__) 2879 struct acpi_softc *sc; 2880 int ret, sleeping; 2881 2882 /* If no pending sleep state, return an error. */ 2883 ACPI_LOCK(acpi); 2884 sc = clone->acpi_sc; 2885 if (sc->acpi_next_sstate == 0) { 2886 ACPI_UNLOCK(acpi); 2887 return (ENXIO); 2888 } 2889 2890 /* Caller wants to abort suspend process. */ 2891 if (error) { 2892 sc->acpi_next_sstate = 0; 2893 callout_stop(&sc->susp_force_to); 2894 device_printf(sc->acpi_dev, 2895 "listener on %s cancelled the pending suspend\n", 2896 devtoname(clone->cdev)); 2897 ACPI_UNLOCK(acpi); 2898 return (0); 2899 } 2900 2901 /* 2902 * Mark this device as acking the suspend request. Then, walk through 2903 * all devices, seeing if they agree yet. We only count devices that 2904 * are writable since read-only devices couldn't ack the request. 2905 */ 2906 sleeping = TRUE; 2907 clone->notify_status = APM_EV_ACKED; 2908 STAILQ_FOREACH(clone, &sc->apm_cdevs, entries) { 2909 if ((clone->flags & ACPI_EVF_WRITE) != 0 && 2910 clone->notify_status != APM_EV_ACKED) { 2911 sleeping = FALSE; 2912 break; 2913 } 2914 } 2915 2916 /* If all devices have voted "yes", we will suspend now. */ 2917 if (sleeping) 2918 callout_stop(&sc->susp_force_to); 2919 ACPI_UNLOCK(acpi); 2920 ret = 0; 2921 if (sleeping) { 2922 if (ACPI_FAILURE(acpi_EnterSleepState(sc, sc->acpi_next_sstate))) 2923 ret = ENODEV; 2924 } 2925 return (ret); 2926 #else 2927 /* This platform does not support acpi suspend/resume. */ 2928 return (EOPNOTSUPP); 2929 #endif 2930 } 2931 2932 static void 2933 acpi_sleep_enable(void *arg) 2934 { 2935 struct acpi_softc *sc = (struct acpi_softc *)arg; 2936 2937 ACPI_LOCK_ASSERT(acpi); 2938 2939 /* Reschedule if the system is not fully up and running. */ 2940 if (!AcpiGbl_SystemAwakeAndRunning) { 2941 callout_schedule(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME); 2942 return; 2943 } 2944 2945 sc->acpi_sleep_disabled = FALSE; 2946 } 2947 2948 static ACPI_STATUS 2949 acpi_sleep_disable(struct acpi_softc *sc) 2950 { 2951 ACPI_STATUS status; 2952 2953 /* Fail if the system is not fully up and running. */ 2954 if (!AcpiGbl_SystemAwakeAndRunning) 2955 return (AE_ERROR); 2956 2957 ACPI_LOCK(acpi); 2958 status = sc->acpi_sleep_disabled ? AE_ERROR : AE_OK; 2959 sc->acpi_sleep_disabled = TRUE; 2960 ACPI_UNLOCK(acpi); 2961 2962 return (status); 2963 } 2964 2965 enum acpi_sleep_state { 2966 ACPI_SS_NONE, 2967 ACPI_SS_GPE_SET, 2968 ACPI_SS_DEV_SUSPEND, 2969 ACPI_SS_SLP_PREP, 2970 ACPI_SS_SLEPT, 2971 }; 2972 2973 /* 2974 * Enter the desired system sleep state. 2975 * 2976 * Currently we support S1-S5 but S4 is only S4BIOS 2977 */ 2978 static ACPI_STATUS 2979 acpi_EnterSleepState(struct acpi_softc *sc, int state) 2980 { 2981 register_t intr; 2982 ACPI_STATUS status; 2983 ACPI_EVENT_STATUS power_button_status; 2984 enum acpi_sleep_state slp_state; 2985 int sleep_result; 2986 2987 ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state); 2988 2989 if (state < ACPI_STATE_S1 || state > ACPI_S_STATES_MAX) 2990 return_ACPI_STATUS (AE_BAD_PARAMETER); 2991 if (!acpi_sleep_states[state]) { 2992 device_printf(sc->acpi_dev, "Sleep state S%d not supported by BIOS\n", 2993 state); 2994 return (AE_SUPPORT); 2995 } 2996 2997 /* Re-entry once we're suspending is not allowed. */ 2998 status = acpi_sleep_disable(sc); 2999 if (ACPI_FAILURE(status)) { 3000 device_printf(sc->acpi_dev, 3001 "suspend request ignored (not ready yet)\n"); 3002 return (status); 3003 } 3004 3005 if (state == ACPI_STATE_S5) { 3006 /* 3007 * Shut down cleanly and power off. This will call us back through the 3008 * shutdown handlers. 3009 */ 3010 shutdown_nice(RB_POWEROFF); 3011 return_ACPI_STATUS (AE_OK); 3012 } 3013 3014 EVENTHANDLER_INVOKE(power_suspend_early); 3015 stop_all_proc(); 3016 EVENTHANDLER_INVOKE(power_suspend); 3017 3018 #ifdef EARLY_AP_STARTUP 3019 MPASS(mp_ncpus == 1 || smp_started); 3020 thread_lock(curthread); 3021 sched_bind(curthread, 0); 3022 thread_unlock(curthread); 3023 #else 3024 if (smp_started) { 3025 thread_lock(curthread); 3026 sched_bind(curthread, 0); 3027 thread_unlock(curthread); 3028 } 3029 #endif 3030 3031 /* 3032 * Be sure to hold Giant across DEVICE_SUSPEND/RESUME since non-MPSAFE 3033 * drivers need this. 3034 */ 3035 mtx_lock(&Giant); 3036 3037 slp_state = ACPI_SS_NONE; 3038 3039 sc->acpi_sstate = state; 3040 3041 /* Enable any GPEs as appropriate and requested by the user. */ 3042 acpi_wake_prep_walk(state); 3043 slp_state = ACPI_SS_GPE_SET; 3044 3045 /* 3046 * Inform all devices that we are going to sleep. If at least one 3047 * device fails, DEVICE_SUSPEND() automatically resumes the tree. 3048 * 3049 * XXX Note that a better two-pass approach with a 'veto' pass 3050 * followed by a "real thing" pass would be better, but the current 3051 * bus interface does not provide for this. 3052 */ 3053 if (DEVICE_SUSPEND(root_bus) != 0) { 3054 device_printf(sc->acpi_dev, "device_suspend failed\n"); 3055 goto backout; 3056 } 3057 slp_state = ACPI_SS_DEV_SUSPEND; 3058 3059 status = AcpiEnterSleepStatePrep(state); 3060 if (ACPI_FAILURE(status)) { 3061 device_printf(sc->acpi_dev, "AcpiEnterSleepStatePrep failed - %s\n", 3062 AcpiFormatException(status)); 3063 goto backout; 3064 } 3065 slp_state = ACPI_SS_SLP_PREP; 3066 3067 if (sc->acpi_sleep_delay > 0) 3068 DELAY(sc->acpi_sleep_delay * 1000000); 3069 3070 suspendclock(); 3071 intr = intr_disable(); 3072 if (state != ACPI_STATE_S1) { 3073 sleep_result = acpi_sleep_machdep(sc, state); 3074 acpi_wakeup_machdep(sc, state, sleep_result, 0); 3075 3076 /* 3077 * XXX According to ACPI specification SCI_EN bit should be restored 3078 * by ACPI platform (BIOS, firmware) to its pre-sleep state. 3079 * Unfortunately some BIOSes fail to do that and that leads to 3080 * unexpected and serious consequences during wake up like a system 3081 * getting stuck in SMI handlers. 3082 * This hack is picked up from Linux, which claims that it follows 3083 * Windows behavior. 3084 */ 3085 if (sleep_result == 1 && state != ACPI_STATE_S4) 3086 AcpiWriteBitRegister(ACPI_BITREG_SCI_ENABLE, ACPI_ENABLE_EVENT); 3087 3088 if (sleep_result == 1 && state == ACPI_STATE_S3) { 3089 /* 3090 * Prevent mis-interpretation of the wakeup by power button 3091 * as a request for power off. 3092 * Ideally we should post an appropriate wakeup event, 3093 * perhaps using acpi_event_power_button_wake or alike. 3094 * 3095 * Clearing of power button status after wakeup is mandated 3096 * by ACPI specification in section "Fixed Power Button". 3097 * 3098 * XXX As of ACPICA 20121114 AcpiGetEventStatus provides 3099 * status as 0/1 corressponding to inactive/active despite 3100 * its type being ACPI_EVENT_STATUS. In other words, 3101 * we should not test for ACPI_EVENT_FLAG_SET for time being. 3102 */ 3103 if (ACPI_SUCCESS(AcpiGetEventStatus(ACPI_EVENT_POWER_BUTTON, 3104 &power_button_status)) && power_button_status != 0) { 3105 AcpiClearEvent(ACPI_EVENT_POWER_BUTTON); 3106 device_printf(sc->acpi_dev, 3107 "cleared fixed power button status\n"); 3108 } 3109 } 3110 3111 intr_restore(intr); 3112 3113 /* call acpi_wakeup_machdep() again with interrupt enabled */ 3114 acpi_wakeup_machdep(sc, state, sleep_result, 1); 3115 3116 AcpiLeaveSleepStatePrep(state); 3117 3118 if (sleep_result == -1) 3119 goto backout; 3120 3121 /* Re-enable ACPI hardware on wakeup from sleep state 4. */ 3122 if (state == ACPI_STATE_S4) 3123 AcpiEnable(); 3124 } else { 3125 status = AcpiEnterSleepState(state); 3126 intr_restore(intr); 3127 AcpiLeaveSleepStatePrep(state); 3128 if (ACPI_FAILURE(status)) { 3129 device_printf(sc->acpi_dev, "AcpiEnterSleepState failed - %s\n", 3130 AcpiFormatException(status)); 3131 goto backout; 3132 } 3133 } 3134 slp_state = ACPI_SS_SLEPT; 3135 3136 /* 3137 * Back out state according to how far along we got in the suspend 3138 * process. This handles both the error and success cases. 3139 */ 3140 backout: 3141 if (slp_state >= ACPI_SS_SLP_PREP) 3142 resumeclock(); 3143 if (slp_state >= ACPI_SS_GPE_SET) { 3144 acpi_wake_prep_walk(state); 3145 sc->acpi_sstate = ACPI_STATE_S0; 3146 } 3147 if (slp_state >= ACPI_SS_DEV_SUSPEND) 3148 DEVICE_RESUME(root_bus); 3149 if (slp_state >= ACPI_SS_SLP_PREP) 3150 AcpiLeaveSleepState(state); 3151 if (slp_state >= ACPI_SS_SLEPT) { 3152 #if defined(__i386__) || defined(__amd64__) 3153 /* NB: we are still using ACPI timecounter at this point. */ 3154 resume_TSC(); 3155 #endif 3156 acpi_resync_clock(sc); 3157 acpi_enable_fixed_events(sc); 3158 } 3159 sc->acpi_next_sstate = 0; 3160 3161 mtx_unlock(&Giant); 3162 3163 #ifdef EARLY_AP_STARTUP 3164 thread_lock(curthread); 3165 sched_unbind(curthread); 3166 thread_unlock(curthread); 3167 #else 3168 if (smp_started) { 3169 thread_lock(curthread); 3170 sched_unbind(curthread); 3171 thread_unlock(curthread); 3172 } 3173 #endif 3174 3175 resume_all_proc(); 3176 3177 EVENTHANDLER_INVOKE(power_resume); 3178 3179 /* Allow another sleep request after a while. */ 3180 callout_schedule(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME); 3181 3182 /* Run /etc/rc.resume after we are back. */ 3183 if (devctl_process_running()) 3184 acpi_UserNotify("Resume", ACPI_ROOT_OBJECT, state); 3185 3186 return_ACPI_STATUS (status); 3187 } 3188 3189 static void 3190 acpi_resync_clock(struct acpi_softc *sc) 3191 { 3192 3193 /* 3194 * Warm up timecounter again and reset system clock. 3195 */ 3196 (void)timecounter->tc_get_timecount(timecounter); 3197 (void)timecounter->tc_get_timecount(timecounter); 3198 inittodr(time_second + sc->acpi_sleep_delay); 3199 } 3200 3201 /* Enable or disable the device's wake GPE. */ 3202 int 3203 acpi_wake_set_enable(device_t dev, int enable) 3204 { 3205 struct acpi_prw_data prw; 3206 ACPI_STATUS status; 3207 int flags; 3208 3209 /* Make sure the device supports waking the system and get the GPE. */ 3210 if (acpi_parse_prw(acpi_get_handle(dev), &prw) != 0) 3211 return (ENXIO); 3212 3213 flags = acpi_get_flags(dev); 3214 if (enable) { 3215 status = AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, 3216 ACPI_GPE_ENABLE); 3217 if (ACPI_FAILURE(status)) { 3218 device_printf(dev, "enable wake failed\n"); 3219 return (ENXIO); 3220 } 3221 acpi_set_flags(dev, flags | ACPI_FLAG_WAKE_ENABLED); 3222 } else { 3223 status = AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, 3224 ACPI_GPE_DISABLE); 3225 if (ACPI_FAILURE(status)) { 3226 device_printf(dev, "disable wake failed\n"); 3227 return (ENXIO); 3228 } 3229 acpi_set_flags(dev, flags & ~ACPI_FLAG_WAKE_ENABLED); 3230 } 3231 3232 return (0); 3233 } 3234 3235 static int 3236 acpi_wake_sleep_prep(ACPI_HANDLE handle, int sstate) 3237 { 3238 struct acpi_prw_data prw; 3239 device_t dev; 3240 3241 /* Check that this is a wake-capable device and get its GPE. */ 3242 if (acpi_parse_prw(handle, &prw) != 0) 3243 return (ENXIO); 3244 dev = acpi_get_device(handle); 3245 3246 /* 3247 * The destination sleep state must be less than (i.e., higher power) 3248 * or equal to the value specified by _PRW. If this GPE cannot be 3249 * enabled for the next sleep state, then disable it. If it can and 3250 * the user requested it be enabled, turn on any required power resources 3251 * and set _PSW. 3252 */ 3253 if (sstate > prw.lowest_wake) { 3254 AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, ACPI_GPE_DISABLE); 3255 if (bootverbose) 3256 device_printf(dev, "wake_prep disabled wake for %s (S%d)\n", 3257 acpi_name(handle), sstate); 3258 } else if (dev && (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) != 0) { 3259 acpi_pwr_wake_enable(handle, 1); 3260 acpi_SetInteger(handle, "_PSW", 1); 3261 if (bootverbose) 3262 device_printf(dev, "wake_prep enabled for %s (S%d)\n", 3263 acpi_name(handle), sstate); 3264 } 3265 3266 return (0); 3267 } 3268 3269 static int 3270 acpi_wake_run_prep(ACPI_HANDLE handle, int sstate) 3271 { 3272 struct acpi_prw_data prw; 3273 device_t dev; 3274 3275 /* 3276 * Check that this is a wake-capable device and get its GPE. Return 3277 * now if the user didn't enable this device for wake. 3278 */ 3279 if (acpi_parse_prw(handle, &prw) != 0) 3280 return (ENXIO); 3281 dev = acpi_get_device(handle); 3282 if (dev == NULL || (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) == 0) 3283 return (0); 3284 3285 /* 3286 * If this GPE couldn't be enabled for the previous sleep state, it was 3287 * disabled before going to sleep so re-enable it. If it was enabled, 3288 * clear _PSW and turn off any power resources it used. 3289 */ 3290 if (sstate > prw.lowest_wake) { 3291 AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, ACPI_GPE_ENABLE); 3292 if (bootverbose) 3293 device_printf(dev, "run_prep re-enabled %s\n", acpi_name(handle)); 3294 } else { 3295 acpi_SetInteger(handle, "_PSW", 0); 3296 acpi_pwr_wake_enable(handle, 0); 3297 if (bootverbose) 3298 device_printf(dev, "run_prep cleaned up for %s\n", 3299 acpi_name(handle)); 3300 } 3301 3302 return (0); 3303 } 3304 3305 static ACPI_STATUS 3306 acpi_wake_prep(ACPI_HANDLE handle, UINT32 level, void *context, void **status) 3307 { 3308 int sstate; 3309 3310 /* If suspending, run the sleep prep function, otherwise wake. */ 3311 sstate = *(int *)context; 3312 if (AcpiGbl_SystemAwakeAndRunning) 3313 acpi_wake_sleep_prep(handle, sstate); 3314 else 3315 acpi_wake_run_prep(handle, sstate); 3316 return (AE_OK); 3317 } 3318 3319 /* Walk the tree rooted at acpi0 to prep devices for suspend/resume. */ 3320 static int 3321 acpi_wake_prep_walk(int sstate) 3322 { 3323 ACPI_HANDLE sb_handle; 3324 3325 if (ACPI_SUCCESS(AcpiGetHandle(ACPI_ROOT_OBJECT, "\\_SB_", &sb_handle))) 3326 AcpiWalkNamespace(ACPI_TYPE_DEVICE, sb_handle, 100, 3327 acpi_wake_prep, NULL, &sstate, NULL); 3328 return (0); 3329 } 3330 3331 /* Walk the tree rooted at acpi0 to attach per-device wake sysctls. */ 3332 static int 3333 acpi_wake_sysctl_walk(device_t dev) 3334 { 3335 int error, i, numdevs; 3336 device_t *devlist; 3337 device_t child; 3338 ACPI_STATUS status; 3339 3340 error = device_get_children(dev, &devlist, &numdevs); 3341 if (error != 0 || numdevs == 0) { 3342 if (numdevs == 0) 3343 free(devlist, M_TEMP); 3344 return (error); 3345 } 3346 for (i = 0; i < numdevs; i++) { 3347 child = devlist[i]; 3348 acpi_wake_sysctl_walk(child); 3349 if (!device_is_attached(child)) 3350 continue; 3351 status = AcpiEvaluateObject(acpi_get_handle(child), "_PRW", NULL, NULL); 3352 if (ACPI_SUCCESS(status)) { 3353 SYSCTL_ADD_PROC(device_get_sysctl_ctx(child), 3354 SYSCTL_CHILDREN(device_get_sysctl_tree(child)), OID_AUTO, 3355 "wake", CTLTYPE_INT | CTLFLAG_RW, child, 0, 3356 acpi_wake_set_sysctl, "I", "Device set to wake the system"); 3357 } 3358 } 3359 free(devlist, M_TEMP); 3360 3361 return (0); 3362 } 3363 3364 /* Enable or disable wake from userland. */ 3365 static int 3366 acpi_wake_set_sysctl(SYSCTL_HANDLER_ARGS) 3367 { 3368 int enable, error; 3369 device_t dev; 3370 3371 dev = (device_t)arg1; 3372 enable = (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) ? 1 : 0; 3373 3374 error = sysctl_handle_int(oidp, &enable, 0, req); 3375 if (error != 0 || req->newptr == NULL) 3376 return (error); 3377 if (enable != 0 && enable != 1) 3378 return (EINVAL); 3379 3380 return (acpi_wake_set_enable(dev, enable)); 3381 } 3382 3383 /* Parse a device's _PRW into a structure. */ 3384 int 3385 acpi_parse_prw(ACPI_HANDLE h, struct acpi_prw_data *prw) 3386 { 3387 ACPI_STATUS status; 3388 ACPI_BUFFER prw_buffer; 3389 ACPI_OBJECT *res, *res2; 3390 int error, i, power_count; 3391 3392 if (h == NULL || prw == NULL) 3393 return (EINVAL); 3394 3395 /* 3396 * The _PRW object (7.2.9) is only required for devices that have the 3397 * ability to wake the system from a sleeping state. 3398 */ 3399 error = EINVAL; 3400 prw_buffer.Pointer = NULL; 3401 prw_buffer.Length = ACPI_ALLOCATE_BUFFER; 3402 status = AcpiEvaluateObject(h, "_PRW", NULL, &prw_buffer); 3403 if (ACPI_FAILURE(status)) 3404 return (ENOENT); 3405 res = (ACPI_OBJECT *)prw_buffer.Pointer; 3406 if (res == NULL) 3407 return (ENOENT); 3408 if (!ACPI_PKG_VALID(res, 2)) 3409 goto out; 3410 3411 /* 3412 * Element 1 of the _PRW object: 3413 * The lowest power system sleeping state that can be entered while still 3414 * providing wake functionality. The sleeping state being entered must 3415 * be less than (i.e., higher power) or equal to this value. 3416 */ 3417 if (acpi_PkgInt32(res, 1, &prw->lowest_wake) != 0) 3418 goto out; 3419 3420 /* 3421 * Element 0 of the _PRW object: 3422 */ 3423 switch (res->Package.Elements[0].Type) { 3424 case ACPI_TYPE_INTEGER: 3425 /* 3426 * If the data type of this package element is numeric, then this 3427 * _PRW package element is the bit index in the GPEx_EN, in the 3428 * GPE blocks described in the FADT, of the enable bit that is 3429 * enabled for the wake event. 3430 */ 3431 prw->gpe_handle = NULL; 3432 prw->gpe_bit = res->Package.Elements[0].Integer.Value; 3433 error = 0; 3434 break; 3435 case ACPI_TYPE_PACKAGE: 3436 /* 3437 * If the data type of this package element is a package, then this 3438 * _PRW package element is itself a package containing two 3439 * elements. The first is an object reference to the GPE Block 3440 * device that contains the GPE that will be triggered by the wake 3441 * event. The second element is numeric and it contains the bit 3442 * index in the GPEx_EN, in the GPE Block referenced by the 3443 * first element in the package, of the enable bit that is enabled for 3444 * the wake event. 3445 * 3446 * For example, if this field is a package then it is of the form: 3447 * Package() {\_SB.PCI0.ISA.GPE, 2} 3448 */ 3449 res2 = &res->Package.Elements[0]; 3450 if (!ACPI_PKG_VALID(res2, 2)) 3451 goto out; 3452 prw->gpe_handle = acpi_GetReference(NULL, &res2->Package.Elements[0]); 3453 if (prw->gpe_handle == NULL) 3454 goto out; 3455 if (acpi_PkgInt32(res2, 1, &prw->gpe_bit) != 0) 3456 goto out; 3457 error = 0; 3458 break; 3459 default: 3460 goto out; 3461 } 3462 3463 /* Elements 2 to N of the _PRW object are power resources. */ 3464 power_count = res->Package.Count - 2; 3465 if (power_count > ACPI_PRW_MAX_POWERRES) { 3466 printf("ACPI device %s has too many power resources\n", acpi_name(h)); 3467 power_count = 0; 3468 } 3469 prw->power_res_count = power_count; 3470 for (i = 0; i < power_count; i++) 3471 prw->power_res[i] = res->Package.Elements[i]; 3472 3473 out: 3474 if (prw_buffer.Pointer != NULL) 3475 AcpiOsFree(prw_buffer.Pointer); 3476 return (error); 3477 } 3478 3479 /* 3480 * ACPI Event Handlers 3481 */ 3482 3483 /* System Event Handlers (registered by EVENTHANDLER_REGISTER) */ 3484 3485 static void 3486 acpi_system_eventhandler_sleep(void *arg, int state) 3487 { 3488 struct acpi_softc *sc = (struct acpi_softc *)arg; 3489 int ret; 3490 3491 ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state); 3492 3493 /* Check if button action is disabled or unknown. */ 3494 if (state == ACPI_STATE_UNKNOWN) 3495 return; 3496 3497 /* Request that the system prepare to enter the given suspend state. */ 3498 ret = acpi_ReqSleepState(sc, state); 3499 if (ret != 0) 3500 device_printf(sc->acpi_dev, 3501 "request to enter state S%d failed (err %d)\n", state, ret); 3502 3503 return_VOID; 3504 } 3505 3506 static void 3507 acpi_system_eventhandler_wakeup(void *arg, int state) 3508 { 3509 3510 ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state); 3511 3512 /* Currently, nothing to do for wakeup. */ 3513 3514 return_VOID; 3515 } 3516 3517 /* 3518 * ACPICA Event Handlers (FixedEvent, also called from button notify handler) 3519 */ 3520 static void 3521 acpi_invoke_sleep_eventhandler(void *context) 3522 { 3523 3524 EVENTHANDLER_INVOKE(acpi_sleep_event, *(int *)context); 3525 } 3526 3527 static void 3528 acpi_invoke_wake_eventhandler(void *context) 3529 { 3530 3531 EVENTHANDLER_INVOKE(acpi_wakeup_event, *(int *)context); 3532 } 3533 3534 UINT32 3535 acpi_event_power_button_sleep(void *context) 3536 { 3537 struct acpi_softc *sc = (struct acpi_softc *)context; 3538 3539 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3540 3541 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3542 acpi_invoke_sleep_eventhandler, &sc->acpi_power_button_sx))) 3543 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); 3544 return_VALUE (ACPI_INTERRUPT_HANDLED); 3545 } 3546 3547 UINT32 3548 acpi_event_power_button_wake(void *context) 3549 { 3550 struct acpi_softc *sc = (struct acpi_softc *)context; 3551 3552 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3553 3554 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3555 acpi_invoke_wake_eventhandler, &sc->acpi_power_button_sx))) 3556 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); 3557 return_VALUE (ACPI_INTERRUPT_HANDLED); 3558 } 3559 3560 UINT32 3561 acpi_event_sleep_button_sleep(void *context) 3562 { 3563 struct acpi_softc *sc = (struct acpi_softc *)context; 3564 3565 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3566 3567 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3568 acpi_invoke_sleep_eventhandler, &sc->acpi_sleep_button_sx))) 3569 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); 3570 return_VALUE (ACPI_INTERRUPT_HANDLED); 3571 } 3572 3573 UINT32 3574 acpi_event_sleep_button_wake(void *context) 3575 { 3576 struct acpi_softc *sc = (struct acpi_softc *)context; 3577 3578 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3579 3580 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3581 acpi_invoke_wake_eventhandler, &sc->acpi_sleep_button_sx))) 3582 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); 3583 return_VALUE (ACPI_INTERRUPT_HANDLED); 3584 } 3585 3586 /* 3587 * XXX This static buffer is suboptimal. There is no locking so only 3588 * use this for single-threaded callers. 3589 */ 3590 char * 3591 acpi_name(ACPI_HANDLE handle) 3592 { 3593 ACPI_BUFFER buf; 3594 static char data[256]; 3595 3596 buf.Length = sizeof(data); 3597 buf.Pointer = data; 3598 3599 if (handle && ACPI_SUCCESS(AcpiGetName(handle, ACPI_FULL_PATHNAME, &buf))) 3600 return (data); 3601 return ("(unknown)"); 3602 } 3603 3604 /* 3605 * Debugging/bug-avoidance. Avoid trying to fetch info on various 3606 * parts of the namespace. 3607 */ 3608 int 3609 acpi_avoid(ACPI_HANDLE handle) 3610 { 3611 char *cp, *env, *np; 3612 int len; 3613 3614 np = acpi_name(handle); 3615 if (*np == '\\') 3616 np++; 3617 if ((env = kern_getenv("debug.acpi.avoid")) == NULL) 3618 return (0); 3619 3620 /* Scan the avoid list checking for a match */ 3621 cp = env; 3622 for (;;) { 3623 while (*cp != 0 && isspace(*cp)) 3624 cp++; 3625 if (*cp == 0) 3626 break; 3627 len = 0; 3628 while (cp[len] != 0 && !isspace(cp[len])) 3629 len++; 3630 if (!strncmp(cp, np, len)) { 3631 freeenv(env); 3632 return(1); 3633 } 3634 cp += len; 3635 } 3636 freeenv(env); 3637 3638 return (0); 3639 } 3640 3641 /* 3642 * Debugging/bug-avoidance. Disable ACPI subsystem components. 3643 */ 3644 int 3645 acpi_disabled(char *subsys) 3646 { 3647 char *cp, *env; 3648 int len; 3649 3650 if ((env = kern_getenv("debug.acpi.disabled")) == NULL) 3651 return (0); 3652 if (strcmp(env, "all") == 0) { 3653 freeenv(env); 3654 return (1); 3655 } 3656 3657 /* Scan the disable list, checking for a match. */ 3658 cp = env; 3659 for (;;) { 3660 while (*cp != '\0' && isspace(*cp)) 3661 cp++; 3662 if (*cp == '\0') 3663 break; 3664 len = 0; 3665 while (cp[len] != '\0' && !isspace(cp[len])) 3666 len++; 3667 if (strncmp(cp, subsys, len) == 0) { 3668 freeenv(env); 3669 return (1); 3670 } 3671 cp += len; 3672 } 3673 freeenv(env); 3674 3675 return (0); 3676 } 3677 3678 static void 3679 acpi_lookup(void *arg, const char *name, device_t *dev) 3680 { 3681 ACPI_HANDLE handle; 3682 3683 if (*dev != NULL) 3684 return; 3685 3686 /* 3687 * Allow any handle name that is specified as an absolute path and 3688 * starts with '\'. We could restrict this to \_SB and friends, 3689 * but see acpi_probe_children() for notes on why we scan the entire 3690 * namespace for devices. 3691 * 3692 * XXX: The pathname argument to AcpiGetHandle() should be fixed to 3693 * be const. 3694 */ 3695 if (name[0] != '\\') 3696 return; 3697 if (ACPI_FAILURE(AcpiGetHandle(ACPI_ROOT_OBJECT, __DECONST(char *, name), 3698 &handle))) 3699 return; 3700 *dev = acpi_get_device(handle); 3701 } 3702 3703 /* 3704 * Control interface. 3705 * 3706 * We multiplex ioctls for all participating ACPI devices here. Individual 3707 * drivers wanting to be accessible via /dev/acpi should use the 3708 * register/deregister interface to make their handlers visible. 3709 */ 3710 struct acpi_ioctl_hook 3711 { 3712 TAILQ_ENTRY(acpi_ioctl_hook) link; 3713 u_long cmd; 3714 acpi_ioctl_fn fn; 3715 void *arg; 3716 }; 3717 3718 static TAILQ_HEAD(,acpi_ioctl_hook) acpi_ioctl_hooks; 3719 static int acpi_ioctl_hooks_initted; 3720 3721 int 3722 acpi_register_ioctl(u_long cmd, acpi_ioctl_fn fn, void *arg) 3723 { 3724 struct acpi_ioctl_hook *hp; 3725 3726 if ((hp = malloc(sizeof(*hp), M_ACPIDEV, M_NOWAIT)) == NULL) 3727 return (ENOMEM); 3728 hp->cmd = cmd; 3729 hp->fn = fn; 3730 hp->arg = arg; 3731 3732 ACPI_LOCK(acpi); 3733 if (acpi_ioctl_hooks_initted == 0) { 3734 TAILQ_INIT(&acpi_ioctl_hooks); 3735 acpi_ioctl_hooks_initted = 1; 3736 } 3737 TAILQ_INSERT_TAIL(&acpi_ioctl_hooks, hp, link); 3738 ACPI_UNLOCK(acpi); 3739 3740 return (0); 3741 } 3742 3743 void 3744 acpi_deregister_ioctl(u_long cmd, acpi_ioctl_fn fn) 3745 { 3746 struct acpi_ioctl_hook *hp; 3747 3748 ACPI_LOCK(acpi); 3749 TAILQ_FOREACH(hp, &acpi_ioctl_hooks, link) 3750 if (hp->cmd == cmd && hp->fn == fn) 3751 break; 3752 3753 if (hp != NULL) { 3754 TAILQ_REMOVE(&acpi_ioctl_hooks, hp, link); 3755 free(hp, M_ACPIDEV); 3756 } 3757 ACPI_UNLOCK(acpi); 3758 } 3759 3760 static int 3761 acpiopen(struct cdev *dev, int flag, int fmt, struct thread *td) 3762 { 3763 return (0); 3764 } 3765 3766 static int 3767 acpiclose(struct cdev *dev, int flag, int fmt, struct thread *td) 3768 { 3769 return (0); 3770 } 3771 3772 static int 3773 acpiioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 3774 { 3775 struct acpi_softc *sc; 3776 struct acpi_ioctl_hook *hp; 3777 int error, state; 3778 3779 error = 0; 3780 hp = NULL; 3781 sc = dev->si_drv1; 3782 3783 /* 3784 * Scan the list of registered ioctls, looking for handlers. 3785 */ 3786 ACPI_LOCK(acpi); 3787 if (acpi_ioctl_hooks_initted) 3788 TAILQ_FOREACH(hp, &acpi_ioctl_hooks, link) { 3789 if (hp->cmd == cmd) 3790 break; 3791 } 3792 ACPI_UNLOCK(acpi); 3793 if (hp) 3794 return (hp->fn(cmd, addr, hp->arg)); 3795 3796 /* 3797 * Core ioctls are not permitted for non-writable user. 3798 * Currently, other ioctls just fetch information. 3799 * Not changing system behavior. 3800 */ 3801 if ((flag & FWRITE) == 0) 3802 return (EPERM); 3803 3804 /* Core system ioctls. */ 3805 switch (cmd) { 3806 case ACPIIO_REQSLPSTATE: 3807 state = *(int *)addr; 3808 if (state != ACPI_STATE_S5) 3809 return (acpi_ReqSleepState(sc, state)); 3810 device_printf(sc->acpi_dev, "power off via acpi ioctl not supported\n"); 3811 error = EOPNOTSUPP; 3812 break; 3813 case ACPIIO_ACKSLPSTATE: 3814 error = *(int *)addr; 3815 error = acpi_AckSleepState(sc->acpi_clone, error); 3816 break; 3817 case ACPIIO_SETSLPSTATE: /* DEPRECATED */ 3818 state = *(int *)addr; 3819 if (state < ACPI_STATE_S0 || state > ACPI_S_STATES_MAX) 3820 return (EINVAL); 3821 if (!acpi_sleep_states[state]) 3822 return (EOPNOTSUPP); 3823 if (ACPI_FAILURE(acpi_SetSleepState(sc, state))) 3824 error = ENXIO; 3825 break; 3826 default: 3827 error = ENXIO; 3828 break; 3829 } 3830 3831 return (error); 3832 } 3833 3834 static int 3835 acpi_sname2sstate(const char *sname) 3836 { 3837 int sstate; 3838 3839 if (toupper(sname[0]) == 'S') { 3840 sstate = sname[1] - '0'; 3841 if (sstate >= ACPI_STATE_S0 && sstate <= ACPI_STATE_S5 && 3842 sname[2] == '\0') 3843 return (sstate); 3844 } else if (strcasecmp(sname, "NONE") == 0) 3845 return (ACPI_STATE_UNKNOWN); 3846 return (-1); 3847 } 3848 3849 static const char * 3850 acpi_sstate2sname(int sstate) 3851 { 3852 static const char *snames[] = { "S0", "S1", "S2", "S3", "S4", "S5" }; 3853 3854 if (sstate >= ACPI_STATE_S0 && sstate <= ACPI_STATE_S5) 3855 return (snames[sstate]); 3856 else if (sstate == ACPI_STATE_UNKNOWN) 3857 return ("NONE"); 3858 return (NULL); 3859 } 3860 3861 static int 3862 acpi_supported_sleep_state_sysctl(SYSCTL_HANDLER_ARGS) 3863 { 3864 int error; 3865 struct sbuf sb; 3866 UINT8 state; 3867 3868 sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND); 3869 for (state = ACPI_STATE_S1; state < ACPI_S_STATE_COUNT; state++) 3870 if (acpi_sleep_states[state]) 3871 sbuf_printf(&sb, "%s ", acpi_sstate2sname(state)); 3872 sbuf_trim(&sb); 3873 sbuf_finish(&sb); 3874 error = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req); 3875 sbuf_delete(&sb); 3876 return (error); 3877 } 3878 3879 static int 3880 acpi_sleep_state_sysctl(SYSCTL_HANDLER_ARGS) 3881 { 3882 char sleep_state[10]; 3883 int error, new_state, old_state; 3884 3885 old_state = *(int *)oidp->oid_arg1; 3886 strlcpy(sleep_state, acpi_sstate2sname(old_state), sizeof(sleep_state)); 3887 error = sysctl_handle_string(oidp, sleep_state, sizeof(sleep_state), req); 3888 if (error == 0 && req->newptr != NULL) { 3889 new_state = acpi_sname2sstate(sleep_state); 3890 if (new_state < ACPI_STATE_S1) 3891 return (EINVAL); 3892 if (new_state < ACPI_S_STATE_COUNT && !acpi_sleep_states[new_state]) 3893 return (EOPNOTSUPP); 3894 if (new_state != old_state) 3895 *(int *)oidp->oid_arg1 = new_state; 3896 } 3897 return (error); 3898 } 3899 3900 /* Inform devctl(4) when we receive a Notify. */ 3901 void 3902 acpi_UserNotify(const char *subsystem, ACPI_HANDLE h, uint8_t notify) 3903 { 3904 char notify_buf[16]; 3905 ACPI_BUFFER handle_buf; 3906 ACPI_STATUS status; 3907 3908 if (subsystem == NULL) 3909 return; 3910 3911 handle_buf.Pointer = NULL; 3912 handle_buf.Length = ACPI_ALLOCATE_BUFFER; 3913 status = AcpiNsHandleToPathname(h, &handle_buf, FALSE); 3914 if (ACPI_FAILURE(status)) 3915 return; 3916 snprintf(notify_buf, sizeof(notify_buf), "notify=0x%02x", notify); 3917 devctl_notify("ACPI", subsystem, handle_buf.Pointer, notify_buf); 3918 AcpiOsFree(handle_buf.Pointer); 3919 } 3920 3921 #ifdef ACPI_DEBUG 3922 /* 3923 * Support for parsing debug options from the kernel environment. 3924 * 3925 * Bits may be set in the AcpiDbgLayer and AcpiDbgLevel debug registers 3926 * by specifying the names of the bits in the debug.acpi.layer and 3927 * debug.acpi.level environment variables. Bits may be unset by 3928 * prefixing the bit name with !. 3929 */ 3930 struct debugtag 3931 { 3932 char *name; 3933 UINT32 value; 3934 }; 3935 3936 static struct debugtag dbg_layer[] = { 3937 {"ACPI_UTILITIES", ACPI_UTILITIES}, 3938 {"ACPI_HARDWARE", ACPI_HARDWARE}, 3939 {"ACPI_EVENTS", ACPI_EVENTS}, 3940 {"ACPI_TABLES", ACPI_TABLES}, 3941 {"ACPI_NAMESPACE", ACPI_NAMESPACE}, 3942 {"ACPI_PARSER", ACPI_PARSER}, 3943 {"ACPI_DISPATCHER", ACPI_DISPATCHER}, 3944 {"ACPI_EXECUTER", ACPI_EXECUTER}, 3945 {"ACPI_RESOURCES", ACPI_RESOURCES}, 3946 {"ACPI_CA_DEBUGGER", ACPI_CA_DEBUGGER}, 3947 {"ACPI_OS_SERVICES", ACPI_OS_SERVICES}, 3948 {"ACPI_CA_DISASSEMBLER", ACPI_CA_DISASSEMBLER}, 3949 {"ACPI_ALL_COMPONENTS", ACPI_ALL_COMPONENTS}, 3950 3951 {"ACPI_AC_ADAPTER", ACPI_AC_ADAPTER}, 3952 {"ACPI_BATTERY", ACPI_BATTERY}, 3953 {"ACPI_BUS", ACPI_BUS}, 3954 {"ACPI_BUTTON", ACPI_BUTTON}, 3955 {"ACPI_EC", ACPI_EC}, 3956 {"ACPI_FAN", ACPI_FAN}, 3957 {"ACPI_POWERRES", ACPI_POWERRES}, 3958 {"ACPI_PROCESSOR", ACPI_PROCESSOR}, 3959 {"ACPI_THERMAL", ACPI_THERMAL}, 3960 {"ACPI_TIMER", ACPI_TIMER}, 3961 {"ACPI_ALL_DRIVERS", ACPI_ALL_DRIVERS}, 3962 {NULL, 0} 3963 }; 3964 3965 static struct debugtag dbg_level[] = { 3966 {"ACPI_LV_INIT", ACPI_LV_INIT}, 3967 {"ACPI_LV_DEBUG_OBJECT", ACPI_LV_DEBUG_OBJECT}, 3968 {"ACPI_LV_INFO", ACPI_LV_INFO}, 3969 {"ACPI_LV_REPAIR", ACPI_LV_REPAIR}, 3970 {"ACPI_LV_ALL_EXCEPTIONS", ACPI_LV_ALL_EXCEPTIONS}, 3971 3972 /* Trace verbosity level 1 [Standard Trace Level] */ 3973 {"ACPI_LV_INIT_NAMES", ACPI_LV_INIT_NAMES}, 3974 {"ACPI_LV_PARSE", ACPI_LV_PARSE}, 3975 {"ACPI_LV_LOAD", ACPI_LV_LOAD}, 3976 {"ACPI_LV_DISPATCH", ACPI_LV_DISPATCH}, 3977 {"ACPI_LV_EXEC", ACPI_LV_EXEC}, 3978 {"ACPI_LV_NAMES", ACPI_LV_NAMES}, 3979 {"ACPI_LV_OPREGION", ACPI_LV_OPREGION}, 3980 {"ACPI_LV_BFIELD", ACPI_LV_BFIELD}, 3981 {"ACPI_LV_TABLES", ACPI_LV_TABLES}, 3982 {"ACPI_LV_VALUES", ACPI_LV_VALUES}, 3983 {"ACPI_LV_OBJECTS", ACPI_LV_OBJECTS}, 3984 {"ACPI_LV_RESOURCES", ACPI_LV_RESOURCES}, 3985 {"ACPI_LV_USER_REQUESTS", ACPI_LV_USER_REQUESTS}, 3986 {"ACPI_LV_PACKAGE", ACPI_LV_PACKAGE}, 3987 {"ACPI_LV_VERBOSITY1", ACPI_LV_VERBOSITY1}, 3988 3989 /* Trace verbosity level 2 [Function tracing and memory allocation] */ 3990 {"ACPI_LV_ALLOCATIONS", ACPI_LV_ALLOCATIONS}, 3991 {"ACPI_LV_FUNCTIONS", ACPI_LV_FUNCTIONS}, 3992 {"ACPI_LV_OPTIMIZATIONS", ACPI_LV_OPTIMIZATIONS}, 3993 {"ACPI_LV_VERBOSITY2", ACPI_LV_VERBOSITY2}, 3994 {"ACPI_LV_ALL", ACPI_LV_ALL}, 3995 3996 /* Trace verbosity level 3 [Threading, I/O, and Interrupts] */ 3997 {"ACPI_LV_MUTEX", ACPI_LV_MUTEX}, 3998 {"ACPI_LV_THREADS", ACPI_LV_THREADS}, 3999 {"ACPI_LV_IO", ACPI_LV_IO}, 4000 {"ACPI_LV_INTERRUPTS", ACPI_LV_INTERRUPTS}, 4001 {"ACPI_LV_VERBOSITY3", ACPI_LV_VERBOSITY3}, 4002 4003 /* Exceptionally verbose output -- also used in the global "DebugLevel" */ 4004 {"ACPI_LV_AML_DISASSEMBLE", ACPI_LV_AML_DISASSEMBLE}, 4005 {"ACPI_LV_VERBOSE_INFO", ACPI_LV_VERBOSE_INFO}, 4006 {"ACPI_LV_FULL_TABLES", ACPI_LV_FULL_TABLES}, 4007 {"ACPI_LV_EVENTS", ACPI_LV_EVENTS}, 4008 {"ACPI_LV_VERBOSE", ACPI_LV_VERBOSE}, 4009 {NULL, 0} 4010 }; 4011 4012 static void 4013 acpi_parse_debug(char *cp, struct debugtag *tag, UINT32 *flag) 4014 { 4015 char *ep; 4016 int i, l; 4017 int set; 4018 4019 while (*cp) { 4020 if (isspace(*cp)) { 4021 cp++; 4022 continue; 4023 } 4024 ep = cp; 4025 while (*ep && !isspace(*ep)) 4026 ep++; 4027 if (*cp == '!') { 4028 set = 0; 4029 cp++; 4030 if (cp == ep) 4031 continue; 4032 } else { 4033 set = 1; 4034 } 4035 l = ep - cp; 4036 for (i = 0; tag[i].name != NULL; i++) { 4037 if (!strncmp(cp, tag[i].name, l)) { 4038 if (set) 4039 *flag |= tag[i].value; 4040 else 4041 *flag &= ~tag[i].value; 4042 } 4043 } 4044 cp = ep; 4045 } 4046 } 4047 4048 static void 4049 acpi_set_debugging(void *junk) 4050 { 4051 char *layer, *level; 4052 4053 if (cold) { 4054 AcpiDbgLayer = 0; 4055 AcpiDbgLevel = 0; 4056 } 4057 4058 layer = kern_getenv("debug.acpi.layer"); 4059 level = kern_getenv("debug.acpi.level"); 4060 if (layer == NULL && level == NULL) 4061 return; 4062 4063 printf("ACPI set debug"); 4064 if (layer != NULL) { 4065 if (strcmp("NONE", layer) != 0) 4066 printf(" layer '%s'", layer); 4067 acpi_parse_debug(layer, &dbg_layer[0], &AcpiDbgLayer); 4068 freeenv(layer); 4069 } 4070 if (level != NULL) { 4071 if (strcmp("NONE", level) != 0) 4072 printf(" level '%s'", level); 4073 acpi_parse_debug(level, &dbg_level[0], &AcpiDbgLevel); 4074 freeenv(level); 4075 } 4076 printf("\n"); 4077 } 4078 4079 SYSINIT(acpi_debugging, SI_SUB_TUNABLES, SI_ORDER_ANY, acpi_set_debugging, 4080 NULL); 4081 4082 static int 4083 acpi_debug_sysctl(SYSCTL_HANDLER_ARGS) 4084 { 4085 int error, *dbg; 4086 struct debugtag *tag; 4087 struct sbuf sb; 4088 char temp[128]; 4089 4090 if (sbuf_new(&sb, NULL, 128, SBUF_AUTOEXTEND) == NULL) 4091 return (ENOMEM); 4092 if (strcmp(oidp->oid_arg1, "debug.acpi.layer") == 0) { 4093 tag = &dbg_layer[0]; 4094 dbg = &AcpiDbgLayer; 4095 } else { 4096 tag = &dbg_level[0]; 4097 dbg = &AcpiDbgLevel; 4098 } 4099 4100 /* Get old values if this is a get request. */ 4101 ACPI_SERIAL_BEGIN(acpi); 4102 if (*dbg == 0) { 4103 sbuf_cpy(&sb, "NONE"); 4104 } else if (req->newptr == NULL) { 4105 for (; tag->name != NULL; tag++) { 4106 if ((*dbg & tag->value) == tag->value) 4107 sbuf_printf(&sb, "%s ", tag->name); 4108 } 4109 } 4110 sbuf_trim(&sb); 4111 sbuf_finish(&sb); 4112 strlcpy(temp, sbuf_data(&sb), sizeof(temp)); 4113 sbuf_delete(&sb); 4114 4115 error = sysctl_handle_string(oidp, temp, sizeof(temp), req); 4116 4117 /* Check for error or no change */ 4118 if (error == 0 && req->newptr != NULL) { 4119 *dbg = 0; 4120 kern_setenv((char *)oidp->oid_arg1, temp); 4121 acpi_set_debugging(NULL); 4122 } 4123 ACPI_SERIAL_END(acpi); 4124 4125 return (error); 4126 } 4127 4128 SYSCTL_PROC(_debug_acpi, OID_AUTO, layer, CTLFLAG_RW | CTLTYPE_STRING, 4129 "debug.acpi.layer", 0, acpi_debug_sysctl, "A", ""); 4130 SYSCTL_PROC(_debug_acpi, OID_AUTO, level, CTLFLAG_RW | CTLTYPE_STRING, 4131 "debug.acpi.level", 0, acpi_debug_sysctl, "A", ""); 4132 #endif /* ACPI_DEBUG */ 4133 4134 static int 4135 acpi_debug_objects_sysctl(SYSCTL_HANDLER_ARGS) 4136 { 4137 int error; 4138 int old; 4139 4140 old = acpi_debug_objects; 4141 error = sysctl_handle_int(oidp, &acpi_debug_objects, 0, req); 4142 if (error != 0 || req->newptr == NULL) 4143 return (error); 4144 if (old == acpi_debug_objects || (old && acpi_debug_objects)) 4145 return (0); 4146 4147 ACPI_SERIAL_BEGIN(acpi); 4148 AcpiGbl_EnableAmlDebugObject = acpi_debug_objects ? TRUE : FALSE; 4149 ACPI_SERIAL_END(acpi); 4150 4151 return (0); 4152 } 4153 4154 static int 4155 acpi_parse_interfaces(char *str, struct acpi_interface *iface) 4156 { 4157 char *p; 4158 size_t len; 4159 int i, j; 4160 4161 p = str; 4162 while (isspace(*p) || *p == ',') 4163 p++; 4164 len = strlen(p); 4165 if (len == 0) 4166 return (0); 4167 p = strdup(p, M_TEMP); 4168 for (i = 0; i < len; i++) 4169 if (p[i] == ',') 4170 p[i] = '\0'; 4171 i = j = 0; 4172 while (i < len) 4173 if (isspace(p[i]) || p[i] == '\0') 4174 i++; 4175 else { 4176 i += strlen(p + i) + 1; 4177 j++; 4178 } 4179 if (j == 0) { 4180 free(p, M_TEMP); 4181 return (0); 4182 } 4183 iface->data = malloc(sizeof(*iface->data) * j, M_TEMP, M_WAITOK); 4184 iface->num = j; 4185 i = j = 0; 4186 while (i < len) 4187 if (isspace(p[i]) || p[i] == '\0') 4188 i++; 4189 else { 4190 iface->data[j] = p + i; 4191 i += strlen(p + i) + 1; 4192 j++; 4193 } 4194 4195 return (j); 4196 } 4197 4198 static void 4199 acpi_free_interfaces(struct acpi_interface *iface) 4200 { 4201 4202 free(iface->data[0], M_TEMP); 4203 free(iface->data, M_TEMP); 4204 } 4205 4206 static void 4207 acpi_reset_interfaces(device_t dev) 4208 { 4209 struct acpi_interface list; 4210 ACPI_STATUS status; 4211 int i; 4212 4213 if (acpi_parse_interfaces(acpi_install_interface, &list) > 0) { 4214 for (i = 0; i < list.num; i++) { 4215 status = AcpiInstallInterface(list.data[i]); 4216 if (ACPI_FAILURE(status)) 4217 device_printf(dev, 4218 "failed to install _OSI(\"%s\"): %s\n", 4219 list.data[i], AcpiFormatException(status)); 4220 else if (bootverbose) 4221 device_printf(dev, "installed _OSI(\"%s\")\n", 4222 list.data[i]); 4223 } 4224 acpi_free_interfaces(&list); 4225 } 4226 if (acpi_parse_interfaces(acpi_remove_interface, &list) > 0) { 4227 for (i = 0; i < list.num; i++) { 4228 status = AcpiRemoveInterface(list.data[i]); 4229 if (ACPI_FAILURE(status)) 4230 device_printf(dev, 4231 "failed to remove _OSI(\"%s\"): %s\n", 4232 list.data[i], AcpiFormatException(status)); 4233 else if (bootverbose) 4234 device_printf(dev, "removed _OSI(\"%s\")\n", 4235 list.data[i]); 4236 } 4237 acpi_free_interfaces(&list); 4238 } 4239 } 4240 4241 static int 4242 acpi_pm_func(u_long cmd, void *arg, ...) 4243 { 4244 int state, acpi_state; 4245 int error; 4246 struct acpi_softc *sc; 4247 va_list ap; 4248 4249 error = 0; 4250 switch (cmd) { 4251 case POWER_CMD_SUSPEND: 4252 sc = (struct acpi_softc *)arg; 4253 if (sc == NULL) { 4254 error = EINVAL; 4255 goto out; 4256 } 4257 4258 va_start(ap, arg); 4259 state = va_arg(ap, int); 4260 va_end(ap); 4261 4262 switch (state) { 4263 case POWER_SLEEP_STATE_STANDBY: 4264 acpi_state = sc->acpi_standby_sx; 4265 break; 4266 case POWER_SLEEP_STATE_SUSPEND: 4267 acpi_state = sc->acpi_suspend_sx; 4268 break; 4269 case POWER_SLEEP_STATE_HIBERNATE: 4270 acpi_state = ACPI_STATE_S4; 4271 break; 4272 default: 4273 error = EINVAL; 4274 goto out; 4275 } 4276 4277 if (ACPI_FAILURE(acpi_EnterSleepState(sc, acpi_state))) 4278 error = ENXIO; 4279 break; 4280 default: 4281 error = EINVAL; 4282 goto out; 4283 } 4284 4285 out: 4286 return (error); 4287 } 4288 4289 static void 4290 acpi_pm_register(void *arg) 4291 { 4292 if (!cold || resource_disabled("acpi", 0)) 4293 return; 4294 4295 power_pm_register(POWER_PM_TYPE_ACPI, acpi_pm_func, NULL); 4296 } 4297 4298 SYSINIT(power, SI_SUB_KLD, SI_ORDER_ANY, acpi_pm_register, NULL); 4299