1 /*- 2 * Copyright (c) 2000 Takanori Watanabe <takawata@jp.freebsd.org> 3 * Copyright (c) 2000 Mitsuru IWASAKI <iwasaki@jp.freebsd.org> 4 * Copyright (c) 2000, 2001 Michael Smith 5 * Copyright (c) 2000 BSDi 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 #include "opt_acpi.h" 32 33 #include <sys/param.h> 34 #include <sys/eventhandler.h> 35 #include <sys/kernel.h> 36 #include <sys/proc.h> 37 #include <sys/fcntl.h> 38 #include <sys/malloc.h> 39 #include <sys/module.h> 40 #include <sys/bus.h> 41 #include <sys/conf.h> 42 #include <sys/ioccom.h> 43 #include <sys/reboot.h> 44 #include <sys/sysctl.h> 45 #include <sys/ctype.h> 46 #include <sys/linker.h> 47 #include <sys/mount.h> 48 #include <sys/power.h> 49 #include <sys/sbuf.h> 50 #include <sys/sched.h> 51 #include <sys/smp.h> 52 #include <sys/timetc.h> 53 #include <sys/uuid.h> 54 55 #if defined(__i386__) || defined(__amd64__) 56 #include <machine/clock.h> 57 #include <machine/pci_cfgreg.h> 58 #endif 59 #include <machine/resource.h> 60 #include <machine/bus.h> 61 #include <sys/rman.h> 62 #include <isa/isavar.h> 63 #include <isa/pnpvar.h> 64 65 #include <contrib/dev/acpica/include/acpi.h> 66 #include <contrib/dev/acpica/include/accommon.h> 67 #include <contrib/dev/acpica/include/acnamesp.h> 68 69 #include <dev/acpica/acpivar.h> 70 #include <dev/acpica/acpiio.h> 71 72 #include <dev/pci/pcivar.h> 73 74 #include <vm/vm_param.h> 75 76 static MALLOC_DEFINE(M_ACPIDEV, "acpidev", "ACPI devices"); 77 78 /* Hooks for the ACPI CA debugging infrastructure */ 79 #define _COMPONENT ACPI_BUS 80 ACPI_MODULE_NAME("ACPI") 81 82 static d_open_t acpiopen; 83 static d_close_t acpiclose; 84 static d_ioctl_t acpiioctl; 85 86 static struct cdevsw acpi_cdevsw = { 87 .d_version = D_VERSION, 88 .d_open = acpiopen, 89 .d_close = acpiclose, 90 .d_ioctl = acpiioctl, 91 .d_name = "acpi", 92 }; 93 94 struct acpi_interface { 95 ACPI_STRING *data; 96 int num; 97 }; 98 99 static char *sysres_ids[] = { "PNP0C01", "PNP0C02", NULL }; 100 101 /* Global mutex for locking access to the ACPI subsystem. */ 102 struct mtx acpi_mutex; 103 struct callout acpi_sleep_timer; 104 105 /* Bitmap of device quirks. */ 106 int acpi_quirks; 107 108 /* Supported sleep states. */ 109 static BOOLEAN acpi_sleep_states[ACPI_S_STATE_COUNT]; 110 111 static void acpi_lookup(void *arg, const char *name, device_t *dev); 112 static int acpi_modevent(struct module *mod, int event, void *junk); 113 114 static device_probe_t acpi_probe; 115 static device_attach_t acpi_attach; 116 static device_suspend_t acpi_suspend; 117 static device_resume_t acpi_resume; 118 static device_shutdown_t acpi_shutdown; 119 120 static bus_add_child_t acpi_add_child; 121 static bus_print_child_t acpi_print_child; 122 static bus_probe_nomatch_t acpi_probe_nomatch; 123 static bus_driver_added_t acpi_driver_added; 124 static bus_child_deleted_t acpi_child_deleted; 125 static bus_read_ivar_t acpi_read_ivar; 126 static bus_write_ivar_t acpi_write_ivar; 127 static bus_get_resource_list_t acpi_get_rlist; 128 static bus_get_rman_t acpi_get_rman; 129 static bus_set_resource_t acpi_set_resource; 130 static bus_alloc_resource_t acpi_alloc_resource; 131 static bus_adjust_resource_t acpi_adjust_resource; 132 static bus_release_resource_t acpi_release_resource; 133 static bus_delete_resource_t acpi_delete_resource; 134 static bus_activate_resource_t acpi_activate_resource; 135 static bus_deactivate_resource_t acpi_deactivate_resource; 136 static bus_map_resource_t acpi_map_resource; 137 static bus_unmap_resource_t acpi_unmap_resource; 138 static bus_child_pnpinfo_t acpi_child_pnpinfo_method; 139 static bus_child_location_t acpi_child_location_method; 140 static bus_hint_device_unit_t acpi_hint_device_unit; 141 static bus_get_property_t acpi_bus_get_prop; 142 static bus_get_device_path_t acpi_get_device_path; 143 144 static acpi_id_probe_t acpi_device_id_probe; 145 static acpi_evaluate_object_t acpi_device_eval_obj; 146 static acpi_get_property_t acpi_device_get_prop; 147 static acpi_scan_children_t acpi_device_scan_children; 148 149 static isa_pnp_probe_t acpi_isa_pnp_probe; 150 151 static void acpi_reserve_resources(device_t dev); 152 static int acpi_sysres_alloc(device_t dev); 153 static uint32_t acpi_isa_get_logicalid(device_t dev); 154 static int acpi_isa_get_compatid(device_t dev, uint32_t *cids, int count); 155 static ACPI_STATUS acpi_device_scan_cb(ACPI_HANDLE h, UINT32 level, 156 void *context, void **retval); 157 static ACPI_STATUS acpi_find_dsd(struct acpi_device *ad); 158 static void acpi_platform_osc(device_t dev); 159 static void acpi_probe_children(device_t bus); 160 static void acpi_probe_order(ACPI_HANDLE handle, int *order); 161 static ACPI_STATUS acpi_probe_child(ACPI_HANDLE handle, UINT32 level, 162 void *context, void **status); 163 static void acpi_sleep_enable(void *arg); 164 static ACPI_STATUS acpi_sleep_disable(struct acpi_softc *sc); 165 static ACPI_STATUS acpi_EnterSleepState(struct acpi_softc *sc, int state); 166 static void acpi_shutdown_final(void *arg, int howto); 167 static void acpi_enable_fixed_events(struct acpi_softc *sc); 168 static void acpi_resync_clock(struct acpi_softc *sc); 169 static int acpi_wake_sleep_prep(ACPI_HANDLE handle, int sstate); 170 static int acpi_wake_run_prep(ACPI_HANDLE handle, int sstate); 171 static int acpi_wake_prep_walk(int sstate); 172 static int acpi_wake_sysctl_walk(device_t dev); 173 static int acpi_wake_set_sysctl(SYSCTL_HANDLER_ARGS); 174 static void acpi_system_eventhandler_sleep(void *arg, int state); 175 static void acpi_system_eventhandler_wakeup(void *arg, int state); 176 static int acpi_sname2sstate(const char *sname); 177 static const char *acpi_sstate2sname(int sstate); 178 static int acpi_supported_sleep_state_sysctl(SYSCTL_HANDLER_ARGS); 179 static int acpi_sleep_state_sysctl(SYSCTL_HANDLER_ARGS); 180 static int acpi_debug_objects_sysctl(SYSCTL_HANDLER_ARGS); 181 static int acpi_pm_func(u_long cmd, void *arg, ...); 182 static void acpi_enable_pcie(void); 183 static void acpi_reset_interfaces(device_t dev); 184 185 static device_method_t acpi_methods[] = { 186 /* Device interface */ 187 DEVMETHOD(device_probe, acpi_probe), 188 DEVMETHOD(device_attach, acpi_attach), 189 DEVMETHOD(device_shutdown, acpi_shutdown), 190 DEVMETHOD(device_detach, bus_generic_detach), 191 DEVMETHOD(device_suspend, acpi_suspend), 192 DEVMETHOD(device_resume, acpi_resume), 193 194 /* Bus interface */ 195 DEVMETHOD(bus_add_child, acpi_add_child), 196 DEVMETHOD(bus_print_child, acpi_print_child), 197 DEVMETHOD(bus_probe_nomatch, acpi_probe_nomatch), 198 DEVMETHOD(bus_driver_added, acpi_driver_added), 199 DEVMETHOD(bus_child_deleted, acpi_child_deleted), 200 DEVMETHOD(bus_read_ivar, acpi_read_ivar), 201 DEVMETHOD(bus_write_ivar, acpi_write_ivar), 202 DEVMETHOD(bus_get_resource_list, acpi_get_rlist), 203 DEVMETHOD(bus_get_rman, acpi_get_rman), 204 DEVMETHOD(bus_set_resource, acpi_set_resource), 205 DEVMETHOD(bus_get_resource, bus_generic_rl_get_resource), 206 DEVMETHOD(bus_alloc_resource, acpi_alloc_resource), 207 DEVMETHOD(bus_adjust_resource, acpi_adjust_resource), 208 DEVMETHOD(bus_release_resource, acpi_release_resource), 209 DEVMETHOD(bus_delete_resource, acpi_delete_resource), 210 DEVMETHOD(bus_activate_resource, acpi_activate_resource), 211 DEVMETHOD(bus_deactivate_resource, acpi_deactivate_resource), 212 DEVMETHOD(bus_map_resource, acpi_map_resource), 213 DEVMETHOD(bus_unmap_resource, acpi_unmap_resource), 214 DEVMETHOD(bus_child_pnpinfo, acpi_child_pnpinfo_method), 215 DEVMETHOD(bus_child_location, acpi_child_location_method), 216 DEVMETHOD(bus_setup_intr, bus_generic_setup_intr), 217 DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr), 218 DEVMETHOD(bus_hint_device_unit, acpi_hint_device_unit), 219 DEVMETHOD(bus_get_cpus, acpi_get_cpus), 220 DEVMETHOD(bus_get_domain, acpi_get_domain), 221 DEVMETHOD(bus_get_property, acpi_bus_get_prop), 222 DEVMETHOD(bus_get_device_path, acpi_get_device_path), 223 224 /* ACPI bus */ 225 DEVMETHOD(acpi_id_probe, acpi_device_id_probe), 226 DEVMETHOD(acpi_evaluate_object, acpi_device_eval_obj), 227 DEVMETHOD(acpi_get_property, acpi_device_get_prop), 228 DEVMETHOD(acpi_pwr_for_sleep, acpi_device_pwr_for_sleep), 229 DEVMETHOD(acpi_scan_children, acpi_device_scan_children), 230 231 /* ISA emulation */ 232 DEVMETHOD(isa_pnp_probe, acpi_isa_pnp_probe), 233 234 DEVMETHOD_END 235 }; 236 237 static driver_t acpi_driver = { 238 "acpi", 239 acpi_methods, 240 sizeof(struct acpi_softc), 241 }; 242 243 EARLY_DRIVER_MODULE(acpi, nexus, acpi_driver, acpi_modevent, 0, 244 BUS_PASS_BUS + BUS_PASS_ORDER_MIDDLE); 245 MODULE_VERSION(acpi, 1); 246 247 ACPI_SERIAL_DECL(acpi, "ACPI root bus"); 248 249 /* Local pools for managing system resources for ACPI child devices. */ 250 static struct rman acpi_rman_io, acpi_rman_mem; 251 252 #define ACPI_MINIMUM_AWAKETIME 5 253 254 /* Holds the description of the acpi0 device. */ 255 static char acpi_desc[ACPI_OEM_ID_SIZE + ACPI_OEM_TABLE_ID_SIZE + 2]; 256 257 SYSCTL_NODE(_debug, OID_AUTO, acpi, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 258 "ACPI debugging"); 259 static char acpi_ca_version[12]; 260 SYSCTL_STRING(_debug_acpi, OID_AUTO, acpi_ca_version, CTLFLAG_RD, 261 acpi_ca_version, 0, "Version of Intel ACPI-CA"); 262 263 /* 264 * Allow overriding _OSI methods. 265 */ 266 static char acpi_install_interface[256]; 267 TUNABLE_STR("hw.acpi.install_interface", acpi_install_interface, 268 sizeof(acpi_install_interface)); 269 static char acpi_remove_interface[256]; 270 TUNABLE_STR("hw.acpi.remove_interface", acpi_remove_interface, 271 sizeof(acpi_remove_interface)); 272 273 /* Allow users to dump Debug objects without ACPI debugger. */ 274 static int acpi_debug_objects; 275 TUNABLE_INT("debug.acpi.enable_debug_objects", &acpi_debug_objects); 276 SYSCTL_PROC(_debug_acpi, OID_AUTO, enable_debug_objects, 277 CTLFLAG_RW | CTLTYPE_INT | CTLFLAG_MPSAFE, NULL, 0, 278 acpi_debug_objects_sysctl, "I", 279 "Enable Debug objects"); 280 281 /* Allow the interpreter to ignore common mistakes in BIOS. */ 282 static int acpi_interpreter_slack = 1; 283 TUNABLE_INT("debug.acpi.interpreter_slack", &acpi_interpreter_slack); 284 SYSCTL_INT(_debug_acpi, OID_AUTO, interpreter_slack, CTLFLAG_RDTUN, 285 &acpi_interpreter_slack, 1, "Turn on interpreter slack mode."); 286 287 /* Ignore register widths set by FADT and use default widths instead. */ 288 static int acpi_ignore_reg_width = 1; 289 TUNABLE_INT("debug.acpi.default_register_width", &acpi_ignore_reg_width); 290 SYSCTL_INT(_debug_acpi, OID_AUTO, default_register_width, CTLFLAG_RDTUN, 291 &acpi_ignore_reg_width, 1, "Ignore register widths set by FADT"); 292 293 /* Allow users to override quirks. */ 294 TUNABLE_INT("debug.acpi.quirks", &acpi_quirks); 295 296 int acpi_susp_bounce; 297 SYSCTL_INT(_debug_acpi, OID_AUTO, suspend_bounce, CTLFLAG_RW, 298 &acpi_susp_bounce, 0, "Don't actually suspend, just test devices."); 299 300 /* 301 * ACPI standard UUID for Device Specific Data Package 302 * "Device Properties UUID for _DSD" Rev. 2.0 303 */ 304 static const struct uuid acpi_dsd_uuid = { 305 0xdaffd814, 0x6eba, 0x4d8c, 0x8a, 0x91, 306 { 0xbc, 0x9b, 0xbf, 0x4a, 0xa3, 0x01 } 307 }; 308 309 /* 310 * ACPI can only be loaded as a module by the loader; activating it after 311 * system bootstrap time is not useful, and can be fatal to the system. 312 * It also cannot be unloaded, since the entire system bus hierarchy hangs 313 * off it. 314 */ 315 static int 316 acpi_modevent(struct module *mod, int event, void *junk) 317 { 318 switch (event) { 319 case MOD_LOAD: 320 if (!cold) { 321 printf("The ACPI driver cannot be loaded after boot.\n"); 322 return (EPERM); 323 } 324 break; 325 case MOD_UNLOAD: 326 if (!cold && power_pm_get_type() == POWER_PM_TYPE_ACPI) 327 return (EBUSY); 328 break; 329 default: 330 break; 331 } 332 return (0); 333 } 334 335 /* 336 * Perform early initialization. 337 */ 338 ACPI_STATUS 339 acpi_Startup(void) 340 { 341 static int started = 0; 342 ACPI_STATUS status; 343 int val; 344 345 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 346 347 /* Only run the startup code once. The MADT driver also calls this. */ 348 if (started) 349 return_VALUE (AE_OK); 350 started = 1; 351 352 /* 353 * Initialize the ACPICA subsystem. 354 */ 355 if (ACPI_FAILURE(status = AcpiInitializeSubsystem())) { 356 printf("ACPI: Could not initialize Subsystem: %s\n", 357 AcpiFormatException(status)); 358 return_VALUE (status); 359 } 360 361 /* 362 * Pre-allocate space for RSDT/XSDT and DSDT tables and allow resizing 363 * if more tables exist. 364 */ 365 if (ACPI_FAILURE(status = AcpiInitializeTables(NULL, 2, TRUE))) { 366 printf("ACPI: Table initialisation failed: %s\n", 367 AcpiFormatException(status)); 368 return_VALUE (status); 369 } 370 371 /* Set up any quirks we have for this system. */ 372 if (acpi_quirks == ACPI_Q_OK) 373 acpi_table_quirks(&acpi_quirks); 374 375 /* If the user manually set the disabled hint to 0, force-enable ACPI. */ 376 if (resource_int_value("acpi", 0, "disabled", &val) == 0 && val == 0) 377 acpi_quirks &= ~ACPI_Q_BROKEN; 378 if (acpi_quirks & ACPI_Q_BROKEN) { 379 printf("ACPI disabled by blacklist. Contact your BIOS vendor.\n"); 380 status = AE_SUPPORT; 381 } 382 383 return_VALUE (status); 384 } 385 386 /* 387 * Detect ACPI and perform early initialisation. 388 */ 389 int 390 acpi_identify(void) 391 { 392 ACPI_TABLE_RSDP *rsdp; 393 ACPI_TABLE_HEADER *rsdt; 394 ACPI_PHYSICAL_ADDRESS paddr; 395 struct sbuf sb; 396 397 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 398 399 if (!cold) 400 return (ENXIO); 401 402 /* Check that we haven't been disabled with a hint. */ 403 if (resource_disabled("acpi", 0)) 404 return (ENXIO); 405 406 /* Check for other PM systems. */ 407 if (power_pm_get_type() != POWER_PM_TYPE_NONE && 408 power_pm_get_type() != POWER_PM_TYPE_ACPI) { 409 printf("ACPI identify failed, other PM system enabled.\n"); 410 return (ENXIO); 411 } 412 413 /* Initialize root tables. */ 414 if (ACPI_FAILURE(acpi_Startup())) { 415 printf("ACPI: Try disabling either ACPI or apic support.\n"); 416 return (ENXIO); 417 } 418 419 if ((paddr = AcpiOsGetRootPointer()) == 0 || 420 (rsdp = AcpiOsMapMemory(paddr, sizeof(ACPI_TABLE_RSDP))) == NULL) 421 return (ENXIO); 422 if (rsdp->Revision > 1 && rsdp->XsdtPhysicalAddress != 0) 423 paddr = (ACPI_PHYSICAL_ADDRESS)rsdp->XsdtPhysicalAddress; 424 else 425 paddr = (ACPI_PHYSICAL_ADDRESS)rsdp->RsdtPhysicalAddress; 426 AcpiOsUnmapMemory(rsdp, sizeof(ACPI_TABLE_RSDP)); 427 428 if ((rsdt = AcpiOsMapMemory(paddr, sizeof(ACPI_TABLE_HEADER))) == NULL) 429 return (ENXIO); 430 sbuf_new(&sb, acpi_desc, sizeof(acpi_desc), SBUF_FIXEDLEN); 431 sbuf_bcat(&sb, rsdt->OemId, ACPI_OEM_ID_SIZE); 432 sbuf_trim(&sb); 433 sbuf_putc(&sb, ' '); 434 sbuf_bcat(&sb, rsdt->OemTableId, ACPI_OEM_TABLE_ID_SIZE); 435 sbuf_trim(&sb); 436 sbuf_finish(&sb); 437 sbuf_delete(&sb); 438 AcpiOsUnmapMemory(rsdt, sizeof(ACPI_TABLE_HEADER)); 439 440 snprintf(acpi_ca_version, sizeof(acpi_ca_version), "%x", ACPI_CA_VERSION); 441 442 return (0); 443 } 444 445 /* 446 * Fetch some descriptive data from ACPI to put in our attach message. 447 */ 448 static int 449 acpi_probe(device_t dev) 450 { 451 452 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 453 454 device_set_desc(dev, acpi_desc); 455 456 return_VALUE (BUS_PROBE_NOWILDCARD); 457 } 458 459 static int 460 acpi_attach(device_t dev) 461 { 462 struct acpi_softc *sc; 463 ACPI_STATUS status; 464 int error, state; 465 UINT32 flags; 466 UINT8 TypeA, TypeB; 467 char *env; 468 469 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 470 471 sc = device_get_softc(dev); 472 sc->acpi_dev = dev; 473 callout_init(&sc->susp_force_to, 1); 474 475 error = ENXIO; 476 477 /* Initialize resource manager. */ 478 acpi_rman_io.rm_type = RMAN_ARRAY; 479 acpi_rman_io.rm_start = 0; 480 acpi_rman_io.rm_end = 0xffff; 481 acpi_rman_io.rm_descr = "ACPI I/O ports"; 482 if (rman_init(&acpi_rman_io) != 0) 483 panic("acpi rman_init IO ports failed"); 484 acpi_rman_mem.rm_type = RMAN_ARRAY; 485 acpi_rman_mem.rm_descr = "ACPI I/O memory addresses"; 486 if (rman_init(&acpi_rman_mem) != 0) 487 panic("acpi rman_init memory failed"); 488 489 resource_list_init(&sc->sysres_rl); 490 491 /* Initialise the ACPI mutex */ 492 mtx_init(&acpi_mutex, "ACPI global lock", NULL, MTX_DEF); 493 494 /* 495 * Set the globals from our tunables. This is needed because ACPI-CA 496 * uses UINT8 for some values and we have no tunable_byte. 497 */ 498 AcpiGbl_EnableInterpreterSlack = acpi_interpreter_slack ? TRUE : FALSE; 499 AcpiGbl_EnableAmlDebugObject = acpi_debug_objects ? TRUE : FALSE; 500 AcpiGbl_UseDefaultRegisterWidths = acpi_ignore_reg_width ? TRUE : FALSE; 501 502 #ifndef ACPI_DEBUG 503 /* 504 * Disable all debugging layers and levels. 505 */ 506 AcpiDbgLayer = 0; 507 AcpiDbgLevel = 0; 508 #endif 509 510 /* Override OS interfaces if the user requested. */ 511 acpi_reset_interfaces(dev); 512 513 /* Load ACPI name space. */ 514 status = AcpiLoadTables(); 515 if (ACPI_FAILURE(status)) { 516 device_printf(dev, "Could not load Namespace: %s\n", 517 AcpiFormatException(status)); 518 goto out; 519 } 520 521 /* Handle MCFG table if present. */ 522 acpi_enable_pcie(); 523 524 /* 525 * Note that some systems (specifically, those with namespace evaluation 526 * issues that require the avoidance of parts of the namespace) must 527 * avoid running _INI and _STA on everything, as well as dodging the final 528 * object init pass. 529 * 530 * For these devices, we set ACPI_NO_DEVICE_INIT and ACPI_NO_OBJECT_INIT). 531 * 532 * XXX We should arrange for the object init pass after we have attached 533 * all our child devices, but on many systems it works here. 534 */ 535 flags = 0; 536 if (testenv("debug.acpi.avoid")) 537 flags = ACPI_NO_DEVICE_INIT | ACPI_NO_OBJECT_INIT; 538 539 /* Bring the hardware and basic handlers online. */ 540 if (ACPI_FAILURE(status = AcpiEnableSubsystem(flags))) { 541 device_printf(dev, "Could not enable ACPI: %s\n", 542 AcpiFormatException(status)); 543 goto out; 544 } 545 546 /* 547 * Call the ECDT probe function to provide EC functionality before 548 * the namespace has been evaluated. 549 * 550 * XXX This happens before the sysresource devices have been probed and 551 * attached so its resources come from nexus0. In practice, this isn't 552 * a problem but should be addressed eventually. 553 */ 554 acpi_ec_ecdt_probe(dev); 555 556 /* Bring device objects and regions online. */ 557 if (ACPI_FAILURE(status = AcpiInitializeObjects(flags))) { 558 device_printf(dev, "Could not initialize ACPI objects: %s\n", 559 AcpiFormatException(status)); 560 goto out; 561 } 562 563 /* 564 * Setup our sysctl tree. 565 * 566 * XXX: This doesn't check to make sure that none of these fail. 567 */ 568 sysctl_ctx_init(&sc->acpi_sysctl_ctx); 569 sc->acpi_sysctl_tree = SYSCTL_ADD_NODE(&sc->acpi_sysctl_ctx, 570 SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO, device_get_name(dev), 571 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, ""); 572 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 573 OID_AUTO, "supported_sleep_state", 574 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 575 0, 0, acpi_supported_sleep_state_sysctl, "A", 576 "List supported ACPI sleep states."); 577 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 578 OID_AUTO, "power_button_state", 579 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, 580 &sc->acpi_power_button_sx, 0, acpi_sleep_state_sysctl, "A", 581 "Power button ACPI sleep state."); 582 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 583 OID_AUTO, "sleep_button_state", 584 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, 585 &sc->acpi_sleep_button_sx, 0, acpi_sleep_state_sysctl, "A", 586 "Sleep button ACPI sleep state."); 587 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 588 OID_AUTO, "lid_switch_state", 589 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, 590 &sc->acpi_lid_switch_sx, 0, acpi_sleep_state_sysctl, "A", 591 "Lid ACPI sleep state. Set to S3 if you want to suspend your laptop when close the Lid."); 592 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 593 OID_AUTO, "standby_state", 594 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, 595 &sc->acpi_standby_sx, 0, acpi_sleep_state_sysctl, "A", ""); 596 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 597 OID_AUTO, "suspend_state", 598 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, 599 &sc->acpi_suspend_sx, 0, acpi_sleep_state_sysctl, "A", ""); 600 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 601 OID_AUTO, "sleep_delay", CTLFLAG_RW, &sc->acpi_sleep_delay, 0, 602 "sleep delay in seconds"); 603 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 604 OID_AUTO, "s4bios", CTLFLAG_RW, &sc->acpi_s4bios, 0, "S4BIOS mode"); 605 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 606 OID_AUTO, "verbose", CTLFLAG_RW, &sc->acpi_verbose, 0, "verbose mode"); 607 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 608 OID_AUTO, "disable_on_reboot", CTLFLAG_RW, 609 &sc->acpi_do_disable, 0, "Disable ACPI when rebooting/halting system"); 610 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 611 OID_AUTO, "handle_reboot", CTLFLAG_RW, 612 &sc->acpi_handle_reboot, 0, "Use ACPI Reset Register to reboot"); 613 614 /* 615 * Default to 1 second before sleeping to give some machines time to 616 * stabilize. 617 */ 618 sc->acpi_sleep_delay = 1; 619 if (bootverbose) 620 sc->acpi_verbose = 1; 621 if ((env = kern_getenv("hw.acpi.verbose")) != NULL) { 622 if (strcmp(env, "0") != 0) 623 sc->acpi_verbose = 1; 624 freeenv(env); 625 } 626 627 /* Only enable reboot by default if the FADT says it is available. */ 628 if (AcpiGbl_FADT.Flags & ACPI_FADT_RESET_REGISTER) 629 sc->acpi_handle_reboot = 1; 630 631 #if !ACPI_REDUCED_HARDWARE 632 /* Only enable S4BIOS by default if the FACS says it is available. */ 633 if (AcpiGbl_FACS != NULL && AcpiGbl_FACS->Flags & ACPI_FACS_S4_BIOS_PRESENT) 634 sc->acpi_s4bios = 1; 635 #endif 636 637 /* Probe all supported sleep states. */ 638 acpi_sleep_states[ACPI_STATE_S0] = TRUE; 639 for (state = ACPI_STATE_S1; state < ACPI_S_STATE_COUNT; state++) 640 if (ACPI_SUCCESS(AcpiEvaluateObject(ACPI_ROOT_OBJECT, 641 __DECONST(char *, AcpiGbl_SleepStateNames[state]), NULL, NULL)) && 642 ACPI_SUCCESS(AcpiGetSleepTypeData(state, &TypeA, &TypeB))) 643 acpi_sleep_states[state] = TRUE; 644 645 /* 646 * Dispatch the default sleep state to devices. The lid switch is set 647 * to UNKNOWN by default to avoid surprising users. 648 */ 649 sc->acpi_power_button_sx = acpi_sleep_states[ACPI_STATE_S5] ? 650 ACPI_STATE_S5 : ACPI_STATE_UNKNOWN; 651 sc->acpi_lid_switch_sx = ACPI_STATE_UNKNOWN; 652 sc->acpi_standby_sx = acpi_sleep_states[ACPI_STATE_S1] ? 653 ACPI_STATE_S1 : ACPI_STATE_UNKNOWN; 654 sc->acpi_suspend_sx = acpi_sleep_states[ACPI_STATE_S3] ? 655 ACPI_STATE_S3 : ACPI_STATE_UNKNOWN; 656 657 /* Pick the first valid sleep state for the sleep button default. */ 658 sc->acpi_sleep_button_sx = ACPI_STATE_UNKNOWN; 659 for (state = ACPI_STATE_S1; state <= ACPI_STATE_S4; state++) 660 if (acpi_sleep_states[state]) { 661 sc->acpi_sleep_button_sx = state; 662 break; 663 } 664 665 acpi_enable_fixed_events(sc); 666 667 /* 668 * Scan the namespace and attach/initialise children. 669 */ 670 671 /* Register our shutdown handler. */ 672 EVENTHANDLER_REGISTER(shutdown_final, acpi_shutdown_final, sc, 673 SHUTDOWN_PRI_LAST + 150); 674 675 /* 676 * Register our acpi event handlers. 677 * XXX should be configurable eg. via userland policy manager. 678 */ 679 EVENTHANDLER_REGISTER(acpi_sleep_event, acpi_system_eventhandler_sleep, 680 sc, ACPI_EVENT_PRI_LAST); 681 EVENTHANDLER_REGISTER(acpi_wakeup_event, acpi_system_eventhandler_wakeup, 682 sc, ACPI_EVENT_PRI_LAST); 683 684 /* Flag our initial states. */ 685 sc->acpi_enabled = TRUE; 686 sc->acpi_sstate = ACPI_STATE_S0; 687 sc->acpi_sleep_disabled = TRUE; 688 689 /* Create the control device */ 690 sc->acpi_dev_t = make_dev(&acpi_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0664, 691 "acpi"); 692 sc->acpi_dev_t->si_drv1 = sc; 693 694 if ((error = acpi_machdep_init(dev))) 695 goto out; 696 697 /* Register ACPI again to pass the correct argument of pm_func. */ 698 power_pm_register(POWER_PM_TYPE_ACPI, acpi_pm_func, sc); 699 700 acpi_platform_osc(dev); 701 702 if (!acpi_disabled("bus")) { 703 EVENTHANDLER_REGISTER(dev_lookup, acpi_lookup, NULL, 1000); 704 acpi_probe_children(dev); 705 } 706 707 /* Update all GPEs and enable runtime GPEs. */ 708 status = AcpiUpdateAllGpes(); 709 if (ACPI_FAILURE(status)) 710 device_printf(dev, "Could not update all GPEs: %s\n", 711 AcpiFormatException(status)); 712 713 /* Allow sleep request after a while. */ 714 callout_init_mtx(&acpi_sleep_timer, &acpi_mutex, 0); 715 callout_reset(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME, 716 acpi_sleep_enable, sc); 717 718 error = 0; 719 720 out: 721 return_VALUE (error); 722 } 723 724 static void 725 acpi_set_power_children(device_t dev, int state) 726 { 727 device_t child; 728 device_t *devlist; 729 int dstate, i, numdevs; 730 731 if (device_get_children(dev, &devlist, &numdevs) != 0) 732 return; 733 734 /* 735 * Retrieve and set D-state for the sleep state if _SxD is present. 736 * Skip children who aren't attached since they are handled separately. 737 */ 738 for (i = 0; i < numdevs; i++) { 739 child = devlist[i]; 740 dstate = state; 741 if (device_is_attached(child) && 742 acpi_device_pwr_for_sleep(dev, child, &dstate) == 0) 743 acpi_set_powerstate(child, dstate); 744 } 745 free(devlist, M_TEMP); 746 } 747 748 static int 749 acpi_suspend(device_t dev) 750 { 751 int error; 752 753 bus_topo_assert(); 754 755 error = bus_generic_suspend(dev); 756 if (error == 0) 757 acpi_set_power_children(dev, ACPI_STATE_D3); 758 759 return (error); 760 } 761 762 static int 763 acpi_resume(device_t dev) 764 { 765 766 bus_topo_assert(); 767 768 acpi_set_power_children(dev, ACPI_STATE_D0); 769 770 return (bus_generic_resume(dev)); 771 } 772 773 static int 774 acpi_shutdown(device_t dev) 775 { 776 777 bus_topo_assert(); 778 779 /* Allow children to shutdown first. */ 780 bus_generic_shutdown(dev); 781 782 /* 783 * Enable any GPEs that are able to power-on the system (i.e., RTC). 784 * Also, disable any that are not valid for this state (most). 785 */ 786 acpi_wake_prep_walk(ACPI_STATE_S5); 787 788 return (0); 789 } 790 791 /* 792 * Handle a new device being added 793 */ 794 static device_t 795 acpi_add_child(device_t bus, u_int order, const char *name, int unit) 796 { 797 struct acpi_device *ad; 798 device_t child; 799 800 if ((ad = malloc(sizeof(*ad), M_ACPIDEV, M_NOWAIT | M_ZERO)) == NULL) 801 return (NULL); 802 803 resource_list_init(&ad->ad_rl); 804 805 child = device_add_child_ordered(bus, order, name, unit); 806 if (child != NULL) 807 device_set_ivars(child, ad); 808 else 809 free(ad, M_ACPIDEV); 810 return (child); 811 } 812 813 static int 814 acpi_print_child(device_t bus, device_t child) 815 { 816 struct acpi_device *adev = device_get_ivars(child); 817 struct resource_list *rl = &adev->ad_rl; 818 int retval = 0; 819 820 retval += bus_print_child_header(bus, child); 821 retval += resource_list_print_type(rl, "port", SYS_RES_IOPORT, "%#jx"); 822 retval += resource_list_print_type(rl, "iomem", SYS_RES_MEMORY, "%#jx"); 823 retval += resource_list_print_type(rl, "irq", SYS_RES_IRQ, "%jd"); 824 retval += resource_list_print_type(rl, "drq", SYS_RES_DRQ, "%jd"); 825 if (device_get_flags(child)) 826 retval += printf(" flags %#x", device_get_flags(child)); 827 retval += bus_print_child_domain(bus, child); 828 retval += bus_print_child_footer(bus, child); 829 830 return (retval); 831 } 832 833 /* 834 * If this device is an ACPI child but no one claimed it, attempt 835 * to power it off. We'll power it back up when a driver is added. 836 * 837 * XXX Disabled for now since many necessary devices (like fdc and 838 * ATA) don't claim the devices we created for them but still expect 839 * them to be powered up. 840 */ 841 static void 842 acpi_probe_nomatch(device_t bus, device_t child) 843 { 844 #ifdef ACPI_ENABLE_POWERDOWN_NODRIVER 845 acpi_set_powerstate(child, ACPI_STATE_D3); 846 #endif 847 } 848 849 /* 850 * If a new driver has a chance to probe a child, first power it up. 851 * 852 * XXX Disabled for now (see acpi_probe_nomatch for details). 853 */ 854 static void 855 acpi_driver_added(device_t dev, driver_t *driver) 856 { 857 device_t child, *devlist; 858 int i, numdevs; 859 860 DEVICE_IDENTIFY(driver, dev); 861 if (device_get_children(dev, &devlist, &numdevs)) 862 return; 863 for (i = 0; i < numdevs; i++) { 864 child = devlist[i]; 865 if (device_get_state(child) == DS_NOTPRESENT) { 866 #ifdef ACPI_ENABLE_POWERDOWN_NODRIVER 867 acpi_set_powerstate(child, ACPI_STATE_D0); 868 if (device_probe_and_attach(child) != 0) 869 acpi_set_powerstate(child, ACPI_STATE_D3); 870 #else 871 device_probe_and_attach(child); 872 #endif 873 } 874 } 875 free(devlist, M_TEMP); 876 } 877 878 /* Location hint for devctl(8) */ 879 static int 880 acpi_child_location_method(device_t cbdev, device_t child, struct sbuf *sb) 881 { 882 struct acpi_device *dinfo = device_get_ivars(child); 883 int pxm; 884 885 if (dinfo->ad_handle) { 886 sbuf_printf(sb, "handle=%s", acpi_name(dinfo->ad_handle)); 887 if (ACPI_SUCCESS(acpi_GetInteger(dinfo->ad_handle, "_PXM", &pxm))) { 888 sbuf_printf(sb, " _PXM=%d", pxm); 889 } 890 } 891 return (0); 892 } 893 894 /* PnP information for devctl(8) */ 895 int 896 acpi_pnpinfo(ACPI_HANDLE handle, struct sbuf *sb) 897 { 898 ACPI_DEVICE_INFO *adinfo; 899 900 if (ACPI_FAILURE(AcpiGetObjectInfo(handle, &adinfo))) { 901 sbuf_printf(sb, "unknown"); 902 return (0); 903 } 904 905 sbuf_printf(sb, "_HID=%s _UID=%lu _CID=%s", 906 (adinfo->Valid & ACPI_VALID_HID) ? 907 adinfo->HardwareId.String : "none", 908 (adinfo->Valid & ACPI_VALID_UID) ? 909 strtoul(adinfo->UniqueId.String, NULL, 10) : 0UL, 910 ((adinfo->Valid & ACPI_VALID_CID) && 911 adinfo->CompatibleIdList.Count > 0) ? 912 adinfo->CompatibleIdList.Ids[0].String : "none"); 913 AcpiOsFree(adinfo); 914 915 return (0); 916 } 917 918 static int 919 acpi_child_pnpinfo_method(device_t cbdev, device_t child, struct sbuf *sb) 920 { 921 struct acpi_device *dinfo = device_get_ivars(child); 922 923 return (acpi_pnpinfo(dinfo->ad_handle, sb)); 924 } 925 926 /* 927 * Note: the check for ACPI locator may be redundant. However, this routine is 928 * suitable for both busses whose only locator is ACPI and as a building block 929 * for busses that have multiple locators to cope with. 930 */ 931 int 932 acpi_get_acpi_device_path(device_t bus, device_t child, const char *locator, struct sbuf *sb) 933 { 934 if (strcmp(locator, BUS_LOCATOR_ACPI) == 0) { 935 ACPI_HANDLE *handle = acpi_get_handle(child); 936 937 if (handle != NULL) 938 sbuf_printf(sb, "%s", acpi_name(handle)); 939 return (0); 940 } 941 942 return (bus_generic_get_device_path(bus, child, locator, sb)); 943 } 944 945 static int 946 acpi_get_device_path(device_t bus, device_t child, const char *locator, struct sbuf *sb) 947 { 948 struct acpi_device *dinfo = device_get_ivars(child); 949 950 if (strcmp(locator, BUS_LOCATOR_ACPI) == 0) 951 return (acpi_get_acpi_device_path(bus, child, locator, sb)); 952 953 if (strcmp(locator, BUS_LOCATOR_UEFI) == 0) { 954 ACPI_DEVICE_INFO *adinfo; 955 if (!ACPI_FAILURE(AcpiGetObjectInfo(dinfo->ad_handle, &adinfo)) && 956 dinfo->ad_handle != 0 && (adinfo->Valid & ACPI_VALID_HID)) { 957 const char *hid = adinfo->HardwareId.String; 958 u_long uid = (adinfo->Valid & ACPI_VALID_UID) ? 959 strtoul(adinfo->UniqueId.String, NULL, 10) : 0UL; 960 u_long hidval; 961 962 /* 963 * In UEFI Stanard Version 2.6, Section 9.6.1.6 Text 964 * Device Node Reference, there's an insanely long table 965 * 98. This implements the relevant bits from that 966 * table. Newer versions appear to have not required 967 * anything new. The EDK2 firmware presents both PciRoot 968 * and PcieRoot as PciRoot. Follow the EDK2 standard. 969 */ 970 if (strncmp("PNP", hid, 3) != 0) 971 goto nomatch; 972 hidval = strtoul(hid + 3, NULL, 16); 973 switch (hidval) { 974 case 0x0301: 975 sbuf_printf(sb, "Keyboard(0x%lx)", uid); 976 break; 977 case 0x0401: 978 sbuf_printf(sb, "ParallelPort(0x%lx)", uid); 979 break; 980 case 0x0501: 981 sbuf_printf(sb, "Serial(0x%lx)", uid); 982 break; 983 case 0x0604: 984 sbuf_printf(sb, "Floppy(0x%lx)", uid); 985 break; 986 case 0x0a03: 987 case 0x0a08: 988 sbuf_printf(sb, "PciRoot(0x%lx)", uid); 989 break; 990 default: /* Everything else gets a generic encode */ 991 nomatch: 992 sbuf_printf(sb, "Acpi(%s,0x%lx)", hid, uid); 993 break; 994 } 995 } 996 /* Not handled: AcpiAdr... unsure how to know it's one */ 997 } 998 999 /* For the rest, punt to the default handler */ 1000 return (bus_generic_get_device_path(bus, child, locator, sb)); 1001 } 1002 1003 /* 1004 * Handle device deletion. 1005 */ 1006 static void 1007 acpi_child_deleted(device_t dev, device_t child) 1008 { 1009 struct acpi_device *dinfo = device_get_ivars(child); 1010 1011 if (acpi_get_device(dinfo->ad_handle) == child) 1012 AcpiDetachData(dinfo->ad_handle, acpi_fake_objhandler); 1013 } 1014 1015 /* 1016 * Handle per-device ivars 1017 */ 1018 static int 1019 acpi_read_ivar(device_t dev, device_t child, int index, uintptr_t *result) 1020 { 1021 struct acpi_device *ad; 1022 1023 if ((ad = device_get_ivars(child)) == NULL) { 1024 device_printf(child, "device has no ivars\n"); 1025 return (ENOENT); 1026 } 1027 1028 /* ACPI and ISA compatibility ivars */ 1029 switch(index) { 1030 case ACPI_IVAR_HANDLE: 1031 *(ACPI_HANDLE *)result = ad->ad_handle; 1032 break; 1033 case ACPI_IVAR_PRIVATE: 1034 *(void **)result = ad->ad_private; 1035 break; 1036 case ACPI_IVAR_FLAGS: 1037 *(int *)result = ad->ad_flags; 1038 break; 1039 case ISA_IVAR_VENDORID: 1040 case ISA_IVAR_SERIAL: 1041 case ISA_IVAR_COMPATID: 1042 *(int *)result = -1; 1043 break; 1044 case ISA_IVAR_LOGICALID: 1045 *(int *)result = acpi_isa_get_logicalid(child); 1046 break; 1047 case PCI_IVAR_CLASS: 1048 *(uint8_t*)result = (ad->ad_cls_class >> 16) & 0xff; 1049 break; 1050 case PCI_IVAR_SUBCLASS: 1051 *(uint8_t*)result = (ad->ad_cls_class >> 8) & 0xff; 1052 break; 1053 case PCI_IVAR_PROGIF: 1054 *(uint8_t*)result = (ad->ad_cls_class >> 0) & 0xff; 1055 break; 1056 default: 1057 return (ENOENT); 1058 } 1059 1060 return (0); 1061 } 1062 1063 static int 1064 acpi_write_ivar(device_t dev, device_t child, int index, uintptr_t value) 1065 { 1066 struct acpi_device *ad; 1067 1068 if ((ad = device_get_ivars(child)) == NULL) { 1069 device_printf(child, "device has no ivars\n"); 1070 return (ENOENT); 1071 } 1072 1073 switch(index) { 1074 case ACPI_IVAR_HANDLE: 1075 ad->ad_handle = (ACPI_HANDLE)value; 1076 break; 1077 case ACPI_IVAR_PRIVATE: 1078 ad->ad_private = (void *)value; 1079 break; 1080 case ACPI_IVAR_FLAGS: 1081 ad->ad_flags = (int)value; 1082 break; 1083 default: 1084 panic("bad ivar write request (%d)", index); 1085 return (ENOENT); 1086 } 1087 1088 return (0); 1089 } 1090 1091 /* 1092 * Handle child resource allocation/removal 1093 */ 1094 static struct resource_list * 1095 acpi_get_rlist(device_t dev, device_t child) 1096 { 1097 struct acpi_device *ad; 1098 1099 ad = device_get_ivars(child); 1100 return (&ad->ad_rl); 1101 } 1102 1103 static int 1104 acpi_match_resource_hint(device_t dev, int type, long value) 1105 { 1106 struct acpi_device *ad = device_get_ivars(dev); 1107 struct resource_list *rl = &ad->ad_rl; 1108 struct resource_list_entry *rle; 1109 1110 STAILQ_FOREACH(rle, rl, link) { 1111 if (rle->type != type) 1112 continue; 1113 if (rle->start <= value && rle->end >= value) 1114 return (1); 1115 } 1116 return (0); 1117 } 1118 1119 /* 1120 * Does this device match because the resources match? 1121 */ 1122 static bool 1123 acpi_hint_device_matches_resources(device_t child, const char *name, 1124 int unit) 1125 { 1126 long value; 1127 bool matches; 1128 1129 /* 1130 * Check for matching resources. We must have at least one match. 1131 * Since I/O and memory resources cannot be shared, if we get a 1132 * match on either of those, ignore any mismatches in IRQs or DRQs. 1133 * 1134 * XXX: We may want to revisit this to be more lenient and wire 1135 * as long as it gets one match. 1136 */ 1137 matches = false; 1138 if (resource_long_value(name, unit, "port", &value) == 0) { 1139 /* 1140 * Floppy drive controllers are notorious for having a 1141 * wide variety of resources not all of which include the 1142 * first port that is specified by the hint (typically 1143 * 0x3f0) (see the comment above fdc_isa_alloc_resources() 1144 * in fdc_isa.c). However, they do all seem to include 1145 * port + 2 (e.g. 0x3f2) so for a floppy device, look for 1146 * 'value + 2' in the port resources instead of the hint 1147 * value. 1148 */ 1149 if (strcmp(name, "fdc") == 0) 1150 value += 2; 1151 if (acpi_match_resource_hint(child, SYS_RES_IOPORT, value)) 1152 matches = true; 1153 else 1154 return false; 1155 } 1156 if (resource_long_value(name, unit, "maddr", &value) == 0) { 1157 if (acpi_match_resource_hint(child, SYS_RES_MEMORY, value)) 1158 matches = true; 1159 else 1160 return false; 1161 } 1162 1163 /* 1164 * If either the I/O address and/or the memory address matched, then 1165 * assumed this devices matches and that any mismatch in other resources 1166 * will be resolved by siltently ignoring those other resources. Otherwise 1167 * all further resources must match. 1168 */ 1169 if (matches) { 1170 return (true); 1171 } 1172 if (resource_long_value(name, unit, "irq", &value) == 0) { 1173 if (acpi_match_resource_hint(child, SYS_RES_IRQ, value)) 1174 matches = true; 1175 else 1176 return false; 1177 } 1178 if (resource_long_value(name, unit, "drq", &value) == 0) { 1179 if (acpi_match_resource_hint(child, SYS_RES_DRQ, value)) 1180 matches = true; 1181 else 1182 return false; 1183 } 1184 return matches; 1185 } 1186 1187 1188 /* 1189 * Wire device unit numbers based on resource matches in hints. 1190 */ 1191 static void 1192 acpi_hint_device_unit(device_t acdev, device_t child, const char *name, 1193 int *unitp) 1194 { 1195 device_location_cache_t *cache; 1196 const char *s; 1197 int line, unit; 1198 bool matches; 1199 1200 /* 1201 * Iterate over all the hints for the devices with the specified 1202 * name to see if one's resources are a subset of this device. 1203 */ 1204 line = 0; 1205 cache = dev_wired_cache_init(); 1206 while (resource_find_dev(&line, name, &unit, "at", NULL) == 0) { 1207 /* Must have an "at" for acpi or isa. */ 1208 resource_string_value(name, unit, "at", &s); 1209 matches = false; 1210 if (strcmp(s, "acpi0") == 0 || strcmp(s, "acpi") == 0 || 1211 strcmp(s, "isa0") == 0 || strcmp(s, "isa") == 0) 1212 matches = acpi_hint_device_matches_resources(child, name, unit); 1213 else 1214 matches = dev_wired_cache_match(cache, child, s); 1215 1216 if (matches) { 1217 /* We have a winner! */ 1218 *unitp = unit; 1219 break; 1220 } 1221 } 1222 dev_wired_cache_fini(cache); 1223 } 1224 1225 /* 1226 * Fetch the NUMA domain for a device by mapping the value returned by 1227 * _PXM to a NUMA domain. If the device does not have a _PXM method, 1228 * -2 is returned. If any other error occurs, -1 is returned. 1229 */ 1230 static int 1231 acpi_parse_pxm(device_t dev) 1232 { 1233 #ifdef NUMA 1234 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__) 1235 ACPI_HANDLE handle; 1236 ACPI_STATUS status; 1237 int pxm; 1238 1239 handle = acpi_get_handle(dev); 1240 if (handle == NULL) 1241 return (-2); 1242 status = acpi_GetInteger(handle, "_PXM", &pxm); 1243 if (ACPI_SUCCESS(status)) 1244 return (acpi_map_pxm_to_vm_domainid(pxm)); 1245 if (status == AE_NOT_FOUND) 1246 return (-2); 1247 #endif 1248 #endif 1249 return (-1); 1250 } 1251 1252 int 1253 acpi_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize, 1254 cpuset_t *cpuset) 1255 { 1256 int d, error; 1257 1258 d = acpi_parse_pxm(child); 1259 if (d < 0) 1260 return (bus_generic_get_cpus(dev, child, op, setsize, cpuset)); 1261 1262 switch (op) { 1263 case LOCAL_CPUS: 1264 if (setsize != sizeof(cpuset_t)) 1265 return (EINVAL); 1266 *cpuset = cpuset_domain[d]; 1267 return (0); 1268 case INTR_CPUS: 1269 error = bus_generic_get_cpus(dev, child, op, setsize, cpuset); 1270 if (error != 0) 1271 return (error); 1272 if (setsize != sizeof(cpuset_t)) 1273 return (EINVAL); 1274 CPU_AND(cpuset, cpuset, &cpuset_domain[d]); 1275 return (0); 1276 default: 1277 return (bus_generic_get_cpus(dev, child, op, setsize, cpuset)); 1278 } 1279 } 1280 1281 /* 1282 * Fetch the NUMA domain for the given device 'dev'. 1283 * 1284 * If a device has a _PXM method, map that to a NUMA domain. 1285 * Otherwise, pass the request up to the parent. 1286 * If there's no matching domain or the domain cannot be 1287 * determined, return ENOENT. 1288 */ 1289 int 1290 acpi_get_domain(device_t dev, device_t child, int *domain) 1291 { 1292 int d; 1293 1294 d = acpi_parse_pxm(child); 1295 if (d >= 0) { 1296 *domain = d; 1297 return (0); 1298 } 1299 if (d == -1) 1300 return (ENOENT); 1301 1302 /* No _PXM node; go up a level */ 1303 return (bus_generic_get_domain(dev, child, domain)); 1304 } 1305 1306 static struct rman * 1307 acpi_get_rman(device_t bus, int type, u_int flags) 1308 { 1309 /* Only memory and IO resources are managed. */ 1310 switch (type) { 1311 case SYS_RES_IOPORT: 1312 return (&acpi_rman_io); 1313 case SYS_RES_MEMORY: 1314 return (&acpi_rman_mem); 1315 default: 1316 return (NULL); 1317 } 1318 } 1319 1320 /* 1321 * Pre-allocate/manage all memory and IO resources. Since rman can't handle 1322 * duplicates, we merge any in the sysresource attach routine. 1323 */ 1324 static int 1325 acpi_sysres_alloc(device_t dev) 1326 { 1327 struct acpi_softc *sc = device_get_softc(dev); 1328 struct resource *res; 1329 struct resource_list_entry *rle; 1330 struct rman *rm; 1331 device_t *children; 1332 int child_count, i; 1333 1334 /* 1335 * Probe/attach any sysresource devices. This would be unnecessary if we 1336 * had multi-pass probe/attach. 1337 */ 1338 if (device_get_children(dev, &children, &child_count) != 0) 1339 return (ENXIO); 1340 for (i = 0; i < child_count; i++) { 1341 if (ACPI_ID_PROBE(dev, children[i], sysres_ids, NULL) <= 0) 1342 device_probe_and_attach(children[i]); 1343 } 1344 free(children, M_TEMP); 1345 1346 STAILQ_FOREACH(rle, &sc->sysres_rl, link) { 1347 if (rle->res != NULL) { 1348 device_printf(dev, "duplicate resource for %jx\n", rle->start); 1349 continue; 1350 } 1351 1352 /* Only memory and IO resources are valid here. */ 1353 rm = acpi_get_rman(dev, rle->type, 0); 1354 if (rm == NULL) 1355 continue; 1356 1357 /* Pre-allocate resource and add to our rman pool. */ 1358 res = bus_alloc_resource(dev, rle->type, 1359 &rle->rid, rle->start, rle->start + rle->count - 1, rle->count, 1360 RF_ACTIVE | RF_UNMAPPED); 1361 if (res != NULL) { 1362 rman_manage_region(rm, rman_get_start(res), rman_get_end(res)); 1363 rle->res = res; 1364 } else if (bootverbose) 1365 device_printf(dev, "reservation of %jx, %jx (%d) failed\n", 1366 rle->start, rle->count, rle->type); 1367 } 1368 return (0); 1369 } 1370 1371 /* 1372 * Reserve declared resources for active devices found during the 1373 * namespace scan once the boot-time attach of devices has completed. 1374 * 1375 * Ideally reserving firmware-assigned resources would work in a 1376 * depth-first traversal of the device namespace, but this is 1377 * complicated. In particular, not all resources are enumerated by 1378 * ACPI (e.g. PCI bridges and devices enumerate their resources via 1379 * other means). Some systems also enumerate devices via ACPI behind 1380 * PCI bridges but without a matching a PCI device_t enumerated via 1381 * PCI bus scanning, the device_t's end up as direct children of 1382 * acpi0. Doing this scan late is not ideal, but works for now. 1383 */ 1384 static void 1385 acpi_reserve_resources(device_t dev) 1386 { 1387 struct resource_list_entry *rle; 1388 struct resource_list *rl; 1389 struct acpi_device *ad; 1390 device_t *children; 1391 int child_count, i; 1392 1393 if (device_get_children(dev, &children, &child_count) != 0) 1394 return; 1395 for (i = 0; i < child_count; i++) { 1396 ad = device_get_ivars(children[i]); 1397 rl = &ad->ad_rl; 1398 1399 /* Don't reserve system resources. */ 1400 if (ACPI_ID_PROBE(dev, children[i], sysres_ids, NULL) <= 0) 1401 continue; 1402 1403 STAILQ_FOREACH(rle, rl, link) { 1404 /* 1405 * Don't reserve IRQ resources. There are many sticky things 1406 * to get right otherwise (e.g. IRQs for psm, atkbd, and HPET 1407 * when using legacy routing). 1408 */ 1409 if (rle->type == SYS_RES_IRQ) 1410 continue; 1411 1412 /* 1413 * Don't reserve the resource if it is already allocated. 1414 * The acpi_ec(4) driver can allocate its resources early 1415 * if ECDT is present. 1416 */ 1417 if (rle->res != NULL) 1418 continue; 1419 1420 /* 1421 * Try to reserve the resource from our parent. If this 1422 * fails because the resource is a system resource, just 1423 * let it be. The resource range is already reserved so 1424 * that other devices will not use it. If the driver 1425 * needs to allocate the resource, then 1426 * acpi_alloc_resource() will sub-alloc from the system 1427 * resource. 1428 */ 1429 resource_list_reserve(rl, dev, children[i], rle->type, &rle->rid, 1430 rle->start, rle->end, rle->count, 0); 1431 } 1432 } 1433 free(children, M_TEMP); 1434 } 1435 1436 static int 1437 acpi_set_resource(device_t dev, device_t child, int type, int rid, 1438 rman_res_t start, rman_res_t count) 1439 { 1440 struct acpi_device *ad = device_get_ivars(child); 1441 struct resource_list *rl = &ad->ad_rl; 1442 rman_res_t end; 1443 1444 #ifdef INTRNG 1445 /* map with default for now */ 1446 if (type == SYS_RES_IRQ) 1447 start = (rman_res_t)acpi_map_intr(child, (u_int)start, 1448 acpi_get_handle(child)); 1449 #endif 1450 1451 /* If the resource is already allocated, fail. */ 1452 if (resource_list_busy(rl, type, rid)) 1453 return (EBUSY); 1454 1455 /* If the resource is already reserved, release it. */ 1456 if (resource_list_reserved(rl, type, rid)) 1457 resource_list_unreserve(rl, dev, child, type, rid); 1458 1459 /* Add the resource. */ 1460 end = (start + count - 1); 1461 resource_list_add(rl, type, rid, start, end, count); 1462 return (0); 1463 } 1464 1465 static struct resource * 1466 acpi_alloc_resource(device_t bus, device_t child, int type, int *rid, 1467 rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 1468 { 1469 #ifndef INTRNG 1470 ACPI_RESOURCE ares; 1471 #endif 1472 struct acpi_device *ad; 1473 struct resource_list_entry *rle; 1474 struct resource_list *rl; 1475 struct resource *res; 1476 int isdefault = RMAN_IS_DEFAULT_RANGE(start, end); 1477 1478 /* 1479 * First attempt at allocating the resource. For direct children, 1480 * use resource_list_alloc() to handle reserved resources. For 1481 * other devices, pass the request up to our parent. 1482 */ 1483 if (bus == device_get_parent(child)) { 1484 ad = device_get_ivars(child); 1485 rl = &ad->ad_rl; 1486 1487 /* 1488 * Simulate the behavior of the ISA bus for direct children 1489 * devices. That is, if a non-default range is specified for 1490 * a resource that doesn't exist, use bus_set_resource() to 1491 * add the resource before allocating it. Note that these 1492 * resources will not be reserved. 1493 */ 1494 if (!isdefault && resource_list_find(rl, type, *rid) == NULL) 1495 resource_list_add(rl, type, *rid, start, end, count); 1496 res = resource_list_alloc(rl, bus, child, type, rid, start, end, count, 1497 flags); 1498 #ifndef INTRNG 1499 if (res != NULL && type == SYS_RES_IRQ) { 1500 /* 1501 * Since bus_config_intr() takes immediate effect, we cannot 1502 * configure the interrupt associated with a device when we 1503 * parse the resources but have to defer it until a driver 1504 * actually allocates the interrupt via bus_alloc_resource(). 1505 * 1506 * XXX: Should we handle the lookup failing? 1507 */ 1508 if (ACPI_SUCCESS(acpi_lookup_irq_resource(child, *rid, res, &ares))) 1509 acpi_config_intr(child, &ares); 1510 } 1511 #endif 1512 1513 /* 1514 * If this is an allocation of the "default" range for a given 1515 * RID, fetch the exact bounds for this resource from the 1516 * resource list entry to try to allocate the range from the 1517 * system resource regions. 1518 */ 1519 if (res == NULL && isdefault) { 1520 rle = resource_list_find(rl, type, *rid); 1521 if (rle != NULL) { 1522 start = rle->start; 1523 end = rle->end; 1524 count = rle->count; 1525 } 1526 } 1527 } else 1528 res = bus_generic_alloc_resource(bus, child, type, rid, 1529 start, end, count, flags); 1530 1531 /* 1532 * If the first attempt failed and this is an allocation of a 1533 * specific range, try to satisfy the request via a suballocation 1534 * from our system resource regions. 1535 */ 1536 if (res == NULL && start + count - 1 == end) 1537 res = bus_generic_rman_alloc_resource(bus, child, type, rid, start, end, 1538 count, flags); 1539 return (res); 1540 } 1541 1542 static bool 1543 acpi_is_resource_managed(device_t bus, struct resource *r) 1544 { 1545 struct rman *rm; 1546 1547 rm = acpi_get_rman(bus, rman_get_type(r), rman_get_flags(r)); 1548 if (rm == NULL) 1549 return (false); 1550 return (rman_is_region_manager(r, rm)); 1551 } 1552 1553 static struct resource * 1554 acpi_managed_resource(device_t bus, struct resource *r) 1555 { 1556 struct acpi_softc *sc = device_get_softc(bus); 1557 struct resource_list_entry *rle; 1558 1559 KASSERT(acpi_is_resource_managed(bus, r), 1560 ("resource %p is not suballocated", r)); 1561 1562 STAILQ_FOREACH(rle, &sc->sysres_rl, link) { 1563 if (rle->type != rman_get_type(r) || rle->res == NULL) 1564 continue; 1565 if (rman_get_start(r) >= rman_get_start(rle->res) && 1566 rman_get_end(r) <= rman_get_end(rle->res)) 1567 return (rle->res); 1568 } 1569 return (NULL); 1570 } 1571 1572 static int 1573 acpi_adjust_resource(device_t bus, device_t child, struct resource *r, 1574 rman_res_t start, rman_res_t end) 1575 { 1576 1577 if (acpi_is_resource_managed(bus, r)) 1578 return (rman_adjust_resource(r, start, end)); 1579 return (bus_generic_adjust_resource(bus, child, r, start, end)); 1580 } 1581 1582 static int 1583 acpi_release_resource(device_t bus, device_t child, struct resource *r) 1584 { 1585 /* 1586 * If this resource belongs to one of our internal managers, 1587 * deactivate it and release it to the local pool. 1588 */ 1589 if (acpi_is_resource_managed(bus, r)) 1590 return (bus_generic_rman_release_resource(bus, child, r)); 1591 1592 return (bus_generic_rl_release_resource(bus, child, r)); 1593 } 1594 1595 static void 1596 acpi_delete_resource(device_t bus, device_t child, int type, int rid) 1597 { 1598 struct resource_list *rl; 1599 1600 rl = acpi_get_rlist(bus, child); 1601 if (resource_list_busy(rl, type, rid)) { 1602 device_printf(bus, "delete_resource: Resource still owned by child" 1603 " (type=%d, rid=%d)\n", type, rid); 1604 return; 1605 } 1606 if (resource_list_reserved(rl, type, rid)) 1607 resource_list_unreserve(rl, bus, child, type, rid); 1608 resource_list_delete(rl, type, rid); 1609 } 1610 1611 static int 1612 acpi_activate_resource(device_t bus, device_t child, struct resource *r) 1613 { 1614 if (acpi_is_resource_managed(bus, r)) 1615 return (bus_generic_rman_activate_resource(bus, child, r)); 1616 return (bus_generic_activate_resource(bus, child, r)); 1617 } 1618 1619 static int 1620 acpi_deactivate_resource(device_t bus, device_t child, struct resource *r) 1621 { 1622 if (acpi_is_resource_managed(bus, r)) 1623 return (bus_generic_rman_deactivate_resource(bus, child, r)); 1624 return (bus_generic_deactivate_resource(bus, child, r)); 1625 } 1626 1627 static int 1628 acpi_map_resource(device_t bus, device_t child, struct resource *r, 1629 struct resource_map_request *argsp, struct resource_map *map) 1630 { 1631 struct resource_map_request args; 1632 struct resource *sysres; 1633 rman_res_t length, start; 1634 int error; 1635 1636 if (!acpi_is_resource_managed(bus, r)) 1637 return (bus_generic_map_resource(bus, child, r, argsp, map)); 1638 1639 /* Resources must be active to be mapped. */ 1640 if (!(rman_get_flags(r) & RF_ACTIVE)) 1641 return (ENXIO); 1642 1643 resource_init_map_request(&args); 1644 error = resource_validate_map_request(r, argsp, &args, &start, &length); 1645 if (error) 1646 return (error); 1647 1648 sysres = acpi_managed_resource(bus, r); 1649 if (sysres == NULL) 1650 return (ENOENT); 1651 1652 args.offset = start - rman_get_start(sysres); 1653 args.length = length; 1654 return (bus_generic_map_resource(bus, child, sysres, &args, map)); 1655 } 1656 1657 static int 1658 acpi_unmap_resource(device_t bus, device_t child, struct resource *r, 1659 struct resource_map *map) 1660 { 1661 if (acpi_is_resource_managed(bus, r)) { 1662 r = acpi_managed_resource(bus, r); 1663 if (r == NULL) 1664 return (ENOENT); 1665 } 1666 return (bus_generic_unmap_resource(bus, child, r, map)); 1667 } 1668 1669 /* Allocate an IO port or memory resource, given its GAS. */ 1670 int 1671 acpi_bus_alloc_gas(device_t dev, int *type, int *rid, ACPI_GENERIC_ADDRESS *gas, 1672 struct resource **res, u_int flags) 1673 { 1674 int error, res_type; 1675 1676 error = ENOMEM; 1677 if (type == NULL || rid == NULL || gas == NULL || res == NULL) 1678 return (EINVAL); 1679 1680 /* We only support memory and IO spaces. */ 1681 switch (gas->SpaceId) { 1682 case ACPI_ADR_SPACE_SYSTEM_MEMORY: 1683 res_type = SYS_RES_MEMORY; 1684 break; 1685 case ACPI_ADR_SPACE_SYSTEM_IO: 1686 res_type = SYS_RES_IOPORT; 1687 break; 1688 default: 1689 return (EOPNOTSUPP); 1690 } 1691 1692 /* 1693 * If the register width is less than 8, assume the BIOS author means 1694 * it is a bit field and just allocate a byte. 1695 */ 1696 if (gas->BitWidth && gas->BitWidth < 8) 1697 gas->BitWidth = 8; 1698 1699 /* Validate the address after we're sure we support the space. */ 1700 if (gas->Address == 0 || gas->BitWidth == 0) 1701 return (EINVAL); 1702 1703 bus_set_resource(dev, res_type, *rid, gas->Address, 1704 gas->BitWidth / 8); 1705 *res = bus_alloc_resource_any(dev, res_type, rid, RF_ACTIVE | flags); 1706 if (*res != NULL) { 1707 *type = res_type; 1708 error = 0; 1709 } else 1710 bus_delete_resource(dev, res_type, *rid); 1711 1712 return (error); 1713 } 1714 1715 /* Probe _HID and _CID for compatible ISA PNP ids. */ 1716 static uint32_t 1717 acpi_isa_get_logicalid(device_t dev) 1718 { 1719 ACPI_DEVICE_INFO *devinfo; 1720 ACPI_HANDLE h; 1721 uint32_t pnpid; 1722 1723 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1724 1725 /* Fetch and validate the HID. */ 1726 if ((h = acpi_get_handle(dev)) == NULL || 1727 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 1728 return_VALUE (0); 1729 1730 pnpid = (devinfo->Valid & ACPI_VALID_HID) != 0 && 1731 devinfo->HardwareId.Length >= ACPI_EISAID_STRING_SIZE ? 1732 PNP_EISAID(devinfo->HardwareId.String) : 0; 1733 AcpiOsFree(devinfo); 1734 1735 return_VALUE (pnpid); 1736 } 1737 1738 static int 1739 acpi_isa_get_compatid(device_t dev, uint32_t *cids, int count) 1740 { 1741 ACPI_DEVICE_INFO *devinfo; 1742 ACPI_PNP_DEVICE_ID *ids; 1743 ACPI_HANDLE h; 1744 uint32_t *pnpid; 1745 int i, valid; 1746 1747 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1748 1749 pnpid = cids; 1750 1751 /* Fetch and validate the CID */ 1752 if ((h = acpi_get_handle(dev)) == NULL || 1753 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 1754 return_VALUE (0); 1755 1756 if ((devinfo->Valid & ACPI_VALID_CID) == 0) { 1757 AcpiOsFree(devinfo); 1758 return_VALUE (0); 1759 } 1760 1761 if (devinfo->CompatibleIdList.Count < count) 1762 count = devinfo->CompatibleIdList.Count; 1763 ids = devinfo->CompatibleIdList.Ids; 1764 for (i = 0, valid = 0; i < count; i++) 1765 if (ids[i].Length >= ACPI_EISAID_STRING_SIZE && 1766 strncmp(ids[i].String, "PNP", 3) == 0) { 1767 *pnpid++ = PNP_EISAID(ids[i].String); 1768 valid++; 1769 } 1770 AcpiOsFree(devinfo); 1771 1772 return_VALUE (valid); 1773 } 1774 1775 static int 1776 acpi_device_id_probe(device_t bus, device_t dev, char **ids, char **match) 1777 { 1778 ACPI_HANDLE h; 1779 ACPI_OBJECT_TYPE t; 1780 int rv; 1781 int i; 1782 1783 h = acpi_get_handle(dev); 1784 if (ids == NULL || h == NULL) 1785 return (ENXIO); 1786 t = acpi_get_type(dev); 1787 if (t != ACPI_TYPE_DEVICE && t != ACPI_TYPE_PROCESSOR) 1788 return (ENXIO); 1789 1790 /* Try to match one of the array of IDs with a HID or CID. */ 1791 for (i = 0; ids[i] != NULL; i++) { 1792 rv = acpi_MatchHid(h, ids[i]); 1793 if (rv == ACPI_MATCHHID_NOMATCH) 1794 continue; 1795 1796 if (match != NULL) { 1797 *match = ids[i]; 1798 } 1799 return ((rv == ACPI_MATCHHID_HID)? 1800 BUS_PROBE_DEFAULT : BUS_PROBE_LOW_PRIORITY); 1801 } 1802 return (ENXIO); 1803 } 1804 1805 static ACPI_STATUS 1806 acpi_device_eval_obj(device_t bus, device_t dev, ACPI_STRING pathname, 1807 ACPI_OBJECT_LIST *parameters, ACPI_BUFFER *ret) 1808 { 1809 ACPI_HANDLE h; 1810 1811 if (dev == NULL) 1812 h = ACPI_ROOT_OBJECT; 1813 else if ((h = acpi_get_handle(dev)) == NULL) 1814 return (AE_BAD_PARAMETER); 1815 return (AcpiEvaluateObject(h, pathname, parameters, ret)); 1816 } 1817 1818 static ACPI_STATUS 1819 acpi_device_get_prop(device_t bus, device_t dev, ACPI_STRING propname, 1820 const ACPI_OBJECT **value) 1821 { 1822 const ACPI_OBJECT *pkg, *name, *val; 1823 struct acpi_device *ad; 1824 ACPI_STATUS status; 1825 int i; 1826 1827 ad = device_get_ivars(dev); 1828 1829 if (ad == NULL || propname == NULL) 1830 return (AE_BAD_PARAMETER); 1831 if (ad->dsd_pkg == NULL) { 1832 if (ad->dsd.Pointer == NULL) { 1833 status = acpi_find_dsd(ad); 1834 if (ACPI_FAILURE(status)) 1835 return (status); 1836 } else { 1837 return (AE_NOT_FOUND); 1838 } 1839 } 1840 1841 for (i = 0; i < ad->dsd_pkg->Package.Count; i ++) { 1842 pkg = &ad->dsd_pkg->Package.Elements[i]; 1843 if (pkg->Type != ACPI_TYPE_PACKAGE || pkg->Package.Count != 2) 1844 continue; 1845 1846 name = &pkg->Package.Elements[0]; 1847 val = &pkg->Package.Elements[1]; 1848 if (name->Type != ACPI_TYPE_STRING) 1849 continue; 1850 if (strncmp(propname, name->String.Pointer, name->String.Length) == 0) { 1851 if (value != NULL) 1852 *value = val; 1853 1854 return (AE_OK); 1855 } 1856 } 1857 1858 return (AE_NOT_FOUND); 1859 } 1860 1861 static ACPI_STATUS 1862 acpi_find_dsd(struct acpi_device *ad) 1863 { 1864 const ACPI_OBJECT *dsd, *guid, *pkg; 1865 ACPI_STATUS status; 1866 1867 ad->dsd.Length = ACPI_ALLOCATE_BUFFER; 1868 ad->dsd.Pointer = NULL; 1869 ad->dsd_pkg = NULL; 1870 1871 status = AcpiEvaluateObject(ad->ad_handle, "_DSD", NULL, &ad->dsd); 1872 if (ACPI_FAILURE(status)) 1873 return (status); 1874 1875 dsd = ad->dsd.Pointer; 1876 guid = &dsd->Package.Elements[0]; 1877 pkg = &dsd->Package.Elements[1]; 1878 1879 if (guid->Type != ACPI_TYPE_BUFFER || pkg->Type != ACPI_TYPE_PACKAGE || 1880 guid->Buffer.Length != sizeof(acpi_dsd_uuid)) 1881 return (AE_NOT_FOUND); 1882 if (memcmp(guid->Buffer.Pointer, &acpi_dsd_uuid, 1883 sizeof(acpi_dsd_uuid)) == 0) { 1884 1885 ad->dsd_pkg = pkg; 1886 return (AE_OK); 1887 } 1888 1889 return (AE_NOT_FOUND); 1890 } 1891 1892 static ssize_t 1893 acpi_bus_get_prop_handle(const ACPI_OBJECT *hobj, void *propvalue, size_t size) 1894 { 1895 ACPI_OBJECT *pobj; 1896 ACPI_HANDLE h; 1897 1898 if (hobj->Type != ACPI_TYPE_PACKAGE) 1899 goto err; 1900 if (hobj->Package.Count != 1) 1901 goto err; 1902 1903 pobj = &hobj->Package.Elements[0]; 1904 if (pobj == NULL) 1905 goto err; 1906 if (pobj->Type != ACPI_TYPE_LOCAL_REFERENCE) 1907 goto err; 1908 1909 h = acpi_GetReference(NULL, pobj); 1910 if (h == NULL) 1911 goto err; 1912 1913 if (propvalue != NULL && size >= sizeof(ACPI_HANDLE)) 1914 *(ACPI_HANDLE *)propvalue = h; 1915 return (sizeof(ACPI_HANDLE)); 1916 1917 err: 1918 return (-1); 1919 } 1920 1921 static ssize_t 1922 acpi_bus_get_prop(device_t bus, device_t child, const char *propname, 1923 void *propvalue, size_t size, device_property_type_t type) 1924 { 1925 ACPI_STATUS status; 1926 const ACPI_OBJECT *obj; 1927 1928 status = acpi_device_get_prop(bus, child, __DECONST(char *, propname), 1929 &obj); 1930 if (ACPI_FAILURE(status)) 1931 return (-1); 1932 1933 switch (type) { 1934 case DEVICE_PROP_ANY: 1935 case DEVICE_PROP_BUFFER: 1936 case DEVICE_PROP_UINT32: 1937 case DEVICE_PROP_UINT64: 1938 break; 1939 case DEVICE_PROP_HANDLE: 1940 return (acpi_bus_get_prop_handle(obj, propvalue, size)); 1941 default: 1942 return (-1); 1943 } 1944 1945 switch (obj->Type) { 1946 case ACPI_TYPE_INTEGER: 1947 if (type == DEVICE_PROP_UINT32) { 1948 if (propvalue != NULL && size >= sizeof(uint32_t)) 1949 *((uint32_t *)propvalue) = obj->Integer.Value; 1950 return (sizeof(uint32_t)); 1951 } 1952 if (propvalue != NULL && size >= sizeof(uint64_t)) 1953 *((uint64_t *) propvalue) = obj->Integer.Value; 1954 return (sizeof(uint64_t)); 1955 1956 case ACPI_TYPE_STRING: 1957 if (type != DEVICE_PROP_ANY && 1958 type != DEVICE_PROP_BUFFER) 1959 return (-1); 1960 1961 if (propvalue != NULL && size > 0) 1962 memcpy(propvalue, obj->String.Pointer, 1963 MIN(size, obj->String.Length)); 1964 return (obj->String.Length); 1965 1966 case ACPI_TYPE_BUFFER: 1967 if (propvalue != NULL && size > 0) 1968 memcpy(propvalue, obj->Buffer.Pointer, 1969 MIN(size, obj->Buffer.Length)); 1970 return (obj->Buffer.Length); 1971 1972 case ACPI_TYPE_PACKAGE: 1973 if (propvalue != NULL && size >= sizeof(ACPI_OBJECT *)) { 1974 *((ACPI_OBJECT **) propvalue) = 1975 __DECONST(ACPI_OBJECT *, obj); 1976 } 1977 return (sizeof(ACPI_OBJECT *)); 1978 1979 case ACPI_TYPE_LOCAL_REFERENCE: 1980 if (propvalue != NULL && size >= sizeof(ACPI_HANDLE)) { 1981 ACPI_HANDLE h; 1982 1983 h = acpi_GetReference(NULL, 1984 __DECONST(ACPI_OBJECT *, obj)); 1985 memcpy(propvalue, h, sizeof(ACPI_HANDLE)); 1986 } 1987 return (sizeof(ACPI_HANDLE)); 1988 default: 1989 return (0); 1990 } 1991 } 1992 1993 int 1994 acpi_device_pwr_for_sleep(device_t bus, device_t dev, int *dstate) 1995 { 1996 struct acpi_softc *sc; 1997 ACPI_HANDLE handle; 1998 ACPI_STATUS status; 1999 char sxd[8]; 2000 2001 handle = acpi_get_handle(dev); 2002 2003 /* 2004 * XXX If we find these devices, don't try to power them down. 2005 * The serial and IRDA ports on my T23 hang the system when 2006 * set to D3 and it appears that such legacy devices may 2007 * need special handling in their drivers. 2008 */ 2009 if (dstate == NULL || handle == NULL || 2010 acpi_MatchHid(handle, "PNP0500") || 2011 acpi_MatchHid(handle, "PNP0501") || 2012 acpi_MatchHid(handle, "PNP0502") || 2013 acpi_MatchHid(handle, "PNP0510") || 2014 acpi_MatchHid(handle, "PNP0511")) 2015 return (ENXIO); 2016 2017 /* 2018 * Override next state with the value from _SxD, if present. 2019 * Note illegal _S0D is evaluated because some systems expect this. 2020 */ 2021 sc = device_get_softc(bus); 2022 snprintf(sxd, sizeof(sxd), "_S%dD", sc->acpi_sstate); 2023 status = acpi_GetInteger(handle, sxd, dstate); 2024 if (ACPI_FAILURE(status) && status != AE_NOT_FOUND) { 2025 device_printf(dev, "failed to get %s on %s: %s\n", sxd, 2026 acpi_name(handle), AcpiFormatException(status)); 2027 return (ENXIO); 2028 } 2029 2030 return (0); 2031 } 2032 2033 /* Callback arg for our implementation of walking the namespace. */ 2034 struct acpi_device_scan_ctx { 2035 acpi_scan_cb_t user_fn; 2036 void *arg; 2037 ACPI_HANDLE parent; 2038 }; 2039 2040 static ACPI_STATUS 2041 acpi_device_scan_cb(ACPI_HANDLE h, UINT32 level, void *arg, void **retval) 2042 { 2043 struct acpi_device_scan_ctx *ctx; 2044 device_t dev, old_dev; 2045 ACPI_STATUS status; 2046 ACPI_OBJECT_TYPE type; 2047 2048 /* 2049 * Skip this device if we think we'll have trouble with it or it is 2050 * the parent where the scan began. 2051 */ 2052 ctx = (struct acpi_device_scan_ctx *)arg; 2053 if (acpi_avoid(h) || h == ctx->parent) 2054 return (AE_OK); 2055 2056 /* If this is not a valid device type (e.g., a method), skip it. */ 2057 if (ACPI_FAILURE(AcpiGetType(h, &type))) 2058 return (AE_OK); 2059 if (type != ACPI_TYPE_DEVICE && type != ACPI_TYPE_PROCESSOR && 2060 type != ACPI_TYPE_THERMAL && type != ACPI_TYPE_POWER) 2061 return (AE_OK); 2062 2063 /* 2064 * Call the user function with the current device. If it is unchanged 2065 * afterwards, return. Otherwise, we update the handle to the new dev. 2066 */ 2067 old_dev = acpi_get_device(h); 2068 dev = old_dev; 2069 status = ctx->user_fn(h, &dev, level, ctx->arg); 2070 if (ACPI_FAILURE(status) || old_dev == dev) 2071 return (status); 2072 2073 /* Remove the old child and its connection to the handle. */ 2074 if (old_dev != NULL) 2075 device_delete_child(device_get_parent(old_dev), old_dev); 2076 2077 /* Recreate the handle association if the user created a device. */ 2078 if (dev != NULL) 2079 AcpiAttachData(h, acpi_fake_objhandler, dev); 2080 2081 return (AE_OK); 2082 } 2083 2084 static ACPI_STATUS 2085 acpi_device_scan_children(device_t bus, device_t dev, int max_depth, 2086 acpi_scan_cb_t user_fn, void *arg) 2087 { 2088 ACPI_HANDLE h; 2089 struct acpi_device_scan_ctx ctx; 2090 2091 if (acpi_disabled("children")) 2092 return (AE_OK); 2093 2094 if (dev == NULL) 2095 h = ACPI_ROOT_OBJECT; 2096 else if ((h = acpi_get_handle(dev)) == NULL) 2097 return (AE_BAD_PARAMETER); 2098 ctx.user_fn = user_fn; 2099 ctx.arg = arg; 2100 ctx.parent = h; 2101 return (AcpiWalkNamespace(ACPI_TYPE_ANY, h, max_depth, 2102 acpi_device_scan_cb, NULL, &ctx, NULL)); 2103 } 2104 2105 /* 2106 * Even though ACPI devices are not PCI, we use the PCI approach for setting 2107 * device power states since it's close enough to ACPI. 2108 */ 2109 int 2110 acpi_set_powerstate(device_t child, int state) 2111 { 2112 ACPI_HANDLE h; 2113 ACPI_STATUS status; 2114 2115 h = acpi_get_handle(child); 2116 if (state < ACPI_STATE_D0 || state > ACPI_D_STATES_MAX) 2117 return (EINVAL); 2118 if (h == NULL) 2119 return (0); 2120 2121 /* Ignore errors if the power methods aren't present. */ 2122 status = acpi_pwr_switch_consumer(h, state); 2123 if (ACPI_SUCCESS(status)) { 2124 if (bootverbose) 2125 device_printf(child, "set ACPI power state D%d on %s\n", 2126 state, acpi_name(h)); 2127 } else if (status != AE_NOT_FOUND) 2128 device_printf(child, 2129 "failed to set ACPI power state D%d on %s: %s\n", state, 2130 acpi_name(h), AcpiFormatException(status)); 2131 2132 return (0); 2133 } 2134 2135 static int 2136 acpi_isa_pnp_probe(device_t bus, device_t child, struct isa_pnp_id *ids) 2137 { 2138 int result, cid_count, i; 2139 uint32_t lid, cids[8]; 2140 2141 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 2142 2143 /* 2144 * ISA-style drivers attached to ACPI may persist and 2145 * probe manually if we return ENOENT. We never want 2146 * that to happen, so don't ever return it. 2147 */ 2148 result = ENXIO; 2149 2150 /* Scan the supplied IDs for a match */ 2151 lid = acpi_isa_get_logicalid(child); 2152 cid_count = acpi_isa_get_compatid(child, cids, 8); 2153 while (ids && ids->ip_id) { 2154 if (lid == ids->ip_id) { 2155 result = 0; 2156 goto out; 2157 } 2158 for (i = 0; i < cid_count; i++) { 2159 if (cids[i] == ids->ip_id) { 2160 result = 0; 2161 goto out; 2162 } 2163 } 2164 ids++; 2165 } 2166 2167 out: 2168 if (result == 0 && ids->ip_desc) 2169 device_set_desc(child, ids->ip_desc); 2170 2171 return_VALUE (result); 2172 } 2173 2174 /* 2175 * Look for a MCFG table. If it is present, use the settings for 2176 * domain (segment) 0 to setup PCI config space access via the memory 2177 * map. 2178 * 2179 * On non-x86 architectures (arm64 for now), this will be done from the 2180 * PCI host bridge driver. 2181 */ 2182 static void 2183 acpi_enable_pcie(void) 2184 { 2185 #if defined(__i386__) || defined(__amd64__) 2186 ACPI_TABLE_HEADER *hdr; 2187 ACPI_MCFG_ALLOCATION *alloc, *end; 2188 ACPI_STATUS status; 2189 2190 status = AcpiGetTable(ACPI_SIG_MCFG, 1, &hdr); 2191 if (ACPI_FAILURE(status)) 2192 return; 2193 2194 end = (ACPI_MCFG_ALLOCATION *)((char *)hdr + hdr->Length); 2195 alloc = (ACPI_MCFG_ALLOCATION *)((ACPI_TABLE_MCFG *)hdr + 1); 2196 while (alloc < end) { 2197 pcie_cfgregopen(alloc->Address, alloc->PciSegment, 2198 alloc->StartBusNumber, alloc->EndBusNumber); 2199 alloc++; 2200 } 2201 #endif 2202 } 2203 2204 static void 2205 acpi_platform_osc(device_t dev) 2206 { 2207 ACPI_HANDLE sb_handle; 2208 ACPI_STATUS status; 2209 uint32_t cap_set[2]; 2210 2211 /* 0811B06E-4A27-44F9-8D60-3CBBC22E7B48 */ 2212 static uint8_t acpi_platform_uuid[ACPI_UUID_LENGTH] = { 2213 0x6e, 0xb0, 0x11, 0x08, 0x27, 0x4a, 0xf9, 0x44, 2214 0x8d, 0x60, 0x3c, 0xbb, 0xc2, 0x2e, 0x7b, 0x48 2215 }; 2216 2217 if (ACPI_FAILURE(AcpiGetHandle(ACPI_ROOT_OBJECT, "\\_SB_", &sb_handle))) 2218 return; 2219 2220 cap_set[1] = 0x10; /* APEI Support */ 2221 status = acpi_EvaluateOSC(sb_handle, acpi_platform_uuid, 1, 2222 nitems(cap_set), cap_set, cap_set, false); 2223 if (ACPI_FAILURE(status)) { 2224 if (status == AE_NOT_FOUND) 2225 return; 2226 device_printf(dev, "_OSC failed: %s\n", 2227 AcpiFormatException(status)); 2228 return; 2229 } 2230 } 2231 2232 /* 2233 * Scan all of the ACPI namespace and attach child devices. 2234 * 2235 * We should only expect to find devices in the \_PR, \_TZ, \_SI, and 2236 * \_SB scopes, and \_PR and \_TZ became obsolete in the ACPI 2.0 spec. 2237 * However, in violation of the spec, some systems place their PCI link 2238 * devices in \, so we have to walk the whole namespace. We check the 2239 * type of namespace nodes, so this should be ok. 2240 */ 2241 static void 2242 acpi_probe_children(device_t bus) 2243 { 2244 2245 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 2246 2247 /* 2248 * Scan the namespace and insert placeholders for all the devices that 2249 * we find. We also probe/attach any early devices. 2250 * 2251 * Note that we use AcpiWalkNamespace rather than AcpiGetDevices because 2252 * we want to create nodes for all devices, not just those that are 2253 * currently present. (This assumes that we don't want to create/remove 2254 * devices as they appear, which might be smarter.) 2255 */ 2256 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "namespace scan\n")); 2257 AcpiWalkNamespace(ACPI_TYPE_ANY, ACPI_ROOT_OBJECT, 100, acpi_probe_child, 2258 NULL, bus, NULL); 2259 2260 /* Pre-allocate resources for our rman from any sysresource devices. */ 2261 acpi_sysres_alloc(bus); 2262 2263 /* Create any static children by calling device identify methods. */ 2264 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "device identify routines\n")); 2265 bus_generic_probe(bus); 2266 2267 /* Probe/attach all children, created statically and from the namespace. */ 2268 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "acpi bus_generic_attach\n")); 2269 bus_generic_attach(bus); 2270 2271 /* 2272 * Reserve resources allocated to children but not yet allocated 2273 * by a driver. 2274 */ 2275 acpi_reserve_resources(bus); 2276 2277 /* Attach wake sysctls. */ 2278 acpi_wake_sysctl_walk(bus); 2279 2280 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "done attaching children\n")); 2281 return_VOID; 2282 } 2283 2284 /* 2285 * Determine the probe order for a given device. 2286 */ 2287 static void 2288 acpi_probe_order(ACPI_HANDLE handle, int *order) 2289 { 2290 ACPI_OBJECT_TYPE type; 2291 2292 /* 2293 * 0. CPUs 2294 * 1. I/O port and memory system resource holders 2295 * 2. Clocks and timers (to handle early accesses) 2296 * 3. Embedded controllers (to handle early accesses) 2297 * 4. PCI Link Devices 2298 */ 2299 AcpiGetType(handle, &type); 2300 if (type == ACPI_TYPE_PROCESSOR) 2301 *order = 0; 2302 else if (acpi_MatchHid(handle, "PNP0C01") || 2303 acpi_MatchHid(handle, "PNP0C02")) 2304 *order = 1; 2305 else if (acpi_MatchHid(handle, "PNP0100") || 2306 acpi_MatchHid(handle, "PNP0103") || 2307 acpi_MatchHid(handle, "PNP0B00")) 2308 *order = 2; 2309 else if (acpi_MatchHid(handle, "PNP0C09")) 2310 *order = 3; 2311 else if (acpi_MatchHid(handle, "PNP0C0F")) 2312 *order = 4; 2313 } 2314 2315 /* 2316 * Evaluate a child device and determine whether we might attach a device to 2317 * it. 2318 */ 2319 static ACPI_STATUS 2320 acpi_probe_child(ACPI_HANDLE handle, UINT32 level, void *context, void **status) 2321 { 2322 ACPI_DEVICE_INFO *devinfo; 2323 struct acpi_device *ad; 2324 struct acpi_prw_data prw; 2325 ACPI_OBJECT_TYPE type; 2326 ACPI_HANDLE h; 2327 device_t bus, child; 2328 char *handle_str; 2329 int order; 2330 2331 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 2332 2333 if (acpi_disabled("children")) 2334 return_ACPI_STATUS (AE_OK); 2335 2336 /* Skip this device if we think we'll have trouble with it. */ 2337 if (acpi_avoid(handle)) 2338 return_ACPI_STATUS (AE_OK); 2339 2340 bus = (device_t)context; 2341 if (ACPI_SUCCESS(AcpiGetType(handle, &type))) { 2342 handle_str = acpi_name(handle); 2343 switch (type) { 2344 case ACPI_TYPE_DEVICE: 2345 /* 2346 * Since we scan from \, be sure to skip system scope objects. 2347 * \_SB_ and \_TZ_ are defined in ACPICA as devices to work around 2348 * BIOS bugs. For example, \_SB_ is to allow \_SB_._INI to be run 2349 * during the initialization and \_TZ_ is to support Notify() on it. 2350 */ 2351 if (strcmp(handle_str, "\\_SB_") == 0 || 2352 strcmp(handle_str, "\\_TZ_") == 0) 2353 break; 2354 if (acpi_parse_prw(handle, &prw) == 0) 2355 AcpiSetupGpeForWake(handle, prw.gpe_handle, prw.gpe_bit); 2356 2357 /* 2358 * Ignore devices that do not have a _HID or _CID. They should 2359 * be discovered by other buses (e.g. the PCI bus driver). 2360 */ 2361 if (!acpi_has_hid(handle)) 2362 break; 2363 /* FALLTHROUGH */ 2364 case ACPI_TYPE_PROCESSOR: 2365 case ACPI_TYPE_THERMAL: 2366 case ACPI_TYPE_POWER: 2367 /* 2368 * Create a placeholder device for this node. Sort the 2369 * placeholder so that the probe/attach passes will run 2370 * breadth-first. Orders less than ACPI_DEV_BASE_ORDER 2371 * are reserved for special objects (i.e., system 2372 * resources). 2373 */ 2374 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "scanning '%s'\n", handle_str)); 2375 order = level * 10 + ACPI_DEV_BASE_ORDER; 2376 acpi_probe_order(handle, &order); 2377 child = BUS_ADD_CHILD(bus, order, NULL, -1); 2378 if (child == NULL) 2379 break; 2380 2381 /* Associate the handle with the device_t and vice versa. */ 2382 acpi_set_handle(child, handle); 2383 AcpiAttachData(handle, acpi_fake_objhandler, child); 2384 2385 /* 2386 * Check that the device is present. If it's not present, 2387 * leave it disabled (so that we have a device_t attached to 2388 * the handle, but we don't probe it). 2389 * 2390 * XXX PCI link devices sometimes report "present" but not 2391 * "functional" (i.e. if disabled). Go ahead and probe them 2392 * anyway since we may enable them later. 2393 */ 2394 if (type == ACPI_TYPE_DEVICE && !acpi_DeviceIsPresent(child)) { 2395 /* Never disable PCI link devices. */ 2396 if (acpi_MatchHid(handle, "PNP0C0F")) 2397 break; 2398 2399 /* 2400 * RTC Device should be enabled for CMOS register space 2401 * unless FADT indicate it is not present. 2402 * (checked in RTC probe routine.) 2403 */ 2404 if (acpi_MatchHid(handle, "PNP0B00")) 2405 break; 2406 2407 /* 2408 * Docking stations should remain enabled since the system 2409 * may be undocked at boot. 2410 */ 2411 if (ACPI_SUCCESS(AcpiGetHandle(handle, "_DCK", &h))) 2412 break; 2413 2414 device_disable(child); 2415 break; 2416 } 2417 2418 /* 2419 * Get the device's resource settings and attach them. 2420 * Note that if the device has _PRS but no _CRS, we need 2421 * to decide when it's appropriate to try to configure the 2422 * device. Ignore the return value here; it's OK for the 2423 * device not to have any resources. 2424 */ 2425 acpi_parse_resources(child, handle, &acpi_res_parse_set, NULL); 2426 2427 ad = device_get_ivars(child); 2428 ad->ad_cls_class = 0xffffff; 2429 if (ACPI_SUCCESS(AcpiGetObjectInfo(handle, &devinfo))) { 2430 if ((devinfo->Valid & ACPI_VALID_CLS) != 0 && 2431 devinfo->ClassCode.Length >= ACPI_PCICLS_STRING_SIZE) { 2432 ad->ad_cls_class = strtoul(devinfo->ClassCode.String, 2433 NULL, 16); 2434 } 2435 AcpiOsFree(devinfo); 2436 } 2437 break; 2438 } 2439 } 2440 2441 return_ACPI_STATUS (AE_OK); 2442 } 2443 2444 /* 2445 * AcpiAttachData() requires an object handler but never uses it. This is a 2446 * placeholder object handler so we can store a device_t in an ACPI_HANDLE. 2447 */ 2448 void 2449 acpi_fake_objhandler(ACPI_HANDLE h, void *data) 2450 { 2451 } 2452 2453 static void 2454 acpi_shutdown_final(void *arg, int howto) 2455 { 2456 struct acpi_softc *sc = (struct acpi_softc *)arg; 2457 register_t intr; 2458 ACPI_STATUS status; 2459 2460 /* 2461 * XXX Shutdown code should only run on the BSP (cpuid 0). 2462 * Some chipsets do not power off the system correctly if called from 2463 * an AP. 2464 */ 2465 if ((howto & RB_POWEROFF) != 0) { 2466 status = AcpiEnterSleepStatePrep(ACPI_STATE_S5); 2467 if (ACPI_FAILURE(status)) { 2468 device_printf(sc->acpi_dev, "AcpiEnterSleepStatePrep failed - %s\n", 2469 AcpiFormatException(status)); 2470 return; 2471 } 2472 device_printf(sc->acpi_dev, "Powering system off\n"); 2473 intr = intr_disable(); 2474 status = AcpiEnterSleepState(ACPI_STATE_S5); 2475 if (ACPI_FAILURE(status)) { 2476 intr_restore(intr); 2477 device_printf(sc->acpi_dev, "power-off failed - %s\n", 2478 AcpiFormatException(status)); 2479 } else { 2480 DELAY(1000000); 2481 intr_restore(intr); 2482 device_printf(sc->acpi_dev, "power-off failed - timeout\n"); 2483 } 2484 } else if ((howto & RB_HALT) == 0 && sc->acpi_handle_reboot) { 2485 /* Reboot using the reset register. */ 2486 status = AcpiReset(); 2487 if (ACPI_SUCCESS(status)) { 2488 DELAY(1000000); 2489 device_printf(sc->acpi_dev, "reset failed - timeout\n"); 2490 } else if (status != AE_NOT_EXIST) 2491 device_printf(sc->acpi_dev, "reset failed - %s\n", 2492 AcpiFormatException(status)); 2493 } else if (sc->acpi_do_disable && !KERNEL_PANICKED()) { 2494 /* 2495 * Only disable ACPI if the user requested. On some systems, writing 2496 * the disable value to SMI_CMD hangs the system. 2497 */ 2498 device_printf(sc->acpi_dev, "Shutting down\n"); 2499 AcpiTerminate(); 2500 } 2501 } 2502 2503 static void 2504 acpi_enable_fixed_events(struct acpi_softc *sc) 2505 { 2506 static int first_time = 1; 2507 2508 /* Enable and clear fixed events and install handlers. */ 2509 if ((AcpiGbl_FADT.Flags & ACPI_FADT_POWER_BUTTON) == 0) { 2510 AcpiClearEvent(ACPI_EVENT_POWER_BUTTON); 2511 AcpiInstallFixedEventHandler(ACPI_EVENT_POWER_BUTTON, 2512 acpi_event_power_button_sleep, sc); 2513 if (first_time) 2514 device_printf(sc->acpi_dev, "Power Button (fixed)\n"); 2515 } 2516 if ((AcpiGbl_FADT.Flags & ACPI_FADT_SLEEP_BUTTON) == 0) { 2517 AcpiClearEvent(ACPI_EVENT_SLEEP_BUTTON); 2518 AcpiInstallFixedEventHandler(ACPI_EVENT_SLEEP_BUTTON, 2519 acpi_event_sleep_button_sleep, sc); 2520 if (first_time) 2521 device_printf(sc->acpi_dev, "Sleep Button (fixed)\n"); 2522 } 2523 2524 first_time = 0; 2525 } 2526 2527 /* 2528 * Returns true if the device is actually present and should 2529 * be attached to. This requires the present, enabled, UI-visible 2530 * and diagnostics-passed bits to be set. 2531 */ 2532 BOOLEAN 2533 acpi_DeviceIsPresent(device_t dev) 2534 { 2535 ACPI_HANDLE h; 2536 UINT32 s; 2537 ACPI_STATUS status; 2538 2539 h = acpi_get_handle(dev); 2540 if (h == NULL) 2541 return (FALSE); 2542 2543 #ifdef ACPI_EARLY_EPYC_WAR 2544 /* 2545 * Certain Treadripper boards always returns 0 for FreeBSD because it 2546 * only returns non-zero for the OS string "Windows 2015". Otherwise it 2547 * will return zero. Force them to always be treated as present. 2548 * Beata versions were worse: they always returned 0. 2549 */ 2550 if (acpi_MatchHid(h, "AMDI0020") || acpi_MatchHid(h, "AMDI0010")) 2551 return (TRUE); 2552 #endif 2553 2554 status = acpi_GetInteger(h, "_STA", &s); 2555 2556 /* 2557 * If no _STA method or if it failed, then assume that 2558 * the device is present. 2559 */ 2560 if (ACPI_FAILURE(status)) 2561 return (TRUE); 2562 2563 return (ACPI_DEVICE_PRESENT(s) ? TRUE : FALSE); 2564 } 2565 2566 /* 2567 * Returns true if the battery is actually present and inserted. 2568 */ 2569 BOOLEAN 2570 acpi_BatteryIsPresent(device_t dev) 2571 { 2572 ACPI_HANDLE h; 2573 UINT32 s; 2574 ACPI_STATUS status; 2575 2576 h = acpi_get_handle(dev); 2577 if (h == NULL) 2578 return (FALSE); 2579 status = acpi_GetInteger(h, "_STA", &s); 2580 2581 /* 2582 * If no _STA method or if it failed, then assume that 2583 * the device is present. 2584 */ 2585 if (ACPI_FAILURE(status)) 2586 return (TRUE); 2587 2588 return (ACPI_BATTERY_PRESENT(s) ? TRUE : FALSE); 2589 } 2590 2591 /* 2592 * Returns true if a device has at least one valid device ID. 2593 */ 2594 BOOLEAN 2595 acpi_has_hid(ACPI_HANDLE h) 2596 { 2597 ACPI_DEVICE_INFO *devinfo; 2598 BOOLEAN ret; 2599 2600 if (h == NULL || 2601 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 2602 return (FALSE); 2603 2604 ret = FALSE; 2605 if ((devinfo->Valid & ACPI_VALID_HID) != 0) 2606 ret = TRUE; 2607 else if ((devinfo->Valid & ACPI_VALID_CID) != 0) 2608 if (devinfo->CompatibleIdList.Count > 0) 2609 ret = TRUE; 2610 2611 AcpiOsFree(devinfo); 2612 return (ret); 2613 } 2614 2615 /* 2616 * Match a HID string against a handle 2617 * returns ACPI_MATCHHID_HID if _HID match 2618 * ACPI_MATCHHID_CID if _CID match and not _HID match. 2619 * ACPI_MATCHHID_NOMATCH=0 if no match. 2620 */ 2621 int 2622 acpi_MatchHid(ACPI_HANDLE h, const char *hid) 2623 { 2624 ACPI_DEVICE_INFO *devinfo; 2625 BOOLEAN ret; 2626 int i; 2627 2628 if (hid == NULL || h == NULL || 2629 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 2630 return (ACPI_MATCHHID_NOMATCH); 2631 2632 ret = ACPI_MATCHHID_NOMATCH; 2633 if ((devinfo->Valid & ACPI_VALID_HID) != 0 && 2634 strcmp(hid, devinfo->HardwareId.String) == 0) 2635 ret = ACPI_MATCHHID_HID; 2636 else if ((devinfo->Valid & ACPI_VALID_CID) != 0) 2637 for (i = 0; i < devinfo->CompatibleIdList.Count; i++) { 2638 if (strcmp(hid, devinfo->CompatibleIdList.Ids[i].String) == 0) { 2639 ret = ACPI_MATCHHID_CID; 2640 break; 2641 } 2642 } 2643 2644 AcpiOsFree(devinfo); 2645 return (ret); 2646 } 2647 2648 /* 2649 * Return the handle of a named object within our scope, ie. that of (parent) 2650 * or one if its parents. 2651 */ 2652 ACPI_STATUS 2653 acpi_GetHandleInScope(ACPI_HANDLE parent, char *path, ACPI_HANDLE *result) 2654 { 2655 ACPI_HANDLE r; 2656 ACPI_STATUS status; 2657 2658 /* Walk back up the tree to the root */ 2659 for (;;) { 2660 status = AcpiGetHandle(parent, path, &r); 2661 if (ACPI_SUCCESS(status)) { 2662 *result = r; 2663 return (AE_OK); 2664 } 2665 /* XXX Return error here? */ 2666 if (status != AE_NOT_FOUND) 2667 return (AE_OK); 2668 if (ACPI_FAILURE(AcpiGetParent(parent, &r))) 2669 return (AE_NOT_FOUND); 2670 parent = r; 2671 } 2672 } 2673 2674 ACPI_STATUS 2675 acpi_GetProperty(device_t dev, ACPI_STRING propname, 2676 const ACPI_OBJECT **value) 2677 { 2678 device_t bus = device_get_parent(dev); 2679 2680 return (ACPI_GET_PROPERTY(bus, dev, propname, value)); 2681 } 2682 2683 /* 2684 * Allocate a buffer with a preset data size. 2685 */ 2686 ACPI_BUFFER * 2687 acpi_AllocBuffer(int size) 2688 { 2689 ACPI_BUFFER *buf; 2690 2691 if ((buf = malloc(size + sizeof(*buf), M_ACPIDEV, M_NOWAIT)) == NULL) 2692 return (NULL); 2693 buf->Length = size; 2694 buf->Pointer = (void *)(buf + 1); 2695 return (buf); 2696 } 2697 2698 ACPI_STATUS 2699 acpi_SetInteger(ACPI_HANDLE handle, char *path, UINT32 number) 2700 { 2701 ACPI_OBJECT arg1; 2702 ACPI_OBJECT_LIST args; 2703 2704 arg1.Type = ACPI_TYPE_INTEGER; 2705 arg1.Integer.Value = number; 2706 args.Count = 1; 2707 args.Pointer = &arg1; 2708 2709 return (AcpiEvaluateObject(handle, path, &args, NULL)); 2710 } 2711 2712 /* 2713 * Evaluate a path that should return an integer. 2714 */ 2715 ACPI_STATUS 2716 acpi_GetInteger(ACPI_HANDLE handle, char *path, UINT32 *number) 2717 { 2718 ACPI_STATUS status; 2719 ACPI_BUFFER buf; 2720 ACPI_OBJECT param; 2721 2722 if (handle == NULL) 2723 handle = ACPI_ROOT_OBJECT; 2724 2725 /* 2726 * Assume that what we've been pointed at is an Integer object, or 2727 * a method that will return an Integer. 2728 */ 2729 buf.Pointer = ¶m; 2730 buf.Length = sizeof(param); 2731 status = AcpiEvaluateObject(handle, path, NULL, &buf); 2732 if (ACPI_SUCCESS(status)) { 2733 if (param.Type == ACPI_TYPE_INTEGER) 2734 *number = param.Integer.Value; 2735 else 2736 status = AE_TYPE; 2737 } 2738 2739 /* 2740 * In some applications, a method that's expected to return an Integer 2741 * may instead return a Buffer (probably to simplify some internal 2742 * arithmetic). We'll try to fetch whatever it is, and if it's a Buffer, 2743 * convert it into an Integer as best we can. 2744 * 2745 * This is a hack. 2746 */ 2747 if (status == AE_BUFFER_OVERFLOW) { 2748 if ((buf.Pointer = AcpiOsAllocate(buf.Length)) == NULL) { 2749 status = AE_NO_MEMORY; 2750 } else { 2751 status = AcpiEvaluateObject(handle, path, NULL, &buf); 2752 if (ACPI_SUCCESS(status)) 2753 status = acpi_ConvertBufferToInteger(&buf, number); 2754 AcpiOsFree(buf.Pointer); 2755 } 2756 } 2757 return (status); 2758 } 2759 2760 ACPI_STATUS 2761 acpi_ConvertBufferToInteger(ACPI_BUFFER *bufp, UINT32 *number) 2762 { 2763 ACPI_OBJECT *p; 2764 UINT8 *val; 2765 int i; 2766 2767 p = (ACPI_OBJECT *)bufp->Pointer; 2768 if (p->Type == ACPI_TYPE_INTEGER) { 2769 *number = p->Integer.Value; 2770 return (AE_OK); 2771 } 2772 if (p->Type != ACPI_TYPE_BUFFER) 2773 return (AE_TYPE); 2774 if (p->Buffer.Length > sizeof(int)) 2775 return (AE_BAD_DATA); 2776 2777 *number = 0; 2778 val = p->Buffer.Pointer; 2779 for (i = 0; i < p->Buffer.Length; i++) 2780 *number += val[i] << (i * 8); 2781 return (AE_OK); 2782 } 2783 2784 /* 2785 * Iterate over the elements of an a package object, calling the supplied 2786 * function for each element. 2787 * 2788 * XXX possible enhancement might be to abort traversal on error. 2789 */ 2790 ACPI_STATUS 2791 acpi_ForeachPackageObject(ACPI_OBJECT *pkg, 2792 void (*func)(ACPI_OBJECT *comp, void *arg), void *arg) 2793 { 2794 ACPI_OBJECT *comp; 2795 int i; 2796 2797 if (pkg == NULL || pkg->Type != ACPI_TYPE_PACKAGE) 2798 return (AE_BAD_PARAMETER); 2799 2800 /* Iterate over components */ 2801 i = 0; 2802 comp = pkg->Package.Elements; 2803 for (; i < pkg->Package.Count; i++, comp++) 2804 func(comp, arg); 2805 2806 return (AE_OK); 2807 } 2808 2809 /* 2810 * Find the (index)th resource object in a set. 2811 */ 2812 ACPI_STATUS 2813 acpi_FindIndexedResource(ACPI_BUFFER *buf, int index, ACPI_RESOURCE **resp) 2814 { 2815 ACPI_RESOURCE *rp; 2816 int i; 2817 2818 rp = (ACPI_RESOURCE *)buf->Pointer; 2819 i = index; 2820 while (i-- > 0) { 2821 /* Range check */ 2822 if (rp > (ACPI_RESOURCE *)((u_int8_t *)buf->Pointer + buf->Length)) 2823 return (AE_BAD_PARAMETER); 2824 2825 /* Check for terminator */ 2826 if (rp->Type == ACPI_RESOURCE_TYPE_END_TAG || rp->Length == 0) 2827 return (AE_NOT_FOUND); 2828 rp = ACPI_NEXT_RESOURCE(rp); 2829 } 2830 if (resp != NULL) 2831 *resp = rp; 2832 2833 return (AE_OK); 2834 } 2835 2836 /* 2837 * Append an ACPI_RESOURCE to an ACPI_BUFFER. 2838 * 2839 * Given a pointer to an ACPI_RESOURCE structure, expand the ACPI_BUFFER 2840 * provided to contain it. If the ACPI_BUFFER is empty, allocate a sensible 2841 * backing block. If the ACPI_RESOURCE is NULL, return an empty set of 2842 * resources. 2843 */ 2844 #define ACPI_INITIAL_RESOURCE_BUFFER_SIZE 512 2845 2846 ACPI_STATUS 2847 acpi_AppendBufferResource(ACPI_BUFFER *buf, ACPI_RESOURCE *res) 2848 { 2849 ACPI_RESOURCE *rp; 2850 void *newp; 2851 2852 /* Initialise the buffer if necessary. */ 2853 if (buf->Pointer == NULL) { 2854 buf->Length = ACPI_INITIAL_RESOURCE_BUFFER_SIZE; 2855 if ((buf->Pointer = AcpiOsAllocate(buf->Length)) == NULL) 2856 return (AE_NO_MEMORY); 2857 rp = (ACPI_RESOURCE *)buf->Pointer; 2858 rp->Type = ACPI_RESOURCE_TYPE_END_TAG; 2859 rp->Length = ACPI_RS_SIZE_MIN; 2860 } 2861 if (res == NULL) 2862 return (AE_OK); 2863 2864 /* 2865 * Scan the current buffer looking for the terminator. 2866 * This will either find the terminator or hit the end 2867 * of the buffer and return an error. 2868 */ 2869 rp = (ACPI_RESOURCE *)buf->Pointer; 2870 for (;;) { 2871 /* Range check, don't go outside the buffer */ 2872 if (rp >= (ACPI_RESOURCE *)((u_int8_t *)buf->Pointer + buf->Length)) 2873 return (AE_BAD_PARAMETER); 2874 if (rp->Type == ACPI_RESOURCE_TYPE_END_TAG || rp->Length == 0) 2875 break; 2876 rp = ACPI_NEXT_RESOURCE(rp); 2877 } 2878 2879 /* 2880 * Check the size of the buffer and expand if required. 2881 * 2882 * Required size is: 2883 * size of existing resources before terminator + 2884 * size of new resource and header + 2885 * size of terminator. 2886 * 2887 * Note that this loop should really only run once, unless 2888 * for some reason we are stuffing a *really* huge resource. 2889 */ 2890 while ((((u_int8_t *)rp - (u_int8_t *)buf->Pointer) + 2891 res->Length + ACPI_RS_SIZE_NO_DATA + 2892 ACPI_RS_SIZE_MIN) >= buf->Length) { 2893 if ((newp = AcpiOsAllocate(buf->Length * 2)) == NULL) 2894 return (AE_NO_MEMORY); 2895 bcopy(buf->Pointer, newp, buf->Length); 2896 rp = (ACPI_RESOURCE *)((u_int8_t *)newp + 2897 ((u_int8_t *)rp - (u_int8_t *)buf->Pointer)); 2898 AcpiOsFree(buf->Pointer); 2899 buf->Pointer = newp; 2900 buf->Length += buf->Length; 2901 } 2902 2903 /* Insert the new resource. */ 2904 bcopy(res, rp, res->Length + ACPI_RS_SIZE_NO_DATA); 2905 2906 /* And add the terminator. */ 2907 rp = ACPI_NEXT_RESOURCE(rp); 2908 rp->Type = ACPI_RESOURCE_TYPE_END_TAG; 2909 rp->Length = ACPI_RS_SIZE_MIN; 2910 2911 return (AE_OK); 2912 } 2913 2914 UINT64 2915 acpi_DSMQuery(ACPI_HANDLE h, const uint8_t *uuid, int revision) 2916 { 2917 /* 2918 * ACPI spec 9.1.1 defines this. 2919 * 2920 * "Arg2: Function Index Represents a specific function whose meaning is 2921 * specific to the UUID and Revision ID. Function indices should start 2922 * with 1. Function number zero is a query function (see the special 2923 * return code defined below)." 2924 */ 2925 ACPI_BUFFER buf; 2926 ACPI_OBJECT *obj; 2927 UINT64 ret = 0; 2928 int i; 2929 2930 if (!ACPI_SUCCESS(acpi_EvaluateDSM(h, uuid, revision, 0, NULL, &buf))) { 2931 ACPI_INFO(("Failed to enumerate DSM functions\n")); 2932 return (0); 2933 } 2934 2935 obj = (ACPI_OBJECT *)buf.Pointer; 2936 KASSERT(obj, ("Object not allowed to be NULL\n")); 2937 2938 /* 2939 * From ACPI 6.2 spec 9.1.1: 2940 * If Function Index = 0, a Buffer containing a function index bitfield. 2941 * Otherwise, the return value and type depends on the UUID and revision 2942 * ID (see below). 2943 */ 2944 switch (obj->Type) { 2945 case ACPI_TYPE_BUFFER: 2946 for (i = 0; i < MIN(obj->Buffer.Length, sizeof(ret)); i++) 2947 ret |= (((uint64_t)obj->Buffer.Pointer[i]) << (i * 8)); 2948 break; 2949 case ACPI_TYPE_INTEGER: 2950 ACPI_BIOS_WARNING((AE_INFO, 2951 "Possibly buggy BIOS with ACPI_TYPE_INTEGER for function enumeration\n")); 2952 ret = obj->Integer.Value; 2953 break; 2954 default: 2955 ACPI_WARNING((AE_INFO, "Unexpected return type %u\n", obj->Type)); 2956 }; 2957 2958 AcpiOsFree(obj); 2959 return ret; 2960 } 2961 2962 /* 2963 * DSM may return multiple types depending on the function. It is therefore 2964 * unsafe to use the typed evaluation. It is highly recommended that the caller 2965 * check the type of the returned object. 2966 */ 2967 ACPI_STATUS 2968 acpi_EvaluateDSM(ACPI_HANDLE handle, const uint8_t *uuid, int revision, 2969 UINT64 function, ACPI_OBJECT *package, ACPI_BUFFER *out_buf) 2970 { 2971 return (acpi_EvaluateDSMTyped(handle, uuid, revision, function, 2972 package, out_buf, ACPI_TYPE_ANY)); 2973 } 2974 2975 ACPI_STATUS 2976 acpi_EvaluateDSMTyped(ACPI_HANDLE handle, const uint8_t *uuid, int revision, 2977 UINT64 function, ACPI_OBJECT *package, ACPI_BUFFER *out_buf, 2978 ACPI_OBJECT_TYPE type) 2979 { 2980 ACPI_OBJECT arg[4]; 2981 ACPI_OBJECT_LIST arglist; 2982 ACPI_BUFFER buf; 2983 ACPI_STATUS status; 2984 2985 if (out_buf == NULL) 2986 return (AE_NO_MEMORY); 2987 2988 arg[0].Type = ACPI_TYPE_BUFFER; 2989 arg[0].Buffer.Length = ACPI_UUID_LENGTH; 2990 arg[0].Buffer.Pointer = __DECONST(uint8_t *, uuid); 2991 arg[1].Type = ACPI_TYPE_INTEGER; 2992 arg[1].Integer.Value = revision; 2993 arg[2].Type = ACPI_TYPE_INTEGER; 2994 arg[2].Integer.Value = function; 2995 if (package) { 2996 arg[3] = *package; 2997 } else { 2998 arg[3].Type = ACPI_TYPE_PACKAGE; 2999 arg[3].Package.Count = 0; 3000 arg[3].Package.Elements = NULL; 3001 } 3002 3003 arglist.Pointer = arg; 3004 arglist.Count = 4; 3005 buf.Pointer = NULL; 3006 buf.Length = ACPI_ALLOCATE_BUFFER; 3007 status = AcpiEvaluateObjectTyped(handle, "_DSM", &arglist, &buf, type); 3008 if (ACPI_FAILURE(status)) 3009 return (status); 3010 3011 KASSERT(ACPI_SUCCESS(status), ("Unexpected status")); 3012 3013 *out_buf = buf; 3014 return (status); 3015 } 3016 3017 ACPI_STATUS 3018 acpi_EvaluateOSC(ACPI_HANDLE handle, uint8_t *uuid, int revision, int count, 3019 uint32_t *caps_in, uint32_t *caps_out, bool query) 3020 { 3021 ACPI_OBJECT arg[4], *ret; 3022 ACPI_OBJECT_LIST arglist; 3023 ACPI_BUFFER buf; 3024 ACPI_STATUS status; 3025 3026 arglist.Pointer = arg; 3027 arglist.Count = 4; 3028 arg[0].Type = ACPI_TYPE_BUFFER; 3029 arg[0].Buffer.Length = ACPI_UUID_LENGTH; 3030 arg[0].Buffer.Pointer = uuid; 3031 arg[1].Type = ACPI_TYPE_INTEGER; 3032 arg[1].Integer.Value = revision; 3033 arg[2].Type = ACPI_TYPE_INTEGER; 3034 arg[2].Integer.Value = count; 3035 arg[3].Type = ACPI_TYPE_BUFFER; 3036 arg[3].Buffer.Length = count * sizeof(*caps_in); 3037 arg[3].Buffer.Pointer = (uint8_t *)caps_in; 3038 caps_in[0] = query ? 1 : 0; 3039 buf.Pointer = NULL; 3040 buf.Length = ACPI_ALLOCATE_BUFFER; 3041 status = AcpiEvaluateObjectTyped(handle, "_OSC", &arglist, &buf, 3042 ACPI_TYPE_BUFFER); 3043 if (ACPI_FAILURE(status)) 3044 return (status); 3045 if (caps_out != NULL) { 3046 ret = buf.Pointer; 3047 if (ret->Buffer.Length != count * sizeof(*caps_out)) { 3048 AcpiOsFree(buf.Pointer); 3049 return (AE_BUFFER_OVERFLOW); 3050 } 3051 bcopy(ret->Buffer.Pointer, caps_out, ret->Buffer.Length); 3052 } 3053 AcpiOsFree(buf.Pointer); 3054 return (status); 3055 } 3056 3057 /* 3058 * Set interrupt model. 3059 */ 3060 ACPI_STATUS 3061 acpi_SetIntrModel(int model) 3062 { 3063 3064 return (acpi_SetInteger(ACPI_ROOT_OBJECT, "_PIC", model)); 3065 } 3066 3067 /* 3068 * Walk subtables of a table and call a callback routine for each 3069 * subtable. The caller should provide the first subtable and a 3070 * pointer to the end of the table. This can be used to walk tables 3071 * such as MADT and SRAT that use subtable entries. 3072 */ 3073 void 3074 acpi_walk_subtables(void *first, void *end, acpi_subtable_handler *handler, 3075 void *arg) 3076 { 3077 ACPI_SUBTABLE_HEADER *entry; 3078 3079 for (entry = first; (void *)entry < end; ) { 3080 /* Avoid an infinite loop if we hit a bogus entry. */ 3081 if (entry->Length < sizeof(ACPI_SUBTABLE_HEADER)) 3082 return; 3083 3084 handler(entry, arg); 3085 entry = ACPI_ADD_PTR(ACPI_SUBTABLE_HEADER, entry, entry->Length); 3086 } 3087 } 3088 3089 /* 3090 * DEPRECATED. This interface has serious deficiencies and will be 3091 * removed. 3092 * 3093 * Immediately enter the sleep state. In the old model, acpiconf(8) ran 3094 * rc.suspend and rc.resume so we don't have to notify devd(8) to do this. 3095 */ 3096 ACPI_STATUS 3097 acpi_SetSleepState(struct acpi_softc *sc, int state) 3098 { 3099 static int once; 3100 3101 if (!once) { 3102 device_printf(sc->acpi_dev, 3103 "warning: acpi_SetSleepState() deprecated, need to update your software\n"); 3104 once = 1; 3105 } 3106 return (acpi_EnterSleepState(sc, state)); 3107 } 3108 3109 #if defined(__amd64__) || defined(__i386__) 3110 static void 3111 acpi_sleep_force_task(void *context) 3112 { 3113 struct acpi_softc *sc = (struct acpi_softc *)context; 3114 3115 if (ACPI_FAILURE(acpi_EnterSleepState(sc, sc->acpi_next_sstate))) 3116 device_printf(sc->acpi_dev, "force sleep state S%d failed\n", 3117 sc->acpi_next_sstate); 3118 } 3119 3120 static void 3121 acpi_sleep_force(void *arg) 3122 { 3123 struct acpi_softc *sc = (struct acpi_softc *)arg; 3124 3125 device_printf(sc->acpi_dev, 3126 "suspend request timed out, forcing sleep now\n"); 3127 /* 3128 * XXX Suspending from callout causes freezes in DEVICE_SUSPEND(). 3129 * Suspend from acpi_task thread instead. 3130 */ 3131 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3132 acpi_sleep_force_task, sc))) 3133 device_printf(sc->acpi_dev, "AcpiOsExecute() for sleeping failed\n"); 3134 } 3135 #endif 3136 3137 /* 3138 * Request that the system enter the given suspend state. All /dev/apm 3139 * devices and devd(8) will be notified. Userland then has a chance to 3140 * save state and acknowledge the request. The system sleeps once all 3141 * acks are in. 3142 */ 3143 int 3144 acpi_ReqSleepState(struct acpi_softc *sc, int state) 3145 { 3146 #if defined(__amd64__) || defined(__i386__) 3147 struct apm_clone_data *clone; 3148 ACPI_STATUS status; 3149 3150 if (state < ACPI_STATE_S1 || state > ACPI_S_STATES_MAX) 3151 return (EINVAL); 3152 if (!acpi_sleep_states[state]) 3153 return (EOPNOTSUPP); 3154 3155 /* 3156 * If a reboot/shutdown/suspend request is already in progress or 3157 * suspend is blocked due to an upcoming shutdown, just return. 3158 */ 3159 if (rebooting || sc->acpi_next_sstate != 0 || suspend_blocked) { 3160 return (0); 3161 } 3162 3163 /* Wait until sleep is enabled. */ 3164 while (sc->acpi_sleep_disabled) { 3165 AcpiOsSleep(1000); 3166 } 3167 3168 ACPI_LOCK(acpi); 3169 3170 sc->acpi_next_sstate = state; 3171 3172 /* S5 (soft-off) should be entered directly with no waiting. */ 3173 if (state == ACPI_STATE_S5) { 3174 ACPI_UNLOCK(acpi); 3175 status = acpi_EnterSleepState(sc, state); 3176 return (ACPI_SUCCESS(status) ? 0 : ENXIO); 3177 } 3178 3179 /* Record the pending state and notify all apm devices. */ 3180 STAILQ_FOREACH(clone, &sc->apm_cdevs, entries) { 3181 clone->notify_status = APM_EV_NONE; 3182 if ((clone->flags & ACPI_EVF_DEVD) == 0) { 3183 selwakeuppri(&clone->sel_read, PZERO); 3184 KNOTE_LOCKED(&clone->sel_read.si_note, 0); 3185 } 3186 } 3187 3188 /* If devd(8) is not running, immediately enter the sleep state. */ 3189 if (!devctl_process_running()) { 3190 ACPI_UNLOCK(acpi); 3191 status = acpi_EnterSleepState(sc, state); 3192 return (ACPI_SUCCESS(status) ? 0 : ENXIO); 3193 } 3194 3195 /* 3196 * Set a timeout to fire if userland doesn't ack the suspend request 3197 * in time. This way we still eventually go to sleep if we were 3198 * overheating or running low on battery, even if userland is hung. 3199 * We cancel this timeout once all userland acks are in or the 3200 * suspend request is aborted. 3201 */ 3202 callout_reset(&sc->susp_force_to, 10 * hz, acpi_sleep_force, sc); 3203 ACPI_UNLOCK(acpi); 3204 3205 /* Now notify devd(8) also. */ 3206 acpi_UserNotify("Suspend", ACPI_ROOT_OBJECT, state); 3207 3208 return (0); 3209 #else 3210 /* This platform does not support acpi suspend/resume. */ 3211 return (EOPNOTSUPP); 3212 #endif 3213 } 3214 3215 /* 3216 * Acknowledge (or reject) a pending sleep state. The caller has 3217 * prepared for suspend and is now ready for it to proceed. If the 3218 * error argument is non-zero, it indicates suspend should be cancelled 3219 * and gives an errno value describing why. Once all votes are in, 3220 * we suspend the system. 3221 */ 3222 int 3223 acpi_AckSleepState(struct apm_clone_data *clone, int error) 3224 { 3225 #if defined(__amd64__) || defined(__i386__) 3226 struct acpi_softc *sc; 3227 int ret, sleeping; 3228 3229 /* If no pending sleep state, return an error. */ 3230 ACPI_LOCK(acpi); 3231 sc = clone->acpi_sc; 3232 if (sc->acpi_next_sstate == 0) { 3233 ACPI_UNLOCK(acpi); 3234 return (ENXIO); 3235 } 3236 3237 /* Caller wants to abort suspend process. */ 3238 if (error) { 3239 sc->acpi_next_sstate = 0; 3240 callout_stop(&sc->susp_force_to); 3241 device_printf(sc->acpi_dev, 3242 "listener on %s cancelled the pending suspend\n", 3243 devtoname(clone->cdev)); 3244 ACPI_UNLOCK(acpi); 3245 return (0); 3246 } 3247 3248 /* 3249 * Mark this device as acking the suspend request. Then, walk through 3250 * all devices, seeing if they agree yet. We only count devices that 3251 * are writable since read-only devices couldn't ack the request. 3252 */ 3253 sleeping = TRUE; 3254 clone->notify_status = APM_EV_ACKED; 3255 STAILQ_FOREACH(clone, &sc->apm_cdevs, entries) { 3256 if ((clone->flags & ACPI_EVF_WRITE) != 0 && 3257 clone->notify_status != APM_EV_ACKED) { 3258 sleeping = FALSE; 3259 break; 3260 } 3261 } 3262 3263 /* If all devices have voted "yes", we will suspend now. */ 3264 if (sleeping) 3265 callout_stop(&sc->susp_force_to); 3266 ACPI_UNLOCK(acpi); 3267 ret = 0; 3268 if (sleeping) { 3269 if (ACPI_FAILURE(acpi_EnterSleepState(sc, sc->acpi_next_sstate))) 3270 ret = ENODEV; 3271 } 3272 return (ret); 3273 #else 3274 /* This platform does not support acpi suspend/resume. */ 3275 return (EOPNOTSUPP); 3276 #endif 3277 } 3278 3279 static void 3280 acpi_sleep_enable(void *arg) 3281 { 3282 struct acpi_softc *sc = (struct acpi_softc *)arg; 3283 3284 ACPI_LOCK_ASSERT(acpi); 3285 3286 /* Reschedule if the system is not fully up and running. */ 3287 if (!AcpiGbl_SystemAwakeAndRunning) { 3288 callout_schedule(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME); 3289 return; 3290 } 3291 3292 sc->acpi_sleep_disabled = FALSE; 3293 } 3294 3295 static ACPI_STATUS 3296 acpi_sleep_disable(struct acpi_softc *sc) 3297 { 3298 ACPI_STATUS status; 3299 3300 /* Fail if the system is not fully up and running. */ 3301 if (!AcpiGbl_SystemAwakeAndRunning) 3302 return (AE_ERROR); 3303 3304 ACPI_LOCK(acpi); 3305 status = sc->acpi_sleep_disabled ? AE_ERROR : AE_OK; 3306 sc->acpi_sleep_disabled = TRUE; 3307 ACPI_UNLOCK(acpi); 3308 3309 return (status); 3310 } 3311 3312 enum acpi_sleep_state { 3313 ACPI_SS_NONE, 3314 ACPI_SS_GPE_SET, 3315 ACPI_SS_DEV_SUSPEND, 3316 ACPI_SS_SLP_PREP, 3317 ACPI_SS_SLEPT, 3318 }; 3319 3320 /* 3321 * Enter the desired system sleep state. 3322 * 3323 * Currently we support S1-S5 but S4 is only S4BIOS 3324 */ 3325 static ACPI_STATUS 3326 acpi_EnterSleepState(struct acpi_softc *sc, int state) 3327 { 3328 register_t intr; 3329 ACPI_STATUS status; 3330 ACPI_EVENT_STATUS power_button_status; 3331 enum acpi_sleep_state slp_state; 3332 int sleep_result; 3333 3334 ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state); 3335 3336 if (state < ACPI_STATE_S1 || state > ACPI_S_STATES_MAX) 3337 return_ACPI_STATUS (AE_BAD_PARAMETER); 3338 if (!acpi_sleep_states[state]) { 3339 device_printf(sc->acpi_dev, "Sleep state S%d not supported by BIOS\n", 3340 state); 3341 return (AE_SUPPORT); 3342 } 3343 3344 /* Re-entry once we're suspending is not allowed. */ 3345 status = acpi_sleep_disable(sc); 3346 if (ACPI_FAILURE(status)) { 3347 device_printf(sc->acpi_dev, 3348 "suspend request ignored (not ready yet)\n"); 3349 return (status); 3350 } 3351 3352 if (state == ACPI_STATE_S5) { 3353 /* 3354 * Shut down cleanly and power off. This will call us back through the 3355 * shutdown handlers. 3356 */ 3357 shutdown_nice(RB_POWEROFF); 3358 return_ACPI_STATUS (AE_OK); 3359 } 3360 3361 EVENTHANDLER_INVOKE(power_suspend_early); 3362 stop_all_proc(); 3363 suspend_all_fs(); 3364 EVENTHANDLER_INVOKE(power_suspend); 3365 3366 #ifdef EARLY_AP_STARTUP 3367 MPASS(mp_ncpus == 1 || smp_started); 3368 thread_lock(curthread); 3369 sched_bind(curthread, 0); 3370 thread_unlock(curthread); 3371 #else 3372 if (smp_started) { 3373 thread_lock(curthread); 3374 sched_bind(curthread, 0); 3375 thread_unlock(curthread); 3376 } 3377 #endif 3378 3379 /* 3380 * Be sure to hold Giant across DEVICE_SUSPEND/RESUME 3381 */ 3382 bus_topo_lock(); 3383 3384 slp_state = ACPI_SS_NONE; 3385 3386 sc->acpi_sstate = state; 3387 3388 /* Enable any GPEs as appropriate and requested by the user. */ 3389 acpi_wake_prep_walk(state); 3390 slp_state = ACPI_SS_GPE_SET; 3391 3392 /* 3393 * Inform all devices that we are going to sleep. If at least one 3394 * device fails, DEVICE_SUSPEND() automatically resumes the tree. 3395 * 3396 * XXX Note that a better two-pass approach with a 'veto' pass 3397 * followed by a "real thing" pass would be better, but the current 3398 * bus interface does not provide for this. 3399 */ 3400 if (DEVICE_SUSPEND(root_bus) != 0) { 3401 device_printf(sc->acpi_dev, "device_suspend failed\n"); 3402 goto backout; 3403 } 3404 slp_state = ACPI_SS_DEV_SUSPEND; 3405 3406 status = AcpiEnterSleepStatePrep(state); 3407 if (ACPI_FAILURE(status)) { 3408 device_printf(sc->acpi_dev, "AcpiEnterSleepStatePrep failed - %s\n", 3409 AcpiFormatException(status)); 3410 goto backout; 3411 } 3412 slp_state = ACPI_SS_SLP_PREP; 3413 3414 if (sc->acpi_sleep_delay > 0) 3415 DELAY(sc->acpi_sleep_delay * 1000000); 3416 3417 suspendclock(); 3418 intr = intr_disable(); 3419 if (state != ACPI_STATE_S1) { 3420 sleep_result = acpi_sleep_machdep(sc, state); 3421 acpi_wakeup_machdep(sc, state, sleep_result, 0); 3422 3423 /* 3424 * XXX According to ACPI specification SCI_EN bit should be restored 3425 * by ACPI platform (BIOS, firmware) to its pre-sleep state. 3426 * Unfortunately some BIOSes fail to do that and that leads to 3427 * unexpected and serious consequences during wake up like a system 3428 * getting stuck in SMI handlers. 3429 * This hack is picked up from Linux, which claims that it follows 3430 * Windows behavior. 3431 */ 3432 if (sleep_result == 1 && state != ACPI_STATE_S4) 3433 AcpiWriteBitRegister(ACPI_BITREG_SCI_ENABLE, ACPI_ENABLE_EVENT); 3434 3435 if (sleep_result == 1 && state == ACPI_STATE_S3) { 3436 /* 3437 * Prevent mis-interpretation of the wakeup by power button 3438 * as a request for power off. 3439 * Ideally we should post an appropriate wakeup event, 3440 * perhaps using acpi_event_power_button_wake or alike. 3441 * 3442 * Clearing of power button status after wakeup is mandated 3443 * by ACPI specification in section "Fixed Power Button". 3444 * 3445 * XXX As of ACPICA 20121114 AcpiGetEventStatus provides 3446 * status as 0/1 corressponding to inactive/active despite 3447 * its type being ACPI_EVENT_STATUS. In other words, 3448 * we should not test for ACPI_EVENT_FLAG_SET for time being. 3449 */ 3450 if (ACPI_SUCCESS(AcpiGetEventStatus(ACPI_EVENT_POWER_BUTTON, 3451 &power_button_status)) && power_button_status != 0) { 3452 AcpiClearEvent(ACPI_EVENT_POWER_BUTTON); 3453 device_printf(sc->acpi_dev, 3454 "cleared fixed power button status\n"); 3455 } 3456 } 3457 3458 intr_restore(intr); 3459 3460 /* call acpi_wakeup_machdep() again with interrupt enabled */ 3461 acpi_wakeup_machdep(sc, state, sleep_result, 1); 3462 3463 AcpiLeaveSleepStatePrep(state); 3464 3465 if (sleep_result == -1) 3466 goto backout; 3467 3468 /* Re-enable ACPI hardware on wakeup from sleep state 4. */ 3469 if (state == ACPI_STATE_S4) 3470 AcpiEnable(); 3471 } else { 3472 status = AcpiEnterSleepState(state); 3473 intr_restore(intr); 3474 AcpiLeaveSleepStatePrep(state); 3475 if (ACPI_FAILURE(status)) { 3476 device_printf(sc->acpi_dev, "AcpiEnterSleepState failed - %s\n", 3477 AcpiFormatException(status)); 3478 goto backout; 3479 } 3480 } 3481 slp_state = ACPI_SS_SLEPT; 3482 3483 /* 3484 * Back out state according to how far along we got in the suspend 3485 * process. This handles both the error and success cases. 3486 */ 3487 backout: 3488 if (slp_state >= ACPI_SS_SLP_PREP) 3489 resumeclock(); 3490 if (slp_state >= ACPI_SS_GPE_SET) { 3491 acpi_wake_prep_walk(state); 3492 sc->acpi_sstate = ACPI_STATE_S0; 3493 } 3494 if (slp_state >= ACPI_SS_DEV_SUSPEND) 3495 DEVICE_RESUME(root_bus); 3496 if (slp_state >= ACPI_SS_SLP_PREP) 3497 AcpiLeaveSleepState(state); 3498 if (slp_state >= ACPI_SS_SLEPT) { 3499 #if defined(__i386__) || defined(__amd64__) 3500 /* NB: we are still using ACPI timecounter at this point. */ 3501 resume_TSC(); 3502 #endif 3503 acpi_resync_clock(sc); 3504 acpi_enable_fixed_events(sc); 3505 } 3506 sc->acpi_next_sstate = 0; 3507 3508 bus_topo_unlock(); 3509 3510 #ifdef EARLY_AP_STARTUP 3511 thread_lock(curthread); 3512 sched_unbind(curthread); 3513 thread_unlock(curthread); 3514 #else 3515 if (smp_started) { 3516 thread_lock(curthread); 3517 sched_unbind(curthread); 3518 thread_unlock(curthread); 3519 } 3520 #endif 3521 3522 resume_all_fs(); 3523 resume_all_proc(); 3524 3525 EVENTHANDLER_INVOKE(power_resume); 3526 3527 /* Allow another sleep request after a while. */ 3528 callout_schedule(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME); 3529 3530 /* Run /etc/rc.resume after we are back. */ 3531 if (devctl_process_running()) 3532 acpi_UserNotify("Resume", ACPI_ROOT_OBJECT, state); 3533 3534 return_ACPI_STATUS (status); 3535 } 3536 3537 static void 3538 acpi_resync_clock(struct acpi_softc *sc) 3539 { 3540 3541 /* 3542 * Warm up timecounter again and reset system clock. 3543 */ 3544 (void)timecounter->tc_get_timecount(timecounter); 3545 inittodr(time_second + sc->acpi_sleep_delay); 3546 } 3547 3548 /* Enable or disable the device's wake GPE. */ 3549 int 3550 acpi_wake_set_enable(device_t dev, int enable) 3551 { 3552 struct acpi_prw_data prw; 3553 ACPI_STATUS status; 3554 int flags; 3555 3556 /* Make sure the device supports waking the system and get the GPE. */ 3557 if (acpi_parse_prw(acpi_get_handle(dev), &prw) != 0) 3558 return (ENXIO); 3559 3560 flags = acpi_get_flags(dev); 3561 if (enable) { 3562 status = AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, 3563 ACPI_GPE_ENABLE); 3564 if (ACPI_FAILURE(status)) { 3565 device_printf(dev, "enable wake failed\n"); 3566 return (ENXIO); 3567 } 3568 acpi_set_flags(dev, flags | ACPI_FLAG_WAKE_ENABLED); 3569 } else { 3570 status = AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, 3571 ACPI_GPE_DISABLE); 3572 if (ACPI_FAILURE(status)) { 3573 device_printf(dev, "disable wake failed\n"); 3574 return (ENXIO); 3575 } 3576 acpi_set_flags(dev, flags & ~ACPI_FLAG_WAKE_ENABLED); 3577 } 3578 3579 return (0); 3580 } 3581 3582 static int 3583 acpi_wake_sleep_prep(ACPI_HANDLE handle, int sstate) 3584 { 3585 struct acpi_prw_data prw; 3586 device_t dev; 3587 3588 /* Check that this is a wake-capable device and get its GPE. */ 3589 if (acpi_parse_prw(handle, &prw) != 0) 3590 return (ENXIO); 3591 dev = acpi_get_device(handle); 3592 3593 /* 3594 * The destination sleep state must be less than (i.e., higher power) 3595 * or equal to the value specified by _PRW. If this GPE cannot be 3596 * enabled for the next sleep state, then disable it. If it can and 3597 * the user requested it be enabled, turn on any required power resources 3598 * and set _PSW. 3599 */ 3600 if (sstate > prw.lowest_wake) { 3601 AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, ACPI_GPE_DISABLE); 3602 if (bootverbose) 3603 device_printf(dev, "wake_prep disabled wake for %s (S%d)\n", 3604 acpi_name(handle), sstate); 3605 } else if (dev && (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) != 0) { 3606 acpi_pwr_wake_enable(handle, 1); 3607 acpi_SetInteger(handle, "_PSW", 1); 3608 if (bootverbose) 3609 device_printf(dev, "wake_prep enabled for %s (S%d)\n", 3610 acpi_name(handle), sstate); 3611 } 3612 3613 return (0); 3614 } 3615 3616 static int 3617 acpi_wake_run_prep(ACPI_HANDLE handle, int sstate) 3618 { 3619 struct acpi_prw_data prw; 3620 device_t dev; 3621 3622 /* 3623 * Check that this is a wake-capable device and get its GPE. Return 3624 * now if the user didn't enable this device for wake. 3625 */ 3626 if (acpi_parse_prw(handle, &prw) != 0) 3627 return (ENXIO); 3628 dev = acpi_get_device(handle); 3629 if (dev == NULL || (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) == 0) 3630 return (0); 3631 3632 /* 3633 * If this GPE couldn't be enabled for the previous sleep state, it was 3634 * disabled before going to sleep so re-enable it. If it was enabled, 3635 * clear _PSW and turn off any power resources it used. 3636 */ 3637 if (sstate > prw.lowest_wake) { 3638 AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, ACPI_GPE_ENABLE); 3639 if (bootverbose) 3640 device_printf(dev, "run_prep re-enabled %s\n", acpi_name(handle)); 3641 } else { 3642 acpi_SetInteger(handle, "_PSW", 0); 3643 acpi_pwr_wake_enable(handle, 0); 3644 if (bootverbose) 3645 device_printf(dev, "run_prep cleaned up for %s\n", 3646 acpi_name(handle)); 3647 } 3648 3649 return (0); 3650 } 3651 3652 static ACPI_STATUS 3653 acpi_wake_prep(ACPI_HANDLE handle, UINT32 level, void *context, void **status) 3654 { 3655 int sstate; 3656 3657 /* If suspending, run the sleep prep function, otherwise wake. */ 3658 sstate = *(int *)context; 3659 if (AcpiGbl_SystemAwakeAndRunning) 3660 acpi_wake_sleep_prep(handle, sstate); 3661 else 3662 acpi_wake_run_prep(handle, sstate); 3663 return (AE_OK); 3664 } 3665 3666 /* Walk the tree rooted at acpi0 to prep devices for suspend/resume. */ 3667 static int 3668 acpi_wake_prep_walk(int sstate) 3669 { 3670 ACPI_HANDLE sb_handle; 3671 3672 if (ACPI_SUCCESS(AcpiGetHandle(ACPI_ROOT_OBJECT, "\\_SB_", &sb_handle))) 3673 AcpiWalkNamespace(ACPI_TYPE_DEVICE, sb_handle, 100, 3674 acpi_wake_prep, NULL, &sstate, NULL); 3675 return (0); 3676 } 3677 3678 /* Walk the tree rooted at acpi0 to attach per-device wake sysctls. */ 3679 static int 3680 acpi_wake_sysctl_walk(device_t dev) 3681 { 3682 int error, i, numdevs; 3683 device_t *devlist; 3684 device_t child; 3685 ACPI_STATUS status; 3686 3687 error = device_get_children(dev, &devlist, &numdevs); 3688 if (error != 0 || numdevs == 0) { 3689 if (numdevs == 0) 3690 free(devlist, M_TEMP); 3691 return (error); 3692 } 3693 for (i = 0; i < numdevs; i++) { 3694 child = devlist[i]; 3695 acpi_wake_sysctl_walk(child); 3696 if (!device_is_attached(child)) 3697 continue; 3698 status = AcpiEvaluateObject(acpi_get_handle(child), "_PRW", NULL, NULL); 3699 if (ACPI_SUCCESS(status)) { 3700 SYSCTL_ADD_PROC(device_get_sysctl_ctx(child), 3701 SYSCTL_CHILDREN(device_get_sysctl_tree(child)), OID_AUTO, 3702 "wake", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, child, 0, 3703 acpi_wake_set_sysctl, "I", "Device set to wake the system"); 3704 } 3705 } 3706 free(devlist, M_TEMP); 3707 3708 return (0); 3709 } 3710 3711 /* Enable or disable wake from userland. */ 3712 static int 3713 acpi_wake_set_sysctl(SYSCTL_HANDLER_ARGS) 3714 { 3715 int enable, error; 3716 device_t dev; 3717 3718 dev = (device_t)arg1; 3719 enable = (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) ? 1 : 0; 3720 3721 error = sysctl_handle_int(oidp, &enable, 0, req); 3722 if (error != 0 || req->newptr == NULL) 3723 return (error); 3724 if (enable != 0 && enable != 1) 3725 return (EINVAL); 3726 3727 return (acpi_wake_set_enable(dev, enable)); 3728 } 3729 3730 /* Parse a device's _PRW into a structure. */ 3731 int 3732 acpi_parse_prw(ACPI_HANDLE h, struct acpi_prw_data *prw) 3733 { 3734 ACPI_STATUS status; 3735 ACPI_BUFFER prw_buffer; 3736 ACPI_OBJECT *res, *res2; 3737 int error, i, power_count; 3738 3739 if (h == NULL || prw == NULL) 3740 return (EINVAL); 3741 3742 /* 3743 * The _PRW object (7.2.9) is only required for devices that have the 3744 * ability to wake the system from a sleeping state. 3745 */ 3746 error = EINVAL; 3747 prw_buffer.Pointer = NULL; 3748 prw_buffer.Length = ACPI_ALLOCATE_BUFFER; 3749 status = AcpiEvaluateObject(h, "_PRW", NULL, &prw_buffer); 3750 if (ACPI_FAILURE(status)) 3751 return (ENOENT); 3752 res = (ACPI_OBJECT *)prw_buffer.Pointer; 3753 if (res == NULL) 3754 return (ENOENT); 3755 if (!ACPI_PKG_VALID(res, 2)) 3756 goto out; 3757 3758 /* 3759 * Element 1 of the _PRW object: 3760 * The lowest power system sleeping state that can be entered while still 3761 * providing wake functionality. The sleeping state being entered must 3762 * be less than (i.e., higher power) or equal to this value. 3763 */ 3764 if (acpi_PkgInt32(res, 1, &prw->lowest_wake) != 0) 3765 goto out; 3766 3767 /* 3768 * Element 0 of the _PRW object: 3769 */ 3770 switch (res->Package.Elements[0].Type) { 3771 case ACPI_TYPE_INTEGER: 3772 /* 3773 * If the data type of this package element is numeric, then this 3774 * _PRW package element is the bit index in the GPEx_EN, in the 3775 * GPE blocks described in the FADT, of the enable bit that is 3776 * enabled for the wake event. 3777 */ 3778 prw->gpe_handle = NULL; 3779 prw->gpe_bit = res->Package.Elements[0].Integer.Value; 3780 error = 0; 3781 break; 3782 case ACPI_TYPE_PACKAGE: 3783 /* 3784 * If the data type of this package element is a package, then this 3785 * _PRW package element is itself a package containing two 3786 * elements. The first is an object reference to the GPE Block 3787 * device that contains the GPE that will be triggered by the wake 3788 * event. The second element is numeric and it contains the bit 3789 * index in the GPEx_EN, in the GPE Block referenced by the 3790 * first element in the package, of the enable bit that is enabled for 3791 * the wake event. 3792 * 3793 * For example, if this field is a package then it is of the form: 3794 * Package() {\_SB.PCI0.ISA.GPE, 2} 3795 */ 3796 res2 = &res->Package.Elements[0]; 3797 if (!ACPI_PKG_VALID(res2, 2)) 3798 goto out; 3799 prw->gpe_handle = acpi_GetReference(NULL, &res2->Package.Elements[0]); 3800 if (prw->gpe_handle == NULL) 3801 goto out; 3802 if (acpi_PkgInt32(res2, 1, &prw->gpe_bit) != 0) 3803 goto out; 3804 error = 0; 3805 break; 3806 default: 3807 goto out; 3808 } 3809 3810 /* Elements 2 to N of the _PRW object are power resources. */ 3811 power_count = res->Package.Count - 2; 3812 if (power_count > ACPI_PRW_MAX_POWERRES) { 3813 printf("ACPI device %s has too many power resources\n", acpi_name(h)); 3814 power_count = 0; 3815 } 3816 prw->power_res_count = power_count; 3817 for (i = 0; i < power_count; i++) 3818 prw->power_res[i] = res->Package.Elements[i]; 3819 3820 out: 3821 if (prw_buffer.Pointer != NULL) 3822 AcpiOsFree(prw_buffer.Pointer); 3823 return (error); 3824 } 3825 3826 /* 3827 * ACPI Event Handlers 3828 */ 3829 3830 /* System Event Handlers (registered by EVENTHANDLER_REGISTER) */ 3831 3832 static void 3833 acpi_system_eventhandler_sleep(void *arg, int state) 3834 { 3835 struct acpi_softc *sc = (struct acpi_softc *)arg; 3836 int ret; 3837 3838 ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state); 3839 3840 /* Check if button action is disabled or unknown. */ 3841 if (state == ACPI_STATE_UNKNOWN) 3842 return; 3843 3844 /* Request that the system prepare to enter the given suspend state. */ 3845 ret = acpi_ReqSleepState(sc, state); 3846 if (ret != 0) 3847 device_printf(sc->acpi_dev, 3848 "request to enter state S%d failed (err %d)\n", state, ret); 3849 3850 return_VOID; 3851 } 3852 3853 static void 3854 acpi_system_eventhandler_wakeup(void *arg, int state) 3855 { 3856 3857 ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state); 3858 3859 /* Currently, nothing to do for wakeup. */ 3860 3861 return_VOID; 3862 } 3863 3864 /* 3865 * ACPICA Event Handlers (FixedEvent, also called from button notify handler) 3866 */ 3867 static void 3868 acpi_invoke_sleep_eventhandler(void *context) 3869 { 3870 3871 EVENTHANDLER_INVOKE(acpi_sleep_event, *(int *)context); 3872 } 3873 3874 static void 3875 acpi_invoke_wake_eventhandler(void *context) 3876 { 3877 3878 EVENTHANDLER_INVOKE(acpi_wakeup_event, *(int *)context); 3879 } 3880 3881 UINT32 3882 acpi_event_power_button_sleep(void *context) 3883 { 3884 struct acpi_softc *sc = (struct acpi_softc *)context; 3885 3886 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3887 3888 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3889 acpi_invoke_sleep_eventhandler, &sc->acpi_power_button_sx))) 3890 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); 3891 return_VALUE (ACPI_INTERRUPT_HANDLED); 3892 } 3893 3894 UINT32 3895 acpi_event_power_button_wake(void *context) 3896 { 3897 struct acpi_softc *sc = (struct acpi_softc *)context; 3898 3899 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3900 3901 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3902 acpi_invoke_wake_eventhandler, &sc->acpi_power_button_sx))) 3903 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); 3904 return_VALUE (ACPI_INTERRUPT_HANDLED); 3905 } 3906 3907 UINT32 3908 acpi_event_sleep_button_sleep(void *context) 3909 { 3910 struct acpi_softc *sc = (struct acpi_softc *)context; 3911 3912 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3913 3914 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3915 acpi_invoke_sleep_eventhandler, &sc->acpi_sleep_button_sx))) 3916 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); 3917 return_VALUE (ACPI_INTERRUPT_HANDLED); 3918 } 3919 3920 UINT32 3921 acpi_event_sleep_button_wake(void *context) 3922 { 3923 struct acpi_softc *sc = (struct acpi_softc *)context; 3924 3925 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3926 3927 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3928 acpi_invoke_wake_eventhandler, &sc->acpi_sleep_button_sx))) 3929 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); 3930 return_VALUE (ACPI_INTERRUPT_HANDLED); 3931 } 3932 3933 /* 3934 * XXX This static buffer is suboptimal. There is no locking so only 3935 * use this for single-threaded callers. 3936 */ 3937 char * 3938 acpi_name(ACPI_HANDLE handle) 3939 { 3940 ACPI_BUFFER buf; 3941 static char data[256]; 3942 3943 buf.Length = sizeof(data); 3944 buf.Pointer = data; 3945 3946 if (handle && ACPI_SUCCESS(AcpiGetName(handle, ACPI_FULL_PATHNAME, &buf))) 3947 return (data); 3948 return ("(unknown)"); 3949 } 3950 3951 /* 3952 * Debugging/bug-avoidance. Avoid trying to fetch info on various 3953 * parts of the namespace. 3954 */ 3955 int 3956 acpi_avoid(ACPI_HANDLE handle) 3957 { 3958 char *cp, *env, *np; 3959 int len; 3960 3961 np = acpi_name(handle); 3962 if (*np == '\\') 3963 np++; 3964 if ((env = kern_getenv("debug.acpi.avoid")) == NULL) 3965 return (0); 3966 3967 /* Scan the avoid list checking for a match */ 3968 cp = env; 3969 for (;;) { 3970 while (*cp != 0 && isspace(*cp)) 3971 cp++; 3972 if (*cp == 0) 3973 break; 3974 len = 0; 3975 while (cp[len] != 0 && !isspace(cp[len])) 3976 len++; 3977 if (!strncmp(cp, np, len)) { 3978 freeenv(env); 3979 return(1); 3980 } 3981 cp += len; 3982 } 3983 freeenv(env); 3984 3985 return (0); 3986 } 3987 3988 /* 3989 * Debugging/bug-avoidance. Disable ACPI subsystem components. 3990 */ 3991 int 3992 acpi_disabled(char *subsys) 3993 { 3994 char *cp, *env; 3995 int len; 3996 3997 if ((env = kern_getenv("debug.acpi.disabled")) == NULL) 3998 return (0); 3999 if (strcmp(env, "all") == 0) { 4000 freeenv(env); 4001 return (1); 4002 } 4003 4004 /* Scan the disable list, checking for a match. */ 4005 cp = env; 4006 for (;;) { 4007 while (*cp != '\0' && isspace(*cp)) 4008 cp++; 4009 if (*cp == '\0') 4010 break; 4011 len = 0; 4012 while (cp[len] != '\0' && !isspace(cp[len])) 4013 len++; 4014 if (strncmp(cp, subsys, len) == 0) { 4015 freeenv(env); 4016 return (1); 4017 } 4018 cp += len; 4019 } 4020 freeenv(env); 4021 4022 return (0); 4023 } 4024 4025 static void 4026 acpi_lookup(void *arg, const char *name, device_t *dev) 4027 { 4028 ACPI_HANDLE handle; 4029 4030 if (*dev != NULL) 4031 return; 4032 4033 /* 4034 * Allow any handle name that is specified as an absolute path and 4035 * starts with '\'. We could restrict this to \_SB and friends, 4036 * but see acpi_probe_children() for notes on why we scan the entire 4037 * namespace for devices. 4038 * 4039 * XXX: The pathname argument to AcpiGetHandle() should be fixed to 4040 * be const. 4041 */ 4042 if (name[0] != '\\') 4043 return; 4044 if (ACPI_FAILURE(AcpiGetHandle(ACPI_ROOT_OBJECT, __DECONST(char *, name), 4045 &handle))) 4046 return; 4047 *dev = acpi_get_device(handle); 4048 } 4049 4050 /* 4051 * Control interface. 4052 * 4053 * We multiplex ioctls for all participating ACPI devices here. Individual 4054 * drivers wanting to be accessible via /dev/acpi should use the 4055 * register/deregister interface to make their handlers visible. 4056 */ 4057 struct acpi_ioctl_hook 4058 { 4059 TAILQ_ENTRY(acpi_ioctl_hook) link; 4060 u_long cmd; 4061 acpi_ioctl_fn fn; 4062 void *arg; 4063 }; 4064 4065 static TAILQ_HEAD(,acpi_ioctl_hook) acpi_ioctl_hooks; 4066 static int acpi_ioctl_hooks_initted; 4067 4068 int 4069 acpi_register_ioctl(u_long cmd, acpi_ioctl_fn fn, void *arg) 4070 { 4071 struct acpi_ioctl_hook *hp; 4072 4073 if ((hp = malloc(sizeof(*hp), M_ACPIDEV, M_NOWAIT)) == NULL) 4074 return (ENOMEM); 4075 hp->cmd = cmd; 4076 hp->fn = fn; 4077 hp->arg = arg; 4078 4079 ACPI_LOCK(acpi); 4080 if (acpi_ioctl_hooks_initted == 0) { 4081 TAILQ_INIT(&acpi_ioctl_hooks); 4082 acpi_ioctl_hooks_initted = 1; 4083 } 4084 TAILQ_INSERT_TAIL(&acpi_ioctl_hooks, hp, link); 4085 ACPI_UNLOCK(acpi); 4086 4087 return (0); 4088 } 4089 4090 void 4091 acpi_deregister_ioctl(u_long cmd, acpi_ioctl_fn fn) 4092 { 4093 struct acpi_ioctl_hook *hp; 4094 4095 ACPI_LOCK(acpi); 4096 TAILQ_FOREACH(hp, &acpi_ioctl_hooks, link) 4097 if (hp->cmd == cmd && hp->fn == fn) 4098 break; 4099 4100 if (hp != NULL) { 4101 TAILQ_REMOVE(&acpi_ioctl_hooks, hp, link); 4102 free(hp, M_ACPIDEV); 4103 } 4104 ACPI_UNLOCK(acpi); 4105 } 4106 4107 static int 4108 acpiopen(struct cdev *dev, int flag, int fmt, struct thread *td) 4109 { 4110 return (0); 4111 } 4112 4113 static int 4114 acpiclose(struct cdev *dev, int flag, int fmt, struct thread *td) 4115 { 4116 return (0); 4117 } 4118 4119 static int 4120 acpiioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 4121 { 4122 struct acpi_softc *sc; 4123 struct acpi_ioctl_hook *hp; 4124 int error, state; 4125 4126 error = 0; 4127 hp = NULL; 4128 sc = dev->si_drv1; 4129 4130 /* 4131 * Scan the list of registered ioctls, looking for handlers. 4132 */ 4133 ACPI_LOCK(acpi); 4134 if (acpi_ioctl_hooks_initted) 4135 TAILQ_FOREACH(hp, &acpi_ioctl_hooks, link) { 4136 if (hp->cmd == cmd) 4137 break; 4138 } 4139 ACPI_UNLOCK(acpi); 4140 if (hp) 4141 return (hp->fn(cmd, addr, hp->arg)); 4142 4143 /* 4144 * Core ioctls are not permitted for non-writable user. 4145 * Currently, other ioctls just fetch information. 4146 * Not changing system behavior. 4147 */ 4148 if ((flag & FWRITE) == 0) 4149 return (EPERM); 4150 4151 /* Core system ioctls. */ 4152 switch (cmd) { 4153 case ACPIIO_REQSLPSTATE: 4154 state = *(int *)addr; 4155 if (state != ACPI_STATE_S5) 4156 return (acpi_ReqSleepState(sc, state)); 4157 device_printf(sc->acpi_dev, "power off via acpi ioctl not supported\n"); 4158 error = EOPNOTSUPP; 4159 break; 4160 case ACPIIO_ACKSLPSTATE: 4161 error = *(int *)addr; 4162 error = acpi_AckSleepState(sc->acpi_clone, error); 4163 break; 4164 case ACPIIO_SETSLPSTATE: /* DEPRECATED */ 4165 state = *(int *)addr; 4166 if (state < ACPI_STATE_S0 || state > ACPI_S_STATES_MAX) 4167 return (EINVAL); 4168 if (!acpi_sleep_states[state]) 4169 return (EOPNOTSUPP); 4170 if (ACPI_FAILURE(acpi_SetSleepState(sc, state))) 4171 error = ENXIO; 4172 break; 4173 default: 4174 error = ENXIO; 4175 break; 4176 } 4177 4178 return (error); 4179 } 4180 4181 static int 4182 acpi_sname2sstate(const char *sname) 4183 { 4184 int sstate; 4185 4186 if (toupper(sname[0]) == 'S') { 4187 sstate = sname[1] - '0'; 4188 if (sstate >= ACPI_STATE_S0 && sstate <= ACPI_STATE_S5 && 4189 sname[2] == '\0') 4190 return (sstate); 4191 } else if (strcasecmp(sname, "NONE") == 0) 4192 return (ACPI_STATE_UNKNOWN); 4193 return (-1); 4194 } 4195 4196 static const char * 4197 acpi_sstate2sname(int sstate) 4198 { 4199 static const char *snames[] = { "S0", "S1", "S2", "S3", "S4", "S5" }; 4200 4201 if (sstate >= ACPI_STATE_S0 && sstate <= ACPI_STATE_S5) 4202 return (snames[sstate]); 4203 else if (sstate == ACPI_STATE_UNKNOWN) 4204 return ("NONE"); 4205 return (NULL); 4206 } 4207 4208 static int 4209 acpi_supported_sleep_state_sysctl(SYSCTL_HANDLER_ARGS) 4210 { 4211 int error; 4212 struct sbuf sb; 4213 UINT8 state; 4214 4215 sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND); 4216 for (state = ACPI_STATE_S1; state < ACPI_S_STATE_COUNT; state++) 4217 if (acpi_sleep_states[state]) 4218 sbuf_printf(&sb, "%s ", acpi_sstate2sname(state)); 4219 sbuf_trim(&sb); 4220 sbuf_finish(&sb); 4221 error = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req); 4222 sbuf_delete(&sb); 4223 return (error); 4224 } 4225 4226 static int 4227 acpi_sleep_state_sysctl(SYSCTL_HANDLER_ARGS) 4228 { 4229 char sleep_state[10]; 4230 int error, new_state, old_state; 4231 4232 old_state = *(int *)oidp->oid_arg1; 4233 strlcpy(sleep_state, acpi_sstate2sname(old_state), sizeof(sleep_state)); 4234 error = sysctl_handle_string(oidp, sleep_state, sizeof(sleep_state), req); 4235 if (error == 0 && req->newptr != NULL) { 4236 new_state = acpi_sname2sstate(sleep_state); 4237 if (new_state < ACPI_STATE_S1) 4238 return (EINVAL); 4239 if (new_state < ACPI_S_STATE_COUNT && !acpi_sleep_states[new_state]) 4240 return (EOPNOTSUPP); 4241 if (new_state != old_state) 4242 *(int *)oidp->oid_arg1 = new_state; 4243 } 4244 return (error); 4245 } 4246 4247 /* Inform devctl(4) when we receive a Notify. */ 4248 void 4249 acpi_UserNotify(const char *subsystem, ACPI_HANDLE h, uint8_t notify) 4250 { 4251 char notify_buf[16]; 4252 ACPI_BUFFER handle_buf; 4253 ACPI_STATUS status; 4254 4255 if (subsystem == NULL) 4256 return; 4257 4258 handle_buf.Pointer = NULL; 4259 handle_buf.Length = ACPI_ALLOCATE_BUFFER; 4260 status = AcpiNsHandleToPathname(h, &handle_buf, FALSE); 4261 if (ACPI_FAILURE(status)) 4262 return; 4263 snprintf(notify_buf, sizeof(notify_buf), "notify=0x%02x", notify); 4264 devctl_notify("ACPI", subsystem, handle_buf.Pointer, notify_buf); 4265 AcpiOsFree(handle_buf.Pointer); 4266 } 4267 4268 #ifdef ACPI_DEBUG 4269 /* 4270 * Support for parsing debug options from the kernel environment. 4271 * 4272 * Bits may be set in the AcpiDbgLayer and AcpiDbgLevel debug registers 4273 * by specifying the names of the bits in the debug.acpi.layer and 4274 * debug.acpi.level environment variables. Bits may be unset by 4275 * prefixing the bit name with !. 4276 */ 4277 struct debugtag 4278 { 4279 char *name; 4280 UINT32 value; 4281 }; 4282 4283 static struct debugtag dbg_layer[] = { 4284 {"ACPI_UTILITIES", ACPI_UTILITIES}, 4285 {"ACPI_HARDWARE", ACPI_HARDWARE}, 4286 {"ACPI_EVENTS", ACPI_EVENTS}, 4287 {"ACPI_TABLES", ACPI_TABLES}, 4288 {"ACPI_NAMESPACE", ACPI_NAMESPACE}, 4289 {"ACPI_PARSER", ACPI_PARSER}, 4290 {"ACPI_DISPATCHER", ACPI_DISPATCHER}, 4291 {"ACPI_EXECUTER", ACPI_EXECUTER}, 4292 {"ACPI_RESOURCES", ACPI_RESOURCES}, 4293 {"ACPI_CA_DEBUGGER", ACPI_CA_DEBUGGER}, 4294 {"ACPI_OS_SERVICES", ACPI_OS_SERVICES}, 4295 {"ACPI_CA_DISASSEMBLER", ACPI_CA_DISASSEMBLER}, 4296 {"ACPI_ALL_COMPONENTS", ACPI_ALL_COMPONENTS}, 4297 4298 {"ACPI_AC_ADAPTER", ACPI_AC_ADAPTER}, 4299 {"ACPI_BATTERY", ACPI_BATTERY}, 4300 {"ACPI_BUS", ACPI_BUS}, 4301 {"ACPI_BUTTON", ACPI_BUTTON}, 4302 {"ACPI_EC", ACPI_EC}, 4303 {"ACPI_FAN", ACPI_FAN}, 4304 {"ACPI_POWERRES", ACPI_POWERRES}, 4305 {"ACPI_PROCESSOR", ACPI_PROCESSOR}, 4306 {"ACPI_THERMAL", ACPI_THERMAL}, 4307 {"ACPI_TIMER", ACPI_TIMER}, 4308 {"ACPI_ALL_DRIVERS", ACPI_ALL_DRIVERS}, 4309 {NULL, 0} 4310 }; 4311 4312 static struct debugtag dbg_level[] = { 4313 {"ACPI_LV_INIT", ACPI_LV_INIT}, 4314 {"ACPI_LV_DEBUG_OBJECT", ACPI_LV_DEBUG_OBJECT}, 4315 {"ACPI_LV_INFO", ACPI_LV_INFO}, 4316 {"ACPI_LV_REPAIR", ACPI_LV_REPAIR}, 4317 {"ACPI_LV_ALL_EXCEPTIONS", ACPI_LV_ALL_EXCEPTIONS}, 4318 4319 /* Trace verbosity level 1 [Standard Trace Level] */ 4320 {"ACPI_LV_INIT_NAMES", ACPI_LV_INIT_NAMES}, 4321 {"ACPI_LV_PARSE", ACPI_LV_PARSE}, 4322 {"ACPI_LV_LOAD", ACPI_LV_LOAD}, 4323 {"ACPI_LV_DISPATCH", ACPI_LV_DISPATCH}, 4324 {"ACPI_LV_EXEC", ACPI_LV_EXEC}, 4325 {"ACPI_LV_NAMES", ACPI_LV_NAMES}, 4326 {"ACPI_LV_OPREGION", ACPI_LV_OPREGION}, 4327 {"ACPI_LV_BFIELD", ACPI_LV_BFIELD}, 4328 {"ACPI_LV_TABLES", ACPI_LV_TABLES}, 4329 {"ACPI_LV_VALUES", ACPI_LV_VALUES}, 4330 {"ACPI_LV_OBJECTS", ACPI_LV_OBJECTS}, 4331 {"ACPI_LV_RESOURCES", ACPI_LV_RESOURCES}, 4332 {"ACPI_LV_USER_REQUESTS", ACPI_LV_USER_REQUESTS}, 4333 {"ACPI_LV_PACKAGE", ACPI_LV_PACKAGE}, 4334 {"ACPI_LV_VERBOSITY1", ACPI_LV_VERBOSITY1}, 4335 4336 /* Trace verbosity level 2 [Function tracing and memory allocation] */ 4337 {"ACPI_LV_ALLOCATIONS", ACPI_LV_ALLOCATIONS}, 4338 {"ACPI_LV_FUNCTIONS", ACPI_LV_FUNCTIONS}, 4339 {"ACPI_LV_OPTIMIZATIONS", ACPI_LV_OPTIMIZATIONS}, 4340 {"ACPI_LV_VERBOSITY2", ACPI_LV_VERBOSITY2}, 4341 {"ACPI_LV_ALL", ACPI_LV_ALL}, 4342 4343 /* Trace verbosity level 3 [Threading, I/O, and Interrupts] */ 4344 {"ACPI_LV_MUTEX", ACPI_LV_MUTEX}, 4345 {"ACPI_LV_THREADS", ACPI_LV_THREADS}, 4346 {"ACPI_LV_IO", ACPI_LV_IO}, 4347 {"ACPI_LV_INTERRUPTS", ACPI_LV_INTERRUPTS}, 4348 {"ACPI_LV_VERBOSITY3", ACPI_LV_VERBOSITY3}, 4349 4350 /* Exceptionally verbose output -- also used in the global "DebugLevel" */ 4351 {"ACPI_LV_AML_DISASSEMBLE", ACPI_LV_AML_DISASSEMBLE}, 4352 {"ACPI_LV_VERBOSE_INFO", ACPI_LV_VERBOSE_INFO}, 4353 {"ACPI_LV_FULL_TABLES", ACPI_LV_FULL_TABLES}, 4354 {"ACPI_LV_EVENTS", ACPI_LV_EVENTS}, 4355 {"ACPI_LV_VERBOSE", ACPI_LV_VERBOSE}, 4356 {NULL, 0} 4357 }; 4358 4359 static void 4360 acpi_parse_debug(char *cp, struct debugtag *tag, UINT32 *flag) 4361 { 4362 char *ep; 4363 int i, l; 4364 int set; 4365 4366 while (*cp) { 4367 if (isspace(*cp)) { 4368 cp++; 4369 continue; 4370 } 4371 ep = cp; 4372 while (*ep && !isspace(*ep)) 4373 ep++; 4374 if (*cp == '!') { 4375 set = 0; 4376 cp++; 4377 if (cp == ep) 4378 continue; 4379 } else { 4380 set = 1; 4381 } 4382 l = ep - cp; 4383 for (i = 0; tag[i].name != NULL; i++) { 4384 if (!strncmp(cp, tag[i].name, l)) { 4385 if (set) 4386 *flag |= tag[i].value; 4387 else 4388 *flag &= ~tag[i].value; 4389 } 4390 } 4391 cp = ep; 4392 } 4393 } 4394 4395 static void 4396 acpi_set_debugging(void *junk) 4397 { 4398 char *layer, *level; 4399 4400 if (cold) { 4401 AcpiDbgLayer = 0; 4402 AcpiDbgLevel = 0; 4403 } 4404 4405 layer = kern_getenv("debug.acpi.layer"); 4406 level = kern_getenv("debug.acpi.level"); 4407 if (layer == NULL && level == NULL) 4408 return; 4409 4410 printf("ACPI set debug"); 4411 if (layer != NULL) { 4412 if (strcmp("NONE", layer) != 0) 4413 printf(" layer '%s'", layer); 4414 acpi_parse_debug(layer, &dbg_layer[0], &AcpiDbgLayer); 4415 freeenv(layer); 4416 } 4417 if (level != NULL) { 4418 if (strcmp("NONE", level) != 0) 4419 printf(" level '%s'", level); 4420 acpi_parse_debug(level, &dbg_level[0], &AcpiDbgLevel); 4421 freeenv(level); 4422 } 4423 printf("\n"); 4424 } 4425 4426 SYSINIT(acpi_debugging, SI_SUB_TUNABLES, SI_ORDER_ANY, acpi_set_debugging, 4427 NULL); 4428 4429 static int 4430 acpi_debug_sysctl(SYSCTL_HANDLER_ARGS) 4431 { 4432 int error, *dbg; 4433 struct debugtag *tag; 4434 struct sbuf sb; 4435 char temp[128]; 4436 4437 if (sbuf_new(&sb, NULL, 128, SBUF_AUTOEXTEND) == NULL) 4438 return (ENOMEM); 4439 if (strcmp(oidp->oid_arg1, "debug.acpi.layer") == 0) { 4440 tag = &dbg_layer[0]; 4441 dbg = &AcpiDbgLayer; 4442 } else { 4443 tag = &dbg_level[0]; 4444 dbg = &AcpiDbgLevel; 4445 } 4446 4447 /* Get old values if this is a get request. */ 4448 ACPI_SERIAL_BEGIN(acpi); 4449 if (*dbg == 0) { 4450 sbuf_cpy(&sb, "NONE"); 4451 } else if (req->newptr == NULL) { 4452 for (; tag->name != NULL; tag++) { 4453 if ((*dbg & tag->value) == tag->value) 4454 sbuf_printf(&sb, "%s ", tag->name); 4455 } 4456 } 4457 sbuf_trim(&sb); 4458 sbuf_finish(&sb); 4459 strlcpy(temp, sbuf_data(&sb), sizeof(temp)); 4460 sbuf_delete(&sb); 4461 4462 error = sysctl_handle_string(oidp, temp, sizeof(temp), req); 4463 4464 /* Check for error or no change */ 4465 if (error == 0 && req->newptr != NULL) { 4466 *dbg = 0; 4467 kern_setenv((char *)oidp->oid_arg1, temp); 4468 acpi_set_debugging(NULL); 4469 } 4470 ACPI_SERIAL_END(acpi); 4471 4472 return (error); 4473 } 4474 4475 SYSCTL_PROC(_debug_acpi, OID_AUTO, layer, 4476 CTLFLAG_RW | CTLTYPE_STRING | CTLFLAG_MPSAFE, "debug.acpi.layer", 0, 4477 acpi_debug_sysctl, "A", 4478 ""); 4479 SYSCTL_PROC(_debug_acpi, OID_AUTO, level, 4480 CTLFLAG_RW | CTLTYPE_STRING | CTLFLAG_MPSAFE, "debug.acpi.level", 0, 4481 acpi_debug_sysctl, "A", 4482 ""); 4483 #endif /* ACPI_DEBUG */ 4484 4485 static int 4486 acpi_debug_objects_sysctl(SYSCTL_HANDLER_ARGS) 4487 { 4488 int error; 4489 int old; 4490 4491 old = acpi_debug_objects; 4492 error = sysctl_handle_int(oidp, &acpi_debug_objects, 0, req); 4493 if (error != 0 || req->newptr == NULL) 4494 return (error); 4495 if (old == acpi_debug_objects || (old && acpi_debug_objects)) 4496 return (0); 4497 4498 ACPI_SERIAL_BEGIN(acpi); 4499 AcpiGbl_EnableAmlDebugObject = acpi_debug_objects ? TRUE : FALSE; 4500 ACPI_SERIAL_END(acpi); 4501 4502 return (0); 4503 } 4504 4505 static int 4506 acpi_parse_interfaces(char *str, struct acpi_interface *iface) 4507 { 4508 char *p; 4509 size_t len; 4510 int i, j; 4511 4512 p = str; 4513 while (isspace(*p) || *p == ',') 4514 p++; 4515 len = strlen(p); 4516 if (len == 0) 4517 return (0); 4518 p = strdup(p, M_TEMP); 4519 for (i = 0; i < len; i++) 4520 if (p[i] == ',') 4521 p[i] = '\0'; 4522 i = j = 0; 4523 while (i < len) 4524 if (isspace(p[i]) || p[i] == '\0') 4525 i++; 4526 else { 4527 i += strlen(p + i) + 1; 4528 j++; 4529 } 4530 if (j == 0) { 4531 free(p, M_TEMP); 4532 return (0); 4533 } 4534 iface->data = malloc(sizeof(*iface->data) * j, M_TEMP, M_WAITOK); 4535 iface->num = j; 4536 i = j = 0; 4537 while (i < len) 4538 if (isspace(p[i]) || p[i] == '\0') 4539 i++; 4540 else { 4541 iface->data[j] = p + i; 4542 i += strlen(p + i) + 1; 4543 j++; 4544 } 4545 4546 return (j); 4547 } 4548 4549 static void 4550 acpi_free_interfaces(struct acpi_interface *iface) 4551 { 4552 4553 free(iface->data[0], M_TEMP); 4554 free(iface->data, M_TEMP); 4555 } 4556 4557 static void 4558 acpi_reset_interfaces(device_t dev) 4559 { 4560 struct acpi_interface list; 4561 ACPI_STATUS status; 4562 int i; 4563 4564 if (acpi_parse_interfaces(acpi_install_interface, &list) > 0) { 4565 for (i = 0; i < list.num; i++) { 4566 status = AcpiInstallInterface(list.data[i]); 4567 if (ACPI_FAILURE(status)) 4568 device_printf(dev, 4569 "failed to install _OSI(\"%s\"): %s\n", 4570 list.data[i], AcpiFormatException(status)); 4571 else if (bootverbose) 4572 device_printf(dev, "installed _OSI(\"%s\")\n", 4573 list.data[i]); 4574 } 4575 acpi_free_interfaces(&list); 4576 } 4577 if (acpi_parse_interfaces(acpi_remove_interface, &list) > 0) { 4578 for (i = 0; i < list.num; i++) { 4579 status = AcpiRemoveInterface(list.data[i]); 4580 if (ACPI_FAILURE(status)) 4581 device_printf(dev, 4582 "failed to remove _OSI(\"%s\"): %s\n", 4583 list.data[i], AcpiFormatException(status)); 4584 else if (bootverbose) 4585 device_printf(dev, "removed _OSI(\"%s\")\n", 4586 list.data[i]); 4587 } 4588 acpi_free_interfaces(&list); 4589 } 4590 } 4591 4592 static int 4593 acpi_pm_func(u_long cmd, void *arg, ...) 4594 { 4595 int state, acpi_state; 4596 int error; 4597 struct acpi_softc *sc; 4598 va_list ap; 4599 4600 error = 0; 4601 switch (cmd) { 4602 case POWER_CMD_SUSPEND: 4603 sc = (struct acpi_softc *)arg; 4604 if (sc == NULL) { 4605 error = EINVAL; 4606 goto out; 4607 } 4608 4609 va_start(ap, arg); 4610 state = va_arg(ap, int); 4611 va_end(ap); 4612 4613 switch (state) { 4614 case POWER_SLEEP_STATE_STANDBY: 4615 acpi_state = sc->acpi_standby_sx; 4616 break; 4617 case POWER_SLEEP_STATE_SUSPEND: 4618 acpi_state = sc->acpi_suspend_sx; 4619 break; 4620 case POWER_SLEEP_STATE_HIBERNATE: 4621 acpi_state = ACPI_STATE_S4; 4622 break; 4623 default: 4624 error = EINVAL; 4625 goto out; 4626 } 4627 4628 if (ACPI_FAILURE(acpi_EnterSleepState(sc, acpi_state))) 4629 error = ENXIO; 4630 break; 4631 default: 4632 error = EINVAL; 4633 goto out; 4634 } 4635 4636 out: 4637 return (error); 4638 } 4639 4640 static void 4641 acpi_pm_register(void *arg) 4642 { 4643 if (!cold || resource_disabled("acpi", 0)) 4644 return; 4645 4646 power_pm_register(POWER_PM_TYPE_ACPI, acpi_pm_func, NULL); 4647 } 4648 4649 SYSINIT(power, SI_SUB_KLD, SI_ORDER_ANY, acpi_pm_register, NULL); 4650