1 /*- 2 * Copyright (c) 2000 Takanori Watanabe <takawata@jp.freebsd.org> 3 * Copyright (c) 2000 Mitsuru IWASAKI <iwasaki@jp.freebsd.org> 4 * Copyright (c) 2000, 2001 Michael Smith 5 * Copyright (c) 2000 BSDi 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include "opt_acpi.h" 34 #include <sys/param.h> 35 #include <sys/kernel.h> 36 #include <sys/proc.h> 37 #include <sys/fcntl.h> 38 #include <sys/malloc.h> 39 #include <sys/module.h> 40 #include <sys/bus.h> 41 #include <sys/conf.h> 42 #include <sys/ioccom.h> 43 #include <sys/reboot.h> 44 #include <sys/sysctl.h> 45 #include <sys/ctype.h> 46 #include <sys/linker.h> 47 #include <sys/power.h> 48 #include <sys/sbuf.h> 49 #include <sys/sched.h> 50 #include <sys/smp.h> 51 #include <sys/timetc.h> 52 53 #if defined(__i386__) || defined(__amd64__) 54 #include <machine/pci_cfgreg.h> 55 #endif 56 #include <machine/resource.h> 57 #include <machine/bus.h> 58 #include <sys/rman.h> 59 #include <isa/isavar.h> 60 #include <isa/pnpvar.h> 61 62 #include <contrib/dev/acpica/include/acpi.h> 63 #include <contrib/dev/acpica/include/accommon.h> 64 #include <contrib/dev/acpica/include/acnamesp.h> 65 66 #include <dev/acpica/acpivar.h> 67 #include <dev/acpica/acpiio.h> 68 69 #include <vm/vm_param.h> 70 71 static MALLOC_DEFINE(M_ACPIDEV, "acpidev", "ACPI devices"); 72 73 /* Hooks for the ACPI CA debugging infrastructure */ 74 #define _COMPONENT ACPI_BUS 75 ACPI_MODULE_NAME("ACPI") 76 77 static d_open_t acpiopen; 78 static d_close_t acpiclose; 79 static d_ioctl_t acpiioctl; 80 81 static struct cdevsw acpi_cdevsw = { 82 .d_version = D_VERSION, 83 .d_open = acpiopen, 84 .d_close = acpiclose, 85 .d_ioctl = acpiioctl, 86 .d_name = "acpi", 87 }; 88 89 struct acpi_interface { 90 ACPI_STRING *data; 91 int num; 92 }; 93 94 /* Global mutex for locking access to the ACPI subsystem. */ 95 struct mtx acpi_mutex; 96 struct callout acpi_sleep_timer; 97 98 /* Bitmap of device quirks. */ 99 int acpi_quirks; 100 101 /* Supported sleep states. */ 102 static BOOLEAN acpi_sleep_states[ACPI_S_STATE_COUNT]; 103 104 static void acpi_lookup(void *arg, const char *name, device_t *dev); 105 static int acpi_modevent(struct module *mod, int event, void *junk); 106 static int acpi_probe(device_t dev); 107 static int acpi_attach(device_t dev); 108 static int acpi_suspend(device_t dev); 109 static int acpi_resume(device_t dev); 110 static int acpi_shutdown(device_t dev); 111 static device_t acpi_add_child(device_t bus, u_int order, const char *name, 112 int unit); 113 static int acpi_print_child(device_t bus, device_t child); 114 static void acpi_probe_nomatch(device_t bus, device_t child); 115 static void acpi_driver_added(device_t dev, driver_t *driver); 116 static int acpi_read_ivar(device_t dev, device_t child, int index, 117 uintptr_t *result); 118 static int acpi_write_ivar(device_t dev, device_t child, int index, 119 uintptr_t value); 120 static struct resource_list *acpi_get_rlist(device_t dev, device_t child); 121 static void acpi_reserve_resources(device_t dev); 122 static int acpi_sysres_alloc(device_t dev); 123 static int acpi_set_resource(device_t dev, device_t child, int type, 124 int rid, u_long start, u_long count); 125 static struct resource *acpi_alloc_resource(device_t bus, device_t child, 126 int type, int *rid, u_long start, u_long end, 127 u_long count, u_int flags); 128 static int acpi_adjust_resource(device_t bus, device_t child, int type, 129 struct resource *r, u_long start, u_long end); 130 static int acpi_release_resource(device_t bus, device_t child, int type, 131 int rid, struct resource *r); 132 static void acpi_delete_resource(device_t bus, device_t child, int type, 133 int rid); 134 static uint32_t acpi_isa_get_logicalid(device_t dev); 135 static int acpi_isa_get_compatid(device_t dev, uint32_t *cids, int count); 136 static char *acpi_device_id_probe(device_t bus, device_t dev, char **ids); 137 static ACPI_STATUS acpi_device_eval_obj(device_t bus, device_t dev, 138 ACPI_STRING pathname, ACPI_OBJECT_LIST *parameters, 139 ACPI_BUFFER *ret); 140 static ACPI_STATUS acpi_device_scan_cb(ACPI_HANDLE h, UINT32 level, 141 void *context, void **retval); 142 static ACPI_STATUS acpi_device_scan_children(device_t bus, device_t dev, 143 int max_depth, acpi_scan_cb_t user_fn, void *arg); 144 static int acpi_set_powerstate(device_t child, int state); 145 static int acpi_isa_pnp_probe(device_t bus, device_t child, 146 struct isa_pnp_id *ids); 147 static void acpi_probe_children(device_t bus); 148 static void acpi_probe_order(ACPI_HANDLE handle, int *order); 149 static ACPI_STATUS acpi_probe_child(ACPI_HANDLE handle, UINT32 level, 150 void *context, void **status); 151 static void acpi_sleep_enable(void *arg); 152 static ACPI_STATUS acpi_sleep_disable(struct acpi_softc *sc); 153 static ACPI_STATUS acpi_EnterSleepState(struct acpi_softc *sc, int state); 154 static void acpi_shutdown_final(void *arg, int howto); 155 static void acpi_enable_fixed_events(struct acpi_softc *sc); 156 static BOOLEAN acpi_has_hid(ACPI_HANDLE handle); 157 static void acpi_resync_clock(struct acpi_softc *sc); 158 static int acpi_wake_sleep_prep(ACPI_HANDLE handle, int sstate); 159 static int acpi_wake_run_prep(ACPI_HANDLE handle, int sstate); 160 static int acpi_wake_prep_walk(int sstate); 161 static int acpi_wake_sysctl_walk(device_t dev); 162 static int acpi_wake_set_sysctl(SYSCTL_HANDLER_ARGS); 163 static void acpi_system_eventhandler_sleep(void *arg, int state); 164 static void acpi_system_eventhandler_wakeup(void *arg, int state); 165 static int acpi_sname2sstate(const char *sname); 166 static const char *acpi_sstate2sname(int sstate); 167 static int acpi_supported_sleep_state_sysctl(SYSCTL_HANDLER_ARGS); 168 static int acpi_sleep_state_sysctl(SYSCTL_HANDLER_ARGS); 169 static int acpi_debug_objects_sysctl(SYSCTL_HANDLER_ARGS); 170 static int acpi_pm_func(u_long cmd, void *arg, ...); 171 static int acpi_child_location_str_method(device_t acdev, device_t child, 172 char *buf, size_t buflen); 173 static int acpi_child_pnpinfo_str_method(device_t acdev, device_t child, 174 char *buf, size_t buflen); 175 #if defined(__i386__) || defined(__amd64__) 176 static void acpi_enable_pcie(void); 177 #endif 178 static void acpi_hint_device_unit(device_t acdev, device_t child, 179 const char *name, int *unitp); 180 static void acpi_reset_interfaces(device_t dev); 181 182 static device_method_t acpi_methods[] = { 183 /* Device interface */ 184 DEVMETHOD(device_probe, acpi_probe), 185 DEVMETHOD(device_attach, acpi_attach), 186 DEVMETHOD(device_shutdown, acpi_shutdown), 187 DEVMETHOD(device_detach, bus_generic_detach), 188 DEVMETHOD(device_suspend, acpi_suspend), 189 DEVMETHOD(device_resume, acpi_resume), 190 191 /* Bus interface */ 192 DEVMETHOD(bus_add_child, acpi_add_child), 193 DEVMETHOD(bus_print_child, acpi_print_child), 194 DEVMETHOD(bus_probe_nomatch, acpi_probe_nomatch), 195 DEVMETHOD(bus_driver_added, acpi_driver_added), 196 DEVMETHOD(bus_read_ivar, acpi_read_ivar), 197 DEVMETHOD(bus_write_ivar, acpi_write_ivar), 198 DEVMETHOD(bus_get_resource_list, acpi_get_rlist), 199 DEVMETHOD(bus_set_resource, acpi_set_resource), 200 DEVMETHOD(bus_get_resource, bus_generic_rl_get_resource), 201 DEVMETHOD(bus_alloc_resource, acpi_alloc_resource), 202 DEVMETHOD(bus_adjust_resource, acpi_adjust_resource), 203 DEVMETHOD(bus_release_resource, acpi_release_resource), 204 DEVMETHOD(bus_delete_resource, acpi_delete_resource), 205 DEVMETHOD(bus_child_pnpinfo_str, acpi_child_pnpinfo_str_method), 206 DEVMETHOD(bus_child_location_str, acpi_child_location_str_method), 207 DEVMETHOD(bus_activate_resource, bus_generic_activate_resource), 208 DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource), 209 DEVMETHOD(bus_setup_intr, bus_generic_setup_intr), 210 DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr), 211 DEVMETHOD(bus_hint_device_unit, acpi_hint_device_unit), 212 DEVMETHOD(bus_get_domain, acpi_get_domain), 213 214 /* ACPI bus */ 215 DEVMETHOD(acpi_id_probe, acpi_device_id_probe), 216 DEVMETHOD(acpi_evaluate_object, acpi_device_eval_obj), 217 DEVMETHOD(acpi_pwr_for_sleep, acpi_device_pwr_for_sleep), 218 DEVMETHOD(acpi_scan_children, acpi_device_scan_children), 219 220 /* ISA emulation */ 221 DEVMETHOD(isa_pnp_probe, acpi_isa_pnp_probe), 222 223 DEVMETHOD_END 224 }; 225 226 static driver_t acpi_driver = { 227 "acpi", 228 acpi_methods, 229 sizeof(struct acpi_softc), 230 }; 231 232 static devclass_t acpi_devclass; 233 DRIVER_MODULE(acpi, nexus, acpi_driver, acpi_devclass, acpi_modevent, 0); 234 MODULE_VERSION(acpi, 1); 235 236 ACPI_SERIAL_DECL(acpi, "ACPI root bus"); 237 238 /* Local pools for managing system resources for ACPI child devices. */ 239 static struct rman acpi_rman_io, acpi_rman_mem; 240 241 #define ACPI_MINIMUM_AWAKETIME 5 242 243 /* Holds the description of the acpi0 device. */ 244 static char acpi_desc[ACPI_OEM_ID_SIZE + ACPI_OEM_TABLE_ID_SIZE + 2]; 245 246 SYSCTL_NODE(_debug, OID_AUTO, acpi, CTLFLAG_RD, NULL, "ACPI debugging"); 247 static char acpi_ca_version[12]; 248 SYSCTL_STRING(_debug_acpi, OID_AUTO, acpi_ca_version, CTLFLAG_RD, 249 acpi_ca_version, 0, "Version of Intel ACPI-CA"); 250 251 /* 252 * Allow overriding _OSI methods. 253 */ 254 static char acpi_install_interface[256]; 255 TUNABLE_STR("hw.acpi.install_interface", acpi_install_interface, 256 sizeof(acpi_install_interface)); 257 static char acpi_remove_interface[256]; 258 TUNABLE_STR("hw.acpi.remove_interface", acpi_remove_interface, 259 sizeof(acpi_remove_interface)); 260 261 /* Allow users to dump Debug objects without ACPI debugger. */ 262 static int acpi_debug_objects; 263 TUNABLE_INT("debug.acpi.enable_debug_objects", &acpi_debug_objects); 264 SYSCTL_PROC(_debug_acpi, OID_AUTO, enable_debug_objects, 265 CTLFLAG_RW | CTLTYPE_INT, NULL, 0, acpi_debug_objects_sysctl, "I", 266 "Enable Debug objects"); 267 268 /* Allow the interpreter to ignore common mistakes in BIOS. */ 269 static int acpi_interpreter_slack = 1; 270 TUNABLE_INT("debug.acpi.interpreter_slack", &acpi_interpreter_slack); 271 SYSCTL_INT(_debug_acpi, OID_AUTO, interpreter_slack, CTLFLAG_RDTUN, 272 &acpi_interpreter_slack, 1, "Turn on interpreter slack mode."); 273 274 /* Ignore register widths set by FADT and use default widths instead. */ 275 static int acpi_ignore_reg_width = 1; 276 TUNABLE_INT("debug.acpi.default_register_width", &acpi_ignore_reg_width); 277 SYSCTL_INT(_debug_acpi, OID_AUTO, default_register_width, CTLFLAG_RDTUN, 278 &acpi_ignore_reg_width, 1, "Ignore register widths set by FADT"); 279 280 #ifdef __amd64__ 281 /* Reset system clock while resuming. XXX Remove once tested. */ 282 static int acpi_reset_clock = 1; 283 TUNABLE_INT("debug.acpi.reset_clock", &acpi_reset_clock); 284 SYSCTL_INT(_debug_acpi, OID_AUTO, reset_clock, CTLFLAG_RW, 285 &acpi_reset_clock, 1, "Reset system clock while resuming."); 286 #endif 287 288 /* Allow users to override quirks. */ 289 TUNABLE_INT("debug.acpi.quirks", &acpi_quirks); 290 291 static int acpi_susp_bounce; 292 SYSCTL_INT(_debug_acpi, OID_AUTO, suspend_bounce, CTLFLAG_RW, 293 &acpi_susp_bounce, 0, "Don't actually suspend, just test devices."); 294 295 /* 296 * ACPI can only be loaded as a module by the loader; activating it after 297 * system bootstrap time is not useful, and can be fatal to the system. 298 * It also cannot be unloaded, since the entire system bus hierarchy hangs 299 * off it. 300 */ 301 static int 302 acpi_modevent(struct module *mod, int event, void *junk) 303 { 304 switch (event) { 305 case MOD_LOAD: 306 if (!cold) { 307 printf("The ACPI driver cannot be loaded after boot.\n"); 308 return (EPERM); 309 } 310 break; 311 case MOD_UNLOAD: 312 if (!cold && power_pm_get_type() == POWER_PM_TYPE_ACPI) 313 return (EBUSY); 314 break; 315 default: 316 break; 317 } 318 return (0); 319 } 320 321 /* 322 * Perform early initialization. 323 */ 324 ACPI_STATUS 325 acpi_Startup(void) 326 { 327 static int started = 0; 328 ACPI_STATUS status; 329 int val; 330 331 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 332 333 /* Only run the startup code once. The MADT driver also calls this. */ 334 if (started) 335 return_VALUE (AE_OK); 336 started = 1; 337 338 /* 339 * Pre-allocate space for RSDT/XSDT and DSDT tables and allow resizing 340 * if more tables exist. 341 */ 342 if (ACPI_FAILURE(status = AcpiInitializeTables(NULL, 2, TRUE))) { 343 printf("ACPI: Table initialisation failed: %s\n", 344 AcpiFormatException(status)); 345 return_VALUE (status); 346 } 347 348 /* Set up any quirks we have for this system. */ 349 if (acpi_quirks == ACPI_Q_OK) 350 acpi_table_quirks(&acpi_quirks); 351 352 /* If the user manually set the disabled hint to 0, force-enable ACPI. */ 353 if (resource_int_value("acpi", 0, "disabled", &val) == 0 && val == 0) 354 acpi_quirks &= ~ACPI_Q_BROKEN; 355 if (acpi_quirks & ACPI_Q_BROKEN) { 356 printf("ACPI disabled by blacklist. Contact your BIOS vendor.\n"); 357 status = AE_SUPPORT; 358 } 359 360 return_VALUE (status); 361 } 362 363 /* 364 * Detect ACPI and perform early initialisation. 365 */ 366 int 367 acpi_identify(void) 368 { 369 ACPI_TABLE_RSDP *rsdp; 370 ACPI_TABLE_HEADER *rsdt; 371 ACPI_PHYSICAL_ADDRESS paddr; 372 struct sbuf sb; 373 374 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 375 376 if (!cold) 377 return (ENXIO); 378 379 /* Check that we haven't been disabled with a hint. */ 380 if (resource_disabled("acpi", 0)) 381 return (ENXIO); 382 383 /* Check for other PM systems. */ 384 if (power_pm_get_type() != POWER_PM_TYPE_NONE && 385 power_pm_get_type() != POWER_PM_TYPE_ACPI) { 386 printf("ACPI identify failed, other PM system enabled.\n"); 387 return (ENXIO); 388 } 389 390 /* Initialize root tables. */ 391 if (ACPI_FAILURE(acpi_Startup())) { 392 printf("ACPI: Try disabling either ACPI or apic support.\n"); 393 return (ENXIO); 394 } 395 396 if ((paddr = AcpiOsGetRootPointer()) == 0 || 397 (rsdp = AcpiOsMapMemory(paddr, sizeof(ACPI_TABLE_RSDP))) == NULL) 398 return (ENXIO); 399 if (rsdp->Revision > 1 && rsdp->XsdtPhysicalAddress != 0) 400 paddr = (ACPI_PHYSICAL_ADDRESS)rsdp->XsdtPhysicalAddress; 401 else 402 paddr = (ACPI_PHYSICAL_ADDRESS)rsdp->RsdtPhysicalAddress; 403 AcpiOsUnmapMemory(rsdp, sizeof(ACPI_TABLE_RSDP)); 404 405 if ((rsdt = AcpiOsMapMemory(paddr, sizeof(ACPI_TABLE_HEADER))) == NULL) 406 return (ENXIO); 407 sbuf_new(&sb, acpi_desc, sizeof(acpi_desc), SBUF_FIXEDLEN); 408 sbuf_bcat(&sb, rsdt->OemId, ACPI_OEM_ID_SIZE); 409 sbuf_trim(&sb); 410 sbuf_putc(&sb, ' '); 411 sbuf_bcat(&sb, rsdt->OemTableId, ACPI_OEM_TABLE_ID_SIZE); 412 sbuf_trim(&sb); 413 sbuf_finish(&sb); 414 sbuf_delete(&sb); 415 AcpiOsUnmapMemory(rsdt, sizeof(ACPI_TABLE_HEADER)); 416 417 snprintf(acpi_ca_version, sizeof(acpi_ca_version), "%x", ACPI_CA_VERSION); 418 419 return (0); 420 } 421 422 /* 423 * Fetch some descriptive data from ACPI to put in our attach message. 424 */ 425 static int 426 acpi_probe(device_t dev) 427 { 428 429 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 430 431 device_set_desc(dev, acpi_desc); 432 433 return_VALUE (BUS_PROBE_NOWILDCARD); 434 } 435 436 static int 437 acpi_attach(device_t dev) 438 { 439 struct acpi_softc *sc; 440 ACPI_STATUS status; 441 int error, state; 442 UINT32 flags; 443 UINT8 TypeA, TypeB; 444 char *env; 445 446 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 447 448 sc = device_get_softc(dev); 449 sc->acpi_dev = dev; 450 callout_init(&sc->susp_force_to, 1); 451 452 error = ENXIO; 453 454 /* Initialize resource manager. */ 455 acpi_rman_io.rm_type = RMAN_ARRAY; 456 acpi_rman_io.rm_start = 0; 457 acpi_rman_io.rm_end = 0xffff; 458 acpi_rman_io.rm_descr = "ACPI I/O ports"; 459 if (rman_init(&acpi_rman_io) != 0) 460 panic("acpi rman_init IO ports failed"); 461 acpi_rman_mem.rm_type = RMAN_ARRAY; 462 acpi_rman_mem.rm_start = 0; 463 acpi_rman_mem.rm_end = ~0ul; 464 acpi_rman_mem.rm_descr = "ACPI I/O memory addresses"; 465 if (rman_init(&acpi_rman_mem) != 0) 466 panic("acpi rman_init memory failed"); 467 468 /* Initialise the ACPI mutex */ 469 mtx_init(&acpi_mutex, "ACPI global lock", NULL, MTX_DEF); 470 471 /* 472 * Set the globals from our tunables. This is needed because ACPI-CA 473 * uses UINT8 for some values and we have no tunable_byte. 474 */ 475 AcpiGbl_EnableInterpreterSlack = acpi_interpreter_slack ? TRUE : FALSE; 476 AcpiGbl_EnableAmlDebugObject = acpi_debug_objects ? TRUE : FALSE; 477 AcpiGbl_UseDefaultRegisterWidths = acpi_ignore_reg_width ? TRUE : FALSE; 478 479 #ifndef ACPI_DEBUG 480 /* 481 * Disable all debugging layers and levels. 482 */ 483 AcpiDbgLayer = 0; 484 AcpiDbgLevel = 0; 485 #endif 486 487 /* Start up the ACPI CA subsystem. */ 488 status = AcpiInitializeSubsystem(); 489 if (ACPI_FAILURE(status)) { 490 device_printf(dev, "Could not initialize Subsystem: %s\n", 491 AcpiFormatException(status)); 492 goto out; 493 } 494 495 /* Override OS interfaces if the user requested. */ 496 acpi_reset_interfaces(dev); 497 498 /* Load ACPI name space. */ 499 status = AcpiLoadTables(); 500 if (ACPI_FAILURE(status)) { 501 device_printf(dev, "Could not load Namespace: %s\n", 502 AcpiFormatException(status)); 503 goto out; 504 } 505 506 #if defined(__i386__) || defined(__amd64__) 507 /* Handle MCFG table if present. */ 508 acpi_enable_pcie(); 509 #endif 510 511 /* 512 * Note that some systems (specifically, those with namespace evaluation 513 * issues that require the avoidance of parts of the namespace) must 514 * avoid running _INI and _STA on everything, as well as dodging the final 515 * object init pass. 516 * 517 * For these devices, we set ACPI_NO_DEVICE_INIT and ACPI_NO_OBJECT_INIT). 518 * 519 * XXX We should arrange for the object init pass after we have attached 520 * all our child devices, but on many systems it works here. 521 */ 522 flags = 0; 523 if (testenv("debug.acpi.avoid")) 524 flags = ACPI_NO_DEVICE_INIT | ACPI_NO_OBJECT_INIT; 525 526 /* Bring the hardware and basic handlers online. */ 527 if (ACPI_FAILURE(status = AcpiEnableSubsystem(flags))) { 528 device_printf(dev, "Could not enable ACPI: %s\n", 529 AcpiFormatException(status)); 530 goto out; 531 } 532 533 /* 534 * Call the ECDT probe function to provide EC functionality before 535 * the namespace has been evaluated. 536 * 537 * XXX This happens before the sysresource devices have been probed and 538 * attached so its resources come from nexus0. In practice, this isn't 539 * a problem but should be addressed eventually. 540 */ 541 acpi_ec_ecdt_probe(dev); 542 543 /* Bring device objects and regions online. */ 544 if (ACPI_FAILURE(status = AcpiInitializeObjects(flags))) { 545 device_printf(dev, "Could not initialize ACPI objects: %s\n", 546 AcpiFormatException(status)); 547 goto out; 548 } 549 550 /* 551 * Setup our sysctl tree. 552 * 553 * XXX: This doesn't check to make sure that none of these fail. 554 */ 555 sysctl_ctx_init(&sc->acpi_sysctl_ctx); 556 sc->acpi_sysctl_tree = SYSCTL_ADD_NODE(&sc->acpi_sysctl_ctx, 557 SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO, 558 device_get_name(dev), CTLFLAG_RD, 0, ""); 559 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 560 OID_AUTO, "supported_sleep_state", CTLTYPE_STRING | CTLFLAG_RD, 561 0, 0, acpi_supported_sleep_state_sysctl, "A", ""); 562 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 563 OID_AUTO, "power_button_state", CTLTYPE_STRING | CTLFLAG_RW, 564 &sc->acpi_power_button_sx, 0, acpi_sleep_state_sysctl, "A", ""); 565 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 566 OID_AUTO, "sleep_button_state", CTLTYPE_STRING | CTLFLAG_RW, 567 &sc->acpi_sleep_button_sx, 0, acpi_sleep_state_sysctl, "A", ""); 568 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 569 OID_AUTO, "lid_switch_state", CTLTYPE_STRING | CTLFLAG_RW, 570 &sc->acpi_lid_switch_sx, 0, acpi_sleep_state_sysctl, "A", ""); 571 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 572 OID_AUTO, "standby_state", CTLTYPE_STRING | CTLFLAG_RW, 573 &sc->acpi_standby_sx, 0, acpi_sleep_state_sysctl, "A", ""); 574 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 575 OID_AUTO, "suspend_state", CTLTYPE_STRING | CTLFLAG_RW, 576 &sc->acpi_suspend_sx, 0, acpi_sleep_state_sysctl, "A", ""); 577 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 578 OID_AUTO, "sleep_delay", CTLFLAG_RW, &sc->acpi_sleep_delay, 0, 579 "sleep delay in seconds"); 580 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 581 OID_AUTO, "s4bios", CTLFLAG_RW, &sc->acpi_s4bios, 0, "S4BIOS mode"); 582 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 583 OID_AUTO, "verbose", CTLFLAG_RW, &sc->acpi_verbose, 0, "verbose mode"); 584 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 585 OID_AUTO, "disable_on_reboot", CTLFLAG_RW, 586 &sc->acpi_do_disable, 0, "Disable ACPI when rebooting/halting system"); 587 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 588 OID_AUTO, "handle_reboot", CTLFLAG_RW, 589 &sc->acpi_handle_reboot, 0, "Use ACPI Reset Register to reboot"); 590 591 /* 592 * Default to 1 second before sleeping to give some machines time to 593 * stabilize. 594 */ 595 sc->acpi_sleep_delay = 1; 596 if (bootverbose) 597 sc->acpi_verbose = 1; 598 if ((env = kern_getenv("hw.acpi.verbose")) != NULL) { 599 if (strcmp(env, "0") != 0) 600 sc->acpi_verbose = 1; 601 freeenv(env); 602 } 603 604 /* Only enable reboot by default if the FADT says it is available. */ 605 if (AcpiGbl_FADT.Flags & ACPI_FADT_RESET_REGISTER) 606 sc->acpi_handle_reboot = 1; 607 608 #if !ACPI_REDUCED_HARDWARE 609 /* Only enable S4BIOS by default if the FACS says it is available. */ 610 if (AcpiGbl_FACS != NULL && AcpiGbl_FACS->Flags & ACPI_FACS_S4_BIOS_PRESENT) 611 sc->acpi_s4bios = 1; 612 #endif 613 614 /* Probe all supported sleep states. */ 615 acpi_sleep_states[ACPI_STATE_S0] = TRUE; 616 for (state = ACPI_STATE_S1; state < ACPI_S_STATE_COUNT; state++) 617 if (ACPI_SUCCESS(AcpiEvaluateObject(ACPI_ROOT_OBJECT, 618 __DECONST(char *, AcpiGbl_SleepStateNames[state]), NULL, NULL)) && 619 ACPI_SUCCESS(AcpiGetSleepTypeData(state, &TypeA, &TypeB))) 620 acpi_sleep_states[state] = TRUE; 621 622 /* 623 * Dispatch the default sleep state to devices. The lid switch is set 624 * to UNKNOWN by default to avoid surprising users. 625 */ 626 sc->acpi_power_button_sx = acpi_sleep_states[ACPI_STATE_S5] ? 627 ACPI_STATE_S5 : ACPI_STATE_UNKNOWN; 628 sc->acpi_lid_switch_sx = ACPI_STATE_UNKNOWN; 629 sc->acpi_standby_sx = acpi_sleep_states[ACPI_STATE_S1] ? 630 ACPI_STATE_S1 : ACPI_STATE_UNKNOWN; 631 sc->acpi_suspend_sx = acpi_sleep_states[ACPI_STATE_S3] ? 632 ACPI_STATE_S3 : ACPI_STATE_UNKNOWN; 633 634 /* Pick the first valid sleep state for the sleep button default. */ 635 sc->acpi_sleep_button_sx = ACPI_STATE_UNKNOWN; 636 for (state = ACPI_STATE_S1; state <= ACPI_STATE_S4; state++) 637 if (acpi_sleep_states[state]) { 638 sc->acpi_sleep_button_sx = state; 639 break; 640 } 641 642 acpi_enable_fixed_events(sc); 643 644 /* 645 * Scan the namespace and attach/initialise children. 646 */ 647 648 /* Register our shutdown handler. */ 649 EVENTHANDLER_REGISTER(shutdown_final, acpi_shutdown_final, sc, 650 SHUTDOWN_PRI_LAST); 651 652 /* 653 * Register our acpi event handlers. 654 * XXX should be configurable eg. via userland policy manager. 655 */ 656 EVENTHANDLER_REGISTER(acpi_sleep_event, acpi_system_eventhandler_sleep, 657 sc, ACPI_EVENT_PRI_LAST); 658 EVENTHANDLER_REGISTER(acpi_wakeup_event, acpi_system_eventhandler_wakeup, 659 sc, ACPI_EVENT_PRI_LAST); 660 661 /* Flag our initial states. */ 662 sc->acpi_enabled = TRUE; 663 sc->acpi_sstate = ACPI_STATE_S0; 664 sc->acpi_sleep_disabled = TRUE; 665 666 /* Create the control device */ 667 sc->acpi_dev_t = make_dev(&acpi_cdevsw, 0, UID_ROOT, GID_WHEEL, 0644, 668 "acpi"); 669 sc->acpi_dev_t->si_drv1 = sc; 670 671 if ((error = acpi_machdep_init(dev))) 672 goto out; 673 674 /* Register ACPI again to pass the correct argument of pm_func. */ 675 power_pm_register(POWER_PM_TYPE_ACPI, acpi_pm_func, sc); 676 677 if (!acpi_disabled("bus")) { 678 EVENTHANDLER_REGISTER(dev_lookup, acpi_lookup, NULL, 1000); 679 acpi_probe_children(dev); 680 } 681 682 /* Update all GPEs and enable runtime GPEs. */ 683 status = AcpiUpdateAllGpes(); 684 if (ACPI_FAILURE(status)) 685 device_printf(dev, "Could not update all GPEs: %s\n", 686 AcpiFormatException(status)); 687 688 /* Allow sleep request after a while. */ 689 callout_init_mtx(&acpi_sleep_timer, &acpi_mutex, 0); 690 callout_reset(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME, 691 acpi_sleep_enable, sc); 692 693 error = 0; 694 695 out: 696 return_VALUE (error); 697 } 698 699 static void 700 acpi_set_power_children(device_t dev, int state) 701 { 702 device_t child; 703 device_t *devlist; 704 int dstate, i, numdevs; 705 706 if (device_get_children(dev, &devlist, &numdevs) != 0) 707 return; 708 709 /* 710 * Retrieve and set D-state for the sleep state if _SxD is present. 711 * Skip children who aren't attached since they are handled separately. 712 */ 713 for (i = 0; i < numdevs; i++) { 714 child = devlist[i]; 715 dstate = state; 716 if (device_is_attached(child) && 717 acpi_device_pwr_for_sleep(dev, child, &dstate) == 0) 718 acpi_set_powerstate(child, dstate); 719 } 720 free(devlist, M_TEMP); 721 } 722 723 static int 724 acpi_suspend(device_t dev) 725 { 726 int error; 727 728 GIANT_REQUIRED; 729 730 error = bus_generic_suspend(dev); 731 if (error == 0) 732 acpi_set_power_children(dev, ACPI_STATE_D3); 733 734 return (error); 735 } 736 737 static int 738 acpi_resume(device_t dev) 739 { 740 741 GIANT_REQUIRED; 742 743 acpi_set_power_children(dev, ACPI_STATE_D0); 744 745 return (bus_generic_resume(dev)); 746 } 747 748 static int 749 acpi_shutdown(device_t dev) 750 { 751 752 GIANT_REQUIRED; 753 754 /* Allow children to shutdown first. */ 755 bus_generic_shutdown(dev); 756 757 /* 758 * Enable any GPEs that are able to power-on the system (i.e., RTC). 759 * Also, disable any that are not valid for this state (most). 760 */ 761 acpi_wake_prep_walk(ACPI_STATE_S5); 762 763 return (0); 764 } 765 766 /* 767 * Handle a new device being added 768 */ 769 static device_t 770 acpi_add_child(device_t bus, u_int order, const char *name, int unit) 771 { 772 struct acpi_device *ad; 773 device_t child; 774 775 if ((ad = malloc(sizeof(*ad), M_ACPIDEV, M_NOWAIT | M_ZERO)) == NULL) 776 return (NULL); 777 778 resource_list_init(&ad->ad_rl); 779 780 child = device_add_child_ordered(bus, order, name, unit); 781 if (child != NULL) 782 device_set_ivars(child, ad); 783 else 784 free(ad, M_ACPIDEV); 785 return (child); 786 } 787 788 static int 789 acpi_print_child(device_t bus, device_t child) 790 { 791 struct acpi_device *adev = device_get_ivars(child); 792 struct resource_list *rl = &adev->ad_rl; 793 int retval = 0; 794 795 retval += bus_print_child_header(bus, child); 796 retval += resource_list_print_type(rl, "port", SYS_RES_IOPORT, "%#lx"); 797 retval += resource_list_print_type(rl, "iomem", SYS_RES_MEMORY, "%#lx"); 798 retval += resource_list_print_type(rl, "irq", SYS_RES_IRQ, "%ld"); 799 retval += resource_list_print_type(rl, "drq", SYS_RES_DRQ, "%ld"); 800 if (device_get_flags(child)) 801 retval += printf(" flags %#x", device_get_flags(child)); 802 retval += bus_print_child_domain(bus, child); 803 retval += bus_print_child_footer(bus, child); 804 805 return (retval); 806 } 807 808 /* 809 * If this device is an ACPI child but no one claimed it, attempt 810 * to power it off. We'll power it back up when a driver is added. 811 * 812 * XXX Disabled for now since many necessary devices (like fdc and 813 * ATA) don't claim the devices we created for them but still expect 814 * them to be powered up. 815 */ 816 static void 817 acpi_probe_nomatch(device_t bus, device_t child) 818 { 819 #ifdef ACPI_ENABLE_POWERDOWN_NODRIVER 820 acpi_set_powerstate(child, ACPI_STATE_D3); 821 #endif 822 } 823 824 /* 825 * If a new driver has a chance to probe a child, first power it up. 826 * 827 * XXX Disabled for now (see acpi_probe_nomatch for details). 828 */ 829 static void 830 acpi_driver_added(device_t dev, driver_t *driver) 831 { 832 device_t child, *devlist; 833 int i, numdevs; 834 835 DEVICE_IDENTIFY(driver, dev); 836 if (device_get_children(dev, &devlist, &numdevs)) 837 return; 838 for (i = 0; i < numdevs; i++) { 839 child = devlist[i]; 840 if (device_get_state(child) == DS_NOTPRESENT) { 841 #ifdef ACPI_ENABLE_POWERDOWN_NODRIVER 842 acpi_set_powerstate(child, ACPI_STATE_D0); 843 if (device_probe_and_attach(child) != 0) 844 acpi_set_powerstate(child, ACPI_STATE_D3); 845 #else 846 device_probe_and_attach(child); 847 #endif 848 } 849 } 850 free(devlist, M_TEMP); 851 } 852 853 /* Location hint for devctl(8) */ 854 static int 855 acpi_child_location_str_method(device_t cbdev, device_t child, char *buf, 856 size_t buflen) 857 { 858 struct acpi_device *dinfo = device_get_ivars(child); 859 char buf2[32]; 860 int pxm; 861 862 if (dinfo->ad_handle) { 863 snprintf(buf, buflen, "handle=%s", acpi_name(dinfo->ad_handle)); 864 if (ACPI_SUCCESS(acpi_GetInteger(dinfo->ad_handle, "_PXM", &pxm))) { 865 snprintf(buf2, 32, " _PXM=%d", pxm); 866 strlcat(buf, buf2, buflen); 867 } 868 } else { 869 snprintf(buf, buflen, "unknown"); 870 } 871 return (0); 872 } 873 874 /* PnP information for devctl(8) */ 875 static int 876 acpi_child_pnpinfo_str_method(device_t cbdev, device_t child, char *buf, 877 size_t buflen) 878 { 879 struct acpi_device *dinfo = device_get_ivars(child); 880 ACPI_DEVICE_INFO *adinfo; 881 882 if (ACPI_FAILURE(AcpiGetObjectInfo(dinfo->ad_handle, &adinfo))) { 883 snprintf(buf, buflen, "unknown"); 884 return (0); 885 } 886 887 snprintf(buf, buflen, "_HID=%s _UID=%lu", 888 (adinfo->Valid & ACPI_VALID_HID) ? 889 adinfo->HardwareId.String : "none", 890 (adinfo->Valid & ACPI_VALID_UID) ? 891 strtoul(adinfo->UniqueId.String, NULL, 10) : 0UL); 892 AcpiOsFree(adinfo); 893 894 return (0); 895 } 896 897 /* 898 * Handle per-device ivars 899 */ 900 static int 901 acpi_read_ivar(device_t dev, device_t child, int index, uintptr_t *result) 902 { 903 struct acpi_device *ad; 904 905 if ((ad = device_get_ivars(child)) == NULL) { 906 device_printf(child, "device has no ivars\n"); 907 return (ENOENT); 908 } 909 910 /* ACPI and ISA compatibility ivars */ 911 switch(index) { 912 case ACPI_IVAR_HANDLE: 913 *(ACPI_HANDLE *)result = ad->ad_handle; 914 break; 915 case ACPI_IVAR_PRIVATE: 916 *(void **)result = ad->ad_private; 917 break; 918 case ACPI_IVAR_FLAGS: 919 *(int *)result = ad->ad_flags; 920 break; 921 case ISA_IVAR_VENDORID: 922 case ISA_IVAR_SERIAL: 923 case ISA_IVAR_COMPATID: 924 *(int *)result = -1; 925 break; 926 case ISA_IVAR_LOGICALID: 927 *(int *)result = acpi_isa_get_logicalid(child); 928 break; 929 default: 930 return (ENOENT); 931 } 932 933 return (0); 934 } 935 936 static int 937 acpi_write_ivar(device_t dev, device_t child, int index, uintptr_t value) 938 { 939 struct acpi_device *ad; 940 941 if ((ad = device_get_ivars(child)) == NULL) { 942 device_printf(child, "device has no ivars\n"); 943 return (ENOENT); 944 } 945 946 switch(index) { 947 case ACPI_IVAR_HANDLE: 948 ad->ad_handle = (ACPI_HANDLE)value; 949 break; 950 case ACPI_IVAR_PRIVATE: 951 ad->ad_private = (void *)value; 952 break; 953 case ACPI_IVAR_FLAGS: 954 ad->ad_flags = (int)value; 955 break; 956 default: 957 panic("bad ivar write request (%d)", index); 958 return (ENOENT); 959 } 960 961 return (0); 962 } 963 964 /* 965 * Handle child resource allocation/removal 966 */ 967 static struct resource_list * 968 acpi_get_rlist(device_t dev, device_t child) 969 { 970 struct acpi_device *ad; 971 972 ad = device_get_ivars(child); 973 return (&ad->ad_rl); 974 } 975 976 static int 977 acpi_match_resource_hint(device_t dev, int type, long value) 978 { 979 struct acpi_device *ad = device_get_ivars(dev); 980 struct resource_list *rl = &ad->ad_rl; 981 struct resource_list_entry *rle; 982 983 STAILQ_FOREACH(rle, rl, link) { 984 if (rle->type != type) 985 continue; 986 if (rle->start <= value && rle->end >= value) 987 return (1); 988 } 989 return (0); 990 } 991 992 /* 993 * Wire device unit numbers based on resource matches in hints. 994 */ 995 static void 996 acpi_hint_device_unit(device_t acdev, device_t child, const char *name, 997 int *unitp) 998 { 999 const char *s; 1000 long value; 1001 int line, matches, unit; 1002 1003 /* 1004 * Iterate over all the hints for the devices with the specified 1005 * name to see if one's resources are a subset of this device. 1006 */ 1007 line = 0; 1008 for (;;) { 1009 if (resource_find_dev(&line, name, &unit, "at", NULL) != 0) 1010 break; 1011 1012 /* Must have an "at" for acpi or isa. */ 1013 resource_string_value(name, unit, "at", &s); 1014 if (!(strcmp(s, "acpi0") == 0 || strcmp(s, "acpi") == 0 || 1015 strcmp(s, "isa0") == 0 || strcmp(s, "isa") == 0)) 1016 continue; 1017 1018 /* 1019 * Check for matching resources. We must have at least one match. 1020 * Since I/O and memory resources cannot be shared, if we get a 1021 * match on either of those, ignore any mismatches in IRQs or DRQs. 1022 * 1023 * XXX: We may want to revisit this to be more lenient and wire 1024 * as long as it gets one match. 1025 */ 1026 matches = 0; 1027 if (resource_long_value(name, unit, "port", &value) == 0) { 1028 /* 1029 * Floppy drive controllers are notorious for having a 1030 * wide variety of resources not all of which include the 1031 * first port that is specified by the hint (typically 1032 * 0x3f0) (see the comment above fdc_isa_alloc_resources() 1033 * in fdc_isa.c). However, they do all seem to include 1034 * port + 2 (e.g. 0x3f2) so for a floppy device, look for 1035 * 'value + 2' in the port resources instead of the hint 1036 * value. 1037 */ 1038 if (strcmp(name, "fdc") == 0) 1039 value += 2; 1040 if (acpi_match_resource_hint(child, SYS_RES_IOPORT, value)) 1041 matches++; 1042 else 1043 continue; 1044 } 1045 if (resource_long_value(name, unit, "maddr", &value) == 0) { 1046 if (acpi_match_resource_hint(child, SYS_RES_MEMORY, value)) 1047 matches++; 1048 else 1049 continue; 1050 } 1051 if (matches > 0) 1052 goto matched; 1053 if (resource_long_value(name, unit, "irq", &value) == 0) { 1054 if (acpi_match_resource_hint(child, SYS_RES_IRQ, value)) 1055 matches++; 1056 else 1057 continue; 1058 } 1059 if (resource_long_value(name, unit, "drq", &value) == 0) { 1060 if (acpi_match_resource_hint(child, SYS_RES_DRQ, value)) 1061 matches++; 1062 else 1063 continue; 1064 } 1065 1066 matched: 1067 if (matches > 0) { 1068 /* We have a winner! */ 1069 *unitp = unit; 1070 break; 1071 } 1072 } 1073 } 1074 1075 /* 1076 * Fetch the VM domain for the given device 'dev'. 1077 * 1078 * Return 1 + domain if there's a domain, 0 if not found; 1079 * -1 upon an error. 1080 */ 1081 int 1082 acpi_parse_pxm(device_t dev, int *domain) 1083 { 1084 #if MAXMEMDOM > 1 1085 ACPI_HANDLE h; 1086 int d, pxm; 1087 1088 h = acpi_get_handle(dev); 1089 if ((h != NULL) && 1090 ACPI_SUCCESS(acpi_GetInteger(h, "_PXM", &pxm))) { 1091 d = acpi_map_pxm_to_vm_domainid(pxm); 1092 if (d < 0) 1093 return (-1); 1094 *domain = d; 1095 return (1); 1096 } 1097 #endif 1098 1099 return (0); 1100 } 1101 1102 /* 1103 * Fetch the NUMA domain for the given device. 1104 * 1105 * If a device has a _PXM method, map that to a NUMA domain. 1106 * 1107 * If none is found, then it'll call the parent method. 1108 * If there's no domain, return ENOENT. 1109 */ 1110 int 1111 acpi_get_domain(device_t dev, device_t child, int *domain) 1112 { 1113 int ret; 1114 1115 ret = acpi_parse_pxm(child, domain); 1116 /* Error */ 1117 if (ret == -1) 1118 return (ENOENT); 1119 /* Found */ 1120 if (ret == 1) 1121 return (0); 1122 1123 /* No _PXM node; go up a level */ 1124 return (bus_generic_get_domain(dev, child, domain)); 1125 } 1126 1127 /* 1128 * Pre-allocate/manage all memory and IO resources. Since rman can't handle 1129 * duplicates, we merge any in the sysresource attach routine. 1130 */ 1131 static int 1132 acpi_sysres_alloc(device_t dev) 1133 { 1134 struct resource *res; 1135 struct resource_list *rl; 1136 struct resource_list_entry *rle; 1137 struct rman *rm; 1138 char *sysres_ids[] = { "PNP0C01", "PNP0C02", NULL }; 1139 device_t *children; 1140 int child_count, i; 1141 1142 /* 1143 * Probe/attach any sysresource devices. This would be unnecessary if we 1144 * had multi-pass probe/attach. 1145 */ 1146 if (device_get_children(dev, &children, &child_count) != 0) 1147 return (ENXIO); 1148 for (i = 0; i < child_count; i++) { 1149 if (ACPI_ID_PROBE(dev, children[i], sysres_ids) != NULL) 1150 device_probe_and_attach(children[i]); 1151 } 1152 free(children, M_TEMP); 1153 1154 rl = BUS_GET_RESOURCE_LIST(device_get_parent(dev), dev); 1155 STAILQ_FOREACH(rle, rl, link) { 1156 if (rle->res != NULL) { 1157 device_printf(dev, "duplicate resource for %lx\n", rle->start); 1158 continue; 1159 } 1160 1161 /* Only memory and IO resources are valid here. */ 1162 switch (rle->type) { 1163 case SYS_RES_IOPORT: 1164 rm = &acpi_rman_io; 1165 break; 1166 case SYS_RES_MEMORY: 1167 rm = &acpi_rman_mem; 1168 break; 1169 default: 1170 continue; 1171 } 1172 1173 /* Pre-allocate resource and add to our rman pool. */ 1174 res = BUS_ALLOC_RESOURCE(device_get_parent(dev), dev, rle->type, 1175 &rle->rid, rle->start, rle->start + rle->count - 1, rle->count, 0); 1176 if (res != NULL) { 1177 rman_manage_region(rm, rman_get_start(res), rman_get_end(res)); 1178 rle->res = res; 1179 } else if (bootverbose) 1180 device_printf(dev, "reservation of %lx, %lx (%d) failed\n", 1181 rle->start, rle->count, rle->type); 1182 } 1183 return (0); 1184 } 1185 1186 static char *pcilink_ids[] = { "PNP0C0F", NULL }; 1187 static char *sysres_ids[] = { "PNP0C01", "PNP0C02", NULL }; 1188 1189 /* 1190 * Reserve declared resources for devices found during attach once system 1191 * resources have been allocated. 1192 */ 1193 static void 1194 acpi_reserve_resources(device_t dev) 1195 { 1196 struct resource_list_entry *rle; 1197 struct resource_list *rl; 1198 struct acpi_device *ad; 1199 struct acpi_softc *sc; 1200 device_t *children; 1201 int child_count, i; 1202 1203 sc = device_get_softc(dev); 1204 if (device_get_children(dev, &children, &child_count) != 0) 1205 return; 1206 for (i = 0; i < child_count; i++) { 1207 ad = device_get_ivars(children[i]); 1208 rl = &ad->ad_rl; 1209 1210 /* Don't reserve system resources. */ 1211 if (ACPI_ID_PROBE(dev, children[i], sysres_ids) != NULL) 1212 continue; 1213 1214 STAILQ_FOREACH(rle, rl, link) { 1215 /* 1216 * Don't reserve IRQ resources. There are many sticky things 1217 * to get right otherwise (e.g. IRQs for psm, atkbd, and HPET 1218 * when using legacy routing). 1219 */ 1220 if (rle->type == SYS_RES_IRQ) 1221 continue; 1222 1223 /* 1224 * Don't reserve the resource if it is already allocated. 1225 * The acpi_ec(4) driver can allocate its resources early 1226 * if ECDT is present. 1227 */ 1228 if (rle->res != NULL) 1229 continue; 1230 1231 /* 1232 * Try to reserve the resource from our parent. If this 1233 * fails because the resource is a system resource, just 1234 * let it be. The resource range is already reserved so 1235 * that other devices will not use it. If the driver 1236 * needs to allocate the resource, then 1237 * acpi_alloc_resource() will sub-alloc from the system 1238 * resource. 1239 */ 1240 resource_list_reserve(rl, dev, children[i], rle->type, &rle->rid, 1241 rle->start, rle->end, rle->count, 0); 1242 } 1243 } 1244 free(children, M_TEMP); 1245 sc->acpi_resources_reserved = 1; 1246 } 1247 1248 static int 1249 acpi_set_resource(device_t dev, device_t child, int type, int rid, 1250 u_long start, u_long count) 1251 { 1252 struct acpi_softc *sc = device_get_softc(dev); 1253 struct acpi_device *ad = device_get_ivars(child); 1254 struct resource_list *rl = &ad->ad_rl; 1255 ACPI_DEVICE_INFO *devinfo; 1256 u_long end; 1257 1258 /* Ignore IRQ resources for PCI link devices. */ 1259 if (type == SYS_RES_IRQ && ACPI_ID_PROBE(dev, child, pcilink_ids) != NULL) 1260 return (0); 1261 1262 /* 1263 * Ignore most resources for PCI root bridges. Some BIOSes 1264 * incorrectly enumerate the memory ranges they decode as plain 1265 * memory resources instead of as ResourceProducer ranges. Other 1266 * BIOSes incorrectly list system resource entries for I/O ranges 1267 * under the PCI bridge. Do allow the one known-correct case on 1268 * x86 of a PCI bridge claiming the I/O ports used for PCI config 1269 * access. 1270 */ 1271 if (type == SYS_RES_MEMORY || type == SYS_RES_IOPORT) { 1272 if (ACPI_SUCCESS(AcpiGetObjectInfo(ad->ad_handle, &devinfo))) { 1273 if ((devinfo->Flags & ACPI_PCI_ROOT_BRIDGE) != 0) { 1274 #if defined(__i386__) || defined(__amd64__) 1275 if (!(type == SYS_RES_IOPORT && start == CONF1_ADDR_PORT)) 1276 #endif 1277 { 1278 AcpiOsFree(devinfo); 1279 return (0); 1280 } 1281 } 1282 AcpiOsFree(devinfo); 1283 } 1284 } 1285 1286 /* If the resource is already allocated, fail. */ 1287 if (resource_list_busy(rl, type, rid)) 1288 return (EBUSY); 1289 1290 /* If the resource is already reserved, release it. */ 1291 if (resource_list_reserved(rl, type, rid)) 1292 resource_list_unreserve(rl, dev, child, type, rid); 1293 1294 /* Add the resource. */ 1295 end = (start + count - 1); 1296 resource_list_add(rl, type, rid, start, end, count); 1297 1298 /* Don't reserve resources until the system resources are allocated. */ 1299 if (!sc->acpi_resources_reserved) 1300 return (0); 1301 1302 /* Don't reserve system resources. */ 1303 if (ACPI_ID_PROBE(dev, child, sysres_ids) != NULL) 1304 return (0); 1305 1306 /* 1307 * Don't reserve IRQ resources. There are many sticky things to 1308 * get right otherwise (e.g. IRQs for psm, atkbd, and HPET when 1309 * using legacy routing). 1310 */ 1311 if (type == SYS_RES_IRQ) 1312 return (0); 1313 1314 /* 1315 * Reserve the resource. 1316 * 1317 * XXX: Ignores failure for now. Failure here is probably a 1318 * BIOS/firmware bug? 1319 */ 1320 resource_list_reserve(rl, dev, child, type, &rid, start, end, count, 0); 1321 return (0); 1322 } 1323 1324 static struct resource * 1325 acpi_alloc_resource(device_t bus, device_t child, int type, int *rid, 1326 u_long start, u_long end, u_long count, u_int flags) 1327 { 1328 ACPI_RESOURCE ares; 1329 struct acpi_device *ad; 1330 struct resource_list_entry *rle; 1331 struct resource_list *rl; 1332 struct resource *res; 1333 int isdefault = (start == 0UL && end == ~0UL); 1334 1335 /* 1336 * First attempt at allocating the resource. For direct children, 1337 * use resource_list_alloc() to handle reserved resources. For 1338 * other devices, pass the request up to our parent. 1339 */ 1340 if (bus == device_get_parent(child)) { 1341 ad = device_get_ivars(child); 1342 rl = &ad->ad_rl; 1343 1344 /* 1345 * Simulate the behavior of the ISA bus for direct children 1346 * devices. That is, if a non-default range is specified for 1347 * a resource that doesn't exist, use bus_set_resource() to 1348 * add the resource before allocating it. Note that these 1349 * resources will not be reserved. 1350 */ 1351 if (!isdefault && resource_list_find(rl, type, *rid) == NULL) 1352 resource_list_add(rl, type, *rid, start, end, count); 1353 res = resource_list_alloc(rl, bus, child, type, rid, start, end, count, 1354 flags); 1355 if (res != NULL && type == SYS_RES_IRQ) { 1356 /* 1357 * Since bus_config_intr() takes immediate effect, we cannot 1358 * configure the interrupt associated with a device when we 1359 * parse the resources but have to defer it until a driver 1360 * actually allocates the interrupt via bus_alloc_resource(). 1361 * 1362 * XXX: Should we handle the lookup failing? 1363 */ 1364 if (ACPI_SUCCESS(acpi_lookup_irq_resource(child, *rid, res, &ares))) 1365 acpi_config_intr(child, &ares); 1366 } 1367 1368 /* 1369 * If this is an allocation of the "default" range for a given 1370 * RID, fetch the exact bounds for this resource from the 1371 * resource list entry to try to allocate the range from the 1372 * system resource regions. 1373 */ 1374 if (res == NULL && isdefault) { 1375 rle = resource_list_find(rl, type, *rid); 1376 if (rle != NULL) { 1377 start = rle->start; 1378 end = rle->end; 1379 count = rle->count; 1380 } 1381 } 1382 } else 1383 res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, type, rid, 1384 start, end, count, flags); 1385 1386 /* 1387 * If the first attempt failed and this is an allocation of a 1388 * specific range, try to satisfy the request via a suballocation 1389 * from our system resource regions. 1390 */ 1391 if (res == NULL && start + count - 1 == end) 1392 res = acpi_alloc_sysres(child, type, rid, start, end, count, flags); 1393 return (res); 1394 } 1395 1396 /* 1397 * Attempt to allocate a specific resource range from the system 1398 * resource ranges. Note that we only handle memory and I/O port 1399 * system resources. 1400 */ 1401 struct resource * 1402 acpi_alloc_sysres(device_t child, int type, int *rid, u_long start, u_long end, 1403 u_long count, u_int flags) 1404 { 1405 struct rman *rm; 1406 struct resource *res; 1407 1408 switch (type) { 1409 case SYS_RES_IOPORT: 1410 rm = &acpi_rman_io; 1411 break; 1412 case SYS_RES_MEMORY: 1413 rm = &acpi_rman_mem; 1414 break; 1415 default: 1416 return (NULL); 1417 } 1418 1419 KASSERT(start + count - 1 == end, ("wildcard resource range")); 1420 res = rman_reserve_resource(rm, start, end, count, flags & ~RF_ACTIVE, 1421 child); 1422 if (res == NULL) 1423 return (NULL); 1424 1425 rman_set_rid(res, *rid); 1426 1427 /* If requested, activate the resource using the parent's method. */ 1428 if (flags & RF_ACTIVE) 1429 if (bus_activate_resource(child, type, *rid, res) != 0) { 1430 rman_release_resource(res); 1431 return (NULL); 1432 } 1433 1434 return (res); 1435 } 1436 1437 static int 1438 acpi_is_resource_managed(int type, struct resource *r) 1439 { 1440 1441 /* We only handle memory and IO resources through rman. */ 1442 switch (type) { 1443 case SYS_RES_IOPORT: 1444 return (rman_is_region_manager(r, &acpi_rman_io)); 1445 case SYS_RES_MEMORY: 1446 return (rman_is_region_manager(r, &acpi_rman_mem)); 1447 } 1448 return (0); 1449 } 1450 1451 static int 1452 acpi_adjust_resource(device_t bus, device_t child, int type, struct resource *r, 1453 u_long start, u_long end) 1454 { 1455 1456 if (acpi_is_resource_managed(type, r)) 1457 return (rman_adjust_resource(r, start, end)); 1458 return (bus_generic_adjust_resource(bus, child, type, r, start, end)); 1459 } 1460 1461 static int 1462 acpi_release_resource(device_t bus, device_t child, int type, int rid, 1463 struct resource *r) 1464 { 1465 int ret; 1466 1467 /* 1468 * If this resource belongs to one of our internal managers, 1469 * deactivate it and release it to the local pool. 1470 */ 1471 if (acpi_is_resource_managed(type, r)) { 1472 if (rman_get_flags(r) & RF_ACTIVE) { 1473 ret = bus_deactivate_resource(child, type, rid, r); 1474 if (ret != 0) 1475 return (ret); 1476 } 1477 return (rman_release_resource(r)); 1478 } 1479 1480 return (bus_generic_rl_release_resource(bus, child, type, rid, r)); 1481 } 1482 1483 static void 1484 acpi_delete_resource(device_t bus, device_t child, int type, int rid) 1485 { 1486 struct resource_list *rl; 1487 1488 rl = acpi_get_rlist(bus, child); 1489 if (resource_list_busy(rl, type, rid)) { 1490 device_printf(bus, "delete_resource: Resource still owned by child" 1491 " (type=%d, rid=%d)\n", type, rid); 1492 return; 1493 } 1494 resource_list_unreserve(rl, bus, child, type, rid); 1495 resource_list_delete(rl, type, rid); 1496 } 1497 1498 /* Allocate an IO port or memory resource, given its GAS. */ 1499 int 1500 acpi_bus_alloc_gas(device_t dev, int *type, int *rid, ACPI_GENERIC_ADDRESS *gas, 1501 struct resource **res, u_int flags) 1502 { 1503 int error, res_type; 1504 1505 error = ENOMEM; 1506 if (type == NULL || rid == NULL || gas == NULL || res == NULL) 1507 return (EINVAL); 1508 1509 /* We only support memory and IO spaces. */ 1510 switch (gas->SpaceId) { 1511 case ACPI_ADR_SPACE_SYSTEM_MEMORY: 1512 res_type = SYS_RES_MEMORY; 1513 break; 1514 case ACPI_ADR_SPACE_SYSTEM_IO: 1515 res_type = SYS_RES_IOPORT; 1516 break; 1517 default: 1518 return (EOPNOTSUPP); 1519 } 1520 1521 /* 1522 * If the register width is less than 8, assume the BIOS author means 1523 * it is a bit field and just allocate a byte. 1524 */ 1525 if (gas->BitWidth && gas->BitWidth < 8) 1526 gas->BitWidth = 8; 1527 1528 /* Validate the address after we're sure we support the space. */ 1529 if (gas->Address == 0 || gas->BitWidth == 0) 1530 return (EINVAL); 1531 1532 bus_set_resource(dev, res_type, *rid, gas->Address, 1533 gas->BitWidth / 8); 1534 *res = bus_alloc_resource_any(dev, res_type, rid, RF_ACTIVE | flags); 1535 if (*res != NULL) { 1536 *type = res_type; 1537 error = 0; 1538 } else 1539 bus_delete_resource(dev, res_type, *rid); 1540 1541 return (error); 1542 } 1543 1544 /* Probe _HID and _CID for compatible ISA PNP ids. */ 1545 static uint32_t 1546 acpi_isa_get_logicalid(device_t dev) 1547 { 1548 ACPI_DEVICE_INFO *devinfo; 1549 ACPI_HANDLE h; 1550 uint32_t pnpid; 1551 1552 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1553 1554 /* Fetch and validate the HID. */ 1555 if ((h = acpi_get_handle(dev)) == NULL || 1556 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 1557 return_VALUE (0); 1558 1559 pnpid = (devinfo->Valid & ACPI_VALID_HID) != 0 && 1560 devinfo->HardwareId.Length >= ACPI_EISAID_STRING_SIZE ? 1561 PNP_EISAID(devinfo->HardwareId.String) : 0; 1562 AcpiOsFree(devinfo); 1563 1564 return_VALUE (pnpid); 1565 } 1566 1567 static int 1568 acpi_isa_get_compatid(device_t dev, uint32_t *cids, int count) 1569 { 1570 ACPI_DEVICE_INFO *devinfo; 1571 ACPI_PNP_DEVICE_ID *ids; 1572 ACPI_HANDLE h; 1573 uint32_t *pnpid; 1574 int i, valid; 1575 1576 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1577 1578 pnpid = cids; 1579 1580 /* Fetch and validate the CID */ 1581 if ((h = acpi_get_handle(dev)) == NULL || 1582 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 1583 return_VALUE (0); 1584 1585 if ((devinfo->Valid & ACPI_VALID_CID) == 0) { 1586 AcpiOsFree(devinfo); 1587 return_VALUE (0); 1588 } 1589 1590 if (devinfo->CompatibleIdList.Count < count) 1591 count = devinfo->CompatibleIdList.Count; 1592 ids = devinfo->CompatibleIdList.Ids; 1593 for (i = 0, valid = 0; i < count; i++) 1594 if (ids[i].Length >= ACPI_EISAID_STRING_SIZE && 1595 strncmp(ids[i].String, "PNP", 3) == 0) { 1596 *pnpid++ = PNP_EISAID(ids[i].String); 1597 valid++; 1598 } 1599 AcpiOsFree(devinfo); 1600 1601 return_VALUE (valid); 1602 } 1603 1604 static char * 1605 acpi_device_id_probe(device_t bus, device_t dev, char **ids) 1606 { 1607 ACPI_HANDLE h; 1608 ACPI_OBJECT_TYPE t; 1609 int i; 1610 1611 h = acpi_get_handle(dev); 1612 if (ids == NULL || h == NULL) 1613 return (NULL); 1614 t = acpi_get_type(dev); 1615 if (t != ACPI_TYPE_DEVICE && t != ACPI_TYPE_PROCESSOR) 1616 return (NULL); 1617 1618 /* Try to match one of the array of IDs with a HID or CID. */ 1619 for (i = 0; ids[i] != NULL; i++) { 1620 if (acpi_MatchHid(h, ids[i])) 1621 return (ids[i]); 1622 } 1623 return (NULL); 1624 } 1625 1626 static ACPI_STATUS 1627 acpi_device_eval_obj(device_t bus, device_t dev, ACPI_STRING pathname, 1628 ACPI_OBJECT_LIST *parameters, ACPI_BUFFER *ret) 1629 { 1630 ACPI_HANDLE h; 1631 1632 if (dev == NULL) 1633 h = ACPI_ROOT_OBJECT; 1634 else if ((h = acpi_get_handle(dev)) == NULL) 1635 return (AE_BAD_PARAMETER); 1636 return (AcpiEvaluateObject(h, pathname, parameters, ret)); 1637 } 1638 1639 int 1640 acpi_device_pwr_for_sleep(device_t bus, device_t dev, int *dstate) 1641 { 1642 struct acpi_softc *sc; 1643 ACPI_HANDLE handle; 1644 ACPI_STATUS status; 1645 char sxd[8]; 1646 1647 handle = acpi_get_handle(dev); 1648 1649 /* 1650 * XXX If we find these devices, don't try to power them down. 1651 * The serial and IRDA ports on my T23 hang the system when 1652 * set to D3 and it appears that such legacy devices may 1653 * need special handling in their drivers. 1654 */ 1655 if (dstate == NULL || handle == NULL || 1656 acpi_MatchHid(handle, "PNP0500") || 1657 acpi_MatchHid(handle, "PNP0501") || 1658 acpi_MatchHid(handle, "PNP0502") || 1659 acpi_MatchHid(handle, "PNP0510") || 1660 acpi_MatchHid(handle, "PNP0511")) 1661 return (ENXIO); 1662 1663 /* 1664 * Override next state with the value from _SxD, if present. 1665 * Note illegal _S0D is evaluated because some systems expect this. 1666 */ 1667 sc = device_get_softc(bus); 1668 snprintf(sxd, sizeof(sxd), "_S%dD", sc->acpi_sstate); 1669 status = acpi_GetInteger(handle, sxd, dstate); 1670 if (ACPI_FAILURE(status) && status != AE_NOT_FOUND) { 1671 device_printf(dev, "failed to get %s on %s: %s\n", sxd, 1672 acpi_name(handle), AcpiFormatException(status)); 1673 return (ENXIO); 1674 } 1675 1676 return (0); 1677 } 1678 1679 /* Callback arg for our implementation of walking the namespace. */ 1680 struct acpi_device_scan_ctx { 1681 acpi_scan_cb_t user_fn; 1682 void *arg; 1683 ACPI_HANDLE parent; 1684 }; 1685 1686 static ACPI_STATUS 1687 acpi_device_scan_cb(ACPI_HANDLE h, UINT32 level, void *arg, void **retval) 1688 { 1689 struct acpi_device_scan_ctx *ctx; 1690 device_t dev, old_dev; 1691 ACPI_STATUS status; 1692 ACPI_OBJECT_TYPE type; 1693 1694 /* 1695 * Skip this device if we think we'll have trouble with it or it is 1696 * the parent where the scan began. 1697 */ 1698 ctx = (struct acpi_device_scan_ctx *)arg; 1699 if (acpi_avoid(h) || h == ctx->parent) 1700 return (AE_OK); 1701 1702 /* If this is not a valid device type (e.g., a method), skip it. */ 1703 if (ACPI_FAILURE(AcpiGetType(h, &type))) 1704 return (AE_OK); 1705 if (type != ACPI_TYPE_DEVICE && type != ACPI_TYPE_PROCESSOR && 1706 type != ACPI_TYPE_THERMAL && type != ACPI_TYPE_POWER) 1707 return (AE_OK); 1708 1709 /* 1710 * Call the user function with the current device. If it is unchanged 1711 * afterwards, return. Otherwise, we update the handle to the new dev. 1712 */ 1713 old_dev = acpi_get_device(h); 1714 dev = old_dev; 1715 status = ctx->user_fn(h, &dev, level, ctx->arg); 1716 if (ACPI_FAILURE(status) || old_dev == dev) 1717 return (status); 1718 1719 /* Remove the old child and its connection to the handle. */ 1720 if (old_dev != NULL) { 1721 device_delete_child(device_get_parent(old_dev), old_dev); 1722 AcpiDetachData(h, acpi_fake_objhandler); 1723 } 1724 1725 /* Recreate the handle association if the user created a device. */ 1726 if (dev != NULL) 1727 AcpiAttachData(h, acpi_fake_objhandler, dev); 1728 1729 return (AE_OK); 1730 } 1731 1732 static ACPI_STATUS 1733 acpi_device_scan_children(device_t bus, device_t dev, int max_depth, 1734 acpi_scan_cb_t user_fn, void *arg) 1735 { 1736 ACPI_HANDLE h; 1737 struct acpi_device_scan_ctx ctx; 1738 1739 if (acpi_disabled("children")) 1740 return (AE_OK); 1741 1742 if (dev == NULL) 1743 h = ACPI_ROOT_OBJECT; 1744 else if ((h = acpi_get_handle(dev)) == NULL) 1745 return (AE_BAD_PARAMETER); 1746 ctx.user_fn = user_fn; 1747 ctx.arg = arg; 1748 ctx.parent = h; 1749 return (AcpiWalkNamespace(ACPI_TYPE_ANY, h, max_depth, 1750 acpi_device_scan_cb, NULL, &ctx, NULL)); 1751 } 1752 1753 /* 1754 * Even though ACPI devices are not PCI, we use the PCI approach for setting 1755 * device power states since it's close enough to ACPI. 1756 */ 1757 static int 1758 acpi_set_powerstate(device_t child, int state) 1759 { 1760 ACPI_HANDLE h; 1761 ACPI_STATUS status; 1762 1763 h = acpi_get_handle(child); 1764 if (state < ACPI_STATE_D0 || state > ACPI_D_STATES_MAX) 1765 return (EINVAL); 1766 if (h == NULL) 1767 return (0); 1768 1769 /* Ignore errors if the power methods aren't present. */ 1770 status = acpi_pwr_switch_consumer(h, state); 1771 if (ACPI_SUCCESS(status)) { 1772 if (bootverbose) 1773 device_printf(child, "set ACPI power state D%d on %s\n", 1774 state, acpi_name(h)); 1775 } else if (status != AE_NOT_FOUND) 1776 device_printf(child, 1777 "failed to set ACPI power state D%d on %s: %s\n", state, 1778 acpi_name(h), AcpiFormatException(status)); 1779 1780 return (0); 1781 } 1782 1783 static int 1784 acpi_isa_pnp_probe(device_t bus, device_t child, struct isa_pnp_id *ids) 1785 { 1786 int result, cid_count, i; 1787 uint32_t lid, cids[8]; 1788 1789 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1790 1791 /* 1792 * ISA-style drivers attached to ACPI may persist and 1793 * probe manually if we return ENOENT. We never want 1794 * that to happen, so don't ever return it. 1795 */ 1796 result = ENXIO; 1797 1798 /* Scan the supplied IDs for a match */ 1799 lid = acpi_isa_get_logicalid(child); 1800 cid_count = acpi_isa_get_compatid(child, cids, 8); 1801 while (ids && ids->ip_id) { 1802 if (lid == ids->ip_id) { 1803 result = 0; 1804 goto out; 1805 } 1806 for (i = 0; i < cid_count; i++) { 1807 if (cids[i] == ids->ip_id) { 1808 result = 0; 1809 goto out; 1810 } 1811 } 1812 ids++; 1813 } 1814 1815 out: 1816 if (result == 0 && ids->ip_desc) 1817 device_set_desc(child, ids->ip_desc); 1818 1819 return_VALUE (result); 1820 } 1821 1822 #if defined(__i386__) || defined(__amd64__) 1823 /* 1824 * Look for a MCFG table. If it is present, use the settings for 1825 * domain (segment) 0 to setup PCI config space access via the memory 1826 * map. 1827 */ 1828 static void 1829 acpi_enable_pcie(void) 1830 { 1831 ACPI_TABLE_HEADER *hdr; 1832 ACPI_MCFG_ALLOCATION *alloc, *end; 1833 ACPI_STATUS status; 1834 1835 status = AcpiGetTable(ACPI_SIG_MCFG, 1, &hdr); 1836 if (ACPI_FAILURE(status)) 1837 return; 1838 1839 end = (ACPI_MCFG_ALLOCATION *)((char *)hdr + hdr->Length); 1840 alloc = (ACPI_MCFG_ALLOCATION *)((ACPI_TABLE_MCFG *)hdr + 1); 1841 while (alloc < end) { 1842 if (alloc->PciSegment == 0) { 1843 pcie_cfgregopen(alloc->Address, alloc->StartBusNumber, 1844 alloc->EndBusNumber); 1845 return; 1846 } 1847 alloc++; 1848 } 1849 } 1850 #endif 1851 1852 /* 1853 * Scan all of the ACPI namespace and attach child devices. 1854 * 1855 * We should only expect to find devices in the \_PR, \_TZ, \_SI, and 1856 * \_SB scopes, and \_PR and \_TZ became obsolete in the ACPI 2.0 spec. 1857 * However, in violation of the spec, some systems place their PCI link 1858 * devices in \, so we have to walk the whole namespace. We check the 1859 * type of namespace nodes, so this should be ok. 1860 */ 1861 static void 1862 acpi_probe_children(device_t bus) 1863 { 1864 1865 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1866 1867 /* 1868 * Scan the namespace and insert placeholders for all the devices that 1869 * we find. We also probe/attach any early devices. 1870 * 1871 * Note that we use AcpiWalkNamespace rather than AcpiGetDevices because 1872 * we want to create nodes for all devices, not just those that are 1873 * currently present. (This assumes that we don't want to create/remove 1874 * devices as they appear, which might be smarter.) 1875 */ 1876 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "namespace scan\n")); 1877 AcpiWalkNamespace(ACPI_TYPE_ANY, ACPI_ROOT_OBJECT, 100, acpi_probe_child, 1878 NULL, bus, NULL); 1879 1880 /* Pre-allocate resources for our rman from any sysresource devices. */ 1881 acpi_sysres_alloc(bus); 1882 1883 /* Reserve resources already allocated to children. */ 1884 acpi_reserve_resources(bus); 1885 1886 /* Create any static children by calling device identify methods. */ 1887 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "device identify routines\n")); 1888 bus_generic_probe(bus); 1889 1890 /* Probe/attach all children, created statically and from the namespace. */ 1891 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "acpi bus_generic_attach\n")); 1892 bus_generic_attach(bus); 1893 1894 /* Attach wake sysctls. */ 1895 acpi_wake_sysctl_walk(bus); 1896 1897 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "done attaching children\n")); 1898 return_VOID; 1899 } 1900 1901 /* 1902 * Determine the probe order for a given device. 1903 */ 1904 static void 1905 acpi_probe_order(ACPI_HANDLE handle, int *order) 1906 { 1907 ACPI_OBJECT_TYPE type; 1908 1909 /* 1910 * 0. CPUs 1911 * 1. I/O port and memory system resource holders 1912 * 2. Clocks and timers (to handle early accesses) 1913 * 3. Embedded controllers (to handle early accesses) 1914 * 4. PCI Link Devices 1915 */ 1916 AcpiGetType(handle, &type); 1917 if (type == ACPI_TYPE_PROCESSOR) 1918 *order = 0; 1919 else if (acpi_MatchHid(handle, "PNP0C01") || 1920 acpi_MatchHid(handle, "PNP0C02")) 1921 *order = 1; 1922 else if (acpi_MatchHid(handle, "PNP0100") || 1923 acpi_MatchHid(handle, "PNP0103") || 1924 acpi_MatchHid(handle, "PNP0B00")) 1925 *order = 2; 1926 else if (acpi_MatchHid(handle, "PNP0C09")) 1927 *order = 3; 1928 else if (acpi_MatchHid(handle, "PNP0C0F")) 1929 *order = 4; 1930 } 1931 1932 /* 1933 * Evaluate a child device and determine whether we might attach a device to 1934 * it. 1935 */ 1936 static ACPI_STATUS 1937 acpi_probe_child(ACPI_HANDLE handle, UINT32 level, void *context, void **status) 1938 { 1939 struct acpi_prw_data prw; 1940 ACPI_OBJECT_TYPE type; 1941 ACPI_HANDLE h; 1942 device_t bus, child; 1943 char *handle_str; 1944 int order; 1945 1946 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1947 1948 if (acpi_disabled("children")) 1949 return_ACPI_STATUS (AE_OK); 1950 1951 /* Skip this device if we think we'll have trouble with it. */ 1952 if (acpi_avoid(handle)) 1953 return_ACPI_STATUS (AE_OK); 1954 1955 bus = (device_t)context; 1956 if (ACPI_SUCCESS(AcpiGetType(handle, &type))) { 1957 handle_str = acpi_name(handle); 1958 switch (type) { 1959 case ACPI_TYPE_DEVICE: 1960 /* 1961 * Since we scan from \, be sure to skip system scope objects. 1962 * \_SB_ and \_TZ_ are defined in ACPICA as devices to work around 1963 * BIOS bugs. For example, \_SB_ is to allow \_SB_._INI to be run 1964 * during the intialization and \_TZ_ is to support Notify() on it. 1965 */ 1966 if (strcmp(handle_str, "\\_SB_") == 0 || 1967 strcmp(handle_str, "\\_TZ_") == 0) 1968 break; 1969 if (acpi_parse_prw(handle, &prw) == 0) 1970 AcpiSetupGpeForWake(handle, prw.gpe_handle, prw.gpe_bit); 1971 1972 /* 1973 * Ignore devices that do not have a _HID or _CID. They should 1974 * be discovered by other buses (e.g. the PCI bus driver). 1975 */ 1976 if (!acpi_has_hid(handle)) 1977 break; 1978 /* FALLTHROUGH */ 1979 case ACPI_TYPE_PROCESSOR: 1980 case ACPI_TYPE_THERMAL: 1981 case ACPI_TYPE_POWER: 1982 /* 1983 * Create a placeholder device for this node. Sort the 1984 * placeholder so that the probe/attach passes will run 1985 * breadth-first. Orders less than ACPI_DEV_BASE_ORDER 1986 * are reserved for special objects (i.e., system 1987 * resources). 1988 */ 1989 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "scanning '%s'\n", handle_str)); 1990 order = level * 10 + ACPI_DEV_BASE_ORDER; 1991 acpi_probe_order(handle, &order); 1992 child = BUS_ADD_CHILD(bus, order, NULL, -1); 1993 if (child == NULL) 1994 break; 1995 1996 /* Associate the handle with the device_t and vice versa. */ 1997 acpi_set_handle(child, handle); 1998 AcpiAttachData(handle, acpi_fake_objhandler, child); 1999 2000 /* 2001 * Check that the device is present. If it's not present, 2002 * leave it disabled (so that we have a device_t attached to 2003 * the handle, but we don't probe it). 2004 * 2005 * XXX PCI link devices sometimes report "present" but not 2006 * "functional" (i.e. if disabled). Go ahead and probe them 2007 * anyway since we may enable them later. 2008 */ 2009 if (type == ACPI_TYPE_DEVICE && !acpi_DeviceIsPresent(child)) { 2010 /* Never disable PCI link devices. */ 2011 if (acpi_MatchHid(handle, "PNP0C0F")) 2012 break; 2013 /* 2014 * Docking stations should remain enabled since the system 2015 * may be undocked at boot. 2016 */ 2017 if (ACPI_SUCCESS(AcpiGetHandle(handle, "_DCK", &h))) 2018 break; 2019 2020 device_disable(child); 2021 break; 2022 } 2023 2024 /* 2025 * Get the device's resource settings and attach them. 2026 * Note that if the device has _PRS but no _CRS, we need 2027 * to decide when it's appropriate to try to configure the 2028 * device. Ignore the return value here; it's OK for the 2029 * device not to have any resources. 2030 */ 2031 acpi_parse_resources(child, handle, &acpi_res_parse_set, NULL); 2032 break; 2033 } 2034 } 2035 2036 return_ACPI_STATUS (AE_OK); 2037 } 2038 2039 /* 2040 * AcpiAttachData() requires an object handler but never uses it. This is a 2041 * placeholder object handler so we can store a device_t in an ACPI_HANDLE. 2042 */ 2043 void 2044 acpi_fake_objhandler(ACPI_HANDLE h, void *data) 2045 { 2046 } 2047 2048 static void 2049 acpi_shutdown_final(void *arg, int howto) 2050 { 2051 struct acpi_softc *sc = (struct acpi_softc *)arg; 2052 register_t intr; 2053 ACPI_STATUS status; 2054 2055 /* 2056 * XXX Shutdown code should only run on the BSP (cpuid 0). 2057 * Some chipsets do not power off the system correctly if called from 2058 * an AP. 2059 */ 2060 if ((howto & RB_POWEROFF) != 0) { 2061 status = AcpiEnterSleepStatePrep(ACPI_STATE_S5); 2062 if (ACPI_FAILURE(status)) { 2063 device_printf(sc->acpi_dev, "AcpiEnterSleepStatePrep failed - %s\n", 2064 AcpiFormatException(status)); 2065 return; 2066 } 2067 device_printf(sc->acpi_dev, "Powering system off\n"); 2068 intr = intr_disable(); 2069 status = AcpiEnterSleepState(ACPI_STATE_S5); 2070 if (ACPI_FAILURE(status)) { 2071 intr_restore(intr); 2072 device_printf(sc->acpi_dev, "power-off failed - %s\n", 2073 AcpiFormatException(status)); 2074 } else { 2075 DELAY(1000000); 2076 intr_restore(intr); 2077 device_printf(sc->acpi_dev, "power-off failed - timeout\n"); 2078 } 2079 } else if ((howto & RB_HALT) == 0 && sc->acpi_handle_reboot) { 2080 /* Reboot using the reset register. */ 2081 status = AcpiReset(); 2082 if (ACPI_SUCCESS(status)) { 2083 DELAY(1000000); 2084 device_printf(sc->acpi_dev, "reset failed - timeout\n"); 2085 } else if (status != AE_NOT_EXIST) 2086 device_printf(sc->acpi_dev, "reset failed - %s\n", 2087 AcpiFormatException(status)); 2088 } else if (sc->acpi_do_disable && panicstr == NULL) { 2089 /* 2090 * Only disable ACPI if the user requested. On some systems, writing 2091 * the disable value to SMI_CMD hangs the system. 2092 */ 2093 device_printf(sc->acpi_dev, "Shutting down\n"); 2094 AcpiTerminate(); 2095 } 2096 } 2097 2098 static void 2099 acpi_enable_fixed_events(struct acpi_softc *sc) 2100 { 2101 static int first_time = 1; 2102 2103 /* Enable and clear fixed events and install handlers. */ 2104 if ((AcpiGbl_FADT.Flags & ACPI_FADT_POWER_BUTTON) == 0) { 2105 AcpiClearEvent(ACPI_EVENT_POWER_BUTTON); 2106 AcpiInstallFixedEventHandler(ACPI_EVENT_POWER_BUTTON, 2107 acpi_event_power_button_sleep, sc); 2108 if (first_time) 2109 device_printf(sc->acpi_dev, "Power Button (fixed)\n"); 2110 } 2111 if ((AcpiGbl_FADT.Flags & ACPI_FADT_SLEEP_BUTTON) == 0) { 2112 AcpiClearEvent(ACPI_EVENT_SLEEP_BUTTON); 2113 AcpiInstallFixedEventHandler(ACPI_EVENT_SLEEP_BUTTON, 2114 acpi_event_sleep_button_sleep, sc); 2115 if (first_time) 2116 device_printf(sc->acpi_dev, "Sleep Button (fixed)\n"); 2117 } 2118 2119 first_time = 0; 2120 } 2121 2122 /* 2123 * Returns true if the device is actually present and should 2124 * be attached to. This requires the present, enabled, UI-visible 2125 * and diagnostics-passed bits to be set. 2126 */ 2127 BOOLEAN 2128 acpi_DeviceIsPresent(device_t dev) 2129 { 2130 ACPI_DEVICE_INFO *devinfo; 2131 ACPI_HANDLE h; 2132 BOOLEAN present; 2133 2134 if ((h = acpi_get_handle(dev)) == NULL || 2135 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 2136 return (FALSE); 2137 2138 /* If no _STA method, must be present */ 2139 present = (devinfo->Valid & ACPI_VALID_STA) == 0 || 2140 ACPI_DEVICE_PRESENT(devinfo->CurrentStatus) ? TRUE : FALSE; 2141 2142 AcpiOsFree(devinfo); 2143 return (present); 2144 } 2145 2146 /* 2147 * Returns true if the battery is actually present and inserted. 2148 */ 2149 BOOLEAN 2150 acpi_BatteryIsPresent(device_t dev) 2151 { 2152 ACPI_DEVICE_INFO *devinfo; 2153 ACPI_HANDLE h; 2154 BOOLEAN present; 2155 2156 if ((h = acpi_get_handle(dev)) == NULL || 2157 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 2158 return (FALSE); 2159 2160 /* If no _STA method, must be present */ 2161 present = (devinfo->Valid & ACPI_VALID_STA) == 0 || 2162 ACPI_BATTERY_PRESENT(devinfo->CurrentStatus) ? TRUE : FALSE; 2163 2164 AcpiOsFree(devinfo); 2165 return (present); 2166 } 2167 2168 /* 2169 * Returns true if a device has at least one valid device ID. 2170 */ 2171 static BOOLEAN 2172 acpi_has_hid(ACPI_HANDLE h) 2173 { 2174 ACPI_DEVICE_INFO *devinfo; 2175 BOOLEAN ret; 2176 2177 if (h == NULL || 2178 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 2179 return (FALSE); 2180 2181 ret = FALSE; 2182 if ((devinfo->Valid & ACPI_VALID_HID) != 0) 2183 ret = TRUE; 2184 else if ((devinfo->Valid & ACPI_VALID_CID) != 0) 2185 if (devinfo->CompatibleIdList.Count > 0) 2186 ret = TRUE; 2187 2188 AcpiOsFree(devinfo); 2189 return (ret); 2190 } 2191 2192 /* 2193 * Match a HID string against a handle 2194 */ 2195 BOOLEAN 2196 acpi_MatchHid(ACPI_HANDLE h, const char *hid) 2197 { 2198 ACPI_DEVICE_INFO *devinfo; 2199 BOOLEAN ret; 2200 int i; 2201 2202 if (hid == NULL || h == NULL || 2203 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 2204 return (FALSE); 2205 2206 ret = FALSE; 2207 if ((devinfo->Valid & ACPI_VALID_HID) != 0 && 2208 strcmp(hid, devinfo->HardwareId.String) == 0) 2209 ret = TRUE; 2210 else if ((devinfo->Valid & ACPI_VALID_CID) != 0) 2211 for (i = 0; i < devinfo->CompatibleIdList.Count; i++) { 2212 if (strcmp(hid, devinfo->CompatibleIdList.Ids[i].String) == 0) { 2213 ret = TRUE; 2214 break; 2215 } 2216 } 2217 2218 AcpiOsFree(devinfo); 2219 return (ret); 2220 } 2221 2222 /* 2223 * Return the handle of a named object within our scope, ie. that of (parent) 2224 * or one if its parents. 2225 */ 2226 ACPI_STATUS 2227 acpi_GetHandleInScope(ACPI_HANDLE parent, char *path, ACPI_HANDLE *result) 2228 { 2229 ACPI_HANDLE r; 2230 ACPI_STATUS status; 2231 2232 /* Walk back up the tree to the root */ 2233 for (;;) { 2234 status = AcpiGetHandle(parent, path, &r); 2235 if (ACPI_SUCCESS(status)) { 2236 *result = r; 2237 return (AE_OK); 2238 } 2239 /* XXX Return error here? */ 2240 if (status != AE_NOT_FOUND) 2241 return (AE_OK); 2242 if (ACPI_FAILURE(AcpiGetParent(parent, &r))) 2243 return (AE_NOT_FOUND); 2244 parent = r; 2245 } 2246 } 2247 2248 /* 2249 * Allocate a buffer with a preset data size. 2250 */ 2251 ACPI_BUFFER * 2252 acpi_AllocBuffer(int size) 2253 { 2254 ACPI_BUFFER *buf; 2255 2256 if ((buf = malloc(size + sizeof(*buf), M_ACPIDEV, M_NOWAIT)) == NULL) 2257 return (NULL); 2258 buf->Length = size; 2259 buf->Pointer = (void *)(buf + 1); 2260 return (buf); 2261 } 2262 2263 ACPI_STATUS 2264 acpi_SetInteger(ACPI_HANDLE handle, char *path, UINT32 number) 2265 { 2266 ACPI_OBJECT arg1; 2267 ACPI_OBJECT_LIST args; 2268 2269 arg1.Type = ACPI_TYPE_INTEGER; 2270 arg1.Integer.Value = number; 2271 args.Count = 1; 2272 args.Pointer = &arg1; 2273 2274 return (AcpiEvaluateObject(handle, path, &args, NULL)); 2275 } 2276 2277 /* 2278 * Evaluate a path that should return an integer. 2279 */ 2280 ACPI_STATUS 2281 acpi_GetInteger(ACPI_HANDLE handle, char *path, UINT32 *number) 2282 { 2283 ACPI_STATUS status; 2284 ACPI_BUFFER buf; 2285 ACPI_OBJECT param; 2286 2287 if (handle == NULL) 2288 handle = ACPI_ROOT_OBJECT; 2289 2290 /* 2291 * Assume that what we've been pointed at is an Integer object, or 2292 * a method that will return an Integer. 2293 */ 2294 buf.Pointer = ¶m; 2295 buf.Length = sizeof(param); 2296 status = AcpiEvaluateObject(handle, path, NULL, &buf); 2297 if (ACPI_SUCCESS(status)) { 2298 if (param.Type == ACPI_TYPE_INTEGER) 2299 *number = param.Integer.Value; 2300 else 2301 status = AE_TYPE; 2302 } 2303 2304 /* 2305 * In some applications, a method that's expected to return an Integer 2306 * may instead return a Buffer (probably to simplify some internal 2307 * arithmetic). We'll try to fetch whatever it is, and if it's a Buffer, 2308 * convert it into an Integer as best we can. 2309 * 2310 * This is a hack. 2311 */ 2312 if (status == AE_BUFFER_OVERFLOW) { 2313 if ((buf.Pointer = AcpiOsAllocate(buf.Length)) == NULL) { 2314 status = AE_NO_MEMORY; 2315 } else { 2316 status = AcpiEvaluateObject(handle, path, NULL, &buf); 2317 if (ACPI_SUCCESS(status)) 2318 status = acpi_ConvertBufferToInteger(&buf, number); 2319 AcpiOsFree(buf.Pointer); 2320 } 2321 } 2322 return (status); 2323 } 2324 2325 ACPI_STATUS 2326 acpi_ConvertBufferToInteger(ACPI_BUFFER *bufp, UINT32 *number) 2327 { 2328 ACPI_OBJECT *p; 2329 UINT8 *val; 2330 int i; 2331 2332 p = (ACPI_OBJECT *)bufp->Pointer; 2333 if (p->Type == ACPI_TYPE_INTEGER) { 2334 *number = p->Integer.Value; 2335 return (AE_OK); 2336 } 2337 if (p->Type != ACPI_TYPE_BUFFER) 2338 return (AE_TYPE); 2339 if (p->Buffer.Length > sizeof(int)) 2340 return (AE_BAD_DATA); 2341 2342 *number = 0; 2343 val = p->Buffer.Pointer; 2344 for (i = 0; i < p->Buffer.Length; i++) 2345 *number += val[i] << (i * 8); 2346 return (AE_OK); 2347 } 2348 2349 /* 2350 * Iterate over the elements of an a package object, calling the supplied 2351 * function for each element. 2352 * 2353 * XXX possible enhancement might be to abort traversal on error. 2354 */ 2355 ACPI_STATUS 2356 acpi_ForeachPackageObject(ACPI_OBJECT *pkg, 2357 void (*func)(ACPI_OBJECT *comp, void *arg), void *arg) 2358 { 2359 ACPI_OBJECT *comp; 2360 int i; 2361 2362 if (pkg == NULL || pkg->Type != ACPI_TYPE_PACKAGE) 2363 return (AE_BAD_PARAMETER); 2364 2365 /* Iterate over components */ 2366 i = 0; 2367 comp = pkg->Package.Elements; 2368 for (; i < pkg->Package.Count; i++, comp++) 2369 func(comp, arg); 2370 2371 return (AE_OK); 2372 } 2373 2374 /* 2375 * Find the (index)th resource object in a set. 2376 */ 2377 ACPI_STATUS 2378 acpi_FindIndexedResource(ACPI_BUFFER *buf, int index, ACPI_RESOURCE **resp) 2379 { 2380 ACPI_RESOURCE *rp; 2381 int i; 2382 2383 rp = (ACPI_RESOURCE *)buf->Pointer; 2384 i = index; 2385 while (i-- > 0) { 2386 /* Range check */ 2387 if (rp > (ACPI_RESOURCE *)((u_int8_t *)buf->Pointer + buf->Length)) 2388 return (AE_BAD_PARAMETER); 2389 2390 /* Check for terminator */ 2391 if (rp->Type == ACPI_RESOURCE_TYPE_END_TAG || rp->Length == 0) 2392 return (AE_NOT_FOUND); 2393 rp = ACPI_NEXT_RESOURCE(rp); 2394 } 2395 if (resp != NULL) 2396 *resp = rp; 2397 2398 return (AE_OK); 2399 } 2400 2401 /* 2402 * Append an ACPI_RESOURCE to an ACPI_BUFFER. 2403 * 2404 * Given a pointer to an ACPI_RESOURCE structure, expand the ACPI_BUFFER 2405 * provided to contain it. If the ACPI_BUFFER is empty, allocate a sensible 2406 * backing block. If the ACPI_RESOURCE is NULL, return an empty set of 2407 * resources. 2408 */ 2409 #define ACPI_INITIAL_RESOURCE_BUFFER_SIZE 512 2410 2411 ACPI_STATUS 2412 acpi_AppendBufferResource(ACPI_BUFFER *buf, ACPI_RESOURCE *res) 2413 { 2414 ACPI_RESOURCE *rp; 2415 void *newp; 2416 2417 /* Initialise the buffer if necessary. */ 2418 if (buf->Pointer == NULL) { 2419 buf->Length = ACPI_INITIAL_RESOURCE_BUFFER_SIZE; 2420 if ((buf->Pointer = AcpiOsAllocate(buf->Length)) == NULL) 2421 return (AE_NO_MEMORY); 2422 rp = (ACPI_RESOURCE *)buf->Pointer; 2423 rp->Type = ACPI_RESOURCE_TYPE_END_TAG; 2424 rp->Length = ACPI_RS_SIZE_MIN; 2425 } 2426 if (res == NULL) 2427 return (AE_OK); 2428 2429 /* 2430 * Scan the current buffer looking for the terminator. 2431 * This will either find the terminator or hit the end 2432 * of the buffer and return an error. 2433 */ 2434 rp = (ACPI_RESOURCE *)buf->Pointer; 2435 for (;;) { 2436 /* Range check, don't go outside the buffer */ 2437 if (rp >= (ACPI_RESOURCE *)((u_int8_t *)buf->Pointer + buf->Length)) 2438 return (AE_BAD_PARAMETER); 2439 if (rp->Type == ACPI_RESOURCE_TYPE_END_TAG || rp->Length == 0) 2440 break; 2441 rp = ACPI_NEXT_RESOURCE(rp); 2442 } 2443 2444 /* 2445 * Check the size of the buffer and expand if required. 2446 * 2447 * Required size is: 2448 * size of existing resources before terminator + 2449 * size of new resource and header + 2450 * size of terminator. 2451 * 2452 * Note that this loop should really only run once, unless 2453 * for some reason we are stuffing a *really* huge resource. 2454 */ 2455 while ((((u_int8_t *)rp - (u_int8_t *)buf->Pointer) + 2456 res->Length + ACPI_RS_SIZE_NO_DATA + 2457 ACPI_RS_SIZE_MIN) >= buf->Length) { 2458 if ((newp = AcpiOsAllocate(buf->Length * 2)) == NULL) 2459 return (AE_NO_MEMORY); 2460 bcopy(buf->Pointer, newp, buf->Length); 2461 rp = (ACPI_RESOURCE *)((u_int8_t *)newp + 2462 ((u_int8_t *)rp - (u_int8_t *)buf->Pointer)); 2463 AcpiOsFree(buf->Pointer); 2464 buf->Pointer = newp; 2465 buf->Length += buf->Length; 2466 } 2467 2468 /* Insert the new resource. */ 2469 bcopy(res, rp, res->Length + ACPI_RS_SIZE_NO_DATA); 2470 2471 /* And add the terminator. */ 2472 rp = ACPI_NEXT_RESOURCE(rp); 2473 rp->Type = ACPI_RESOURCE_TYPE_END_TAG; 2474 rp->Length = ACPI_RS_SIZE_MIN; 2475 2476 return (AE_OK); 2477 } 2478 2479 /* 2480 * Set interrupt model. 2481 */ 2482 ACPI_STATUS 2483 acpi_SetIntrModel(int model) 2484 { 2485 2486 return (acpi_SetInteger(ACPI_ROOT_OBJECT, "_PIC", model)); 2487 } 2488 2489 /* 2490 * Walk subtables of a table and call a callback routine for each 2491 * subtable. The caller should provide the first subtable and a 2492 * pointer to the end of the table. This can be used to walk tables 2493 * such as MADT and SRAT that use subtable entries. 2494 */ 2495 void 2496 acpi_walk_subtables(void *first, void *end, acpi_subtable_handler *handler, 2497 void *arg) 2498 { 2499 ACPI_SUBTABLE_HEADER *entry; 2500 2501 for (entry = first; (void *)entry < end; ) { 2502 /* Avoid an infinite loop if we hit a bogus entry. */ 2503 if (entry->Length < sizeof(ACPI_SUBTABLE_HEADER)) 2504 return; 2505 2506 handler(entry, arg); 2507 entry = ACPI_ADD_PTR(ACPI_SUBTABLE_HEADER, entry, entry->Length); 2508 } 2509 } 2510 2511 /* 2512 * DEPRECATED. This interface has serious deficiencies and will be 2513 * removed. 2514 * 2515 * Immediately enter the sleep state. In the old model, acpiconf(8) ran 2516 * rc.suspend and rc.resume so we don't have to notify devd(8) to do this. 2517 */ 2518 ACPI_STATUS 2519 acpi_SetSleepState(struct acpi_softc *sc, int state) 2520 { 2521 static int once; 2522 2523 if (!once) { 2524 device_printf(sc->acpi_dev, 2525 "warning: acpi_SetSleepState() deprecated, need to update your software\n"); 2526 once = 1; 2527 } 2528 return (acpi_EnterSleepState(sc, state)); 2529 } 2530 2531 #if defined(__amd64__) || defined(__i386__) 2532 static void 2533 acpi_sleep_force_task(void *context) 2534 { 2535 struct acpi_softc *sc = (struct acpi_softc *)context; 2536 2537 if (ACPI_FAILURE(acpi_EnterSleepState(sc, sc->acpi_next_sstate))) 2538 device_printf(sc->acpi_dev, "force sleep state S%d failed\n", 2539 sc->acpi_next_sstate); 2540 } 2541 2542 static void 2543 acpi_sleep_force(void *arg) 2544 { 2545 struct acpi_softc *sc = (struct acpi_softc *)arg; 2546 2547 device_printf(sc->acpi_dev, 2548 "suspend request timed out, forcing sleep now\n"); 2549 /* 2550 * XXX Suspending from callout causes freezes in DEVICE_SUSPEND(). 2551 * Suspend from acpi_task thread instead. 2552 */ 2553 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 2554 acpi_sleep_force_task, sc))) 2555 device_printf(sc->acpi_dev, "AcpiOsExecute() for sleeping failed\n"); 2556 } 2557 #endif 2558 2559 /* 2560 * Request that the system enter the given suspend state. All /dev/apm 2561 * devices and devd(8) will be notified. Userland then has a chance to 2562 * save state and acknowledge the request. The system sleeps once all 2563 * acks are in. 2564 */ 2565 int 2566 acpi_ReqSleepState(struct acpi_softc *sc, int state) 2567 { 2568 #if defined(__amd64__) || defined(__i386__) 2569 struct apm_clone_data *clone; 2570 ACPI_STATUS status; 2571 2572 if (state < ACPI_STATE_S1 || state > ACPI_S_STATES_MAX) 2573 return (EINVAL); 2574 if (!acpi_sleep_states[state]) 2575 return (EOPNOTSUPP); 2576 2577 /* 2578 * If a reboot/shutdown/suspend request is already in progress or 2579 * suspend is blocked due to an upcoming shutdown, just return. 2580 */ 2581 if (rebooting || sc->acpi_next_sstate != 0 || suspend_blocked) { 2582 return (0); 2583 } 2584 2585 /* Wait until sleep is enabled. */ 2586 while (sc->acpi_sleep_disabled) { 2587 AcpiOsSleep(1000); 2588 } 2589 2590 ACPI_LOCK(acpi); 2591 2592 sc->acpi_next_sstate = state; 2593 2594 /* S5 (soft-off) should be entered directly with no waiting. */ 2595 if (state == ACPI_STATE_S5) { 2596 ACPI_UNLOCK(acpi); 2597 status = acpi_EnterSleepState(sc, state); 2598 return (ACPI_SUCCESS(status) ? 0 : ENXIO); 2599 } 2600 2601 /* Record the pending state and notify all apm devices. */ 2602 STAILQ_FOREACH(clone, &sc->apm_cdevs, entries) { 2603 clone->notify_status = APM_EV_NONE; 2604 if ((clone->flags & ACPI_EVF_DEVD) == 0) { 2605 selwakeuppri(&clone->sel_read, PZERO); 2606 KNOTE_LOCKED(&clone->sel_read.si_note, 0); 2607 } 2608 } 2609 2610 /* If devd(8) is not running, immediately enter the sleep state. */ 2611 if (!devctl_process_running()) { 2612 ACPI_UNLOCK(acpi); 2613 status = acpi_EnterSleepState(sc, state); 2614 return (ACPI_SUCCESS(status) ? 0 : ENXIO); 2615 } 2616 2617 /* 2618 * Set a timeout to fire if userland doesn't ack the suspend request 2619 * in time. This way we still eventually go to sleep if we were 2620 * overheating or running low on battery, even if userland is hung. 2621 * We cancel this timeout once all userland acks are in or the 2622 * suspend request is aborted. 2623 */ 2624 callout_reset(&sc->susp_force_to, 10 * hz, acpi_sleep_force, sc); 2625 ACPI_UNLOCK(acpi); 2626 2627 /* Now notify devd(8) also. */ 2628 acpi_UserNotify("Suspend", ACPI_ROOT_OBJECT, state); 2629 2630 return (0); 2631 #else 2632 /* This platform does not support acpi suspend/resume. */ 2633 return (EOPNOTSUPP); 2634 #endif 2635 } 2636 2637 /* 2638 * Acknowledge (or reject) a pending sleep state. The caller has 2639 * prepared for suspend and is now ready for it to proceed. If the 2640 * error argument is non-zero, it indicates suspend should be cancelled 2641 * and gives an errno value describing why. Once all votes are in, 2642 * we suspend the system. 2643 */ 2644 int 2645 acpi_AckSleepState(struct apm_clone_data *clone, int error) 2646 { 2647 #if defined(__amd64__) || defined(__i386__) 2648 struct acpi_softc *sc; 2649 int ret, sleeping; 2650 2651 /* If no pending sleep state, return an error. */ 2652 ACPI_LOCK(acpi); 2653 sc = clone->acpi_sc; 2654 if (sc->acpi_next_sstate == 0) { 2655 ACPI_UNLOCK(acpi); 2656 return (ENXIO); 2657 } 2658 2659 /* Caller wants to abort suspend process. */ 2660 if (error) { 2661 sc->acpi_next_sstate = 0; 2662 callout_stop(&sc->susp_force_to); 2663 device_printf(sc->acpi_dev, 2664 "listener on %s cancelled the pending suspend\n", 2665 devtoname(clone->cdev)); 2666 ACPI_UNLOCK(acpi); 2667 return (0); 2668 } 2669 2670 /* 2671 * Mark this device as acking the suspend request. Then, walk through 2672 * all devices, seeing if they agree yet. We only count devices that 2673 * are writable since read-only devices couldn't ack the request. 2674 */ 2675 sleeping = TRUE; 2676 clone->notify_status = APM_EV_ACKED; 2677 STAILQ_FOREACH(clone, &sc->apm_cdevs, entries) { 2678 if ((clone->flags & ACPI_EVF_WRITE) != 0 && 2679 clone->notify_status != APM_EV_ACKED) { 2680 sleeping = FALSE; 2681 break; 2682 } 2683 } 2684 2685 /* If all devices have voted "yes", we will suspend now. */ 2686 if (sleeping) 2687 callout_stop(&sc->susp_force_to); 2688 ACPI_UNLOCK(acpi); 2689 ret = 0; 2690 if (sleeping) { 2691 if (ACPI_FAILURE(acpi_EnterSleepState(sc, sc->acpi_next_sstate))) 2692 ret = ENODEV; 2693 } 2694 return (ret); 2695 #else 2696 /* This platform does not support acpi suspend/resume. */ 2697 return (EOPNOTSUPP); 2698 #endif 2699 } 2700 2701 static void 2702 acpi_sleep_enable(void *arg) 2703 { 2704 struct acpi_softc *sc = (struct acpi_softc *)arg; 2705 2706 ACPI_LOCK_ASSERT(acpi); 2707 2708 /* Reschedule if the system is not fully up and running. */ 2709 if (!AcpiGbl_SystemAwakeAndRunning) { 2710 callout_schedule(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME); 2711 return; 2712 } 2713 2714 sc->acpi_sleep_disabled = FALSE; 2715 } 2716 2717 static ACPI_STATUS 2718 acpi_sleep_disable(struct acpi_softc *sc) 2719 { 2720 ACPI_STATUS status; 2721 2722 /* Fail if the system is not fully up and running. */ 2723 if (!AcpiGbl_SystemAwakeAndRunning) 2724 return (AE_ERROR); 2725 2726 ACPI_LOCK(acpi); 2727 status = sc->acpi_sleep_disabled ? AE_ERROR : AE_OK; 2728 sc->acpi_sleep_disabled = TRUE; 2729 ACPI_UNLOCK(acpi); 2730 2731 return (status); 2732 } 2733 2734 enum acpi_sleep_state { 2735 ACPI_SS_NONE, 2736 ACPI_SS_GPE_SET, 2737 ACPI_SS_DEV_SUSPEND, 2738 ACPI_SS_SLP_PREP, 2739 ACPI_SS_SLEPT, 2740 }; 2741 2742 /* 2743 * Enter the desired system sleep state. 2744 * 2745 * Currently we support S1-S5 but S4 is only S4BIOS 2746 */ 2747 static ACPI_STATUS 2748 acpi_EnterSleepState(struct acpi_softc *sc, int state) 2749 { 2750 register_t intr; 2751 ACPI_STATUS status; 2752 ACPI_EVENT_STATUS power_button_status; 2753 enum acpi_sleep_state slp_state; 2754 int sleep_result; 2755 2756 ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state); 2757 2758 if (state < ACPI_STATE_S1 || state > ACPI_S_STATES_MAX) 2759 return_ACPI_STATUS (AE_BAD_PARAMETER); 2760 if (!acpi_sleep_states[state]) { 2761 device_printf(sc->acpi_dev, "Sleep state S%d not supported by BIOS\n", 2762 state); 2763 return (AE_SUPPORT); 2764 } 2765 2766 /* Re-entry once we're suspending is not allowed. */ 2767 status = acpi_sleep_disable(sc); 2768 if (ACPI_FAILURE(status)) { 2769 device_printf(sc->acpi_dev, 2770 "suspend request ignored (not ready yet)\n"); 2771 return (status); 2772 } 2773 2774 if (state == ACPI_STATE_S5) { 2775 /* 2776 * Shut down cleanly and power off. This will call us back through the 2777 * shutdown handlers. 2778 */ 2779 shutdown_nice(RB_POWEROFF); 2780 return_ACPI_STATUS (AE_OK); 2781 } 2782 2783 EVENTHANDLER_INVOKE(power_suspend_early); 2784 stop_all_proc(); 2785 EVENTHANDLER_INVOKE(power_suspend); 2786 2787 if (smp_started) { 2788 thread_lock(curthread); 2789 sched_bind(curthread, 0); 2790 thread_unlock(curthread); 2791 } 2792 2793 /* 2794 * Be sure to hold Giant across DEVICE_SUSPEND/RESUME since non-MPSAFE 2795 * drivers need this. 2796 */ 2797 mtx_lock(&Giant); 2798 2799 slp_state = ACPI_SS_NONE; 2800 2801 sc->acpi_sstate = state; 2802 2803 /* Enable any GPEs as appropriate and requested by the user. */ 2804 acpi_wake_prep_walk(state); 2805 slp_state = ACPI_SS_GPE_SET; 2806 2807 /* 2808 * Inform all devices that we are going to sleep. If at least one 2809 * device fails, DEVICE_SUSPEND() automatically resumes the tree. 2810 * 2811 * XXX Note that a better two-pass approach with a 'veto' pass 2812 * followed by a "real thing" pass would be better, but the current 2813 * bus interface does not provide for this. 2814 */ 2815 if (DEVICE_SUSPEND(root_bus) != 0) { 2816 device_printf(sc->acpi_dev, "device_suspend failed\n"); 2817 goto backout; 2818 } 2819 slp_state = ACPI_SS_DEV_SUSPEND; 2820 2821 /* If testing device suspend only, back out of everything here. */ 2822 if (acpi_susp_bounce) 2823 goto backout; 2824 2825 status = AcpiEnterSleepStatePrep(state); 2826 if (ACPI_FAILURE(status)) { 2827 device_printf(sc->acpi_dev, "AcpiEnterSleepStatePrep failed - %s\n", 2828 AcpiFormatException(status)); 2829 goto backout; 2830 } 2831 slp_state = ACPI_SS_SLP_PREP; 2832 2833 if (sc->acpi_sleep_delay > 0) 2834 DELAY(sc->acpi_sleep_delay * 1000000); 2835 2836 intr = intr_disable(); 2837 if (state != ACPI_STATE_S1) { 2838 sleep_result = acpi_sleep_machdep(sc, state); 2839 acpi_wakeup_machdep(sc, state, sleep_result, 0); 2840 2841 /* 2842 * XXX According to ACPI specification SCI_EN bit should be restored 2843 * by ACPI platform (BIOS, firmware) to its pre-sleep state. 2844 * Unfortunately some BIOSes fail to do that and that leads to 2845 * unexpected and serious consequences during wake up like a system 2846 * getting stuck in SMI handlers. 2847 * This hack is picked up from Linux, which claims that it follows 2848 * Windows behavior. 2849 */ 2850 if (sleep_result == 1 && state != ACPI_STATE_S4) 2851 AcpiWriteBitRegister(ACPI_BITREG_SCI_ENABLE, ACPI_ENABLE_EVENT); 2852 2853 AcpiLeaveSleepStatePrep(state); 2854 2855 if (sleep_result == 1 && state == ACPI_STATE_S3) { 2856 /* 2857 * Prevent mis-interpretation of the wakeup by power button 2858 * as a request for power off. 2859 * Ideally we should post an appropriate wakeup event, 2860 * perhaps using acpi_event_power_button_wake or alike. 2861 * 2862 * Clearing of power button status after wakeup is mandated 2863 * by ACPI specification in section "Fixed Power Button". 2864 * 2865 * XXX As of ACPICA 20121114 AcpiGetEventStatus provides 2866 * status as 0/1 corressponding to inactive/active despite 2867 * its type being ACPI_EVENT_STATUS. In other words, 2868 * we should not test for ACPI_EVENT_FLAG_SET for time being. 2869 */ 2870 if (ACPI_SUCCESS(AcpiGetEventStatus(ACPI_EVENT_POWER_BUTTON, 2871 &power_button_status)) && power_button_status != 0) { 2872 AcpiClearEvent(ACPI_EVENT_POWER_BUTTON); 2873 device_printf(sc->acpi_dev, 2874 "cleared fixed power button status\n"); 2875 } 2876 } 2877 2878 intr_restore(intr); 2879 2880 /* call acpi_wakeup_machdep() again with interrupt enabled */ 2881 acpi_wakeup_machdep(sc, state, sleep_result, 1); 2882 2883 if (sleep_result == -1) 2884 goto backout; 2885 2886 /* Re-enable ACPI hardware on wakeup from sleep state 4. */ 2887 if (state == ACPI_STATE_S4) 2888 AcpiEnable(); 2889 } else { 2890 status = AcpiEnterSleepState(state); 2891 AcpiLeaveSleepStatePrep(state); 2892 intr_restore(intr); 2893 if (ACPI_FAILURE(status)) { 2894 device_printf(sc->acpi_dev, "AcpiEnterSleepState failed - %s\n", 2895 AcpiFormatException(status)); 2896 goto backout; 2897 } 2898 } 2899 slp_state = ACPI_SS_SLEPT; 2900 2901 /* 2902 * Back out state according to how far along we got in the suspend 2903 * process. This handles both the error and success cases. 2904 */ 2905 backout: 2906 if (slp_state >= ACPI_SS_GPE_SET) { 2907 acpi_wake_prep_walk(state); 2908 sc->acpi_sstate = ACPI_STATE_S0; 2909 } 2910 if (slp_state >= ACPI_SS_DEV_SUSPEND) 2911 DEVICE_RESUME(root_bus); 2912 if (slp_state >= ACPI_SS_SLP_PREP) 2913 AcpiLeaveSleepState(state); 2914 if (slp_state >= ACPI_SS_SLEPT) { 2915 acpi_resync_clock(sc); 2916 acpi_enable_fixed_events(sc); 2917 } 2918 sc->acpi_next_sstate = 0; 2919 2920 mtx_unlock(&Giant); 2921 2922 if (smp_started) { 2923 thread_lock(curthread); 2924 sched_unbind(curthread); 2925 thread_unlock(curthread); 2926 } 2927 2928 resume_all_proc(); 2929 2930 EVENTHANDLER_INVOKE(power_resume); 2931 2932 /* Allow another sleep request after a while. */ 2933 callout_schedule(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME); 2934 2935 /* Run /etc/rc.resume after we are back. */ 2936 if (devctl_process_running()) 2937 acpi_UserNotify("Resume", ACPI_ROOT_OBJECT, state); 2938 2939 return_ACPI_STATUS (status); 2940 } 2941 2942 static void 2943 acpi_resync_clock(struct acpi_softc *sc) 2944 { 2945 #ifdef __amd64__ 2946 if (!acpi_reset_clock) 2947 return; 2948 2949 /* 2950 * Warm up timecounter again and reset system clock. 2951 */ 2952 (void)timecounter->tc_get_timecount(timecounter); 2953 (void)timecounter->tc_get_timecount(timecounter); 2954 inittodr(time_second + sc->acpi_sleep_delay); 2955 #endif 2956 } 2957 2958 /* Enable or disable the device's wake GPE. */ 2959 int 2960 acpi_wake_set_enable(device_t dev, int enable) 2961 { 2962 struct acpi_prw_data prw; 2963 ACPI_STATUS status; 2964 int flags; 2965 2966 /* Make sure the device supports waking the system and get the GPE. */ 2967 if (acpi_parse_prw(acpi_get_handle(dev), &prw) != 0) 2968 return (ENXIO); 2969 2970 flags = acpi_get_flags(dev); 2971 if (enable) { 2972 status = AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, 2973 ACPI_GPE_ENABLE); 2974 if (ACPI_FAILURE(status)) { 2975 device_printf(dev, "enable wake failed\n"); 2976 return (ENXIO); 2977 } 2978 acpi_set_flags(dev, flags | ACPI_FLAG_WAKE_ENABLED); 2979 } else { 2980 status = AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, 2981 ACPI_GPE_DISABLE); 2982 if (ACPI_FAILURE(status)) { 2983 device_printf(dev, "disable wake failed\n"); 2984 return (ENXIO); 2985 } 2986 acpi_set_flags(dev, flags & ~ACPI_FLAG_WAKE_ENABLED); 2987 } 2988 2989 return (0); 2990 } 2991 2992 static int 2993 acpi_wake_sleep_prep(ACPI_HANDLE handle, int sstate) 2994 { 2995 struct acpi_prw_data prw; 2996 device_t dev; 2997 2998 /* Check that this is a wake-capable device and get its GPE. */ 2999 if (acpi_parse_prw(handle, &prw) != 0) 3000 return (ENXIO); 3001 dev = acpi_get_device(handle); 3002 3003 /* 3004 * The destination sleep state must be less than (i.e., higher power) 3005 * or equal to the value specified by _PRW. If this GPE cannot be 3006 * enabled for the next sleep state, then disable it. If it can and 3007 * the user requested it be enabled, turn on any required power resources 3008 * and set _PSW. 3009 */ 3010 if (sstate > prw.lowest_wake) { 3011 AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, ACPI_GPE_DISABLE); 3012 if (bootverbose) 3013 device_printf(dev, "wake_prep disabled wake for %s (S%d)\n", 3014 acpi_name(handle), sstate); 3015 } else if (dev && (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) != 0) { 3016 acpi_pwr_wake_enable(handle, 1); 3017 acpi_SetInteger(handle, "_PSW", 1); 3018 if (bootverbose) 3019 device_printf(dev, "wake_prep enabled for %s (S%d)\n", 3020 acpi_name(handle), sstate); 3021 } 3022 3023 return (0); 3024 } 3025 3026 static int 3027 acpi_wake_run_prep(ACPI_HANDLE handle, int sstate) 3028 { 3029 struct acpi_prw_data prw; 3030 device_t dev; 3031 3032 /* 3033 * Check that this is a wake-capable device and get its GPE. Return 3034 * now if the user didn't enable this device for wake. 3035 */ 3036 if (acpi_parse_prw(handle, &prw) != 0) 3037 return (ENXIO); 3038 dev = acpi_get_device(handle); 3039 if (dev == NULL || (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) == 0) 3040 return (0); 3041 3042 /* 3043 * If this GPE couldn't be enabled for the previous sleep state, it was 3044 * disabled before going to sleep so re-enable it. If it was enabled, 3045 * clear _PSW and turn off any power resources it used. 3046 */ 3047 if (sstate > prw.lowest_wake) { 3048 AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, ACPI_GPE_ENABLE); 3049 if (bootverbose) 3050 device_printf(dev, "run_prep re-enabled %s\n", acpi_name(handle)); 3051 } else { 3052 acpi_SetInteger(handle, "_PSW", 0); 3053 acpi_pwr_wake_enable(handle, 0); 3054 if (bootverbose) 3055 device_printf(dev, "run_prep cleaned up for %s\n", 3056 acpi_name(handle)); 3057 } 3058 3059 return (0); 3060 } 3061 3062 static ACPI_STATUS 3063 acpi_wake_prep(ACPI_HANDLE handle, UINT32 level, void *context, void **status) 3064 { 3065 int sstate; 3066 3067 /* If suspending, run the sleep prep function, otherwise wake. */ 3068 sstate = *(int *)context; 3069 if (AcpiGbl_SystemAwakeAndRunning) 3070 acpi_wake_sleep_prep(handle, sstate); 3071 else 3072 acpi_wake_run_prep(handle, sstate); 3073 return (AE_OK); 3074 } 3075 3076 /* Walk the tree rooted at acpi0 to prep devices for suspend/resume. */ 3077 static int 3078 acpi_wake_prep_walk(int sstate) 3079 { 3080 ACPI_HANDLE sb_handle; 3081 3082 if (ACPI_SUCCESS(AcpiGetHandle(ACPI_ROOT_OBJECT, "\\_SB_", &sb_handle))) 3083 AcpiWalkNamespace(ACPI_TYPE_DEVICE, sb_handle, 100, 3084 acpi_wake_prep, NULL, &sstate, NULL); 3085 return (0); 3086 } 3087 3088 /* Walk the tree rooted at acpi0 to attach per-device wake sysctls. */ 3089 static int 3090 acpi_wake_sysctl_walk(device_t dev) 3091 { 3092 int error, i, numdevs; 3093 device_t *devlist; 3094 device_t child; 3095 ACPI_STATUS status; 3096 3097 error = device_get_children(dev, &devlist, &numdevs); 3098 if (error != 0 || numdevs == 0) { 3099 if (numdevs == 0) 3100 free(devlist, M_TEMP); 3101 return (error); 3102 } 3103 for (i = 0; i < numdevs; i++) { 3104 child = devlist[i]; 3105 acpi_wake_sysctl_walk(child); 3106 if (!device_is_attached(child)) 3107 continue; 3108 status = AcpiEvaluateObject(acpi_get_handle(child), "_PRW", NULL, NULL); 3109 if (ACPI_SUCCESS(status)) { 3110 SYSCTL_ADD_PROC(device_get_sysctl_ctx(child), 3111 SYSCTL_CHILDREN(device_get_sysctl_tree(child)), OID_AUTO, 3112 "wake", CTLTYPE_INT | CTLFLAG_RW, child, 0, 3113 acpi_wake_set_sysctl, "I", "Device set to wake the system"); 3114 } 3115 } 3116 free(devlist, M_TEMP); 3117 3118 return (0); 3119 } 3120 3121 /* Enable or disable wake from userland. */ 3122 static int 3123 acpi_wake_set_sysctl(SYSCTL_HANDLER_ARGS) 3124 { 3125 int enable, error; 3126 device_t dev; 3127 3128 dev = (device_t)arg1; 3129 enable = (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) ? 1 : 0; 3130 3131 error = sysctl_handle_int(oidp, &enable, 0, req); 3132 if (error != 0 || req->newptr == NULL) 3133 return (error); 3134 if (enable != 0 && enable != 1) 3135 return (EINVAL); 3136 3137 return (acpi_wake_set_enable(dev, enable)); 3138 } 3139 3140 /* Parse a device's _PRW into a structure. */ 3141 int 3142 acpi_parse_prw(ACPI_HANDLE h, struct acpi_prw_data *prw) 3143 { 3144 ACPI_STATUS status; 3145 ACPI_BUFFER prw_buffer; 3146 ACPI_OBJECT *res, *res2; 3147 int error, i, power_count; 3148 3149 if (h == NULL || prw == NULL) 3150 return (EINVAL); 3151 3152 /* 3153 * The _PRW object (7.2.9) is only required for devices that have the 3154 * ability to wake the system from a sleeping state. 3155 */ 3156 error = EINVAL; 3157 prw_buffer.Pointer = NULL; 3158 prw_buffer.Length = ACPI_ALLOCATE_BUFFER; 3159 status = AcpiEvaluateObject(h, "_PRW", NULL, &prw_buffer); 3160 if (ACPI_FAILURE(status)) 3161 return (ENOENT); 3162 res = (ACPI_OBJECT *)prw_buffer.Pointer; 3163 if (res == NULL) 3164 return (ENOENT); 3165 if (!ACPI_PKG_VALID(res, 2)) 3166 goto out; 3167 3168 /* 3169 * Element 1 of the _PRW object: 3170 * The lowest power system sleeping state that can be entered while still 3171 * providing wake functionality. The sleeping state being entered must 3172 * be less than (i.e., higher power) or equal to this value. 3173 */ 3174 if (acpi_PkgInt32(res, 1, &prw->lowest_wake) != 0) 3175 goto out; 3176 3177 /* 3178 * Element 0 of the _PRW object: 3179 */ 3180 switch (res->Package.Elements[0].Type) { 3181 case ACPI_TYPE_INTEGER: 3182 /* 3183 * If the data type of this package element is numeric, then this 3184 * _PRW package element is the bit index in the GPEx_EN, in the 3185 * GPE blocks described in the FADT, of the enable bit that is 3186 * enabled for the wake event. 3187 */ 3188 prw->gpe_handle = NULL; 3189 prw->gpe_bit = res->Package.Elements[0].Integer.Value; 3190 error = 0; 3191 break; 3192 case ACPI_TYPE_PACKAGE: 3193 /* 3194 * If the data type of this package element is a package, then this 3195 * _PRW package element is itself a package containing two 3196 * elements. The first is an object reference to the GPE Block 3197 * device that contains the GPE that will be triggered by the wake 3198 * event. The second element is numeric and it contains the bit 3199 * index in the GPEx_EN, in the GPE Block referenced by the 3200 * first element in the package, of the enable bit that is enabled for 3201 * the wake event. 3202 * 3203 * For example, if this field is a package then it is of the form: 3204 * Package() {\_SB.PCI0.ISA.GPE, 2} 3205 */ 3206 res2 = &res->Package.Elements[0]; 3207 if (!ACPI_PKG_VALID(res2, 2)) 3208 goto out; 3209 prw->gpe_handle = acpi_GetReference(NULL, &res2->Package.Elements[0]); 3210 if (prw->gpe_handle == NULL) 3211 goto out; 3212 if (acpi_PkgInt32(res2, 1, &prw->gpe_bit) != 0) 3213 goto out; 3214 error = 0; 3215 break; 3216 default: 3217 goto out; 3218 } 3219 3220 /* Elements 2 to N of the _PRW object are power resources. */ 3221 power_count = res->Package.Count - 2; 3222 if (power_count > ACPI_PRW_MAX_POWERRES) { 3223 printf("ACPI device %s has too many power resources\n", acpi_name(h)); 3224 power_count = 0; 3225 } 3226 prw->power_res_count = power_count; 3227 for (i = 0; i < power_count; i++) 3228 prw->power_res[i] = res->Package.Elements[i]; 3229 3230 out: 3231 if (prw_buffer.Pointer != NULL) 3232 AcpiOsFree(prw_buffer.Pointer); 3233 return (error); 3234 } 3235 3236 /* 3237 * ACPI Event Handlers 3238 */ 3239 3240 /* System Event Handlers (registered by EVENTHANDLER_REGISTER) */ 3241 3242 static void 3243 acpi_system_eventhandler_sleep(void *arg, int state) 3244 { 3245 struct acpi_softc *sc = (struct acpi_softc *)arg; 3246 int ret; 3247 3248 ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state); 3249 3250 /* Check if button action is disabled or unknown. */ 3251 if (state == ACPI_STATE_UNKNOWN) 3252 return; 3253 3254 /* Request that the system prepare to enter the given suspend state. */ 3255 ret = acpi_ReqSleepState(sc, state); 3256 if (ret != 0) 3257 device_printf(sc->acpi_dev, 3258 "request to enter state S%d failed (err %d)\n", state, ret); 3259 3260 return_VOID; 3261 } 3262 3263 static void 3264 acpi_system_eventhandler_wakeup(void *arg, int state) 3265 { 3266 3267 ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state); 3268 3269 /* Currently, nothing to do for wakeup. */ 3270 3271 return_VOID; 3272 } 3273 3274 /* 3275 * ACPICA Event Handlers (FixedEvent, also called from button notify handler) 3276 */ 3277 static void 3278 acpi_invoke_sleep_eventhandler(void *context) 3279 { 3280 3281 EVENTHANDLER_INVOKE(acpi_sleep_event, *(int *)context); 3282 } 3283 3284 static void 3285 acpi_invoke_wake_eventhandler(void *context) 3286 { 3287 3288 EVENTHANDLER_INVOKE(acpi_wakeup_event, *(int *)context); 3289 } 3290 3291 UINT32 3292 acpi_event_power_button_sleep(void *context) 3293 { 3294 struct acpi_softc *sc = (struct acpi_softc *)context; 3295 3296 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3297 3298 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3299 acpi_invoke_sleep_eventhandler, &sc->acpi_power_button_sx))) 3300 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); 3301 return_VALUE (ACPI_INTERRUPT_HANDLED); 3302 } 3303 3304 UINT32 3305 acpi_event_power_button_wake(void *context) 3306 { 3307 struct acpi_softc *sc = (struct acpi_softc *)context; 3308 3309 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3310 3311 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3312 acpi_invoke_wake_eventhandler, &sc->acpi_power_button_sx))) 3313 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); 3314 return_VALUE (ACPI_INTERRUPT_HANDLED); 3315 } 3316 3317 UINT32 3318 acpi_event_sleep_button_sleep(void *context) 3319 { 3320 struct acpi_softc *sc = (struct acpi_softc *)context; 3321 3322 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3323 3324 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3325 acpi_invoke_sleep_eventhandler, &sc->acpi_sleep_button_sx))) 3326 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); 3327 return_VALUE (ACPI_INTERRUPT_HANDLED); 3328 } 3329 3330 UINT32 3331 acpi_event_sleep_button_wake(void *context) 3332 { 3333 struct acpi_softc *sc = (struct acpi_softc *)context; 3334 3335 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3336 3337 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3338 acpi_invoke_wake_eventhandler, &sc->acpi_sleep_button_sx))) 3339 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); 3340 return_VALUE (ACPI_INTERRUPT_HANDLED); 3341 } 3342 3343 /* 3344 * XXX This static buffer is suboptimal. There is no locking so only 3345 * use this for single-threaded callers. 3346 */ 3347 char * 3348 acpi_name(ACPI_HANDLE handle) 3349 { 3350 ACPI_BUFFER buf; 3351 static char data[256]; 3352 3353 buf.Length = sizeof(data); 3354 buf.Pointer = data; 3355 3356 if (handle && ACPI_SUCCESS(AcpiGetName(handle, ACPI_FULL_PATHNAME, &buf))) 3357 return (data); 3358 return ("(unknown)"); 3359 } 3360 3361 /* 3362 * Debugging/bug-avoidance. Avoid trying to fetch info on various 3363 * parts of the namespace. 3364 */ 3365 int 3366 acpi_avoid(ACPI_HANDLE handle) 3367 { 3368 char *cp, *env, *np; 3369 int len; 3370 3371 np = acpi_name(handle); 3372 if (*np == '\\') 3373 np++; 3374 if ((env = kern_getenv("debug.acpi.avoid")) == NULL) 3375 return (0); 3376 3377 /* Scan the avoid list checking for a match */ 3378 cp = env; 3379 for (;;) { 3380 while (*cp != 0 && isspace(*cp)) 3381 cp++; 3382 if (*cp == 0) 3383 break; 3384 len = 0; 3385 while (cp[len] != 0 && !isspace(cp[len])) 3386 len++; 3387 if (!strncmp(cp, np, len)) { 3388 freeenv(env); 3389 return(1); 3390 } 3391 cp += len; 3392 } 3393 freeenv(env); 3394 3395 return (0); 3396 } 3397 3398 /* 3399 * Debugging/bug-avoidance. Disable ACPI subsystem components. 3400 */ 3401 int 3402 acpi_disabled(char *subsys) 3403 { 3404 char *cp, *env; 3405 int len; 3406 3407 if ((env = kern_getenv("debug.acpi.disabled")) == NULL) 3408 return (0); 3409 if (strcmp(env, "all") == 0) { 3410 freeenv(env); 3411 return (1); 3412 } 3413 3414 /* Scan the disable list, checking for a match. */ 3415 cp = env; 3416 for (;;) { 3417 while (*cp != '\0' && isspace(*cp)) 3418 cp++; 3419 if (*cp == '\0') 3420 break; 3421 len = 0; 3422 while (cp[len] != '\0' && !isspace(cp[len])) 3423 len++; 3424 if (strncmp(cp, subsys, len) == 0) { 3425 freeenv(env); 3426 return (1); 3427 } 3428 cp += len; 3429 } 3430 freeenv(env); 3431 3432 return (0); 3433 } 3434 3435 static void 3436 acpi_lookup(void *arg, const char *name, device_t *dev) 3437 { 3438 ACPI_HANDLE handle; 3439 3440 if (*dev != NULL) 3441 return; 3442 3443 /* 3444 * Allow any handle name that is specified as an absolute path and 3445 * starts with '\'. We could restrict this to \_SB and friends, 3446 * but see acpi_probe_children() for notes on why we scan the entire 3447 * namespace for devices. 3448 * 3449 * XXX: The pathname argument to AcpiGetHandle() should be fixed to 3450 * be const. 3451 */ 3452 if (name[0] != '\\') 3453 return; 3454 if (ACPI_FAILURE(AcpiGetHandle(ACPI_ROOT_OBJECT, __DECONST(char *, name), 3455 &handle))) 3456 return; 3457 *dev = acpi_get_device(handle); 3458 } 3459 3460 /* 3461 * Control interface. 3462 * 3463 * We multiplex ioctls for all participating ACPI devices here. Individual 3464 * drivers wanting to be accessible via /dev/acpi should use the 3465 * register/deregister interface to make their handlers visible. 3466 */ 3467 struct acpi_ioctl_hook 3468 { 3469 TAILQ_ENTRY(acpi_ioctl_hook) link; 3470 u_long cmd; 3471 acpi_ioctl_fn fn; 3472 void *arg; 3473 }; 3474 3475 static TAILQ_HEAD(,acpi_ioctl_hook) acpi_ioctl_hooks; 3476 static int acpi_ioctl_hooks_initted; 3477 3478 int 3479 acpi_register_ioctl(u_long cmd, acpi_ioctl_fn fn, void *arg) 3480 { 3481 struct acpi_ioctl_hook *hp; 3482 3483 if ((hp = malloc(sizeof(*hp), M_ACPIDEV, M_NOWAIT)) == NULL) 3484 return (ENOMEM); 3485 hp->cmd = cmd; 3486 hp->fn = fn; 3487 hp->arg = arg; 3488 3489 ACPI_LOCK(acpi); 3490 if (acpi_ioctl_hooks_initted == 0) { 3491 TAILQ_INIT(&acpi_ioctl_hooks); 3492 acpi_ioctl_hooks_initted = 1; 3493 } 3494 TAILQ_INSERT_TAIL(&acpi_ioctl_hooks, hp, link); 3495 ACPI_UNLOCK(acpi); 3496 3497 return (0); 3498 } 3499 3500 void 3501 acpi_deregister_ioctl(u_long cmd, acpi_ioctl_fn fn) 3502 { 3503 struct acpi_ioctl_hook *hp; 3504 3505 ACPI_LOCK(acpi); 3506 TAILQ_FOREACH(hp, &acpi_ioctl_hooks, link) 3507 if (hp->cmd == cmd && hp->fn == fn) 3508 break; 3509 3510 if (hp != NULL) { 3511 TAILQ_REMOVE(&acpi_ioctl_hooks, hp, link); 3512 free(hp, M_ACPIDEV); 3513 } 3514 ACPI_UNLOCK(acpi); 3515 } 3516 3517 static int 3518 acpiopen(struct cdev *dev, int flag, int fmt, struct thread *td) 3519 { 3520 return (0); 3521 } 3522 3523 static int 3524 acpiclose(struct cdev *dev, int flag, int fmt, struct thread *td) 3525 { 3526 return (0); 3527 } 3528 3529 static int 3530 acpiioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 3531 { 3532 struct acpi_softc *sc; 3533 struct acpi_ioctl_hook *hp; 3534 int error, state; 3535 3536 error = 0; 3537 hp = NULL; 3538 sc = dev->si_drv1; 3539 3540 /* 3541 * Scan the list of registered ioctls, looking for handlers. 3542 */ 3543 ACPI_LOCK(acpi); 3544 if (acpi_ioctl_hooks_initted) 3545 TAILQ_FOREACH(hp, &acpi_ioctl_hooks, link) { 3546 if (hp->cmd == cmd) 3547 break; 3548 } 3549 ACPI_UNLOCK(acpi); 3550 if (hp) 3551 return (hp->fn(cmd, addr, hp->arg)); 3552 3553 /* 3554 * Core ioctls are not permitted for non-writable user. 3555 * Currently, other ioctls just fetch information. 3556 * Not changing system behavior. 3557 */ 3558 if ((flag & FWRITE) == 0) 3559 return (EPERM); 3560 3561 /* Core system ioctls. */ 3562 switch (cmd) { 3563 case ACPIIO_REQSLPSTATE: 3564 state = *(int *)addr; 3565 if (state != ACPI_STATE_S5) 3566 return (acpi_ReqSleepState(sc, state)); 3567 device_printf(sc->acpi_dev, "power off via acpi ioctl not supported\n"); 3568 error = EOPNOTSUPP; 3569 break; 3570 case ACPIIO_ACKSLPSTATE: 3571 error = *(int *)addr; 3572 error = acpi_AckSleepState(sc->acpi_clone, error); 3573 break; 3574 case ACPIIO_SETSLPSTATE: /* DEPRECATED */ 3575 state = *(int *)addr; 3576 if (state < ACPI_STATE_S0 || state > ACPI_S_STATES_MAX) 3577 return (EINVAL); 3578 if (!acpi_sleep_states[state]) 3579 return (EOPNOTSUPP); 3580 if (ACPI_FAILURE(acpi_SetSleepState(sc, state))) 3581 error = ENXIO; 3582 break; 3583 default: 3584 error = ENXIO; 3585 break; 3586 } 3587 3588 return (error); 3589 } 3590 3591 static int 3592 acpi_sname2sstate(const char *sname) 3593 { 3594 int sstate; 3595 3596 if (toupper(sname[0]) == 'S') { 3597 sstate = sname[1] - '0'; 3598 if (sstate >= ACPI_STATE_S0 && sstate <= ACPI_STATE_S5 && 3599 sname[2] == '\0') 3600 return (sstate); 3601 } else if (strcasecmp(sname, "NONE") == 0) 3602 return (ACPI_STATE_UNKNOWN); 3603 return (-1); 3604 } 3605 3606 static const char * 3607 acpi_sstate2sname(int sstate) 3608 { 3609 static const char *snames[] = { "S0", "S1", "S2", "S3", "S4", "S5" }; 3610 3611 if (sstate >= ACPI_STATE_S0 && sstate <= ACPI_STATE_S5) 3612 return (snames[sstate]); 3613 else if (sstate == ACPI_STATE_UNKNOWN) 3614 return ("NONE"); 3615 return (NULL); 3616 } 3617 3618 static int 3619 acpi_supported_sleep_state_sysctl(SYSCTL_HANDLER_ARGS) 3620 { 3621 int error; 3622 struct sbuf sb; 3623 UINT8 state; 3624 3625 sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND); 3626 for (state = ACPI_STATE_S1; state < ACPI_S_STATE_COUNT; state++) 3627 if (acpi_sleep_states[state]) 3628 sbuf_printf(&sb, "%s ", acpi_sstate2sname(state)); 3629 sbuf_trim(&sb); 3630 sbuf_finish(&sb); 3631 error = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req); 3632 sbuf_delete(&sb); 3633 return (error); 3634 } 3635 3636 static int 3637 acpi_sleep_state_sysctl(SYSCTL_HANDLER_ARGS) 3638 { 3639 char sleep_state[10]; 3640 int error, new_state, old_state; 3641 3642 old_state = *(int *)oidp->oid_arg1; 3643 strlcpy(sleep_state, acpi_sstate2sname(old_state), sizeof(sleep_state)); 3644 error = sysctl_handle_string(oidp, sleep_state, sizeof(sleep_state), req); 3645 if (error == 0 && req->newptr != NULL) { 3646 new_state = acpi_sname2sstate(sleep_state); 3647 if (new_state < ACPI_STATE_S1) 3648 return (EINVAL); 3649 if (new_state < ACPI_S_STATE_COUNT && !acpi_sleep_states[new_state]) 3650 return (EOPNOTSUPP); 3651 if (new_state != old_state) 3652 *(int *)oidp->oid_arg1 = new_state; 3653 } 3654 return (error); 3655 } 3656 3657 /* Inform devctl(4) when we receive a Notify. */ 3658 void 3659 acpi_UserNotify(const char *subsystem, ACPI_HANDLE h, uint8_t notify) 3660 { 3661 char notify_buf[16]; 3662 ACPI_BUFFER handle_buf; 3663 ACPI_STATUS status; 3664 3665 if (subsystem == NULL) 3666 return; 3667 3668 handle_buf.Pointer = NULL; 3669 handle_buf.Length = ACPI_ALLOCATE_BUFFER; 3670 status = AcpiNsHandleToPathname(h, &handle_buf, FALSE); 3671 if (ACPI_FAILURE(status)) 3672 return; 3673 snprintf(notify_buf, sizeof(notify_buf), "notify=0x%02x", notify); 3674 devctl_notify("ACPI", subsystem, handle_buf.Pointer, notify_buf); 3675 AcpiOsFree(handle_buf.Pointer); 3676 } 3677 3678 #ifdef ACPI_DEBUG 3679 /* 3680 * Support for parsing debug options from the kernel environment. 3681 * 3682 * Bits may be set in the AcpiDbgLayer and AcpiDbgLevel debug registers 3683 * by specifying the names of the bits in the debug.acpi.layer and 3684 * debug.acpi.level environment variables. Bits may be unset by 3685 * prefixing the bit name with !. 3686 */ 3687 struct debugtag 3688 { 3689 char *name; 3690 UINT32 value; 3691 }; 3692 3693 static struct debugtag dbg_layer[] = { 3694 {"ACPI_UTILITIES", ACPI_UTILITIES}, 3695 {"ACPI_HARDWARE", ACPI_HARDWARE}, 3696 {"ACPI_EVENTS", ACPI_EVENTS}, 3697 {"ACPI_TABLES", ACPI_TABLES}, 3698 {"ACPI_NAMESPACE", ACPI_NAMESPACE}, 3699 {"ACPI_PARSER", ACPI_PARSER}, 3700 {"ACPI_DISPATCHER", ACPI_DISPATCHER}, 3701 {"ACPI_EXECUTER", ACPI_EXECUTER}, 3702 {"ACPI_RESOURCES", ACPI_RESOURCES}, 3703 {"ACPI_CA_DEBUGGER", ACPI_CA_DEBUGGER}, 3704 {"ACPI_OS_SERVICES", ACPI_OS_SERVICES}, 3705 {"ACPI_CA_DISASSEMBLER", ACPI_CA_DISASSEMBLER}, 3706 {"ACPI_ALL_COMPONENTS", ACPI_ALL_COMPONENTS}, 3707 3708 {"ACPI_AC_ADAPTER", ACPI_AC_ADAPTER}, 3709 {"ACPI_BATTERY", ACPI_BATTERY}, 3710 {"ACPI_BUS", ACPI_BUS}, 3711 {"ACPI_BUTTON", ACPI_BUTTON}, 3712 {"ACPI_EC", ACPI_EC}, 3713 {"ACPI_FAN", ACPI_FAN}, 3714 {"ACPI_POWERRES", ACPI_POWERRES}, 3715 {"ACPI_PROCESSOR", ACPI_PROCESSOR}, 3716 {"ACPI_THERMAL", ACPI_THERMAL}, 3717 {"ACPI_TIMER", ACPI_TIMER}, 3718 {"ACPI_ALL_DRIVERS", ACPI_ALL_DRIVERS}, 3719 {NULL, 0} 3720 }; 3721 3722 static struct debugtag dbg_level[] = { 3723 {"ACPI_LV_INIT", ACPI_LV_INIT}, 3724 {"ACPI_LV_DEBUG_OBJECT", ACPI_LV_DEBUG_OBJECT}, 3725 {"ACPI_LV_INFO", ACPI_LV_INFO}, 3726 {"ACPI_LV_REPAIR", ACPI_LV_REPAIR}, 3727 {"ACPI_LV_ALL_EXCEPTIONS", ACPI_LV_ALL_EXCEPTIONS}, 3728 3729 /* Trace verbosity level 1 [Standard Trace Level] */ 3730 {"ACPI_LV_INIT_NAMES", ACPI_LV_INIT_NAMES}, 3731 {"ACPI_LV_PARSE", ACPI_LV_PARSE}, 3732 {"ACPI_LV_LOAD", ACPI_LV_LOAD}, 3733 {"ACPI_LV_DISPATCH", ACPI_LV_DISPATCH}, 3734 {"ACPI_LV_EXEC", ACPI_LV_EXEC}, 3735 {"ACPI_LV_NAMES", ACPI_LV_NAMES}, 3736 {"ACPI_LV_OPREGION", ACPI_LV_OPREGION}, 3737 {"ACPI_LV_BFIELD", ACPI_LV_BFIELD}, 3738 {"ACPI_LV_TABLES", ACPI_LV_TABLES}, 3739 {"ACPI_LV_VALUES", ACPI_LV_VALUES}, 3740 {"ACPI_LV_OBJECTS", ACPI_LV_OBJECTS}, 3741 {"ACPI_LV_RESOURCES", ACPI_LV_RESOURCES}, 3742 {"ACPI_LV_USER_REQUESTS", ACPI_LV_USER_REQUESTS}, 3743 {"ACPI_LV_PACKAGE", ACPI_LV_PACKAGE}, 3744 {"ACPI_LV_VERBOSITY1", ACPI_LV_VERBOSITY1}, 3745 3746 /* Trace verbosity level 2 [Function tracing and memory allocation] */ 3747 {"ACPI_LV_ALLOCATIONS", ACPI_LV_ALLOCATIONS}, 3748 {"ACPI_LV_FUNCTIONS", ACPI_LV_FUNCTIONS}, 3749 {"ACPI_LV_OPTIMIZATIONS", ACPI_LV_OPTIMIZATIONS}, 3750 {"ACPI_LV_VERBOSITY2", ACPI_LV_VERBOSITY2}, 3751 {"ACPI_LV_ALL", ACPI_LV_ALL}, 3752 3753 /* Trace verbosity level 3 [Threading, I/O, and Interrupts] */ 3754 {"ACPI_LV_MUTEX", ACPI_LV_MUTEX}, 3755 {"ACPI_LV_THREADS", ACPI_LV_THREADS}, 3756 {"ACPI_LV_IO", ACPI_LV_IO}, 3757 {"ACPI_LV_INTERRUPTS", ACPI_LV_INTERRUPTS}, 3758 {"ACPI_LV_VERBOSITY3", ACPI_LV_VERBOSITY3}, 3759 3760 /* Exceptionally verbose output -- also used in the global "DebugLevel" */ 3761 {"ACPI_LV_AML_DISASSEMBLE", ACPI_LV_AML_DISASSEMBLE}, 3762 {"ACPI_LV_VERBOSE_INFO", ACPI_LV_VERBOSE_INFO}, 3763 {"ACPI_LV_FULL_TABLES", ACPI_LV_FULL_TABLES}, 3764 {"ACPI_LV_EVENTS", ACPI_LV_EVENTS}, 3765 {"ACPI_LV_VERBOSE", ACPI_LV_VERBOSE}, 3766 {NULL, 0} 3767 }; 3768 3769 static void 3770 acpi_parse_debug(char *cp, struct debugtag *tag, UINT32 *flag) 3771 { 3772 char *ep; 3773 int i, l; 3774 int set; 3775 3776 while (*cp) { 3777 if (isspace(*cp)) { 3778 cp++; 3779 continue; 3780 } 3781 ep = cp; 3782 while (*ep && !isspace(*ep)) 3783 ep++; 3784 if (*cp == '!') { 3785 set = 0; 3786 cp++; 3787 if (cp == ep) 3788 continue; 3789 } else { 3790 set = 1; 3791 } 3792 l = ep - cp; 3793 for (i = 0; tag[i].name != NULL; i++) { 3794 if (!strncmp(cp, tag[i].name, l)) { 3795 if (set) 3796 *flag |= tag[i].value; 3797 else 3798 *flag &= ~tag[i].value; 3799 } 3800 } 3801 cp = ep; 3802 } 3803 } 3804 3805 static void 3806 acpi_set_debugging(void *junk) 3807 { 3808 char *layer, *level; 3809 3810 if (cold) { 3811 AcpiDbgLayer = 0; 3812 AcpiDbgLevel = 0; 3813 } 3814 3815 layer = kern_getenv("debug.acpi.layer"); 3816 level = kern_getenv("debug.acpi.level"); 3817 if (layer == NULL && level == NULL) 3818 return; 3819 3820 printf("ACPI set debug"); 3821 if (layer != NULL) { 3822 if (strcmp("NONE", layer) != 0) 3823 printf(" layer '%s'", layer); 3824 acpi_parse_debug(layer, &dbg_layer[0], &AcpiDbgLayer); 3825 freeenv(layer); 3826 } 3827 if (level != NULL) { 3828 if (strcmp("NONE", level) != 0) 3829 printf(" level '%s'", level); 3830 acpi_parse_debug(level, &dbg_level[0], &AcpiDbgLevel); 3831 freeenv(level); 3832 } 3833 printf("\n"); 3834 } 3835 3836 SYSINIT(acpi_debugging, SI_SUB_TUNABLES, SI_ORDER_ANY, acpi_set_debugging, 3837 NULL); 3838 3839 static int 3840 acpi_debug_sysctl(SYSCTL_HANDLER_ARGS) 3841 { 3842 int error, *dbg; 3843 struct debugtag *tag; 3844 struct sbuf sb; 3845 char temp[128]; 3846 3847 if (sbuf_new(&sb, NULL, 128, SBUF_AUTOEXTEND) == NULL) 3848 return (ENOMEM); 3849 if (strcmp(oidp->oid_arg1, "debug.acpi.layer") == 0) { 3850 tag = &dbg_layer[0]; 3851 dbg = &AcpiDbgLayer; 3852 } else { 3853 tag = &dbg_level[0]; 3854 dbg = &AcpiDbgLevel; 3855 } 3856 3857 /* Get old values if this is a get request. */ 3858 ACPI_SERIAL_BEGIN(acpi); 3859 if (*dbg == 0) { 3860 sbuf_cpy(&sb, "NONE"); 3861 } else if (req->newptr == NULL) { 3862 for (; tag->name != NULL; tag++) { 3863 if ((*dbg & tag->value) == tag->value) 3864 sbuf_printf(&sb, "%s ", tag->name); 3865 } 3866 } 3867 sbuf_trim(&sb); 3868 sbuf_finish(&sb); 3869 strlcpy(temp, sbuf_data(&sb), sizeof(temp)); 3870 sbuf_delete(&sb); 3871 3872 error = sysctl_handle_string(oidp, temp, sizeof(temp), req); 3873 3874 /* Check for error or no change */ 3875 if (error == 0 && req->newptr != NULL) { 3876 *dbg = 0; 3877 kern_setenv((char *)oidp->oid_arg1, temp); 3878 acpi_set_debugging(NULL); 3879 } 3880 ACPI_SERIAL_END(acpi); 3881 3882 return (error); 3883 } 3884 3885 SYSCTL_PROC(_debug_acpi, OID_AUTO, layer, CTLFLAG_RW | CTLTYPE_STRING, 3886 "debug.acpi.layer", 0, acpi_debug_sysctl, "A", ""); 3887 SYSCTL_PROC(_debug_acpi, OID_AUTO, level, CTLFLAG_RW | CTLTYPE_STRING, 3888 "debug.acpi.level", 0, acpi_debug_sysctl, "A", ""); 3889 #endif /* ACPI_DEBUG */ 3890 3891 static int 3892 acpi_debug_objects_sysctl(SYSCTL_HANDLER_ARGS) 3893 { 3894 int error; 3895 int old; 3896 3897 old = acpi_debug_objects; 3898 error = sysctl_handle_int(oidp, &acpi_debug_objects, 0, req); 3899 if (error != 0 || req->newptr == NULL) 3900 return (error); 3901 if (old == acpi_debug_objects || (old && acpi_debug_objects)) 3902 return (0); 3903 3904 ACPI_SERIAL_BEGIN(acpi); 3905 AcpiGbl_EnableAmlDebugObject = acpi_debug_objects ? TRUE : FALSE; 3906 ACPI_SERIAL_END(acpi); 3907 3908 return (0); 3909 } 3910 3911 static int 3912 acpi_parse_interfaces(char *str, struct acpi_interface *iface) 3913 { 3914 char *p; 3915 size_t len; 3916 int i, j; 3917 3918 p = str; 3919 while (isspace(*p) || *p == ',') 3920 p++; 3921 len = strlen(p); 3922 if (len == 0) 3923 return (0); 3924 p = strdup(p, M_TEMP); 3925 for (i = 0; i < len; i++) 3926 if (p[i] == ',') 3927 p[i] = '\0'; 3928 i = j = 0; 3929 while (i < len) 3930 if (isspace(p[i]) || p[i] == '\0') 3931 i++; 3932 else { 3933 i += strlen(p + i) + 1; 3934 j++; 3935 } 3936 if (j == 0) { 3937 free(p, M_TEMP); 3938 return (0); 3939 } 3940 iface->data = malloc(sizeof(*iface->data) * j, M_TEMP, M_WAITOK); 3941 iface->num = j; 3942 i = j = 0; 3943 while (i < len) 3944 if (isspace(p[i]) || p[i] == '\0') 3945 i++; 3946 else { 3947 iface->data[j] = p + i; 3948 i += strlen(p + i) + 1; 3949 j++; 3950 } 3951 3952 return (j); 3953 } 3954 3955 static void 3956 acpi_free_interfaces(struct acpi_interface *iface) 3957 { 3958 3959 free(iface->data[0], M_TEMP); 3960 free(iface->data, M_TEMP); 3961 } 3962 3963 static void 3964 acpi_reset_interfaces(device_t dev) 3965 { 3966 struct acpi_interface list; 3967 ACPI_STATUS status; 3968 int i; 3969 3970 if (acpi_parse_interfaces(acpi_install_interface, &list) > 0) { 3971 for (i = 0; i < list.num; i++) { 3972 status = AcpiInstallInterface(list.data[i]); 3973 if (ACPI_FAILURE(status)) 3974 device_printf(dev, 3975 "failed to install _OSI(\"%s\"): %s\n", 3976 list.data[i], AcpiFormatException(status)); 3977 else if (bootverbose) 3978 device_printf(dev, "installed _OSI(\"%s\")\n", 3979 list.data[i]); 3980 } 3981 acpi_free_interfaces(&list); 3982 } 3983 if (acpi_parse_interfaces(acpi_remove_interface, &list) > 0) { 3984 for (i = 0; i < list.num; i++) { 3985 status = AcpiRemoveInterface(list.data[i]); 3986 if (ACPI_FAILURE(status)) 3987 device_printf(dev, 3988 "failed to remove _OSI(\"%s\"): %s\n", 3989 list.data[i], AcpiFormatException(status)); 3990 else if (bootverbose) 3991 device_printf(dev, "removed _OSI(\"%s\")\n", 3992 list.data[i]); 3993 } 3994 acpi_free_interfaces(&list); 3995 } 3996 } 3997 3998 static int 3999 acpi_pm_func(u_long cmd, void *arg, ...) 4000 { 4001 int state, acpi_state; 4002 int error; 4003 struct acpi_softc *sc; 4004 va_list ap; 4005 4006 error = 0; 4007 switch (cmd) { 4008 case POWER_CMD_SUSPEND: 4009 sc = (struct acpi_softc *)arg; 4010 if (sc == NULL) { 4011 error = EINVAL; 4012 goto out; 4013 } 4014 4015 va_start(ap, arg); 4016 state = va_arg(ap, int); 4017 va_end(ap); 4018 4019 switch (state) { 4020 case POWER_SLEEP_STATE_STANDBY: 4021 acpi_state = sc->acpi_standby_sx; 4022 break; 4023 case POWER_SLEEP_STATE_SUSPEND: 4024 acpi_state = sc->acpi_suspend_sx; 4025 break; 4026 case POWER_SLEEP_STATE_HIBERNATE: 4027 acpi_state = ACPI_STATE_S4; 4028 break; 4029 default: 4030 error = EINVAL; 4031 goto out; 4032 } 4033 4034 if (ACPI_FAILURE(acpi_EnterSleepState(sc, acpi_state))) 4035 error = ENXIO; 4036 break; 4037 default: 4038 error = EINVAL; 4039 goto out; 4040 } 4041 4042 out: 4043 return (error); 4044 } 4045 4046 static void 4047 acpi_pm_register(void *arg) 4048 { 4049 if (!cold || resource_disabled("acpi", 0)) 4050 return; 4051 4052 power_pm_register(POWER_PM_TYPE_ACPI, acpi_pm_func, NULL); 4053 } 4054 4055 SYSINIT(power, SI_SUB_KLD, SI_ORDER_ANY, acpi_pm_register, 0); 4056