1 /*- 2 * Copyright (c) 2000 Takanori Watanabe <takawata@jp.freebsd.org> 3 * Copyright (c) 2000 Mitsuru IWASAKI <iwasaki@jp.freebsd.org> 4 * Copyright (c) 2000, 2001 Michael Smith 5 * Copyright (c) 2000 BSDi 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include "opt_acpi.h" 34 35 #include <sys/param.h> 36 #include <sys/eventhandler.h> 37 #include <sys/kernel.h> 38 #include <sys/proc.h> 39 #include <sys/fcntl.h> 40 #include <sys/malloc.h> 41 #include <sys/module.h> 42 #include <sys/bus.h> 43 #include <sys/conf.h> 44 #include <sys/ioccom.h> 45 #include <sys/reboot.h> 46 #include <sys/sysctl.h> 47 #include <sys/ctype.h> 48 #include <sys/linker.h> 49 #include <sys/mount.h> 50 #include <sys/power.h> 51 #include <sys/sbuf.h> 52 #include <sys/sched.h> 53 #include <sys/smp.h> 54 #include <sys/timetc.h> 55 56 #if defined(__i386__) || defined(__amd64__) 57 #include <machine/clock.h> 58 #include <machine/pci_cfgreg.h> 59 #endif 60 #include <machine/resource.h> 61 #include <machine/bus.h> 62 #include <sys/rman.h> 63 #include <isa/isavar.h> 64 #include <isa/pnpvar.h> 65 66 #include <contrib/dev/acpica/include/acpi.h> 67 #include <contrib/dev/acpica/include/accommon.h> 68 #include <contrib/dev/acpica/include/acnamesp.h> 69 70 #include <dev/acpica/acpivar.h> 71 #include <dev/acpica/acpiio.h> 72 73 #include <dev/pci/pcivar.h> 74 75 #include <vm/vm_param.h> 76 77 static MALLOC_DEFINE(M_ACPIDEV, "acpidev", "ACPI devices"); 78 79 /* Hooks for the ACPI CA debugging infrastructure */ 80 #define _COMPONENT ACPI_BUS 81 ACPI_MODULE_NAME("ACPI") 82 83 static d_open_t acpiopen; 84 static d_close_t acpiclose; 85 static d_ioctl_t acpiioctl; 86 87 static struct cdevsw acpi_cdevsw = { 88 .d_version = D_VERSION, 89 .d_open = acpiopen, 90 .d_close = acpiclose, 91 .d_ioctl = acpiioctl, 92 .d_name = "acpi", 93 }; 94 95 struct acpi_interface { 96 ACPI_STRING *data; 97 int num; 98 }; 99 100 static char *sysres_ids[] = { "PNP0C01", "PNP0C02", NULL }; 101 static char *pcilink_ids[] = { "PNP0C0F", NULL }; 102 103 /* Global mutex for locking access to the ACPI subsystem. */ 104 struct mtx acpi_mutex; 105 struct callout acpi_sleep_timer; 106 107 /* Bitmap of device quirks. */ 108 int acpi_quirks; 109 110 /* Supported sleep states. */ 111 static BOOLEAN acpi_sleep_states[ACPI_S_STATE_COUNT]; 112 113 static void acpi_lookup(void *arg, const char *name, device_t *dev); 114 static int acpi_modevent(struct module *mod, int event, void *junk); 115 static int acpi_probe(device_t dev); 116 static int acpi_attach(device_t dev); 117 static int acpi_suspend(device_t dev); 118 static int acpi_resume(device_t dev); 119 static int acpi_shutdown(device_t dev); 120 static device_t acpi_add_child(device_t bus, u_int order, const char *name, 121 int unit); 122 static int acpi_print_child(device_t bus, device_t child); 123 static void acpi_probe_nomatch(device_t bus, device_t child); 124 static void acpi_driver_added(device_t dev, driver_t *driver); 125 static void acpi_child_deleted(device_t dev, device_t child); 126 static int acpi_read_ivar(device_t dev, device_t child, int index, 127 uintptr_t *result); 128 static int acpi_write_ivar(device_t dev, device_t child, int index, 129 uintptr_t value); 130 static struct resource_list *acpi_get_rlist(device_t dev, device_t child); 131 static void acpi_reserve_resources(device_t dev); 132 static int acpi_sysres_alloc(device_t dev); 133 static int acpi_set_resource(device_t dev, device_t child, int type, 134 int rid, rman_res_t start, rman_res_t count); 135 static struct resource *acpi_alloc_resource(device_t bus, device_t child, 136 int type, int *rid, rman_res_t start, rman_res_t end, 137 rman_res_t count, u_int flags); 138 static int acpi_adjust_resource(device_t bus, device_t child, int type, 139 struct resource *r, rman_res_t start, rman_res_t end); 140 static int acpi_release_resource(device_t bus, device_t child, int type, 141 int rid, struct resource *r); 142 static void acpi_delete_resource(device_t bus, device_t child, int type, 143 int rid); 144 static uint32_t acpi_isa_get_logicalid(device_t dev); 145 static int acpi_isa_get_compatid(device_t dev, uint32_t *cids, int count); 146 static int acpi_device_id_probe(device_t bus, device_t dev, char **ids, char **match); 147 static ACPI_STATUS acpi_device_eval_obj(device_t bus, device_t dev, 148 ACPI_STRING pathname, ACPI_OBJECT_LIST *parameters, 149 ACPI_BUFFER *ret); 150 static ACPI_STATUS acpi_device_scan_cb(ACPI_HANDLE h, UINT32 level, 151 void *context, void **retval); 152 static ACPI_STATUS acpi_device_scan_children(device_t bus, device_t dev, 153 int max_depth, acpi_scan_cb_t user_fn, void *arg); 154 static int acpi_isa_pnp_probe(device_t bus, device_t child, 155 struct isa_pnp_id *ids); 156 static void acpi_platform_osc(device_t dev); 157 static void acpi_probe_children(device_t bus); 158 static void acpi_probe_order(ACPI_HANDLE handle, int *order); 159 static ACPI_STATUS acpi_probe_child(ACPI_HANDLE handle, UINT32 level, 160 void *context, void **status); 161 static void acpi_sleep_enable(void *arg); 162 static ACPI_STATUS acpi_sleep_disable(struct acpi_softc *sc); 163 static ACPI_STATUS acpi_EnterSleepState(struct acpi_softc *sc, int state); 164 static void acpi_shutdown_final(void *arg, int howto); 165 static void acpi_enable_fixed_events(struct acpi_softc *sc); 166 static void acpi_resync_clock(struct acpi_softc *sc); 167 static int acpi_wake_sleep_prep(ACPI_HANDLE handle, int sstate); 168 static int acpi_wake_run_prep(ACPI_HANDLE handle, int sstate); 169 static int acpi_wake_prep_walk(int sstate); 170 static int acpi_wake_sysctl_walk(device_t dev); 171 static int acpi_wake_set_sysctl(SYSCTL_HANDLER_ARGS); 172 static void acpi_system_eventhandler_sleep(void *arg, int state); 173 static void acpi_system_eventhandler_wakeup(void *arg, int state); 174 static int acpi_sname2sstate(const char *sname); 175 static const char *acpi_sstate2sname(int sstate); 176 static int acpi_supported_sleep_state_sysctl(SYSCTL_HANDLER_ARGS); 177 static int acpi_sleep_state_sysctl(SYSCTL_HANDLER_ARGS); 178 static int acpi_debug_objects_sysctl(SYSCTL_HANDLER_ARGS); 179 static int acpi_pm_func(u_long cmd, void *arg, ...); 180 static int acpi_child_location_method(device_t acdev, device_t child, 181 struct sbuf *sb); 182 static int acpi_child_pnpinfo_method(device_t acdev, device_t child, 183 struct sbuf *sb); 184 static void acpi_enable_pcie(void); 185 static void acpi_hint_device_unit(device_t acdev, device_t child, 186 const char *name, int *unitp); 187 static void acpi_reset_interfaces(device_t dev); 188 189 static device_method_t acpi_methods[] = { 190 /* Device interface */ 191 DEVMETHOD(device_probe, acpi_probe), 192 DEVMETHOD(device_attach, acpi_attach), 193 DEVMETHOD(device_shutdown, acpi_shutdown), 194 DEVMETHOD(device_detach, bus_generic_detach), 195 DEVMETHOD(device_suspend, acpi_suspend), 196 DEVMETHOD(device_resume, acpi_resume), 197 198 /* Bus interface */ 199 DEVMETHOD(bus_add_child, acpi_add_child), 200 DEVMETHOD(bus_print_child, acpi_print_child), 201 DEVMETHOD(bus_probe_nomatch, acpi_probe_nomatch), 202 DEVMETHOD(bus_driver_added, acpi_driver_added), 203 DEVMETHOD(bus_child_deleted, acpi_child_deleted), 204 DEVMETHOD(bus_read_ivar, acpi_read_ivar), 205 DEVMETHOD(bus_write_ivar, acpi_write_ivar), 206 DEVMETHOD(bus_get_resource_list, acpi_get_rlist), 207 DEVMETHOD(bus_set_resource, acpi_set_resource), 208 DEVMETHOD(bus_get_resource, bus_generic_rl_get_resource), 209 DEVMETHOD(bus_alloc_resource, acpi_alloc_resource), 210 DEVMETHOD(bus_adjust_resource, acpi_adjust_resource), 211 DEVMETHOD(bus_release_resource, acpi_release_resource), 212 DEVMETHOD(bus_delete_resource, acpi_delete_resource), 213 DEVMETHOD(bus_child_pnpinfo, acpi_child_pnpinfo_method), 214 DEVMETHOD(bus_child_location, acpi_child_location_method), 215 DEVMETHOD(bus_activate_resource, bus_generic_activate_resource), 216 DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource), 217 DEVMETHOD(bus_setup_intr, bus_generic_setup_intr), 218 DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr), 219 DEVMETHOD(bus_hint_device_unit, acpi_hint_device_unit), 220 DEVMETHOD(bus_get_cpus, acpi_get_cpus), 221 DEVMETHOD(bus_get_domain, acpi_get_domain), 222 223 /* ACPI bus */ 224 DEVMETHOD(acpi_id_probe, acpi_device_id_probe), 225 DEVMETHOD(acpi_evaluate_object, acpi_device_eval_obj), 226 DEVMETHOD(acpi_pwr_for_sleep, acpi_device_pwr_for_sleep), 227 DEVMETHOD(acpi_scan_children, acpi_device_scan_children), 228 229 /* ISA emulation */ 230 DEVMETHOD(isa_pnp_probe, acpi_isa_pnp_probe), 231 232 DEVMETHOD_END 233 }; 234 235 static driver_t acpi_driver = { 236 "acpi", 237 acpi_methods, 238 sizeof(struct acpi_softc), 239 }; 240 241 static devclass_t acpi_devclass; 242 EARLY_DRIVER_MODULE(acpi, nexus, acpi_driver, acpi_devclass, acpi_modevent, 0, 243 BUS_PASS_BUS + BUS_PASS_ORDER_MIDDLE); 244 MODULE_VERSION(acpi, 1); 245 246 ACPI_SERIAL_DECL(acpi, "ACPI root bus"); 247 248 /* Local pools for managing system resources for ACPI child devices. */ 249 static struct rman acpi_rman_io, acpi_rman_mem; 250 251 #define ACPI_MINIMUM_AWAKETIME 5 252 253 /* Holds the description of the acpi0 device. */ 254 static char acpi_desc[ACPI_OEM_ID_SIZE + ACPI_OEM_TABLE_ID_SIZE + 2]; 255 256 SYSCTL_NODE(_debug, OID_AUTO, acpi, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 257 "ACPI debugging"); 258 static char acpi_ca_version[12]; 259 SYSCTL_STRING(_debug_acpi, OID_AUTO, acpi_ca_version, CTLFLAG_RD, 260 acpi_ca_version, 0, "Version of Intel ACPI-CA"); 261 262 /* 263 * Allow overriding _OSI methods. 264 */ 265 static char acpi_install_interface[256]; 266 TUNABLE_STR("hw.acpi.install_interface", acpi_install_interface, 267 sizeof(acpi_install_interface)); 268 static char acpi_remove_interface[256]; 269 TUNABLE_STR("hw.acpi.remove_interface", acpi_remove_interface, 270 sizeof(acpi_remove_interface)); 271 272 /* Allow users to dump Debug objects without ACPI debugger. */ 273 static int acpi_debug_objects; 274 TUNABLE_INT("debug.acpi.enable_debug_objects", &acpi_debug_objects); 275 SYSCTL_PROC(_debug_acpi, OID_AUTO, enable_debug_objects, 276 CTLFLAG_RW | CTLTYPE_INT | CTLFLAG_NEEDGIANT, NULL, 0, 277 acpi_debug_objects_sysctl, "I", 278 "Enable Debug objects"); 279 280 /* Allow the interpreter to ignore common mistakes in BIOS. */ 281 static int acpi_interpreter_slack = 1; 282 TUNABLE_INT("debug.acpi.interpreter_slack", &acpi_interpreter_slack); 283 SYSCTL_INT(_debug_acpi, OID_AUTO, interpreter_slack, CTLFLAG_RDTUN, 284 &acpi_interpreter_slack, 1, "Turn on interpreter slack mode."); 285 286 /* Ignore register widths set by FADT and use default widths instead. */ 287 static int acpi_ignore_reg_width = 1; 288 TUNABLE_INT("debug.acpi.default_register_width", &acpi_ignore_reg_width); 289 SYSCTL_INT(_debug_acpi, OID_AUTO, default_register_width, CTLFLAG_RDTUN, 290 &acpi_ignore_reg_width, 1, "Ignore register widths set by FADT"); 291 292 /* Allow users to override quirks. */ 293 TUNABLE_INT("debug.acpi.quirks", &acpi_quirks); 294 295 int acpi_susp_bounce; 296 SYSCTL_INT(_debug_acpi, OID_AUTO, suspend_bounce, CTLFLAG_RW, 297 &acpi_susp_bounce, 0, "Don't actually suspend, just test devices."); 298 299 /* 300 * ACPI can only be loaded as a module by the loader; activating it after 301 * system bootstrap time is not useful, and can be fatal to the system. 302 * It also cannot be unloaded, since the entire system bus hierarchy hangs 303 * off it. 304 */ 305 static int 306 acpi_modevent(struct module *mod, int event, void *junk) 307 { 308 switch (event) { 309 case MOD_LOAD: 310 if (!cold) { 311 printf("The ACPI driver cannot be loaded after boot.\n"); 312 return (EPERM); 313 } 314 break; 315 case MOD_UNLOAD: 316 if (!cold && power_pm_get_type() == POWER_PM_TYPE_ACPI) 317 return (EBUSY); 318 break; 319 default: 320 break; 321 } 322 return (0); 323 } 324 325 /* 326 * Perform early initialization. 327 */ 328 ACPI_STATUS 329 acpi_Startup(void) 330 { 331 static int started = 0; 332 ACPI_STATUS status; 333 int val; 334 335 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 336 337 /* Only run the startup code once. The MADT driver also calls this. */ 338 if (started) 339 return_VALUE (AE_OK); 340 started = 1; 341 342 /* 343 * Initialize the ACPICA subsystem. 344 */ 345 if (ACPI_FAILURE(status = AcpiInitializeSubsystem())) { 346 printf("ACPI: Could not initialize Subsystem: %s\n", 347 AcpiFormatException(status)); 348 return_VALUE (status); 349 } 350 351 /* 352 * Pre-allocate space for RSDT/XSDT and DSDT tables and allow resizing 353 * if more tables exist. 354 */ 355 if (ACPI_FAILURE(status = AcpiInitializeTables(NULL, 2, TRUE))) { 356 printf("ACPI: Table initialisation failed: %s\n", 357 AcpiFormatException(status)); 358 return_VALUE (status); 359 } 360 361 /* Set up any quirks we have for this system. */ 362 if (acpi_quirks == ACPI_Q_OK) 363 acpi_table_quirks(&acpi_quirks); 364 365 /* If the user manually set the disabled hint to 0, force-enable ACPI. */ 366 if (resource_int_value("acpi", 0, "disabled", &val) == 0 && val == 0) 367 acpi_quirks &= ~ACPI_Q_BROKEN; 368 if (acpi_quirks & ACPI_Q_BROKEN) { 369 printf("ACPI disabled by blacklist. Contact your BIOS vendor.\n"); 370 status = AE_SUPPORT; 371 } 372 373 return_VALUE (status); 374 } 375 376 /* 377 * Detect ACPI and perform early initialisation. 378 */ 379 int 380 acpi_identify(void) 381 { 382 ACPI_TABLE_RSDP *rsdp; 383 ACPI_TABLE_HEADER *rsdt; 384 ACPI_PHYSICAL_ADDRESS paddr; 385 struct sbuf sb; 386 387 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 388 389 if (!cold) 390 return (ENXIO); 391 392 /* Check that we haven't been disabled with a hint. */ 393 if (resource_disabled("acpi", 0)) 394 return (ENXIO); 395 396 /* Check for other PM systems. */ 397 if (power_pm_get_type() != POWER_PM_TYPE_NONE && 398 power_pm_get_type() != POWER_PM_TYPE_ACPI) { 399 printf("ACPI identify failed, other PM system enabled.\n"); 400 return (ENXIO); 401 } 402 403 /* Initialize root tables. */ 404 if (ACPI_FAILURE(acpi_Startup())) { 405 printf("ACPI: Try disabling either ACPI or apic support.\n"); 406 return (ENXIO); 407 } 408 409 if ((paddr = AcpiOsGetRootPointer()) == 0 || 410 (rsdp = AcpiOsMapMemory(paddr, sizeof(ACPI_TABLE_RSDP))) == NULL) 411 return (ENXIO); 412 if (rsdp->Revision > 1 && rsdp->XsdtPhysicalAddress != 0) 413 paddr = (ACPI_PHYSICAL_ADDRESS)rsdp->XsdtPhysicalAddress; 414 else 415 paddr = (ACPI_PHYSICAL_ADDRESS)rsdp->RsdtPhysicalAddress; 416 AcpiOsUnmapMemory(rsdp, sizeof(ACPI_TABLE_RSDP)); 417 418 if ((rsdt = AcpiOsMapMemory(paddr, sizeof(ACPI_TABLE_HEADER))) == NULL) 419 return (ENXIO); 420 sbuf_new(&sb, acpi_desc, sizeof(acpi_desc), SBUF_FIXEDLEN); 421 sbuf_bcat(&sb, rsdt->OemId, ACPI_OEM_ID_SIZE); 422 sbuf_trim(&sb); 423 sbuf_putc(&sb, ' '); 424 sbuf_bcat(&sb, rsdt->OemTableId, ACPI_OEM_TABLE_ID_SIZE); 425 sbuf_trim(&sb); 426 sbuf_finish(&sb); 427 sbuf_delete(&sb); 428 AcpiOsUnmapMemory(rsdt, sizeof(ACPI_TABLE_HEADER)); 429 430 snprintf(acpi_ca_version, sizeof(acpi_ca_version), "%x", ACPI_CA_VERSION); 431 432 return (0); 433 } 434 435 /* 436 * Fetch some descriptive data from ACPI to put in our attach message. 437 */ 438 static int 439 acpi_probe(device_t dev) 440 { 441 442 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 443 444 device_set_desc(dev, acpi_desc); 445 446 return_VALUE (BUS_PROBE_NOWILDCARD); 447 } 448 449 static int 450 acpi_attach(device_t dev) 451 { 452 struct acpi_softc *sc; 453 ACPI_STATUS status; 454 int error, state; 455 UINT32 flags; 456 UINT8 TypeA, TypeB; 457 char *env; 458 459 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 460 461 sc = device_get_softc(dev); 462 sc->acpi_dev = dev; 463 callout_init(&sc->susp_force_to, 1); 464 465 error = ENXIO; 466 467 /* Initialize resource manager. */ 468 acpi_rman_io.rm_type = RMAN_ARRAY; 469 acpi_rman_io.rm_start = 0; 470 acpi_rman_io.rm_end = 0xffff; 471 acpi_rman_io.rm_descr = "ACPI I/O ports"; 472 if (rman_init(&acpi_rman_io) != 0) 473 panic("acpi rman_init IO ports failed"); 474 acpi_rman_mem.rm_type = RMAN_ARRAY; 475 acpi_rman_mem.rm_descr = "ACPI I/O memory addresses"; 476 if (rman_init(&acpi_rman_mem) != 0) 477 panic("acpi rman_init memory failed"); 478 479 /* Initialise the ACPI mutex */ 480 mtx_init(&acpi_mutex, "ACPI global lock", NULL, MTX_DEF); 481 482 /* 483 * Set the globals from our tunables. This is needed because ACPI-CA 484 * uses UINT8 for some values and we have no tunable_byte. 485 */ 486 AcpiGbl_EnableInterpreterSlack = acpi_interpreter_slack ? TRUE : FALSE; 487 AcpiGbl_EnableAmlDebugObject = acpi_debug_objects ? TRUE : FALSE; 488 AcpiGbl_UseDefaultRegisterWidths = acpi_ignore_reg_width ? TRUE : FALSE; 489 490 #ifndef ACPI_DEBUG 491 /* 492 * Disable all debugging layers and levels. 493 */ 494 AcpiDbgLayer = 0; 495 AcpiDbgLevel = 0; 496 #endif 497 498 /* Override OS interfaces if the user requested. */ 499 acpi_reset_interfaces(dev); 500 501 /* Load ACPI name space. */ 502 status = AcpiLoadTables(); 503 if (ACPI_FAILURE(status)) { 504 device_printf(dev, "Could not load Namespace: %s\n", 505 AcpiFormatException(status)); 506 goto out; 507 } 508 509 /* Handle MCFG table if present. */ 510 acpi_enable_pcie(); 511 512 /* 513 * Note that some systems (specifically, those with namespace evaluation 514 * issues that require the avoidance of parts of the namespace) must 515 * avoid running _INI and _STA on everything, as well as dodging the final 516 * object init pass. 517 * 518 * For these devices, we set ACPI_NO_DEVICE_INIT and ACPI_NO_OBJECT_INIT). 519 * 520 * XXX We should arrange for the object init pass after we have attached 521 * all our child devices, but on many systems it works here. 522 */ 523 flags = 0; 524 if (testenv("debug.acpi.avoid")) 525 flags = ACPI_NO_DEVICE_INIT | ACPI_NO_OBJECT_INIT; 526 527 /* Bring the hardware and basic handlers online. */ 528 if (ACPI_FAILURE(status = AcpiEnableSubsystem(flags))) { 529 device_printf(dev, "Could not enable ACPI: %s\n", 530 AcpiFormatException(status)); 531 goto out; 532 } 533 534 /* 535 * Call the ECDT probe function to provide EC functionality before 536 * the namespace has been evaluated. 537 * 538 * XXX This happens before the sysresource devices have been probed and 539 * attached so its resources come from nexus0. In practice, this isn't 540 * a problem but should be addressed eventually. 541 */ 542 acpi_ec_ecdt_probe(dev); 543 544 /* Bring device objects and regions online. */ 545 if (ACPI_FAILURE(status = AcpiInitializeObjects(flags))) { 546 device_printf(dev, "Could not initialize ACPI objects: %s\n", 547 AcpiFormatException(status)); 548 goto out; 549 } 550 551 /* 552 * Setup our sysctl tree. 553 * 554 * XXX: This doesn't check to make sure that none of these fail. 555 */ 556 sysctl_ctx_init(&sc->acpi_sysctl_ctx); 557 sc->acpi_sysctl_tree = SYSCTL_ADD_NODE(&sc->acpi_sysctl_ctx, 558 SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO, device_get_name(dev), 559 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, ""); 560 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 561 OID_AUTO, "supported_sleep_state", 562 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 563 0, 0, acpi_supported_sleep_state_sysctl, "A", 564 "List supported ACPI sleep states."); 565 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 566 OID_AUTO, "power_button_state", 567 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 568 &sc->acpi_power_button_sx, 0, acpi_sleep_state_sysctl, "A", 569 "Power button ACPI sleep state."); 570 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 571 OID_AUTO, "sleep_button_state", 572 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 573 &sc->acpi_sleep_button_sx, 0, acpi_sleep_state_sysctl, "A", 574 "Sleep button ACPI sleep state."); 575 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 576 OID_AUTO, "lid_switch_state", 577 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 578 &sc->acpi_lid_switch_sx, 0, acpi_sleep_state_sysctl, "A", 579 "Lid ACPI sleep state. Set to S3 if you want to suspend your laptop when close the Lid."); 580 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 581 OID_AUTO, "standby_state", 582 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 583 &sc->acpi_standby_sx, 0, acpi_sleep_state_sysctl, "A", ""); 584 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 585 OID_AUTO, "suspend_state", 586 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 587 &sc->acpi_suspend_sx, 0, acpi_sleep_state_sysctl, "A", ""); 588 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 589 OID_AUTO, "sleep_delay", CTLFLAG_RW, &sc->acpi_sleep_delay, 0, 590 "sleep delay in seconds"); 591 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 592 OID_AUTO, "s4bios", CTLFLAG_RW, &sc->acpi_s4bios, 0, "S4BIOS mode"); 593 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 594 OID_AUTO, "verbose", CTLFLAG_RW, &sc->acpi_verbose, 0, "verbose mode"); 595 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 596 OID_AUTO, "disable_on_reboot", CTLFLAG_RW, 597 &sc->acpi_do_disable, 0, "Disable ACPI when rebooting/halting system"); 598 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 599 OID_AUTO, "handle_reboot", CTLFLAG_RW, 600 &sc->acpi_handle_reboot, 0, "Use ACPI Reset Register to reboot"); 601 602 /* 603 * Default to 1 second before sleeping to give some machines time to 604 * stabilize. 605 */ 606 sc->acpi_sleep_delay = 1; 607 if (bootverbose) 608 sc->acpi_verbose = 1; 609 if ((env = kern_getenv("hw.acpi.verbose")) != NULL) { 610 if (strcmp(env, "0") != 0) 611 sc->acpi_verbose = 1; 612 freeenv(env); 613 } 614 615 /* Only enable reboot by default if the FADT says it is available. */ 616 if (AcpiGbl_FADT.Flags & ACPI_FADT_RESET_REGISTER) 617 sc->acpi_handle_reboot = 1; 618 619 #if !ACPI_REDUCED_HARDWARE 620 /* Only enable S4BIOS by default if the FACS says it is available. */ 621 if (AcpiGbl_FACS != NULL && AcpiGbl_FACS->Flags & ACPI_FACS_S4_BIOS_PRESENT) 622 sc->acpi_s4bios = 1; 623 #endif 624 625 /* Probe all supported sleep states. */ 626 acpi_sleep_states[ACPI_STATE_S0] = TRUE; 627 for (state = ACPI_STATE_S1; state < ACPI_S_STATE_COUNT; state++) 628 if (ACPI_SUCCESS(AcpiEvaluateObject(ACPI_ROOT_OBJECT, 629 __DECONST(char *, AcpiGbl_SleepStateNames[state]), NULL, NULL)) && 630 ACPI_SUCCESS(AcpiGetSleepTypeData(state, &TypeA, &TypeB))) 631 acpi_sleep_states[state] = TRUE; 632 633 /* 634 * Dispatch the default sleep state to devices. The lid switch is set 635 * to UNKNOWN by default to avoid surprising users. 636 */ 637 sc->acpi_power_button_sx = acpi_sleep_states[ACPI_STATE_S5] ? 638 ACPI_STATE_S5 : ACPI_STATE_UNKNOWN; 639 sc->acpi_lid_switch_sx = ACPI_STATE_UNKNOWN; 640 sc->acpi_standby_sx = acpi_sleep_states[ACPI_STATE_S1] ? 641 ACPI_STATE_S1 : ACPI_STATE_UNKNOWN; 642 sc->acpi_suspend_sx = acpi_sleep_states[ACPI_STATE_S3] ? 643 ACPI_STATE_S3 : ACPI_STATE_UNKNOWN; 644 645 /* Pick the first valid sleep state for the sleep button default. */ 646 sc->acpi_sleep_button_sx = ACPI_STATE_UNKNOWN; 647 for (state = ACPI_STATE_S1; state <= ACPI_STATE_S4; state++) 648 if (acpi_sleep_states[state]) { 649 sc->acpi_sleep_button_sx = state; 650 break; 651 } 652 653 acpi_enable_fixed_events(sc); 654 655 /* 656 * Scan the namespace and attach/initialise children. 657 */ 658 659 /* Register our shutdown handler. */ 660 EVENTHANDLER_REGISTER(shutdown_final, acpi_shutdown_final, sc, 661 SHUTDOWN_PRI_LAST); 662 663 /* 664 * Register our acpi event handlers. 665 * XXX should be configurable eg. via userland policy manager. 666 */ 667 EVENTHANDLER_REGISTER(acpi_sleep_event, acpi_system_eventhandler_sleep, 668 sc, ACPI_EVENT_PRI_LAST); 669 EVENTHANDLER_REGISTER(acpi_wakeup_event, acpi_system_eventhandler_wakeup, 670 sc, ACPI_EVENT_PRI_LAST); 671 672 /* Flag our initial states. */ 673 sc->acpi_enabled = TRUE; 674 sc->acpi_sstate = ACPI_STATE_S0; 675 sc->acpi_sleep_disabled = TRUE; 676 677 /* Create the control device */ 678 sc->acpi_dev_t = make_dev(&acpi_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0664, 679 "acpi"); 680 sc->acpi_dev_t->si_drv1 = sc; 681 682 if ((error = acpi_machdep_init(dev))) 683 goto out; 684 685 /* Register ACPI again to pass the correct argument of pm_func. */ 686 power_pm_register(POWER_PM_TYPE_ACPI, acpi_pm_func, sc); 687 688 acpi_platform_osc(dev); 689 690 if (!acpi_disabled("bus")) { 691 EVENTHANDLER_REGISTER(dev_lookup, acpi_lookup, NULL, 1000); 692 acpi_probe_children(dev); 693 } 694 695 /* Update all GPEs and enable runtime GPEs. */ 696 status = AcpiUpdateAllGpes(); 697 if (ACPI_FAILURE(status)) 698 device_printf(dev, "Could not update all GPEs: %s\n", 699 AcpiFormatException(status)); 700 701 /* Allow sleep request after a while. */ 702 callout_init_mtx(&acpi_sleep_timer, &acpi_mutex, 0); 703 callout_reset(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME, 704 acpi_sleep_enable, sc); 705 706 error = 0; 707 708 out: 709 return_VALUE (error); 710 } 711 712 static void 713 acpi_set_power_children(device_t dev, int state) 714 { 715 device_t child; 716 device_t *devlist; 717 int dstate, i, numdevs; 718 719 if (device_get_children(dev, &devlist, &numdevs) != 0) 720 return; 721 722 /* 723 * Retrieve and set D-state for the sleep state if _SxD is present. 724 * Skip children who aren't attached since they are handled separately. 725 */ 726 for (i = 0; i < numdevs; i++) { 727 child = devlist[i]; 728 dstate = state; 729 if (device_is_attached(child) && 730 acpi_device_pwr_for_sleep(dev, child, &dstate) == 0) 731 acpi_set_powerstate(child, dstate); 732 } 733 free(devlist, M_TEMP); 734 } 735 736 static int 737 acpi_suspend(device_t dev) 738 { 739 int error; 740 741 GIANT_REQUIRED; 742 743 error = bus_generic_suspend(dev); 744 if (error == 0) 745 acpi_set_power_children(dev, ACPI_STATE_D3); 746 747 return (error); 748 } 749 750 static int 751 acpi_resume(device_t dev) 752 { 753 754 GIANT_REQUIRED; 755 756 acpi_set_power_children(dev, ACPI_STATE_D0); 757 758 return (bus_generic_resume(dev)); 759 } 760 761 static int 762 acpi_shutdown(device_t dev) 763 { 764 765 GIANT_REQUIRED; 766 767 /* Allow children to shutdown first. */ 768 bus_generic_shutdown(dev); 769 770 /* 771 * Enable any GPEs that are able to power-on the system (i.e., RTC). 772 * Also, disable any that are not valid for this state (most). 773 */ 774 acpi_wake_prep_walk(ACPI_STATE_S5); 775 776 return (0); 777 } 778 779 /* 780 * Handle a new device being added 781 */ 782 static device_t 783 acpi_add_child(device_t bus, u_int order, const char *name, int unit) 784 { 785 struct acpi_device *ad; 786 device_t child; 787 788 if ((ad = malloc(sizeof(*ad), M_ACPIDEV, M_NOWAIT | M_ZERO)) == NULL) 789 return (NULL); 790 791 resource_list_init(&ad->ad_rl); 792 793 child = device_add_child_ordered(bus, order, name, unit); 794 if (child != NULL) 795 device_set_ivars(child, ad); 796 else 797 free(ad, M_ACPIDEV); 798 return (child); 799 } 800 801 static int 802 acpi_print_child(device_t bus, device_t child) 803 { 804 struct acpi_device *adev = device_get_ivars(child); 805 struct resource_list *rl = &adev->ad_rl; 806 int retval = 0; 807 808 retval += bus_print_child_header(bus, child); 809 retval += resource_list_print_type(rl, "port", SYS_RES_IOPORT, "%#jx"); 810 retval += resource_list_print_type(rl, "iomem", SYS_RES_MEMORY, "%#jx"); 811 retval += resource_list_print_type(rl, "irq", SYS_RES_IRQ, "%jd"); 812 retval += resource_list_print_type(rl, "drq", SYS_RES_DRQ, "%jd"); 813 if (device_get_flags(child)) 814 retval += printf(" flags %#x", device_get_flags(child)); 815 retval += bus_print_child_domain(bus, child); 816 retval += bus_print_child_footer(bus, child); 817 818 return (retval); 819 } 820 821 /* 822 * If this device is an ACPI child but no one claimed it, attempt 823 * to power it off. We'll power it back up when a driver is added. 824 * 825 * XXX Disabled for now since many necessary devices (like fdc and 826 * ATA) don't claim the devices we created for them but still expect 827 * them to be powered up. 828 */ 829 static void 830 acpi_probe_nomatch(device_t bus, device_t child) 831 { 832 #ifdef ACPI_ENABLE_POWERDOWN_NODRIVER 833 acpi_set_powerstate(child, ACPI_STATE_D3); 834 #endif 835 } 836 837 /* 838 * If a new driver has a chance to probe a child, first power it up. 839 * 840 * XXX Disabled for now (see acpi_probe_nomatch for details). 841 */ 842 static void 843 acpi_driver_added(device_t dev, driver_t *driver) 844 { 845 device_t child, *devlist; 846 int i, numdevs; 847 848 DEVICE_IDENTIFY(driver, dev); 849 if (device_get_children(dev, &devlist, &numdevs)) 850 return; 851 for (i = 0; i < numdevs; i++) { 852 child = devlist[i]; 853 if (device_get_state(child) == DS_NOTPRESENT) { 854 #ifdef ACPI_ENABLE_POWERDOWN_NODRIVER 855 acpi_set_powerstate(child, ACPI_STATE_D0); 856 if (device_probe_and_attach(child) != 0) 857 acpi_set_powerstate(child, ACPI_STATE_D3); 858 #else 859 device_probe_and_attach(child); 860 #endif 861 } 862 } 863 free(devlist, M_TEMP); 864 } 865 866 /* Location hint for devctl(8) */ 867 static int 868 acpi_child_location_method(device_t cbdev, device_t child, struct sbuf *sb) 869 { 870 struct acpi_device *dinfo = device_get_ivars(child); 871 int pxm; 872 873 if (dinfo->ad_handle) { 874 sbuf_printf(sb, "handle=%s", acpi_name(dinfo->ad_handle)); 875 if (ACPI_SUCCESS(acpi_GetInteger(dinfo->ad_handle, "_PXM", &pxm))) { 876 sbuf_printf(sb, " _PXM=%d", pxm); 877 } 878 } 879 return (0); 880 } 881 882 /* PnP information for devctl(8) */ 883 int 884 acpi_pnpinfo(ACPI_HANDLE handle, struct sbuf *sb) 885 { 886 ACPI_DEVICE_INFO *adinfo; 887 888 if (ACPI_FAILURE(AcpiGetObjectInfo(handle, &adinfo))) { 889 sbuf_printf(sb, "unknown"); 890 return (0); 891 } 892 893 sbuf_printf(sb, "_HID=%s _UID=%lu _CID=%s", 894 (adinfo->Valid & ACPI_VALID_HID) ? 895 adinfo->HardwareId.String : "none", 896 (adinfo->Valid & ACPI_VALID_UID) ? 897 strtoul(adinfo->UniqueId.String, NULL, 10) : 0UL, 898 ((adinfo->Valid & ACPI_VALID_CID) && 899 adinfo->CompatibleIdList.Count > 0) ? 900 adinfo->CompatibleIdList.Ids[0].String : "none"); 901 AcpiOsFree(adinfo); 902 903 return (0); 904 } 905 906 static int 907 acpi_child_pnpinfo_method(device_t cbdev, device_t child, struct sbuf *sb) 908 { 909 struct acpi_device *dinfo = device_get_ivars(child); 910 911 return (acpi_pnpinfo(dinfo->ad_handle, sb)); 912 } 913 914 /* 915 * Handle device deletion. 916 */ 917 static void 918 acpi_child_deleted(device_t dev, device_t child) 919 { 920 struct acpi_device *dinfo = device_get_ivars(child); 921 922 if (acpi_get_device(dinfo->ad_handle) == child) 923 AcpiDetachData(dinfo->ad_handle, acpi_fake_objhandler); 924 } 925 926 /* 927 * Handle per-device ivars 928 */ 929 static int 930 acpi_read_ivar(device_t dev, device_t child, int index, uintptr_t *result) 931 { 932 struct acpi_device *ad; 933 934 if ((ad = device_get_ivars(child)) == NULL) { 935 device_printf(child, "device has no ivars\n"); 936 return (ENOENT); 937 } 938 939 /* ACPI and ISA compatibility ivars */ 940 switch(index) { 941 case ACPI_IVAR_HANDLE: 942 *(ACPI_HANDLE *)result = ad->ad_handle; 943 break; 944 case ACPI_IVAR_PRIVATE: 945 *(void **)result = ad->ad_private; 946 break; 947 case ACPI_IVAR_FLAGS: 948 *(int *)result = ad->ad_flags; 949 break; 950 case ISA_IVAR_VENDORID: 951 case ISA_IVAR_SERIAL: 952 case ISA_IVAR_COMPATID: 953 *(int *)result = -1; 954 break; 955 case ISA_IVAR_LOGICALID: 956 *(int *)result = acpi_isa_get_logicalid(child); 957 break; 958 case PCI_IVAR_CLASS: 959 *(uint8_t*)result = (ad->ad_cls_class >> 16) & 0xff; 960 break; 961 case PCI_IVAR_SUBCLASS: 962 *(uint8_t*)result = (ad->ad_cls_class >> 8) & 0xff; 963 break; 964 case PCI_IVAR_PROGIF: 965 *(uint8_t*)result = (ad->ad_cls_class >> 0) & 0xff; 966 break; 967 default: 968 return (ENOENT); 969 } 970 971 return (0); 972 } 973 974 static int 975 acpi_write_ivar(device_t dev, device_t child, int index, uintptr_t value) 976 { 977 struct acpi_device *ad; 978 979 if ((ad = device_get_ivars(child)) == NULL) { 980 device_printf(child, "device has no ivars\n"); 981 return (ENOENT); 982 } 983 984 switch(index) { 985 case ACPI_IVAR_HANDLE: 986 ad->ad_handle = (ACPI_HANDLE)value; 987 break; 988 case ACPI_IVAR_PRIVATE: 989 ad->ad_private = (void *)value; 990 break; 991 case ACPI_IVAR_FLAGS: 992 ad->ad_flags = (int)value; 993 break; 994 default: 995 panic("bad ivar write request (%d)", index); 996 return (ENOENT); 997 } 998 999 return (0); 1000 } 1001 1002 /* 1003 * Handle child resource allocation/removal 1004 */ 1005 static struct resource_list * 1006 acpi_get_rlist(device_t dev, device_t child) 1007 { 1008 struct acpi_device *ad; 1009 1010 ad = device_get_ivars(child); 1011 return (&ad->ad_rl); 1012 } 1013 1014 static int 1015 acpi_match_resource_hint(device_t dev, int type, long value) 1016 { 1017 struct acpi_device *ad = device_get_ivars(dev); 1018 struct resource_list *rl = &ad->ad_rl; 1019 struct resource_list_entry *rle; 1020 1021 STAILQ_FOREACH(rle, rl, link) { 1022 if (rle->type != type) 1023 continue; 1024 if (rle->start <= value && rle->end >= value) 1025 return (1); 1026 } 1027 return (0); 1028 } 1029 1030 /* 1031 * Wire device unit numbers based on resource matches in hints. 1032 */ 1033 static void 1034 acpi_hint_device_unit(device_t acdev, device_t child, const char *name, 1035 int *unitp) 1036 { 1037 const char *s; 1038 long value; 1039 int line, matches, unit; 1040 1041 /* 1042 * Iterate over all the hints for the devices with the specified 1043 * name to see if one's resources are a subset of this device. 1044 */ 1045 line = 0; 1046 while (resource_find_dev(&line, name, &unit, "at", NULL) == 0) { 1047 /* Must have an "at" for acpi or isa. */ 1048 resource_string_value(name, unit, "at", &s); 1049 if (!(strcmp(s, "acpi0") == 0 || strcmp(s, "acpi") == 0 || 1050 strcmp(s, "isa0") == 0 || strcmp(s, "isa") == 0)) 1051 continue; 1052 1053 /* 1054 * Check for matching resources. We must have at least one match. 1055 * Since I/O and memory resources cannot be shared, if we get a 1056 * match on either of those, ignore any mismatches in IRQs or DRQs. 1057 * 1058 * XXX: We may want to revisit this to be more lenient and wire 1059 * as long as it gets one match. 1060 */ 1061 matches = 0; 1062 if (resource_long_value(name, unit, "port", &value) == 0) { 1063 /* 1064 * Floppy drive controllers are notorious for having a 1065 * wide variety of resources not all of which include the 1066 * first port that is specified by the hint (typically 1067 * 0x3f0) (see the comment above fdc_isa_alloc_resources() 1068 * in fdc_isa.c). However, they do all seem to include 1069 * port + 2 (e.g. 0x3f2) so for a floppy device, look for 1070 * 'value + 2' in the port resources instead of the hint 1071 * value. 1072 */ 1073 if (strcmp(name, "fdc") == 0) 1074 value += 2; 1075 if (acpi_match_resource_hint(child, SYS_RES_IOPORT, value)) 1076 matches++; 1077 else 1078 continue; 1079 } 1080 if (resource_long_value(name, unit, "maddr", &value) == 0) { 1081 if (acpi_match_resource_hint(child, SYS_RES_MEMORY, value)) 1082 matches++; 1083 else 1084 continue; 1085 } 1086 if (matches > 0) 1087 goto matched; 1088 if (resource_long_value(name, unit, "irq", &value) == 0) { 1089 if (acpi_match_resource_hint(child, SYS_RES_IRQ, value)) 1090 matches++; 1091 else 1092 continue; 1093 } 1094 if (resource_long_value(name, unit, "drq", &value) == 0) { 1095 if (acpi_match_resource_hint(child, SYS_RES_DRQ, value)) 1096 matches++; 1097 else 1098 continue; 1099 } 1100 1101 matched: 1102 if (matches > 0) { 1103 /* We have a winner! */ 1104 *unitp = unit; 1105 break; 1106 } 1107 } 1108 } 1109 1110 /* 1111 * Fetch the NUMA domain for a device by mapping the value returned by 1112 * _PXM to a NUMA domain. If the device does not have a _PXM method, 1113 * -2 is returned. If any other error occurs, -1 is returned. 1114 */ 1115 static int 1116 acpi_parse_pxm(device_t dev) 1117 { 1118 #ifdef NUMA 1119 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__) 1120 ACPI_HANDLE handle; 1121 ACPI_STATUS status; 1122 int pxm; 1123 1124 handle = acpi_get_handle(dev); 1125 if (handle == NULL) 1126 return (-2); 1127 status = acpi_GetInteger(handle, "_PXM", &pxm); 1128 if (ACPI_SUCCESS(status)) 1129 return (acpi_map_pxm_to_vm_domainid(pxm)); 1130 if (status == AE_NOT_FOUND) 1131 return (-2); 1132 #endif 1133 #endif 1134 return (-1); 1135 } 1136 1137 int 1138 acpi_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize, 1139 cpuset_t *cpuset) 1140 { 1141 int d, error; 1142 1143 d = acpi_parse_pxm(child); 1144 if (d < 0) 1145 return (bus_generic_get_cpus(dev, child, op, setsize, cpuset)); 1146 1147 switch (op) { 1148 case LOCAL_CPUS: 1149 if (setsize != sizeof(cpuset_t)) 1150 return (EINVAL); 1151 *cpuset = cpuset_domain[d]; 1152 return (0); 1153 case INTR_CPUS: 1154 error = bus_generic_get_cpus(dev, child, op, setsize, cpuset); 1155 if (error != 0) 1156 return (error); 1157 if (setsize != sizeof(cpuset_t)) 1158 return (EINVAL); 1159 CPU_AND(cpuset, &cpuset_domain[d]); 1160 return (0); 1161 default: 1162 return (bus_generic_get_cpus(dev, child, op, setsize, cpuset)); 1163 } 1164 } 1165 1166 /* 1167 * Fetch the NUMA domain for the given device 'dev'. 1168 * 1169 * If a device has a _PXM method, map that to a NUMA domain. 1170 * Otherwise, pass the request up to the parent. 1171 * If there's no matching domain or the domain cannot be 1172 * determined, return ENOENT. 1173 */ 1174 int 1175 acpi_get_domain(device_t dev, device_t child, int *domain) 1176 { 1177 int d; 1178 1179 d = acpi_parse_pxm(child); 1180 if (d >= 0) { 1181 *domain = d; 1182 return (0); 1183 } 1184 if (d == -1) 1185 return (ENOENT); 1186 1187 /* No _PXM node; go up a level */ 1188 return (bus_generic_get_domain(dev, child, domain)); 1189 } 1190 1191 /* 1192 * Pre-allocate/manage all memory and IO resources. Since rman can't handle 1193 * duplicates, we merge any in the sysresource attach routine. 1194 */ 1195 static int 1196 acpi_sysres_alloc(device_t dev) 1197 { 1198 struct resource *res; 1199 struct resource_list *rl; 1200 struct resource_list_entry *rle; 1201 struct rman *rm; 1202 device_t *children; 1203 int child_count, i; 1204 1205 /* 1206 * Probe/attach any sysresource devices. This would be unnecessary if we 1207 * had multi-pass probe/attach. 1208 */ 1209 if (device_get_children(dev, &children, &child_count) != 0) 1210 return (ENXIO); 1211 for (i = 0; i < child_count; i++) { 1212 if (ACPI_ID_PROBE(dev, children[i], sysres_ids, NULL) <= 0) 1213 device_probe_and_attach(children[i]); 1214 } 1215 free(children, M_TEMP); 1216 1217 rl = BUS_GET_RESOURCE_LIST(device_get_parent(dev), dev); 1218 STAILQ_FOREACH(rle, rl, link) { 1219 if (rle->res != NULL) { 1220 device_printf(dev, "duplicate resource for %jx\n", rle->start); 1221 continue; 1222 } 1223 1224 /* Only memory and IO resources are valid here. */ 1225 switch (rle->type) { 1226 case SYS_RES_IOPORT: 1227 rm = &acpi_rman_io; 1228 break; 1229 case SYS_RES_MEMORY: 1230 rm = &acpi_rman_mem; 1231 break; 1232 default: 1233 continue; 1234 } 1235 1236 /* Pre-allocate resource and add to our rman pool. */ 1237 res = BUS_ALLOC_RESOURCE(device_get_parent(dev), dev, rle->type, 1238 &rle->rid, rle->start, rle->start + rle->count - 1, rle->count, 0); 1239 if (res != NULL) { 1240 rman_manage_region(rm, rman_get_start(res), rman_get_end(res)); 1241 rle->res = res; 1242 } else if (bootverbose) 1243 device_printf(dev, "reservation of %jx, %jx (%d) failed\n", 1244 rle->start, rle->count, rle->type); 1245 } 1246 return (0); 1247 } 1248 1249 /* 1250 * Reserve declared resources for devices found during attach once system 1251 * resources have been allocated. 1252 */ 1253 static void 1254 acpi_reserve_resources(device_t dev) 1255 { 1256 struct resource_list_entry *rle; 1257 struct resource_list *rl; 1258 struct acpi_device *ad; 1259 struct acpi_softc *sc; 1260 device_t *children; 1261 int child_count, i; 1262 1263 sc = device_get_softc(dev); 1264 if (device_get_children(dev, &children, &child_count) != 0) 1265 return; 1266 for (i = 0; i < child_count; i++) { 1267 ad = device_get_ivars(children[i]); 1268 rl = &ad->ad_rl; 1269 1270 /* Don't reserve system resources. */ 1271 if (ACPI_ID_PROBE(dev, children[i], sysres_ids, NULL) <= 0) 1272 continue; 1273 1274 STAILQ_FOREACH(rle, rl, link) { 1275 /* 1276 * Don't reserve IRQ resources. There are many sticky things 1277 * to get right otherwise (e.g. IRQs for psm, atkbd, and HPET 1278 * when using legacy routing). 1279 */ 1280 if (rle->type == SYS_RES_IRQ) 1281 continue; 1282 1283 /* 1284 * Don't reserve the resource if it is already allocated. 1285 * The acpi_ec(4) driver can allocate its resources early 1286 * if ECDT is present. 1287 */ 1288 if (rle->res != NULL) 1289 continue; 1290 1291 /* 1292 * Try to reserve the resource from our parent. If this 1293 * fails because the resource is a system resource, just 1294 * let it be. The resource range is already reserved so 1295 * that other devices will not use it. If the driver 1296 * needs to allocate the resource, then 1297 * acpi_alloc_resource() will sub-alloc from the system 1298 * resource. 1299 */ 1300 resource_list_reserve(rl, dev, children[i], rle->type, &rle->rid, 1301 rle->start, rle->end, rle->count, 0); 1302 } 1303 } 1304 free(children, M_TEMP); 1305 sc->acpi_resources_reserved = 1; 1306 } 1307 1308 static int 1309 acpi_set_resource(device_t dev, device_t child, int type, int rid, 1310 rman_res_t start, rman_res_t count) 1311 { 1312 struct acpi_softc *sc = device_get_softc(dev); 1313 struct acpi_device *ad = device_get_ivars(child); 1314 struct resource_list *rl = &ad->ad_rl; 1315 ACPI_DEVICE_INFO *devinfo; 1316 rman_res_t end; 1317 int allow; 1318 1319 /* Ignore IRQ resources for PCI link devices. */ 1320 if (type == SYS_RES_IRQ && 1321 ACPI_ID_PROBE(dev, child, pcilink_ids, NULL) <= 0) 1322 return (0); 1323 1324 /* 1325 * Ignore most resources for PCI root bridges. Some BIOSes 1326 * incorrectly enumerate the memory ranges they decode as plain 1327 * memory resources instead of as ResourceProducer ranges. Other 1328 * BIOSes incorrectly list system resource entries for I/O ranges 1329 * under the PCI bridge. Do allow the one known-correct case on 1330 * x86 of a PCI bridge claiming the I/O ports used for PCI config 1331 * access. 1332 */ 1333 if (type == SYS_RES_MEMORY || type == SYS_RES_IOPORT) { 1334 if (ACPI_SUCCESS(AcpiGetObjectInfo(ad->ad_handle, &devinfo))) { 1335 if ((devinfo->Flags & ACPI_PCI_ROOT_BRIDGE) != 0) { 1336 #if defined(__i386__) || defined(__amd64__) 1337 allow = (type == SYS_RES_IOPORT && start == CONF1_ADDR_PORT); 1338 #else 1339 allow = 0; 1340 #endif 1341 if (!allow) { 1342 AcpiOsFree(devinfo); 1343 return (0); 1344 } 1345 } 1346 AcpiOsFree(devinfo); 1347 } 1348 } 1349 1350 #ifdef INTRNG 1351 /* map with default for now */ 1352 if (type == SYS_RES_IRQ) 1353 start = (rman_res_t)acpi_map_intr(child, (u_int)start, 1354 acpi_get_handle(child)); 1355 #endif 1356 1357 /* If the resource is already allocated, fail. */ 1358 if (resource_list_busy(rl, type, rid)) 1359 return (EBUSY); 1360 1361 /* If the resource is already reserved, release it. */ 1362 if (resource_list_reserved(rl, type, rid)) 1363 resource_list_unreserve(rl, dev, child, type, rid); 1364 1365 /* Add the resource. */ 1366 end = (start + count - 1); 1367 resource_list_add(rl, type, rid, start, end, count); 1368 1369 /* Don't reserve resources until the system resources are allocated. */ 1370 if (!sc->acpi_resources_reserved) 1371 return (0); 1372 1373 /* Don't reserve system resources. */ 1374 if (ACPI_ID_PROBE(dev, child, sysres_ids, NULL) <= 0) 1375 return (0); 1376 1377 /* 1378 * Don't reserve IRQ resources. There are many sticky things to 1379 * get right otherwise (e.g. IRQs for psm, atkbd, and HPET when 1380 * using legacy routing). 1381 */ 1382 if (type == SYS_RES_IRQ) 1383 return (0); 1384 1385 /* 1386 * Don't reserve resources for CPU devices. Some of these 1387 * resources need to be allocated as shareable, but reservations 1388 * are always non-shareable. 1389 */ 1390 if (device_get_devclass(child) == devclass_find("cpu")) 1391 return (0); 1392 1393 /* 1394 * Reserve the resource. 1395 * 1396 * XXX: Ignores failure for now. Failure here is probably a 1397 * BIOS/firmware bug? 1398 */ 1399 resource_list_reserve(rl, dev, child, type, &rid, start, end, count, 0); 1400 return (0); 1401 } 1402 1403 static struct resource * 1404 acpi_alloc_resource(device_t bus, device_t child, int type, int *rid, 1405 rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 1406 { 1407 #ifndef INTRNG 1408 ACPI_RESOURCE ares; 1409 #endif 1410 struct acpi_device *ad; 1411 struct resource_list_entry *rle; 1412 struct resource_list *rl; 1413 struct resource *res; 1414 int isdefault = RMAN_IS_DEFAULT_RANGE(start, end); 1415 1416 /* 1417 * First attempt at allocating the resource. For direct children, 1418 * use resource_list_alloc() to handle reserved resources. For 1419 * other devices, pass the request up to our parent. 1420 */ 1421 if (bus == device_get_parent(child)) { 1422 ad = device_get_ivars(child); 1423 rl = &ad->ad_rl; 1424 1425 /* 1426 * Simulate the behavior of the ISA bus for direct children 1427 * devices. That is, if a non-default range is specified for 1428 * a resource that doesn't exist, use bus_set_resource() to 1429 * add the resource before allocating it. Note that these 1430 * resources will not be reserved. 1431 */ 1432 if (!isdefault && resource_list_find(rl, type, *rid) == NULL) 1433 resource_list_add(rl, type, *rid, start, end, count); 1434 res = resource_list_alloc(rl, bus, child, type, rid, start, end, count, 1435 flags); 1436 #ifndef INTRNG 1437 if (res != NULL && type == SYS_RES_IRQ) { 1438 /* 1439 * Since bus_config_intr() takes immediate effect, we cannot 1440 * configure the interrupt associated with a device when we 1441 * parse the resources but have to defer it until a driver 1442 * actually allocates the interrupt via bus_alloc_resource(). 1443 * 1444 * XXX: Should we handle the lookup failing? 1445 */ 1446 if (ACPI_SUCCESS(acpi_lookup_irq_resource(child, *rid, res, &ares))) 1447 acpi_config_intr(child, &ares); 1448 } 1449 #endif 1450 1451 /* 1452 * If this is an allocation of the "default" range for a given 1453 * RID, fetch the exact bounds for this resource from the 1454 * resource list entry to try to allocate the range from the 1455 * system resource regions. 1456 */ 1457 if (res == NULL && isdefault) { 1458 rle = resource_list_find(rl, type, *rid); 1459 if (rle != NULL) { 1460 start = rle->start; 1461 end = rle->end; 1462 count = rle->count; 1463 } 1464 } 1465 } else 1466 res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, type, rid, 1467 start, end, count, flags); 1468 1469 /* 1470 * If the first attempt failed and this is an allocation of a 1471 * specific range, try to satisfy the request via a suballocation 1472 * from our system resource regions. 1473 */ 1474 if (res == NULL && start + count - 1 == end) 1475 res = acpi_alloc_sysres(child, type, rid, start, end, count, flags); 1476 return (res); 1477 } 1478 1479 /* 1480 * Attempt to allocate a specific resource range from the system 1481 * resource ranges. Note that we only handle memory and I/O port 1482 * system resources. 1483 */ 1484 struct resource * 1485 acpi_alloc_sysres(device_t child, int type, int *rid, rman_res_t start, 1486 rman_res_t end, rman_res_t count, u_int flags) 1487 { 1488 struct rman *rm; 1489 struct resource *res; 1490 1491 switch (type) { 1492 case SYS_RES_IOPORT: 1493 rm = &acpi_rman_io; 1494 break; 1495 case SYS_RES_MEMORY: 1496 rm = &acpi_rman_mem; 1497 break; 1498 default: 1499 return (NULL); 1500 } 1501 1502 KASSERT(start + count - 1 == end, ("wildcard resource range")); 1503 res = rman_reserve_resource(rm, start, end, count, flags & ~RF_ACTIVE, 1504 child); 1505 if (res == NULL) 1506 return (NULL); 1507 1508 rman_set_rid(res, *rid); 1509 1510 /* If requested, activate the resource using the parent's method. */ 1511 if (flags & RF_ACTIVE) 1512 if (bus_activate_resource(child, type, *rid, res) != 0) { 1513 rman_release_resource(res); 1514 return (NULL); 1515 } 1516 1517 return (res); 1518 } 1519 1520 static int 1521 acpi_is_resource_managed(int type, struct resource *r) 1522 { 1523 1524 /* We only handle memory and IO resources through rman. */ 1525 switch (type) { 1526 case SYS_RES_IOPORT: 1527 return (rman_is_region_manager(r, &acpi_rman_io)); 1528 case SYS_RES_MEMORY: 1529 return (rman_is_region_manager(r, &acpi_rman_mem)); 1530 } 1531 return (0); 1532 } 1533 1534 static int 1535 acpi_adjust_resource(device_t bus, device_t child, int type, struct resource *r, 1536 rman_res_t start, rman_res_t end) 1537 { 1538 1539 if (acpi_is_resource_managed(type, r)) 1540 return (rman_adjust_resource(r, start, end)); 1541 return (bus_generic_adjust_resource(bus, child, type, r, start, end)); 1542 } 1543 1544 static int 1545 acpi_release_resource(device_t bus, device_t child, int type, int rid, 1546 struct resource *r) 1547 { 1548 int ret; 1549 1550 /* 1551 * If this resource belongs to one of our internal managers, 1552 * deactivate it and release it to the local pool. 1553 */ 1554 if (acpi_is_resource_managed(type, r)) { 1555 if (rman_get_flags(r) & RF_ACTIVE) { 1556 ret = bus_deactivate_resource(child, type, rid, r); 1557 if (ret != 0) 1558 return (ret); 1559 } 1560 return (rman_release_resource(r)); 1561 } 1562 1563 return (bus_generic_rl_release_resource(bus, child, type, rid, r)); 1564 } 1565 1566 static void 1567 acpi_delete_resource(device_t bus, device_t child, int type, int rid) 1568 { 1569 struct resource_list *rl; 1570 1571 rl = acpi_get_rlist(bus, child); 1572 if (resource_list_busy(rl, type, rid)) { 1573 device_printf(bus, "delete_resource: Resource still owned by child" 1574 " (type=%d, rid=%d)\n", type, rid); 1575 return; 1576 } 1577 resource_list_unreserve(rl, bus, child, type, rid); 1578 resource_list_delete(rl, type, rid); 1579 } 1580 1581 /* Allocate an IO port or memory resource, given its GAS. */ 1582 int 1583 acpi_bus_alloc_gas(device_t dev, int *type, int *rid, ACPI_GENERIC_ADDRESS *gas, 1584 struct resource **res, u_int flags) 1585 { 1586 int error, res_type; 1587 1588 error = ENOMEM; 1589 if (type == NULL || rid == NULL || gas == NULL || res == NULL) 1590 return (EINVAL); 1591 1592 /* We only support memory and IO spaces. */ 1593 switch (gas->SpaceId) { 1594 case ACPI_ADR_SPACE_SYSTEM_MEMORY: 1595 res_type = SYS_RES_MEMORY; 1596 break; 1597 case ACPI_ADR_SPACE_SYSTEM_IO: 1598 res_type = SYS_RES_IOPORT; 1599 break; 1600 default: 1601 return (EOPNOTSUPP); 1602 } 1603 1604 /* 1605 * If the register width is less than 8, assume the BIOS author means 1606 * it is a bit field and just allocate a byte. 1607 */ 1608 if (gas->BitWidth && gas->BitWidth < 8) 1609 gas->BitWidth = 8; 1610 1611 /* Validate the address after we're sure we support the space. */ 1612 if (gas->Address == 0 || gas->BitWidth == 0) 1613 return (EINVAL); 1614 1615 bus_set_resource(dev, res_type, *rid, gas->Address, 1616 gas->BitWidth / 8); 1617 *res = bus_alloc_resource_any(dev, res_type, rid, RF_ACTIVE | flags); 1618 if (*res != NULL) { 1619 *type = res_type; 1620 error = 0; 1621 } else 1622 bus_delete_resource(dev, res_type, *rid); 1623 1624 return (error); 1625 } 1626 1627 /* Probe _HID and _CID for compatible ISA PNP ids. */ 1628 static uint32_t 1629 acpi_isa_get_logicalid(device_t dev) 1630 { 1631 ACPI_DEVICE_INFO *devinfo; 1632 ACPI_HANDLE h; 1633 uint32_t pnpid; 1634 1635 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1636 1637 /* Fetch and validate the HID. */ 1638 if ((h = acpi_get_handle(dev)) == NULL || 1639 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 1640 return_VALUE (0); 1641 1642 pnpid = (devinfo->Valid & ACPI_VALID_HID) != 0 && 1643 devinfo->HardwareId.Length >= ACPI_EISAID_STRING_SIZE ? 1644 PNP_EISAID(devinfo->HardwareId.String) : 0; 1645 AcpiOsFree(devinfo); 1646 1647 return_VALUE (pnpid); 1648 } 1649 1650 static int 1651 acpi_isa_get_compatid(device_t dev, uint32_t *cids, int count) 1652 { 1653 ACPI_DEVICE_INFO *devinfo; 1654 ACPI_PNP_DEVICE_ID *ids; 1655 ACPI_HANDLE h; 1656 uint32_t *pnpid; 1657 int i, valid; 1658 1659 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1660 1661 pnpid = cids; 1662 1663 /* Fetch and validate the CID */ 1664 if ((h = acpi_get_handle(dev)) == NULL || 1665 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 1666 return_VALUE (0); 1667 1668 if ((devinfo->Valid & ACPI_VALID_CID) == 0) { 1669 AcpiOsFree(devinfo); 1670 return_VALUE (0); 1671 } 1672 1673 if (devinfo->CompatibleIdList.Count < count) 1674 count = devinfo->CompatibleIdList.Count; 1675 ids = devinfo->CompatibleIdList.Ids; 1676 for (i = 0, valid = 0; i < count; i++) 1677 if (ids[i].Length >= ACPI_EISAID_STRING_SIZE && 1678 strncmp(ids[i].String, "PNP", 3) == 0) { 1679 *pnpid++ = PNP_EISAID(ids[i].String); 1680 valid++; 1681 } 1682 AcpiOsFree(devinfo); 1683 1684 return_VALUE (valid); 1685 } 1686 1687 static int 1688 acpi_device_id_probe(device_t bus, device_t dev, char **ids, char **match) 1689 { 1690 ACPI_HANDLE h; 1691 ACPI_OBJECT_TYPE t; 1692 int rv; 1693 int i; 1694 1695 h = acpi_get_handle(dev); 1696 if (ids == NULL || h == NULL) 1697 return (ENXIO); 1698 t = acpi_get_type(dev); 1699 if (t != ACPI_TYPE_DEVICE && t != ACPI_TYPE_PROCESSOR) 1700 return (ENXIO); 1701 1702 /* Try to match one of the array of IDs with a HID or CID. */ 1703 for (i = 0; ids[i] != NULL; i++) { 1704 rv = acpi_MatchHid(h, ids[i]); 1705 if (rv == ACPI_MATCHHID_NOMATCH) 1706 continue; 1707 1708 if (match != NULL) { 1709 *match = ids[i]; 1710 } 1711 return ((rv == ACPI_MATCHHID_HID)? 1712 BUS_PROBE_DEFAULT : BUS_PROBE_LOW_PRIORITY); 1713 } 1714 return (ENXIO); 1715 } 1716 1717 static ACPI_STATUS 1718 acpi_device_eval_obj(device_t bus, device_t dev, ACPI_STRING pathname, 1719 ACPI_OBJECT_LIST *parameters, ACPI_BUFFER *ret) 1720 { 1721 ACPI_HANDLE h; 1722 1723 if (dev == NULL) 1724 h = ACPI_ROOT_OBJECT; 1725 else if ((h = acpi_get_handle(dev)) == NULL) 1726 return (AE_BAD_PARAMETER); 1727 return (AcpiEvaluateObject(h, pathname, parameters, ret)); 1728 } 1729 1730 int 1731 acpi_device_pwr_for_sleep(device_t bus, device_t dev, int *dstate) 1732 { 1733 struct acpi_softc *sc; 1734 ACPI_HANDLE handle; 1735 ACPI_STATUS status; 1736 char sxd[8]; 1737 1738 handle = acpi_get_handle(dev); 1739 1740 /* 1741 * XXX If we find these devices, don't try to power them down. 1742 * The serial and IRDA ports on my T23 hang the system when 1743 * set to D3 and it appears that such legacy devices may 1744 * need special handling in their drivers. 1745 */ 1746 if (dstate == NULL || handle == NULL || 1747 acpi_MatchHid(handle, "PNP0500") || 1748 acpi_MatchHid(handle, "PNP0501") || 1749 acpi_MatchHid(handle, "PNP0502") || 1750 acpi_MatchHid(handle, "PNP0510") || 1751 acpi_MatchHid(handle, "PNP0511")) 1752 return (ENXIO); 1753 1754 /* 1755 * Override next state with the value from _SxD, if present. 1756 * Note illegal _S0D is evaluated because some systems expect this. 1757 */ 1758 sc = device_get_softc(bus); 1759 snprintf(sxd, sizeof(sxd), "_S%dD", sc->acpi_sstate); 1760 status = acpi_GetInteger(handle, sxd, dstate); 1761 if (ACPI_FAILURE(status) && status != AE_NOT_FOUND) { 1762 device_printf(dev, "failed to get %s on %s: %s\n", sxd, 1763 acpi_name(handle), AcpiFormatException(status)); 1764 return (ENXIO); 1765 } 1766 1767 return (0); 1768 } 1769 1770 /* Callback arg for our implementation of walking the namespace. */ 1771 struct acpi_device_scan_ctx { 1772 acpi_scan_cb_t user_fn; 1773 void *arg; 1774 ACPI_HANDLE parent; 1775 }; 1776 1777 static ACPI_STATUS 1778 acpi_device_scan_cb(ACPI_HANDLE h, UINT32 level, void *arg, void **retval) 1779 { 1780 struct acpi_device_scan_ctx *ctx; 1781 device_t dev, old_dev; 1782 ACPI_STATUS status; 1783 ACPI_OBJECT_TYPE type; 1784 1785 /* 1786 * Skip this device if we think we'll have trouble with it or it is 1787 * the parent where the scan began. 1788 */ 1789 ctx = (struct acpi_device_scan_ctx *)arg; 1790 if (acpi_avoid(h) || h == ctx->parent) 1791 return (AE_OK); 1792 1793 /* If this is not a valid device type (e.g., a method), skip it. */ 1794 if (ACPI_FAILURE(AcpiGetType(h, &type))) 1795 return (AE_OK); 1796 if (type != ACPI_TYPE_DEVICE && type != ACPI_TYPE_PROCESSOR && 1797 type != ACPI_TYPE_THERMAL && type != ACPI_TYPE_POWER) 1798 return (AE_OK); 1799 1800 /* 1801 * Call the user function with the current device. If it is unchanged 1802 * afterwards, return. Otherwise, we update the handle to the new dev. 1803 */ 1804 old_dev = acpi_get_device(h); 1805 dev = old_dev; 1806 status = ctx->user_fn(h, &dev, level, ctx->arg); 1807 if (ACPI_FAILURE(status) || old_dev == dev) 1808 return (status); 1809 1810 /* Remove the old child and its connection to the handle. */ 1811 if (old_dev != NULL) 1812 device_delete_child(device_get_parent(old_dev), old_dev); 1813 1814 /* Recreate the handle association if the user created a device. */ 1815 if (dev != NULL) 1816 AcpiAttachData(h, acpi_fake_objhandler, dev); 1817 1818 return (AE_OK); 1819 } 1820 1821 static ACPI_STATUS 1822 acpi_device_scan_children(device_t bus, device_t dev, int max_depth, 1823 acpi_scan_cb_t user_fn, void *arg) 1824 { 1825 ACPI_HANDLE h; 1826 struct acpi_device_scan_ctx ctx; 1827 1828 if (acpi_disabled("children")) 1829 return (AE_OK); 1830 1831 if (dev == NULL) 1832 h = ACPI_ROOT_OBJECT; 1833 else if ((h = acpi_get_handle(dev)) == NULL) 1834 return (AE_BAD_PARAMETER); 1835 ctx.user_fn = user_fn; 1836 ctx.arg = arg; 1837 ctx.parent = h; 1838 return (AcpiWalkNamespace(ACPI_TYPE_ANY, h, max_depth, 1839 acpi_device_scan_cb, NULL, &ctx, NULL)); 1840 } 1841 1842 /* 1843 * Even though ACPI devices are not PCI, we use the PCI approach for setting 1844 * device power states since it's close enough to ACPI. 1845 */ 1846 int 1847 acpi_set_powerstate(device_t child, int state) 1848 { 1849 ACPI_HANDLE h; 1850 ACPI_STATUS status; 1851 1852 h = acpi_get_handle(child); 1853 if (state < ACPI_STATE_D0 || state > ACPI_D_STATES_MAX) 1854 return (EINVAL); 1855 if (h == NULL) 1856 return (0); 1857 1858 /* Ignore errors if the power methods aren't present. */ 1859 status = acpi_pwr_switch_consumer(h, state); 1860 if (ACPI_SUCCESS(status)) { 1861 if (bootverbose) 1862 device_printf(child, "set ACPI power state D%d on %s\n", 1863 state, acpi_name(h)); 1864 } else if (status != AE_NOT_FOUND) 1865 device_printf(child, 1866 "failed to set ACPI power state D%d on %s: %s\n", state, 1867 acpi_name(h), AcpiFormatException(status)); 1868 1869 return (0); 1870 } 1871 1872 static int 1873 acpi_isa_pnp_probe(device_t bus, device_t child, struct isa_pnp_id *ids) 1874 { 1875 int result, cid_count, i; 1876 uint32_t lid, cids[8]; 1877 1878 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1879 1880 /* 1881 * ISA-style drivers attached to ACPI may persist and 1882 * probe manually if we return ENOENT. We never want 1883 * that to happen, so don't ever return it. 1884 */ 1885 result = ENXIO; 1886 1887 /* Scan the supplied IDs for a match */ 1888 lid = acpi_isa_get_logicalid(child); 1889 cid_count = acpi_isa_get_compatid(child, cids, 8); 1890 while (ids && ids->ip_id) { 1891 if (lid == ids->ip_id) { 1892 result = 0; 1893 goto out; 1894 } 1895 for (i = 0; i < cid_count; i++) { 1896 if (cids[i] == ids->ip_id) { 1897 result = 0; 1898 goto out; 1899 } 1900 } 1901 ids++; 1902 } 1903 1904 out: 1905 if (result == 0 && ids->ip_desc) 1906 device_set_desc(child, ids->ip_desc); 1907 1908 return_VALUE (result); 1909 } 1910 1911 /* 1912 * Look for a MCFG table. If it is present, use the settings for 1913 * domain (segment) 0 to setup PCI config space access via the memory 1914 * map. 1915 * 1916 * On non-x86 architectures (arm64 for now), this will be done from the 1917 * PCI host bridge driver. 1918 */ 1919 static void 1920 acpi_enable_pcie(void) 1921 { 1922 #if defined(__i386__) || defined(__amd64__) 1923 ACPI_TABLE_HEADER *hdr; 1924 ACPI_MCFG_ALLOCATION *alloc, *end; 1925 ACPI_STATUS status; 1926 1927 status = AcpiGetTable(ACPI_SIG_MCFG, 1, &hdr); 1928 if (ACPI_FAILURE(status)) 1929 return; 1930 1931 end = (ACPI_MCFG_ALLOCATION *)((char *)hdr + hdr->Length); 1932 alloc = (ACPI_MCFG_ALLOCATION *)((ACPI_TABLE_MCFG *)hdr + 1); 1933 while (alloc < end) { 1934 if (alloc->PciSegment == 0) { 1935 pcie_cfgregopen(alloc->Address, alloc->StartBusNumber, 1936 alloc->EndBusNumber); 1937 return; 1938 } 1939 alloc++; 1940 } 1941 #endif 1942 } 1943 1944 static void 1945 acpi_platform_osc(device_t dev) 1946 { 1947 ACPI_HANDLE sb_handle; 1948 ACPI_STATUS status; 1949 uint32_t cap_set[2]; 1950 1951 /* 0811B06E-4A27-44F9-8D60-3CBBC22E7B48 */ 1952 static uint8_t acpi_platform_uuid[ACPI_UUID_LENGTH] = { 1953 0x6e, 0xb0, 0x11, 0x08, 0x27, 0x4a, 0xf9, 0x44, 1954 0x8d, 0x60, 0x3c, 0xbb, 0xc2, 0x2e, 0x7b, 0x48 1955 }; 1956 1957 if (ACPI_FAILURE(AcpiGetHandle(ACPI_ROOT_OBJECT, "\\_SB_", &sb_handle))) 1958 return; 1959 1960 cap_set[1] = 0x10; /* APEI Support */ 1961 status = acpi_EvaluateOSC(sb_handle, acpi_platform_uuid, 1, 1962 nitems(cap_set), cap_set, cap_set, false); 1963 if (ACPI_FAILURE(status)) { 1964 if (status == AE_NOT_FOUND) 1965 return; 1966 device_printf(dev, "_OSC failed: %s\n", 1967 AcpiFormatException(status)); 1968 return; 1969 } 1970 } 1971 1972 /* 1973 * Scan all of the ACPI namespace and attach child devices. 1974 * 1975 * We should only expect to find devices in the \_PR, \_TZ, \_SI, and 1976 * \_SB scopes, and \_PR and \_TZ became obsolete in the ACPI 2.0 spec. 1977 * However, in violation of the spec, some systems place their PCI link 1978 * devices in \, so we have to walk the whole namespace. We check the 1979 * type of namespace nodes, so this should be ok. 1980 */ 1981 static void 1982 acpi_probe_children(device_t bus) 1983 { 1984 1985 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1986 1987 /* 1988 * Scan the namespace and insert placeholders for all the devices that 1989 * we find. We also probe/attach any early devices. 1990 * 1991 * Note that we use AcpiWalkNamespace rather than AcpiGetDevices because 1992 * we want to create nodes for all devices, not just those that are 1993 * currently present. (This assumes that we don't want to create/remove 1994 * devices as they appear, which might be smarter.) 1995 */ 1996 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "namespace scan\n")); 1997 AcpiWalkNamespace(ACPI_TYPE_ANY, ACPI_ROOT_OBJECT, 100, acpi_probe_child, 1998 NULL, bus, NULL); 1999 2000 /* Pre-allocate resources for our rman from any sysresource devices. */ 2001 acpi_sysres_alloc(bus); 2002 2003 /* Reserve resources already allocated to children. */ 2004 acpi_reserve_resources(bus); 2005 2006 /* Create any static children by calling device identify methods. */ 2007 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "device identify routines\n")); 2008 bus_generic_probe(bus); 2009 2010 /* Probe/attach all children, created statically and from the namespace. */ 2011 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "acpi bus_generic_attach\n")); 2012 bus_generic_attach(bus); 2013 2014 /* Attach wake sysctls. */ 2015 acpi_wake_sysctl_walk(bus); 2016 2017 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "done attaching children\n")); 2018 return_VOID; 2019 } 2020 2021 /* 2022 * Determine the probe order for a given device. 2023 */ 2024 static void 2025 acpi_probe_order(ACPI_HANDLE handle, int *order) 2026 { 2027 ACPI_OBJECT_TYPE type; 2028 2029 /* 2030 * 0. CPUs 2031 * 1. I/O port and memory system resource holders 2032 * 2. Clocks and timers (to handle early accesses) 2033 * 3. Embedded controllers (to handle early accesses) 2034 * 4. PCI Link Devices 2035 */ 2036 AcpiGetType(handle, &type); 2037 if (type == ACPI_TYPE_PROCESSOR) 2038 *order = 0; 2039 else if (acpi_MatchHid(handle, "PNP0C01") || 2040 acpi_MatchHid(handle, "PNP0C02")) 2041 *order = 1; 2042 else if (acpi_MatchHid(handle, "PNP0100") || 2043 acpi_MatchHid(handle, "PNP0103") || 2044 acpi_MatchHid(handle, "PNP0B00")) 2045 *order = 2; 2046 else if (acpi_MatchHid(handle, "PNP0C09")) 2047 *order = 3; 2048 else if (acpi_MatchHid(handle, "PNP0C0F")) 2049 *order = 4; 2050 } 2051 2052 /* 2053 * Evaluate a child device and determine whether we might attach a device to 2054 * it. 2055 */ 2056 static ACPI_STATUS 2057 acpi_probe_child(ACPI_HANDLE handle, UINT32 level, void *context, void **status) 2058 { 2059 ACPI_DEVICE_INFO *devinfo; 2060 struct acpi_device *ad; 2061 struct acpi_prw_data prw; 2062 ACPI_OBJECT_TYPE type; 2063 ACPI_HANDLE h; 2064 device_t bus, child; 2065 char *handle_str; 2066 int order; 2067 2068 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 2069 2070 if (acpi_disabled("children")) 2071 return_ACPI_STATUS (AE_OK); 2072 2073 /* Skip this device if we think we'll have trouble with it. */ 2074 if (acpi_avoid(handle)) 2075 return_ACPI_STATUS (AE_OK); 2076 2077 bus = (device_t)context; 2078 if (ACPI_SUCCESS(AcpiGetType(handle, &type))) { 2079 handle_str = acpi_name(handle); 2080 switch (type) { 2081 case ACPI_TYPE_DEVICE: 2082 /* 2083 * Since we scan from \, be sure to skip system scope objects. 2084 * \_SB_ and \_TZ_ are defined in ACPICA as devices to work around 2085 * BIOS bugs. For example, \_SB_ is to allow \_SB_._INI to be run 2086 * during the initialization and \_TZ_ is to support Notify() on it. 2087 */ 2088 if (strcmp(handle_str, "\\_SB_") == 0 || 2089 strcmp(handle_str, "\\_TZ_") == 0) 2090 break; 2091 if (acpi_parse_prw(handle, &prw) == 0) 2092 AcpiSetupGpeForWake(handle, prw.gpe_handle, prw.gpe_bit); 2093 2094 /* 2095 * Ignore devices that do not have a _HID or _CID. They should 2096 * be discovered by other buses (e.g. the PCI bus driver). 2097 */ 2098 if (!acpi_has_hid(handle)) 2099 break; 2100 /* FALLTHROUGH */ 2101 case ACPI_TYPE_PROCESSOR: 2102 case ACPI_TYPE_THERMAL: 2103 case ACPI_TYPE_POWER: 2104 /* 2105 * Create a placeholder device for this node. Sort the 2106 * placeholder so that the probe/attach passes will run 2107 * breadth-first. Orders less than ACPI_DEV_BASE_ORDER 2108 * are reserved for special objects (i.e., system 2109 * resources). 2110 */ 2111 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "scanning '%s'\n", handle_str)); 2112 order = level * 10 + ACPI_DEV_BASE_ORDER; 2113 acpi_probe_order(handle, &order); 2114 child = BUS_ADD_CHILD(bus, order, NULL, -1); 2115 if (child == NULL) 2116 break; 2117 2118 /* Associate the handle with the device_t and vice versa. */ 2119 acpi_set_handle(child, handle); 2120 AcpiAttachData(handle, acpi_fake_objhandler, child); 2121 2122 /* 2123 * Check that the device is present. If it's not present, 2124 * leave it disabled (so that we have a device_t attached to 2125 * the handle, but we don't probe it). 2126 * 2127 * XXX PCI link devices sometimes report "present" but not 2128 * "functional" (i.e. if disabled). Go ahead and probe them 2129 * anyway since we may enable them later. 2130 */ 2131 if (type == ACPI_TYPE_DEVICE && !acpi_DeviceIsPresent(child)) { 2132 /* Never disable PCI link devices. */ 2133 if (acpi_MatchHid(handle, "PNP0C0F")) 2134 break; 2135 /* 2136 * Docking stations should remain enabled since the system 2137 * may be undocked at boot. 2138 */ 2139 if (ACPI_SUCCESS(AcpiGetHandle(handle, "_DCK", &h))) 2140 break; 2141 2142 device_disable(child); 2143 break; 2144 } 2145 2146 /* 2147 * Get the device's resource settings and attach them. 2148 * Note that if the device has _PRS but no _CRS, we need 2149 * to decide when it's appropriate to try to configure the 2150 * device. Ignore the return value here; it's OK for the 2151 * device not to have any resources. 2152 */ 2153 acpi_parse_resources(child, handle, &acpi_res_parse_set, NULL); 2154 2155 ad = device_get_ivars(child); 2156 ad->ad_cls_class = 0xffffff; 2157 if (ACPI_SUCCESS(AcpiGetObjectInfo(handle, &devinfo))) { 2158 if ((devinfo->Valid & ACPI_VALID_CLS) != 0 && 2159 devinfo->ClassCode.Length >= ACPI_PCICLS_STRING_SIZE) { 2160 ad->ad_cls_class = strtoul(devinfo->ClassCode.String, 2161 NULL, 16); 2162 } 2163 AcpiOsFree(devinfo); 2164 } 2165 break; 2166 } 2167 } 2168 2169 return_ACPI_STATUS (AE_OK); 2170 } 2171 2172 /* 2173 * AcpiAttachData() requires an object handler but never uses it. This is a 2174 * placeholder object handler so we can store a device_t in an ACPI_HANDLE. 2175 */ 2176 void 2177 acpi_fake_objhandler(ACPI_HANDLE h, void *data) 2178 { 2179 } 2180 2181 static void 2182 acpi_shutdown_final(void *arg, int howto) 2183 { 2184 struct acpi_softc *sc = (struct acpi_softc *)arg; 2185 register_t intr; 2186 ACPI_STATUS status; 2187 2188 /* 2189 * XXX Shutdown code should only run on the BSP (cpuid 0). 2190 * Some chipsets do not power off the system correctly if called from 2191 * an AP. 2192 */ 2193 if ((howto & RB_POWEROFF) != 0) { 2194 status = AcpiEnterSleepStatePrep(ACPI_STATE_S5); 2195 if (ACPI_FAILURE(status)) { 2196 device_printf(sc->acpi_dev, "AcpiEnterSleepStatePrep failed - %s\n", 2197 AcpiFormatException(status)); 2198 return; 2199 } 2200 device_printf(sc->acpi_dev, "Powering system off\n"); 2201 intr = intr_disable(); 2202 status = AcpiEnterSleepState(ACPI_STATE_S5); 2203 if (ACPI_FAILURE(status)) { 2204 intr_restore(intr); 2205 device_printf(sc->acpi_dev, "power-off failed - %s\n", 2206 AcpiFormatException(status)); 2207 } else { 2208 DELAY(1000000); 2209 intr_restore(intr); 2210 device_printf(sc->acpi_dev, "power-off failed - timeout\n"); 2211 } 2212 } else if ((howto & RB_HALT) == 0 && sc->acpi_handle_reboot) { 2213 /* Reboot using the reset register. */ 2214 status = AcpiReset(); 2215 if (ACPI_SUCCESS(status)) { 2216 DELAY(1000000); 2217 device_printf(sc->acpi_dev, "reset failed - timeout\n"); 2218 } else if (status != AE_NOT_EXIST) 2219 device_printf(sc->acpi_dev, "reset failed - %s\n", 2220 AcpiFormatException(status)); 2221 } else if (sc->acpi_do_disable && !KERNEL_PANICKED()) { 2222 /* 2223 * Only disable ACPI if the user requested. On some systems, writing 2224 * the disable value to SMI_CMD hangs the system. 2225 */ 2226 device_printf(sc->acpi_dev, "Shutting down\n"); 2227 AcpiTerminate(); 2228 } 2229 } 2230 2231 static void 2232 acpi_enable_fixed_events(struct acpi_softc *sc) 2233 { 2234 static int first_time = 1; 2235 2236 /* Enable and clear fixed events and install handlers. */ 2237 if ((AcpiGbl_FADT.Flags & ACPI_FADT_POWER_BUTTON) == 0) { 2238 AcpiClearEvent(ACPI_EVENT_POWER_BUTTON); 2239 AcpiInstallFixedEventHandler(ACPI_EVENT_POWER_BUTTON, 2240 acpi_event_power_button_sleep, sc); 2241 if (first_time) 2242 device_printf(sc->acpi_dev, "Power Button (fixed)\n"); 2243 } 2244 if ((AcpiGbl_FADT.Flags & ACPI_FADT_SLEEP_BUTTON) == 0) { 2245 AcpiClearEvent(ACPI_EVENT_SLEEP_BUTTON); 2246 AcpiInstallFixedEventHandler(ACPI_EVENT_SLEEP_BUTTON, 2247 acpi_event_sleep_button_sleep, sc); 2248 if (first_time) 2249 device_printf(sc->acpi_dev, "Sleep Button (fixed)\n"); 2250 } 2251 2252 first_time = 0; 2253 } 2254 2255 /* 2256 * Returns true if the device is actually present and should 2257 * be attached to. This requires the present, enabled, UI-visible 2258 * and diagnostics-passed bits to be set. 2259 */ 2260 BOOLEAN 2261 acpi_DeviceIsPresent(device_t dev) 2262 { 2263 ACPI_HANDLE h; 2264 UINT32 s; 2265 ACPI_STATUS status; 2266 2267 h = acpi_get_handle(dev); 2268 if (h == NULL) 2269 return (FALSE); 2270 2271 #ifdef ACPI_EARLY_EPYC_WAR 2272 /* 2273 * Certain Treadripper boards always returns 0 for FreeBSD because it 2274 * only returns non-zero for the OS string "Windows 2015". Otherwise it 2275 * will return zero. Force them to always be treated as present. 2276 * Beata versions were worse: they always returned 0. 2277 */ 2278 if (acpi_MatchHid(h, "AMDI0020") || acpi_MatchHid(h, "AMDI0010")) 2279 return (TRUE); 2280 #endif 2281 2282 status = acpi_GetInteger(h, "_STA", &s); 2283 2284 /* 2285 * If no _STA method or if it failed, then assume that 2286 * the device is present. 2287 */ 2288 if (ACPI_FAILURE(status)) 2289 return (TRUE); 2290 2291 return (ACPI_DEVICE_PRESENT(s) ? TRUE : FALSE); 2292 } 2293 2294 /* 2295 * Returns true if the battery is actually present and inserted. 2296 */ 2297 BOOLEAN 2298 acpi_BatteryIsPresent(device_t dev) 2299 { 2300 ACPI_HANDLE h; 2301 UINT32 s; 2302 ACPI_STATUS status; 2303 2304 h = acpi_get_handle(dev); 2305 if (h == NULL) 2306 return (FALSE); 2307 status = acpi_GetInteger(h, "_STA", &s); 2308 2309 /* 2310 * If no _STA method or if it failed, then assume that 2311 * the device is present. 2312 */ 2313 if (ACPI_FAILURE(status)) 2314 return (TRUE); 2315 2316 return (ACPI_BATTERY_PRESENT(s) ? TRUE : FALSE); 2317 } 2318 2319 /* 2320 * Returns true if a device has at least one valid device ID. 2321 */ 2322 BOOLEAN 2323 acpi_has_hid(ACPI_HANDLE h) 2324 { 2325 ACPI_DEVICE_INFO *devinfo; 2326 BOOLEAN ret; 2327 2328 if (h == NULL || 2329 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 2330 return (FALSE); 2331 2332 ret = FALSE; 2333 if ((devinfo->Valid & ACPI_VALID_HID) != 0) 2334 ret = TRUE; 2335 else if ((devinfo->Valid & ACPI_VALID_CID) != 0) 2336 if (devinfo->CompatibleIdList.Count > 0) 2337 ret = TRUE; 2338 2339 AcpiOsFree(devinfo); 2340 return (ret); 2341 } 2342 2343 /* 2344 * Match a HID string against a handle 2345 * returns ACPI_MATCHHID_HID if _HID match 2346 * ACPI_MATCHHID_CID if _CID match and not _HID match. 2347 * ACPI_MATCHHID_NOMATCH=0 if no match. 2348 */ 2349 int 2350 acpi_MatchHid(ACPI_HANDLE h, const char *hid) 2351 { 2352 ACPI_DEVICE_INFO *devinfo; 2353 BOOLEAN ret; 2354 int i; 2355 2356 if (hid == NULL || h == NULL || 2357 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 2358 return (ACPI_MATCHHID_NOMATCH); 2359 2360 ret = ACPI_MATCHHID_NOMATCH; 2361 if ((devinfo->Valid & ACPI_VALID_HID) != 0 && 2362 strcmp(hid, devinfo->HardwareId.String) == 0) 2363 ret = ACPI_MATCHHID_HID; 2364 else if ((devinfo->Valid & ACPI_VALID_CID) != 0) 2365 for (i = 0; i < devinfo->CompatibleIdList.Count; i++) { 2366 if (strcmp(hid, devinfo->CompatibleIdList.Ids[i].String) == 0) { 2367 ret = ACPI_MATCHHID_CID; 2368 break; 2369 } 2370 } 2371 2372 AcpiOsFree(devinfo); 2373 return (ret); 2374 } 2375 2376 /* 2377 * Return the handle of a named object within our scope, ie. that of (parent) 2378 * or one if its parents. 2379 */ 2380 ACPI_STATUS 2381 acpi_GetHandleInScope(ACPI_HANDLE parent, char *path, ACPI_HANDLE *result) 2382 { 2383 ACPI_HANDLE r; 2384 ACPI_STATUS status; 2385 2386 /* Walk back up the tree to the root */ 2387 for (;;) { 2388 status = AcpiGetHandle(parent, path, &r); 2389 if (ACPI_SUCCESS(status)) { 2390 *result = r; 2391 return (AE_OK); 2392 } 2393 /* XXX Return error here? */ 2394 if (status != AE_NOT_FOUND) 2395 return (AE_OK); 2396 if (ACPI_FAILURE(AcpiGetParent(parent, &r))) 2397 return (AE_NOT_FOUND); 2398 parent = r; 2399 } 2400 } 2401 2402 /* 2403 * Allocate a buffer with a preset data size. 2404 */ 2405 ACPI_BUFFER * 2406 acpi_AllocBuffer(int size) 2407 { 2408 ACPI_BUFFER *buf; 2409 2410 if ((buf = malloc(size + sizeof(*buf), M_ACPIDEV, M_NOWAIT)) == NULL) 2411 return (NULL); 2412 buf->Length = size; 2413 buf->Pointer = (void *)(buf + 1); 2414 return (buf); 2415 } 2416 2417 ACPI_STATUS 2418 acpi_SetInteger(ACPI_HANDLE handle, char *path, UINT32 number) 2419 { 2420 ACPI_OBJECT arg1; 2421 ACPI_OBJECT_LIST args; 2422 2423 arg1.Type = ACPI_TYPE_INTEGER; 2424 arg1.Integer.Value = number; 2425 args.Count = 1; 2426 args.Pointer = &arg1; 2427 2428 return (AcpiEvaluateObject(handle, path, &args, NULL)); 2429 } 2430 2431 /* 2432 * Evaluate a path that should return an integer. 2433 */ 2434 ACPI_STATUS 2435 acpi_GetInteger(ACPI_HANDLE handle, char *path, UINT32 *number) 2436 { 2437 ACPI_STATUS status; 2438 ACPI_BUFFER buf; 2439 ACPI_OBJECT param; 2440 2441 if (handle == NULL) 2442 handle = ACPI_ROOT_OBJECT; 2443 2444 /* 2445 * Assume that what we've been pointed at is an Integer object, or 2446 * a method that will return an Integer. 2447 */ 2448 buf.Pointer = ¶m; 2449 buf.Length = sizeof(param); 2450 status = AcpiEvaluateObject(handle, path, NULL, &buf); 2451 if (ACPI_SUCCESS(status)) { 2452 if (param.Type == ACPI_TYPE_INTEGER) 2453 *number = param.Integer.Value; 2454 else 2455 status = AE_TYPE; 2456 } 2457 2458 /* 2459 * In some applications, a method that's expected to return an Integer 2460 * may instead return a Buffer (probably to simplify some internal 2461 * arithmetic). We'll try to fetch whatever it is, and if it's a Buffer, 2462 * convert it into an Integer as best we can. 2463 * 2464 * This is a hack. 2465 */ 2466 if (status == AE_BUFFER_OVERFLOW) { 2467 if ((buf.Pointer = AcpiOsAllocate(buf.Length)) == NULL) { 2468 status = AE_NO_MEMORY; 2469 } else { 2470 status = AcpiEvaluateObject(handle, path, NULL, &buf); 2471 if (ACPI_SUCCESS(status)) 2472 status = acpi_ConvertBufferToInteger(&buf, number); 2473 AcpiOsFree(buf.Pointer); 2474 } 2475 } 2476 return (status); 2477 } 2478 2479 ACPI_STATUS 2480 acpi_ConvertBufferToInteger(ACPI_BUFFER *bufp, UINT32 *number) 2481 { 2482 ACPI_OBJECT *p; 2483 UINT8 *val; 2484 int i; 2485 2486 p = (ACPI_OBJECT *)bufp->Pointer; 2487 if (p->Type == ACPI_TYPE_INTEGER) { 2488 *number = p->Integer.Value; 2489 return (AE_OK); 2490 } 2491 if (p->Type != ACPI_TYPE_BUFFER) 2492 return (AE_TYPE); 2493 if (p->Buffer.Length > sizeof(int)) 2494 return (AE_BAD_DATA); 2495 2496 *number = 0; 2497 val = p->Buffer.Pointer; 2498 for (i = 0; i < p->Buffer.Length; i++) 2499 *number += val[i] << (i * 8); 2500 return (AE_OK); 2501 } 2502 2503 /* 2504 * Iterate over the elements of an a package object, calling the supplied 2505 * function for each element. 2506 * 2507 * XXX possible enhancement might be to abort traversal on error. 2508 */ 2509 ACPI_STATUS 2510 acpi_ForeachPackageObject(ACPI_OBJECT *pkg, 2511 void (*func)(ACPI_OBJECT *comp, void *arg), void *arg) 2512 { 2513 ACPI_OBJECT *comp; 2514 int i; 2515 2516 if (pkg == NULL || pkg->Type != ACPI_TYPE_PACKAGE) 2517 return (AE_BAD_PARAMETER); 2518 2519 /* Iterate over components */ 2520 i = 0; 2521 comp = pkg->Package.Elements; 2522 for (; i < pkg->Package.Count; i++, comp++) 2523 func(comp, arg); 2524 2525 return (AE_OK); 2526 } 2527 2528 /* 2529 * Find the (index)th resource object in a set. 2530 */ 2531 ACPI_STATUS 2532 acpi_FindIndexedResource(ACPI_BUFFER *buf, int index, ACPI_RESOURCE **resp) 2533 { 2534 ACPI_RESOURCE *rp; 2535 int i; 2536 2537 rp = (ACPI_RESOURCE *)buf->Pointer; 2538 i = index; 2539 while (i-- > 0) { 2540 /* Range check */ 2541 if (rp > (ACPI_RESOURCE *)((u_int8_t *)buf->Pointer + buf->Length)) 2542 return (AE_BAD_PARAMETER); 2543 2544 /* Check for terminator */ 2545 if (rp->Type == ACPI_RESOURCE_TYPE_END_TAG || rp->Length == 0) 2546 return (AE_NOT_FOUND); 2547 rp = ACPI_NEXT_RESOURCE(rp); 2548 } 2549 if (resp != NULL) 2550 *resp = rp; 2551 2552 return (AE_OK); 2553 } 2554 2555 /* 2556 * Append an ACPI_RESOURCE to an ACPI_BUFFER. 2557 * 2558 * Given a pointer to an ACPI_RESOURCE structure, expand the ACPI_BUFFER 2559 * provided to contain it. If the ACPI_BUFFER is empty, allocate a sensible 2560 * backing block. If the ACPI_RESOURCE is NULL, return an empty set of 2561 * resources. 2562 */ 2563 #define ACPI_INITIAL_RESOURCE_BUFFER_SIZE 512 2564 2565 ACPI_STATUS 2566 acpi_AppendBufferResource(ACPI_BUFFER *buf, ACPI_RESOURCE *res) 2567 { 2568 ACPI_RESOURCE *rp; 2569 void *newp; 2570 2571 /* Initialise the buffer if necessary. */ 2572 if (buf->Pointer == NULL) { 2573 buf->Length = ACPI_INITIAL_RESOURCE_BUFFER_SIZE; 2574 if ((buf->Pointer = AcpiOsAllocate(buf->Length)) == NULL) 2575 return (AE_NO_MEMORY); 2576 rp = (ACPI_RESOURCE *)buf->Pointer; 2577 rp->Type = ACPI_RESOURCE_TYPE_END_TAG; 2578 rp->Length = ACPI_RS_SIZE_MIN; 2579 } 2580 if (res == NULL) 2581 return (AE_OK); 2582 2583 /* 2584 * Scan the current buffer looking for the terminator. 2585 * This will either find the terminator or hit the end 2586 * of the buffer and return an error. 2587 */ 2588 rp = (ACPI_RESOURCE *)buf->Pointer; 2589 for (;;) { 2590 /* Range check, don't go outside the buffer */ 2591 if (rp >= (ACPI_RESOURCE *)((u_int8_t *)buf->Pointer + buf->Length)) 2592 return (AE_BAD_PARAMETER); 2593 if (rp->Type == ACPI_RESOURCE_TYPE_END_TAG || rp->Length == 0) 2594 break; 2595 rp = ACPI_NEXT_RESOURCE(rp); 2596 } 2597 2598 /* 2599 * Check the size of the buffer and expand if required. 2600 * 2601 * Required size is: 2602 * size of existing resources before terminator + 2603 * size of new resource and header + 2604 * size of terminator. 2605 * 2606 * Note that this loop should really only run once, unless 2607 * for some reason we are stuffing a *really* huge resource. 2608 */ 2609 while ((((u_int8_t *)rp - (u_int8_t *)buf->Pointer) + 2610 res->Length + ACPI_RS_SIZE_NO_DATA + 2611 ACPI_RS_SIZE_MIN) >= buf->Length) { 2612 if ((newp = AcpiOsAllocate(buf->Length * 2)) == NULL) 2613 return (AE_NO_MEMORY); 2614 bcopy(buf->Pointer, newp, buf->Length); 2615 rp = (ACPI_RESOURCE *)((u_int8_t *)newp + 2616 ((u_int8_t *)rp - (u_int8_t *)buf->Pointer)); 2617 AcpiOsFree(buf->Pointer); 2618 buf->Pointer = newp; 2619 buf->Length += buf->Length; 2620 } 2621 2622 /* Insert the new resource. */ 2623 bcopy(res, rp, res->Length + ACPI_RS_SIZE_NO_DATA); 2624 2625 /* And add the terminator. */ 2626 rp = ACPI_NEXT_RESOURCE(rp); 2627 rp->Type = ACPI_RESOURCE_TYPE_END_TAG; 2628 rp->Length = ACPI_RS_SIZE_MIN; 2629 2630 return (AE_OK); 2631 } 2632 2633 UINT64 2634 acpi_DSMQuery(ACPI_HANDLE h, const uint8_t *uuid, int revision) 2635 { 2636 /* 2637 * ACPI spec 9.1.1 defines this. 2638 * 2639 * "Arg2: Function Index Represents a specific function whose meaning is 2640 * specific to the UUID and Revision ID. Function indices should start 2641 * with 1. Function number zero is a query function (see the special 2642 * return code defined below)." 2643 */ 2644 ACPI_BUFFER buf; 2645 ACPI_OBJECT *obj; 2646 UINT64 ret = 0; 2647 int i; 2648 2649 if (!ACPI_SUCCESS(acpi_EvaluateDSM(h, uuid, revision, 0, NULL, &buf))) { 2650 ACPI_INFO(("Failed to enumerate DSM functions\n")); 2651 return (0); 2652 } 2653 2654 obj = (ACPI_OBJECT *)buf.Pointer; 2655 KASSERT(obj, ("Object not allowed to be NULL\n")); 2656 2657 /* 2658 * From ACPI 6.2 spec 9.1.1: 2659 * If Function Index = 0, a Buffer containing a function index bitfield. 2660 * Otherwise, the return value and type depends on the UUID and revision 2661 * ID (see below). 2662 */ 2663 switch (obj->Type) { 2664 case ACPI_TYPE_BUFFER: 2665 for (i = 0; i < MIN(obj->Buffer.Length, sizeof(ret)); i++) 2666 ret |= (((uint64_t)obj->Buffer.Pointer[i]) << (i * 8)); 2667 break; 2668 case ACPI_TYPE_INTEGER: 2669 ACPI_BIOS_WARNING((AE_INFO, 2670 "Possibly buggy BIOS with ACPI_TYPE_INTEGER for function enumeration\n")); 2671 ret = obj->Integer.Value; 2672 break; 2673 default: 2674 ACPI_WARNING((AE_INFO, "Unexpected return type %u\n", obj->Type)); 2675 }; 2676 2677 AcpiOsFree(obj); 2678 return ret; 2679 } 2680 2681 /* 2682 * DSM may return multiple types depending on the function. It is therefore 2683 * unsafe to use the typed evaluation. It is highly recommended that the caller 2684 * check the type of the returned object. 2685 */ 2686 ACPI_STATUS 2687 acpi_EvaluateDSM(ACPI_HANDLE handle, const uint8_t *uuid, int revision, 2688 UINT64 function, ACPI_OBJECT *package, ACPI_BUFFER *out_buf) 2689 { 2690 return (acpi_EvaluateDSMTyped(handle, uuid, revision, function, 2691 package, out_buf, ACPI_TYPE_ANY)); 2692 } 2693 2694 ACPI_STATUS 2695 acpi_EvaluateDSMTyped(ACPI_HANDLE handle, const uint8_t *uuid, int revision, 2696 UINT64 function, ACPI_OBJECT *package, ACPI_BUFFER *out_buf, 2697 ACPI_OBJECT_TYPE type) 2698 { 2699 ACPI_OBJECT arg[4]; 2700 ACPI_OBJECT_LIST arglist; 2701 ACPI_BUFFER buf; 2702 ACPI_STATUS status; 2703 2704 if (out_buf == NULL) 2705 return (AE_NO_MEMORY); 2706 2707 arg[0].Type = ACPI_TYPE_BUFFER; 2708 arg[0].Buffer.Length = ACPI_UUID_LENGTH; 2709 arg[0].Buffer.Pointer = __DECONST(uint8_t *, uuid); 2710 arg[1].Type = ACPI_TYPE_INTEGER; 2711 arg[1].Integer.Value = revision; 2712 arg[2].Type = ACPI_TYPE_INTEGER; 2713 arg[2].Integer.Value = function; 2714 if (package) { 2715 arg[3] = *package; 2716 } else { 2717 arg[3].Type = ACPI_TYPE_PACKAGE; 2718 arg[3].Package.Count = 0; 2719 arg[3].Package.Elements = NULL; 2720 } 2721 2722 arglist.Pointer = arg; 2723 arglist.Count = 4; 2724 buf.Pointer = NULL; 2725 buf.Length = ACPI_ALLOCATE_BUFFER; 2726 status = AcpiEvaluateObjectTyped(handle, "_DSM", &arglist, &buf, type); 2727 if (ACPI_FAILURE(status)) 2728 return (status); 2729 2730 KASSERT(ACPI_SUCCESS(status), ("Unexpected status")); 2731 2732 *out_buf = buf; 2733 return (status); 2734 } 2735 2736 ACPI_STATUS 2737 acpi_EvaluateOSC(ACPI_HANDLE handle, uint8_t *uuid, int revision, int count, 2738 uint32_t *caps_in, uint32_t *caps_out, bool query) 2739 { 2740 ACPI_OBJECT arg[4], *ret; 2741 ACPI_OBJECT_LIST arglist; 2742 ACPI_BUFFER buf; 2743 ACPI_STATUS status; 2744 2745 arglist.Pointer = arg; 2746 arglist.Count = 4; 2747 arg[0].Type = ACPI_TYPE_BUFFER; 2748 arg[0].Buffer.Length = ACPI_UUID_LENGTH; 2749 arg[0].Buffer.Pointer = uuid; 2750 arg[1].Type = ACPI_TYPE_INTEGER; 2751 arg[1].Integer.Value = revision; 2752 arg[2].Type = ACPI_TYPE_INTEGER; 2753 arg[2].Integer.Value = count; 2754 arg[3].Type = ACPI_TYPE_BUFFER; 2755 arg[3].Buffer.Length = count * sizeof(*caps_in); 2756 arg[3].Buffer.Pointer = (uint8_t *)caps_in; 2757 caps_in[0] = query ? 1 : 0; 2758 buf.Pointer = NULL; 2759 buf.Length = ACPI_ALLOCATE_BUFFER; 2760 status = AcpiEvaluateObjectTyped(handle, "_OSC", &arglist, &buf, 2761 ACPI_TYPE_BUFFER); 2762 if (ACPI_FAILURE(status)) 2763 return (status); 2764 if (caps_out != NULL) { 2765 ret = buf.Pointer; 2766 if (ret->Buffer.Length != count * sizeof(*caps_out)) { 2767 AcpiOsFree(buf.Pointer); 2768 return (AE_BUFFER_OVERFLOW); 2769 } 2770 bcopy(ret->Buffer.Pointer, caps_out, ret->Buffer.Length); 2771 } 2772 AcpiOsFree(buf.Pointer); 2773 return (status); 2774 } 2775 2776 /* 2777 * Set interrupt model. 2778 */ 2779 ACPI_STATUS 2780 acpi_SetIntrModel(int model) 2781 { 2782 2783 return (acpi_SetInteger(ACPI_ROOT_OBJECT, "_PIC", model)); 2784 } 2785 2786 /* 2787 * Walk subtables of a table and call a callback routine for each 2788 * subtable. The caller should provide the first subtable and a 2789 * pointer to the end of the table. This can be used to walk tables 2790 * such as MADT and SRAT that use subtable entries. 2791 */ 2792 void 2793 acpi_walk_subtables(void *first, void *end, acpi_subtable_handler *handler, 2794 void *arg) 2795 { 2796 ACPI_SUBTABLE_HEADER *entry; 2797 2798 for (entry = first; (void *)entry < end; ) { 2799 /* Avoid an infinite loop if we hit a bogus entry. */ 2800 if (entry->Length < sizeof(ACPI_SUBTABLE_HEADER)) 2801 return; 2802 2803 handler(entry, arg); 2804 entry = ACPI_ADD_PTR(ACPI_SUBTABLE_HEADER, entry, entry->Length); 2805 } 2806 } 2807 2808 /* 2809 * DEPRECATED. This interface has serious deficiencies and will be 2810 * removed. 2811 * 2812 * Immediately enter the sleep state. In the old model, acpiconf(8) ran 2813 * rc.suspend and rc.resume so we don't have to notify devd(8) to do this. 2814 */ 2815 ACPI_STATUS 2816 acpi_SetSleepState(struct acpi_softc *sc, int state) 2817 { 2818 static int once; 2819 2820 if (!once) { 2821 device_printf(sc->acpi_dev, 2822 "warning: acpi_SetSleepState() deprecated, need to update your software\n"); 2823 once = 1; 2824 } 2825 return (acpi_EnterSleepState(sc, state)); 2826 } 2827 2828 #if defined(__amd64__) || defined(__i386__) 2829 static void 2830 acpi_sleep_force_task(void *context) 2831 { 2832 struct acpi_softc *sc = (struct acpi_softc *)context; 2833 2834 if (ACPI_FAILURE(acpi_EnterSleepState(sc, sc->acpi_next_sstate))) 2835 device_printf(sc->acpi_dev, "force sleep state S%d failed\n", 2836 sc->acpi_next_sstate); 2837 } 2838 2839 static void 2840 acpi_sleep_force(void *arg) 2841 { 2842 struct acpi_softc *sc = (struct acpi_softc *)arg; 2843 2844 device_printf(sc->acpi_dev, 2845 "suspend request timed out, forcing sleep now\n"); 2846 /* 2847 * XXX Suspending from callout causes freezes in DEVICE_SUSPEND(). 2848 * Suspend from acpi_task thread instead. 2849 */ 2850 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 2851 acpi_sleep_force_task, sc))) 2852 device_printf(sc->acpi_dev, "AcpiOsExecute() for sleeping failed\n"); 2853 } 2854 #endif 2855 2856 /* 2857 * Request that the system enter the given suspend state. All /dev/apm 2858 * devices and devd(8) will be notified. Userland then has a chance to 2859 * save state and acknowledge the request. The system sleeps once all 2860 * acks are in. 2861 */ 2862 int 2863 acpi_ReqSleepState(struct acpi_softc *sc, int state) 2864 { 2865 #if defined(__amd64__) || defined(__i386__) 2866 struct apm_clone_data *clone; 2867 ACPI_STATUS status; 2868 2869 if (state < ACPI_STATE_S1 || state > ACPI_S_STATES_MAX) 2870 return (EINVAL); 2871 if (!acpi_sleep_states[state]) 2872 return (EOPNOTSUPP); 2873 2874 /* 2875 * If a reboot/shutdown/suspend request is already in progress or 2876 * suspend is blocked due to an upcoming shutdown, just return. 2877 */ 2878 if (rebooting || sc->acpi_next_sstate != 0 || suspend_blocked) { 2879 return (0); 2880 } 2881 2882 /* Wait until sleep is enabled. */ 2883 while (sc->acpi_sleep_disabled) { 2884 AcpiOsSleep(1000); 2885 } 2886 2887 ACPI_LOCK(acpi); 2888 2889 sc->acpi_next_sstate = state; 2890 2891 /* S5 (soft-off) should be entered directly with no waiting. */ 2892 if (state == ACPI_STATE_S5) { 2893 ACPI_UNLOCK(acpi); 2894 status = acpi_EnterSleepState(sc, state); 2895 return (ACPI_SUCCESS(status) ? 0 : ENXIO); 2896 } 2897 2898 /* Record the pending state and notify all apm devices. */ 2899 STAILQ_FOREACH(clone, &sc->apm_cdevs, entries) { 2900 clone->notify_status = APM_EV_NONE; 2901 if ((clone->flags & ACPI_EVF_DEVD) == 0) { 2902 selwakeuppri(&clone->sel_read, PZERO); 2903 KNOTE_LOCKED(&clone->sel_read.si_note, 0); 2904 } 2905 } 2906 2907 /* If devd(8) is not running, immediately enter the sleep state. */ 2908 if (!devctl_process_running()) { 2909 ACPI_UNLOCK(acpi); 2910 status = acpi_EnterSleepState(sc, state); 2911 return (ACPI_SUCCESS(status) ? 0 : ENXIO); 2912 } 2913 2914 /* 2915 * Set a timeout to fire if userland doesn't ack the suspend request 2916 * in time. This way we still eventually go to sleep if we were 2917 * overheating or running low on battery, even if userland is hung. 2918 * We cancel this timeout once all userland acks are in or the 2919 * suspend request is aborted. 2920 */ 2921 callout_reset(&sc->susp_force_to, 10 * hz, acpi_sleep_force, sc); 2922 ACPI_UNLOCK(acpi); 2923 2924 /* Now notify devd(8) also. */ 2925 acpi_UserNotify("Suspend", ACPI_ROOT_OBJECT, state); 2926 2927 return (0); 2928 #else 2929 /* This platform does not support acpi suspend/resume. */ 2930 return (EOPNOTSUPP); 2931 #endif 2932 } 2933 2934 /* 2935 * Acknowledge (or reject) a pending sleep state. The caller has 2936 * prepared for suspend and is now ready for it to proceed. If the 2937 * error argument is non-zero, it indicates suspend should be cancelled 2938 * and gives an errno value describing why. Once all votes are in, 2939 * we suspend the system. 2940 */ 2941 int 2942 acpi_AckSleepState(struct apm_clone_data *clone, int error) 2943 { 2944 #if defined(__amd64__) || defined(__i386__) 2945 struct acpi_softc *sc; 2946 int ret, sleeping; 2947 2948 /* If no pending sleep state, return an error. */ 2949 ACPI_LOCK(acpi); 2950 sc = clone->acpi_sc; 2951 if (sc->acpi_next_sstate == 0) { 2952 ACPI_UNLOCK(acpi); 2953 return (ENXIO); 2954 } 2955 2956 /* Caller wants to abort suspend process. */ 2957 if (error) { 2958 sc->acpi_next_sstate = 0; 2959 callout_stop(&sc->susp_force_to); 2960 device_printf(sc->acpi_dev, 2961 "listener on %s cancelled the pending suspend\n", 2962 devtoname(clone->cdev)); 2963 ACPI_UNLOCK(acpi); 2964 return (0); 2965 } 2966 2967 /* 2968 * Mark this device as acking the suspend request. Then, walk through 2969 * all devices, seeing if they agree yet. We only count devices that 2970 * are writable since read-only devices couldn't ack the request. 2971 */ 2972 sleeping = TRUE; 2973 clone->notify_status = APM_EV_ACKED; 2974 STAILQ_FOREACH(clone, &sc->apm_cdevs, entries) { 2975 if ((clone->flags & ACPI_EVF_WRITE) != 0 && 2976 clone->notify_status != APM_EV_ACKED) { 2977 sleeping = FALSE; 2978 break; 2979 } 2980 } 2981 2982 /* If all devices have voted "yes", we will suspend now. */ 2983 if (sleeping) 2984 callout_stop(&sc->susp_force_to); 2985 ACPI_UNLOCK(acpi); 2986 ret = 0; 2987 if (sleeping) { 2988 if (ACPI_FAILURE(acpi_EnterSleepState(sc, sc->acpi_next_sstate))) 2989 ret = ENODEV; 2990 } 2991 return (ret); 2992 #else 2993 /* This platform does not support acpi suspend/resume. */ 2994 return (EOPNOTSUPP); 2995 #endif 2996 } 2997 2998 static void 2999 acpi_sleep_enable(void *arg) 3000 { 3001 struct acpi_softc *sc = (struct acpi_softc *)arg; 3002 3003 ACPI_LOCK_ASSERT(acpi); 3004 3005 /* Reschedule if the system is not fully up and running. */ 3006 if (!AcpiGbl_SystemAwakeAndRunning) { 3007 callout_schedule(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME); 3008 return; 3009 } 3010 3011 sc->acpi_sleep_disabled = FALSE; 3012 } 3013 3014 static ACPI_STATUS 3015 acpi_sleep_disable(struct acpi_softc *sc) 3016 { 3017 ACPI_STATUS status; 3018 3019 /* Fail if the system is not fully up and running. */ 3020 if (!AcpiGbl_SystemAwakeAndRunning) 3021 return (AE_ERROR); 3022 3023 ACPI_LOCK(acpi); 3024 status = sc->acpi_sleep_disabled ? AE_ERROR : AE_OK; 3025 sc->acpi_sleep_disabled = TRUE; 3026 ACPI_UNLOCK(acpi); 3027 3028 return (status); 3029 } 3030 3031 enum acpi_sleep_state { 3032 ACPI_SS_NONE, 3033 ACPI_SS_GPE_SET, 3034 ACPI_SS_DEV_SUSPEND, 3035 ACPI_SS_SLP_PREP, 3036 ACPI_SS_SLEPT, 3037 }; 3038 3039 /* 3040 * Enter the desired system sleep state. 3041 * 3042 * Currently we support S1-S5 but S4 is only S4BIOS 3043 */ 3044 static ACPI_STATUS 3045 acpi_EnterSleepState(struct acpi_softc *sc, int state) 3046 { 3047 register_t intr; 3048 ACPI_STATUS status; 3049 ACPI_EVENT_STATUS power_button_status; 3050 enum acpi_sleep_state slp_state; 3051 int sleep_result; 3052 3053 ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state); 3054 3055 if (state < ACPI_STATE_S1 || state > ACPI_S_STATES_MAX) 3056 return_ACPI_STATUS (AE_BAD_PARAMETER); 3057 if (!acpi_sleep_states[state]) { 3058 device_printf(sc->acpi_dev, "Sleep state S%d not supported by BIOS\n", 3059 state); 3060 return (AE_SUPPORT); 3061 } 3062 3063 /* Re-entry once we're suspending is not allowed. */ 3064 status = acpi_sleep_disable(sc); 3065 if (ACPI_FAILURE(status)) { 3066 device_printf(sc->acpi_dev, 3067 "suspend request ignored (not ready yet)\n"); 3068 return (status); 3069 } 3070 3071 if (state == ACPI_STATE_S5) { 3072 /* 3073 * Shut down cleanly and power off. This will call us back through the 3074 * shutdown handlers. 3075 */ 3076 shutdown_nice(RB_POWEROFF); 3077 return_ACPI_STATUS (AE_OK); 3078 } 3079 3080 EVENTHANDLER_INVOKE(power_suspend_early); 3081 stop_all_proc(); 3082 suspend_all_fs(); 3083 EVENTHANDLER_INVOKE(power_suspend); 3084 3085 #ifdef EARLY_AP_STARTUP 3086 MPASS(mp_ncpus == 1 || smp_started); 3087 thread_lock(curthread); 3088 sched_bind(curthread, 0); 3089 thread_unlock(curthread); 3090 #else 3091 if (smp_started) { 3092 thread_lock(curthread); 3093 sched_bind(curthread, 0); 3094 thread_unlock(curthread); 3095 } 3096 #endif 3097 3098 /* 3099 * Be sure to hold Giant across DEVICE_SUSPEND/RESUME since non-MPSAFE 3100 * drivers need this. 3101 */ 3102 mtx_lock(&Giant); 3103 3104 slp_state = ACPI_SS_NONE; 3105 3106 sc->acpi_sstate = state; 3107 3108 /* Enable any GPEs as appropriate and requested by the user. */ 3109 acpi_wake_prep_walk(state); 3110 slp_state = ACPI_SS_GPE_SET; 3111 3112 /* 3113 * Inform all devices that we are going to sleep. If at least one 3114 * device fails, DEVICE_SUSPEND() automatically resumes the tree. 3115 * 3116 * XXX Note that a better two-pass approach with a 'veto' pass 3117 * followed by a "real thing" pass would be better, but the current 3118 * bus interface does not provide for this. 3119 */ 3120 if (DEVICE_SUSPEND(root_bus) != 0) { 3121 device_printf(sc->acpi_dev, "device_suspend failed\n"); 3122 goto backout; 3123 } 3124 slp_state = ACPI_SS_DEV_SUSPEND; 3125 3126 status = AcpiEnterSleepStatePrep(state); 3127 if (ACPI_FAILURE(status)) { 3128 device_printf(sc->acpi_dev, "AcpiEnterSleepStatePrep failed - %s\n", 3129 AcpiFormatException(status)); 3130 goto backout; 3131 } 3132 slp_state = ACPI_SS_SLP_PREP; 3133 3134 if (sc->acpi_sleep_delay > 0) 3135 DELAY(sc->acpi_sleep_delay * 1000000); 3136 3137 suspendclock(); 3138 intr = intr_disable(); 3139 if (state != ACPI_STATE_S1) { 3140 sleep_result = acpi_sleep_machdep(sc, state); 3141 acpi_wakeup_machdep(sc, state, sleep_result, 0); 3142 3143 /* 3144 * XXX According to ACPI specification SCI_EN bit should be restored 3145 * by ACPI platform (BIOS, firmware) to its pre-sleep state. 3146 * Unfortunately some BIOSes fail to do that and that leads to 3147 * unexpected and serious consequences during wake up like a system 3148 * getting stuck in SMI handlers. 3149 * This hack is picked up from Linux, which claims that it follows 3150 * Windows behavior. 3151 */ 3152 if (sleep_result == 1 && state != ACPI_STATE_S4) 3153 AcpiWriteBitRegister(ACPI_BITREG_SCI_ENABLE, ACPI_ENABLE_EVENT); 3154 3155 if (sleep_result == 1 && state == ACPI_STATE_S3) { 3156 /* 3157 * Prevent mis-interpretation of the wakeup by power button 3158 * as a request for power off. 3159 * Ideally we should post an appropriate wakeup event, 3160 * perhaps using acpi_event_power_button_wake or alike. 3161 * 3162 * Clearing of power button status after wakeup is mandated 3163 * by ACPI specification in section "Fixed Power Button". 3164 * 3165 * XXX As of ACPICA 20121114 AcpiGetEventStatus provides 3166 * status as 0/1 corressponding to inactive/active despite 3167 * its type being ACPI_EVENT_STATUS. In other words, 3168 * we should not test for ACPI_EVENT_FLAG_SET for time being. 3169 */ 3170 if (ACPI_SUCCESS(AcpiGetEventStatus(ACPI_EVENT_POWER_BUTTON, 3171 &power_button_status)) && power_button_status != 0) { 3172 AcpiClearEvent(ACPI_EVENT_POWER_BUTTON); 3173 device_printf(sc->acpi_dev, 3174 "cleared fixed power button status\n"); 3175 } 3176 } 3177 3178 intr_restore(intr); 3179 3180 /* call acpi_wakeup_machdep() again with interrupt enabled */ 3181 acpi_wakeup_machdep(sc, state, sleep_result, 1); 3182 3183 AcpiLeaveSleepStatePrep(state); 3184 3185 if (sleep_result == -1) 3186 goto backout; 3187 3188 /* Re-enable ACPI hardware on wakeup from sleep state 4. */ 3189 if (state == ACPI_STATE_S4) 3190 AcpiEnable(); 3191 } else { 3192 status = AcpiEnterSleepState(state); 3193 intr_restore(intr); 3194 AcpiLeaveSleepStatePrep(state); 3195 if (ACPI_FAILURE(status)) { 3196 device_printf(sc->acpi_dev, "AcpiEnterSleepState failed - %s\n", 3197 AcpiFormatException(status)); 3198 goto backout; 3199 } 3200 } 3201 slp_state = ACPI_SS_SLEPT; 3202 3203 /* 3204 * Back out state according to how far along we got in the suspend 3205 * process. This handles both the error and success cases. 3206 */ 3207 backout: 3208 if (slp_state >= ACPI_SS_SLP_PREP) 3209 resumeclock(); 3210 if (slp_state >= ACPI_SS_GPE_SET) { 3211 acpi_wake_prep_walk(state); 3212 sc->acpi_sstate = ACPI_STATE_S0; 3213 } 3214 if (slp_state >= ACPI_SS_DEV_SUSPEND) 3215 DEVICE_RESUME(root_bus); 3216 if (slp_state >= ACPI_SS_SLP_PREP) 3217 AcpiLeaveSleepState(state); 3218 if (slp_state >= ACPI_SS_SLEPT) { 3219 #if defined(__i386__) || defined(__amd64__) 3220 /* NB: we are still using ACPI timecounter at this point. */ 3221 resume_TSC(); 3222 #endif 3223 acpi_resync_clock(sc); 3224 acpi_enable_fixed_events(sc); 3225 } 3226 sc->acpi_next_sstate = 0; 3227 3228 mtx_unlock(&Giant); 3229 3230 #ifdef EARLY_AP_STARTUP 3231 thread_lock(curthread); 3232 sched_unbind(curthread); 3233 thread_unlock(curthread); 3234 #else 3235 if (smp_started) { 3236 thread_lock(curthread); 3237 sched_unbind(curthread); 3238 thread_unlock(curthread); 3239 } 3240 #endif 3241 3242 resume_all_fs(); 3243 resume_all_proc(); 3244 3245 EVENTHANDLER_INVOKE(power_resume); 3246 3247 /* Allow another sleep request after a while. */ 3248 callout_schedule(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME); 3249 3250 /* Run /etc/rc.resume after we are back. */ 3251 if (devctl_process_running()) 3252 acpi_UserNotify("Resume", ACPI_ROOT_OBJECT, state); 3253 3254 return_ACPI_STATUS (status); 3255 } 3256 3257 static void 3258 acpi_resync_clock(struct acpi_softc *sc) 3259 { 3260 3261 /* 3262 * Warm up timecounter again and reset system clock. 3263 */ 3264 (void)timecounter->tc_get_timecount(timecounter); 3265 inittodr(time_second + sc->acpi_sleep_delay); 3266 } 3267 3268 /* Enable or disable the device's wake GPE. */ 3269 int 3270 acpi_wake_set_enable(device_t dev, int enable) 3271 { 3272 struct acpi_prw_data prw; 3273 ACPI_STATUS status; 3274 int flags; 3275 3276 /* Make sure the device supports waking the system and get the GPE. */ 3277 if (acpi_parse_prw(acpi_get_handle(dev), &prw) != 0) 3278 return (ENXIO); 3279 3280 flags = acpi_get_flags(dev); 3281 if (enable) { 3282 status = AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, 3283 ACPI_GPE_ENABLE); 3284 if (ACPI_FAILURE(status)) { 3285 device_printf(dev, "enable wake failed\n"); 3286 return (ENXIO); 3287 } 3288 acpi_set_flags(dev, flags | ACPI_FLAG_WAKE_ENABLED); 3289 } else { 3290 status = AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, 3291 ACPI_GPE_DISABLE); 3292 if (ACPI_FAILURE(status)) { 3293 device_printf(dev, "disable wake failed\n"); 3294 return (ENXIO); 3295 } 3296 acpi_set_flags(dev, flags & ~ACPI_FLAG_WAKE_ENABLED); 3297 } 3298 3299 return (0); 3300 } 3301 3302 static int 3303 acpi_wake_sleep_prep(ACPI_HANDLE handle, int sstate) 3304 { 3305 struct acpi_prw_data prw; 3306 device_t dev; 3307 3308 /* Check that this is a wake-capable device and get its GPE. */ 3309 if (acpi_parse_prw(handle, &prw) != 0) 3310 return (ENXIO); 3311 dev = acpi_get_device(handle); 3312 3313 /* 3314 * The destination sleep state must be less than (i.e., higher power) 3315 * or equal to the value specified by _PRW. If this GPE cannot be 3316 * enabled for the next sleep state, then disable it. If it can and 3317 * the user requested it be enabled, turn on any required power resources 3318 * and set _PSW. 3319 */ 3320 if (sstate > prw.lowest_wake) { 3321 AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, ACPI_GPE_DISABLE); 3322 if (bootverbose) 3323 device_printf(dev, "wake_prep disabled wake for %s (S%d)\n", 3324 acpi_name(handle), sstate); 3325 } else if (dev && (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) != 0) { 3326 acpi_pwr_wake_enable(handle, 1); 3327 acpi_SetInteger(handle, "_PSW", 1); 3328 if (bootverbose) 3329 device_printf(dev, "wake_prep enabled for %s (S%d)\n", 3330 acpi_name(handle), sstate); 3331 } 3332 3333 return (0); 3334 } 3335 3336 static int 3337 acpi_wake_run_prep(ACPI_HANDLE handle, int sstate) 3338 { 3339 struct acpi_prw_data prw; 3340 device_t dev; 3341 3342 /* 3343 * Check that this is a wake-capable device and get its GPE. Return 3344 * now if the user didn't enable this device for wake. 3345 */ 3346 if (acpi_parse_prw(handle, &prw) != 0) 3347 return (ENXIO); 3348 dev = acpi_get_device(handle); 3349 if (dev == NULL || (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) == 0) 3350 return (0); 3351 3352 /* 3353 * If this GPE couldn't be enabled for the previous sleep state, it was 3354 * disabled before going to sleep so re-enable it. If it was enabled, 3355 * clear _PSW and turn off any power resources it used. 3356 */ 3357 if (sstate > prw.lowest_wake) { 3358 AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, ACPI_GPE_ENABLE); 3359 if (bootverbose) 3360 device_printf(dev, "run_prep re-enabled %s\n", acpi_name(handle)); 3361 } else { 3362 acpi_SetInteger(handle, "_PSW", 0); 3363 acpi_pwr_wake_enable(handle, 0); 3364 if (bootverbose) 3365 device_printf(dev, "run_prep cleaned up for %s\n", 3366 acpi_name(handle)); 3367 } 3368 3369 return (0); 3370 } 3371 3372 static ACPI_STATUS 3373 acpi_wake_prep(ACPI_HANDLE handle, UINT32 level, void *context, void **status) 3374 { 3375 int sstate; 3376 3377 /* If suspending, run the sleep prep function, otherwise wake. */ 3378 sstate = *(int *)context; 3379 if (AcpiGbl_SystemAwakeAndRunning) 3380 acpi_wake_sleep_prep(handle, sstate); 3381 else 3382 acpi_wake_run_prep(handle, sstate); 3383 return (AE_OK); 3384 } 3385 3386 /* Walk the tree rooted at acpi0 to prep devices for suspend/resume. */ 3387 static int 3388 acpi_wake_prep_walk(int sstate) 3389 { 3390 ACPI_HANDLE sb_handle; 3391 3392 if (ACPI_SUCCESS(AcpiGetHandle(ACPI_ROOT_OBJECT, "\\_SB_", &sb_handle))) 3393 AcpiWalkNamespace(ACPI_TYPE_DEVICE, sb_handle, 100, 3394 acpi_wake_prep, NULL, &sstate, NULL); 3395 return (0); 3396 } 3397 3398 /* Walk the tree rooted at acpi0 to attach per-device wake sysctls. */ 3399 static int 3400 acpi_wake_sysctl_walk(device_t dev) 3401 { 3402 int error, i, numdevs; 3403 device_t *devlist; 3404 device_t child; 3405 ACPI_STATUS status; 3406 3407 error = device_get_children(dev, &devlist, &numdevs); 3408 if (error != 0 || numdevs == 0) { 3409 if (numdevs == 0) 3410 free(devlist, M_TEMP); 3411 return (error); 3412 } 3413 for (i = 0; i < numdevs; i++) { 3414 child = devlist[i]; 3415 acpi_wake_sysctl_walk(child); 3416 if (!device_is_attached(child)) 3417 continue; 3418 status = AcpiEvaluateObject(acpi_get_handle(child), "_PRW", NULL, NULL); 3419 if (ACPI_SUCCESS(status)) { 3420 SYSCTL_ADD_PROC(device_get_sysctl_ctx(child), 3421 SYSCTL_CHILDREN(device_get_sysctl_tree(child)), OID_AUTO, 3422 "wake", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, child, 0, 3423 acpi_wake_set_sysctl, "I", "Device set to wake the system"); 3424 } 3425 } 3426 free(devlist, M_TEMP); 3427 3428 return (0); 3429 } 3430 3431 /* Enable or disable wake from userland. */ 3432 static int 3433 acpi_wake_set_sysctl(SYSCTL_HANDLER_ARGS) 3434 { 3435 int enable, error; 3436 device_t dev; 3437 3438 dev = (device_t)arg1; 3439 enable = (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) ? 1 : 0; 3440 3441 error = sysctl_handle_int(oidp, &enable, 0, req); 3442 if (error != 0 || req->newptr == NULL) 3443 return (error); 3444 if (enable != 0 && enable != 1) 3445 return (EINVAL); 3446 3447 return (acpi_wake_set_enable(dev, enable)); 3448 } 3449 3450 /* Parse a device's _PRW into a structure. */ 3451 int 3452 acpi_parse_prw(ACPI_HANDLE h, struct acpi_prw_data *prw) 3453 { 3454 ACPI_STATUS status; 3455 ACPI_BUFFER prw_buffer; 3456 ACPI_OBJECT *res, *res2; 3457 int error, i, power_count; 3458 3459 if (h == NULL || prw == NULL) 3460 return (EINVAL); 3461 3462 /* 3463 * The _PRW object (7.2.9) is only required for devices that have the 3464 * ability to wake the system from a sleeping state. 3465 */ 3466 error = EINVAL; 3467 prw_buffer.Pointer = NULL; 3468 prw_buffer.Length = ACPI_ALLOCATE_BUFFER; 3469 status = AcpiEvaluateObject(h, "_PRW", NULL, &prw_buffer); 3470 if (ACPI_FAILURE(status)) 3471 return (ENOENT); 3472 res = (ACPI_OBJECT *)prw_buffer.Pointer; 3473 if (res == NULL) 3474 return (ENOENT); 3475 if (!ACPI_PKG_VALID(res, 2)) 3476 goto out; 3477 3478 /* 3479 * Element 1 of the _PRW object: 3480 * The lowest power system sleeping state that can be entered while still 3481 * providing wake functionality. The sleeping state being entered must 3482 * be less than (i.e., higher power) or equal to this value. 3483 */ 3484 if (acpi_PkgInt32(res, 1, &prw->lowest_wake) != 0) 3485 goto out; 3486 3487 /* 3488 * Element 0 of the _PRW object: 3489 */ 3490 switch (res->Package.Elements[0].Type) { 3491 case ACPI_TYPE_INTEGER: 3492 /* 3493 * If the data type of this package element is numeric, then this 3494 * _PRW package element is the bit index in the GPEx_EN, in the 3495 * GPE blocks described in the FADT, of the enable bit that is 3496 * enabled for the wake event. 3497 */ 3498 prw->gpe_handle = NULL; 3499 prw->gpe_bit = res->Package.Elements[0].Integer.Value; 3500 error = 0; 3501 break; 3502 case ACPI_TYPE_PACKAGE: 3503 /* 3504 * If the data type of this package element is a package, then this 3505 * _PRW package element is itself a package containing two 3506 * elements. The first is an object reference to the GPE Block 3507 * device that contains the GPE that will be triggered by the wake 3508 * event. The second element is numeric and it contains the bit 3509 * index in the GPEx_EN, in the GPE Block referenced by the 3510 * first element in the package, of the enable bit that is enabled for 3511 * the wake event. 3512 * 3513 * For example, if this field is a package then it is of the form: 3514 * Package() {\_SB.PCI0.ISA.GPE, 2} 3515 */ 3516 res2 = &res->Package.Elements[0]; 3517 if (!ACPI_PKG_VALID(res2, 2)) 3518 goto out; 3519 prw->gpe_handle = acpi_GetReference(NULL, &res2->Package.Elements[0]); 3520 if (prw->gpe_handle == NULL) 3521 goto out; 3522 if (acpi_PkgInt32(res2, 1, &prw->gpe_bit) != 0) 3523 goto out; 3524 error = 0; 3525 break; 3526 default: 3527 goto out; 3528 } 3529 3530 /* Elements 2 to N of the _PRW object are power resources. */ 3531 power_count = res->Package.Count - 2; 3532 if (power_count > ACPI_PRW_MAX_POWERRES) { 3533 printf("ACPI device %s has too many power resources\n", acpi_name(h)); 3534 power_count = 0; 3535 } 3536 prw->power_res_count = power_count; 3537 for (i = 0; i < power_count; i++) 3538 prw->power_res[i] = res->Package.Elements[i]; 3539 3540 out: 3541 if (prw_buffer.Pointer != NULL) 3542 AcpiOsFree(prw_buffer.Pointer); 3543 return (error); 3544 } 3545 3546 /* 3547 * ACPI Event Handlers 3548 */ 3549 3550 /* System Event Handlers (registered by EVENTHANDLER_REGISTER) */ 3551 3552 static void 3553 acpi_system_eventhandler_sleep(void *arg, int state) 3554 { 3555 struct acpi_softc *sc = (struct acpi_softc *)arg; 3556 int ret; 3557 3558 ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state); 3559 3560 /* Check if button action is disabled or unknown. */ 3561 if (state == ACPI_STATE_UNKNOWN) 3562 return; 3563 3564 /* Request that the system prepare to enter the given suspend state. */ 3565 ret = acpi_ReqSleepState(sc, state); 3566 if (ret != 0) 3567 device_printf(sc->acpi_dev, 3568 "request to enter state S%d failed (err %d)\n", state, ret); 3569 3570 return_VOID; 3571 } 3572 3573 static void 3574 acpi_system_eventhandler_wakeup(void *arg, int state) 3575 { 3576 3577 ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state); 3578 3579 /* Currently, nothing to do for wakeup. */ 3580 3581 return_VOID; 3582 } 3583 3584 /* 3585 * ACPICA Event Handlers (FixedEvent, also called from button notify handler) 3586 */ 3587 static void 3588 acpi_invoke_sleep_eventhandler(void *context) 3589 { 3590 3591 EVENTHANDLER_INVOKE(acpi_sleep_event, *(int *)context); 3592 } 3593 3594 static void 3595 acpi_invoke_wake_eventhandler(void *context) 3596 { 3597 3598 EVENTHANDLER_INVOKE(acpi_wakeup_event, *(int *)context); 3599 } 3600 3601 UINT32 3602 acpi_event_power_button_sleep(void *context) 3603 { 3604 struct acpi_softc *sc = (struct acpi_softc *)context; 3605 3606 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3607 3608 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3609 acpi_invoke_sleep_eventhandler, &sc->acpi_power_button_sx))) 3610 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); 3611 return_VALUE (ACPI_INTERRUPT_HANDLED); 3612 } 3613 3614 UINT32 3615 acpi_event_power_button_wake(void *context) 3616 { 3617 struct acpi_softc *sc = (struct acpi_softc *)context; 3618 3619 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3620 3621 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3622 acpi_invoke_wake_eventhandler, &sc->acpi_power_button_sx))) 3623 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); 3624 return_VALUE (ACPI_INTERRUPT_HANDLED); 3625 } 3626 3627 UINT32 3628 acpi_event_sleep_button_sleep(void *context) 3629 { 3630 struct acpi_softc *sc = (struct acpi_softc *)context; 3631 3632 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3633 3634 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3635 acpi_invoke_sleep_eventhandler, &sc->acpi_sleep_button_sx))) 3636 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); 3637 return_VALUE (ACPI_INTERRUPT_HANDLED); 3638 } 3639 3640 UINT32 3641 acpi_event_sleep_button_wake(void *context) 3642 { 3643 struct acpi_softc *sc = (struct acpi_softc *)context; 3644 3645 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3646 3647 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3648 acpi_invoke_wake_eventhandler, &sc->acpi_sleep_button_sx))) 3649 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); 3650 return_VALUE (ACPI_INTERRUPT_HANDLED); 3651 } 3652 3653 /* 3654 * XXX This static buffer is suboptimal. There is no locking so only 3655 * use this for single-threaded callers. 3656 */ 3657 char * 3658 acpi_name(ACPI_HANDLE handle) 3659 { 3660 ACPI_BUFFER buf; 3661 static char data[256]; 3662 3663 buf.Length = sizeof(data); 3664 buf.Pointer = data; 3665 3666 if (handle && ACPI_SUCCESS(AcpiGetName(handle, ACPI_FULL_PATHNAME, &buf))) 3667 return (data); 3668 return ("(unknown)"); 3669 } 3670 3671 /* 3672 * Debugging/bug-avoidance. Avoid trying to fetch info on various 3673 * parts of the namespace. 3674 */ 3675 int 3676 acpi_avoid(ACPI_HANDLE handle) 3677 { 3678 char *cp, *env, *np; 3679 int len; 3680 3681 np = acpi_name(handle); 3682 if (*np == '\\') 3683 np++; 3684 if ((env = kern_getenv("debug.acpi.avoid")) == NULL) 3685 return (0); 3686 3687 /* Scan the avoid list checking for a match */ 3688 cp = env; 3689 for (;;) { 3690 while (*cp != 0 && isspace(*cp)) 3691 cp++; 3692 if (*cp == 0) 3693 break; 3694 len = 0; 3695 while (cp[len] != 0 && !isspace(cp[len])) 3696 len++; 3697 if (!strncmp(cp, np, len)) { 3698 freeenv(env); 3699 return(1); 3700 } 3701 cp += len; 3702 } 3703 freeenv(env); 3704 3705 return (0); 3706 } 3707 3708 /* 3709 * Debugging/bug-avoidance. Disable ACPI subsystem components. 3710 */ 3711 int 3712 acpi_disabled(char *subsys) 3713 { 3714 char *cp, *env; 3715 int len; 3716 3717 if ((env = kern_getenv("debug.acpi.disabled")) == NULL) 3718 return (0); 3719 if (strcmp(env, "all") == 0) { 3720 freeenv(env); 3721 return (1); 3722 } 3723 3724 /* Scan the disable list, checking for a match. */ 3725 cp = env; 3726 for (;;) { 3727 while (*cp != '\0' && isspace(*cp)) 3728 cp++; 3729 if (*cp == '\0') 3730 break; 3731 len = 0; 3732 while (cp[len] != '\0' && !isspace(cp[len])) 3733 len++; 3734 if (strncmp(cp, subsys, len) == 0) { 3735 freeenv(env); 3736 return (1); 3737 } 3738 cp += len; 3739 } 3740 freeenv(env); 3741 3742 return (0); 3743 } 3744 3745 static void 3746 acpi_lookup(void *arg, const char *name, device_t *dev) 3747 { 3748 ACPI_HANDLE handle; 3749 3750 if (*dev != NULL) 3751 return; 3752 3753 /* 3754 * Allow any handle name that is specified as an absolute path and 3755 * starts with '\'. We could restrict this to \_SB and friends, 3756 * but see acpi_probe_children() for notes on why we scan the entire 3757 * namespace for devices. 3758 * 3759 * XXX: The pathname argument to AcpiGetHandle() should be fixed to 3760 * be const. 3761 */ 3762 if (name[0] != '\\') 3763 return; 3764 if (ACPI_FAILURE(AcpiGetHandle(ACPI_ROOT_OBJECT, __DECONST(char *, name), 3765 &handle))) 3766 return; 3767 *dev = acpi_get_device(handle); 3768 } 3769 3770 /* 3771 * Control interface. 3772 * 3773 * We multiplex ioctls for all participating ACPI devices here. Individual 3774 * drivers wanting to be accessible via /dev/acpi should use the 3775 * register/deregister interface to make their handlers visible. 3776 */ 3777 struct acpi_ioctl_hook 3778 { 3779 TAILQ_ENTRY(acpi_ioctl_hook) link; 3780 u_long cmd; 3781 acpi_ioctl_fn fn; 3782 void *arg; 3783 }; 3784 3785 static TAILQ_HEAD(,acpi_ioctl_hook) acpi_ioctl_hooks; 3786 static int acpi_ioctl_hooks_initted; 3787 3788 int 3789 acpi_register_ioctl(u_long cmd, acpi_ioctl_fn fn, void *arg) 3790 { 3791 struct acpi_ioctl_hook *hp; 3792 3793 if ((hp = malloc(sizeof(*hp), M_ACPIDEV, M_NOWAIT)) == NULL) 3794 return (ENOMEM); 3795 hp->cmd = cmd; 3796 hp->fn = fn; 3797 hp->arg = arg; 3798 3799 ACPI_LOCK(acpi); 3800 if (acpi_ioctl_hooks_initted == 0) { 3801 TAILQ_INIT(&acpi_ioctl_hooks); 3802 acpi_ioctl_hooks_initted = 1; 3803 } 3804 TAILQ_INSERT_TAIL(&acpi_ioctl_hooks, hp, link); 3805 ACPI_UNLOCK(acpi); 3806 3807 return (0); 3808 } 3809 3810 void 3811 acpi_deregister_ioctl(u_long cmd, acpi_ioctl_fn fn) 3812 { 3813 struct acpi_ioctl_hook *hp; 3814 3815 ACPI_LOCK(acpi); 3816 TAILQ_FOREACH(hp, &acpi_ioctl_hooks, link) 3817 if (hp->cmd == cmd && hp->fn == fn) 3818 break; 3819 3820 if (hp != NULL) { 3821 TAILQ_REMOVE(&acpi_ioctl_hooks, hp, link); 3822 free(hp, M_ACPIDEV); 3823 } 3824 ACPI_UNLOCK(acpi); 3825 } 3826 3827 static int 3828 acpiopen(struct cdev *dev, int flag, int fmt, struct thread *td) 3829 { 3830 return (0); 3831 } 3832 3833 static int 3834 acpiclose(struct cdev *dev, int flag, int fmt, struct thread *td) 3835 { 3836 return (0); 3837 } 3838 3839 static int 3840 acpiioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 3841 { 3842 struct acpi_softc *sc; 3843 struct acpi_ioctl_hook *hp; 3844 int error, state; 3845 3846 error = 0; 3847 hp = NULL; 3848 sc = dev->si_drv1; 3849 3850 /* 3851 * Scan the list of registered ioctls, looking for handlers. 3852 */ 3853 ACPI_LOCK(acpi); 3854 if (acpi_ioctl_hooks_initted) 3855 TAILQ_FOREACH(hp, &acpi_ioctl_hooks, link) { 3856 if (hp->cmd == cmd) 3857 break; 3858 } 3859 ACPI_UNLOCK(acpi); 3860 if (hp) 3861 return (hp->fn(cmd, addr, hp->arg)); 3862 3863 /* 3864 * Core ioctls are not permitted for non-writable user. 3865 * Currently, other ioctls just fetch information. 3866 * Not changing system behavior. 3867 */ 3868 if ((flag & FWRITE) == 0) 3869 return (EPERM); 3870 3871 /* Core system ioctls. */ 3872 switch (cmd) { 3873 case ACPIIO_REQSLPSTATE: 3874 state = *(int *)addr; 3875 if (state != ACPI_STATE_S5) 3876 return (acpi_ReqSleepState(sc, state)); 3877 device_printf(sc->acpi_dev, "power off via acpi ioctl not supported\n"); 3878 error = EOPNOTSUPP; 3879 break; 3880 case ACPIIO_ACKSLPSTATE: 3881 error = *(int *)addr; 3882 error = acpi_AckSleepState(sc->acpi_clone, error); 3883 break; 3884 case ACPIIO_SETSLPSTATE: /* DEPRECATED */ 3885 state = *(int *)addr; 3886 if (state < ACPI_STATE_S0 || state > ACPI_S_STATES_MAX) 3887 return (EINVAL); 3888 if (!acpi_sleep_states[state]) 3889 return (EOPNOTSUPP); 3890 if (ACPI_FAILURE(acpi_SetSleepState(sc, state))) 3891 error = ENXIO; 3892 break; 3893 default: 3894 error = ENXIO; 3895 break; 3896 } 3897 3898 return (error); 3899 } 3900 3901 static int 3902 acpi_sname2sstate(const char *sname) 3903 { 3904 int sstate; 3905 3906 if (toupper(sname[0]) == 'S') { 3907 sstate = sname[1] - '0'; 3908 if (sstate >= ACPI_STATE_S0 && sstate <= ACPI_STATE_S5 && 3909 sname[2] == '\0') 3910 return (sstate); 3911 } else if (strcasecmp(sname, "NONE") == 0) 3912 return (ACPI_STATE_UNKNOWN); 3913 return (-1); 3914 } 3915 3916 static const char * 3917 acpi_sstate2sname(int sstate) 3918 { 3919 static const char *snames[] = { "S0", "S1", "S2", "S3", "S4", "S5" }; 3920 3921 if (sstate >= ACPI_STATE_S0 && sstate <= ACPI_STATE_S5) 3922 return (snames[sstate]); 3923 else if (sstate == ACPI_STATE_UNKNOWN) 3924 return ("NONE"); 3925 return (NULL); 3926 } 3927 3928 static int 3929 acpi_supported_sleep_state_sysctl(SYSCTL_HANDLER_ARGS) 3930 { 3931 int error; 3932 struct sbuf sb; 3933 UINT8 state; 3934 3935 sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND); 3936 for (state = ACPI_STATE_S1; state < ACPI_S_STATE_COUNT; state++) 3937 if (acpi_sleep_states[state]) 3938 sbuf_printf(&sb, "%s ", acpi_sstate2sname(state)); 3939 sbuf_trim(&sb); 3940 sbuf_finish(&sb); 3941 error = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req); 3942 sbuf_delete(&sb); 3943 return (error); 3944 } 3945 3946 static int 3947 acpi_sleep_state_sysctl(SYSCTL_HANDLER_ARGS) 3948 { 3949 char sleep_state[10]; 3950 int error, new_state, old_state; 3951 3952 old_state = *(int *)oidp->oid_arg1; 3953 strlcpy(sleep_state, acpi_sstate2sname(old_state), sizeof(sleep_state)); 3954 error = sysctl_handle_string(oidp, sleep_state, sizeof(sleep_state), req); 3955 if (error == 0 && req->newptr != NULL) { 3956 new_state = acpi_sname2sstate(sleep_state); 3957 if (new_state < ACPI_STATE_S1) 3958 return (EINVAL); 3959 if (new_state < ACPI_S_STATE_COUNT && !acpi_sleep_states[new_state]) 3960 return (EOPNOTSUPP); 3961 if (new_state != old_state) 3962 *(int *)oidp->oid_arg1 = new_state; 3963 } 3964 return (error); 3965 } 3966 3967 /* Inform devctl(4) when we receive a Notify. */ 3968 void 3969 acpi_UserNotify(const char *subsystem, ACPI_HANDLE h, uint8_t notify) 3970 { 3971 char notify_buf[16]; 3972 ACPI_BUFFER handle_buf; 3973 ACPI_STATUS status; 3974 3975 if (subsystem == NULL) 3976 return; 3977 3978 handle_buf.Pointer = NULL; 3979 handle_buf.Length = ACPI_ALLOCATE_BUFFER; 3980 status = AcpiNsHandleToPathname(h, &handle_buf, FALSE); 3981 if (ACPI_FAILURE(status)) 3982 return; 3983 snprintf(notify_buf, sizeof(notify_buf), "notify=0x%02x", notify); 3984 devctl_notify("ACPI", subsystem, handle_buf.Pointer, notify_buf); 3985 AcpiOsFree(handle_buf.Pointer); 3986 } 3987 3988 #ifdef ACPI_DEBUG 3989 /* 3990 * Support for parsing debug options from the kernel environment. 3991 * 3992 * Bits may be set in the AcpiDbgLayer and AcpiDbgLevel debug registers 3993 * by specifying the names of the bits in the debug.acpi.layer and 3994 * debug.acpi.level environment variables. Bits may be unset by 3995 * prefixing the bit name with !. 3996 */ 3997 struct debugtag 3998 { 3999 char *name; 4000 UINT32 value; 4001 }; 4002 4003 static struct debugtag dbg_layer[] = { 4004 {"ACPI_UTILITIES", ACPI_UTILITIES}, 4005 {"ACPI_HARDWARE", ACPI_HARDWARE}, 4006 {"ACPI_EVENTS", ACPI_EVENTS}, 4007 {"ACPI_TABLES", ACPI_TABLES}, 4008 {"ACPI_NAMESPACE", ACPI_NAMESPACE}, 4009 {"ACPI_PARSER", ACPI_PARSER}, 4010 {"ACPI_DISPATCHER", ACPI_DISPATCHER}, 4011 {"ACPI_EXECUTER", ACPI_EXECUTER}, 4012 {"ACPI_RESOURCES", ACPI_RESOURCES}, 4013 {"ACPI_CA_DEBUGGER", ACPI_CA_DEBUGGER}, 4014 {"ACPI_OS_SERVICES", ACPI_OS_SERVICES}, 4015 {"ACPI_CA_DISASSEMBLER", ACPI_CA_DISASSEMBLER}, 4016 {"ACPI_ALL_COMPONENTS", ACPI_ALL_COMPONENTS}, 4017 4018 {"ACPI_AC_ADAPTER", ACPI_AC_ADAPTER}, 4019 {"ACPI_BATTERY", ACPI_BATTERY}, 4020 {"ACPI_BUS", ACPI_BUS}, 4021 {"ACPI_BUTTON", ACPI_BUTTON}, 4022 {"ACPI_EC", ACPI_EC}, 4023 {"ACPI_FAN", ACPI_FAN}, 4024 {"ACPI_POWERRES", ACPI_POWERRES}, 4025 {"ACPI_PROCESSOR", ACPI_PROCESSOR}, 4026 {"ACPI_THERMAL", ACPI_THERMAL}, 4027 {"ACPI_TIMER", ACPI_TIMER}, 4028 {"ACPI_ALL_DRIVERS", ACPI_ALL_DRIVERS}, 4029 {NULL, 0} 4030 }; 4031 4032 static struct debugtag dbg_level[] = { 4033 {"ACPI_LV_INIT", ACPI_LV_INIT}, 4034 {"ACPI_LV_DEBUG_OBJECT", ACPI_LV_DEBUG_OBJECT}, 4035 {"ACPI_LV_INFO", ACPI_LV_INFO}, 4036 {"ACPI_LV_REPAIR", ACPI_LV_REPAIR}, 4037 {"ACPI_LV_ALL_EXCEPTIONS", ACPI_LV_ALL_EXCEPTIONS}, 4038 4039 /* Trace verbosity level 1 [Standard Trace Level] */ 4040 {"ACPI_LV_INIT_NAMES", ACPI_LV_INIT_NAMES}, 4041 {"ACPI_LV_PARSE", ACPI_LV_PARSE}, 4042 {"ACPI_LV_LOAD", ACPI_LV_LOAD}, 4043 {"ACPI_LV_DISPATCH", ACPI_LV_DISPATCH}, 4044 {"ACPI_LV_EXEC", ACPI_LV_EXEC}, 4045 {"ACPI_LV_NAMES", ACPI_LV_NAMES}, 4046 {"ACPI_LV_OPREGION", ACPI_LV_OPREGION}, 4047 {"ACPI_LV_BFIELD", ACPI_LV_BFIELD}, 4048 {"ACPI_LV_TABLES", ACPI_LV_TABLES}, 4049 {"ACPI_LV_VALUES", ACPI_LV_VALUES}, 4050 {"ACPI_LV_OBJECTS", ACPI_LV_OBJECTS}, 4051 {"ACPI_LV_RESOURCES", ACPI_LV_RESOURCES}, 4052 {"ACPI_LV_USER_REQUESTS", ACPI_LV_USER_REQUESTS}, 4053 {"ACPI_LV_PACKAGE", ACPI_LV_PACKAGE}, 4054 {"ACPI_LV_VERBOSITY1", ACPI_LV_VERBOSITY1}, 4055 4056 /* Trace verbosity level 2 [Function tracing and memory allocation] */ 4057 {"ACPI_LV_ALLOCATIONS", ACPI_LV_ALLOCATIONS}, 4058 {"ACPI_LV_FUNCTIONS", ACPI_LV_FUNCTIONS}, 4059 {"ACPI_LV_OPTIMIZATIONS", ACPI_LV_OPTIMIZATIONS}, 4060 {"ACPI_LV_VERBOSITY2", ACPI_LV_VERBOSITY2}, 4061 {"ACPI_LV_ALL", ACPI_LV_ALL}, 4062 4063 /* Trace verbosity level 3 [Threading, I/O, and Interrupts] */ 4064 {"ACPI_LV_MUTEX", ACPI_LV_MUTEX}, 4065 {"ACPI_LV_THREADS", ACPI_LV_THREADS}, 4066 {"ACPI_LV_IO", ACPI_LV_IO}, 4067 {"ACPI_LV_INTERRUPTS", ACPI_LV_INTERRUPTS}, 4068 {"ACPI_LV_VERBOSITY3", ACPI_LV_VERBOSITY3}, 4069 4070 /* Exceptionally verbose output -- also used in the global "DebugLevel" */ 4071 {"ACPI_LV_AML_DISASSEMBLE", ACPI_LV_AML_DISASSEMBLE}, 4072 {"ACPI_LV_VERBOSE_INFO", ACPI_LV_VERBOSE_INFO}, 4073 {"ACPI_LV_FULL_TABLES", ACPI_LV_FULL_TABLES}, 4074 {"ACPI_LV_EVENTS", ACPI_LV_EVENTS}, 4075 {"ACPI_LV_VERBOSE", ACPI_LV_VERBOSE}, 4076 {NULL, 0} 4077 }; 4078 4079 static void 4080 acpi_parse_debug(char *cp, struct debugtag *tag, UINT32 *flag) 4081 { 4082 char *ep; 4083 int i, l; 4084 int set; 4085 4086 while (*cp) { 4087 if (isspace(*cp)) { 4088 cp++; 4089 continue; 4090 } 4091 ep = cp; 4092 while (*ep && !isspace(*ep)) 4093 ep++; 4094 if (*cp == '!') { 4095 set = 0; 4096 cp++; 4097 if (cp == ep) 4098 continue; 4099 } else { 4100 set = 1; 4101 } 4102 l = ep - cp; 4103 for (i = 0; tag[i].name != NULL; i++) { 4104 if (!strncmp(cp, tag[i].name, l)) { 4105 if (set) 4106 *flag |= tag[i].value; 4107 else 4108 *flag &= ~tag[i].value; 4109 } 4110 } 4111 cp = ep; 4112 } 4113 } 4114 4115 static void 4116 acpi_set_debugging(void *junk) 4117 { 4118 char *layer, *level; 4119 4120 if (cold) { 4121 AcpiDbgLayer = 0; 4122 AcpiDbgLevel = 0; 4123 } 4124 4125 layer = kern_getenv("debug.acpi.layer"); 4126 level = kern_getenv("debug.acpi.level"); 4127 if (layer == NULL && level == NULL) 4128 return; 4129 4130 printf("ACPI set debug"); 4131 if (layer != NULL) { 4132 if (strcmp("NONE", layer) != 0) 4133 printf(" layer '%s'", layer); 4134 acpi_parse_debug(layer, &dbg_layer[0], &AcpiDbgLayer); 4135 freeenv(layer); 4136 } 4137 if (level != NULL) { 4138 if (strcmp("NONE", level) != 0) 4139 printf(" level '%s'", level); 4140 acpi_parse_debug(level, &dbg_level[0], &AcpiDbgLevel); 4141 freeenv(level); 4142 } 4143 printf("\n"); 4144 } 4145 4146 SYSINIT(acpi_debugging, SI_SUB_TUNABLES, SI_ORDER_ANY, acpi_set_debugging, 4147 NULL); 4148 4149 static int 4150 acpi_debug_sysctl(SYSCTL_HANDLER_ARGS) 4151 { 4152 int error, *dbg; 4153 struct debugtag *tag; 4154 struct sbuf sb; 4155 char temp[128]; 4156 4157 if (sbuf_new(&sb, NULL, 128, SBUF_AUTOEXTEND) == NULL) 4158 return (ENOMEM); 4159 if (strcmp(oidp->oid_arg1, "debug.acpi.layer") == 0) { 4160 tag = &dbg_layer[0]; 4161 dbg = &AcpiDbgLayer; 4162 } else { 4163 tag = &dbg_level[0]; 4164 dbg = &AcpiDbgLevel; 4165 } 4166 4167 /* Get old values if this is a get request. */ 4168 ACPI_SERIAL_BEGIN(acpi); 4169 if (*dbg == 0) { 4170 sbuf_cpy(&sb, "NONE"); 4171 } else if (req->newptr == NULL) { 4172 for (; tag->name != NULL; tag++) { 4173 if ((*dbg & tag->value) == tag->value) 4174 sbuf_printf(&sb, "%s ", tag->name); 4175 } 4176 } 4177 sbuf_trim(&sb); 4178 sbuf_finish(&sb); 4179 strlcpy(temp, sbuf_data(&sb), sizeof(temp)); 4180 sbuf_delete(&sb); 4181 4182 error = sysctl_handle_string(oidp, temp, sizeof(temp), req); 4183 4184 /* Check for error or no change */ 4185 if (error == 0 && req->newptr != NULL) { 4186 *dbg = 0; 4187 kern_setenv((char *)oidp->oid_arg1, temp); 4188 acpi_set_debugging(NULL); 4189 } 4190 ACPI_SERIAL_END(acpi); 4191 4192 return (error); 4193 } 4194 4195 SYSCTL_PROC(_debug_acpi, OID_AUTO, layer, 4196 CTLFLAG_RW | CTLTYPE_STRING | CTLFLAG_NEEDGIANT, "debug.acpi.layer", 0, 4197 acpi_debug_sysctl, "A", 4198 ""); 4199 SYSCTL_PROC(_debug_acpi, OID_AUTO, level, 4200 CTLFLAG_RW | CTLTYPE_STRING | CTLFLAG_NEEDGIANT, "debug.acpi.level", 0, 4201 acpi_debug_sysctl, "A", 4202 ""); 4203 #endif /* ACPI_DEBUG */ 4204 4205 static int 4206 acpi_debug_objects_sysctl(SYSCTL_HANDLER_ARGS) 4207 { 4208 int error; 4209 int old; 4210 4211 old = acpi_debug_objects; 4212 error = sysctl_handle_int(oidp, &acpi_debug_objects, 0, req); 4213 if (error != 0 || req->newptr == NULL) 4214 return (error); 4215 if (old == acpi_debug_objects || (old && acpi_debug_objects)) 4216 return (0); 4217 4218 ACPI_SERIAL_BEGIN(acpi); 4219 AcpiGbl_EnableAmlDebugObject = acpi_debug_objects ? TRUE : FALSE; 4220 ACPI_SERIAL_END(acpi); 4221 4222 return (0); 4223 } 4224 4225 static int 4226 acpi_parse_interfaces(char *str, struct acpi_interface *iface) 4227 { 4228 char *p; 4229 size_t len; 4230 int i, j; 4231 4232 p = str; 4233 while (isspace(*p) || *p == ',') 4234 p++; 4235 len = strlen(p); 4236 if (len == 0) 4237 return (0); 4238 p = strdup(p, M_TEMP); 4239 for (i = 0; i < len; i++) 4240 if (p[i] == ',') 4241 p[i] = '\0'; 4242 i = j = 0; 4243 while (i < len) 4244 if (isspace(p[i]) || p[i] == '\0') 4245 i++; 4246 else { 4247 i += strlen(p + i) + 1; 4248 j++; 4249 } 4250 if (j == 0) { 4251 free(p, M_TEMP); 4252 return (0); 4253 } 4254 iface->data = malloc(sizeof(*iface->data) * j, M_TEMP, M_WAITOK); 4255 iface->num = j; 4256 i = j = 0; 4257 while (i < len) 4258 if (isspace(p[i]) || p[i] == '\0') 4259 i++; 4260 else { 4261 iface->data[j] = p + i; 4262 i += strlen(p + i) + 1; 4263 j++; 4264 } 4265 4266 return (j); 4267 } 4268 4269 static void 4270 acpi_free_interfaces(struct acpi_interface *iface) 4271 { 4272 4273 free(iface->data[0], M_TEMP); 4274 free(iface->data, M_TEMP); 4275 } 4276 4277 static void 4278 acpi_reset_interfaces(device_t dev) 4279 { 4280 struct acpi_interface list; 4281 ACPI_STATUS status; 4282 int i; 4283 4284 if (acpi_parse_interfaces(acpi_install_interface, &list) > 0) { 4285 for (i = 0; i < list.num; i++) { 4286 status = AcpiInstallInterface(list.data[i]); 4287 if (ACPI_FAILURE(status)) 4288 device_printf(dev, 4289 "failed to install _OSI(\"%s\"): %s\n", 4290 list.data[i], AcpiFormatException(status)); 4291 else if (bootverbose) 4292 device_printf(dev, "installed _OSI(\"%s\")\n", 4293 list.data[i]); 4294 } 4295 acpi_free_interfaces(&list); 4296 } 4297 if (acpi_parse_interfaces(acpi_remove_interface, &list) > 0) { 4298 for (i = 0; i < list.num; i++) { 4299 status = AcpiRemoveInterface(list.data[i]); 4300 if (ACPI_FAILURE(status)) 4301 device_printf(dev, 4302 "failed to remove _OSI(\"%s\"): %s\n", 4303 list.data[i], AcpiFormatException(status)); 4304 else if (bootverbose) 4305 device_printf(dev, "removed _OSI(\"%s\")\n", 4306 list.data[i]); 4307 } 4308 acpi_free_interfaces(&list); 4309 } 4310 } 4311 4312 static int 4313 acpi_pm_func(u_long cmd, void *arg, ...) 4314 { 4315 int state, acpi_state; 4316 int error; 4317 struct acpi_softc *sc; 4318 va_list ap; 4319 4320 error = 0; 4321 switch (cmd) { 4322 case POWER_CMD_SUSPEND: 4323 sc = (struct acpi_softc *)arg; 4324 if (sc == NULL) { 4325 error = EINVAL; 4326 goto out; 4327 } 4328 4329 va_start(ap, arg); 4330 state = va_arg(ap, int); 4331 va_end(ap); 4332 4333 switch (state) { 4334 case POWER_SLEEP_STATE_STANDBY: 4335 acpi_state = sc->acpi_standby_sx; 4336 break; 4337 case POWER_SLEEP_STATE_SUSPEND: 4338 acpi_state = sc->acpi_suspend_sx; 4339 break; 4340 case POWER_SLEEP_STATE_HIBERNATE: 4341 acpi_state = ACPI_STATE_S4; 4342 break; 4343 default: 4344 error = EINVAL; 4345 goto out; 4346 } 4347 4348 if (ACPI_FAILURE(acpi_EnterSleepState(sc, acpi_state))) 4349 error = ENXIO; 4350 break; 4351 default: 4352 error = EINVAL; 4353 goto out; 4354 } 4355 4356 out: 4357 return (error); 4358 } 4359 4360 static void 4361 acpi_pm_register(void *arg) 4362 { 4363 if (!cold || resource_disabled("acpi", 0)) 4364 return; 4365 4366 power_pm_register(POWER_PM_TYPE_ACPI, acpi_pm_func, NULL); 4367 } 4368 4369 SYSINIT(power, SI_SUB_KLD, SI_ORDER_ANY, acpi_pm_register, NULL); 4370