1 /*- 2 * Copyright (c) 2000 Takanori Watanabe <takawata@jp.freebsd.org> 3 * Copyright (c) 2000 Mitsuru IWASAKI <iwasaki@jp.freebsd.org> 4 * Copyright (c) 2000, 2001 Michael Smith 5 * Copyright (c) 2000 BSDi 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include "opt_acpi.h" 34 #include "opt_device_numa.h" 35 36 #include <sys/param.h> 37 #include <sys/kernel.h> 38 #include <sys/proc.h> 39 #include <sys/fcntl.h> 40 #include <sys/malloc.h> 41 #include <sys/module.h> 42 #include <sys/bus.h> 43 #include <sys/conf.h> 44 #include <sys/ioccom.h> 45 #include <sys/reboot.h> 46 #include <sys/sysctl.h> 47 #include <sys/ctype.h> 48 #include <sys/linker.h> 49 #include <sys/power.h> 50 #include <sys/sbuf.h> 51 #include <sys/sched.h> 52 #include <sys/smp.h> 53 #include <sys/timetc.h> 54 55 #if defined(__i386__) || defined(__amd64__) 56 #include <machine/pci_cfgreg.h> 57 #endif 58 #include <machine/resource.h> 59 #include <machine/bus.h> 60 #include <sys/rman.h> 61 #include <isa/isavar.h> 62 #include <isa/pnpvar.h> 63 64 #include <contrib/dev/acpica/include/acpi.h> 65 #include <contrib/dev/acpica/include/accommon.h> 66 #include <contrib/dev/acpica/include/acnamesp.h> 67 68 #include <dev/acpica/acpivar.h> 69 #include <dev/acpica/acpiio.h> 70 71 #include <vm/vm_param.h> 72 73 static MALLOC_DEFINE(M_ACPIDEV, "acpidev", "ACPI devices"); 74 75 /* Hooks for the ACPI CA debugging infrastructure */ 76 #define _COMPONENT ACPI_BUS 77 ACPI_MODULE_NAME("ACPI") 78 79 static d_open_t acpiopen; 80 static d_close_t acpiclose; 81 static d_ioctl_t acpiioctl; 82 83 static struct cdevsw acpi_cdevsw = { 84 .d_version = D_VERSION, 85 .d_open = acpiopen, 86 .d_close = acpiclose, 87 .d_ioctl = acpiioctl, 88 .d_name = "acpi", 89 }; 90 91 struct acpi_interface { 92 ACPI_STRING *data; 93 int num; 94 }; 95 96 /* Global mutex for locking access to the ACPI subsystem. */ 97 struct mtx acpi_mutex; 98 struct callout acpi_sleep_timer; 99 100 /* Bitmap of device quirks. */ 101 int acpi_quirks; 102 103 /* Supported sleep states. */ 104 static BOOLEAN acpi_sleep_states[ACPI_S_STATE_COUNT]; 105 106 static void acpi_lookup(void *arg, const char *name, device_t *dev); 107 static int acpi_modevent(struct module *mod, int event, void *junk); 108 static int acpi_probe(device_t dev); 109 static int acpi_attach(device_t dev); 110 static int acpi_suspend(device_t dev); 111 static int acpi_resume(device_t dev); 112 static int acpi_shutdown(device_t dev); 113 static device_t acpi_add_child(device_t bus, u_int order, const char *name, 114 int unit); 115 static int acpi_print_child(device_t bus, device_t child); 116 static void acpi_probe_nomatch(device_t bus, device_t child); 117 static void acpi_driver_added(device_t dev, driver_t *driver); 118 static int acpi_read_ivar(device_t dev, device_t child, int index, 119 uintptr_t *result); 120 static int acpi_write_ivar(device_t dev, device_t child, int index, 121 uintptr_t value); 122 static struct resource_list *acpi_get_rlist(device_t dev, device_t child); 123 static void acpi_reserve_resources(device_t dev); 124 static int acpi_sysres_alloc(device_t dev); 125 static int acpi_set_resource(device_t dev, device_t child, int type, 126 int rid, rman_res_t start, rman_res_t count); 127 static struct resource *acpi_alloc_resource(device_t bus, device_t child, 128 int type, int *rid, rman_res_t start, rman_res_t end, 129 rman_res_t count, u_int flags); 130 static int acpi_adjust_resource(device_t bus, device_t child, int type, 131 struct resource *r, rman_res_t start, rman_res_t end); 132 static int acpi_release_resource(device_t bus, device_t child, int type, 133 int rid, struct resource *r); 134 static void acpi_delete_resource(device_t bus, device_t child, int type, 135 int rid); 136 static uint32_t acpi_isa_get_logicalid(device_t dev); 137 static int acpi_isa_get_compatid(device_t dev, uint32_t *cids, int count); 138 static char *acpi_device_id_probe(device_t bus, device_t dev, char **ids); 139 static ACPI_STATUS acpi_device_eval_obj(device_t bus, device_t dev, 140 ACPI_STRING pathname, ACPI_OBJECT_LIST *parameters, 141 ACPI_BUFFER *ret); 142 static ACPI_STATUS acpi_device_scan_cb(ACPI_HANDLE h, UINT32 level, 143 void *context, void **retval); 144 static ACPI_STATUS acpi_device_scan_children(device_t bus, device_t dev, 145 int max_depth, acpi_scan_cb_t user_fn, void *arg); 146 static int acpi_set_powerstate(device_t child, int state); 147 static int acpi_isa_pnp_probe(device_t bus, device_t child, 148 struct isa_pnp_id *ids); 149 static void acpi_probe_children(device_t bus); 150 static void acpi_probe_order(ACPI_HANDLE handle, int *order); 151 static ACPI_STATUS acpi_probe_child(ACPI_HANDLE handle, UINT32 level, 152 void *context, void **status); 153 static void acpi_sleep_enable(void *arg); 154 static ACPI_STATUS acpi_sleep_disable(struct acpi_softc *sc); 155 static ACPI_STATUS acpi_EnterSleepState(struct acpi_softc *sc, int state); 156 static void acpi_shutdown_final(void *arg, int howto); 157 static void acpi_enable_fixed_events(struct acpi_softc *sc); 158 static BOOLEAN acpi_has_hid(ACPI_HANDLE handle); 159 static void acpi_resync_clock(struct acpi_softc *sc); 160 static int acpi_wake_sleep_prep(ACPI_HANDLE handle, int sstate); 161 static int acpi_wake_run_prep(ACPI_HANDLE handle, int sstate); 162 static int acpi_wake_prep_walk(int sstate); 163 static int acpi_wake_sysctl_walk(device_t dev); 164 static int acpi_wake_set_sysctl(SYSCTL_HANDLER_ARGS); 165 static void acpi_system_eventhandler_sleep(void *arg, int state); 166 static void acpi_system_eventhandler_wakeup(void *arg, int state); 167 static int acpi_sname2sstate(const char *sname); 168 static const char *acpi_sstate2sname(int sstate); 169 static int acpi_supported_sleep_state_sysctl(SYSCTL_HANDLER_ARGS); 170 static int acpi_sleep_state_sysctl(SYSCTL_HANDLER_ARGS); 171 static int acpi_debug_objects_sysctl(SYSCTL_HANDLER_ARGS); 172 static int acpi_pm_func(u_long cmd, void *arg, ...); 173 static int acpi_child_location_str_method(device_t acdev, device_t child, 174 char *buf, size_t buflen); 175 static int acpi_child_pnpinfo_str_method(device_t acdev, device_t child, 176 char *buf, size_t buflen); 177 #if defined(__i386__) || defined(__amd64__) 178 static void acpi_enable_pcie(void); 179 #endif 180 static void acpi_hint_device_unit(device_t acdev, device_t child, 181 const char *name, int *unitp); 182 static void acpi_reset_interfaces(device_t dev); 183 184 static device_method_t acpi_methods[] = { 185 /* Device interface */ 186 DEVMETHOD(device_probe, acpi_probe), 187 DEVMETHOD(device_attach, acpi_attach), 188 DEVMETHOD(device_shutdown, acpi_shutdown), 189 DEVMETHOD(device_detach, bus_generic_detach), 190 DEVMETHOD(device_suspend, acpi_suspend), 191 DEVMETHOD(device_resume, acpi_resume), 192 193 /* Bus interface */ 194 DEVMETHOD(bus_add_child, acpi_add_child), 195 DEVMETHOD(bus_print_child, acpi_print_child), 196 DEVMETHOD(bus_probe_nomatch, acpi_probe_nomatch), 197 DEVMETHOD(bus_driver_added, acpi_driver_added), 198 DEVMETHOD(bus_read_ivar, acpi_read_ivar), 199 DEVMETHOD(bus_write_ivar, acpi_write_ivar), 200 DEVMETHOD(bus_get_resource_list, acpi_get_rlist), 201 DEVMETHOD(bus_set_resource, acpi_set_resource), 202 DEVMETHOD(bus_get_resource, bus_generic_rl_get_resource), 203 DEVMETHOD(bus_alloc_resource, acpi_alloc_resource), 204 DEVMETHOD(bus_adjust_resource, acpi_adjust_resource), 205 DEVMETHOD(bus_release_resource, acpi_release_resource), 206 DEVMETHOD(bus_delete_resource, acpi_delete_resource), 207 DEVMETHOD(bus_child_pnpinfo_str, acpi_child_pnpinfo_str_method), 208 DEVMETHOD(bus_child_location_str, acpi_child_location_str_method), 209 DEVMETHOD(bus_activate_resource, bus_generic_activate_resource), 210 DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource), 211 DEVMETHOD(bus_setup_intr, bus_generic_setup_intr), 212 DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr), 213 DEVMETHOD(bus_hint_device_unit, acpi_hint_device_unit), 214 DEVMETHOD(bus_get_domain, acpi_get_domain), 215 216 /* ACPI bus */ 217 DEVMETHOD(acpi_id_probe, acpi_device_id_probe), 218 DEVMETHOD(acpi_evaluate_object, acpi_device_eval_obj), 219 DEVMETHOD(acpi_pwr_for_sleep, acpi_device_pwr_for_sleep), 220 DEVMETHOD(acpi_scan_children, acpi_device_scan_children), 221 222 /* ISA emulation */ 223 DEVMETHOD(isa_pnp_probe, acpi_isa_pnp_probe), 224 225 DEVMETHOD_END 226 }; 227 228 static driver_t acpi_driver = { 229 "acpi", 230 acpi_methods, 231 sizeof(struct acpi_softc), 232 }; 233 234 static devclass_t acpi_devclass; 235 DRIVER_MODULE(acpi, nexus, acpi_driver, acpi_devclass, acpi_modevent, 0); 236 MODULE_VERSION(acpi, 1); 237 238 ACPI_SERIAL_DECL(acpi, "ACPI root bus"); 239 240 /* Local pools for managing system resources for ACPI child devices. */ 241 static struct rman acpi_rman_io, acpi_rman_mem; 242 243 #define ACPI_MINIMUM_AWAKETIME 5 244 245 /* Holds the description of the acpi0 device. */ 246 static char acpi_desc[ACPI_OEM_ID_SIZE + ACPI_OEM_TABLE_ID_SIZE + 2]; 247 248 SYSCTL_NODE(_debug, OID_AUTO, acpi, CTLFLAG_RD, NULL, "ACPI debugging"); 249 static char acpi_ca_version[12]; 250 SYSCTL_STRING(_debug_acpi, OID_AUTO, acpi_ca_version, CTLFLAG_RD, 251 acpi_ca_version, 0, "Version of Intel ACPI-CA"); 252 253 /* 254 * Allow overriding _OSI methods. 255 */ 256 static char acpi_install_interface[256]; 257 TUNABLE_STR("hw.acpi.install_interface", acpi_install_interface, 258 sizeof(acpi_install_interface)); 259 static char acpi_remove_interface[256]; 260 TUNABLE_STR("hw.acpi.remove_interface", acpi_remove_interface, 261 sizeof(acpi_remove_interface)); 262 263 /* Allow users to dump Debug objects without ACPI debugger. */ 264 static int acpi_debug_objects; 265 TUNABLE_INT("debug.acpi.enable_debug_objects", &acpi_debug_objects); 266 SYSCTL_PROC(_debug_acpi, OID_AUTO, enable_debug_objects, 267 CTLFLAG_RW | CTLTYPE_INT, NULL, 0, acpi_debug_objects_sysctl, "I", 268 "Enable Debug objects"); 269 270 /* Allow the interpreter to ignore common mistakes in BIOS. */ 271 static int acpi_interpreter_slack = 1; 272 TUNABLE_INT("debug.acpi.interpreter_slack", &acpi_interpreter_slack); 273 SYSCTL_INT(_debug_acpi, OID_AUTO, interpreter_slack, CTLFLAG_RDTUN, 274 &acpi_interpreter_slack, 1, "Turn on interpreter slack mode."); 275 276 /* Ignore register widths set by FADT and use default widths instead. */ 277 static int acpi_ignore_reg_width = 1; 278 TUNABLE_INT("debug.acpi.default_register_width", &acpi_ignore_reg_width); 279 SYSCTL_INT(_debug_acpi, OID_AUTO, default_register_width, CTLFLAG_RDTUN, 280 &acpi_ignore_reg_width, 1, "Ignore register widths set by FADT"); 281 282 #ifdef __amd64__ 283 /* Reset system clock while resuming. XXX Remove once tested. */ 284 static int acpi_reset_clock = 1; 285 TUNABLE_INT("debug.acpi.reset_clock", &acpi_reset_clock); 286 SYSCTL_INT(_debug_acpi, OID_AUTO, reset_clock, CTLFLAG_RW, 287 &acpi_reset_clock, 1, "Reset system clock while resuming."); 288 #endif 289 290 /* Allow users to override quirks. */ 291 TUNABLE_INT("debug.acpi.quirks", &acpi_quirks); 292 293 static int acpi_susp_bounce; 294 SYSCTL_INT(_debug_acpi, OID_AUTO, suspend_bounce, CTLFLAG_RW, 295 &acpi_susp_bounce, 0, "Don't actually suspend, just test devices."); 296 297 /* 298 * ACPI can only be loaded as a module by the loader; activating it after 299 * system bootstrap time is not useful, and can be fatal to the system. 300 * It also cannot be unloaded, since the entire system bus hierarchy hangs 301 * off it. 302 */ 303 static int 304 acpi_modevent(struct module *mod, int event, void *junk) 305 { 306 switch (event) { 307 case MOD_LOAD: 308 if (!cold) { 309 printf("The ACPI driver cannot be loaded after boot.\n"); 310 return (EPERM); 311 } 312 break; 313 case MOD_UNLOAD: 314 if (!cold && power_pm_get_type() == POWER_PM_TYPE_ACPI) 315 return (EBUSY); 316 break; 317 default: 318 break; 319 } 320 return (0); 321 } 322 323 /* 324 * Perform early initialization. 325 */ 326 ACPI_STATUS 327 acpi_Startup(void) 328 { 329 static int started = 0; 330 ACPI_STATUS status; 331 int val; 332 333 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 334 335 /* Only run the startup code once. The MADT driver also calls this. */ 336 if (started) 337 return_VALUE (AE_OK); 338 started = 1; 339 340 /* 341 * Pre-allocate space for RSDT/XSDT and DSDT tables and allow resizing 342 * if more tables exist. 343 */ 344 if (ACPI_FAILURE(status = AcpiInitializeTables(NULL, 2, TRUE))) { 345 printf("ACPI: Table initialisation failed: %s\n", 346 AcpiFormatException(status)); 347 return_VALUE (status); 348 } 349 350 /* Set up any quirks we have for this system. */ 351 if (acpi_quirks == ACPI_Q_OK) 352 acpi_table_quirks(&acpi_quirks); 353 354 /* If the user manually set the disabled hint to 0, force-enable ACPI. */ 355 if (resource_int_value("acpi", 0, "disabled", &val) == 0 && val == 0) 356 acpi_quirks &= ~ACPI_Q_BROKEN; 357 if (acpi_quirks & ACPI_Q_BROKEN) { 358 printf("ACPI disabled by blacklist. Contact your BIOS vendor.\n"); 359 status = AE_SUPPORT; 360 } 361 362 return_VALUE (status); 363 } 364 365 /* 366 * Detect ACPI and perform early initialisation. 367 */ 368 int 369 acpi_identify(void) 370 { 371 ACPI_TABLE_RSDP *rsdp; 372 ACPI_TABLE_HEADER *rsdt; 373 ACPI_PHYSICAL_ADDRESS paddr; 374 struct sbuf sb; 375 376 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 377 378 if (!cold) 379 return (ENXIO); 380 381 /* Check that we haven't been disabled with a hint. */ 382 if (resource_disabled("acpi", 0)) 383 return (ENXIO); 384 385 /* Check for other PM systems. */ 386 if (power_pm_get_type() != POWER_PM_TYPE_NONE && 387 power_pm_get_type() != POWER_PM_TYPE_ACPI) { 388 printf("ACPI identify failed, other PM system enabled.\n"); 389 return (ENXIO); 390 } 391 392 /* Initialize root tables. */ 393 if (ACPI_FAILURE(acpi_Startup())) { 394 printf("ACPI: Try disabling either ACPI or apic support.\n"); 395 return (ENXIO); 396 } 397 398 if ((paddr = AcpiOsGetRootPointer()) == 0 || 399 (rsdp = AcpiOsMapMemory(paddr, sizeof(ACPI_TABLE_RSDP))) == NULL) 400 return (ENXIO); 401 if (rsdp->Revision > 1 && rsdp->XsdtPhysicalAddress != 0) 402 paddr = (ACPI_PHYSICAL_ADDRESS)rsdp->XsdtPhysicalAddress; 403 else 404 paddr = (ACPI_PHYSICAL_ADDRESS)rsdp->RsdtPhysicalAddress; 405 AcpiOsUnmapMemory(rsdp, sizeof(ACPI_TABLE_RSDP)); 406 407 if ((rsdt = AcpiOsMapMemory(paddr, sizeof(ACPI_TABLE_HEADER))) == NULL) 408 return (ENXIO); 409 sbuf_new(&sb, acpi_desc, sizeof(acpi_desc), SBUF_FIXEDLEN); 410 sbuf_bcat(&sb, rsdt->OemId, ACPI_OEM_ID_SIZE); 411 sbuf_trim(&sb); 412 sbuf_putc(&sb, ' '); 413 sbuf_bcat(&sb, rsdt->OemTableId, ACPI_OEM_TABLE_ID_SIZE); 414 sbuf_trim(&sb); 415 sbuf_finish(&sb); 416 sbuf_delete(&sb); 417 AcpiOsUnmapMemory(rsdt, sizeof(ACPI_TABLE_HEADER)); 418 419 snprintf(acpi_ca_version, sizeof(acpi_ca_version), "%x", ACPI_CA_VERSION); 420 421 return (0); 422 } 423 424 /* 425 * Fetch some descriptive data from ACPI to put in our attach message. 426 */ 427 static int 428 acpi_probe(device_t dev) 429 { 430 431 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 432 433 device_set_desc(dev, acpi_desc); 434 435 return_VALUE (BUS_PROBE_NOWILDCARD); 436 } 437 438 static int 439 acpi_attach(device_t dev) 440 { 441 struct acpi_softc *sc; 442 ACPI_STATUS status; 443 int error, state; 444 UINT32 flags; 445 UINT8 TypeA, TypeB; 446 char *env; 447 448 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 449 450 sc = device_get_softc(dev); 451 sc->acpi_dev = dev; 452 callout_init(&sc->susp_force_to, 1); 453 454 error = ENXIO; 455 456 /* Initialize resource manager. */ 457 acpi_rman_io.rm_type = RMAN_ARRAY; 458 acpi_rman_io.rm_start = 0; 459 acpi_rman_io.rm_end = 0xffff; 460 acpi_rman_io.rm_descr = "ACPI I/O ports"; 461 if (rman_init(&acpi_rman_io) != 0) 462 panic("acpi rman_init IO ports failed"); 463 acpi_rman_mem.rm_type = RMAN_ARRAY; 464 acpi_rman_mem.rm_descr = "ACPI I/O memory addresses"; 465 if (rman_init(&acpi_rman_mem) != 0) 466 panic("acpi rman_init memory failed"); 467 468 /* Initialise the ACPI mutex */ 469 mtx_init(&acpi_mutex, "ACPI global lock", NULL, MTX_DEF); 470 471 /* 472 * Set the globals from our tunables. This is needed because ACPI-CA 473 * uses UINT8 for some values and we have no tunable_byte. 474 */ 475 AcpiGbl_EnableInterpreterSlack = acpi_interpreter_slack ? TRUE : FALSE; 476 AcpiGbl_EnableAmlDebugObject = acpi_debug_objects ? TRUE : FALSE; 477 AcpiGbl_UseDefaultRegisterWidths = acpi_ignore_reg_width ? TRUE : FALSE; 478 479 #ifndef ACPI_DEBUG 480 /* 481 * Disable all debugging layers and levels. 482 */ 483 AcpiDbgLayer = 0; 484 AcpiDbgLevel = 0; 485 #endif 486 487 /* Start up the ACPI CA subsystem. */ 488 status = AcpiInitializeSubsystem(); 489 if (ACPI_FAILURE(status)) { 490 device_printf(dev, "Could not initialize Subsystem: %s\n", 491 AcpiFormatException(status)); 492 goto out; 493 } 494 495 /* Override OS interfaces if the user requested. */ 496 acpi_reset_interfaces(dev); 497 498 /* Load ACPI name space. */ 499 status = AcpiLoadTables(); 500 if (ACPI_FAILURE(status)) { 501 device_printf(dev, "Could not load Namespace: %s\n", 502 AcpiFormatException(status)); 503 goto out; 504 } 505 506 #if defined(__i386__) || defined(__amd64__) 507 /* Handle MCFG table if present. */ 508 acpi_enable_pcie(); 509 #endif 510 511 /* 512 * Note that some systems (specifically, those with namespace evaluation 513 * issues that require the avoidance of parts of the namespace) must 514 * avoid running _INI and _STA on everything, as well as dodging the final 515 * object init pass. 516 * 517 * For these devices, we set ACPI_NO_DEVICE_INIT and ACPI_NO_OBJECT_INIT). 518 * 519 * XXX We should arrange for the object init pass after we have attached 520 * all our child devices, but on many systems it works here. 521 */ 522 flags = 0; 523 if (testenv("debug.acpi.avoid")) 524 flags = ACPI_NO_DEVICE_INIT | ACPI_NO_OBJECT_INIT; 525 526 /* Bring the hardware and basic handlers online. */ 527 if (ACPI_FAILURE(status = AcpiEnableSubsystem(flags))) { 528 device_printf(dev, "Could not enable ACPI: %s\n", 529 AcpiFormatException(status)); 530 goto out; 531 } 532 533 /* 534 * Call the ECDT probe function to provide EC functionality before 535 * the namespace has been evaluated. 536 * 537 * XXX This happens before the sysresource devices have been probed and 538 * attached so its resources come from nexus0. In practice, this isn't 539 * a problem but should be addressed eventually. 540 */ 541 acpi_ec_ecdt_probe(dev); 542 543 /* Bring device objects and regions online. */ 544 if (ACPI_FAILURE(status = AcpiInitializeObjects(flags))) { 545 device_printf(dev, "Could not initialize ACPI objects: %s\n", 546 AcpiFormatException(status)); 547 goto out; 548 } 549 550 /* 551 * Setup our sysctl tree. 552 * 553 * XXX: This doesn't check to make sure that none of these fail. 554 */ 555 sysctl_ctx_init(&sc->acpi_sysctl_ctx); 556 sc->acpi_sysctl_tree = SYSCTL_ADD_NODE(&sc->acpi_sysctl_ctx, 557 SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO, 558 device_get_name(dev), CTLFLAG_RD, 0, ""); 559 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 560 OID_AUTO, "supported_sleep_state", CTLTYPE_STRING | CTLFLAG_RD, 561 0, 0, acpi_supported_sleep_state_sysctl, "A", 562 "List supported ACPI sleep states."); 563 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 564 OID_AUTO, "power_button_state", CTLTYPE_STRING | CTLFLAG_RW, 565 &sc->acpi_power_button_sx, 0, acpi_sleep_state_sysctl, "A", 566 "Power button ACPI sleep state."); 567 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 568 OID_AUTO, "sleep_button_state", CTLTYPE_STRING | CTLFLAG_RW, 569 &sc->acpi_sleep_button_sx, 0, acpi_sleep_state_sysctl, "A", 570 "Sleep button ACPI sleep state."); 571 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 572 OID_AUTO, "lid_switch_state", CTLTYPE_STRING | CTLFLAG_RW, 573 &sc->acpi_lid_switch_sx, 0, acpi_sleep_state_sysctl, "A", 574 "Lid ACPI sleep state. Set to S3 if you want to suspend your laptop when close the Lid."); 575 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 576 OID_AUTO, "standby_state", CTLTYPE_STRING | CTLFLAG_RW, 577 &sc->acpi_standby_sx, 0, acpi_sleep_state_sysctl, "A", ""); 578 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 579 OID_AUTO, "suspend_state", CTLTYPE_STRING | CTLFLAG_RW, 580 &sc->acpi_suspend_sx, 0, acpi_sleep_state_sysctl, "A", ""); 581 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 582 OID_AUTO, "sleep_delay", CTLFLAG_RW, &sc->acpi_sleep_delay, 0, 583 "sleep delay in seconds"); 584 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 585 OID_AUTO, "s4bios", CTLFLAG_RW, &sc->acpi_s4bios, 0, "S4BIOS mode"); 586 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 587 OID_AUTO, "verbose", CTLFLAG_RW, &sc->acpi_verbose, 0, "verbose mode"); 588 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 589 OID_AUTO, "disable_on_reboot", CTLFLAG_RW, 590 &sc->acpi_do_disable, 0, "Disable ACPI when rebooting/halting system"); 591 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 592 OID_AUTO, "handle_reboot", CTLFLAG_RW, 593 &sc->acpi_handle_reboot, 0, "Use ACPI Reset Register to reboot"); 594 595 /* 596 * Default to 1 second before sleeping to give some machines time to 597 * stabilize. 598 */ 599 sc->acpi_sleep_delay = 1; 600 if (bootverbose) 601 sc->acpi_verbose = 1; 602 if ((env = kern_getenv("hw.acpi.verbose")) != NULL) { 603 if (strcmp(env, "0") != 0) 604 sc->acpi_verbose = 1; 605 freeenv(env); 606 } 607 608 /* Only enable reboot by default if the FADT says it is available. */ 609 if (AcpiGbl_FADT.Flags & ACPI_FADT_RESET_REGISTER) 610 sc->acpi_handle_reboot = 1; 611 612 #if !ACPI_REDUCED_HARDWARE 613 /* Only enable S4BIOS by default if the FACS says it is available. */ 614 if (AcpiGbl_FACS != NULL && AcpiGbl_FACS->Flags & ACPI_FACS_S4_BIOS_PRESENT) 615 sc->acpi_s4bios = 1; 616 #endif 617 618 /* Probe all supported sleep states. */ 619 acpi_sleep_states[ACPI_STATE_S0] = TRUE; 620 for (state = ACPI_STATE_S1; state < ACPI_S_STATE_COUNT; state++) 621 if (ACPI_SUCCESS(AcpiEvaluateObject(ACPI_ROOT_OBJECT, 622 __DECONST(char *, AcpiGbl_SleepStateNames[state]), NULL, NULL)) && 623 ACPI_SUCCESS(AcpiGetSleepTypeData(state, &TypeA, &TypeB))) 624 acpi_sleep_states[state] = TRUE; 625 626 /* 627 * Dispatch the default sleep state to devices. The lid switch is set 628 * to UNKNOWN by default to avoid surprising users. 629 */ 630 sc->acpi_power_button_sx = acpi_sleep_states[ACPI_STATE_S5] ? 631 ACPI_STATE_S5 : ACPI_STATE_UNKNOWN; 632 sc->acpi_lid_switch_sx = ACPI_STATE_UNKNOWN; 633 sc->acpi_standby_sx = acpi_sleep_states[ACPI_STATE_S1] ? 634 ACPI_STATE_S1 : ACPI_STATE_UNKNOWN; 635 sc->acpi_suspend_sx = acpi_sleep_states[ACPI_STATE_S3] ? 636 ACPI_STATE_S3 : ACPI_STATE_UNKNOWN; 637 638 /* Pick the first valid sleep state for the sleep button default. */ 639 sc->acpi_sleep_button_sx = ACPI_STATE_UNKNOWN; 640 for (state = ACPI_STATE_S1; state <= ACPI_STATE_S4; state++) 641 if (acpi_sleep_states[state]) { 642 sc->acpi_sleep_button_sx = state; 643 break; 644 } 645 646 acpi_enable_fixed_events(sc); 647 648 /* 649 * Scan the namespace and attach/initialise children. 650 */ 651 652 /* Register our shutdown handler. */ 653 EVENTHANDLER_REGISTER(shutdown_final, acpi_shutdown_final, sc, 654 SHUTDOWN_PRI_LAST); 655 656 /* 657 * Register our acpi event handlers. 658 * XXX should be configurable eg. via userland policy manager. 659 */ 660 EVENTHANDLER_REGISTER(acpi_sleep_event, acpi_system_eventhandler_sleep, 661 sc, ACPI_EVENT_PRI_LAST); 662 EVENTHANDLER_REGISTER(acpi_wakeup_event, acpi_system_eventhandler_wakeup, 663 sc, ACPI_EVENT_PRI_LAST); 664 665 /* Flag our initial states. */ 666 sc->acpi_enabled = TRUE; 667 sc->acpi_sstate = ACPI_STATE_S0; 668 sc->acpi_sleep_disabled = TRUE; 669 670 /* Create the control device */ 671 sc->acpi_dev_t = make_dev(&acpi_cdevsw, 0, UID_ROOT, GID_WHEEL, 0644, 672 "acpi"); 673 sc->acpi_dev_t->si_drv1 = sc; 674 675 if ((error = acpi_machdep_init(dev))) 676 goto out; 677 678 /* Register ACPI again to pass the correct argument of pm_func. */ 679 power_pm_register(POWER_PM_TYPE_ACPI, acpi_pm_func, sc); 680 681 if (!acpi_disabled("bus")) { 682 EVENTHANDLER_REGISTER(dev_lookup, acpi_lookup, NULL, 1000); 683 acpi_probe_children(dev); 684 } 685 686 /* Update all GPEs and enable runtime GPEs. */ 687 status = AcpiUpdateAllGpes(); 688 if (ACPI_FAILURE(status)) 689 device_printf(dev, "Could not update all GPEs: %s\n", 690 AcpiFormatException(status)); 691 692 /* Allow sleep request after a while. */ 693 callout_init_mtx(&acpi_sleep_timer, &acpi_mutex, 0); 694 callout_reset(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME, 695 acpi_sleep_enable, sc); 696 697 error = 0; 698 699 out: 700 return_VALUE (error); 701 } 702 703 static void 704 acpi_set_power_children(device_t dev, int state) 705 { 706 device_t child; 707 device_t *devlist; 708 int dstate, i, numdevs; 709 710 if (device_get_children(dev, &devlist, &numdevs) != 0) 711 return; 712 713 /* 714 * Retrieve and set D-state for the sleep state if _SxD is present. 715 * Skip children who aren't attached since they are handled separately. 716 */ 717 for (i = 0; i < numdevs; i++) { 718 child = devlist[i]; 719 dstate = state; 720 if (device_is_attached(child) && 721 acpi_device_pwr_for_sleep(dev, child, &dstate) == 0) 722 acpi_set_powerstate(child, dstate); 723 } 724 free(devlist, M_TEMP); 725 } 726 727 static int 728 acpi_suspend(device_t dev) 729 { 730 int error; 731 732 GIANT_REQUIRED; 733 734 error = bus_generic_suspend(dev); 735 if (error == 0) 736 acpi_set_power_children(dev, ACPI_STATE_D3); 737 738 return (error); 739 } 740 741 static int 742 acpi_resume(device_t dev) 743 { 744 745 GIANT_REQUIRED; 746 747 acpi_set_power_children(dev, ACPI_STATE_D0); 748 749 return (bus_generic_resume(dev)); 750 } 751 752 static int 753 acpi_shutdown(device_t dev) 754 { 755 756 GIANT_REQUIRED; 757 758 /* Allow children to shutdown first. */ 759 bus_generic_shutdown(dev); 760 761 /* 762 * Enable any GPEs that are able to power-on the system (i.e., RTC). 763 * Also, disable any that are not valid for this state (most). 764 */ 765 acpi_wake_prep_walk(ACPI_STATE_S5); 766 767 return (0); 768 } 769 770 /* 771 * Handle a new device being added 772 */ 773 static device_t 774 acpi_add_child(device_t bus, u_int order, const char *name, int unit) 775 { 776 struct acpi_device *ad; 777 device_t child; 778 779 if ((ad = malloc(sizeof(*ad), M_ACPIDEV, M_NOWAIT | M_ZERO)) == NULL) 780 return (NULL); 781 782 resource_list_init(&ad->ad_rl); 783 784 child = device_add_child_ordered(bus, order, name, unit); 785 if (child != NULL) 786 device_set_ivars(child, ad); 787 else 788 free(ad, M_ACPIDEV); 789 return (child); 790 } 791 792 static int 793 acpi_print_child(device_t bus, device_t child) 794 { 795 struct acpi_device *adev = device_get_ivars(child); 796 struct resource_list *rl = &adev->ad_rl; 797 int retval = 0; 798 799 retval += bus_print_child_header(bus, child); 800 retval += resource_list_print_type(rl, "port", SYS_RES_IOPORT, "%#jx"); 801 retval += resource_list_print_type(rl, "iomem", SYS_RES_MEMORY, "%#jx"); 802 retval += resource_list_print_type(rl, "irq", SYS_RES_IRQ, "%jd"); 803 retval += resource_list_print_type(rl, "drq", SYS_RES_DRQ, "%jd"); 804 if (device_get_flags(child)) 805 retval += printf(" flags %#x", device_get_flags(child)); 806 retval += bus_print_child_domain(bus, child); 807 retval += bus_print_child_footer(bus, child); 808 809 return (retval); 810 } 811 812 /* 813 * If this device is an ACPI child but no one claimed it, attempt 814 * to power it off. We'll power it back up when a driver is added. 815 * 816 * XXX Disabled for now since many necessary devices (like fdc and 817 * ATA) don't claim the devices we created for them but still expect 818 * them to be powered up. 819 */ 820 static void 821 acpi_probe_nomatch(device_t bus, device_t child) 822 { 823 #ifdef ACPI_ENABLE_POWERDOWN_NODRIVER 824 acpi_set_powerstate(child, ACPI_STATE_D3); 825 #endif 826 } 827 828 /* 829 * If a new driver has a chance to probe a child, first power it up. 830 * 831 * XXX Disabled for now (see acpi_probe_nomatch for details). 832 */ 833 static void 834 acpi_driver_added(device_t dev, driver_t *driver) 835 { 836 device_t child, *devlist; 837 int i, numdevs; 838 839 DEVICE_IDENTIFY(driver, dev); 840 if (device_get_children(dev, &devlist, &numdevs)) 841 return; 842 for (i = 0; i < numdevs; i++) { 843 child = devlist[i]; 844 if (device_get_state(child) == DS_NOTPRESENT) { 845 #ifdef ACPI_ENABLE_POWERDOWN_NODRIVER 846 acpi_set_powerstate(child, ACPI_STATE_D0); 847 if (device_probe_and_attach(child) != 0) 848 acpi_set_powerstate(child, ACPI_STATE_D3); 849 #else 850 device_probe_and_attach(child); 851 #endif 852 } 853 } 854 free(devlist, M_TEMP); 855 } 856 857 /* Location hint for devctl(8) */ 858 static int 859 acpi_child_location_str_method(device_t cbdev, device_t child, char *buf, 860 size_t buflen) 861 { 862 struct acpi_device *dinfo = device_get_ivars(child); 863 char buf2[32]; 864 int pxm; 865 866 if (dinfo->ad_handle) { 867 snprintf(buf, buflen, "handle=%s", acpi_name(dinfo->ad_handle)); 868 if (ACPI_SUCCESS(acpi_GetInteger(dinfo->ad_handle, "_PXM", &pxm))) { 869 snprintf(buf2, 32, " _PXM=%d", pxm); 870 strlcat(buf, buf2, buflen); 871 } 872 } else { 873 snprintf(buf, buflen, "unknown"); 874 } 875 return (0); 876 } 877 878 /* PnP information for devctl(8) */ 879 static int 880 acpi_child_pnpinfo_str_method(device_t cbdev, device_t child, char *buf, 881 size_t buflen) 882 { 883 struct acpi_device *dinfo = device_get_ivars(child); 884 ACPI_DEVICE_INFO *adinfo; 885 886 if (ACPI_FAILURE(AcpiGetObjectInfo(dinfo->ad_handle, &adinfo))) { 887 snprintf(buf, buflen, "unknown"); 888 return (0); 889 } 890 891 snprintf(buf, buflen, "_HID=%s _UID=%lu", 892 (adinfo->Valid & ACPI_VALID_HID) ? 893 adinfo->HardwareId.String : "none", 894 (adinfo->Valid & ACPI_VALID_UID) ? 895 strtoul(adinfo->UniqueId.String, NULL, 10) : 0UL); 896 AcpiOsFree(adinfo); 897 898 return (0); 899 } 900 901 /* 902 * Handle per-device ivars 903 */ 904 static int 905 acpi_read_ivar(device_t dev, device_t child, int index, uintptr_t *result) 906 { 907 struct acpi_device *ad; 908 909 if ((ad = device_get_ivars(child)) == NULL) { 910 device_printf(child, "device has no ivars\n"); 911 return (ENOENT); 912 } 913 914 /* ACPI and ISA compatibility ivars */ 915 switch(index) { 916 case ACPI_IVAR_HANDLE: 917 *(ACPI_HANDLE *)result = ad->ad_handle; 918 break; 919 case ACPI_IVAR_PRIVATE: 920 *(void **)result = ad->ad_private; 921 break; 922 case ACPI_IVAR_FLAGS: 923 *(int *)result = ad->ad_flags; 924 break; 925 case ISA_IVAR_VENDORID: 926 case ISA_IVAR_SERIAL: 927 case ISA_IVAR_COMPATID: 928 *(int *)result = -1; 929 break; 930 case ISA_IVAR_LOGICALID: 931 *(int *)result = acpi_isa_get_logicalid(child); 932 break; 933 default: 934 return (ENOENT); 935 } 936 937 return (0); 938 } 939 940 static int 941 acpi_write_ivar(device_t dev, device_t child, int index, uintptr_t value) 942 { 943 struct acpi_device *ad; 944 945 if ((ad = device_get_ivars(child)) == NULL) { 946 device_printf(child, "device has no ivars\n"); 947 return (ENOENT); 948 } 949 950 switch(index) { 951 case ACPI_IVAR_HANDLE: 952 ad->ad_handle = (ACPI_HANDLE)value; 953 break; 954 case ACPI_IVAR_PRIVATE: 955 ad->ad_private = (void *)value; 956 break; 957 case ACPI_IVAR_FLAGS: 958 ad->ad_flags = (int)value; 959 break; 960 default: 961 panic("bad ivar write request (%d)", index); 962 return (ENOENT); 963 } 964 965 return (0); 966 } 967 968 /* 969 * Handle child resource allocation/removal 970 */ 971 static struct resource_list * 972 acpi_get_rlist(device_t dev, device_t child) 973 { 974 struct acpi_device *ad; 975 976 ad = device_get_ivars(child); 977 return (&ad->ad_rl); 978 } 979 980 static int 981 acpi_match_resource_hint(device_t dev, int type, long value) 982 { 983 struct acpi_device *ad = device_get_ivars(dev); 984 struct resource_list *rl = &ad->ad_rl; 985 struct resource_list_entry *rle; 986 987 STAILQ_FOREACH(rle, rl, link) { 988 if (rle->type != type) 989 continue; 990 if (rle->start <= value && rle->end >= value) 991 return (1); 992 } 993 return (0); 994 } 995 996 /* 997 * Wire device unit numbers based on resource matches in hints. 998 */ 999 static void 1000 acpi_hint_device_unit(device_t acdev, device_t child, const char *name, 1001 int *unitp) 1002 { 1003 const char *s; 1004 long value; 1005 int line, matches, unit; 1006 1007 /* 1008 * Iterate over all the hints for the devices with the specified 1009 * name to see if one's resources are a subset of this device. 1010 */ 1011 line = 0; 1012 for (;;) { 1013 if (resource_find_dev(&line, name, &unit, "at", NULL) != 0) 1014 break; 1015 1016 /* Must have an "at" for acpi or isa. */ 1017 resource_string_value(name, unit, "at", &s); 1018 if (!(strcmp(s, "acpi0") == 0 || strcmp(s, "acpi") == 0 || 1019 strcmp(s, "isa0") == 0 || strcmp(s, "isa") == 0)) 1020 continue; 1021 1022 /* 1023 * Check for matching resources. We must have at least one match. 1024 * Since I/O and memory resources cannot be shared, if we get a 1025 * match on either of those, ignore any mismatches in IRQs or DRQs. 1026 * 1027 * XXX: We may want to revisit this to be more lenient and wire 1028 * as long as it gets one match. 1029 */ 1030 matches = 0; 1031 if (resource_long_value(name, unit, "port", &value) == 0) { 1032 /* 1033 * Floppy drive controllers are notorious for having a 1034 * wide variety of resources not all of which include the 1035 * first port that is specified by the hint (typically 1036 * 0x3f0) (see the comment above fdc_isa_alloc_resources() 1037 * in fdc_isa.c). However, they do all seem to include 1038 * port + 2 (e.g. 0x3f2) so for a floppy device, look for 1039 * 'value + 2' in the port resources instead of the hint 1040 * value. 1041 */ 1042 if (strcmp(name, "fdc") == 0) 1043 value += 2; 1044 if (acpi_match_resource_hint(child, SYS_RES_IOPORT, value)) 1045 matches++; 1046 else 1047 continue; 1048 } 1049 if (resource_long_value(name, unit, "maddr", &value) == 0) { 1050 if (acpi_match_resource_hint(child, SYS_RES_MEMORY, value)) 1051 matches++; 1052 else 1053 continue; 1054 } 1055 if (matches > 0) 1056 goto matched; 1057 if (resource_long_value(name, unit, "irq", &value) == 0) { 1058 if (acpi_match_resource_hint(child, SYS_RES_IRQ, value)) 1059 matches++; 1060 else 1061 continue; 1062 } 1063 if (resource_long_value(name, unit, "drq", &value) == 0) { 1064 if (acpi_match_resource_hint(child, SYS_RES_DRQ, value)) 1065 matches++; 1066 else 1067 continue; 1068 } 1069 1070 matched: 1071 if (matches > 0) { 1072 /* We have a winner! */ 1073 *unitp = unit; 1074 break; 1075 } 1076 } 1077 } 1078 1079 /* 1080 * Fetch the VM domain for the given device 'dev'. 1081 * 1082 * Return 1 + domain if there's a domain, 0 if not found; 1083 * -1 upon an error. 1084 */ 1085 int 1086 acpi_parse_pxm(device_t dev, int *domain) 1087 { 1088 #ifdef DEVICE_NUMA 1089 ACPI_HANDLE h; 1090 int d, pxm; 1091 1092 h = acpi_get_handle(dev); 1093 if ((h != NULL) && 1094 ACPI_SUCCESS(acpi_GetInteger(h, "_PXM", &pxm))) { 1095 d = acpi_map_pxm_to_vm_domainid(pxm); 1096 if (d < 0) 1097 return (-1); 1098 *domain = d; 1099 return (1); 1100 } 1101 #endif 1102 1103 return (0); 1104 } 1105 1106 /* 1107 * Fetch the NUMA domain for the given device. 1108 * 1109 * If a device has a _PXM method, map that to a NUMA domain. 1110 * 1111 * If none is found, then it'll call the parent method. 1112 * If there's no domain, return ENOENT. 1113 */ 1114 int 1115 acpi_get_domain(device_t dev, device_t child, int *domain) 1116 { 1117 int ret; 1118 1119 ret = acpi_parse_pxm(child, domain); 1120 /* Error */ 1121 if (ret == -1) 1122 return (ENOENT); 1123 /* Found */ 1124 if (ret == 1) 1125 return (0); 1126 1127 /* No _PXM node; go up a level */ 1128 return (bus_generic_get_domain(dev, child, domain)); 1129 } 1130 1131 /* 1132 * Pre-allocate/manage all memory and IO resources. Since rman can't handle 1133 * duplicates, we merge any in the sysresource attach routine. 1134 */ 1135 static int 1136 acpi_sysres_alloc(device_t dev) 1137 { 1138 struct resource *res; 1139 struct resource_list *rl; 1140 struct resource_list_entry *rle; 1141 struct rman *rm; 1142 char *sysres_ids[] = { "PNP0C01", "PNP0C02", NULL }; 1143 device_t *children; 1144 int child_count, i; 1145 1146 /* 1147 * Probe/attach any sysresource devices. This would be unnecessary if we 1148 * had multi-pass probe/attach. 1149 */ 1150 if (device_get_children(dev, &children, &child_count) != 0) 1151 return (ENXIO); 1152 for (i = 0; i < child_count; i++) { 1153 if (ACPI_ID_PROBE(dev, children[i], sysres_ids) != NULL) 1154 device_probe_and_attach(children[i]); 1155 } 1156 free(children, M_TEMP); 1157 1158 rl = BUS_GET_RESOURCE_LIST(device_get_parent(dev), dev); 1159 STAILQ_FOREACH(rle, rl, link) { 1160 if (rle->res != NULL) { 1161 device_printf(dev, "duplicate resource for %jx\n", rle->start); 1162 continue; 1163 } 1164 1165 /* Only memory and IO resources are valid here. */ 1166 switch (rle->type) { 1167 case SYS_RES_IOPORT: 1168 rm = &acpi_rman_io; 1169 break; 1170 case SYS_RES_MEMORY: 1171 rm = &acpi_rman_mem; 1172 break; 1173 default: 1174 continue; 1175 } 1176 1177 /* Pre-allocate resource and add to our rman pool. */ 1178 res = BUS_ALLOC_RESOURCE(device_get_parent(dev), dev, rle->type, 1179 &rle->rid, rle->start, rle->start + rle->count - 1, rle->count, 0); 1180 if (res != NULL) { 1181 rman_manage_region(rm, rman_get_start(res), rman_get_end(res)); 1182 rle->res = res; 1183 } else if (bootverbose) 1184 device_printf(dev, "reservation of %jx, %jx (%d) failed\n", 1185 rle->start, rle->count, rle->type); 1186 } 1187 return (0); 1188 } 1189 1190 static char *pcilink_ids[] = { "PNP0C0F", NULL }; 1191 static char *sysres_ids[] = { "PNP0C01", "PNP0C02", NULL }; 1192 1193 /* 1194 * Reserve declared resources for devices found during attach once system 1195 * resources have been allocated. 1196 */ 1197 static void 1198 acpi_reserve_resources(device_t dev) 1199 { 1200 struct resource_list_entry *rle; 1201 struct resource_list *rl; 1202 struct acpi_device *ad; 1203 struct acpi_softc *sc; 1204 device_t *children; 1205 int child_count, i; 1206 1207 sc = device_get_softc(dev); 1208 if (device_get_children(dev, &children, &child_count) != 0) 1209 return; 1210 for (i = 0; i < child_count; i++) { 1211 ad = device_get_ivars(children[i]); 1212 rl = &ad->ad_rl; 1213 1214 /* Don't reserve system resources. */ 1215 if (ACPI_ID_PROBE(dev, children[i], sysres_ids) != NULL) 1216 continue; 1217 1218 STAILQ_FOREACH(rle, rl, link) { 1219 /* 1220 * Don't reserve IRQ resources. There are many sticky things 1221 * to get right otherwise (e.g. IRQs for psm, atkbd, and HPET 1222 * when using legacy routing). 1223 */ 1224 if (rle->type == SYS_RES_IRQ) 1225 continue; 1226 1227 /* 1228 * Don't reserve the resource if it is already allocated. 1229 * The acpi_ec(4) driver can allocate its resources early 1230 * if ECDT is present. 1231 */ 1232 if (rle->res != NULL) 1233 continue; 1234 1235 /* 1236 * Try to reserve the resource from our parent. If this 1237 * fails because the resource is a system resource, just 1238 * let it be. The resource range is already reserved so 1239 * that other devices will not use it. If the driver 1240 * needs to allocate the resource, then 1241 * acpi_alloc_resource() will sub-alloc from the system 1242 * resource. 1243 */ 1244 resource_list_reserve(rl, dev, children[i], rle->type, &rle->rid, 1245 rle->start, rle->end, rle->count, 0); 1246 } 1247 } 1248 free(children, M_TEMP); 1249 sc->acpi_resources_reserved = 1; 1250 } 1251 1252 static int 1253 acpi_set_resource(device_t dev, device_t child, int type, int rid, 1254 rman_res_t start, rman_res_t count) 1255 { 1256 struct acpi_softc *sc = device_get_softc(dev); 1257 struct acpi_device *ad = device_get_ivars(child); 1258 struct resource_list *rl = &ad->ad_rl; 1259 ACPI_DEVICE_INFO *devinfo; 1260 rman_res_t end; 1261 1262 /* Ignore IRQ resources for PCI link devices. */ 1263 if (type == SYS_RES_IRQ && ACPI_ID_PROBE(dev, child, pcilink_ids) != NULL) 1264 return (0); 1265 1266 /* 1267 * Ignore most resources for PCI root bridges. Some BIOSes 1268 * incorrectly enumerate the memory ranges they decode as plain 1269 * memory resources instead of as ResourceProducer ranges. Other 1270 * BIOSes incorrectly list system resource entries for I/O ranges 1271 * under the PCI bridge. Do allow the one known-correct case on 1272 * x86 of a PCI bridge claiming the I/O ports used for PCI config 1273 * access. 1274 */ 1275 if (type == SYS_RES_MEMORY || type == SYS_RES_IOPORT) { 1276 if (ACPI_SUCCESS(AcpiGetObjectInfo(ad->ad_handle, &devinfo))) { 1277 if ((devinfo->Flags & ACPI_PCI_ROOT_BRIDGE) != 0) { 1278 #if defined(__i386__) || defined(__amd64__) 1279 if (!(type == SYS_RES_IOPORT && start == CONF1_ADDR_PORT)) 1280 #endif 1281 { 1282 AcpiOsFree(devinfo); 1283 return (0); 1284 } 1285 } 1286 AcpiOsFree(devinfo); 1287 } 1288 } 1289 1290 /* If the resource is already allocated, fail. */ 1291 if (resource_list_busy(rl, type, rid)) 1292 return (EBUSY); 1293 1294 /* If the resource is already reserved, release it. */ 1295 if (resource_list_reserved(rl, type, rid)) 1296 resource_list_unreserve(rl, dev, child, type, rid); 1297 1298 /* Add the resource. */ 1299 end = (start + count - 1); 1300 resource_list_add(rl, type, rid, start, end, count); 1301 1302 /* Don't reserve resources until the system resources are allocated. */ 1303 if (!sc->acpi_resources_reserved) 1304 return (0); 1305 1306 /* Don't reserve system resources. */ 1307 if (ACPI_ID_PROBE(dev, child, sysres_ids) != NULL) 1308 return (0); 1309 1310 /* 1311 * Don't reserve IRQ resources. There are many sticky things to 1312 * get right otherwise (e.g. IRQs for psm, atkbd, and HPET when 1313 * using legacy routing). 1314 */ 1315 if (type == SYS_RES_IRQ) 1316 return (0); 1317 1318 /* 1319 * Reserve the resource. 1320 * 1321 * XXX: Ignores failure for now. Failure here is probably a 1322 * BIOS/firmware bug? 1323 */ 1324 resource_list_reserve(rl, dev, child, type, &rid, start, end, count, 0); 1325 return (0); 1326 } 1327 1328 static struct resource * 1329 acpi_alloc_resource(device_t bus, device_t child, int type, int *rid, 1330 rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 1331 { 1332 ACPI_RESOURCE ares; 1333 struct acpi_device *ad; 1334 struct resource_list_entry *rle; 1335 struct resource_list *rl; 1336 struct resource *res; 1337 int isdefault = RMAN_IS_DEFAULT_RANGE(start, end); 1338 1339 /* 1340 * First attempt at allocating the resource. For direct children, 1341 * use resource_list_alloc() to handle reserved resources. For 1342 * other devices, pass the request up to our parent. 1343 */ 1344 if (bus == device_get_parent(child)) { 1345 ad = device_get_ivars(child); 1346 rl = &ad->ad_rl; 1347 1348 /* 1349 * Simulate the behavior of the ISA bus for direct children 1350 * devices. That is, if a non-default range is specified for 1351 * a resource that doesn't exist, use bus_set_resource() to 1352 * add the resource before allocating it. Note that these 1353 * resources will not be reserved. 1354 */ 1355 if (!isdefault && resource_list_find(rl, type, *rid) == NULL) 1356 resource_list_add(rl, type, *rid, start, end, count); 1357 res = resource_list_alloc(rl, bus, child, type, rid, start, end, count, 1358 flags); 1359 if (res != NULL && type == SYS_RES_IRQ) { 1360 /* 1361 * Since bus_config_intr() takes immediate effect, we cannot 1362 * configure the interrupt associated with a device when we 1363 * parse the resources but have to defer it until a driver 1364 * actually allocates the interrupt via bus_alloc_resource(). 1365 * 1366 * XXX: Should we handle the lookup failing? 1367 */ 1368 if (ACPI_SUCCESS(acpi_lookup_irq_resource(child, *rid, res, &ares))) 1369 acpi_config_intr(child, &ares); 1370 } 1371 1372 /* 1373 * If this is an allocation of the "default" range for a given 1374 * RID, fetch the exact bounds for this resource from the 1375 * resource list entry to try to allocate the range from the 1376 * system resource regions. 1377 */ 1378 if (res == NULL && isdefault) { 1379 rle = resource_list_find(rl, type, *rid); 1380 if (rle != NULL) { 1381 start = rle->start; 1382 end = rle->end; 1383 count = rle->count; 1384 } 1385 } 1386 } else 1387 res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, type, rid, 1388 start, end, count, flags); 1389 1390 /* 1391 * If the first attempt failed and this is an allocation of a 1392 * specific range, try to satisfy the request via a suballocation 1393 * from our system resource regions. 1394 */ 1395 if (res == NULL && start + count - 1 == end) 1396 res = acpi_alloc_sysres(child, type, rid, start, end, count, flags); 1397 return (res); 1398 } 1399 1400 /* 1401 * Attempt to allocate a specific resource range from the system 1402 * resource ranges. Note that we only handle memory and I/O port 1403 * system resources. 1404 */ 1405 struct resource * 1406 acpi_alloc_sysres(device_t child, int type, int *rid, rman_res_t start, 1407 rman_res_t end, rman_res_t count, u_int flags) 1408 { 1409 struct rman *rm; 1410 struct resource *res; 1411 1412 switch (type) { 1413 case SYS_RES_IOPORT: 1414 rm = &acpi_rman_io; 1415 break; 1416 case SYS_RES_MEMORY: 1417 rm = &acpi_rman_mem; 1418 break; 1419 default: 1420 return (NULL); 1421 } 1422 1423 KASSERT(start + count - 1 == end, ("wildcard resource range")); 1424 res = rman_reserve_resource(rm, start, end, count, flags & ~RF_ACTIVE, 1425 child); 1426 if (res == NULL) 1427 return (NULL); 1428 1429 rman_set_rid(res, *rid); 1430 1431 /* If requested, activate the resource using the parent's method. */ 1432 if (flags & RF_ACTIVE) 1433 if (bus_activate_resource(child, type, *rid, res) != 0) { 1434 rman_release_resource(res); 1435 return (NULL); 1436 } 1437 1438 return (res); 1439 } 1440 1441 static int 1442 acpi_is_resource_managed(int type, struct resource *r) 1443 { 1444 1445 /* We only handle memory and IO resources through rman. */ 1446 switch (type) { 1447 case SYS_RES_IOPORT: 1448 return (rman_is_region_manager(r, &acpi_rman_io)); 1449 case SYS_RES_MEMORY: 1450 return (rman_is_region_manager(r, &acpi_rman_mem)); 1451 } 1452 return (0); 1453 } 1454 1455 static int 1456 acpi_adjust_resource(device_t bus, device_t child, int type, struct resource *r, 1457 rman_res_t start, rman_res_t end) 1458 { 1459 1460 if (acpi_is_resource_managed(type, r)) 1461 return (rman_adjust_resource(r, start, end)); 1462 return (bus_generic_adjust_resource(bus, child, type, r, start, end)); 1463 } 1464 1465 static int 1466 acpi_release_resource(device_t bus, device_t child, int type, int rid, 1467 struct resource *r) 1468 { 1469 int ret; 1470 1471 /* 1472 * If this resource belongs to one of our internal managers, 1473 * deactivate it and release it to the local pool. 1474 */ 1475 if (acpi_is_resource_managed(type, r)) { 1476 if (rman_get_flags(r) & RF_ACTIVE) { 1477 ret = bus_deactivate_resource(child, type, rid, r); 1478 if (ret != 0) 1479 return (ret); 1480 } 1481 return (rman_release_resource(r)); 1482 } 1483 1484 return (bus_generic_rl_release_resource(bus, child, type, rid, r)); 1485 } 1486 1487 static void 1488 acpi_delete_resource(device_t bus, device_t child, int type, int rid) 1489 { 1490 struct resource_list *rl; 1491 1492 rl = acpi_get_rlist(bus, child); 1493 if (resource_list_busy(rl, type, rid)) { 1494 device_printf(bus, "delete_resource: Resource still owned by child" 1495 " (type=%d, rid=%d)\n", type, rid); 1496 return; 1497 } 1498 resource_list_unreserve(rl, bus, child, type, rid); 1499 resource_list_delete(rl, type, rid); 1500 } 1501 1502 /* Allocate an IO port or memory resource, given its GAS. */ 1503 int 1504 acpi_bus_alloc_gas(device_t dev, int *type, int *rid, ACPI_GENERIC_ADDRESS *gas, 1505 struct resource **res, u_int flags) 1506 { 1507 int error, res_type; 1508 1509 error = ENOMEM; 1510 if (type == NULL || rid == NULL || gas == NULL || res == NULL) 1511 return (EINVAL); 1512 1513 /* We only support memory and IO spaces. */ 1514 switch (gas->SpaceId) { 1515 case ACPI_ADR_SPACE_SYSTEM_MEMORY: 1516 res_type = SYS_RES_MEMORY; 1517 break; 1518 case ACPI_ADR_SPACE_SYSTEM_IO: 1519 res_type = SYS_RES_IOPORT; 1520 break; 1521 default: 1522 return (EOPNOTSUPP); 1523 } 1524 1525 /* 1526 * If the register width is less than 8, assume the BIOS author means 1527 * it is a bit field and just allocate a byte. 1528 */ 1529 if (gas->BitWidth && gas->BitWidth < 8) 1530 gas->BitWidth = 8; 1531 1532 /* Validate the address after we're sure we support the space. */ 1533 if (gas->Address == 0 || gas->BitWidth == 0) 1534 return (EINVAL); 1535 1536 bus_set_resource(dev, res_type, *rid, gas->Address, 1537 gas->BitWidth / 8); 1538 *res = bus_alloc_resource_any(dev, res_type, rid, RF_ACTIVE | flags); 1539 if (*res != NULL) { 1540 *type = res_type; 1541 error = 0; 1542 } else 1543 bus_delete_resource(dev, res_type, *rid); 1544 1545 return (error); 1546 } 1547 1548 /* Probe _HID and _CID for compatible ISA PNP ids. */ 1549 static uint32_t 1550 acpi_isa_get_logicalid(device_t dev) 1551 { 1552 ACPI_DEVICE_INFO *devinfo; 1553 ACPI_HANDLE h; 1554 uint32_t pnpid; 1555 1556 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1557 1558 /* Fetch and validate the HID. */ 1559 if ((h = acpi_get_handle(dev)) == NULL || 1560 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 1561 return_VALUE (0); 1562 1563 pnpid = (devinfo->Valid & ACPI_VALID_HID) != 0 && 1564 devinfo->HardwareId.Length >= ACPI_EISAID_STRING_SIZE ? 1565 PNP_EISAID(devinfo->HardwareId.String) : 0; 1566 AcpiOsFree(devinfo); 1567 1568 return_VALUE (pnpid); 1569 } 1570 1571 static int 1572 acpi_isa_get_compatid(device_t dev, uint32_t *cids, int count) 1573 { 1574 ACPI_DEVICE_INFO *devinfo; 1575 ACPI_PNP_DEVICE_ID *ids; 1576 ACPI_HANDLE h; 1577 uint32_t *pnpid; 1578 int i, valid; 1579 1580 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1581 1582 pnpid = cids; 1583 1584 /* Fetch and validate the CID */ 1585 if ((h = acpi_get_handle(dev)) == NULL || 1586 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 1587 return_VALUE (0); 1588 1589 if ((devinfo->Valid & ACPI_VALID_CID) == 0) { 1590 AcpiOsFree(devinfo); 1591 return_VALUE (0); 1592 } 1593 1594 if (devinfo->CompatibleIdList.Count < count) 1595 count = devinfo->CompatibleIdList.Count; 1596 ids = devinfo->CompatibleIdList.Ids; 1597 for (i = 0, valid = 0; i < count; i++) 1598 if (ids[i].Length >= ACPI_EISAID_STRING_SIZE && 1599 strncmp(ids[i].String, "PNP", 3) == 0) { 1600 *pnpid++ = PNP_EISAID(ids[i].String); 1601 valid++; 1602 } 1603 AcpiOsFree(devinfo); 1604 1605 return_VALUE (valid); 1606 } 1607 1608 static char * 1609 acpi_device_id_probe(device_t bus, device_t dev, char **ids) 1610 { 1611 ACPI_HANDLE h; 1612 ACPI_OBJECT_TYPE t; 1613 int i; 1614 1615 h = acpi_get_handle(dev); 1616 if (ids == NULL || h == NULL) 1617 return (NULL); 1618 t = acpi_get_type(dev); 1619 if (t != ACPI_TYPE_DEVICE && t != ACPI_TYPE_PROCESSOR) 1620 return (NULL); 1621 1622 /* Try to match one of the array of IDs with a HID or CID. */ 1623 for (i = 0; ids[i] != NULL; i++) { 1624 if (acpi_MatchHid(h, ids[i])) 1625 return (ids[i]); 1626 } 1627 return (NULL); 1628 } 1629 1630 static ACPI_STATUS 1631 acpi_device_eval_obj(device_t bus, device_t dev, ACPI_STRING pathname, 1632 ACPI_OBJECT_LIST *parameters, ACPI_BUFFER *ret) 1633 { 1634 ACPI_HANDLE h; 1635 1636 if (dev == NULL) 1637 h = ACPI_ROOT_OBJECT; 1638 else if ((h = acpi_get_handle(dev)) == NULL) 1639 return (AE_BAD_PARAMETER); 1640 return (AcpiEvaluateObject(h, pathname, parameters, ret)); 1641 } 1642 1643 int 1644 acpi_device_pwr_for_sleep(device_t bus, device_t dev, int *dstate) 1645 { 1646 struct acpi_softc *sc; 1647 ACPI_HANDLE handle; 1648 ACPI_STATUS status; 1649 char sxd[8]; 1650 1651 handle = acpi_get_handle(dev); 1652 1653 /* 1654 * XXX If we find these devices, don't try to power them down. 1655 * The serial and IRDA ports on my T23 hang the system when 1656 * set to D3 and it appears that such legacy devices may 1657 * need special handling in their drivers. 1658 */ 1659 if (dstate == NULL || handle == NULL || 1660 acpi_MatchHid(handle, "PNP0500") || 1661 acpi_MatchHid(handle, "PNP0501") || 1662 acpi_MatchHid(handle, "PNP0502") || 1663 acpi_MatchHid(handle, "PNP0510") || 1664 acpi_MatchHid(handle, "PNP0511")) 1665 return (ENXIO); 1666 1667 /* 1668 * Override next state with the value from _SxD, if present. 1669 * Note illegal _S0D is evaluated because some systems expect this. 1670 */ 1671 sc = device_get_softc(bus); 1672 snprintf(sxd, sizeof(sxd), "_S%dD", sc->acpi_sstate); 1673 status = acpi_GetInteger(handle, sxd, dstate); 1674 if (ACPI_FAILURE(status) && status != AE_NOT_FOUND) { 1675 device_printf(dev, "failed to get %s on %s: %s\n", sxd, 1676 acpi_name(handle), AcpiFormatException(status)); 1677 return (ENXIO); 1678 } 1679 1680 return (0); 1681 } 1682 1683 /* Callback arg for our implementation of walking the namespace. */ 1684 struct acpi_device_scan_ctx { 1685 acpi_scan_cb_t user_fn; 1686 void *arg; 1687 ACPI_HANDLE parent; 1688 }; 1689 1690 static ACPI_STATUS 1691 acpi_device_scan_cb(ACPI_HANDLE h, UINT32 level, void *arg, void **retval) 1692 { 1693 struct acpi_device_scan_ctx *ctx; 1694 device_t dev, old_dev; 1695 ACPI_STATUS status; 1696 ACPI_OBJECT_TYPE type; 1697 1698 /* 1699 * Skip this device if we think we'll have trouble with it or it is 1700 * the parent where the scan began. 1701 */ 1702 ctx = (struct acpi_device_scan_ctx *)arg; 1703 if (acpi_avoid(h) || h == ctx->parent) 1704 return (AE_OK); 1705 1706 /* If this is not a valid device type (e.g., a method), skip it. */ 1707 if (ACPI_FAILURE(AcpiGetType(h, &type))) 1708 return (AE_OK); 1709 if (type != ACPI_TYPE_DEVICE && type != ACPI_TYPE_PROCESSOR && 1710 type != ACPI_TYPE_THERMAL && type != ACPI_TYPE_POWER) 1711 return (AE_OK); 1712 1713 /* 1714 * Call the user function with the current device. If it is unchanged 1715 * afterwards, return. Otherwise, we update the handle to the new dev. 1716 */ 1717 old_dev = acpi_get_device(h); 1718 dev = old_dev; 1719 status = ctx->user_fn(h, &dev, level, ctx->arg); 1720 if (ACPI_FAILURE(status) || old_dev == dev) 1721 return (status); 1722 1723 /* Remove the old child and its connection to the handle. */ 1724 if (old_dev != NULL) { 1725 device_delete_child(device_get_parent(old_dev), old_dev); 1726 AcpiDetachData(h, acpi_fake_objhandler); 1727 } 1728 1729 /* Recreate the handle association if the user created a device. */ 1730 if (dev != NULL) 1731 AcpiAttachData(h, acpi_fake_objhandler, dev); 1732 1733 return (AE_OK); 1734 } 1735 1736 static ACPI_STATUS 1737 acpi_device_scan_children(device_t bus, device_t dev, int max_depth, 1738 acpi_scan_cb_t user_fn, void *arg) 1739 { 1740 ACPI_HANDLE h; 1741 struct acpi_device_scan_ctx ctx; 1742 1743 if (acpi_disabled("children")) 1744 return (AE_OK); 1745 1746 if (dev == NULL) 1747 h = ACPI_ROOT_OBJECT; 1748 else if ((h = acpi_get_handle(dev)) == NULL) 1749 return (AE_BAD_PARAMETER); 1750 ctx.user_fn = user_fn; 1751 ctx.arg = arg; 1752 ctx.parent = h; 1753 return (AcpiWalkNamespace(ACPI_TYPE_ANY, h, max_depth, 1754 acpi_device_scan_cb, NULL, &ctx, NULL)); 1755 } 1756 1757 /* 1758 * Even though ACPI devices are not PCI, we use the PCI approach for setting 1759 * device power states since it's close enough to ACPI. 1760 */ 1761 static int 1762 acpi_set_powerstate(device_t child, int state) 1763 { 1764 ACPI_HANDLE h; 1765 ACPI_STATUS status; 1766 1767 h = acpi_get_handle(child); 1768 if (state < ACPI_STATE_D0 || state > ACPI_D_STATES_MAX) 1769 return (EINVAL); 1770 if (h == NULL) 1771 return (0); 1772 1773 /* Ignore errors if the power methods aren't present. */ 1774 status = acpi_pwr_switch_consumer(h, state); 1775 if (ACPI_SUCCESS(status)) { 1776 if (bootverbose) 1777 device_printf(child, "set ACPI power state D%d on %s\n", 1778 state, acpi_name(h)); 1779 } else if (status != AE_NOT_FOUND) 1780 device_printf(child, 1781 "failed to set ACPI power state D%d on %s: %s\n", state, 1782 acpi_name(h), AcpiFormatException(status)); 1783 1784 return (0); 1785 } 1786 1787 static int 1788 acpi_isa_pnp_probe(device_t bus, device_t child, struct isa_pnp_id *ids) 1789 { 1790 int result, cid_count, i; 1791 uint32_t lid, cids[8]; 1792 1793 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1794 1795 /* 1796 * ISA-style drivers attached to ACPI may persist and 1797 * probe manually if we return ENOENT. We never want 1798 * that to happen, so don't ever return it. 1799 */ 1800 result = ENXIO; 1801 1802 /* Scan the supplied IDs for a match */ 1803 lid = acpi_isa_get_logicalid(child); 1804 cid_count = acpi_isa_get_compatid(child, cids, 8); 1805 while (ids && ids->ip_id) { 1806 if (lid == ids->ip_id) { 1807 result = 0; 1808 goto out; 1809 } 1810 for (i = 0; i < cid_count; i++) { 1811 if (cids[i] == ids->ip_id) { 1812 result = 0; 1813 goto out; 1814 } 1815 } 1816 ids++; 1817 } 1818 1819 out: 1820 if (result == 0 && ids->ip_desc) 1821 device_set_desc(child, ids->ip_desc); 1822 1823 return_VALUE (result); 1824 } 1825 1826 #if defined(__i386__) || defined(__amd64__) 1827 /* 1828 * Look for a MCFG table. If it is present, use the settings for 1829 * domain (segment) 0 to setup PCI config space access via the memory 1830 * map. 1831 */ 1832 static void 1833 acpi_enable_pcie(void) 1834 { 1835 ACPI_TABLE_HEADER *hdr; 1836 ACPI_MCFG_ALLOCATION *alloc, *end; 1837 ACPI_STATUS status; 1838 1839 status = AcpiGetTable(ACPI_SIG_MCFG, 1, &hdr); 1840 if (ACPI_FAILURE(status)) 1841 return; 1842 1843 end = (ACPI_MCFG_ALLOCATION *)((char *)hdr + hdr->Length); 1844 alloc = (ACPI_MCFG_ALLOCATION *)((ACPI_TABLE_MCFG *)hdr + 1); 1845 while (alloc < end) { 1846 if (alloc->PciSegment == 0) { 1847 pcie_cfgregopen(alloc->Address, alloc->StartBusNumber, 1848 alloc->EndBusNumber); 1849 return; 1850 } 1851 alloc++; 1852 } 1853 } 1854 #endif 1855 1856 /* 1857 * Scan all of the ACPI namespace and attach child devices. 1858 * 1859 * We should only expect to find devices in the \_PR, \_TZ, \_SI, and 1860 * \_SB scopes, and \_PR and \_TZ became obsolete in the ACPI 2.0 spec. 1861 * However, in violation of the spec, some systems place their PCI link 1862 * devices in \, so we have to walk the whole namespace. We check the 1863 * type of namespace nodes, so this should be ok. 1864 */ 1865 static void 1866 acpi_probe_children(device_t bus) 1867 { 1868 1869 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1870 1871 /* 1872 * Scan the namespace and insert placeholders for all the devices that 1873 * we find. We also probe/attach any early devices. 1874 * 1875 * Note that we use AcpiWalkNamespace rather than AcpiGetDevices because 1876 * we want to create nodes for all devices, not just those that are 1877 * currently present. (This assumes that we don't want to create/remove 1878 * devices as they appear, which might be smarter.) 1879 */ 1880 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "namespace scan\n")); 1881 AcpiWalkNamespace(ACPI_TYPE_ANY, ACPI_ROOT_OBJECT, 100, acpi_probe_child, 1882 NULL, bus, NULL); 1883 1884 /* Pre-allocate resources for our rman from any sysresource devices. */ 1885 acpi_sysres_alloc(bus); 1886 1887 /* Reserve resources already allocated to children. */ 1888 acpi_reserve_resources(bus); 1889 1890 /* Create any static children by calling device identify methods. */ 1891 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "device identify routines\n")); 1892 bus_generic_probe(bus); 1893 1894 /* Probe/attach all children, created statically and from the namespace. */ 1895 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "acpi bus_generic_attach\n")); 1896 bus_generic_attach(bus); 1897 1898 /* Attach wake sysctls. */ 1899 acpi_wake_sysctl_walk(bus); 1900 1901 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "done attaching children\n")); 1902 return_VOID; 1903 } 1904 1905 /* 1906 * Determine the probe order for a given device. 1907 */ 1908 static void 1909 acpi_probe_order(ACPI_HANDLE handle, int *order) 1910 { 1911 ACPI_OBJECT_TYPE type; 1912 1913 /* 1914 * 0. CPUs 1915 * 1. I/O port and memory system resource holders 1916 * 2. Clocks and timers (to handle early accesses) 1917 * 3. Embedded controllers (to handle early accesses) 1918 * 4. PCI Link Devices 1919 */ 1920 AcpiGetType(handle, &type); 1921 if (type == ACPI_TYPE_PROCESSOR) 1922 *order = 0; 1923 else if (acpi_MatchHid(handle, "PNP0C01") || 1924 acpi_MatchHid(handle, "PNP0C02")) 1925 *order = 1; 1926 else if (acpi_MatchHid(handle, "PNP0100") || 1927 acpi_MatchHid(handle, "PNP0103") || 1928 acpi_MatchHid(handle, "PNP0B00")) 1929 *order = 2; 1930 else if (acpi_MatchHid(handle, "PNP0C09")) 1931 *order = 3; 1932 else if (acpi_MatchHid(handle, "PNP0C0F")) 1933 *order = 4; 1934 } 1935 1936 /* 1937 * Evaluate a child device and determine whether we might attach a device to 1938 * it. 1939 */ 1940 static ACPI_STATUS 1941 acpi_probe_child(ACPI_HANDLE handle, UINT32 level, void *context, void **status) 1942 { 1943 struct acpi_prw_data prw; 1944 ACPI_OBJECT_TYPE type; 1945 ACPI_HANDLE h; 1946 device_t bus, child; 1947 char *handle_str; 1948 int order; 1949 1950 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1951 1952 if (acpi_disabled("children")) 1953 return_ACPI_STATUS (AE_OK); 1954 1955 /* Skip this device if we think we'll have trouble with it. */ 1956 if (acpi_avoid(handle)) 1957 return_ACPI_STATUS (AE_OK); 1958 1959 bus = (device_t)context; 1960 if (ACPI_SUCCESS(AcpiGetType(handle, &type))) { 1961 handle_str = acpi_name(handle); 1962 switch (type) { 1963 case ACPI_TYPE_DEVICE: 1964 /* 1965 * Since we scan from \, be sure to skip system scope objects. 1966 * \_SB_ and \_TZ_ are defined in ACPICA as devices to work around 1967 * BIOS bugs. For example, \_SB_ is to allow \_SB_._INI to be run 1968 * during the intialization and \_TZ_ is to support Notify() on it. 1969 */ 1970 if (strcmp(handle_str, "\\_SB_") == 0 || 1971 strcmp(handle_str, "\\_TZ_") == 0) 1972 break; 1973 if (acpi_parse_prw(handle, &prw) == 0) 1974 AcpiSetupGpeForWake(handle, prw.gpe_handle, prw.gpe_bit); 1975 1976 /* 1977 * Ignore devices that do not have a _HID or _CID. They should 1978 * be discovered by other buses (e.g. the PCI bus driver). 1979 */ 1980 if (!acpi_has_hid(handle)) 1981 break; 1982 /* FALLTHROUGH */ 1983 case ACPI_TYPE_PROCESSOR: 1984 case ACPI_TYPE_THERMAL: 1985 case ACPI_TYPE_POWER: 1986 /* 1987 * Create a placeholder device for this node. Sort the 1988 * placeholder so that the probe/attach passes will run 1989 * breadth-first. Orders less than ACPI_DEV_BASE_ORDER 1990 * are reserved for special objects (i.e., system 1991 * resources). 1992 */ 1993 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "scanning '%s'\n", handle_str)); 1994 order = level * 10 + ACPI_DEV_BASE_ORDER; 1995 acpi_probe_order(handle, &order); 1996 child = BUS_ADD_CHILD(bus, order, NULL, -1); 1997 if (child == NULL) 1998 break; 1999 2000 /* Associate the handle with the device_t and vice versa. */ 2001 acpi_set_handle(child, handle); 2002 AcpiAttachData(handle, acpi_fake_objhandler, child); 2003 2004 /* 2005 * Check that the device is present. If it's not present, 2006 * leave it disabled (so that we have a device_t attached to 2007 * the handle, but we don't probe it). 2008 * 2009 * XXX PCI link devices sometimes report "present" but not 2010 * "functional" (i.e. if disabled). Go ahead and probe them 2011 * anyway since we may enable them later. 2012 */ 2013 if (type == ACPI_TYPE_DEVICE && !acpi_DeviceIsPresent(child)) { 2014 /* Never disable PCI link devices. */ 2015 if (acpi_MatchHid(handle, "PNP0C0F")) 2016 break; 2017 /* 2018 * Docking stations should remain enabled since the system 2019 * may be undocked at boot. 2020 */ 2021 if (ACPI_SUCCESS(AcpiGetHandle(handle, "_DCK", &h))) 2022 break; 2023 2024 device_disable(child); 2025 break; 2026 } 2027 2028 /* 2029 * Get the device's resource settings and attach them. 2030 * Note that if the device has _PRS but no _CRS, we need 2031 * to decide when it's appropriate to try to configure the 2032 * device. Ignore the return value here; it's OK for the 2033 * device not to have any resources. 2034 */ 2035 acpi_parse_resources(child, handle, &acpi_res_parse_set, NULL); 2036 break; 2037 } 2038 } 2039 2040 return_ACPI_STATUS (AE_OK); 2041 } 2042 2043 /* 2044 * AcpiAttachData() requires an object handler but never uses it. This is a 2045 * placeholder object handler so we can store a device_t in an ACPI_HANDLE. 2046 */ 2047 void 2048 acpi_fake_objhandler(ACPI_HANDLE h, void *data) 2049 { 2050 } 2051 2052 static void 2053 acpi_shutdown_final(void *arg, int howto) 2054 { 2055 struct acpi_softc *sc = (struct acpi_softc *)arg; 2056 register_t intr; 2057 ACPI_STATUS status; 2058 2059 /* 2060 * XXX Shutdown code should only run on the BSP (cpuid 0). 2061 * Some chipsets do not power off the system correctly if called from 2062 * an AP. 2063 */ 2064 if ((howto & RB_POWEROFF) != 0) { 2065 status = AcpiEnterSleepStatePrep(ACPI_STATE_S5); 2066 if (ACPI_FAILURE(status)) { 2067 device_printf(sc->acpi_dev, "AcpiEnterSleepStatePrep failed - %s\n", 2068 AcpiFormatException(status)); 2069 return; 2070 } 2071 device_printf(sc->acpi_dev, "Powering system off\n"); 2072 intr = intr_disable(); 2073 status = AcpiEnterSleepState(ACPI_STATE_S5); 2074 if (ACPI_FAILURE(status)) { 2075 intr_restore(intr); 2076 device_printf(sc->acpi_dev, "power-off failed - %s\n", 2077 AcpiFormatException(status)); 2078 } else { 2079 DELAY(1000000); 2080 intr_restore(intr); 2081 device_printf(sc->acpi_dev, "power-off failed - timeout\n"); 2082 } 2083 } else if ((howto & RB_HALT) == 0 && sc->acpi_handle_reboot) { 2084 /* Reboot using the reset register. */ 2085 status = AcpiReset(); 2086 if (ACPI_SUCCESS(status)) { 2087 DELAY(1000000); 2088 device_printf(sc->acpi_dev, "reset failed - timeout\n"); 2089 } else if (status != AE_NOT_EXIST) 2090 device_printf(sc->acpi_dev, "reset failed - %s\n", 2091 AcpiFormatException(status)); 2092 } else if (sc->acpi_do_disable && panicstr == NULL) { 2093 /* 2094 * Only disable ACPI if the user requested. On some systems, writing 2095 * the disable value to SMI_CMD hangs the system. 2096 */ 2097 device_printf(sc->acpi_dev, "Shutting down\n"); 2098 AcpiTerminate(); 2099 } 2100 } 2101 2102 static void 2103 acpi_enable_fixed_events(struct acpi_softc *sc) 2104 { 2105 static int first_time = 1; 2106 2107 /* Enable and clear fixed events and install handlers. */ 2108 if ((AcpiGbl_FADT.Flags & ACPI_FADT_POWER_BUTTON) == 0) { 2109 AcpiClearEvent(ACPI_EVENT_POWER_BUTTON); 2110 AcpiInstallFixedEventHandler(ACPI_EVENT_POWER_BUTTON, 2111 acpi_event_power_button_sleep, sc); 2112 if (first_time) 2113 device_printf(sc->acpi_dev, "Power Button (fixed)\n"); 2114 } 2115 if ((AcpiGbl_FADT.Flags & ACPI_FADT_SLEEP_BUTTON) == 0) { 2116 AcpiClearEvent(ACPI_EVENT_SLEEP_BUTTON); 2117 AcpiInstallFixedEventHandler(ACPI_EVENT_SLEEP_BUTTON, 2118 acpi_event_sleep_button_sleep, sc); 2119 if (first_time) 2120 device_printf(sc->acpi_dev, "Sleep Button (fixed)\n"); 2121 } 2122 2123 first_time = 0; 2124 } 2125 2126 /* 2127 * Returns true if the device is actually present and should 2128 * be attached to. This requires the present, enabled, UI-visible 2129 * and diagnostics-passed bits to be set. 2130 */ 2131 BOOLEAN 2132 acpi_DeviceIsPresent(device_t dev) 2133 { 2134 ACPI_DEVICE_INFO *devinfo; 2135 ACPI_HANDLE h; 2136 BOOLEAN present; 2137 2138 if ((h = acpi_get_handle(dev)) == NULL || 2139 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 2140 return (FALSE); 2141 2142 /* If no _STA method, must be present */ 2143 present = (devinfo->Valid & ACPI_VALID_STA) == 0 || 2144 ACPI_DEVICE_PRESENT(devinfo->CurrentStatus) ? TRUE : FALSE; 2145 2146 AcpiOsFree(devinfo); 2147 return (present); 2148 } 2149 2150 /* 2151 * Returns true if the battery is actually present and inserted. 2152 */ 2153 BOOLEAN 2154 acpi_BatteryIsPresent(device_t dev) 2155 { 2156 ACPI_DEVICE_INFO *devinfo; 2157 ACPI_HANDLE h; 2158 BOOLEAN present; 2159 2160 if ((h = acpi_get_handle(dev)) == NULL || 2161 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 2162 return (FALSE); 2163 2164 /* If no _STA method, must be present */ 2165 present = (devinfo->Valid & ACPI_VALID_STA) == 0 || 2166 ACPI_BATTERY_PRESENT(devinfo->CurrentStatus) ? TRUE : FALSE; 2167 2168 AcpiOsFree(devinfo); 2169 return (present); 2170 } 2171 2172 /* 2173 * Returns true if a device has at least one valid device ID. 2174 */ 2175 static BOOLEAN 2176 acpi_has_hid(ACPI_HANDLE h) 2177 { 2178 ACPI_DEVICE_INFO *devinfo; 2179 BOOLEAN ret; 2180 2181 if (h == NULL || 2182 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 2183 return (FALSE); 2184 2185 ret = FALSE; 2186 if ((devinfo->Valid & ACPI_VALID_HID) != 0) 2187 ret = TRUE; 2188 else if ((devinfo->Valid & ACPI_VALID_CID) != 0) 2189 if (devinfo->CompatibleIdList.Count > 0) 2190 ret = TRUE; 2191 2192 AcpiOsFree(devinfo); 2193 return (ret); 2194 } 2195 2196 /* 2197 * Match a HID string against a handle 2198 */ 2199 BOOLEAN 2200 acpi_MatchHid(ACPI_HANDLE h, const char *hid) 2201 { 2202 ACPI_DEVICE_INFO *devinfo; 2203 BOOLEAN ret; 2204 int i; 2205 2206 if (hid == NULL || h == NULL || 2207 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 2208 return (FALSE); 2209 2210 ret = FALSE; 2211 if ((devinfo->Valid & ACPI_VALID_HID) != 0 && 2212 strcmp(hid, devinfo->HardwareId.String) == 0) 2213 ret = TRUE; 2214 else if ((devinfo->Valid & ACPI_VALID_CID) != 0) 2215 for (i = 0; i < devinfo->CompatibleIdList.Count; i++) { 2216 if (strcmp(hid, devinfo->CompatibleIdList.Ids[i].String) == 0) { 2217 ret = TRUE; 2218 break; 2219 } 2220 } 2221 2222 AcpiOsFree(devinfo); 2223 return (ret); 2224 } 2225 2226 /* 2227 * Return the handle of a named object within our scope, ie. that of (parent) 2228 * or one if its parents. 2229 */ 2230 ACPI_STATUS 2231 acpi_GetHandleInScope(ACPI_HANDLE parent, char *path, ACPI_HANDLE *result) 2232 { 2233 ACPI_HANDLE r; 2234 ACPI_STATUS status; 2235 2236 /* Walk back up the tree to the root */ 2237 for (;;) { 2238 status = AcpiGetHandle(parent, path, &r); 2239 if (ACPI_SUCCESS(status)) { 2240 *result = r; 2241 return (AE_OK); 2242 } 2243 /* XXX Return error here? */ 2244 if (status != AE_NOT_FOUND) 2245 return (AE_OK); 2246 if (ACPI_FAILURE(AcpiGetParent(parent, &r))) 2247 return (AE_NOT_FOUND); 2248 parent = r; 2249 } 2250 } 2251 2252 /* 2253 * Allocate a buffer with a preset data size. 2254 */ 2255 ACPI_BUFFER * 2256 acpi_AllocBuffer(int size) 2257 { 2258 ACPI_BUFFER *buf; 2259 2260 if ((buf = malloc(size + sizeof(*buf), M_ACPIDEV, M_NOWAIT)) == NULL) 2261 return (NULL); 2262 buf->Length = size; 2263 buf->Pointer = (void *)(buf + 1); 2264 return (buf); 2265 } 2266 2267 ACPI_STATUS 2268 acpi_SetInteger(ACPI_HANDLE handle, char *path, UINT32 number) 2269 { 2270 ACPI_OBJECT arg1; 2271 ACPI_OBJECT_LIST args; 2272 2273 arg1.Type = ACPI_TYPE_INTEGER; 2274 arg1.Integer.Value = number; 2275 args.Count = 1; 2276 args.Pointer = &arg1; 2277 2278 return (AcpiEvaluateObject(handle, path, &args, NULL)); 2279 } 2280 2281 /* 2282 * Evaluate a path that should return an integer. 2283 */ 2284 ACPI_STATUS 2285 acpi_GetInteger(ACPI_HANDLE handle, char *path, UINT32 *number) 2286 { 2287 ACPI_STATUS status; 2288 ACPI_BUFFER buf; 2289 ACPI_OBJECT param; 2290 2291 if (handle == NULL) 2292 handle = ACPI_ROOT_OBJECT; 2293 2294 /* 2295 * Assume that what we've been pointed at is an Integer object, or 2296 * a method that will return an Integer. 2297 */ 2298 buf.Pointer = ¶m; 2299 buf.Length = sizeof(param); 2300 status = AcpiEvaluateObject(handle, path, NULL, &buf); 2301 if (ACPI_SUCCESS(status)) { 2302 if (param.Type == ACPI_TYPE_INTEGER) 2303 *number = param.Integer.Value; 2304 else 2305 status = AE_TYPE; 2306 } 2307 2308 /* 2309 * In some applications, a method that's expected to return an Integer 2310 * may instead return a Buffer (probably to simplify some internal 2311 * arithmetic). We'll try to fetch whatever it is, and if it's a Buffer, 2312 * convert it into an Integer as best we can. 2313 * 2314 * This is a hack. 2315 */ 2316 if (status == AE_BUFFER_OVERFLOW) { 2317 if ((buf.Pointer = AcpiOsAllocate(buf.Length)) == NULL) { 2318 status = AE_NO_MEMORY; 2319 } else { 2320 status = AcpiEvaluateObject(handle, path, NULL, &buf); 2321 if (ACPI_SUCCESS(status)) 2322 status = acpi_ConvertBufferToInteger(&buf, number); 2323 AcpiOsFree(buf.Pointer); 2324 } 2325 } 2326 return (status); 2327 } 2328 2329 ACPI_STATUS 2330 acpi_ConvertBufferToInteger(ACPI_BUFFER *bufp, UINT32 *number) 2331 { 2332 ACPI_OBJECT *p; 2333 UINT8 *val; 2334 int i; 2335 2336 p = (ACPI_OBJECT *)bufp->Pointer; 2337 if (p->Type == ACPI_TYPE_INTEGER) { 2338 *number = p->Integer.Value; 2339 return (AE_OK); 2340 } 2341 if (p->Type != ACPI_TYPE_BUFFER) 2342 return (AE_TYPE); 2343 if (p->Buffer.Length > sizeof(int)) 2344 return (AE_BAD_DATA); 2345 2346 *number = 0; 2347 val = p->Buffer.Pointer; 2348 for (i = 0; i < p->Buffer.Length; i++) 2349 *number += val[i] << (i * 8); 2350 return (AE_OK); 2351 } 2352 2353 /* 2354 * Iterate over the elements of an a package object, calling the supplied 2355 * function for each element. 2356 * 2357 * XXX possible enhancement might be to abort traversal on error. 2358 */ 2359 ACPI_STATUS 2360 acpi_ForeachPackageObject(ACPI_OBJECT *pkg, 2361 void (*func)(ACPI_OBJECT *comp, void *arg), void *arg) 2362 { 2363 ACPI_OBJECT *comp; 2364 int i; 2365 2366 if (pkg == NULL || pkg->Type != ACPI_TYPE_PACKAGE) 2367 return (AE_BAD_PARAMETER); 2368 2369 /* Iterate over components */ 2370 i = 0; 2371 comp = pkg->Package.Elements; 2372 for (; i < pkg->Package.Count; i++, comp++) 2373 func(comp, arg); 2374 2375 return (AE_OK); 2376 } 2377 2378 /* 2379 * Find the (index)th resource object in a set. 2380 */ 2381 ACPI_STATUS 2382 acpi_FindIndexedResource(ACPI_BUFFER *buf, int index, ACPI_RESOURCE **resp) 2383 { 2384 ACPI_RESOURCE *rp; 2385 int i; 2386 2387 rp = (ACPI_RESOURCE *)buf->Pointer; 2388 i = index; 2389 while (i-- > 0) { 2390 /* Range check */ 2391 if (rp > (ACPI_RESOURCE *)((u_int8_t *)buf->Pointer + buf->Length)) 2392 return (AE_BAD_PARAMETER); 2393 2394 /* Check for terminator */ 2395 if (rp->Type == ACPI_RESOURCE_TYPE_END_TAG || rp->Length == 0) 2396 return (AE_NOT_FOUND); 2397 rp = ACPI_NEXT_RESOURCE(rp); 2398 } 2399 if (resp != NULL) 2400 *resp = rp; 2401 2402 return (AE_OK); 2403 } 2404 2405 /* 2406 * Append an ACPI_RESOURCE to an ACPI_BUFFER. 2407 * 2408 * Given a pointer to an ACPI_RESOURCE structure, expand the ACPI_BUFFER 2409 * provided to contain it. If the ACPI_BUFFER is empty, allocate a sensible 2410 * backing block. If the ACPI_RESOURCE is NULL, return an empty set of 2411 * resources. 2412 */ 2413 #define ACPI_INITIAL_RESOURCE_BUFFER_SIZE 512 2414 2415 ACPI_STATUS 2416 acpi_AppendBufferResource(ACPI_BUFFER *buf, ACPI_RESOURCE *res) 2417 { 2418 ACPI_RESOURCE *rp; 2419 void *newp; 2420 2421 /* Initialise the buffer if necessary. */ 2422 if (buf->Pointer == NULL) { 2423 buf->Length = ACPI_INITIAL_RESOURCE_BUFFER_SIZE; 2424 if ((buf->Pointer = AcpiOsAllocate(buf->Length)) == NULL) 2425 return (AE_NO_MEMORY); 2426 rp = (ACPI_RESOURCE *)buf->Pointer; 2427 rp->Type = ACPI_RESOURCE_TYPE_END_TAG; 2428 rp->Length = ACPI_RS_SIZE_MIN; 2429 } 2430 if (res == NULL) 2431 return (AE_OK); 2432 2433 /* 2434 * Scan the current buffer looking for the terminator. 2435 * This will either find the terminator or hit the end 2436 * of the buffer and return an error. 2437 */ 2438 rp = (ACPI_RESOURCE *)buf->Pointer; 2439 for (;;) { 2440 /* Range check, don't go outside the buffer */ 2441 if (rp >= (ACPI_RESOURCE *)((u_int8_t *)buf->Pointer + buf->Length)) 2442 return (AE_BAD_PARAMETER); 2443 if (rp->Type == ACPI_RESOURCE_TYPE_END_TAG || rp->Length == 0) 2444 break; 2445 rp = ACPI_NEXT_RESOURCE(rp); 2446 } 2447 2448 /* 2449 * Check the size of the buffer and expand if required. 2450 * 2451 * Required size is: 2452 * size of existing resources before terminator + 2453 * size of new resource and header + 2454 * size of terminator. 2455 * 2456 * Note that this loop should really only run once, unless 2457 * for some reason we are stuffing a *really* huge resource. 2458 */ 2459 while ((((u_int8_t *)rp - (u_int8_t *)buf->Pointer) + 2460 res->Length + ACPI_RS_SIZE_NO_DATA + 2461 ACPI_RS_SIZE_MIN) >= buf->Length) { 2462 if ((newp = AcpiOsAllocate(buf->Length * 2)) == NULL) 2463 return (AE_NO_MEMORY); 2464 bcopy(buf->Pointer, newp, buf->Length); 2465 rp = (ACPI_RESOURCE *)((u_int8_t *)newp + 2466 ((u_int8_t *)rp - (u_int8_t *)buf->Pointer)); 2467 AcpiOsFree(buf->Pointer); 2468 buf->Pointer = newp; 2469 buf->Length += buf->Length; 2470 } 2471 2472 /* Insert the new resource. */ 2473 bcopy(res, rp, res->Length + ACPI_RS_SIZE_NO_DATA); 2474 2475 /* And add the terminator. */ 2476 rp = ACPI_NEXT_RESOURCE(rp); 2477 rp->Type = ACPI_RESOURCE_TYPE_END_TAG; 2478 rp->Length = ACPI_RS_SIZE_MIN; 2479 2480 return (AE_OK); 2481 } 2482 2483 ACPI_STATUS 2484 acpi_EvaluateOSC(ACPI_HANDLE handle, uint8_t *uuid, int revision, int count, 2485 uint32_t *caps) 2486 { 2487 ACPI_OBJECT arg[4]; 2488 ACPI_OBJECT_LIST arglist; 2489 2490 arglist.Pointer = arg; 2491 arglist.Count = 4; 2492 arg[0].Type = ACPI_TYPE_BUFFER; 2493 arg[0].Buffer.Length = ACPI_UUID_LENGTH; 2494 arg[0].Buffer.Pointer = uuid; 2495 arg[1].Type = ACPI_TYPE_INTEGER; 2496 arg[1].Integer.Value = revision; 2497 arg[2].Type = ACPI_TYPE_INTEGER; 2498 arg[2].Integer.Value = count; 2499 arg[3].Type = ACPI_TYPE_BUFFER; 2500 arg[3].Buffer.Length = count * sizeof(*caps); 2501 arg[3].Buffer.Pointer = (uint8_t *)caps; 2502 return (AcpiEvaluateObject(handle, "_OSC", &arglist, NULL)); 2503 } 2504 2505 /* 2506 * Set interrupt model. 2507 */ 2508 ACPI_STATUS 2509 acpi_SetIntrModel(int model) 2510 { 2511 2512 return (acpi_SetInteger(ACPI_ROOT_OBJECT, "_PIC", model)); 2513 } 2514 2515 /* 2516 * Walk subtables of a table and call a callback routine for each 2517 * subtable. The caller should provide the first subtable and a 2518 * pointer to the end of the table. This can be used to walk tables 2519 * such as MADT and SRAT that use subtable entries. 2520 */ 2521 void 2522 acpi_walk_subtables(void *first, void *end, acpi_subtable_handler *handler, 2523 void *arg) 2524 { 2525 ACPI_SUBTABLE_HEADER *entry; 2526 2527 for (entry = first; (void *)entry < end; ) { 2528 /* Avoid an infinite loop if we hit a bogus entry. */ 2529 if (entry->Length < sizeof(ACPI_SUBTABLE_HEADER)) 2530 return; 2531 2532 handler(entry, arg); 2533 entry = ACPI_ADD_PTR(ACPI_SUBTABLE_HEADER, entry, entry->Length); 2534 } 2535 } 2536 2537 /* 2538 * DEPRECATED. This interface has serious deficiencies and will be 2539 * removed. 2540 * 2541 * Immediately enter the sleep state. In the old model, acpiconf(8) ran 2542 * rc.suspend and rc.resume so we don't have to notify devd(8) to do this. 2543 */ 2544 ACPI_STATUS 2545 acpi_SetSleepState(struct acpi_softc *sc, int state) 2546 { 2547 static int once; 2548 2549 if (!once) { 2550 device_printf(sc->acpi_dev, 2551 "warning: acpi_SetSleepState() deprecated, need to update your software\n"); 2552 once = 1; 2553 } 2554 return (acpi_EnterSleepState(sc, state)); 2555 } 2556 2557 #if defined(__amd64__) || defined(__i386__) 2558 static void 2559 acpi_sleep_force_task(void *context) 2560 { 2561 struct acpi_softc *sc = (struct acpi_softc *)context; 2562 2563 if (ACPI_FAILURE(acpi_EnterSleepState(sc, sc->acpi_next_sstate))) 2564 device_printf(sc->acpi_dev, "force sleep state S%d failed\n", 2565 sc->acpi_next_sstate); 2566 } 2567 2568 static void 2569 acpi_sleep_force(void *arg) 2570 { 2571 struct acpi_softc *sc = (struct acpi_softc *)arg; 2572 2573 device_printf(sc->acpi_dev, 2574 "suspend request timed out, forcing sleep now\n"); 2575 /* 2576 * XXX Suspending from callout causes freezes in DEVICE_SUSPEND(). 2577 * Suspend from acpi_task thread instead. 2578 */ 2579 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 2580 acpi_sleep_force_task, sc))) 2581 device_printf(sc->acpi_dev, "AcpiOsExecute() for sleeping failed\n"); 2582 } 2583 #endif 2584 2585 /* 2586 * Request that the system enter the given suspend state. All /dev/apm 2587 * devices and devd(8) will be notified. Userland then has a chance to 2588 * save state and acknowledge the request. The system sleeps once all 2589 * acks are in. 2590 */ 2591 int 2592 acpi_ReqSleepState(struct acpi_softc *sc, int state) 2593 { 2594 #if defined(__amd64__) || defined(__i386__) 2595 struct apm_clone_data *clone; 2596 ACPI_STATUS status; 2597 2598 if (state < ACPI_STATE_S1 || state > ACPI_S_STATES_MAX) 2599 return (EINVAL); 2600 if (!acpi_sleep_states[state]) 2601 return (EOPNOTSUPP); 2602 2603 /* 2604 * If a reboot/shutdown/suspend request is already in progress or 2605 * suspend is blocked due to an upcoming shutdown, just return. 2606 */ 2607 if (rebooting || sc->acpi_next_sstate != 0 || suspend_blocked) { 2608 return (0); 2609 } 2610 2611 /* Wait until sleep is enabled. */ 2612 while (sc->acpi_sleep_disabled) { 2613 AcpiOsSleep(1000); 2614 } 2615 2616 ACPI_LOCK(acpi); 2617 2618 sc->acpi_next_sstate = state; 2619 2620 /* S5 (soft-off) should be entered directly with no waiting. */ 2621 if (state == ACPI_STATE_S5) { 2622 ACPI_UNLOCK(acpi); 2623 status = acpi_EnterSleepState(sc, state); 2624 return (ACPI_SUCCESS(status) ? 0 : ENXIO); 2625 } 2626 2627 /* Record the pending state and notify all apm devices. */ 2628 STAILQ_FOREACH(clone, &sc->apm_cdevs, entries) { 2629 clone->notify_status = APM_EV_NONE; 2630 if ((clone->flags & ACPI_EVF_DEVD) == 0) { 2631 selwakeuppri(&clone->sel_read, PZERO); 2632 KNOTE_LOCKED(&clone->sel_read.si_note, 0); 2633 } 2634 } 2635 2636 /* If devd(8) is not running, immediately enter the sleep state. */ 2637 if (!devctl_process_running()) { 2638 ACPI_UNLOCK(acpi); 2639 status = acpi_EnterSleepState(sc, state); 2640 return (ACPI_SUCCESS(status) ? 0 : ENXIO); 2641 } 2642 2643 /* 2644 * Set a timeout to fire if userland doesn't ack the suspend request 2645 * in time. This way we still eventually go to sleep if we were 2646 * overheating or running low on battery, even if userland is hung. 2647 * We cancel this timeout once all userland acks are in or the 2648 * suspend request is aborted. 2649 */ 2650 callout_reset(&sc->susp_force_to, 10 * hz, acpi_sleep_force, sc); 2651 ACPI_UNLOCK(acpi); 2652 2653 /* Now notify devd(8) also. */ 2654 acpi_UserNotify("Suspend", ACPI_ROOT_OBJECT, state); 2655 2656 return (0); 2657 #else 2658 /* This platform does not support acpi suspend/resume. */ 2659 return (EOPNOTSUPP); 2660 #endif 2661 } 2662 2663 /* 2664 * Acknowledge (or reject) a pending sleep state. The caller has 2665 * prepared for suspend and is now ready for it to proceed. If the 2666 * error argument is non-zero, it indicates suspend should be cancelled 2667 * and gives an errno value describing why. Once all votes are in, 2668 * we suspend the system. 2669 */ 2670 int 2671 acpi_AckSleepState(struct apm_clone_data *clone, int error) 2672 { 2673 #if defined(__amd64__) || defined(__i386__) 2674 struct acpi_softc *sc; 2675 int ret, sleeping; 2676 2677 /* If no pending sleep state, return an error. */ 2678 ACPI_LOCK(acpi); 2679 sc = clone->acpi_sc; 2680 if (sc->acpi_next_sstate == 0) { 2681 ACPI_UNLOCK(acpi); 2682 return (ENXIO); 2683 } 2684 2685 /* Caller wants to abort suspend process. */ 2686 if (error) { 2687 sc->acpi_next_sstate = 0; 2688 callout_stop(&sc->susp_force_to); 2689 device_printf(sc->acpi_dev, 2690 "listener on %s cancelled the pending suspend\n", 2691 devtoname(clone->cdev)); 2692 ACPI_UNLOCK(acpi); 2693 return (0); 2694 } 2695 2696 /* 2697 * Mark this device as acking the suspend request. Then, walk through 2698 * all devices, seeing if they agree yet. We only count devices that 2699 * are writable since read-only devices couldn't ack the request. 2700 */ 2701 sleeping = TRUE; 2702 clone->notify_status = APM_EV_ACKED; 2703 STAILQ_FOREACH(clone, &sc->apm_cdevs, entries) { 2704 if ((clone->flags & ACPI_EVF_WRITE) != 0 && 2705 clone->notify_status != APM_EV_ACKED) { 2706 sleeping = FALSE; 2707 break; 2708 } 2709 } 2710 2711 /* If all devices have voted "yes", we will suspend now. */ 2712 if (sleeping) 2713 callout_stop(&sc->susp_force_to); 2714 ACPI_UNLOCK(acpi); 2715 ret = 0; 2716 if (sleeping) { 2717 if (ACPI_FAILURE(acpi_EnterSleepState(sc, sc->acpi_next_sstate))) 2718 ret = ENODEV; 2719 } 2720 return (ret); 2721 #else 2722 /* This platform does not support acpi suspend/resume. */ 2723 return (EOPNOTSUPP); 2724 #endif 2725 } 2726 2727 static void 2728 acpi_sleep_enable(void *arg) 2729 { 2730 struct acpi_softc *sc = (struct acpi_softc *)arg; 2731 2732 ACPI_LOCK_ASSERT(acpi); 2733 2734 /* Reschedule if the system is not fully up and running. */ 2735 if (!AcpiGbl_SystemAwakeAndRunning) { 2736 callout_schedule(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME); 2737 return; 2738 } 2739 2740 sc->acpi_sleep_disabled = FALSE; 2741 } 2742 2743 static ACPI_STATUS 2744 acpi_sleep_disable(struct acpi_softc *sc) 2745 { 2746 ACPI_STATUS status; 2747 2748 /* Fail if the system is not fully up and running. */ 2749 if (!AcpiGbl_SystemAwakeAndRunning) 2750 return (AE_ERROR); 2751 2752 ACPI_LOCK(acpi); 2753 status = sc->acpi_sleep_disabled ? AE_ERROR : AE_OK; 2754 sc->acpi_sleep_disabled = TRUE; 2755 ACPI_UNLOCK(acpi); 2756 2757 return (status); 2758 } 2759 2760 enum acpi_sleep_state { 2761 ACPI_SS_NONE, 2762 ACPI_SS_GPE_SET, 2763 ACPI_SS_DEV_SUSPEND, 2764 ACPI_SS_SLP_PREP, 2765 ACPI_SS_SLEPT, 2766 }; 2767 2768 /* 2769 * Enter the desired system sleep state. 2770 * 2771 * Currently we support S1-S5 but S4 is only S4BIOS 2772 */ 2773 static ACPI_STATUS 2774 acpi_EnterSleepState(struct acpi_softc *sc, int state) 2775 { 2776 register_t intr; 2777 ACPI_STATUS status; 2778 ACPI_EVENT_STATUS power_button_status; 2779 enum acpi_sleep_state slp_state; 2780 int sleep_result; 2781 2782 ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state); 2783 2784 if (state < ACPI_STATE_S1 || state > ACPI_S_STATES_MAX) 2785 return_ACPI_STATUS (AE_BAD_PARAMETER); 2786 if (!acpi_sleep_states[state]) { 2787 device_printf(sc->acpi_dev, "Sleep state S%d not supported by BIOS\n", 2788 state); 2789 return (AE_SUPPORT); 2790 } 2791 2792 /* Re-entry once we're suspending is not allowed. */ 2793 status = acpi_sleep_disable(sc); 2794 if (ACPI_FAILURE(status)) { 2795 device_printf(sc->acpi_dev, 2796 "suspend request ignored (not ready yet)\n"); 2797 return (status); 2798 } 2799 2800 if (state == ACPI_STATE_S5) { 2801 /* 2802 * Shut down cleanly and power off. This will call us back through the 2803 * shutdown handlers. 2804 */ 2805 shutdown_nice(RB_POWEROFF); 2806 return_ACPI_STATUS (AE_OK); 2807 } 2808 2809 EVENTHANDLER_INVOKE(power_suspend_early); 2810 stop_all_proc(); 2811 EVENTHANDLER_INVOKE(power_suspend); 2812 2813 if (smp_started) { 2814 thread_lock(curthread); 2815 sched_bind(curthread, 0); 2816 thread_unlock(curthread); 2817 } 2818 2819 /* 2820 * Be sure to hold Giant across DEVICE_SUSPEND/RESUME since non-MPSAFE 2821 * drivers need this. 2822 */ 2823 mtx_lock(&Giant); 2824 2825 slp_state = ACPI_SS_NONE; 2826 2827 sc->acpi_sstate = state; 2828 2829 /* Enable any GPEs as appropriate and requested by the user. */ 2830 acpi_wake_prep_walk(state); 2831 slp_state = ACPI_SS_GPE_SET; 2832 2833 /* 2834 * Inform all devices that we are going to sleep. If at least one 2835 * device fails, DEVICE_SUSPEND() automatically resumes the tree. 2836 * 2837 * XXX Note that a better two-pass approach with a 'veto' pass 2838 * followed by a "real thing" pass would be better, but the current 2839 * bus interface does not provide for this. 2840 */ 2841 if (DEVICE_SUSPEND(root_bus) != 0) { 2842 device_printf(sc->acpi_dev, "device_suspend failed\n"); 2843 goto backout; 2844 } 2845 slp_state = ACPI_SS_DEV_SUSPEND; 2846 2847 /* If testing device suspend only, back out of everything here. */ 2848 if (acpi_susp_bounce) 2849 goto backout; 2850 2851 status = AcpiEnterSleepStatePrep(state); 2852 if (ACPI_FAILURE(status)) { 2853 device_printf(sc->acpi_dev, "AcpiEnterSleepStatePrep failed - %s\n", 2854 AcpiFormatException(status)); 2855 goto backout; 2856 } 2857 slp_state = ACPI_SS_SLP_PREP; 2858 2859 if (sc->acpi_sleep_delay > 0) 2860 DELAY(sc->acpi_sleep_delay * 1000000); 2861 2862 intr = intr_disable(); 2863 if (state != ACPI_STATE_S1) { 2864 sleep_result = acpi_sleep_machdep(sc, state); 2865 acpi_wakeup_machdep(sc, state, sleep_result, 0); 2866 2867 /* 2868 * XXX According to ACPI specification SCI_EN bit should be restored 2869 * by ACPI platform (BIOS, firmware) to its pre-sleep state. 2870 * Unfortunately some BIOSes fail to do that and that leads to 2871 * unexpected and serious consequences during wake up like a system 2872 * getting stuck in SMI handlers. 2873 * This hack is picked up from Linux, which claims that it follows 2874 * Windows behavior. 2875 */ 2876 if (sleep_result == 1 && state != ACPI_STATE_S4) 2877 AcpiWriteBitRegister(ACPI_BITREG_SCI_ENABLE, ACPI_ENABLE_EVENT); 2878 2879 AcpiLeaveSleepStatePrep(state); 2880 2881 if (sleep_result == 1 && state == ACPI_STATE_S3) { 2882 /* 2883 * Prevent mis-interpretation of the wakeup by power button 2884 * as a request for power off. 2885 * Ideally we should post an appropriate wakeup event, 2886 * perhaps using acpi_event_power_button_wake or alike. 2887 * 2888 * Clearing of power button status after wakeup is mandated 2889 * by ACPI specification in section "Fixed Power Button". 2890 * 2891 * XXX As of ACPICA 20121114 AcpiGetEventStatus provides 2892 * status as 0/1 corressponding to inactive/active despite 2893 * its type being ACPI_EVENT_STATUS. In other words, 2894 * we should not test for ACPI_EVENT_FLAG_SET for time being. 2895 */ 2896 if (ACPI_SUCCESS(AcpiGetEventStatus(ACPI_EVENT_POWER_BUTTON, 2897 &power_button_status)) && power_button_status != 0) { 2898 AcpiClearEvent(ACPI_EVENT_POWER_BUTTON); 2899 device_printf(sc->acpi_dev, 2900 "cleared fixed power button status\n"); 2901 } 2902 } 2903 2904 intr_restore(intr); 2905 2906 /* call acpi_wakeup_machdep() again with interrupt enabled */ 2907 acpi_wakeup_machdep(sc, state, sleep_result, 1); 2908 2909 if (sleep_result == -1) 2910 goto backout; 2911 2912 /* Re-enable ACPI hardware on wakeup from sleep state 4. */ 2913 if (state == ACPI_STATE_S4) 2914 AcpiEnable(); 2915 } else { 2916 status = AcpiEnterSleepState(state); 2917 AcpiLeaveSleepStatePrep(state); 2918 intr_restore(intr); 2919 if (ACPI_FAILURE(status)) { 2920 device_printf(sc->acpi_dev, "AcpiEnterSleepState failed - %s\n", 2921 AcpiFormatException(status)); 2922 goto backout; 2923 } 2924 } 2925 slp_state = ACPI_SS_SLEPT; 2926 2927 /* 2928 * Back out state according to how far along we got in the suspend 2929 * process. This handles both the error and success cases. 2930 */ 2931 backout: 2932 if (slp_state >= ACPI_SS_GPE_SET) { 2933 acpi_wake_prep_walk(state); 2934 sc->acpi_sstate = ACPI_STATE_S0; 2935 } 2936 if (slp_state >= ACPI_SS_DEV_SUSPEND) 2937 DEVICE_RESUME(root_bus); 2938 if (slp_state >= ACPI_SS_SLP_PREP) 2939 AcpiLeaveSleepState(state); 2940 if (slp_state >= ACPI_SS_SLEPT) { 2941 acpi_resync_clock(sc); 2942 acpi_enable_fixed_events(sc); 2943 } 2944 sc->acpi_next_sstate = 0; 2945 2946 mtx_unlock(&Giant); 2947 2948 if (smp_started) { 2949 thread_lock(curthread); 2950 sched_unbind(curthread); 2951 thread_unlock(curthread); 2952 } 2953 2954 resume_all_proc(); 2955 2956 EVENTHANDLER_INVOKE(power_resume); 2957 2958 /* Allow another sleep request after a while. */ 2959 callout_schedule(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME); 2960 2961 /* Run /etc/rc.resume after we are back. */ 2962 if (devctl_process_running()) 2963 acpi_UserNotify("Resume", ACPI_ROOT_OBJECT, state); 2964 2965 return_ACPI_STATUS (status); 2966 } 2967 2968 static void 2969 acpi_resync_clock(struct acpi_softc *sc) 2970 { 2971 #ifdef __amd64__ 2972 if (!acpi_reset_clock) 2973 return; 2974 2975 /* 2976 * Warm up timecounter again and reset system clock. 2977 */ 2978 (void)timecounter->tc_get_timecount(timecounter); 2979 (void)timecounter->tc_get_timecount(timecounter); 2980 inittodr(time_second + sc->acpi_sleep_delay); 2981 #endif 2982 } 2983 2984 /* Enable or disable the device's wake GPE. */ 2985 int 2986 acpi_wake_set_enable(device_t dev, int enable) 2987 { 2988 struct acpi_prw_data prw; 2989 ACPI_STATUS status; 2990 int flags; 2991 2992 /* Make sure the device supports waking the system and get the GPE. */ 2993 if (acpi_parse_prw(acpi_get_handle(dev), &prw) != 0) 2994 return (ENXIO); 2995 2996 flags = acpi_get_flags(dev); 2997 if (enable) { 2998 status = AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, 2999 ACPI_GPE_ENABLE); 3000 if (ACPI_FAILURE(status)) { 3001 device_printf(dev, "enable wake failed\n"); 3002 return (ENXIO); 3003 } 3004 acpi_set_flags(dev, flags | ACPI_FLAG_WAKE_ENABLED); 3005 } else { 3006 status = AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, 3007 ACPI_GPE_DISABLE); 3008 if (ACPI_FAILURE(status)) { 3009 device_printf(dev, "disable wake failed\n"); 3010 return (ENXIO); 3011 } 3012 acpi_set_flags(dev, flags & ~ACPI_FLAG_WAKE_ENABLED); 3013 } 3014 3015 return (0); 3016 } 3017 3018 static int 3019 acpi_wake_sleep_prep(ACPI_HANDLE handle, int sstate) 3020 { 3021 struct acpi_prw_data prw; 3022 device_t dev; 3023 3024 /* Check that this is a wake-capable device and get its GPE. */ 3025 if (acpi_parse_prw(handle, &prw) != 0) 3026 return (ENXIO); 3027 dev = acpi_get_device(handle); 3028 3029 /* 3030 * The destination sleep state must be less than (i.e., higher power) 3031 * or equal to the value specified by _PRW. If this GPE cannot be 3032 * enabled for the next sleep state, then disable it. If it can and 3033 * the user requested it be enabled, turn on any required power resources 3034 * and set _PSW. 3035 */ 3036 if (sstate > prw.lowest_wake) { 3037 AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, ACPI_GPE_DISABLE); 3038 if (bootverbose) 3039 device_printf(dev, "wake_prep disabled wake for %s (S%d)\n", 3040 acpi_name(handle), sstate); 3041 } else if (dev && (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) != 0) { 3042 acpi_pwr_wake_enable(handle, 1); 3043 acpi_SetInteger(handle, "_PSW", 1); 3044 if (bootverbose) 3045 device_printf(dev, "wake_prep enabled for %s (S%d)\n", 3046 acpi_name(handle), sstate); 3047 } 3048 3049 return (0); 3050 } 3051 3052 static int 3053 acpi_wake_run_prep(ACPI_HANDLE handle, int sstate) 3054 { 3055 struct acpi_prw_data prw; 3056 device_t dev; 3057 3058 /* 3059 * Check that this is a wake-capable device and get its GPE. Return 3060 * now if the user didn't enable this device for wake. 3061 */ 3062 if (acpi_parse_prw(handle, &prw) != 0) 3063 return (ENXIO); 3064 dev = acpi_get_device(handle); 3065 if (dev == NULL || (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) == 0) 3066 return (0); 3067 3068 /* 3069 * If this GPE couldn't be enabled for the previous sleep state, it was 3070 * disabled before going to sleep so re-enable it. If it was enabled, 3071 * clear _PSW and turn off any power resources it used. 3072 */ 3073 if (sstate > prw.lowest_wake) { 3074 AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, ACPI_GPE_ENABLE); 3075 if (bootverbose) 3076 device_printf(dev, "run_prep re-enabled %s\n", acpi_name(handle)); 3077 } else { 3078 acpi_SetInteger(handle, "_PSW", 0); 3079 acpi_pwr_wake_enable(handle, 0); 3080 if (bootverbose) 3081 device_printf(dev, "run_prep cleaned up for %s\n", 3082 acpi_name(handle)); 3083 } 3084 3085 return (0); 3086 } 3087 3088 static ACPI_STATUS 3089 acpi_wake_prep(ACPI_HANDLE handle, UINT32 level, void *context, void **status) 3090 { 3091 int sstate; 3092 3093 /* If suspending, run the sleep prep function, otherwise wake. */ 3094 sstate = *(int *)context; 3095 if (AcpiGbl_SystemAwakeAndRunning) 3096 acpi_wake_sleep_prep(handle, sstate); 3097 else 3098 acpi_wake_run_prep(handle, sstate); 3099 return (AE_OK); 3100 } 3101 3102 /* Walk the tree rooted at acpi0 to prep devices for suspend/resume. */ 3103 static int 3104 acpi_wake_prep_walk(int sstate) 3105 { 3106 ACPI_HANDLE sb_handle; 3107 3108 if (ACPI_SUCCESS(AcpiGetHandle(ACPI_ROOT_OBJECT, "\\_SB_", &sb_handle))) 3109 AcpiWalkNamespace(ACPI_TYPE_DEVICE, sb_handle, 100, 3110 acpi_wake_prep, NULL, &sstate, NULL); 3111 return (0); 3112 } 3113 3114 /* Walk the tree rooted at acpi0 to attach per-device wake sysctls. */ 3115 static int 3116 acpi_wake_sysctl_walk(device_t dev) 3117 { 3118 int error, i, numdevs; 3119 device_t *devlist; 3120 device_t child; 3121 ACPI_STATUS status; 3122 3123 error = device_get_children(dev, &devlist, &numdevs); 3124 if (error != 0 || numdevs == 0) { 3125 if (numdevs == 0) 3126 free(devlist, M_TEMP); 3127 return (error); 3128 } 3129 for (i = 0; i < numdevs; i++) { 3130 child = devlist[i]; 3131 acpi_wake_sysctl_walk(child); 3132 if (!device_is_attached(child)) 3133 continue; 3134 status = AcpiEvaluateObject(acpi_get_handle(child), "_PRW", NULL, NULL); 3135 if (ACPI_SUCCESS(status)) { 3136 SYSCTL_ADD_PROC(device_get_sysctl_ctx(child), 3137 SYSCTL_CHILDREN(device_get_sysctl_tree(child)), OID_AUTO, 3138 "wake", CTLTYPE_INT | CTLFLAG_RW, child, 0, 3139 acpi_wake_set_sysctl, "I", "Device set to wake the system"); 3140 } 3141 } 3142 free(devlist, M_TEMP); 3143 3144 return (0); 3145 } 3146 3147 /* Enable or disable wake from userland. */ 3148 static int 3149 acpi_wake_set_sysctl(SYSCTL_HANDLER_ARGS) 3150 { 3151 int enable, error; 3152 device_t dev; 3153 3154 dev = (device_t)arg1; 3155 enable = (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) ? 1 : 0; 3156 3157 error = sysctl_handle_int(oidp, &enable, 0, req); 3158 if (error != 0 || req->newptr == NULL) 3159 return (error); 3160 if (enable != 0 && enable != 1) 3161 return (EINVAL); 3162 3163 return (acpi_wake_set_enable(dev, enable)); 3164 } 3165 3166 /* Parse a device's _PRW into a structure. */ 3167 int 3168 acpi_parse_prw(ACPI_HANDLE h, struct acpi_prw_data *prw) 3169 { 3170 ACPI_STATUS status; 3171 ACPI_BUFFER prw_buffer; 3172 ACPI_OBJECT *res, *res2; 3173 int error, i, power_count; 3174 3175 if (h == NULL || prw == NULL) 3176 return (EINVAL); 3177 3178 /* 3179 * The _PRW object (7.2.9) is only required for devices that have the 3180 * ability to wake the system from a sleeping state. 3181 */ 3182 error = EINVAL; 3183 prw_buffer.Pointer = NULL; 3184 prw_buffer.Length = ACPI_ALLOCATE_BUFFER; 3185 status = AcpiEvaluateObject(h, "_PRW", NULL, &prw_buffer); 3186 if (ACPI_FAILURE(status)) 3187 return (ENOENT); 3188 res = (ACPI_OBJECT *)prw_buffer.Pointer; 3189 if (res == NULL) 3190 return (ENOENT); 3191 if (!ACPI_PKG_VALID(res, 2)) 3192 goto out; 3193 3194 /* 3195 * Element 1 of the _PRW object: 3196 * The lowest power system sleeping state that can be entered while still 3197 * providing wake functionality. The sleeping state being entered must 3198 * be less than (i.e., higher power) or equal to this value. 3199 */ 3200 if (acpi_PkgInt32(res, 1, &prw->lowest_wake) != 0) 3201 goto out; 3202 3203 /* 3204 * Element 0 of the _PRW object: 3205 */ 3206 switch (res->Package.Elements[0].Type) { 3207 case ACPI_TYPE_INTEGER: 3208 /* 3209 * If the data type of this package element is numeric, then this 3210 * _PRW package element is the bit index in the GPEx_EN, in the 3211 * GPE blocks described in the FADT, of the enable bit that is 3212 * enabled for the wake event. 3213 */ 3214 prw->gpe_handle = NULL; 3215 prw->gpe_bit = res->Package.Elements[0].Integer.Value; 3216 error = 0; 3217 break; 3218 case ACPI_TYPE_PACKAGE: 3219 /* 3220 * If the data type of this package element is a package, then this 3221 * _PRW package element is itself a package containing two 3222 * elements. The first is an object reference to the GPE Block 3223 * device that contains the GPE that will be triggered by the wake 3224 * event. The second element is numeric and it contains the bit 3225 * index in the GPEx_EN, in the GPE Block referenced by the 3226 * first element in the package, of the enable bit that is enabled for 3227 * the wake event. 3228 * 3229 * For example, if this field is a package then it is of the form: 3230 * Package() {\_SB.PCI0.ISA.GPE, 2} 3231 */ 3232 res2 = &res->Package.Elements[0]; 3233 if (!ACPI_PKG_VALID(res2, 2)) 3234 goto out; 3235 prw->gpe_handle = acpi_GetReference(NULL, &res2->Package.Elements[0]); 3236 if (prw->gpe_handle == NULL) 3237 goto out; 3238 if (acpi_PkgInt32(res2, 1, &prw->gpe_bit) != 0) 3239 goto out; 3240 error = 0; 3241 break; 3242 default: 3243 goto out; 3244 } 3245 3246 /* Elements 2 to N of the _PRW object are power resources. */ 3247 power_count = res->Package.Count - 2; 3248 if (power_count > ACPI_PRW_MAX_POWERRES) { 3249 printf("ACPI device %s has too many power resources\n", acpi_name(h)); 3250 power_count = 0; 3251 } 3252 prw->power_res_count = power_count; 3253 for (i = 0; i < power_count; i++) 3254 prw->power_res[i] = res->Package.Elements[i]; 3255 3256 out: 3257 if (prw_buffer.Pointer != NULL) 3258 AcpiOsFree(prw_buffer.Pointer); 3259 return (error); 3260 } 3261 3262 /* 3263 * ACPI Event Handlers 3264 */ 3265 3266 /* System Event Handlers (registered by EVENTHANDLER_REGISTER) */ 3267 3268 static void 3269 acpi_system_eventhandler_sleep(void *arg, int state) 3270 { 3271 struct acpi_softc *sc = (struct acpi_softc *)arg; 3272 int ret; 3273 3274 ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state); 3275 3276 /* Check if button action is disabled or unknown. */ 3277 if (state == ACPI_STATE_UNKNOWN) 3278 return; 3279 3280 /* Request that the system prepare to enter the given suspend state. */ 3281 ret = acpi_ReqSleepState(sc, state); 3282 if (ret != 0) 3283 device_printf(sc->acpi_dev, 3284 "request to enter state S%d failed (err %d)\n", state, ret); 3285 3286 return_VOID; 3287 } 3288 3289 static void 3290 acpi_system_eventhandler_wakeup(void *arg, int state) 3291 { 3292 3293 ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state); 3294 3295 /* Currently, nothing to do for wakeup. */ 3296 3297 return_VOID; 3298 } 3299 3300 /* 3301 * ACPICA Event Handlers (FixedEvent, also called from button notify handler) 3302 */ 3303 static void 3304 acpi_invoke_sleep_eventhandler(void *context) 3305 { 3306 3307 EVENTHANDLER_INVOKE(acpi_sleep_event, *(int *)context); 3308 } 3309 3310 static void 3311 acpi_invoke_wake_eventhandler(void *context) 3312 { 3313 3314 EVENTHANDLER_INVOKE(acpi_wakeup_event, *(int *)context); 3315 } 3316 3317 UINT32 3318 acpi_event_power_button_sleep(void *context) 3319 { 3320 struct acpi_softc *sc = (struct acpi_softc *)context; 3321 3322 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3323 3324 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3325 acpi_invoke_sleep_eventhandler, &sc->acpi_power_button_sx))) 3326 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); 3327 return_VALUE (ACPI_INTERRUPT_HANDLED); 3328 } 3329 3330 UINT32 3331 acpi_event_power_button_wake(void *context) 3332 { 3333 struct acpi_softc *sc = (struct acpi_softc *)context; 3334 3335 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3336 3337 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3338 acpi_invoke_wake_eventhandler, &sc->acpi_power_button_sx))) 3339 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); 3340 return_VALUE (ACPI_INTERRUPT_HANDLED); 3341 } 3342 3343 UINT32 3344 acpi_event_sleep_button_sleep(void *context) 3345 { 3346 struct acpi_softc *sc = (struct acpi_softc *)context; 3347 3348 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3349 3350 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3351 acpi_invoke_sleep_eventhandler, &sc->acpi_sleep_button_sx))) 3352 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); 3353 return_VALUE (ACPI_INTERRUPT_HANDLED); 3354 } 3355 3356 UINT32 3357 acpi_event_sleep_button_wake(void *context) 3358 { 3359 struct acpi_softc *sc = (struct acpi_softc *)context; 3360 3361 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3362 3363 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3364 acpi_invoke_wake_eventhandler, &sc->acpi_sleep_button_sx))) 3365 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); 3366 return_VALUE (ACPI_INTERRUPT_HANDLED); 3367 } 3368 3369 /* 3370 * XXX This static buffer is suboptimal. There is no locking so only 3371 * use this for single-threaded callers. 3372 */ 3373 char * 3374 acpi_name(ACPI_HANDLE handle) 3375 { 3376 ACPI_BUFFER buf; 3377 static char data[256]; 3378 3379 buf.Length = sizeof(data); 3380 buf.Pointer = data; 3381 3382 if (handle && ACPI_SUCCESS(AcpiGetName(handle, ACPI_FULL_PATHNAME, &buf))) 3383 return (data); 3384 return ("(unknown)"); 3385 } 3386 3387 /* 3388 * Debugging/bug-avoidance. Avoid trying to fetch info on various 3389 * parts of the namespace. 3390 */ 3391 int 3392 acpi_avoid(ACPI_HANDLE handle) 3393 { 3394 char *cp, *env, *np; 3395 int len; 3396 3397 np = acpi_name(handle); 3398 if (*np == '\\') 3399 np++; 3400 if ((env = kern_getenv("debug.acpi.avoid")) == NULL) 3401 return (0); 3402 3403 /* Scan the avoid list checking for a match */ 3404 cp = env; 3405 for (;;) { 3406 while (*cp != 0 && isspace(*cp)) 3407 cp++; 3408 if (*cp == 0) 3409 break; 3410 len = 0; 3411 while (cp[len] != 0 && !isspace(cp[len])) 3412 len++; 3413 if (!strncmp(cp, np, len)) { 3414 freeenv(env); 3415 return(1); 3416 } 3417 cp += len; 3418 } 3419 freeenv(env); 3420 3421 return (0); 3422 } 3423 3424 /* 3425 * Debugging/bug-avoidance. Disable ACPI subsystem components. 3426 */ 3427 int 3428 acpi_disabled(char *subsys) 3429 { 3430 char *cp, *env; 3431 int len; 3432 3433 if ((env = kern_getenv("debug.acpi.disabled")) == NULL) 3434 return (0); 3435 if (strcmp(env, "all") == 0) { 3436 freeenv(env); 3437 return (1); 3438 } 3439 3440 /* Scan the disable list, checking for a match. */ 3441 cp = env; 3442 for (;;) { 3443 while (*cp != '\0' && isspace(*cp)) 3444 cp++; 3445 if (*cp == '\0') 3446 break; 3447 len = 0; 3448 while (cp[len] != '\0' && !isspace(cp[len])) 3449 len++; 3450 if (strncmp(cp, subsys, len) == 0) { 3451 freeenv(env); 3452 return (1); 3453 } 3454 cp += len; 3455 } 3456 freeenv(env); 3457 3458 return (0); 3459 } 3460 3461 static void 3462 acpi_lookup(void *arg, const char *name, device_t *dev) 3463 { 3464 ACPI_HANDLE handle; 3465 3466 if (*dev != NULL) 3467 return; 3468 3469 /* 3470 * Allow any handle name that is specified as an absolute path and 3471 * starts with '\'. We could restrict this to \_SB and friends, 3472 * but see acpi_probe_children() for notes on why we scan the entire 3473 * namespace for devices. 3474 * 3475 * XXX: The pathname argument to AcpiGetHandle() should be fixed to 3476 * be const. 3477 */ 3478 if (name[0] != '\\') 3479 return; 3480 if (ACPI_FAILURE(AcpiGetHandle(ACPI_ROOT_OBJECT, __DECONST(char *, name), 3481 &handle))) 3482 return; 3483 *dev = acpi_get_device(handle); 3484 } 3485 3486 /* 3487 * Control interface. 3488 * 3489 * We multiplex ioctls for all participating ACPI devices here. Individual 3490 * drivers wanting to be accessible via /dev/acpi should use the 3491 * register/deregister interface to make their handlers visible. 3492 */ 3493 struct acpi_ioctl_hook 3494 { 3495 TAILQ_ENTRY(acpi_ioctl_hook) link; 3496 u_long cmd; 3497 acpi_ioctl_fn fn; 3498 void *arg; 3499 }; 3500 3501 static TAILQ_HEAD(,acpi_ioctl_hook) acpi_ioctl_hooks; 3502 static int acpi_ioctl_hooks_initted; 3503 3504 int 3505 acpi_register_ioctl(u_long cmd, acpi_ioctl_fn fn, void *arg) 3506 { 3507 struct acpi_ioctl_hook *hp; 3508 3509 if ((hp = malloc(sizeof(*hp), M_ACPIDEV, M_NOWAIT)) == NULL) 3510 return (ENOMEM); 3511 hp->cmd = cmd; 3512 hp->fn = fn; 3513 hp->arg = arg; 3514 3515 ACPI_LOCK(acpi); 3516 if (acpi_ioctl_hooks_initted == 0) { 3517 TAILQ_INIT(&acpi_ioctl_hooks); 3518 acpi_ioctl_hooks_initted = 1; 3519 } 3520 TAILQ_INSERT_TAIL(&acpi_ioctl_hooks, hp, link); 3521 ACPI_UNLOCK(acpi); 3522 3523 return (0); 3524 } 3525 3526 void 3527 acpi_deregister_ioctl(u_long cmd, acpi_ioctl_fn fn) 3528 { 3529 struct acpi_ioctl_hook *hp; 3530 3531 ACPI_LOCK(acpi); 3532 TAILQ_FOREACH(hp, &acpi_ioctl_hooks, link) 3533 if (hp->cmd == cmd && hp->fn == fn) 3534 break; 3535 3536 if (hp != NULL) { 3537 TAILQ_REMOVE(&acpi_ioctl_hooks, hp, link); 3538 free(hp, M_ACPIDEV); 3539 } 3540 ACPI_UNLOCK(acpi); 3541 } 3542 3543 static int 3544 acpiopen(struct cdev *dev, int flag, int fmt, struct thread *td) 3545 { 3546 return (0); 3547 } 3548 3549 static int 3550 acpiclose(struct cdev *dev, int flag, int fmt, struct thread *td) 3551 { 3552 return (0); 3553 } 3554 3555 static int 3556 acpiioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 3557 { 3558 struct acpi_softc *sc; 3559 struct acpi_ioctl_hook *hp; 3560 int error, state; 3561 3562 error = 0; 3563 hp = NULL; 3564 sc = dev->si_drv1; 3565 3566 /* 3567 * Scan the list of registered ioctls, looking for handlers. 3568 */ 3569 ACPI_LOCK(acpi); 3570 if (acpi_ioctl_hooks_initted) 3571 TAILQ_FOREACH(hp, &acpi_ioctl_hooks, link) { 3572 if (hp->cmd == cmd) 3573 break; 3574 } 3575 ACPI_UNLOCK(acpi); 3576 if (hp) 3577 return (hp->fn(cmd, addr, hp->arg)); 3578 3579 /* 3580 * Core ioctls are not permitted for non-writable user. 3581 * Currently, other ioctls just fetch information. 3582 * Not changing system behavior. 3583 */ 3584 if ((flag & FWRITE) == 0) 3585 return (EPERM); 3586 3587 /* Core system ioctls. */ 3588 switch (cmd) { 3589 case ACPIIO_REQSLPSTATE: 3590 state = *(int *)addr; 3591 if (state != ACPI_STATE_S5) 3592 return (acpi_ReqSleepState(sc, state)); 3593 device_printf(sc->acpi_dev, "power off via acpi ioctl not supported\n"); 3594 error = EOPNOTSUPP; 3595 break; 3596 case ACPIIO_ACKSLPSTATE: 3597 error = *(int *)addr; 3598 error = acpi_AckSleepState(sc->acpi_clone, error); 3599 break; 3600 case ACPIIO_SETSLPSTATE: /* DEPRECATED */ 3601 state = *(int *)addr; 3602 if (state < ACPI_STATE_S0 || state > ACPI_S_STATES_MAX) 3603 return (EINVAL); 3604 if (!acpi_sleep_states[state]) 3605 return (EOPNOTSUPP); 3606 if (ACPI_FAILURE(acpi_SetSleepState(sc, state))) 3607 error = ENXIO; 3608 break; 3609 default: 3610 error = ENXIO; 3611 break; 3612 } 3613 3614 return (error); 3615 } 3616 3617 static int 3618 acpi_sname2sstate(const char *sname) 3619 { 3620 int sstate; 3621 3622 if (toupper(sname[0]) == 'S') { 3623 sstate = sname[1] - '0'; 3624 if (sstate >= ACPI_STATE_S0 && sstate <= ACPI_STATE_S5 && 3625 sname[2] == '\0') 3626 return (sstate); 3627 } else if (strcasecmp(sname, "NONE") == 0) 3628 return (ACPI_STATE_UNKNOWN); 3629 return (-1); 3630 } 3631 3632 static const char * 3633 acpi_sstate2sname(int sstate) 3634 { 3635 static const char *snames[] = { "S0", "S1", "S2", "S3", "S4", "S5" }; 3636 3637 if (sstate >= ACPI_STATE_S0 && sstate <= ACPI_STATE_S5) 3638 return (snames[sstate]); 3639 else if (sstate == ACPI_STATE_UNKNOWN) 3640 return ("NONE"); 3641 return (NULL); 3642 } 3643 3644 static int 3645 acpi_supported_sleep_state_sysctl(SYSCTL_HANDLER_ARGS) 3646 { 3647 int error; 3648 struct sbuf sb; 3649 UINT8 state; 3650 3651 sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND); 3652 for (state = ACPI_STATE_S1; state < ACPI_S_STATE_COUNT; state++) 3653 if (acpi_sleep_states[state]) 3654 sbuf_printf(&sb, "%s ", acpi_sstate2sname(state)); 3655 sbuf_trim(&sb); 3656 sbuf_finish(&sb); 3657 error = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req); 3658 sbuf_delete(&sb); 3659 return (error); 3660 } 3661 3662 static int 3663 acpi_sleep_state_sysctl(SYSCTL_HANDLER_ARGS) 3664 { 3665 char sleep_state[10]; 3666 int error, new_state, old_state; 3667 3668 old_state = *(int *)oidp->oid_arg1; 3669 strlcpy(sleep_state, acpi_sstate2sname(old_state), sizeof(sleep_state)); 3670 error = sysctl_handle_string(oidp, sleep_state, sizeof(sleep_state), req); 3671 if (error == 0 && req->newptr != NULL) { 3672 new_state = acpi_sname2sstate(sleep_state); 3673 if (new_state < ACPI_STATE_S1) 3674 return (EINVAL); 3675 if (new_state < ACPI_S_STATE_COUNT && !acpi_sleep_states[new_state]) 3676 return (EOPNOTSUPP); 3677 if (new_state != old_state) 3678 *(int *)oidp->oid_arg1 = new_state; 3679 } 3680 return (error); 3681 } 3682 3683 /* Inform devctl(4) when we receive a Notify. */ 3684 void 3685 acpi_UserNotify(const char *subsystem, ACPI_HANDLE h, uint8_t notify) 3686 { 3687 char notify_buf[16]; 3688 ACPI_BUFFER handle_buf; 3689 ACPI_STATUS status; 3690 3691 if (subsystem == NULL) 3692 return; 3693 3694 handle_buf.Pointer = NULL; 3695 handle_buf.Length = ACPI_ALLOCATE_BUFFER; 3696 status = AcpiNsHandleToPathname(h, &handle_buf, FALSE); 3697 if (ACPI_FAILURE(status)) 3698 return; 3699 snprintf(notify_buf, sizeof(notify_buf), "notify=0x%02x", notify); 3700 devctl_notify("ACPI", subsystem, handle_buf.Pointer, notify_buf); 3701 AcpiOsFree(handle_buf.Pointer); 3702 } 3703 3704 #ifdef ACPI_DEBUG 3705 /* 3706 * Support for parsing debug options from the kernel environment. 3707 * 3708 * Bits may be set in the AcpiDbgLayer and AcpiDbgLevel debug registers 3709 * by specifying the names of the bits in the debug.acpi.layer and 3710 * debug.acpi.level environment variables. Bits may be unset by 3711 * prefixing the bit name with !. 3712 */ 3713 struct debugtag 3714 { 3715 char *name; 3716 UINT32 value; 3717 }; 3718 3719 static struct debugtag dbg_layer[] = { 3720 {"ACPI_UTILITIES", ACPI_UTILITIES}, 3721 {"ACPI_HARDWARE", ACPI_HARDWARE}, 3722 {"ACPI_EVENTS", ACPI_EVENTS}, 3723 {"ACPI_TABLES", ACPI_TABLES}, 3724 {"ACPI_NAMESPACE", ACPI_NAMESPACE}, 3725 {"ACPI_PARSER", ACPI_PARSER}, 3726 {"ACPI_DISPATCHER", ACPI_DISPATCHER}, 3727 {"ACPI_EXECUTER", ACPI_EXECUTER}, 3728 {"ACPI_RESOURCES", ACPI_RESOURCES}, 3729 {"ACPI_CA_DEBUGGER", ACPI_CA_DEBUGGER}, 3730 {"ACPI_OS_SERVICES", ACPI_OS_SERVICES}, 3731 {"ACPI_CA_DISASSEMBLER", ACPI_CA_DISASSEMBLER}, 3732 {"ACPI_ALL_COMPONENTS", ACPI_ALL_COMPONENTS}, 3733 3734 {"ACPI_AC_ADAPTER", ACPI_AC_ADAPTER}, 3735 {"ACPI_BATTERY", ACPI_BATTERY}, 3736 {"ACPI_BUS", ACPI_BUS}, 3737 {"ACPI_BUTTON", ACPI_BUTTON}, 3738 {"ACPI_EC", ACPI_EC}, 3739 {"ACPI_FAN", ACPI_FAN}, 3740 {"ACPI_POWERRES", ACPI_POWERRES}, 3741 {"ACPI_PROCESSOR", ACPI_PROCESSOR}, 3742 {"ACPI_THERMAL", ACPI_THERMAL}, 3743 {"ACPI_TIMER", ACPI_TIMER}, 3744 {"ACPI_ALL_DRIVERS", ACPI_ALL_DRIVERS}, 3745 {NULL, 0} 3746 }; 3747 3748 static struct debugtag dbg_level[] = { 3749 {"ACPI_LV_INIT", ACPI_LV_INIT}, 3750 {"ACPI_LV_DEBUG_OBJECT", ACPI_LV_DEBUG_OBJECT}, 3751 {"ACPI_LV_INFO", ACPI_LV_INFO}, 3752 {"ACPI_LV_REPAIR", ACPI_LV_REPAIR}, 3753 {"ACPI_LV_ALL_EXCEPTIONS", ACPI_LV_ALL_EXCEPTIONS}, 3754 3755 /* Trace verbosity level 1 [Standard Trace Level] */ 3756 {"ACPI_LV_INIT_NAMES", ACPI_LV_INIT_NAMES}, 3757 {"ACPI_LV_PARSE", ACPI_LV_PARSE}, 3758 {"ACPI_LV_LOAD", ACPI_LV_LOAD}, 3759 {"ACPI_LV_DISPATCH", ACPI_LV_DISPATCH}, 3760 {"ACPI_LV_EXEC", ACPI_LV_EXEC}, 3761 {"ACPI_LV_NAMES", ACPI_LV_NAMES}, 3762 {"ACPI_LV_OPREGION", ACPI_LV_OPREGION}, 3763 {"ACPI_LV_BFIELD", ACPI_LV_BFIELD}, 3764 {"ACPI_LV_TABLES", ACPI_LV_TABLES}, 3765 {"ACPI_LV_VALUES", ACPI_LV_VALUES}, 3766 {"ACPI_LV_OBJECTS", ACPI_LV_OBJECTS}, 3767 {"ACPI_LV_RESOURCES", ACPI_LV_RESOURCES}, 3768 {"ACPI_LV_USER_REQUESTS", ACPI_LV_USER_REQUESTS}, 3769 {"ACPI_LV_PACKAGE", ACPI_LV_PACKAGE}, 3770 {"ACPI_LV_VERBOSITY1", ACPI_LV_VERBOSITY1}, 3771 3772 /* Trace verbosity level 2 [Function tracing and memory allocation] */ 3773 {"ACPI_LV_ALLOCATIONS", ACPI_LV_ALLOCATIONS}, 3774 {"ACPI_LV_FUNCTIONS", ACPI_LV_FUNCTIONS}, 3775 {"ACPI_LV_OPTIMIZATIONS", ACPI_LV_OPTIMIZATIONS}, 3776 {"ACPI_LV_VERBOSITY2", ACPI_LV_VERBOSITY2}, 3777 {"ACPI_LV_ALL", ACPI_LV_ALL}, 3778 3779 /* Trace verbosity level 3 [Threading, I/O, and Interrupts] */ 3780 {"ACPI_LV_MUTEX", ACPI_LV_MUTEX}, 3781 {"ACPI_LV_THREADS", ACPI_LV_THREADS}, 3782 {"ACPI_LV_IO", ACPI_LV_IO}, 3783 {"ACPI_LV_INTERRUPTS", ACPI_LV_INTERRUPTS}, 3784 {"ACPI_LV_VERBOSITY3", ACPI_LV_VERBOSITY3}, 3785 3786 /* Exceptionally verbose output -- also used in the global "DebugLevel" */ 3787 {"ACPI_LV_AML_DISASSEMBLE", ACPI_LV_AML_DISASSEMBLE}, 3788 {"ACPI_LV_VERBOSE_INFO", ACPI_LV_VERBOSE_INFO}, 3789 {"ACPI_LV_FULL_TABLES", ACPI_LV_FULL_TABLES}, 3790 {"ACPI_LV_EVENTS", ACPI_LV_EVENTS}, 3791 {"ACPI_LV_VERBOSE", ACPI_LV_VERBOSE}, 3792 {NULL, 0} 3793 }; 3794 3795 static void 3796 acpi_parse_debug(char *cp, struct debugtag *tag, UINT32 *flag) 3797 { 3798 char *ep; 3799 int i, l; 3800 int set; 3801 3802 while (*cp) { 3803 if (isspace(*cp)) { 3804 cp++; 3805 continue; 3806 } 3807 ep = cp; 3808 while (*ep && !isspace(*ep)) 3809 ep++; 3810 if (*cp == '!') { 3811 set = 0; 3812 cp++; 3813 if (cp == ep) 3814 continue; 3815 } else { 3816 set = 1; 3817 } 3818 l = ep - cp; 3819 for (i = 0; tag[i].name != NULL; i++) { 3820 if (!strncmp(cp, tag[i].name, l)) { 3821 if (set) 3822 *flag |= tag[i].value; 3823 else 3824 *flag &= ~tag[i].value; 3825 } 3826 } 3827 cp = ep; 3828 } 3829 } 3830 3831 static void 3832 acpi_set_debugging(void *junk) 3833 { 3834 char *layer, *level; 3835 3836 if (cold) { 3837 AcpiDbgLayer = 0; 3838 AcpiDbgLevel = 0; 3839 } 3840 3841 layer = kern_getenv("debug.acpi.layer"); 3842 level = kern_getenv("debug.acpi.level"); 3843 if (layer == NULL && level == NULL) 3844 return; 3845 3846 printf("ACPI set debug"); 3847 if (layer != NULL) { 3848 if (strcmp("NONE", layer) != 0) 3849 printf(" layer '%s'", layer); 3850 acpi_parse_debug(layer, &dbg_layer[0], &AcpiDbgLayer); 3851 freeenv(layer); 3852 } 3853 if (level != NULL) { 3854 if (strcmp("NONE", level) != 0) 3855 printf(" level '%s'", level); 3856 acpi_parse_debug(level, &dbg_level[0], &AcpiDbgLevel); 3857 freeenv(level); 3858 } 3859 printf("\n"); 3860 } 3861 3862 SYSINIT(acpi_debugging, SI_SUB_TUNABLES, SI_ORDER_ANY, acpi_set_debugging, 3863 NULL); 3864 3865 static int 3866 acpi_debug_sysctl(SYSCTL_HANDLER_ARGS) 3867 { 3868 int error, *dbg; 3869 struct debugtag *tag; 3870 struct sbuf sb; 3871 char temp[128]; 3872 3873 if (sbuf_new(&sb, NULL, 128, SBUF_AUTOEXTEND) == NULL) 3874 return (ENOMEM); 3875 if (strcmp(oidp->oid_arg1, "debug.acpi.layer") == 0) { 3876 tag = &dbg_layer[0]; 3877 dbg = &AcpiDbgLayer; 3878 } else { 3879 tag = &dbg_level[0]; 3880 dbg = &AcpiDbgLevel; 3881 } 3882 3883 /* Get old values if this is a get request. */ 3884 ACPI_SERIAL_BEGIN(acpi); 3885 if (*dbg == 0) { 3886 sbuf_cpy(&sb, "NONE"); 3887 } else if (req->newptr == NULL) { 3888 for (; tag->name != NULL; tag++) { 3889 if ((*dbg & tag->value) == tag->value) 3890 sbuf_printf(&sb, "%s ", tag->name); 3891 } 3892 } 3893 sbuf_trim(&sb); 3894 sbuf_finish(&sb); 3895 strlcpy(temp, sbuf_data(&sb), sizeof(temp)); 3896 sbuf_delete(&sb); 3897 3898 error = sysctl_handle_string(oidp, temp, sizeof(temp), req); 3899 3900 /* Check for error or no change */ 3901 if (error == 0 && req->newptr != NULL) { 3902 *dbg = 0; 3903 kern_setenv((char *)oidp->oid_arg1, temp); 3904 acpi_set_debugging(NULL); 3905 } 3906 ACPI_SERIAL_END(acpi); 3907 3908 return (error); 3909 } 3910 3911 SYSCTL_PROC(_debug_acpi, OID_AUTO, layer, CTLFLAG_RW | CTLTYPE_STRING, 3912 "debug.acpi.layer", 0, acpi_debug_sysctl, "A", ""); 3913 SYSCTL_PROC(_debug_acpi, OID_AUTO, level, CTLFLAG_RW | CTLTYPE_STRING, 3914 "debug.acpi.level", 0, acpi_debug_sysctl, "A", ""); 3915 #endif /* ACPI_DEBUG */ 3916 3917 static int 3918 acpi_debug_objects_sysctl(SYSCTL_HANDLER_ARGS) 3919 { 3920 int error; 3921 int old; 3922 3923 old = acpi_debug_objects; 3924 error = sysctl_handle_int(oidp, &acpi_debug_objects, 0, req); 3925 if (error != 0 || req->newptr == NULL) 3926 return (error); 3927 if (old == acpi_debug_objects || (old && acpi_debug_objects)) 3928 return (0); 3929 3930 ACPI_SERIAL_BEGIN(acpi); 3931 AcpiGbl_EnableAmlDebugObject = acpi_debug_objects ? TRUE : FALSE; 3932 ACPI_SERIAL_END(acpi); 3933 3934 return (0); 3935 } 3936 3937 static int 3938 acpi_parse_interfaces(char *str, struct acpi_interface *iface) 3939 { 3940 char *p; 3941 size_t len; 3942 int i, j; 3943 3944 p = str; 3945 while (isspace(*p) || *p == ',') 3946 p++; 3947 len = strlen(p); 3948 if (len == 0) 3949 return (0); 3950 p = strdup(p, M_TEMP); 3951 for (i = 0; i < len; i++) 3952 if (p[i] == ',') 3953 p[i] = '\0'; 3954 i = j = 0; 3955 while (i < len) 3956 if (isspace(p[i]) || p[i] == '\0') 3957 i++; 3958 else { 3959 i += strlen(p + i) + 1; 3960 j++; 3961 } 3962 if (j == 0) { 3963 free(p, M_TEMP); 3964 return (0); 3965 } 3966 iface->data = malloc(sizeof(*iface->data) * j, M_TEMP, M_WAITOK); 3967 iface->num = j; 3968 i = j = 0; 3969 while (i < len) 3970 if (isspace(p[i]) || p[i] == '\0') 3971 i++; 3972 else { 3973 iface->data[j] = p + i; 3974 i += strlen(p + i) + 1; 3975 j++; 3976 } 3977 3978 return (j); 3979 } 3980 3981 static void 3982 acpi_free_interfaces(struct acpi_interface *iface) 3983 { 3984 3985 free(iface->data[0], M_TEMP); 3986 free(iface->data, M_TEMP); 3987 } 3988 3989 static void 3990 acpi_reset_interfaces(device_t dev) 3991 { 3992 struct acpi_interface list; 3993 ACPI_STATUS status; 3994 int i; 3995 3996 if (acpi_parse_interfaces(acpi_install_interface, &list) > 0) { 3997 for (i = 0; i < list.num; i++) { 3998 status = AcpiInstallInterface(list.data[i]); 3999 if (ACPI_FAILURE(status)) 4000 device_printf(dev, 4001 "failed to install _OSI(\"%s\"): %s\n", 4002 list.data[i], AcpiFormatException(status)); 4003 else if (bootverbose) 4004 device_printf(dev, "installed _OSI(\"%s\")\n", 4005 list.data[i]); 4006 } 4007 acpi_free_interfaces(&list); 4008 } 4009 if (acpi_parse_interfaces(acpi_remove_interface, &list) > 0) { 4010 for (i = 0; i < list.num; i++) { 4011 status = AcpiRemoveInterface(list.data[i]); 4012 if (ACPI_FAILURE(status)) 4013 device_printf(dev, 4014 "failed to remove _OSI(\"%s\"): %s\n", 4015 list.data[i], AcpiFormatException(status)); 4016 else if (bootverbose) 4017 device_printf(dev, "removed _OSI(\"%s\")\n", 4018 list.data[i]); 4019 } 4020 acpi_free_interfaces(&list); 4021 } 4022 } 4023 4024 static int 4025 acpi_pm_func(u_long cmd, void *arg, ...) 4026 { 4027 int state, acpi_state; 4028 int error; 4029 struct acpi_softc *sc; 4030 va_list ap; 4031 4032 error = 0; 4033 switch (cmd) { 4034 case POWER_CMD_SUSPEND: 4035 sc = (struct acpi_softc *)arg; 4036 if (sc == NULL) { 4037 error = EINVAL; 4038 goto out; 4039 } 4040 4041 va_start(ap, arg); 4042 state = va_arg(ap, int); 4043 va_end(ap); 4044 4045 switch (state) { 4046 case POWER_SLEEP_STATE_STANDBY: 4047 acpi_state = sc->acpi_standby_sx; 4048 break; 4049 case POWER_SLEEP_STATE_SUSPEND: 4050 acpi_state = sc->acpi_suspend_sx; 4051 break; 4052 case POWER_SLEEP_STATE_HIBERNATE: 4053 acpi_state = ACPI_STATE_S4; 4054 break; 4055 default: 4056 error = EINVAL; 4057 goto out; 4058 } 4059 4060 if (ACPI_FAILURE(acpi_EnterSleepState(sc, acpi_state))) 4061 error = ENXIO; 4062 break; 4063 default: 4064 error = EINVAL; 4065 goto out; 4066 } 4067 4068 out: 4069 return (error); 4070 } 4071 4072 static void 4073 acpi_pm_register(void *arg) 4074 { 4075 if (!cold || resource_disabled("acpi", 0)) 4076 return; 4077 4078 power_pm_register(POWER_PM_TYPE_ACPI, acpi_pm_func, NULL); 4079 } 4080 4081 SYSINIT(power, SI_SUB_KLD, SI_ORDER_ANY, acpi_pm_register, 0); 4082