1 /*- 2 * Copyright (c) 2000 Takanori Watanabe <takawata@jp.freebsd.org> 3 * Copyright (c) 2000 Mitsuru IWASAKI <iwasaki@jp.freebsd.org> 4 * Copyright (c) 2000, 2001 Michael Smith 5 * Copyright (c) 2000 BSDi 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include "opt_acpi.h" 34 #include "opt_device_numa.h" 35 36 #include <sys/param.h> 37 #include <sys/kernel.h> 38 #include <sys/proc.h> 39 #include <sys/fcntl.h> 40 #include <sys/malloc.h> 41 #include <sys/module.h> 42 #include <sys/bus.h> 43 #include <sys/conf.h> 44 #include <sys/ioccom.h> 45 #include <sys/reboot.h> 46 #include <sys/sysctl.h> 47 #include <sys/ctype.h> 48 #include <sys/linker.h> 49 #include <sys/power.h> 50 #include <sys/sbuf.h> 51 #include <sys/sched.h> 52 #include <sys/smp.h> 53 #include <sys/timetc.h> 54 55 #if defined(__i386__) || defined(__amd64__) 56 #include <machine/pci_cfgreg.h> 57 #endif 58 #include <machine/resource.h> 59 #include <machine/bus.h> 60 #include <sys/rman.h> 61 #include <isa/isavar.h> 62 #include <isa/pnpvar.h> 63 64 #include <contrib/dev/acpica/include/acpi.h> 65 #include <contrib/dev/acpica/include/accommon.h> 66 #include <contrib/dev/acpica/include/acnamesp.h> 67 68 #include <dev/acpica/acpivar.h> 69 #include <dev/acpica/acpiio.h> 70 71 #include <dev/pci/pcivar.h> 72 73 #include <vm/vm_param.h> 74 75 static MALLOC_DEFINE(M_ACPIDEV, "acpidev", "ACPI devices"); 76 77 /* Hooks for the ACPI CA debugging infrastructure */ 78 #define _COMPONENT ACPI_BUS 79 ACPI_MODULE_NAME("ACPI") 80 81 static d_open_t acpiopen; 82 static d_close_t acpiclose; 83 static d_ioctl_t acpiioctl; 84 85 static struct cdevsw acpi_cdevsw = { 86 .d_version = D_VERSION, 87 .d_open = acpiopen, 88 .d_close = acpiclose, 89 .d_ioctl = acpiioctl, 90 .d_name = "acpi", 91 }; 92 93 struct acpi_interface { 94 ACPI_STRING *data; 95 int num; 96 }; 97 98 static char *sysres_ids[] = { "PNP0C01", "PNP0C02", NULL }; 99 static char *pcilink_ids[] = { "PNP0C0F", NULL }; 100 101 /* Global mutex for locking access to the ACPI subsystem. */ 102 struct mtx acpi_mutex; 103 struct callout acpi_sleep_timer; 104 105 /* Bitmap of device quirks. */ 106 int acpi_quirks; 107 108 /* Supported sleep states. */ 109 static BOOLEAN acpi_sleep_states[ACPI_S_STATE_COUNT]; 110 111 static void acpi_lookup(void *arg, const char *name, device_t *dev); 112 static int acpi_modevent(struct module *mod, int event, void *junk); 113 static int acpi_probe(device_t dev); 114 static int acpi_attach(device_t dev); 115 static int acpi_suspend(device_t dev); 116 static int acpi_resume(device_t dev); 117 static int acpi_shutdown(device_t dev); 118 static device_t acpi_add_child(device_t bus, u_int order, const char *name, 119 int unit); 120 static int acpi_print_child(device_t bus, device_t child); 121 static void acpi_probe_nomatch(device_t bus, device_t child); 122 static void acpi_driver_added(device_t dev, driver_t *driver); 123 static int acpi_read_ivar(device_t dev, device_t child, int index, 124 uintptr_t *result); 125 static int acpi_write_ivar(device_t dev, device_t child, int index, 126 uintptr_t value); 127 static struct resource_list *acpi_get_rlist(device_t dev, device_t child); 128 static void acpi_reserve_resources(device_t dev); 129 static int acpi_sysres_alloc(device_t dev); 130 static int acpi_set_resource(device_t dev, device_t child, int type, 131 int rid, rman_res_t start, rman_res_t count); 132 static struct resource *acpi_alloc_resource(device_t bus, device_t child, 133 int type, int *rid, rman_res_t start, rman_res_t end, 134 rman_res_t count, u_int flags); 135 static int acpi_adjust_resource(device_t bus, device_t child, int type, 136 struct resource *r, rman_res_t start, rman_res_t end); 137 static int acpi_release_resource(device_t bus, device_t child, int type, 138 int rid, struct resource *r); 139 static void acpi_delete_resource(device_t bus, device_t child, int type, 140 int rid); 141 static uint32_t acpi_isa_get_logicalid(device_t dev); 142 static int acpi_isa_get_compatid(device_t dev, uint32_t *cids, int count); 143 static char *acpi_device_id_probe(device_t bus, device_t dev, char **ids); 144 static ACPI_STATUS acpi_device_eval_obj(device_t bus, device_t dev, 145 ACPI_STRING pathname, ACPI_OBJECT_LIST *parameters, 146 ACPI_BUFFER *ret); 147 static ACPI_STATUS acpi_device_scan_cb(ACPI_HANDLE h, UINT32 level, 148 void *context, void **retval); 149 static ACPI_STATUS acpi_device_scan_children(device_t bus, device_t dev, 150 int max_depth, acpi_scan_cb_t user_fn, void *arg); 151 static int acpi_set_powerstate(device_t child, int state); 152 static int acpi_isa_pnp_probe(device_t bus, device_t child, 153 struct isa_pnp_id *ids); 154 static void acpi_probe_children(device_t bus); 155 static void acpi_probe_order(ACPI_HANDLE handle, int *order); 156 static ACPI_STATUS acpi_probe_child(ACPI_HANDLE handle, UINT32 level, 157 void *context, void **status); 158 static void acpi_sleep_enable(void *arg); 159 static ACPI_STATUS acpi_sleep_disable(struct acpi_softc *sc); 160 static ACPI_STATUS acpi_EnterSleepState(struct acpi_softc *sc, int state); 161 static void acpi_shutdown_final(void *arg, int howto); 162 static void acpi_enable_fixed_events(struct acpi_softc *sc); 163 static BOOLEAN acpi_has_hid(ACPI_HANDLE handle); 164 static void acpi_resync_clock(struct acpi_softc *sc); 165 static int acpi_wake_sleep_prep(ACPI_HANDLE handle, int sstate); 166 static int acpi_wake_run_prep(ACPI_HANDLE handle, int sstate); 167 static int acpi_wake_prep_walk(int sstate); 168 static int acpi_wake_sysctl_walk(device_t dev); 169 static int acpi_wake_set_sysctl(SYSCTL_HANDLER_ARGS); 170 static void acpi_system_eventhandler_sleep(void *arg, int state); 171 static void acpi_system_eventhandler_wakeup(void *arg, int state); 172 static int acpi_sname2sstate(const char *sname); 173 static const char *acpi_sstate2sname(int sstate); 174 static int acpi_supported_sleep_state_sysctl(SYSCTL_HANDLER_ARGS); 175 static int acpi_sleep_state_sysctl(SYSCTL_HANDLER_ARGS); 176 static int acpi_debug_objects_sysctl(SYSCTL_HANDLER_ARGS); 177 static int acpi_pm_func(u_long cmd, void *arg, ...); 178 static int acpi_child_location_str_method(device_t acdev, device_t child, 179 char *buf, size_t buflen); 180 static int acpi_child_pnpinfo_str_method(device_t acdev, device_t child, 181 char *buf, size_t buflen); 182 #if defined(__i386__) || defined(__amd64__) 183 static void acpi_enable_pcie(void); 184 #endif 185 static void acpi_hint_device_unit(device_t acdev, device_t child, 186 const char *name, int *unitp); 187 static void acpi_reset_interfaces(device_t dev); 188 189 static device_method_t acpi_methods[] = { 190 /* Device interface */ 191 DEVMETHOD(device_probe, acpi_probe), 192 DEVMETHOD(device_attach, acpi_attach), 193 DEVMETHOD(device_shutdown, acpi_shutdown), 194 DEVMETHOD(device_detach, bus_generic_detach), 195 DEVMETHOD(device_suspend, acpi_suspend), 196 DEVMETHOD(device_resume, acpi_resume), 197 198 /* Bus interface */ 199 DEVMETHOD(bus_add_child, acpi_add_child), 200 DEVMETHOD(bus_print_child, acpi_print_child), 201 DEVMETHOD(bus_probe_nomatch, acpi_probe_nomatch), 202 DEVMETHOD(bus_driver_added, acpi_driver_added), 203 DEVMETHOD(bus_read_ivar, acpi_read_ivar), 204 DEVMETHOD(bus_write_ivar, acpi_write_ivar), 205 DEVMETHOD(bus_get_resource_list, acpi_get_rlist), 206 DEVMETHOD(bus_set_resource, acpi_set_resource), 207 DEVMETHOD(bus_get_resource, bus_generic_rl_get_resource), 208 DEVMETHOD(bus_alloc_resource, acpi_alloc_resource), 209 DEVMETHOD(bus_adjust_resource, acpi_adjust_resource), 210 DEVMETHOD(bus_release_resource, acpi_release_resource), 211 DEVMETHOD(bus_delete_resource, acpi_delete_resource), 212 DEVMETHOD(bus_child_pnpinfo_str, acpi_child_pnpinfo_str_method), 213 DEVMETHOD(bus_child_location_str, acpi_child_location_str_method), 214 DEVMETHOD(bus_activate_resource, bus_generic_activate_resource), 215 DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource), 216 DEVMETHOD(bus_setup_intr, bus_generic_setup_intr), 217 DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr), 218 DEVMETHOD(bus_hint_device_unit, acpi_hint_device_unit), 219 DEVMETHOD(bus_get_cpus, acpi_get_cpus), 220 DEVMETHOD(bus_get_domain, acpi_get_domain), 221 222 /* ACPI bus */ 223 DEVMETHOD(acpi_id_probe, acpi_device_id_probe), 224 DEVMETHOD(acpi_evaluate_object, acpi_device_eval_obj), 225 DEVMETHOD(acpi_pwr_for_sleep, acpi_device_pwr_for_sleep), 226 DEVMETHOD(acpi_scan_children, acpi_device_scan_children), 227 228 /* ISA emulation */ 229 DEVMETHOD(isa_pnp_probe, acpi_isa_pnp_probe), 230 231 DEVMETHOD_END 232 }; 233 234 static driver_t acpi_driver = { 235 "acpi", 236 acpi_methods, 237 sizeof(struct acpi_softc), 238 }; 239 240 static devclass_t acpi_devclass; 241 DRIVER_MODULE(acpi, nexus, acpi_driver, acpi_devclass, acpi_modevent, 0); 242 MODULE_VERSION(acpi, 1); 243 244 ACPI_SERIAL_DECL(acpi, "ACPI root bus"); 245 246 /* Local pools for managing system resources for ACPI child devices. */ 247 static struct rman acpi_rman_io, acpi_rman_mem; 248 249 #define ACPI_MINIMUM_AWAKETIME 5 250 251 /* Holds the description of the acpi0 device. */ 252 static char acpi_desc[ACPI_OEM_ID_SIZE + ACPI_OEM_TABLE_ID_SIZE + 2]; 253 254 SYSCTL_NODE(_debug, OID_AUTO, acpi, CTLFLAG_RD, NULL, "ACPI debugging"); 255 static char acpi_ca_version[12]; 256 SYSCTL_STRING(_debug_acpi, OID_AUTO, acpi_ca_version, CTLFLAG_RD, 257 acpi_ca_version, 0, "Version of Intel ACPI-CA"); 258 259 /* 260 * Allow overriding _OSI methods. 261 */ 262 static char acpi_install_interface[256]; 263 TUNABLE_STR("hw.acpi.install_interface", acpi_install_interface, 264 sizeof(acpi_install_interface)); 265 static char acpi_remove_interface[256]; 266 TUNABLE_STR("hw.acpi.remove_interface", acpi_remove_interface, 267 sizeof(acpi_remove_interface)); 268 269 /* Allow users to dump Debug objects without ACPI debugger. */ 270 static int acpi_debug_objects; 271 TUNABLE_INT("debug.acpi.enable_debug_objects", &acpi_debug_objects); 272 SYSCTL_PROC(_debug_acpi, OID_AUTO, enable_debug_objects, 273 CTLFLAG_RW | CTLTYPE_INT, NULL, 0, acpi_debug_objects_sysctl, "I", 274 "Enable Debug objects"); 275 276 /* Allow the interpreter to ignore common mistakes in BIOS. */ 277 static int acpi_interpreter_slack = 1; 278 TUNABLE_INT("debug.acpi.interpreter_slack", &acpi_interpreter_slack); 279 SYSCTL_INT(_debug_acpi, OID_AUTO, interpreter_slack, CTLFLAG_RDTUN, 280 &acpi_interpreter_slack, 1, "Turn on interpreter slack mode."); 281 282 /* Ignore register widths set by FADT and use default widths instead. */ 283 static int acpi_ignore_reg_width = 1; 284 TUNABLE_INT("debug.acpi.default_register_width", &acpi_ignore_reg_width); 285 SYSCTL_INT(_debug_acpi, OID_AUTO, default_register_width, CTLFLAG_RDTUN, 286 &acpi_ignore_reg_width, 1, "Ignore register widths set by FADT"); 287 288 /* Allow users to override quirks. */ 289 TUNABLE_INT("debug.acpi.quirks", &acpi_quirks); 290 291 static int acpi_susp_bounce; 292 SYSCTL_INT(_debug_acpi, OID_AUTO, suspend_bounce, CTLFLAG_RW, 293 &acpi_susp_bounce, 0, "Don't actually suspend, just test devices."); 294 295 /* 296 * ACPI can only be loaded as a module by the loader; activating it after 297 * system bootstrap time is not useful, and can be fatal to the system. 298 * It also cannot be unloaded, since the entire system bus hierarchy hangs 299 * off it. 300 */ 301 static int 302 acpi_modevent(struct module *mod, int event, void *junk) 303 { 304 switch (event) { 305 case MOD_LOAD: 306 if (!cold) { 307 printf("The ACPI driver cannot be loaded after boot.\n"); 308 return (EPERM); 309 } 310 break; 311 case MOD_UNLOAD: 312 if (!cold && power_pm_get_type() == POWER_PM_TYPE_ACPI) 313 return (EBUSY); 314 break; 315 default: 316 break; 317 } 318 return (0); 319 } 320 321 /* 322 * Perform early initialization. 323 */ 324 ACPI_STATUS 325 acpi_Startup(void) 326 { 327 static int started = 0; 328 ACPI_STATUS status; 329 int val; 330 331 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 332 333 /* Only run the startup code once. The MADT driver also calls this. */ 334 if (started) 335 return_VALUE (AE_OK); 336 started = 1; 337 338 /* 339 * Initialize the ACPICA subsystem. 340 */ 341 if (ACPI_FAILURE(status = AcpiInitializeSubsystem())) { 342 printf("ACPI: Could not initialize Subsystem: %s\n", 343 AcpiFormatException(status)); 344 return_VALUE (status); 345 } 346 347 /* 348 * Pre-allocate space for RSDT/XSDT and DSDT tables and allow resizing 349 * if more tables exist. 350 */ 351 if (ACPI_FAILURE(status = AcpiInitializeTables(NULL, 2, TRUE))) { 352 printf("ACPI: Table initialisation failed: %s\n", 353 AcpiFormatException(status)); 354 return_VALUE (status); 355 } 356 357 /* Set up any quirks we have for this system. */ 358 if (acpi_quirks == ACPI_Q_OK) 359 acpi_table_quirks(&acpi_quirks); 360 361 /* If the user manually set the disabled hint to 0, force-enable ACPI. */ 362 if (resource_int_value("acpi", 0, "disabled", &val) == 0 && val == 0) 363 acpi_quirks &= ~ACPI_Q_BROKEN; 364 if (acpi_quirks & ACPI_Q_BROKEN) { 365 printf("ACPI disabled by blacklist. Contact your BIOS vendor.\n"); 366 status = AE_SUPPORT; 367 } 368 369 return_VALUE (status); 370 } 371 372 /* 373 * Detect ACPI and perform early initialisation. 374 */ 375 int 376 acpi_identify(void) 377 { 378 ACPI_TABLE_RSDP *rsdp; 379 ACPI_TABLE_HEADER *rsdt; 380 ACPI_PHYSICAL_ADDRESS paddr; 381 struct sbuf sb; 382 383 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 384 385 if (!cold) 386 return (ENXIO); 387 388 /* Check that we haven't been disabled with a hint. */ 389 if (resource_disabled("acpi", 0)) 390 return (ENXIO); 391 392 /* Check for other PM systems. */ 393 if (power_pm_get_type() != POWER_PM_TYPE_NONE && 394 power_pm_get_type() != POWER_PM_TYPE_ACPI) { 395 printf("ACPI identify failed, other PM system enabled.\n"); 396 return (ENXIO); 397 } 398 399 /* Initialize root tables. */ 400 if (ACPI_FAILURE(acpi_Startup())) { 401 printf("ACPI: Try disabling either ACPI or apic support.\n"); 402 return (ENXIO); 403 } 404 405 if ((paddr = AcpiOsGetRootPointer()) == 0 || 406 (rsdp = AcpiOsMapMemory(paddr, sizeof(ACPI_TABLE_RSDP))) == NULL) 407 return (ENXIO); 408 if (rsdp->Revision > 1 && rsdp->XsdtPhysicalAddress != 0) 409 paddr = (ACPI_PHYSICAL_ADDRESS)rsdp->XsdtPhysicalAddress; 410 else 411 paddr = (ACPI_PHYSICAL_ADDRESS)rsdp->RsdtPhysicalAddress; 412 AcpiOsUnmapMemory(rsdp, sizeof(ACPI_TABLE_RSDP)); 413 414 if ((rsdt = AcpiOsMapMemory(paddr, sizeof(ACPI_TABLE_HEADER))) == NULL) 415 return (ENXIO); 416 sbuf_new(&sb, acpi_desc, sizeof(acpi_desc), SBUF_FIXEDLEN); 417 sbuf_bcat(&sb, rsdt->OemId, ACPI_OEM_ID_SIZE); 418 sbuf_trim(&sb); 419 sbuf_putc(&sb, ' '); 420 sbuf_bcat(&sb, rsdt->OemTableId, ACPI_OEM_TABLE_ID_SIZE); 421 sbuf_trim(&sb); 422 sbuf_finish(&sb); 423 sbuf_delete(&sb); 424 AcpiOsUnmapMemory(rsdt, sizeof(ACPI_TABLE_HEADER)); 425 426 snprintf(acpi_ca_version, sizeof(acpi_ca_version), "%x", ACPI_CA_VERSION); 427 428 return (0); 429 } 430 431 /* 432 * Fetch some descriptive data from ACPI to put in our attach message. 433 */ 434 static int 435 acpi_probe(device_t dev) 436 { 437 438 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 439 440 device_set_desc(dev, acpi_desc); 441 442 return_VALUE (BUS_PROBE_NOWILDCARD); 443 } 444 445 static int 446 acpi_attach(device_t dev) 447 { 448 struct acpi_softc *sc; 449 ACPI_STATUS status; 450 int error, state; 451 UINT32 flags; 452 UINT8 TypeA, TypeB; 453 char *env; 454 455 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 456 457 sc = device_get_softc(dev); 458 sc->acpi_dev = dev; 459 callout_init(&sc->susp_force_to, 1); 460 461 error = ENXIO; 462 463 /* Initialize resource manager. */ 464 acpi_rman_io.rm_type = RMAN_ARRAY; 465 acpi_rman_io.rm_start = 0; 466 acpi_rman_io.rm_end = 0xffff; 467 acpi_rman_io.rm_descr = "ACPI I/O ports"; 468 if (rman_init(&acpi_rman_io) != 0) 469 panic("acpi rman_init IO ports failed"); 470 acpi_rman_mem.rm_type = RMAN_ARRAY; 471 acpi_rman_mem.rm_descr = "ACPI I/O memory addresses"; 472 if (rman_init(&acpi_rman_mem) != 0) 473 panic("acpi rman_init memory failed"); 474 475 /* Initialise the ACPI mutex */ 476 mtx_init(&acpi_mutex, "ACPI global lock", NULL, MTX_DEF); 477 478 /* 479 * Set the globals from our tunables. This is needed because ACPI-CA 480 * uses UINT8 for some values and we have no tunable_byte. 481 */ 482 AcpiGbl_EnableInterpreterSlack = acpi_interpreter_slack ? TRUE : FALSE; 483 AcpiGbl_EnableAmlDebugObject = acpi_debug_objects ? TRUE : FALSE; 484 AcpiGbl_UseDefaultRegisterWidths = acpi_ignore_reg_width ? TRUE : FALSE; 485 486 #ifndef ACPI_DEBUG 487 /* 488 * Disable all debugging layers and levels. 489 */ 490 AcpiDbgLayer = 0; 491 AcpiDbgLevel = 0; 492 #endif 493 494 /* Override OS interfaces if the user requested. */ 495 acpi_reset_interfaces(dev); 496 497 /* Load ACPI name space. */ 498 status = AcpiLoadTables(); 499 if (ACPI_FAILURE(status)) { 500 device_printf(dev, "Could not load Namespace: %s\n", 501 AcpiFormatException(status)); 502 goto out; 503 } 504 505 #if defined(__i386__) || defined(__amd64__) 506 /* Handle MCFG table if present. */ 507 acpi_enable_pcie(); 508 #endif 509 510 /* 511 * Note that some systems (specifically, those with namespace evaluation 512 * issues that require the avoidance of parts of the namespace) must 513 * avoid running _INI and _STA on everything, as well as dodging the final 514 * object init pass. 515 * 516 * For these devices, we set ACPI_NO_DEVICE_INIT and ACPI_NO_OBJECT_INIT). 517 * 518 * XXX We should arrange for the object init pass after we have attached 519 * all our child devices, but on many systems it works here. 520 */ 521 flags = 0; 522 if (testenv("debug.acpi.avoid")) 523 flags = ACPI_NO_DEVICE_INIT | ACPI_NO_OBJECT_INIT; 524 525 /* Bring the hardware and basic handlers online. */ 526 if (ACPI_FAILURE(status = AcpiEnableSubsystem(flags))) { 527 device_printf(dev, "Could not enable ACPI: %s\n", 528 AcpiFormatException(status)); 529 goto out; 530 } 531 532 /* 533 * Call the ECDT probe function to provide EC functionality before 534 * the namespace has been evaluated. 535 * 536 * XXX This happens before the sysresource devices have been probed and 537 * attached so its resources come from nexus0. In practice, this isn't 538 * a problem but should be addressed eventually. 539 */ 540 acpi_ec_ecdt_probe(dev); 541 542 /* Bring device objects and regions online. */ 543 if (ACPI_FAILURE(status = AcpiInitializeObjects(flags))) { 544 device_printf(dev, "Could not initialize ACPI objects: %s\n", 545 AcpiFormatException(status)); 546 goto out; 547 } 548 549 /* 550 * Setup our sysctl tree. 551 * 552 * XXX: This doesn't check to make sure that none of these fail. 553 */ 554 sysctl_ctx_init(&sc->acpi_sysctl_ctx); 555 sc->acpi_sysctl_tree = SYSCTL_ADD_NODE(&sc->acpi_sysctl_ctx, 556 SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO, 557 device_get_name(dev), CTLFLAG_RD, 0, ""); 558 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 559 OID_AUTO, "supported_sleep_state", CTLTYPE_STRING | CTLFLAG_RD, 560 0, 0, acpi_supported_sleep_state_sysctl, "A", 561 "List supported ACPI sleep states."); 562 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 563 OID_AUTO, "power_button_state", CTLTYPE_STRING | CTLFLAG_RW, 564 &sc->acpi_power_button_sx, 0, acpi_sleep_state_sysctl, "A", 565 "Power button ACPI sleep state."); 566 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 567 OID_AUTO, "sleep_button_state", CTLTYPE_STRING | CTLFLAG_RW, 568 &sc->acpi_sleep_button_sx, 0, acpi_sleep_state_sysctl, "A", 569 "Sleep button ACPI sleep state."); 570 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 571 OID_AUTO, "lid_switch_state", CTLTYPE_STRING | CTLFLAG_RW, 572 &sc->acpi_lid_switch_sx, 0, acpi_sleep_state_sysctl, "A", 573 "Lid ACPI sleep state. Set to S3 if you want to suspend your laptop when close the Lid."); 574 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 575 OID_AUTO, "standby_state", CTLTYPE_STRING | CTLFLAG_RW, 576 &sc->acpi_standby_sx, 0, acpi_sleep_state_sysctl, "A", ""); 577 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 578 OID_AUTO, "suspend_state", CTLTYPE_STRING | CTLFLAG_RW, 579 &sc->acpi_suspend_sx, 0, acpi_sleep_state_sysctl, "A", ""); 580 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 581 OID_AUTO, "sleep_delay", CTLFLAG_RW, &sc->acpi_sleep_delay, 0, 582 "sleep delay in seconds"); 583 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 584 OID_AUTO, "s4bios", CTLFLAG_RW, &sc->acpi_s4bios, 0, "S4BIOS mode"); 585 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 586 OID_AUTO, "verbose", CTLFLAG_RW, &sc->acpi_verbose, 0, "verbose mode"); 587 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 588 OID_AUTO, "disable_on_reboot", CTLFLAG_RW, 589 &sc->acpi_do_disable, 0, "Disable ACPI when rebooting/halting system"); 590 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 591 OID_AUTO, "handle_reboot", CTLFLAG_RW, 592 &sc->acpi_handle_reboot, 0, "Use ACPI Reset Register to reboot"); 593 594 /* 595 * Default to 1 second before sleeping to give some machines time to 596 * stabilize. 597 */ 598 sc->acpi_sleep_delay = 1; 599 if (bootverbose) 600 sc->acpi_verbose = 1; 601 if ((env = kern_getenv("hw.acpi.verbose")) != NULL) { 602 if (strcmp(env, "0") != 0) 603 sc->acpi_verbose = 1; 604 freeenv(env); 605 } 606 607 /* Only enable reboot by default if the FADT says it is available. */ 608 if (AcpiGbl_FADT.Flags & ACPI_FADT_RESET_REGISTER) 609 sc->acpi_handle_reboot = 1; 610 611 #if !ACPI_REDUCED_HARDWARE 612 /* Only enable S4BIOS by default if the FACS says it is available. */ 613 if (AcpiGbl_FACS != NULL && AcpiGbl_FACS->Flags & ACPI_FACS_S4_BIOS_PRESENT) 614 sc->acpi_s4bios = 1; 615 #endif 616 617 /* Probe all supported sleep states. */ 618 acpi_sleep_states[ACPI_STATE_S0] = TRUE; 619 for (state = ACPI_STATE_S1; state < ACPI_S_STATE_COUNT; state++) 620 if (ACPI_SUCCESS(AcpiEvaluateObject(ACPI_ROOT_OBJECT, 621 __DECONST(char *, AcpiGbl_SleepStateNames[state]), NULL, NULL)) && 622 ACPI_SUCCESS(AcpiGetSleepTypeData(state, &TypeA, &TypeB))) 623 acpi_sleep_states[state] = TRUE; 624 625 /* 626 * Dispatch the default sleep state to devices. The lid switch is set 627 * to UNKNOWN by default to avoid surprising users. 628 */ 629 sc->acpi_power_button_sx = acpi_sleep_states[ACPI_STATE_S5] ? 630 ACPI_STATE_S5 : ACPI_STATE_UNKNOWN; 631 sc->acpi_lid_switch_sx = ACPI_STATE_UNKNOWN; 632 sc->acpi_standby_sx = acpi_sleep_states[ACPI_STATE_S1] ? 633 ACPI_STATE_S1 : ACPI_STATE_UNKNOWN; 634 sc->acpi_suspend_sx = acpi_sleep_states[ACPI_STATE_S3] ? 635 ACPI_STATE_S3 : ACPI_STATE_UNKNOWN; 636 637 /* Pick the first valid sleep state for the sleep button default. */ 638 sc->acpi_sleep_button_sx = ACPI_STATE_UNKNOWN; 639 for (state = ACPI_STATE_S1; state <= ACPI_STATE_S4; state++) 640 if (acpi_sleep_states[state]) { 641 sc->acpi_sleep_button_sx = state; 642 break; 643 } 644 645 acpi_enable_fixed_events(sc); 646 647 /* 648 * Scan the namespace and attach/initialise children. 649 */ 650 651 /* Register our shutdown handler. */ 652 EVENTHANDLER_REGISTER(shutdown_final, acpi_shutdown_final, sc, 653 SHUTDOWN_PRI_LAST); 654 655 /* 656 * Register our acpi event handlers. 657 * XXX should be configurable eg. via userland policy manager. 658 */ 659 EVENTHANDLER_REGISTER(acpi_sleep_event, acpi_system_eventhandler_sleep, 660 sc, ACPI_EVENT_PRI_LAST); 661 EVENTHANDLER_REGISTER(acpi_wakeup_event, acpi_system_eventhandler_wakeup, 662 sc, ACPI_EVENT_PRI_LAST); 663 664 /* Flag our initial states. */ 665 sc->acpi_enabled = TRUE; 666 sc->acpi_sstate = ACPI_STATE_S0; 667 sc->acpi_sleep_disabled = TRUE; 668 669 /* Create the control device */ 670 sc->acpi_dev_t = make_dev(&acpi_cdevsw, 0, UID_ROOT, GID_WHEEL, 0644, 671 "acpi"); 672 sc->acpi_dev_t->si_drv1 = sc; 673 674 if ((error = acpi_machdep_init(dev))) 675 goto out; 676 677 /* Register ACPI again to pass the correct argument of pm_func. */ 678 power_pm_register(POWER_PM_TYPE_ACPI, acpi_pm_func, sc); 679 680 if (!acpi_disabled("bus")) { 681 EVENTHANDLER_REGISTER(dev_lookup, acpi_lookup, NULL, 1000); 682 acpi_probe_children(dev); 683 } 684 685 /* Update all GPEs and enable runtime GPEs. */ 686 status = AcpiUpdateAllGpes(); 687 if (ACPI_FAILURE(status)) 688 device_printf(dev, "Could not update all GPEs: %s\n", 689 AcpiFormatException(status)); 690 691 /* Allow sleep request after a while. */ 692 callout_init_mtx(&acpi_sleep_timer, &acpi_mutex, 0); 693 callout_reset(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME, 694 acpi_sleep_enable, sc); 695 696 error = 0; 697 698 out: 699 return_VALUE (error); 700 } 701 702 static void 703 acpi_set_power_children(device_t dev, int state) 704 { 705 device_t child; 706 device_t *devlist; 707 int dstate, i, numdevs; 708 709 if (device_get_children(dev, &devlist, &numdevs) != 0) 710 return; 711 712 /* 713 * Retrieve and set D-state for the sleep state if _SxD is present. 714 * Skip children who aren't attached since they are handled separately. 715 */ 716 for (i = 0; i < numdevs; i++) { 717 child = devlist[i]; 718 dstate = state; 719 if (device_is_attached(child) && 720 acpi_device_pwr_for_sleep(dev, child, &dstate) == 0) 721 acpi_set_powerstate(child, dstate); 722 } 723 free(devlist, M_TEMP); 724 } 725 726 static int 727 acpi_suspend(device_t dev) 728 { 729 int error; 730 731 GIANT_REQUIRED; 732 733 error = bus_generic_suspend(dev); 734 if (error == 0) 735 acpi_set_power_children(dev, ACPI_STATE_D3); 736 737 return (error); 738 } 739 740 static int 741 acpi_resume(device_t dev) 742 { 743 744 GIANT_REQUIRED; 745 746 acpi_set_power_children(dev, ACPI_STATE_D0); 747 748 return (bus_generic_resume(dev)); 749 } 750 751 static int 752 acpi_shutdown(device_t dev) 753 { 754 755 GIANT_REQUIRED; 756 757 /* Allow children to shutdown first. */ 758 bus_generic_shutdown(dev); 759 760 /* 761 * Enable any GPEs that are able to power-on the system (i.e., RTC). 762 * Also, disable any that are not valid for this state (most). 763 */ 764 acpi_wake_prep_walk(ACPI_STATE_S5); 765 766 return (0); 767 } 768 769 /* 770 * Handle a new device being added 771 */ 772 static device_t 773 acpi_add_child(device_t bus, u_int order, const char *name, int unit) 774 { 775 struct acpi_device *ad; 776 device_t child; 777 778 if ((ad = malloc(sizeof(*ad), M_ACPIDEV, M_NOWAIT | M_ZERO)) == NULL) 779 return (NULL); 780 781 resource_list_init(&ad->ad_rl); 782 783 child = device_add_child_ordered(bus, order, name, unit); 784 if (child != NULL) 785 device_set_ivars(child, ad); 786 else 787 free(ad, M_ACPIDEV); 788 return (child); 789 } 790 791 static int 792 acpi_print_child(device_t bus, device_t child) 793 { 794 struct acpi_device *adev = device_get_ivars(child); 795 struct resource_list *rl = &adev->ad_rl; 796 int retval = 0; 797 798 retval += bus_print_child_header(bus, child); 799 retval += resource_list_print_type(rl, "port", SYS_RES_IOPORT, "%#jx"); 800 retval += resource_list_print_type(rl, "iomem", SYS_RES_MEMORY, "%#jx"); 801 retval += resource_list_print_type(rl, "irq", SYS_RES_IRQ, "%jd"); 802 retval += resource_list_print_type(rl, "drq", SYS_RES_DRQ, "%jd"); 803 if (device_get_flags(child)) 804 retval += printf(" flags %#x", device_get_flags(child)); 805 retval += bus_print_child_domain(bus, child); 806 retval += bus_print_child_footer(bus, child); 807 808 return (retval); 809 } 810 811 /* 812 * If this device is an ACPI child but no one claimed it, attempt 813 * to power it off. We'll power it back up when a driver is added. 814 * 815 * XXX Disabled for now since many necessary devices (like fdc and 816 * ATA) don't claim the devices we created for them but still expect 817 * them to be powered up. 818 */ 819 static void 820 acpi_probe_nomatch(device_t bus, device_t child) 821 { 822 #ifdef ACPI_ENABLE_POWERDOWN_NODRIVER 823 acpi_set_powerstate(child, ACPI_STATE_D3); 824 #endif 825 } 826 827 /* 828 * If a new driver has a chance to probe a child, first power it up. 829 * 830 * XXX Disabled for now (see acpi_probe_nomatch for details). 831 */ 832 static void 833 acpi_driver_added(device_t dev, driver_t *driver) 834 { 835 device_t child, *devlist; 836 int i, numdevs; 837 838 DEVICE_IDENTIFY(driver, dev); 839 if (device_get_children(dev, &devlist, &numdevs)) 840 return; 841 for (i = 0; i < numdevs; i++) { 842 child = devlist[i]; 843 if (device_get_state(child) == DS_NOTPRESENT) { 844 #ifdef ACPI_ENABLE_POWERDOWN_NODRIVER 845 acpi_set_powerstate(child, ACPI_STATE_D0); 846 if (device_probe_and_attach(child) != 0) 847 acpi_set_powerstate(child, ACPI_STATE_D3); 848 #else 849 device_probe_and_attach(child); 850 #endif 851 } 852 } 853 free(devlist, M_TEMP); 854 } 855 856 /* Location hint for devctl(8) */ 857 static int 858 acpi_child_location_str_method(device_t cbdev, device_t child, char *buf, 859 size_t buflen) 860 { 861 struct acpi_device *dinfo = device_get_ivars(child); 862 char buf2[32]; 863 int pxm; 864 865 if (dinfo->ad_handle) { 866 snprintf(buf, buflen, "handle=%s", acpi_name(dinfo->ad_handle)); 867 if (ACPI_SUCCESS(acpi_GetInteger(dinfo->ad_handle, "_PXM", &pxm))) { 868 snprintf(buf2, 32, " _PXM=%d", pxm); 869 strlcat(buf, buf2, buflen); 870 } 871 } else { 872 snprintf(buf, buflen, "unknown"); 873 } 874 return (0); 875 } 876 877 /* PnP information for devctl(8) */ 878 static int 879 acpi_child_pnpinfo_str_method(device_t cbdev, device_t child, char *buf, 880 size_t buflen) 881 { 882 struct acpi_device *dinfo = device_get_ivars(child); 883 ACPI_DEVICE_INFO *adinfo; 884 885 if (ACPI_FAILURE(AcpiGetObjectInfo(dinfo->ad_handle, &adinfo))) { 886 snprintf(buf, buflen, "unknown"); 887 return (0); 888 } 889 890 snprintf(buf, buflen, "_HID=%s _UID=%lu", 891 (adinfo->Valid & ACPI_VALID_HID) ? 892 adinfo->HardwareId.String : "none", 893 (adinfo->Valid & ACPI_VALID_UID) ? 894 strtoul(adinfo->UniqueId.String, NULL, 10) : 0UL); 895 AcpiOsFree(adinfo); 896 897 return (0); 898 } 899 900 /* 901 * Handle per-device ivars 902 */ 903 static int 904 acpi_read_ivar(device_t dev, device_t child, int index, uintptr_t *result) 905 { 906 struct acpi_device *ad; 907 908 if ((ad = device_get_ivars(child)) == NULL) { 909 device_printf(child, "device has no ivars\n"); 910 return (ENOENT); 911 } 912 913 /* ACPI and ISA compatibility ivars */ 914 switch(index) { 915 case ACPI_IVAR_HANDLE: 916 *(ACPI_HANDLE *)result = ad->ad_handle; 917 break; 918 case ACPI_IVAR_PRIVATE: 919 *(void **)result = ad->ad_private; 920 break; 921 case ACPI_IVAR_FLAGS: 922 *(int *)result = ad->ad_flags; 923 break; 924 case ISA_IVAR_VENDORID: 925 case ISA_IVAR_SERIAL: 926 case ISA_IVAR_COMPATID: 927 *(int *)result = -1; 928 break; 929 case ISA_IVAR_LOGICALID: 930 *(int *)result = acpi_isa_get_logicalid(child); 931 break; 932 case PCI_IVAR_CLASS: 933 *(uint8_t*)result = (ad->ad_cls_class >> 16) & 0xff; 934 break; 935 case PCI_IVAR_SUBCLASS: 936 *(uint8_t*)result = (ad->ad_cls_class >> 8) & 0xff; 937 break; 938 case PCI_IVAR_PROGIF: 939 *(uint8_t*)result = (ad->ad_cls_class >> 0) & 0xff; 940 break; 941 default: 942 return (ENOENT); 943 } 944 945 return (0); 946 } 947 948 static int 949 acpi_write_ivar(device_t dev, device_t child, int index, uintptr_t value) 950 { 951 struct acpi_device *ad; 952 953 if ((ad = device_get_ivars(child)) == NULL) { 954 device_printf(child, "device has no ivars\n"); 955 return (ENOENT); 956 } 957 958 switch(index) { 959 case ACPI_IVAR_HANDLE: 960 ad->ad_handle = (ACPI_HANDLE)value; 961 break; 962 case ACPI_IVAR_PRIVATE: 963 ad->ad_private = (void *)value; 964 break; 965 case ACPI_IVAR_FLAGS: 966 ad->ad_flags = (int)value; 967 break; 968 default: 969 panic("bad ivar write request (%d)", index); 970 return (ENOENT); 971 } 972 973 return (0); 974 } 975 976 /* 977 * Handle child resource allocation/removal 978 */ 979 static struct resource_list * 980 acpi_get_rlist(device_t dev, device_t child) 981 { 982 struct acpi_device *ad; 983 984 ad = device_get_ivars(child); 985 return (&ad->ad_rl); 986 } 987 988 static int 989 acpi_match_resource_hint(device_t dev, int type, long value) 990 { 991 struct acpi_device *ad = device_get_ivars(dev); 992 struct resource_list *rl = &ad->ad_rl; 993 struct resource_list_entry *rle; 994 995 STAILQ_FOREACH(rle, rl, link) { 996 if (rle->type != type) 997 continue; 998 if (rle->start <= value && rle->end >= value) 999 return (1); 1000 } 1001 return (0); 1002 } 1003 1004 /* 1005 * Wire device unit numbers based on resource matches in hints. 1006 */ 1007 static void 1008 acpi_hint_device_unit(device_t acdev, device_t child, const char *name, 1009 int *unitp) 1010 { 1011 const char *s; 1012 long value; 1013 int line, matches, unit; 1014 1015 /* 1016 * Iterate over all the hints for the devices with the specified 1017 * name to see if one's resources are a subset of this device. 1018 */ 1019 line = 0; 1020 while (resource_find_dev(&line, name, &unit, "at", NULL) == 0) { 1021 /* Must have an "at" for acpi or isa. */ 1022 resource_string_value(name, unit, "at", &s); 1023 if (!(strcmp(s, "acpi0") == 0 || strcmp(s, "acpi") == 0 || 1024 strcmp(s, "isa0") == 0 || strcmp(s, "isa") == 0)) 1025 continue; 1026 1027 /* 1028 * Check for matching resources. We must have at least one match. 1029 * Since I/O and memory resources cannot be shared, if we get a 1030 * match on either of those, ignore any mismatches in IRQs or DRQs. 1031 * 1032 * XXX: We may want to revisit this to be more lenient and wire 1033 * as long as it gets one match. 1034 */ 1035 matches = 0; 1036 if (resource_long_value(name, unit, "port", &value) == 0) { 1037 /* 1038 * Floppy drive controllers are notorious for having a 1039 * wide variety of resources not all of which include the 1040 * first port that is specified by the hint (typically 1041 * 0x3f0) (see the comment above fdc_isa_alloc_resources() 1042 * in fdc_isa.c). However, they do all seem to include 1043 * port + 2 (e.g. 0x3f2) so for a floppy device, look for 1044 * 'value + 2' in the port resources instead of the hint 1045 * value. 1046 */ 1047 if (strcmp(name, "fdc") == 0) 1048 value += 2; 1049 if (acpi_match_resource_hint(child, SYS_RES_IOPORT, value)) 1050 matches++; 1051 else 1052 continue; 1053 } 1054 if (resource_long_value(name, unit, "maddr", &value) == 0) { 1055 if (acpi_match_resource_hint(child, SYS_RES_MEMORY, value)) 1056 matches++; 1057 else 1058 continue; 1059 } 1060 if (matches > 0) 1061 goto matched; 1062 if (resource_long_value(name, unit, "irq", &value) == 0) { 1063 if (acpi_match_resource_hint(child, SYS_RES_IRQ, value)) 1064 matches++; 1065 else 1066 continue; 1067 } 1068 if (resource_long_value(name, unit, "drq", &value) == 0) { 1069 if (acpi_match_resource_hint(child, SYS_RES_DRQ, value)) 1070 matches++; 1071 else 1072 continue; 1073 } 1074 1075 matched: 1076 if (matches > 0) { 1077 /* We have a winner! */ 1078 *unitp = unit; 1079 break; 1080 } 1081 } 1082 } 1083 1084 /* 1085 * Fetch the NUMA domain for a device by mapping the value returned by 1086 * _PXM to a NUMA domain. If the device does not have a _PXM method, 1087 * -2 is returned. If any other error occurs, -1 is returned. 1088 */ 1089 static int 1090 acpi_parse_pxm(device_t dev) 1091 { 1092 #ifdef DEVICE_NUMA 1093 ACPI_HANDLE handle; 1094 ACPI_STATUS status; 1095 int pxm; 1096 1097 handle = acpi_get_handle(dev); 1098 if (handle == NULL) 1099 return (-2); 1100 status = acpi_GetInteger(handle, "_PXM", &pxm); 1101 if (ACPI_SUCCESS(status)) 1102 return (acpi_map_pxm_to_vm_domainid(pxm)); 1103 if (status == AE_NOT_FOUND) 1104 return (-2); 1105 #endif 1106 return (-1); 1107 } 1108 1109 int 1110 acpi_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize, 1111 cpuset_t *cpuset) 1112 { 1113 int d, error; 1114 1115 d = acpi_parse_pxm(child); 1116 if (d < 0) 1117 return (bus_generic_get_cpus(dev, child, op, setsize, cpuset)); 1118 1119 switch (op) { 1120 case LOCAL_CPUS: 1121 if (setsize != sizeof(cpuset_t)) 1122 return (EINVAL); 1123 *cpuset = cpuset_domain[d]; 1124 return (0); 1125 case INTR_CPUS: 1126 error = bus_generic_get_cpus(dev, child, op, setsize, cpuset); 1127 if (error != 0) 1128 return (error); 1129 if (setsize != sizeof(cpuset_t)) 1130 return (EINVAL); 1131 CPU_AND(cpuset, &cpuset_domain[d]); 1132 return (0); 1133 default: 1134 return (bus_generic_get_cpus(dev, child, op, setsize, cpuset)); 1135 } 1136 } 1137 1138 /* 1139 * Fetch the NUMA domain for the given device 'dev'. 1140 * 1141 * If a device has a _PXM method, map that to a NUMA domain. 1142 * Otherwise, pass the request up to the parent. 1143 * If there's no matching domain or the domain cannot be 1144 * determined, return ENOENT. 1145 */ 1146 int 1147 acpi_get_domain(device_t dev, device_t child, int *domain) 1148 { 1149 int d; 1150 1151 d = acpi_parse_pxm(child); 1152 if (d >= 0) { 1153 *domain = d; 1154 return (0); 1155 } 1156 if (d == -1) 1157 return (ENOENT); 1158 1159 /* No _PXM node; go up a level */ 1160 return (bus_generic_get_domain(dev, child, domain)); 1161 } 1162 1163 /* 1164 * Pre-allocate/manage all memory and IO resources. Since rman can't handle 1165 * duplicates, we merge any in the sysresource attach routine. 1166 */ 1167 static int 1168 acpi_sysres_alloc(device_t dev) 1169 { 1170 struct resource *res; 1171 struct resource_list *rl; 1172 struct resource_list_entry *rle; 1173 struct rman *rm; 1174 device_t *children; 1175 int child_count, i; 1176 1177 /* 1178 * Probe/attach any sysresource devices. This would be unnecessary if we 1179 * had multi-pass probe/attach. 1180 */ 1181 if (device_get_children(dev, &children, &child_count) != 0) 1182 return (ENXIO); 1183 for (i = 0; i < child_count; i++) { 1184 if (ACPI_ID_PROBE(dev, children[i], sysres_ids) != NULL) 1185 device_probe_and_attach(children[i]); 1186 } 1187 free(children, M_TEMP); 1188 1189 rl = BUS_GET_RESOURCE_LIST(device_get_parent(dev), dev); 1190 STAILQ_FOREACH(rle, rl, link) { 1191 if (rle->res != NULL) { 1192 device_printf(dev, "duplicate resource for %jx\n", rle->start); 1193 continue; 1194 } 1195 1196 /* Only memory and IO resources are valid here. */ 1197 switch (rle->type) { 1198 case SYS_RES_IOPORT: 1199 rm = &acpi_rman_io; 1200 break; 1201 case SYS_RES_MEMORY: 1202 rm = &acpi_rman_mem; 1203 break; 1204 default: 1205 continue; 1206 } 1207 1208 /* Pre-allocate resource and add to our rman pool. */ 1209 res = BUS_ALLOC_RESOURCE(device_get_parent(dev), dev, rle->type, 1210 &rle->rid, rle->start, rle->start + rle->count - 1, rle->count, 0); 1211 if (res != NULL) { 1212 rman_manage_region(rm, rman_get_start(res), rman_get_end(res)); 1213 rle->res = res; 1214 } else if (bootverbose) 1215 device_printf(dev, "reservation of %jx, %jx (%d) failed\n", 1216 rle->start, rle->count, rle->type); 1217 } 1218 return (0); 1219 } 1220 1221 /* 1222 * Reserve declared resources for devices found during attach once system 1223 * resources have been allocated. 1224 */ 1225 static void 1226 acpi_reserve_resources(device_t dev) 1227 { 1228 struct resource_list_entry *rle; 1229 struct resource_list *rl; 1230 struct acpi_device *ad; 1231 struct acpi_softc *sc; 1232 device_t *children; 1233 int child_count, i; 1234 1235 sc = device_get_softc(dev); 1236 if (device_get_children(dev, &children, &child_count) != 0) 1237 return; 1238 for (i = 0; i < child_count; i++) { 1239 ad = device_get_ivars(children[i]); 1240 rl = &ad->ad_rl; 1241 1242 /* Don't reserve system resources. */ 1243 if (ACPI_ID_PROBE(dev, children[i], sysres_ids) != NULL) 1244 continue; 1245 1246 STAILQ_FOREACH(rle, rl, link) { 1247 /* 1248 * Don't reserve IRQ resources. There are many sticky things 1249 * to get right otherwise (e.g. IRQs for psm, atkbd, and HPET 1250 * when using legacy routing). 1251 */ 1252 if (rle->type == SYS_RES_IRQ) 1253 continue; 1254 1255 /* 1256 * Don't reserve the resource if it is already allocated. 1257 * The acpi_ec(4) driver can allocate its resources early 1258 * if ECDT is present. 1259 */ 1260 if (rle->res != NULL) 1261 continue; 1262 1263 /* 1264 * Try to reserve the resource from our parent. If this 1265 * fails because the resource is a system resource, just 1266 * let it be. The resource range is already reserved so 1267 * that other devices will not use it. If the driver 1268 * needs to allocate the resource, then 1269 * acpi_alloc_resource() will sub-alloc from the system 1270 * resource. 1271 */ 1272 resource_list_reserve(rl, dev, children[i], rle->type, &rle->rid, 1273 rle->start, rle->end, rle->count, 0); 1274 } 1275 } 1276 free(children, M_TEMP); 1277 sc->acpi_resources_reserved = 1; 1278 } 1279 1280 static int 1281 acpi_set_resource(device_t dev, device_t child, int type, int rid, 1282 rman_res_t start, rman_res_t count) 1283 { 1284 struct acpi_softc *sc = device_get_softc(dev); 1285 struct acpi_device *ad = device_get_ivars(child); 1286 struct resource_list *rl = &ad->ad_rl; 1287 #if defined(__i386__) || defined(__amd64__) 1288 ACPI_DEVICE_INFO *devinfo; 1289 #endif 1290 rman_res_t end; 1291 1292 /* Ignore IRQ resources for PCI link devices. */ 1293 if (type == SYS_RES_IRQ && ACPI_ID_PROBE(dev, child, pcilink_ids) != NULL) 1294 return (0); 1295 1296 /* 1297 * Ignore most resources for PCI root bridges. Some BIOSes 1298 * incorrectly enumerate the memory ranges they decode as plain 1299 * memory resources instead of as ResourceProducer ranges. Other 1300 * BIOSes incorrectly list system resource entries for I/O ranges 1301 * under the PCI bridge. Do allow the one known-correct case on 1302 * x86 of a PCI bridge claiming the I/O ports used for PCI config 1303 * access. 1304 */ 1305 #if defined(__i386__) || defined(__amd64__) 1306 if (type == SYS_RES_MEMORY || type == SYS_RES_IOPORT) { 1307 if (ACPI_SUCCESS(AcpiGetObjectInfo(ad->ad_handle, &devinfo))) { 1308 if ((devinfo->Flags & ACPI_PCI_ROOT_BRIDGE) != 0) { 1309 if (!(type == SYS_RES_IOPORT && start == CONF1_ADDR_PORT)) { 1310 AcpiOsFree(devinfo); 1311 return (0); 1312 } 1313 } 1314 AcpiOsFree(devinfo); 1315 } 1316 } 1317 #endif 1318 1319 /* If the resource is already allocated, fail. */ 1320 if (resource_list_busy(rl, type, rid)) 1321 return (EBUSY); 1322 1323 /* If the resource is already reserved, release it. */ 1324 if (resource_list_reserved(rl, type, rid)) 1325 resource_list_unreserve(rl, dev, child, type, rid); 1326 1327 /* Add the resource. */ 1328 end = (start + count - 1); 1329 resource_list_add(rl, type, rid, start, end, count); 1330 1331 /* Don't reserve resources until the system resources are allocated. */ 1332 if (!sc->acpi_resources_reserved) 1333 return (0); 1334 1335 /* Don't reserve system resources. */ 1336 if (ACPI_ID_PROBE(dev, child, sysres_ids) != NULL) 1337 return (0); 1338 1339 /* 1340 * Don't reserve IRQ resources. There are many sticky things to 1341 * get right otherwise (e.g. IRQs for psm, atkbd, and HPET when 1342 * using legacy routing). 1343 */ 1344 if (type == SYS_RES_IRQ) 1345 return (0); 1346 1347 /* 1348 * Reserve the resource. 1349 * 1350 * XXX: Ignores failure for now. Failure here is probably a 1351 * BIOS/firmware bug? 1352 */ 1353 resource_list_reserve(rl, dev, child, type, &rid, start, end, count, 0); 1354 return (0); 1355 } 1356 1357 static struct resource * 1358 acpi_alloc_resource(device_t bus, device_t child, int type, int *rid, 1359 rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 1360 { 1361 ACPI_RESOURCE ares; 1362 struct acpi_device *ad; 1363 struct resource_list_entry *rle; 1364 struct resource_list *rl; 1365 struct resource *res; 1366 int isdefault = RMAN_IS_DEFAULT_RANGE(start, end); 1367 1368 /* 1369 * First attempt at allocating the resource. For direct children, 1370 * use resource_list_alloc() to handle reserved resources. For 1371 * other devices, pass the request up to our parent. 1372 */ 1373 if (bus == device_get_parent(child)) { 1374 ad = device_get_ivars(child); 1375 rl = &ad->ad_rl; 1376 1377 /* 1378 * Simulate the behavior of the ISA bus for direct children 1379 * devices. That is, if a non-default range is specified for 1380 * a resource that doesn't exist, use bus_set_resource() to 1381 * add the resource before allocating it. Note that these 1382 * resources will not be reserved. 1383 */ 1384 if (!isdefault && resource_list_find(rl, type, *rid) == NULL) 1385 resource_list_add(rl, type, *rid, start, end, count); 1386 res = resource_list_alloc(rl, bus, child, type, rid, start, end, count, 1387 flags); 1388 if (res != NULL && type == SYS_RES_IRQ) { 1389 /* 1390 * Since bus_config_intr() takes immediate effect, we cannot 1391 * configure the interrupt associated with a device when we 1392 * parse the resources but have to defer it until a driver 1393 * actually allocates the interrupt via bus_alloc_resource(). 1394 * 1395 * XXX: Should we handle the lookup failing? 1396 */ 1397 if (ACPI_SUCCESS(acpi_lookup_irq_resource(child, *rid, res, &ares))) 1398 acpi_config_intr(child, &ares); 1399 } 1400 1401 /* 1402 * If this is an allocation of the "default" range for a given 1403 * RID, fetch the exact bounds for this resource from the 1404 * resource list entry to try to allocate the range from the 1405 * system resource regions. 1406 */ 1407 if (res == NULL && isdefault) { 1408 rle = resource_list_find(rl, type, *rid); 1409 if (rle != NULL) { 1410 start = rle->start; 1411 end = rle->end; 1412 count = rle->count; 1413 } 1414 } 1415 } else 1416 res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, type, rid, 1417 start, end, count, flags); 1418 1419 /* 1420 * If the first attempt failed and this is an allocation of a 1421 * specific range, try to satisfy the request via a suballocation 1422 * from our system resource regions. 1423 */ 1424 if (res == NULL && start + count - 1 == end) 1425 res = acpi_alloc_sysres(child, type, rid, start, end, count, flags); 1426 return (res); 1427 } 1428 1429 /* 1430 * Attempt to allocate a specific resource range from the system 1431 * resource ranges. Note that we only handle memory and I/O port 1432 * system resources. 1433 */ 1434 struct resource * 1435 acpi_alloc_sysres(device_t child, int type, int *rid, rman_res_t start, 1436 rman_res_t end, rman_res_t count, u_int flags) 1437 { 1438 struct rman *rm; 1439 struct resource *res; 1440 1441 switch (type) { 1442 case SYS_RES_IOPORT: 1443 rm = &acpi_rman_io; 1444 break; 1445 case SYS_RES_MEMORY: 1446 rm = &acpi_rman_mem; 1447 break; 1448 default: 1449 return (NULL); 1450 } 1451 1452 KASSERT(start + count - 1 == end, ("wildcard resource range")); 1453 res = rman_reserve_resource(rm, start, end, count, flags & ~RF_ACTIVE, 1454 child); 1455 if (res == NULL) 1456 return (NULL); 1457 1458 rman_set_rid(res, *rid); 1459 1460 /* If requested, activate the resource using the parent's method. */ 1461 if (flags & RF_ACTIVE) 1462 if (bus_activate_resource(child, type, *rid, res) != 0) { 1463 rman_release_resource(res); 1464 return (NULL); 1465 } 1466 1467 return (res); 1468 } 1469 1470 static int 1471 acpi_is_resource_managed(int type, struct resource *r) 1472 { 1473 1474 /* We only handle memory and IO resources through rman. */ 1475 switch (type) { 1476 case SYS_RES_IOPORT: 1477 return (rman_is_region_manager(r, &acpi_rman_io)); 1478 case SYS_RES_MEMORY: 1479 return (rman_is_region_manager(r, &acpi_rman_mem)); 1480 } 1481 return (0); 1482 } 1483 1484 static int 1485 acpi_adjust_resource(device_t bus, device_t child, int type, struct resource *r, 1486 rman_res_t start, rman_res_t end) 1487 { 1488 1489 if (acpi_is_resource_managed(type, r)) 1490 return (rman_adjust_resource(r, start, end)); 1491 return (bus_generic_adjust_resource(bus, child, type, r, start, end)); 1492 } 1493 1494 static int 1495 acpi_release_resource(device_t bus, device_t child, int type, int rid, 1496 struct resource *r) 1497 { 1498 int ret; 1499 1500 /* 1501 * If this resource belongs to one of our internal managers, 1502 * deactivate it and release it to the local pool. 1503 */ 1504 if (acpi_is_resource_managed(type, r)) { 1505 if (rman_get_flags(r) & RF_ACTIVE) { 1506 ret = bus_deactivate_resource(child, type, rid, r); 1507 if (ret != 0) 1508 return (ret); 1509 } 1510 return (rman_release_resource(r)); 1511 } 1512 1513 return (bus_generic_rl_release_resource(bus, child, type, rid, r)); 1514 } 1515 1516 static void 1517 acpi_delete_resource(device_t bus, device_t child, int type, int rid) 1518 { 1519 struct resource_list *rl; 1520 1521 rl = acpi_get_rlist(bus, child); 1522 if (resource_list_busy(rl, type, rid)) { 1523 device_printf(bus, "delete_resource: Resource still owned by child" 1524 " (type=%d, rid=%d)\n", type, rid); 1525 return; 1526 } 1527 resource_list_unreserve(rl, bus, child, type, rid); 1528 resource_list_delete(rl, type, rid); 1529 } 1530 1531 /* Allocate an IO port or memory resource, given its GAS. */ 1532 int 1533 acpi_bus_alloc_gas(device_t dev, int *type, int *rid, ACPI_GENERIC_ADDRESS *gas, 1534 struct resource **res, u_int flags) 1535 { 1536 int error, res_type; 1537 1538 error = ENOMEM; 1539 if (type == NULL || rid == NULL || gas == NULL || res == NULL) 1540 return (EINVAL); 1541 1542 /* We only support memory and IO spaces. */ 1543 switch (gas->SpaceId) { 1544 case ACPI_ADR_SPACE_SYSTEM_MEMORY: 1545 res_type = SYS_RES_MEMORY; 1546 break; 1547 case ACPI_ADR_SPACE_SYSTEM_IO: 1548 res_type = SYS_RES_IOPORT; 1549 break; 1550 default: 1551 return (EOPNOTSUPP); 1552 } 1553 1554 /* 1555 * If the register width is less than 8, assume the BIOS author means 1556 * it is a bit field and just allocate a byte. 1557 */ 1558 if (gas->BitWidth && gas->BitWidth < 8) 1559 gas->BitWidth = 8; 1560 1561 /* Validate the address after we're sure we support the space. */ 1562 if (gas->Address == 0 || gas->BitWidth == 0) 1563 return (EINVAL); 1564 1565 bus_set_resource(dev, res_type, *rid, gas->Address, 1566 gas->BitWidth / 8); 1567 *res = bus_alloc_resource_any(dev, res_type, rid, RF_ACTIVE | flags); 1568 if (*res != NULL) { 1569 *type = res_type; 1570 error = 0; 1571 } else 1572 bus_delete_resource(dev, res_type, *rid); 1573 1574 return (error); 1575 } 1576 1577 /* Probe _HID and _CID for compatible ISA PNP ids. */ 1578 static uint32_t 1579 acpi_isa_get_logicalid(device_t dev) 1580 { 1581 ACPI_DEVICE_INFO *devinfo; 1582 ACPI_HANDLE h; 1583 uint32_t pnpid; 1584 1585 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1586 1587 /* Fetch and validate the HID. */ 1588 if ((h = acpi_get_handle(dev)) == NULL || 1589 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 1590 return_VALUE (0); 1591 1592 pnpid = (devinfo->Valid & ACPI_VALID_HID) != 0 && 1593 devinfo->HardwareId.Length >= ACPI_EISAID_STRING_SIZE ? 1594 PNP_EISAID(devinfo->HardwareId.String) : 0; 1595 AcpiOsFree(devinfo); 1596 1597 return_VALUE (pnpid); 1598 } 1599 1600 static int 1601 acpi_isa_get_compatid(device_t dev, uint32_t *cids, int count) 1602 { 1603 ACPI_DEVICE_INFO *devinfo; 1604 ACPI_PNP_DEVICE_ID *ids; 1605 ACPI_HANDLE h; 1606 uint32_t *pnpid; 1607 int i, valid; 1608 1609 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1610 1611 pnpid = cids; 1612 1613 /* Fetch and validate the CID */ 1614 if ((h = acpi_get_handle(dev)) == NULL || 1615 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 1616 return_VALUE (0); 1617 1618 if ((devinfo->Valid & ACPI_VALID_CID) == 0) { 1619 AcpiOsFree(devinfo); 1620 return_VALUE (0); 1621 } 1622 1623 if (devinfo->CompatibleIdList.Count < count) 1624 count = devinfo->CompatibleIdList.Count; 1625 ids = devinfo->CompatibleIdList.Ids; 1626 for (i = 0, valid = 0; i < count; i++) 1627 if (ids[i].Length >= ACPI_EISAID_STRING_SIZE && 1628 strncmp(ids[i].String, "PNP", 3) == 0) { 1629 *pnpid++ = PNP_EISAID(ids[i].String); 1630 valid++; 1631 } 1632 AcpiOsFree(devinfo); 1633 1634 return_VALUE (valid); 1635 } 1636 1637 static char * 1638 acpi_device_id_probe(device_t bus, device_t dev, char **ids) 1639 { 1640 ACPI_HANDLE h; 1641 ACPI_OBJECT_TYPE t; 1642 int i; 1643 1644 h = acpi_get_handle(dev); 1645 if (ids == NULL || h == NULL) 1646 return (NULL); 1647 t = acpi_get_type(dev); 1648 if (t != ACPI_TYPE_DEVICE && t != ACPI_TYPE_PROCESSOR) 1649 return (NULL); 1650 1651 /* Try to match one of the array of IDs with a HID or CID. */ 1652 for (i = 0; ids[i] != NULL; i++) { 1653 if (acpi_MatchHid(h, ids[i])) 1654 return (ids[i]); 1655 } 1656 return (NULL); 1657 } 1658 1659 static ACPI_STATUS 1660 acpi_device_eval_obj(device_t bus, device_t dev, ACPI_STRING pathname, 1661 ACPI_OBJECT_LIST *parameters, ACPI_BUFFER *ret) 1662 { 1663 ACPI_HANDLE h; 1664 1665 if (dev == NULL) 1666 h = ACPI_ROOT_OBJECT; 1667 else if ((h = acpi_get_handle(dev)) == NULL) 1668 return (AE_BAD_PARAMETER); 1669 return (AcpiEvaluateObject(h, pathname, parameters, ret)); 1670 } 1671 1672 int 1673 acpi_device_pwr_for_sleep(device_t bus, device_t dev, int *dstate) 1674 { 1675 struct acpi_softc *sc; 1676 ACPI_HANDLE handle; 1677 ACPI_STATUS status; 1678 char sxd[8]; 1679 1680 handle = acpi_get_handle(dev); 1681 1682 /* 1683 * XXX If we find these devices, don't try to power them down. 1684 * The serial and IRDA ports on my T23 hang the system when 1685 * set to D3 and it appears that such legacy devices may 1686 * need special handling in their drivers. 1687 */ 1688 if (dstate == NULL || handle == NULL || 1689 acpi_MatchHid(handle, "PNP0500") || 1690 acpi_MatchHid(handle, "PNP0501") || 1691 acpi_MatchHid(handle, "PNP0502") || 1692 acpi_MatchHid(handle, "PNP0510") || 1693 acpi_MatchHid(handle, "PNP0511")) 1694 return (ENXIO); 1695 1696 /* 1697 * Override next state with the value from _SxD, if present. 1698 * Note illegal _S0D is evaluated because some systems expect this. 1699 */ 1700 sc = device_get_softc(bus); 1701 snprintf(sxd, sizeof(sxd), "_S%dD", sc->acpi_sstate); 1702 status = acpi_GetInteger(handle, sxd, dstate); 1703 if (ACPI_FAILURE(status) && status != AE_NOT_FOUND) { 1704 device_printf(dev, "failed to get %s on %s: %s\n", sxd, 1705 acpi_name(handle), AcpiFormatException(status)); 1706 return (ENXIO); 1707 } 1708 1709 return (0); 1710 } 1711 1712 /* Callback arg for our implementation of walking the namespace. */ 1713 struct acpi_device_scan_ctx { 1714 acpi_scan_cb_t user_fn; 1715 void *arg; 1716 ACPI_HANDLE parent; 1717 }; 1718 1719 static ACPI_STATUS 1720 acpi_device_scan_cb(ACPI_HANDLE h, UINT32 level, void *arg, void **retval) 1721 { 1722 struct acpi_device_scan_ctx *ctx; 1723 device_t dev, old_dev; 1724 ACPI_STATUS status; 1725 ACPI_OBJECT_TYPE type; 1726 1727 /* 1728 * Skip this device if we think we'll have trouble with it or it is 1729 * the parent where the scan began. 1730 */ 1731 ctx = (struct acpi_device_scan_ctx *)arg; 1732 if (acpi_avoid(h) || h == ctx->parent) 1733 return (AE_OK); 1734 1735 /* If this is not a valid device type (e.g., a method), skip it. */ 1736 if (ACPI_FAILURE(AcpiGetType(h, &type))) 1737 return (AE_OK); 1738 if (type != ACPI_TYPE_DEVICE && type != ACPI_TYPE_PROCESSOR && 1739 type != ACPI_TYPE_THERMAL && type != ACPI_TYPE_POWER) 1740 return (AE_OK); 1741 1742 /* 1743 * Call the user function with the current device. If it is unchanged 1744 * afterwards, return. Otherwise, we update the handle to the new dev. 1745 */ 1746 old_dev = acpi_get_device(h); 1747 dev = old_dev; 1748 status = ctx->user_fn(h, &dev, level, ctx->arg); 1749 if (ACPI_FAILURE(status) || old_dev == dev) 1750 return (status); 1751 1752 /* Remove the old child and its connection to the handle. */ 1753 if (old_dev != NULL) { 1754 device_delete_child(device_get_parent(old_dev), old_dev); 1755 AcpiDetachData(h, acpi_fake_objhandler); 1756 } 1757 1758 /* Recreate the handle association if the user created a device. */ 1759 if (dev != NULL) 1760 AcpiAttachData(h, acpi_fake_objhandler, dev); 1761 1762 return (AE_OK); 1763 } 1764 1765 static ACPI_STATUS 1766 acpi_device_scan_children(device_t bus, device_t dev, int max_depth, 1767 acpi_scan_cb_t user_fn, void *arg) 1768 { 1769 ACPI_HANDLE h; 1770 struct acpi_device_scan_ctx ctx; 1771 1772 if (acpi_disabled("children")) 1773 return (AE_OK); 1774 1775 if (dev == NULL) 1776 h = ACPI_ROOT_OBJECT; 1777 else if ((h = acpi_get_handle(dev)) == NULL) 1778 return (AE_BAD_PARAMETER); 1779 ctx.user_fn = user_fn; 1780 ctx.arg = arg; 1781 ctx.parent = h; 1782 return (AcpiWalkNamespace(ACPI_TYPE_ANY, h, max_depth, 1783 acpi_device_scan_cb, NULL, &ctx, NULL)); 1784 } 1785 1786 /* 1787 * Even though ACPI devices are not PCI, we use the PCI approach for setting 1788 * device power states since it's close enough to ACPI. 1789 */ 1790 static int 1791 acpi_set_powerstate(device_t child, int state) 1792 { 1793 ACPI_HANDLE h; 1794 ACPI_STATUS status; 1795 1796 h = acpi_get_handle(child); 1797 if (state < ACPI_STATE_D0 || state > ACPI_D_STATES_MAX) 1798 return (EINVAL); 1799 if (h == NULL) 1800 return (0); 1801 1802 /* Ignore errors if the power methods aren't present. */ 1803 status = acpi_pwr_switch_consumer(h, state); 1804 if (ACPI_SUCCESS(status)) { 1805 if (bootverbose) 1806 device_printf(child, "set ACPI power state D%d on %s\n", 1807 state, acpi_name(h)); 1808 } else if (status != AE_NOT_FOUND) 1809 device_printf(child, 1810 "failed to set ACPI power state D%d on %s: %s\n", state, 1811 acpi_name(h), AcpiFormatException(status)); 1812 1813 return (0); 1814 } 1815 1816 static int 1817 acpi_isa_pnp_probe(device_t bus, device_t child, struct isa_pnp_id *ids) 1818 { 1819 int result, cid_count, i; 1820 uint32_t lid, cids[8]; 1821 1822 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1823 1824 /* 1825 * ISA-style drivers attached to ACPI may persist and 1826 * probe manually if we return ENOENT. We never want 1827 * that to happen, so don't ever return it. 1828 */ 1829 result = ENXIO; 1830 1831 /* Scan the supplied IDs for a match */ 1832 lid = acpi_isa_get_logicalid(child); 1833 cid_count = acpi_isa_get_compatid(child, cids, 8); 1834 while (ids && ids->ip_id) { 1835 if (lid == ids->ip_id) { 1836 result = 0; 1837 goto out; 1838 } 1839 for (i = 0; i < cid_count; i++) { 1840 if (cids[i] == ids->ip_id) { 1841 result = 0; 1842 goto out; 1843 } 1844 } 1845 ids++; 1846 } 1847 1848 out: 1849 if (result == 0 && ids->ip_desc) 1850 device_set_desc(child, ids->ip_desc); 1851 1852 return_VALUE (result); 1853 } 1854 1855 #if defined(__i386__) || defined(__amd64__) 1856 /* 1857 * Look for a MCFG table. If it is present, use the settings for 1858 * domain (segment) 0 to setup PCI config space access via the memory 1859 * map. 1860 */ 1861 static void 1862 acpi_enable_pcie(void) 1863 { 1864 ACPI_TABLE_HEADER *hdr; 1865 ACPI_MCFG_ALLOCATION *alloc, *end; 1866 ACPI_STATUS status; 1867 1868 status = AcpiGetTable(ACPI_SIG_MCFG, 1, &hdr); 1869 if (ACPI_FAILURE(status)) 1870 return; 1871 1872 end = (ACPI_MCFG_ALLOCATION *)((char *)hdr + hdr->Length); 1873 alloc = (ACPI_MCFG_ALLOCATION *)((ACPI_TABLE_MCFG *)hdr + 1); 1874 while (alloc < end) { 1875 if (alloc->PciSegment == 0) { 1876 pcie_cfgregopen(alloc->Address, alloc->StartBusNumber, 1877 alloc->EndBusNumber); 1878 return; 1879 } 1880 alloc++; 1881 } 1882 } 1883 #endif 1884 1885 /* 1886 * Scan all of the ACPI namespace and attach child devices. 1887 * 1888 * We should only expect to find devices in the \_PR, \_TZ, \_SI, and 1889 * \_SB scopes, and \_PR and \_TZ became obsolete in the ACPI 2.0 spec. 1890 * However, in violation of the spec, some systems place their PCI link 1891 * devices in \, so we have to walk the whole namespace. We check the 1892 * type of namespace nodes, so this should be ok. 1893 */ 1894 static void 1895 acpi_probe_children(device_t bus) 1896 { 1897 1898 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1899 1900 /* 1901 * Scan the namespace and insert placeholders for all the devices that 1902 * we find. We also probe/attach any early devices. 1903 * 1904 * Note that we use AcpiWalkNamespace rather than AcpiGetDevices because 1905 * we want to create nodes for all devices, not just those that are 1906 * currently present. (This assumes that we don't want to create/remove 1907 * devices as they appear, which might be smarter.) 1908 */ 1909 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "namespace scan\n")); 1910 AcpiWalkNamespace(ACPI_TYPE_ANY, ACPI_ROOT_OBJECT, 100, acpi_probe_child, 1911 NULL, bus, NULL); 1912 1913 /* Pre-allocate resources for our rman from any sysresource devices. */ 1914 acpi_sysres_alloc(bus); 1915 1916 /* Reserve resources already allocated to children. */ 1917 acpi_reserve_resources(bus); 1918 1919 /* Create any static children by calling device identify methods. */ 1920 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "device identify routines\n")); 1921 bus_generic_probe(bus); 1922 1923 /* Probe/attach all children, created statically and from the namespace. */ 1924 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "acpi bus_generic_attach\n")); 1925 bus_generic_attach(bus); 1926 1927 /* Attach wake sysctls. */ 1928 acpi_wake_sysctl_walk(bus); 1929 1930 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "done attaching children\n")); 1931 return_VOID; 1932 } 1933 1934 /* 1935 * Determine the probe order for a given device. 1936 */ 1937 static void 1938 acpi_probe_order(ACPI_HANDLE handle, int *order) 1939 { 1940 ACPI_OBJECT_TYPE type; 1941 1942 /* 1943 * 0. CPUs 1944 * 1. I/O port and memory system resource holders 1945 * 2. Clocks and timers (to handle early accesses) 1946 * 3. Embedded controllers (to handle early accesses) 1947 * 4. PCI Link Devices 1948 */ 1949 AcpiGetType(handle, &type); 1950 if (type == ACPI_TYPE_PROCESSOR) 1951 *order = 0; 1952 else if (acpi_MatchHid(handle, "PNP0C01") || 1953 acpi_MatchHid(handle, "PNP0C02")) 1954 *order = 1; 1955 else if (acpi_MatchHid(handle, "PNP0100") || 1956 acpi_MatchHid(handle, "PNP0103") || 1957 acpi_MatchHid(handle, "PNP0B00")) 1958 *order = 2; 1959 else if (acpi_MatchHid(handle, "PNP0C09")) 1960 *order = 3; 1961 else if (acpi_MatchHid(handle, "PNP0C0F")) 1962 *order = 4; 1963 } 1964 1965 /* 1966 * Evaluate a child device and determine whether we might attach a device to 1967 * it. 1968 */ 1969 static ACPI_STATUS 1970 acpi_probe_child(ACPI_HANDLE handle, UINT32 level, void *context, void **status) 1971 { 1972 ACPI_DEVICE_INFO *devinfo; 1973 struct acpi_device *ad; 1974 struct acpi_prw_data prw; 1975 ACPI_OBJECT_TYPE type; 1976 ACPI_HANDLE h; 1977 device_t bus, child; 1978 char *handle_str; 1979 int order; 1980 1981 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1982 1983 if (acpi_disabled("children")) 1984 return_ACPI_STATUS (AE_OK); 1985 1986 /* Skip this device if we think we'll have trouble with it. */ 1987 if (acpi_avoid(handle)) 1988 return_ACPI_STATUS (AE_OK); 1989 1990 bus = (device_t)context; 1991 if (ACPI_SUCCESS(AcpiGetType(handle, &type))) { 1992 handle_str = acpi_name(handle); 1993 switch (type) { 1994 case ACPI_TYPE_DEVICE: 1995 /* 1996 * Since we scan from \, be sure to skip system scope objects. 1997 * \_SB_ and \_TZ_ are defined in ACPICA as devices to work around 1998 * BIOS bugs. For example, \_SB_ is to allow \_SB_._INI to be run 1999 * during the initialization and \_TZ_ is to support Notify() on it. 2000 */ 2001 if (strcmp(handle_str, "\\_SB_") == 0 || 2002 strcmp(handle_str, "\\_TZ_") == 0) 2003 break; 2004 if (acpi_parse_prw(handle, &prw) == 0) 2005 AcpiSetupGpeForWake(handle, prw.gpe_handle, prw.gpe_bit); 2006 2007 /* 2008 * Ignore devices that do not have a _HID or _CID. They should 2009 * be discovered by other buses (e.g. the PCI bus driver). 2010 */ 2011 if (!acpi_has_hid(handle)) 2012 break; 2013 /* FALLTHROUGH */ 2014 case ACPI_TYPE_PROCESSOR: 2015 case ACPI_TYPE_THERMAL: 2016 case ACPI_TYPE_POWER: 2017 /* 2018 * Create a placeholder device for this node. Sort the 2019 * placeholder so that the probe/attach passes will run 2020 * breadth-first. Orders less than ACPI_DEV_BASE_ORDER 2021 * are reserved for special objects (i.e., system 2022 * resources). 2023 */ 2024 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "scanning '%s'\n", handle_str)); 2025 order = level * 10 + ACPI_DEV_BASE_ORDER; 2026 acpi_probe_order(handle, &order); 2027 child = BUS_ADD_CHILD(bus, order, NULL, -1); 2028 if (child == NULL) 2029 break; 2030 2031 /* Associate the handle with the device_t and vice versa. */ 2032 acpi_set_handle(child, handle); 2033 AcpiAttachData(handle, acpi_fake_objhandler, child); 2034 2035 /* 2036 * Check that the device is present. If it's not present, 2037 * leave it disabled (so that we have a device_t attached to 2038 * the handle, but we don't probe it). 2039 * 2040 * XXX PCI link devices sometimes report "present" but not 2041 * "functional" (i.e. if disabled). Go ahead and probe them 2042 * anyway since we may enable them later. 2043 */ 2044 if (type == ACPI_TYPE_DEVICE && !acpi_DeviceIsPresent(child)) { 2045 /* Never disable PCI link devices. */ 2046 if (acpi_MatchHid(handle, "PNP0C0F")) 2047 break; 2048 /* 2049 * Docking stations should remain enabled since the system 2050 * may be undocked at boot. 2051 */ 2052 if (ACPI_SUCCESS(AcpiGetHandle(handle, "_DCK", &h))) 2053 break; 2054 2055 device_disable(child); 2056 break; 2057 } 2058 2059 /* 2060 * Get the device's resource settings and attach them. 2061 * Note that if the device has _PRS but no _CRS, we need 2062 * to decide when it's appropriate to try to configure the 2063 * device. Ignore the return value here; it's OK for the 2064 * device not to have any resources. 2065 */ 2066 acpi_parse_resources(child, handle, &acpi_res_parse_set, NULL); 2067 2068 ad = device_get_ivars(child); 2069 ad->ad_cls_class = 0xffffff; 2070 if (ACPI_SUCCESS(AcpiGetObjectInfo(handle, &devinfo))) { 2071 if ((devinfo->Valid & ACPI_VALID_CLS) != 0 && 2072 devinfo->ClassCode.Length >= ACPI_PCICLS_STRING_SIZE) { 2073 ad->ad_cls_class = strtoul(devinfo->ClassCode.String, 2074 NULL, 16); 2075 } 2076 AcpiOsFree(devinfo); 2077 } 2078 break; 2079 } 2080 } 2081 2082 return_ACPI_STATUS (AE_OK); 2083 } 2084 2085 /* 2086 * AcpiAttachData() requires an object handler but never uses it. This is a 2087 * placeholder object handler so we can store a device_t in an ACPI_HANDLE. 2088 */ 2089 void 2090 acpi_fake_objhandler(ACPI_HANDLE h, void *data) 2091 { 2092 } 2093 2094 static void 2095 acpi_shutdown_final(void *arg, int howto) 2096 { 2097 struct acpi_softc *sc = (struct acpi_softc *)arg; 2098 register_t intr; 2099 ACPI_STATUS status; 2100 2101 /* 2102 * XXX Shutdown code should only run on the BSP (cpuid 0). 2103 * Some chipsets do not power off the system correctly if called from 2104 * an AP. 2105 */ 2106 if ((howto & RB_POWEROFF) != 0) { 2107 status = AcpiEnterSleepStatePrep(ACPI_STATE_S5); 2108 if (ACPI_FAILURE(status)) { 2109 device_printf(sc->acpi_dev, "AcpiEnterSleepStatePrep failed - %s\n", 2110 AcpiFormatException(status)); 2111 return; 2112 } 2113 device_printf(sc->acpi_dev, "Powering system off\n"); 2114 intr = intr_disable(); 2115 status = AcpiEnterSleepState(ACPI_STATE_S5); 2116 if (ACPI_FAILURE(status)) { 2117 intr_restore(intr); 2118 device_printf(sc->acpi_dev, "power-off failed - %s\n", 2119 AcpiFormatException(status)); 2120 } else { 2121 DELAY(1000000); 2122 intr_restore(intr); 2123 device_printf(sc->acpi_dev, "power-off failed - timeout\n"); 2124 } 2125 } else if ((howto & RB_HALT) == 0 && sc->acpi_handle_reboot) { 2126 /* Reboot using the reset register. */ 2127 status = AcpiReset(); 2128 if (ACPI_SUCCESS(status)) { 2129 DELAY(1000000); 2130 device_printf(sc->acpi_dev, "reset failed - timeout\n"); 2131 } else if (status != AE_NOT_EXIST) 2132 device_printf(sc->acpi_dev, "reset failed - %s\n", 2133 AcpiFormatException(status)); 2134 } else if (sc->acpi_do_disable && panicstr == NULL) { 2135 /* 2136 * Only disable ACPI if the user requested. On some systems, writing 2137 * the disable value to SMI_CMD hangs the system. 2138 */ 2139 device_printf(sc->acpi_dev, "Shutting down\n"); 2140 AcpiTerminate(); 2141 } 2142 } 2143 2144 static void 2145 acpi_enable_fixed_events(struct acpi_softc *sc) 2146 { 2147 static int first_time = 1; 2148 2149 /* Enable and clear fixed events and install handlers. */ 2150 if ((AcpiGbl_FADT.Flags & ACPI_FADT_POWER_BUTTON) == 0) { 2151 AcpiClearEvent(ACPI_EVENT_POWER_BUTTON); 2152 AcpiInstallFixedEventHandler(ACPI_EVENT_POWER_BUTTON, 2153 acpi_event_power_button_sleep, sc); 2154 if (first_time) 2155 device_printf(sc->acpi_dev, "Power Button (fixed)\n"); 2156 } 2157 if ((AcpiGbl_FADT.Flags & ACPI_FADT_SLEEP_BUTTON) == 0) { 2158 AcpiClearEvent(ACPI_EVENT_SLEEP_BUTTON); 2159 AcpiInstallFixedEventHandler(ACPI_EVENT_SLEEP_BUTTON, 2160 acpi_event_sleep_button_sleep, sc); 2161 if (first_time) 2162 device_printf(sc->acpi_dev, "Sleep Button (fixed)\n"); 2163 } 2164 2165 first_time = 0; 2166 } 2167 2168 /* 2169 * Returns true if the device is actually present and should 2170 * be attached to. This requires the present, enabled, UI-visible 2171 * and diagnostics-passed bits to be set. 2172 */ 2173 BOOLEAN 2174 acpi_DeviceIsPresent(device_t dev) 2175 { 2176 ACPI_DEVICE_INFO *devinfo; 2177 ACPI_HANDLE h; 2178 BOOLEAN present; 2179 2180 if ((h = acpi_get_handle(dev)) == NULL || 2181 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 2182 return (FALSE); 2183 2184 /* If no _STA method, must be present */ 2185 present = (devinfo->Valid & ACPI_VALID_STA) == 0 || 2186 ACPI_DEVICE_PRESENT(devinfo->CurrentStatus) ? TRUE : FALSE; 2187 2188 AcpiOsFree(devinfo); 2189 return (present); 2190 } 2191 2192 /* 2193 * Returns true if the battery is actually present and inserted. 2194 */ 2195 BOOLEAN 2196 acpi_BatteryIsPresent(device_t dev) 2197 { 2198 ACPI_DEVICE_INFO *devinfo; 2199 ACPI_HANDLE h; 2200 BOOLEAN present; 2201 2202 if ((h = acpi_get_handle(dev)) == NULL || 2203 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 2204 return (FALSE); 2205 2206 /* If no _STA method, must be present */ 2207 present = (devinfo->Valid & ACPI_VALID_STA) == 0 || 2208 ACPI_BATTERY_PRESENT(devinfo->CurrentStatus) ? TRUE : FALSE; 2209 2210 AcpiOsFree(devinfo); 2211 return (present); 2212 } 2213 2214 /* 2215 * Returns true if a device has at least one valid device ID. 2216 */ 2217 static BOOLEAN 2218 acpi_has_hid(ACPI_HANDLE h) 2219 { 2220 ACPI_DEVICE_INFO *devinfo; 2221 BOOLEAN ret; 2222 2223 if (h == NULL || 2224 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 2225 return (FALSE); 2226 2227 ret = FALSE; 2228 if ((devinfo->Valid & ACPI_VALID_HID) != 0) 2229 ret = TRUE; 2230 else if ((devinfo->Valid & ACPI_VALID_CID) != 0) 2231 if (devinfo->CompatibleIdList.Count > 0) 2232 ret = TRUE; 2233 2234 AcpiOsFree(devinfo); 2235 return (ret); 2236 } 2237 2238 /* 2239 * Match a HID string against a handle 2240 */ 2241 BOOLEAN 2242 acpi_MatchHid(ACPI_HANDLE h, const char *hid) 2243 { 2244 ACPI_DEVICE_INFO *devinfo; 2245 BOOLEAN ret; 2246 int i; 2247 2248 if (hid == NULL || h == NULL || 2249 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 2250 return (FALSE); 2251 2252 ret = FALSE; 2253 if ((devinfo->Valid & ACPI_VALID_HID) != 0 && 2254 strcmp(hid, devinfo->HardwareId.String) == 0) 2255 ret = TRUE; 2256 else if ((devinfo->Valid & ACPI_VALID_CID) != 0) 2257 for (i = 0; i < devinfo->CompatibleIdList.Count; i++) { 2258 if (strcmp(hid, devinfo->CompatibleIdList.Ids[i].String) == 0) { 2259 ret = TRUE; 2260 break; 2261 } 2262 } 2263 2264 AcpiOsFree(devinfo); 2265 return (ret); 2266 } 2267 2268 /* 2269 * Return the handle of a named object within our scope, ie. that of (parent) 2270 * or one if its parents. 2271 */ 2272 ACPI_STATUS 2273 acpi_GetHandleInScope(ACPI_HANDLE parent, char *path, ACPI_HANDLE *result) 2274 { 2275 ACPI_HANDLE r; 2276 ACPI_STATUS status; 2277 2278 /* Walk back up the tree to the root */ 2279 for (;;) { 2280 status = AcpiGetHandle(parent, path, &r); 2281 if (ACPI_SUCCESS(status)) { 2282 *result = r; 2283 return (AE_OK); 2284 } 2285 /* XXX Return error here? */ 2286 if (status != AE_NOT_FOUND) 2287 return (AE_OK); 2288 if (ACPI_FAILURE(AcpiGetParent(parent, &r))) 2289 return (AE_NOT_FOUND); 2290 parent = r; 2291 } 2292 } 2293 2294 /* 2295 * Allocate a buffer with a preset data size. 2296 */ 2297 ACPI_BUFFER * 2298 acpi_AllocBuffer(int size) 2299 { 2300 ACPI_BUFFER *buf; 2301 2302 if ((buf = malloc(size + sizeof(*buf), M_ACPIDEV, M_NOWAIT)) == NULL) 2303 return (NULL); 2304 buf->Length = size; 2305 buf->Pointer = (void *)(buf + 1); 2306 return (buf); 2307 } 2308 2309 ACPI_STATUS 2310 acpi_SetInteger(ACPI_HANDLE handle, char *path, UINT32 number) 2311 { 2312 ACPI_OBJECT arg1; 2313 ACPI_OBJECT_LIST args; 2314 2315 arg1.Type = ACPI_TYPE_INTEGER; 2316 arg1.Integer.Value = number; 2317 args.Count = 1; 2318 args.Pointer = &arg1; 2319 2320 return (AcpiEvaluateObject(handle, path, &args, NULL)); 2321 } 2322 2323 /* 2324 * Evaluate a path that should return an integer. 2325 */ 2326 ACPI_STATUS 2327 acpi_GetInteger(ACPI_HANDLE handle, char *path, UINT32 *number) 2328 { 2329 ACPI_STATUS status; 2330 ACPI_BUFFER buf; 2331 ACPI_OBJECT param; 2332 2333 if (handle == NULL) 2334 handle = ACPI_ROOT_OBJECT; 2335 2336 /* 2337 * Assume that what we've been pointed at is an Integer object, or 2338 * a method that will return an Integer. 2339 */ 2340 buf.Pointer = ¶m; 2341 buf.Length = sizeof(param); 2342 status = AcpiEvaluateObject(handle, path, NULL, &buf); 2343 if (ACPI_SUCCESS(status)) { 2344 if (param.Type == ACPI_TYPE_INTEGER) 2345 *number = param.Integer.Value; 2346 else 2347 status = AE_TYPE; 2348 } 2349 2350 /* 2351 * In some applications, a method that's expected to return an Integer 2352 * may instead return a Buffer (probably to simplify some internal 2353 * arithmetic). We'll try to fetch whatever it is, and if it's a Buffer, 2354 * convert it into an Integer as best we can. 2355 * 2356 * This is a hack. 2357 */ 2358 if (status == AE_BUFFER_OVERFLOW) { 2359 if ((buf.Pointer = AcpiOsAllocate(buf.Length)) == NULL) { 2360 status = AE_NO_MEMORY; 2361 } else { 2362 status = AcpiEvaluateObject(handle, path, NULL, &buf); 2363 if (ACPI_SUCCESS(status)) 2364 status = acpi_ConvertBufferToInteger(&buf, number); 2365 AcpiOsFree(buf.Pointer); 2366 } 2367 } 2368 return (status); 2369 } 2370 2371 ACPI_STATUS 2372 acpi_ConvertBufferToInteger(ACPI_BUFFER *bufp, UINT32 *number) 2373 { 2374 ACPI_OBJECT *p; 2375 UINT8 *val; 2376 int i; 2377 2378 p = (ACPI_OBJECT *)bufp->Pointer; 2379 if (p->Type == ACPI_TYPE_INTEGER) { 2380 *number = p->Integer.Value; 2381 return (AE_OK); 2382 } 2383 if (p->Type != ACPI_TYPE_BUFFER) 2384 return (AE_TYPE); 2385 if (p->Buffer.Length > sizeof(int)) 2386 return (AE_BAD_DATA); 2387 2388 *number = 0; 2389 val = p->Buffer.Pointer; 2390 for (i = 0; i < p->Buffer.Length; i++) 2391 *number += val[i] << (i * 8); 2392 return (AE_OK); 2393 } 2394 2395 /* 2396 * Iterate over the elements of an a package object, calling the supplied 2397 * function for each element. 2398 * 2399 * XXX possible enhancement might be to abort traversal on error. 2400 */ 2401 ACPI_STATUS 2402 acpi_ForeachPackageObject(ACPI_OBJECT *pkg, 2403 void (*func)(ACPI_OBJECT *comp, void *arg), void *arg) 2404 { 2405 ACPI_OBJECT *comp; 2406 int i; 2407 2408 if (pkg == NULL || pkg->Type != ACPI_TYPE_PACKAGE) 2409 return (AE_BAD_PARAMETER); 2410 2411 /* Iterate over components */ 2412 i = 0; 2413 comp = pkg->Package.Elements; 2414 for (; i < pkg->Package.Count; i++, comp++) 2415 func(comp, arg); 2416 2417 return (AE_OK); 2418 } 2419 2420 /* 2421 * Find the (index)th resource object in a set. 2422 */ 2423 ACPI_STATUS 2424 acpi_FindIndexedResource(ACPI_BUFFER *buf, int index, ACPI_RESOURCE **resp) 2425 { 2426 ACPI_RESOURCE *rp; 2427 int i; 2428 2429 rp = (ACPI_RESOURCE *)buf->Pointer; 2430 i = index; 2431 while (i-- > 0) { 2432 /* Range check */ 2433 if (rp > (ACPI_RESOURCE *)((u_int8_t *)buf->Pointer + buf->Length)) 2434 return (AE_BAD_PARAMETER); 2435 2436 /* Check for terminator */ 2437 if (rp->Type == ACPI_RESOURCE_TYPE_END_TAG || rp->Length == 0) 2438 return (AE_NOT_FOUND); 2439 rp = ACPI_NEXT_RESOURCE(rp); 2440 } 2441 if (resp != NULL) 2442 *resp = rp; 2443 2444 return (AE_OK); 2445 } 2446 2447 /* 2448 * Append an ACPI_RESOURCE to an ACPI_BUFFER. 2449 * 2450 * Given a pointer to an ACPI_RESOURCE structure, expand the ACPI_BUFFER 2451 * provided to contain it. If the ACPI_BUFFER is empty, allocate a sensible 2452 * backing block. If the ACPI_RESOURCE is NULL, return an empty set of 2453 * resources. 2454 */ 2455 #define ACPI_INITIAL_RESOURCE_BUFFER_SIZE 512 2456 2457 ACPI_STATUS 2458 acpi_AppendBufferResource(ACPI_BUFFER *buf, ACPI_RESOURCE *res) 2459 { 2460 ACPI_RESOURCE *rp; 2461 void *newp; 2462 2463 /* Initialise the buffer if necessary. */ 2464 if (buf->Pointer == NULL) { 2465 buf->Length = ACPI_INITIAL_RESOURCE_BUFFER_SIZE; 2466 if ((buf->Pointer = AcpiOsAllocate(buf->Length)) == NULL) 2467 return (AE_NO_MEMORY); 2468 rp = (ACPI_RESOURCE *)buf->Pointer; 2469 rp->Type = ACPI_RESOURCE_TYPE_END_TAG; 2470 rp->Length = ACPI_RS_SIZE_MIN; 2471 } 2472 if (res == NULL) 2473 return (AE_OK); 2474 2475 /* 2476 * Scan the current buffer looking for the terminator. 2477 * This will either find the terminator or hit the end 2478 * of the buffer and return an error. 2479 */ 2480 rp = (ACPI_RESOURCE *)buf->Pointer; 2481 for (;;) { 2482 /* Range check, don't go outside the buffer */ 2483 if (rp >= (ACPI_RESOURCE *)((u_int8_t *)buf->Pointer + buf->Length)) 2484 return (AE_BAD_PARAMETER); 2485 if (rp->Type == ACPI_RESOURCE_TYPE_END_TAG || rp->Length == 0) 2486 break; 2487 rp = ACPI_NEXT_RESOURCE(rp); 2488 } 2489 2490 /* 2491 * Check the size of the buffer and expand if required. 2492 * 2493 * Required size is: 2494 * size of existing resources before terminator + 2495 * size of new resource and header + 2496 * size of terminator. 2497 * 2498 * Note that this loop should really only run once, unless 2499 * for some reason we are stuffing a *really* huge resource. 2500 */ 2501 while ((((u_int8_t *)rp - (u_int8_t *)buf->Pointer) + 2502 res->Length + ACPI_RS_SIZE_NO_DATA + 2503 ACPI_RS_SIZE_MIN) >= buf->Length) { 2504 if ((newp = AcpiOsAllocate(buf->Length * 2)) == NULL) 2505 return (AE_NO_MEMORY); 2506 bcopy(buf->Pointer, newp, buf->Length); 2507 rp = (ACPI_RESOURCE *)((u_int8_t *)newp + 2508 ((u_int8_t *)rp - (u_int8_t *)buf->Pointer)); 2509 AcpiOsFree(buf->Pointer); 2510 buf->Pointer = newp; 2511 buf->Length += buf->Length; 2512 } 2513 2514 /* Insert the new resource. */ 2515 bcopy(res, rp, res->Length + ACPI_RS_SIZE_NO_DATA); 2516 2517 /* And add the terminator. */ 2518 rp = ACPI_NEXT_RESOURCE(rp); 2519 rp->Type = ACPI_RESOURCE_TYPE_END_TAG; 2520 rp->Length = ACPI_RS_SIZE_MIN; 2521 2522 return (AE_OK); 2523 } 2524 2525 ACPI_STATUS 2526 acpi_EvaluateOSC(ACPI_HANDLE handle, uint8_t *uuid, int revision, int count, 2527 uint32_t *caps_in, uint32_t *caps_out, bool query) 2528 { 2529 ACPI_OBJECT arg[4], *ret; 2530 ACPI_OBJECT_LIST arglist; 2531 ACPI_BUFFER buf; 2532 ACPI_STATUS status; 2533 2534 arglist.Pointer = arg; 2535 arglist.Count = 4; 2536 arg[0].Type = ACPI_TYPE_BUFFER; 2537 arg[0].Buffer.Length = ACPI_UUID_LENGTH; 2538 arg[0].Buffer.Pointer = uuid; 2539 arg[1].Type = ACPI_TYPE_INTEGER; 2540 arg[1].Integer.Value = revision; 2541 arg[2].Type = ACPI_TYPE_INTEGER; 2542 arg[2].Integer.Value = count; 2543 arg[3].Type = ACPI_TYPE_BUFFER; 2544 arg[3].Buffer.Length = count * sizeof(*caps_in); 2545 arg[3].Buffer.Pointer = (uint8_t *)caps_in; 2546 caps_in[0] = query ? 1 : 0; 2547 buf.Pointer = NULL; 2548 buf.Length = ACPI_ALLOCATE_BUFFER; 2549 status = AcpiEvaluateObjectTyped(handle, "_OSC", &arglist, &buf, 2550 ACPI_TYPE_BUFFER); 2551 if (ACPI_FAILURE(status)) 2552 return (status); 2553 if (caps_out != NULL) { 2554 ret = buf.Pointer; 2555 if (ret->Buffer.Length != count * sizeof(*caps_out)) { 2556 AcpiOsFree(buf.Pointer); 2557 return (AE_BUFFER_OVERFLOW); 2558 } 2559 bcopy(ret->Buffer.Pointer, caps_out, ret->Buffer.Length); 2560 } 2561 AcpiOsFree(buf.Pointer); 2562 return (status); 2563 } 2564 2565 /* 2566 * Set interrupt model. 2567 */ 2568 ACPI_STATUS 2569 acpi_SetIntrModel(int model) 2570 { 2571 2572 return (acpi_SetInteger(ACPI_ROOT_OBJECT, "_PIC", model)); 2573 } 2574 2575 /* 2576 * Walk subtables of a table and call a callback routine for each 2577 * subtable. The caller should provide the first subtable and a 2578 * pointer to the end of the table. This can be used to walk tables 2579 * such as MADT and SRAT that use subtable entries. 2580 */ 2581 void 2582 acpi_walk_subtables(void *first, void *end, acpi_subtable_handler *handler, 2583 void *arg) 2584 { 2585 ACPI_SUBTABLE_HEADER *entry; 2586 2587 for (entry = first; (void *)entry < end; ) { 2588 /* Avoid an infinite loop if we hit a bogus entry. */ 2589 if (entry->Length < sizeof(ACPI_SUBTABLE_HEADER)) 2590 return; 2591 2592 handler(entry, arg); 2593 entry = ACPI_ADD_PTR(ACPI_SUBTABLE_HEADER, entry, entry->Length); 2594 } 2595 } 2596 2597 /* 2598 * DEPRECATED. This interface has serious deficiencies and will be 2599 * removed. 2600 * 2601 * Immediately enter the sleep state. In the old model, acpiconf(8) ran 2602 * rc.suspend and rc.resume so we don't have to notify devd(8) to do this. 2603 */ 2604 ACPI_STATUS 2605 acpi_SetSleepState(struct acpi_softc *sc, int state) 2606 { 2607 static int once; 2608 2609 if (!once) { 2610 device_printf(sc->acpi_dev, 2611 "warning: acpi_SetSleepState() deprecated, need to update your software\n"); 2612 once = 1; 2613 } 2614 return (acpi_EnterSleepState(sc, state)); 2615 } 2616 2617 #if defined(__amd64__) || defined(__i386__) 2618 static void 2619 acpi_sleep_force_task(void *context) 2620 { 2621 struct acpi_softc *sc = (struct acpi_softc *)context; 2622 2623 if (ACPI_FAILURE(acpi_EnterSleepState(sc, sc->acpi_next_sstate))) 2624 device_printf(sc->acpi_dev, "force sleep state S%d failed\n", 2625 sc->acpi_next_sstate); 2626 } 2627 2628 static void 2629 acpi_sleep_force(void *arg) 2630 { 2631 struct acpi_softc *sc = (struct acpi_softc *)arg; 2632 2633 device_printf(sc->acpi_dev, 2634 "suspend request timed out, forcing sleep now\n"); 2635 /* 2636 * XXX Suspending from callout causes freezes in DEVICE_SUSPEND(). 2637 * Suspend from acpi_task thread instead. 2638 */ 2639 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 2640 acpi_sleep_force_task, sc))) 2641 device_printf(sc->acpi_dev, "AcpiOsExecute() for sleeping failed\n"); 2642 } 2643 #endif 2644 2645 /* 2646 * Request that the system enter the given suspend state. All /dev/apm 2647 * devices and devd(8) will be notified. Userland then has a chance to 2648 * save state and acknowledge the request. The system sleeps once all 2649 * acks are in. 2650 */ 2651 int 2652 acpi_ReqSleepState(struct acpi_softc *sc, int state) 2653 { 2654 #if defined(__amd64__) || defined(__i386__) 2655 struct apm_clone_data *clone; 2656 ACPI_STATUS status; 2657 2658 if (state < ACPI_STATE_S1 || state > ACPI_S_STATES_MAX) 2659 return (EINVAL); 2660 if (!acpi_sleep_states[state]) 2661 return (EOPNOTSUPP); 2662 2663 /* 2664 * If a reboot/shutdown/suspend request is already in progress or 2665 * suspend is blocked due to an upcoming shutdown, just return. 2666 */ 2667 if (rebooting || sc->acpi_next_sstate != 0 || suspend_blocked) { 2668 return (0); 2669 } 2670 2671 /* Wait until sleep is enabled. */ 2672 while (sc->acpi_sleep_disabled) { 2673 AcpiOsSleep(1000); 2674 } 2675 2676 ACPI_LOCK(acpi); 2677 2678 sc->acpi_next_sstate = state; 2679 2680 /* S5 (soft-off) should be entered directly with no waiting. */ 2681 if (state == ACPI_STATE_S5) { 2682 ACPI_UNLOCK(acpi); 2683 status = acpi_EnterSleepState(sc, state); 2684 return (ACPI_SUCCESS(status) ? 0 : ENXIO); 2685 } 2686 2687 /* Record the pending state and notify all apm devices. */ 2688 STAILQ_FOREACH(clone, &sc->apm_cdevs, entries) { 2689 clone->notify_status = APM_EV_NONE; 2690 if ((clone->flags & ACPI_EVF_DEVD) == 0) { 2691 selwakeuppri(&clone->sel_read, PZERO); 2692 KNOTE_LOCKED(&clone->sel_read.si_note, 0); 2693 } 2694 } 2695 2696 /* If devd(8) is not running, immediately enter the sleep state. */ 2697 if (!devctl_process_running()) { 2698 ACPI_UNLOCK(acpi); 2699 status = acpi_EnterSleepState(sc, state); 2700 return (ACPI_SUCCESS(status) ? 0 : ENXIO); 2701 } 2702 2703 /* 2704 * Set a timeout to fire if userland doesn't ack the suspend request 2705 * in time. This way we still eventually go to sleep if we were 2706 * overheating or running low on battery, even if userland is hung. 2707 * We cancel this timeout once all userland acks are in or the 2708 * suspend request is aborted. 2709 */ 2710 callout_reset(&sc->susp_force_to, 10 * hz, acpi_sleep_force, sc); 2711 ACPI_UNLOCK(acpi); 2712 2713 /* Now notify devd(8) also. */ 2714 acpi_UserNotify("Suspend", ACPI_ROOT_OBJECT, state); 2715 2716 return (0); 2717 #else 2718 /* This platform does not support acpi suspend/resume. */ 2719 return (EOPNOTSUPP); 2720 #endif 2721 } 2722 2723 /* 2724 * Acknowledge (or reject) a pending sleep state. The caller has 2725 * prepared for suspend and is now ready for it to proceed. If the 2726 * error argument is non-zero, it indicates suspend should be cancelled 2727 * and gives an errno value describing why. Once all votes are in, 2728 * we suspend the system. 2729 */ 2730 int 2731 acpi_AckSleepState(struct apm_clone_data *clone, int error) 2732 { 2733 #if defined(__amd64__) || defined(__i386__) 2734 struct acpi_softc *sc; 2735 int ret, sleeping; 2736 2737 /* If no pending sleep state, return an error. */ 2738 ACPI_LOCK(acpi); 2739 sc = clone->acpi_sc; 2740 if (sc->acpi_next_sstate == 0) { 2741 ACPI_UNLOCK(acpi); 2742 return (ENXIO); 2743 } 2744 2745 /* Caller wants to abort suspend process. */ 2746 if (error) { 2747 sc->acpi_next_sstate = 0; 2748 callout_stop(&sc->susp_force_to); 2749 device_printf(sc->acpi_dev, 2750 "listener on %s cancelled the pending suspend\n", 2751 devtoname(clone->cdev)); 2752 ACPI_UNLOCK(acpi); 2753 return (0); 2754 } 2755 2756 /* 2757 * Mark this device as acking the suspend request. Then, walk through 2758 * all devices, seeing if they agree yet. We only count devices that 2759 * are writable since read-only devices couldn't ack the request. 2760 */ 2761 sleeping = TRUE; 2762 clone->notify_status = APM_EV_ACKED; 2763 STAILQ_FOREACH(clone, &sc->apm_cdevs, entries) { 2764 if ((clone->flags & ACPI_EVF_WRITE) != 0 && 2765 clone->notify_status != APM_EV_ACKED) { 2766 sleeping = FALSE; 2767 break; 2768 } 2769 } 2770 2771 /* If all devices have voted "yes", we will suspend now. */ 2772 if (sleeping) 2773 callout_stop(&sc->susp_force_to); 2774 ACPI_UNLOCK(acpi); 2775 ret = 0; 2776 if (sleeping) { 2777 if (ACPI_FAILURE(acpi_EnterSleepState(sc, sc->acpi_next_sstate))) 2778 ret = ENODEV; 2779 } 2780 return (ret); 2781 #else 2782 /* This platform does not support acpi suspend/resume. */ 2783 return (EOPNOTSUPP); 2784 #endif 2785 } 2786 2787 static void 2788 acpi_sleep_enable(void *arg) 2789 { 2790 struct acpi_softc *sc = (struct acpi_softc *)arg; 2791 2792 ACPI_LOCK_ASSERT(acpi); 2793 2794 /* Reschedule if the system is not fully up and running. */ 2795 if (!AcpiGbl_SystemAwakeAndRunning) { 2796 callout_schedule(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME); 2797 return; 2798 } 2799 2800 sc->acpi_sleep_disabled = FALSE; 2801 } 2802 2803 static ACPI_STATUS 2804 acpi_sleep_disable(struct acpi_softc *sc) 2805 { 2806 ACPI_STATUS status; 2807 2808 /* Fail if the system is not fully up and running. */ 2809 if (!AcpiGbl_SystemAwakeAndRunning) 2810 return (AE_ERROR); 2811 2812 ACPI_LOCK(acpi); 2813 status = sc->acpi_sleep_disabled ? AE_ERROR : AE_OK; 2814 sc->acpi_sleep_disabled = TRUE; 2815 ACPI_UNLOCK(acpi); 2816 2817 return (status); 2818 } 2819 2820 enum acpi_sleep_state { 2821 ACPI_SS_NONE, 2822 ACPI_SS_GPE_SET, 2823 ACPI_SS_DEV_SUSPEND, 2824 ACPI_SS_SLP_PREP, 2825 ACPI_SS_SLEPT, 2826 }; 2827 2828 /* 2829 * Enter the desired system sleep state. 2830 * 2831 * Currently we support S1-S5 but S4 is only S4BIOS 2832 */ 2833 static ACPI_STATUS 2834 acpi_EnterSleepState(struct acpi_softc *sc, int state) 2835 { 2836 register_t intr; 2837 ACPI_STATUS status; 2838 ACPI_EVENT_STATUS power_button_status; 2839 enum acpi_sleep_state slp_state; 2840 int sleep_result; 2841 2842 ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state); 2843 2844 if (state < ACPI_STATE_S1 || state > ACPI_S_STATES_MAX) 2845 return_ACPI_STATUS (AE_BAD_PARAMETER); 2846 if (!acpi_sleep_states[state]) { 2847 device_printf(sc->acpi_dev, "Sleep state S%d not supported by BIOS\n", 2848 state); 2849 return (AE_SUPPORT); 2850 } 2851 2852 /* Re-entry once we're suspending is not allowed. */ 2853 status = acpi_sleep_disable(sc); 2854 if (ACPI_FAILURE(status)) { 2855 device_printf(sc->acpi_dev, 2856 "suspend request ignored (not ready yet)\n"); 2857 return (status); 2858 } 2859 2860 if (state == ACPI_STATE_S5) { 2861 /* 2862 * Shut down cleanly and power off. This will call us back through the 2863 * shutdown handlers. 2864 */ 2865 shutdown_nice(RB_POWEROFF); 2866 return_ACPI_STATUS (AE_OK); 2867 } 2868 2869 EVENTHANDLER_INVOKE(power_suspend_early); 2870 stop_all_proc(); 2871 EVENTHANDLER_INVOKE(power_suspend); 2872 2873 #ifdef EARLY_AP_STARTUP 2874 MPASS(mp_ncpus == 1 || smp_started); 2875 thread_lock(curthread); 2876 sched_bind(curthread, 0); 2877 thread_unlock(curthread); 2878 #else 2879 if (smp_started) { 2880 thread_lock(curthread); 2881 sched_bind(curthread, 0); 2882 thread_unlock(curthread); 2883 } 2884 #endif 2885 2886 /* 2887 * Be sure to hold Giant across DEVICE_SUSPEND/RESUME since non-MPSAFE 2888 * drivers need this. 2889 */ 2890 mtx_lock(&Giant); 2891 2892 slp_state = ACPI_SS_NONE; 2893 2894 sc->acpi_sstate = state; 2895 2896 /* Enable any GPEs as appropriate and requested by the user. */ 2897 acpi_wake_prep_walk(state); 2898 slp_state = ACPI_SS_GPE_SET; 2899 2900 /* 2901 * Inform all devices that we are going to sleep. If at least one 2902 * device fails, DEVICE_SUSPEND() automatically resumes the tree. 2903 * 2904 * XXX Note that a better two-pass approach with a 'veto' pass 2905 * followed by a "real thing" pass would be better, but the current 2906 * bus interface does not provide for this. 2907 */ 2908 if (DEVICE_SUSPEND(root_bus) != 0) { 2909 device_printf(sc->acpi_dev, "device_suspend failed\n"); 2910 goto backout; 2911 } 2912 slp_state = ACPI_SS_DEV_SUSPEND; 2913 2914 /* If testing device suspend only, back out of everything here. */ 2915 if (acpi_susp_bounce) 2916 goto backout; 2917 2918 status = AcpiEnterSleepStatePrep(state); 2919 if (ACPI_FAILURE(status)) { 2920 device_printf(sc->acpi_dev, "AcpiEnterSleepStatePrep failed - %s\n", 2921 AcpiFormatException(status)); 2922 goto backout; 2923 } 2924 slp_state = ACPI_SS_SLP_PREP; 2925 2926 if (sc->acpi_sleep_delay > 0) 2927 DELAY(sc->acpi_sleep_delay * 1000000); 2928 2929 intr = intr_disable(); 2930 if (state != ACPI_STATE_S1) { 2931 sleep_result = acpi_sleep_machdep(sc, state); 2932 acpi_wakeup_machdep(sc, state, sleep_result, 0); 2933 2934 /* 2935 * XXX According to ACPI specification SCI_EN bit should be restored 2936 * by ACPI platform (BIOS, firmware) to its pre-sleep state. 2937 * Unfortunately some BIOSes fail to do that and that leads to 2938 * unexpected and serious consequences during wake up like a system 2939 * getting stuck in SMI handlers. 2940 * This hack is picked up from Linux, which claims that it follows 2941 * Windows behavior. 2942 */ 2943 if (sleep_result == 1 && state != ACPI_STATE_S4) 2944 AcpiWriteBitRegister(ACPI_BITREG_SCI_ENABLE, ACPI_ENABLE_EVENT); 2945 2946 AcpiLeaveSleepStatePrep(state); 2947 2948 if (sleep_result == 1 && state == ACPI_STATE_S3) { 2949 /* 2950 * Prevent mis-interpretation of the wakeup by power button 2951 * as a request for power off. 2952 * Ideally we should post an appropriate wakeup event, 2953 * perhaps using acpi_event_power_button_wake or alike. 2954 * 2955 * Clearing of power button status after wakeup is mandated 2956 * by ACPI specification in section "Fixed Power Button". 2957 * 2958 * XXX As of ACPICA 20121114 AcpiGetEventStatus provides 2959 * status as 0/1 corressponding to inactive/active despite 2960 * its type being ACPI_EVENT_STATUS. In other words, 2961 * we should not test for ACPI_EVENT_FLAG_SET for time being. 2962 */ 2963 if (ACPI_SUCCESS(AcpiGetEventStatus(ACPI_EVENT_POWER_BUTTON, 2964 &power_button_status)) && power_button_status != 0) { 2965 AcpiClearEvent(ACPI_EVENT_POWER_BUTTON); 2966 device_printf(sc->acpi_dev, 2967 "cleared fixed power button status\n"); 2968 } 2969 } 2970 2971 intr_restore(intr); 2972 2973 /* call acpi_wakeup_machdep() again with interrupt enabled */ 2974 acpi_wakeup_machdep(sc, state, sleep_result, 1); 2975 2976 if (sleep_result == -1) 2977 goto backout; 2978 2979 /* Re-enable ACPI hardware on wakeup from sleep state 4. */ 2980 if (state == ACPI_STATE_S4) 2981 AcpiEnable(); 2982 } else { 2983 status = AcpiEnterSleepState(state); 2984 AcpiLeaveSleepStatePrep(state); 2985 intr_restore(intr); 2986 if (ACPI_FAILURE(status)) { 2987 device_printf(sc->acpi_dev, "AcpiEnterSleepState failed - %s\n", 2988 AcpiFormatException(status)); 2989 goto backout; 2990 } 2991 } 2992 slp_state = ACPI_SS_SLEPT; 2993 2994 /* 2995 * Back out state according to how far along we got in the suspend 2996 * process. This handles both the error and success cases. 2997 */ 2998 backout: 2999 if (slp_state >= ACPI_SS_GPE_SET) { 3000 acpi_wake_prep_walk(state); 3001 sc->acpi_sstate = ACPI_STATE_S0; 3002 } 3003 if (slp_state >= ACPI_SS_DEV_SUSPEND) 3004 DEVICE_RESUME(root_bus); 3005 if (slp_state >= ACPI_SS_SLP_PREP) 3006 AcpiLeaveSleepState(state); 3007 if (slp_state >= ACPI_SS_SLEPT) { 3008 acpi_resync_clock(sc); 3009 acpi_enable_fixed_events(sc); 3010 } 3011 sc->acpi_next_sstate = 0; 3012 3013 mtx_unlock(&Giant); 3014 3015 #ifdef EARLY_AP_STARTUP 3016 thread_lock(curthread); 3017 sched_unbind(curthread); 3018 thread_unlock(curthread); 3019 #else 3020 if (smp_started) { 3021 thread_lock(curthread); 3022 sched_unbind(curthread); 3023 thread_unlock(curthread); 3024 } 3025 #endif 3026 3027 resume_all_proc(); 3028 3029 EVENTHANDLER_INVOKE(power_resume); 3030 3031 /* Allow another sleep request after a while. */ 3032 callout_schedule(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME); 3033 3034 /* Run /etc/rc.resume after we are back. */ 3035 if (devctl_process_running()) 3036 acpi_UserNotify("Resume", ACPI_ROOT_OBJECT, state); 3037 3038 return_ACPI_STATUS (status); 3039 } 3040 3041 static void 3042 acpi_resync_clock(struct acpi_softc *sc) 3043 { 3044 3045 /* 3046 * Warm up timecounter again and reset system clock. 3047 */ 3048 (void)timecounter->tc_get_timecount(timecounter); 3049 (void)timecounter->tc_get_timecount(timecounter); 3050 inittodr(time_second + sc->acpi_sleep_delay); 3051 } 3052 3053 /* Enable or disable the device's wake GPE. */ 3054 int 3055 acpi_wake_set_enable(device_t dev, int enable) 3056 { 3057 struct acpi_prw_data prw; 3058 ACPI_STATUS status; 3059 int flags; 3060 3061 /* Make sure the device supports waking the system and get the GPE. */ 3062 if (acpi_parse_prw(acpi_get_handle(dev), &prw) != 0) 3063 return (ENXIO); 3064 3065 flags = acpi_get_flags(dev); 3066 if (enable) { 3067 status = AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, 3068 ACPI_GPE_ENABLE); 3069 if (ACPI_FAILURE(status)) { 3070 device_printf(dev, "enable wake failed\n"); 3071 return (ENXIO); 3072 } 3073 acpi_set_flags(dev, flags | ACPI_FLAG_WAKE_ENABLED); 3074 } else { 3075 status = AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, 3076 ACPI_GPE_DISABLE); 3077 if (ACPI_FAILURE(status)) { 3078 device_printf(dev, "disable wake failed\n"); 3079 return (ENXIO); 3080 } 3081 acpi_set_flags(dev, flags & ~ACPI_FLAG_WAKE_ENABLED); 3082 } 3083 3084 return (0); 3085 } 3086 3087 static int 3088 acpi_wake_sleep_prep(ACPI_HANDLE handle, int sstate) 3089 { 3090 struct acpi_prw_data prw; 3091 device_t dev; 3092 3093 /* Check that this is a wake-capable device and get its GPE. */ 3094 if (acpi_parse_prw(handle, &prw) != 0) 3095 return (ENXIO); 3096 dev = acpi_get_device(handle); 3097 3098 /* 3099 * The destination sleep state must be less than (i.e., higher power) 3100 * or equal to the value specified by _PRW. If this GPE cannot be 3101 * enabled for the next sleep state, then disable it. If it can and 3102 * the user requested it be enabled, turn on any required power resources 3103 * and set _PSW. 3104 */ 3105 if (sstate > prw.lowest_wake) { 3106 AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, ACPI_GPE_DISABLE); 3107 if (bootverbose) 3108 device_printf(dev, "wake_prep disabled wake for %s (S%d)\n", 3109 acpi_name(handle), sstate); 3110 } else if (dev && (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) != 0) { 3111 acpi_pwr_wake_enable(handle, 1); 3112 acpi_SetInteger(handle, "_PSW", 1); 3113 if (bootverbose) 3114 device_printf(dev, "wake_prep enabled for %s (S%d)\n", 3115 acpi_name(handle), sstate); 3116 } 3117 3118 return (0); 3119 } 3120 3121 static int 3122 acpi_wake_run_prep(ACPI_HANDLE handle, int sstate) 3123 { 3124 struct acpi_prw_data prw; 3125 device_t dev; 3126 3127 /* 3128 * Check that this is a wake-capable device and get its GPE. Return 3129 * now if the user didn't enable this device for wake. 3130 */ 3131 if (acpi_parse_prw(handle, &prw) != 0) 3132 return (ENXIO); 3133 dev = acpi_get_device(handle); 3134 if (dev == NULL || (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) == 0) 3135 return (0); 3136 3137 /* 3138 * If this GPE couldn't be enabled for the previous sleep state, it was 3139 * disabled before going to sleep so re-enable it. If it was enabled, 3140 * clear _PSW and turn off any power resources it used. 3141 */ 3142 if (sstate > prw.lowest_wake) { 3143 AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, ACPI_GPE_ENABLE); 3144 if (bootverbose) 3145 device_printf(dev, "run_prep re-enabled %s\n", acpi_name(handle)); 3146 } else { 3147 acpi_SetInteger(handle, "_PSW", 0); 3148 acpi_pwr_wake_enable(handle, 0); 3149 if (bootverbose) 3150 device_printf(dev, "run_prep cleaned up for %s\n", 3151 acpi_name(handle)); 3152 } 3153 3154 return (0); 3155 } 3156 3157 static ACPI_STATUS 3158 acpi_wake_prep(ACPI_HANDLE handle, UINT32 level, void *context, void **status) 3159 { 3160 int sstate; 3161 3162 /* If suspending, run the sleep prep function, otherwise wake. */ 3163 sstate = *(int *)context; 3164 if (AcpiGbl_SystemAwakeAndRunning) 3165 acpi_wake_sleep_prep(handle, sstate); 3166 else 3167 acpi_wake_run_prep(handle, sstate); 3168 return (AE_OK); 3169 } 3170 3171 /* Walk the tree rooted at acpi0 to prep devices for suspend/resume. */ 3172 static int 3173 acpi_wake_prep_walk(int sstate) 3174 { 3175 ACPI_HANDLE sb_handle; 3176 3177 if (ACPI_SUCCESS(AcpiGetHandle(ACPI_ROOT_OBJECT, "\\_SB_", &sb_handle))) 3178 AcpiWalkNamespace(ACPI_TYPE_DEVICE, sb_handle, 100, 3179 acpi_wake_prep, NULL, &sstate, NULL); 3180 return (0); 3181 } 3182 3183 /* Walk the tree rooted at acpi0 to attach per-device wake sysctls. */ 3184 static int 3185 acpi_wake_sysctl_walk(device_t dev) 3186 { 3187 int error, i, numdevs; 3188 device_t *devlist; 3189 device_t child; 3190 ACPI_STATUS status; 3191 3192 error = device_get_children(dev, &devlist, &numdevs); 3193 if (error != 0 || numdevs == 0) { 3194 if (numdevs == 0) 3195 free(devlist, M_TEMP); 3196 return (error); 3197 } 3198 for (i = 0; i < numdevs; i++) { 3199 child = devlist[i]; 3200 acpi_wake_sysctl_walk(child); 3201 if (!device_is_attached(child)) 3202 continue; 3203 status = AcpiEvaluateObject(acpi_get_handle(child), "_PRW", NULL, NULL); 3204 if (ACPI_SUCCESS(status)) { 3205 SYSCTL_ADD_PROC(device_get_sysctl_ctx(child), 3206 SYSCTL_CHILDREN(device_get_sysctl_tree(child)), OID_AUTO, 3207 "wake", CTLTYPE_INT | CTLFLAG_RW, child, 0, 3208 acpi_wake_set_sysctl, "I", "Device set to wake the system"); 3209 } 3210 } 3211 free(devlist, M_TEMP); 3212 3213 return (0); 3214 } 3215 3216 /* Enable or disable wake from userland. */ 3217 static int 3218 acpi_wake_set_sysctl(SYSCTL_HANDLER_ARGS) 3219 { 3220 int enable, error; 3221 device_t dev; 3222 3223 dev = (device_t)arg1; 3224 enable = (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) ? 1 : 0; 3225 3226 error = sysctl_handle_int(oidp, &enable, 0, req); 3227 if (error != 0 || req->newptr == NULL) 3228 return (error); 3229 if (enable != 0 && enable != 1) 3230 return (EINVAL); 3231 3232 return (acpi_wake_set_enable(dev, enable)); 3233 } 3234 3235 /* Parse a device's _PRW into a structure. */ 3236 int 3237 acpi_parse_prw(ACPI_HANDLE h, struct acpi_prw_data *prw) 3238 { 3239 ACPI_STATUS status; 3240 ACPI_BUFFER prw_buffer; 3241 ACPI_OBJECT *res, *res2; 3242 int error, i, power_count; 3243 3244 if (h == NULL || prw == NULL) 3245 return (EINVAL); 3246 3247 /* 3248 * The _PRW object (7.2.9) is only required for devices that have the 3249 * ability to wake the system from a sleeping state. 3250 */ 3251 error = EINVAL; 3252 prw_buffer.Pointer = NULL; 3253 prw_buffer.Length = ACPI_ALLOCATE_BUFFER; 3254 status = AcpiEvaluateObject(h, "_PRW", NULL, &prw_buffer); 3255 if (ACPI_FAILURE(status)) 3256 return (ENOENT); 3257 res = (ACPI_OBJECT *)prw_buffer.Pointer; 3258 if (res == NULL) 3259 return (ENOENT); 3260 if (!ACPI_PKG_VALID(res, 2)) 3261 goto out; 3262 3263 /* 3264 * Element 1 of the _PRW object: 3265 * The lowest power system sleeping state that can be entered while still 3266 * providing wake functionality. The sleeping state being entered must 3267 * be less than (i.e., higher power) or equal to this value. 3268 */ 3269 if (acpi_PkgInt32(res, 1, &prw->lowest_wake) != 0) 3270 goto out; 3271 3272 /* 3273 * Element 0 of the _PRW object: 3274 */ 3275 switch (res->Package.Elements[0].Type) { 3276 case ACPI_TYPE_INTEGER: 3277 /* 3278 * If the data type of this package element is numeric, then this 3279 * _PRW package element is the bit index in the GPEx_EN, in the 3280 * GPE blocks described in the FADT, of the enable bit that is 3281 * enabled for the wake event. 3282 */ 3283 prw->gpe_handle = NULL; 3284 prw->gpe_bit = res->Package.Elements[0].Integer.Value; 3285 error = 0; 3286 break; 3287 case ACPI_TYPE_PACKAGE: 3288 /* 3289 * If the data type of this package element is a package, then this 3290 * _PRW package element is itself a package containing two 3291 * elements. The first is an object reference to the GPE Block 3292 * device that contains the GPE that will be triggered by the wake 3293 * event. The second element is numeric and it contains the bit 3294 * index in the GPEx_EN, in the GPE Block referenced by the 3295 * first element in the package, of the enable bit that is enabled for 3296 * the wake event. 3297 * 3298 * For example, if this field is a package then it is of the form: 3299 * Package() {\_SB.PCI0.ISA.GPE, 2} 3300 */ 3301 res2 = &res->Package.Elements[0]; 3302 if (!ACPI_PKG_VALID(res2, 2)) 3303 goto out; 3304 prw->gpe_handle = acpi_GetReference(NULL, &res2->Package.Elements[0]); 3305 if (prw->gpe_handle == NULL) 3306 goto out; 3307 if (acpi_PkgInt32(res2, 1, &prw->gpe_bit) != 0) 3308 goto out; 3309 error = 0; 3310 break; 3311 default: 3312 goto out; 3313 } 3314 3315 /* Elements 2 to N of the _PRW object are power resources. */ 3316 power_count = res->Package.Count - 2; 3317 if (power_count > ACPI_PRW_MAX_POWERRES) { 3318 printf("ACPI device %s has too many power resources\n", acpi_name(h)); 3319 power_count = 0; 3320 } 3321 prw->power_res_count = power_count; 3322 for (i = 0; i < power_count; i++) 3323 prw->power_res[i] = res->Package.Elements[i]; 3324 3325 out: 3326 if (prw_buffer.Pointer != NULL) 3327 AcpiOsFree(prw_buffer.Pointer); 3328 return (error); 3329 } 3330 3331 /* 3332 * ACPI Event Handlers 3333 */ 3334 3335 /* System Event Handlers (registered by EVENTHANDLER_REGISTER) */ 3336 3337 static void 3338 acpi_system_eventhandler_sleep(void *arg, int state) 3339 { 3340 struct acpi_softc *sc = (struct acpi_softc *)arg; 3341 int ret; 3342 3343 ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state); 3344 3345 /* Check if button action is disabled or unknown. */ 3346 if (state == ACPI_STATE_UNKNOWN) 3347 return; 3348 3349 /* Request that the system prepare to enter the given suspend state. */ 3350 ret = acpi_ReqSleepState(sc, state); 3351 if (ret != 0) 3352 device_printf(sc->acpi_dev, 3353 "request to enter state S%d failed (err %d)\n", state, ret); 3354 3355 return_VOID; 3356 } 3357 3358 static void 3359 acpi_system_eventhandler_wakeup(void *arg, int state) 3360 { 3361 3362 ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state); 3363 3364 /* Currently, nothing to do for wakeup. */ 3365 3366 return_VOID; 3367 } 3368 3369 /* 3370 * ACPICA Event Handlers (FixedEvent, also called from button notify handler) 3371 */ 3372 static void 3373 acpi_invoke_sleep_eventhandler(void *context) 3374 { 3375 3376 EVENTHANDLER_INVOKE(acpi_sleep_event, *(int *)context); 3377 } 3378 3379 static void 3380 acpi_invoke_wake_eventhandler(void *context) 3381 { 3382 3383 EVENTHANDLER_INVOKE(acpi_wakeup_event, *(int *)context); 3384 } 3385 3386 UINT32 3387 acpi_event_power_button_sleep(void *context) 3388 { 3389 struct acpi_softc *sc = (struct acpi_softc *)context; 3390 3391 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3392 3393 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3394 acpi_invoke_sleep_eventhandler, &sc->acpi_power_button_sx))) 3395 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); 3396 return_VALUE (ACPI_INTERRUPT_HANDLED); 3397 } 3398 3399 UINT32 3400 acpi_event_power_button_wake(void *context) 3401 { 3402 struct acpi_softc *sc = (struct acpi_softc *)context; 3403 3404 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3405 3406 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3407 acpi_invoke_wake_eventhandler, &sc->acpi_power_button_sx))) 3408 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); 3409 return_VALUE (ACPI_INTERRUPT_HANDLED); 3410 } 3411 3412 UINT32 3413 acpi_event_sleep_button_sleep(void *context) 3414 { 3415 struct acpi_softc *sc = (struct acpi_softc *)context; 3416 3417 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3418 3419 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3420 acpi_invoke_sleep_eventhandler, &sc->acpi_sleep_button_sx))) 3421 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); 3422 return_VALUE (ACPI_INTERRUPT_HANDLED); 3423 } 3424 3425 UINT32 3426 acpi_event_sleep_button_wake(void *context) 3427 { 3428 struct acpi_softc *sc = (struct acpi_softc *)context; 3429 3430 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3431 3432 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3433 acpi_invoke_wake_eventhandler, &sc->acpi_sleep_button_sx))) 3434 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); 3435 return_VALUE (ACPI_INTERRUPT_HANDLED); 3436 } 3437 3438 /* 3439 * XXX This static buffer is suboptimal. There is no locking so only 3440 * use this for single-threaded callers. 3441 */ 3442 char * 3443 acpi_name(ACPI_HANDLE handle) 3444 { 3445 ACPI_BUFFER buf; 3446 static char data[256]; 3447 3448 buf.Length = sizeof(data); 3449 buf.Pointer = data; 3450 3451 if (handle && ACPI_SUCCESS(AcpiGetName(handle, ACPI_FULL_PATHNAME, &buf))) 3452 return (data); 3453 return ("(unknown)"); 3454 } 3455 3456 /* 3457 * Debugging/bug-avoidance. Avoid trying to fetch info on various 3458 * parts of the namespace. 3459 */ 3460 int 3461 acpi_avoid(ACPI_HANDLE handle) 3462 { 3463 char *cp, *env, *np; 3464 int len; 3465 3466 np = acpi_name(handle); 3467 if (*np == '\\') 3468 np++; 3469 if ((env = kern_getenv("debug.acpi.avoid")) == NULL) 3470 return (0); 3471 3472 /* Scan the avoid list checking for a match */ 3473 cp = env; 3474 for (;;) { 3475 while (*cp != 0 && isspace(*cp)) 3476 cp++; 3477 if (*cp == 0) 3478 break; 3479 len = 0; 3480 while (cp[len] != 0 && !isspace(cp[len])) 3481 len++; 3482 if (!strncmp(cp, np, len)) { 3483 freeenv(env); 3484 return(1); 3485 } 3486 cp += len; 3487 } 3488 freeenv(env); 3489 3490 return (0); 3491 } 3492 3493 /* 3494 * Debugging/bug-avoidance. Disable ACPI subsystem components. 3495 */ 3496 int 3497 acpi_disabled(char *subsys) 3498 { 3499 char *cp, *env; 3500 int len; 3501 3502 if ((env = kern_getenv("debug.acpi.disabled")) == NULL) 3503 return (0); 3504 if (strcmp(env, "all") == 0) { 3505 freeenv(env); 3506 return (1); 3507 } 3508 3509 /* Scan the disable list, checking for a match. */ 3510 cp = env; 3511 for (;;) { 3512 while (*cp != '\0' && isspace(*cp)) 3513 cp++; 3514 if (*cp == '\0') 3515 break; 3516 len = 0; 3517 while (cp[len] != '\0' && !isspace(cp[len])) 3518 len++; 3519 if (strncmp(cp, subsys, len) == 0) { 3520 freeenv(env); 3521 return (1); 3522 } 3523 cp += len; 3524 } 3525 freeenv(env); 3526 3527 return (0); 3528 } 3529 3530 static void 3531 acpi_lookup(void *arg, const char *name, device_t *dev) 3532 { 3533 ACPI_HANDLE handle; 3534 3535 if (*dev != NULL) 3536 return; 3537 3538 /* 3539 * Allow any handle name that is specified as an absolute path and 3540 * starts with '\'. We could restrict this to \_SB and friends, 3541 * but see acpi_probe_children() for notes on why we scan the entire 3542 * namespace for devices. 3543 * 3544 * XXX: The pathname argument to AcpiGetHandle() should be fixed to 3545 * be const. 3546 */ 3547 if (name[0] != '\\') 3548 return; 3549 if (ACPI_FAILURE(AcpiGetHandle(ACPI_ROOT_OBJECT, __DECONST(char *, name), 3550 &handle))) 3551 return; 3552 *dev = acpi_get_device(handle); 3553 } 3554 3555 /* 3556 * Control interface. 3557 * 3558 * We multiplex ioctls for all participating ACPI devices here. Individual 3559 * drivers wanting to be accessible via /dev/acpi should use the 3560 * register/deregister interface to make their handlers visible. 3561 */ 3562 struct acpi_ioctl_hook 3563 { 3564 TAILQ_ENTRY(acpi_ioctl_hook) link; 3565 u_long cmd; 3566 acpi_ioctl_fn fn; 3567 void *arg; 3568 }; 3569 3570 static TAILQ_HEAD(,acpi_ioctl_hook) acpi_ioctl_hooks; 3571 static int acpi_ioctl_hooks_initted; 3572 3573 int 3574 acpi_register_ioctl(u_long cmd, acpi_ioctl_fn fn, void *arg) 3575 { 3576 struct acpi_ioctl_hook *hp; 3577 3578 if ((hp = malloc(sizeof(*hp), M_ACPIDEV, M_NOWAIT)) == NULL) 3579 return (ENOMEM); 3580 hp->cmd = cmd; 3581 hp->fn = fn; 3582 hp->arg = arg; 3583 3584 ACPI_LOCK(acpi); 3585 if (acpi_ioctl_hooks_initted == 0) { 3586 TAILQ_INIT(&acpi_ioctl_hooks); 3587 acpi_ioctl_hooks_initted = 1; 3588 } 3589 TAILQ_INSERT_TAIL(&acpi_ioctl_hooks, hp, link); 3590 ACPI_UNLOCK(acpi); 3591 3592 return (0); 3593 } 3594 3595 void 3596 acpi_deregister_ioctl(u_long cmd, acpi_ioctl_fn fn) 3597 { 3598 struct acpi_ioctl_hook *hp; 3599 3600 ACPI_LOCK(acpi); 3601 TAILQ_FOREACH(hp, &acpi_ioctl_hooks, link) 3602 if (hp->cmd == cmd && hp->fn == fn) 3603 break; 3604 3605 if (hp != NULL) { 3606 TAILQ_REMOVE(&acpi_ioctl_hooks, hp, link); 3607 free(hp, M_ACPIDEV); 3608 } 3609 ACPI_UNLOCK(acpi); 3610 } 3611 3612 static int 3613 acpiopen(struct cdev *dev, int flag, int fmt, struct thread *td) 3614 { 3615 return (0); 3616 } 3617 3618 static int 3619 acpiclose(struct cdev *dev, int flag, int fmt, struct thread *td) 3620 { 3621 return (0); 3622 } 3623 3624 static int 3625 acpiioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 3626 { 3627 struct acpi_softc *sc; 3628 struct acpi_ioctl_hook *hp; 3629 int error, state; 3630 3631 error = 0; 3632 hp = NULL; 3633 sc = dev->si_drv1; 3634 3635 /* 3636 * Scan the list of registered ioctls, looking for handlers. 3637 */ 3638 ACPI_LOCK(acpi); 3639 if (acpi_ioctl_hooks_initted) 3640 TAILQ_FOREACH(hp, &acpi_ioctl_hooks, link) { 3641 if (hp->cmd == cmd) 3642 break; 3643 } 3644 ACPI_UNLOCK(acpi); 3645 if (hp) 3646 return (hp->fn(cmd, addr, hp->arg)); 3647 3648 /* 3649 * Core ioctls are not permitted for non-writable user. 3650 * Currently, other ioctls just fetch information. 3651 * Not changing system behavior. 3652 */ 3653 if ((flag & FWRITE) == 0) 3654 return (EPERM); 3655 3656 /* Core system ioctls. */ 3657 switch (cmd) { 3658 case ACPIIO_REQSLPSTATE: 3659 state = *(int *)addr; 3660 if (state != ACPI_STATE_S5) 3661 return (acpi_ReqSleepState(sc, state)); 3662 device_printf(sc->acpi_dev, "power off via acpi ioctl not supported\n"); 3663 error = EOPNOTSUPP; 3664 break; 3665 case ACPIIO_ACKSLPSTATE: 3666 error = *(int *)addr; 3667 error = acpi_AckSleepState(sc->acpi_clone, error); 3668 break; 3669 case ACPIIO_SETSLPSTATE: /* DEPRECATED */ 3670 state = *(int *)addr; 3671 if (state < ACPI_STATE_S0 || state > ACPI_S_STATES_MAX) 3672 return (EINVAL); 3673 if (!acpi_sleep_states[state]) 3674 return (EOPNOTSUPP); 3675 if (ACPI_FAILURE(acpi_SetSleepState(sc, state))) 3676 error = ENXIO; 3677 break; 3678 default: 3679 error = ENXIO; 3680 break; 3681 } 3682 3683 return (error); 3684 } 3685 3686 static int 3687 acpi_sname2sstate(const char *sname) 3688 { 3689 int sstate; 3690 3691 if (toupper(sname[0]) == 'S') { 3692 sstate = sname[1] - '0'; 3693 if (sstate >= ACPI_STATE_S0 && sstate <= ACPI_STATE_S5 && 3694 sname[2] == '\0') 3695 return (sstate); 3696 } else if (strcasecmp(sname, "NONE") == 0) 3697 return (ACPI_STATE_UNKNOWN); 3698 return (-1); 3699 } 3700 3701 static const char * 3702 acpi_sstate2sname(int sstate) 3703 { 3704 static const char *snames[] = { "S0", "S1", "S2", "S3", "S4", "S5" }; 3705 3706 if (sstate >= ACPI_STATE_S0 && sstate <= ACPI_STATE_S5) 3707 return (snames[sstate]); 3708 else if (sstate == ACPI_STATE_UNKNOWN) 3709 return ("NONE"); 3710 return (NULL); 3711 } 3712 3713 static int 3714 acpi_supported_sleep_state_sysctl(SYSCTL_HANDLER_ARGS) 3715 { 3716 int error; 3717 struct sbuf sb; 3718 UINT8 state; 3719 3720 sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND); 3721 for (state = ACPI_STATE_S1; state < ACPI_S_STATE_COUNT; state++) 3722 if (acpi_sleep_states[state]) 3723 sbuf_printf(&sb, "%s ", acpi_sstate2sname(state)); 3724 sbuf_trim(&sb); 3725 sbuf_finish(&sb); 3726 error = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req); 3727 sbuf_delete(&sb); 3728 return (error); 3729 } 3730 3731 static int 3732 acpi_sleep_state_sysctl(SYSCTL_HANDLER_ARGS) 3733 { 3734 char sleep_state[10]; 3735 int error, new_state, old_state; 3736 3737 old_state = *(int *)oidp->oid_arg1; 3738 strlcpy(sleep_state, acpi_sstate2sname(old_state), sizeof(sleep_state)); 3739 error = sysctl_handle_string(oidp, sleep_state, sizeof(sleep_state), req); 3740 if (error == 0 && req->newptr != NULL) { 3741 new_state = acpi_sname2sstate(sleep_state); 3742 if (new_state < ACPI_STATE_S1) 3743 return (EINVAL); 3744 if (new_state < ACPI_S_STATE_COUNT && !acpi_sleep_states[new_state]) 3745 return (EOPNOTSUPP); 3746 if (new_state != old_state) 3747 *(int *)oidp->oid_arg1 = new_state; 3748 } 3749 return (error); 3750 } 3751 3752 /* Inform devctl(4) when we receive a Notify. */ 3753 void 3754 acpi_UserNotify(const char *subsystem, ACPI_HANDLE h, uint8_t notify) 3755 { 3756 char notify_buf[16]; 3757 ACPI_BUFFER handle_buf; 3758 ACPI_STATUS status; 3759 3760 if (subsystem == NULL) 3761 return; 3762 3763 handle_buf.Pointer = NULL; 3764 handle_buf.Length = ACPI_ALLOCATE_BUFFER; 3765 status = AcpiNsHandleToPathname(h, &handle_buf, FALSE); 3766 if (ACPI_FAILURE(status)) 3767 return; 3768 snprintf(notify_buf, sizeof(notify_buf), "notify=0x%02x", notify); 3769 devctl_notify("ACPI", subsystem, handle_buf.Pointer, notify_buf); 3770 AcpiOsFree(handle_buf.Pointer); 3771 } 3772 3773 #ifdef ACPI_DEBUG 3774 /* 3775 * Support for parsing debug options from the kernel environment. 3776 * 3777 * Bits may be set in the AcpiDbgLayer and AcpiDbgLevel debug registers 3778 * by specifying the names of the bits in the debug.acpi.layer and 3779 * debug.acpi.level environment variables. Bits may be unset by 3780 * prefixing the bit name with !. 3781 */ 3782 struct debugtag 3783 { 3784 char *name; 3785 UINT32 value; 3786 }; 3787 3788 static struct debugtag dbg_layer[] = { 3789 {"ACPI_UTILITIES", ACPI_UTILITIES}, 3790 {"ACPI_HARDWARE", ACPI_HARDWARE}, 3791 {"ACPI_EVENTS", ACPI_EVENTS}, 3792 {"ACPI_TABLES", ACPI_TABLES}, 3793 {"ACPI_NAMESPACE", ACPI_NAMESPACE}, 3794 {"ACPI_PARSER", ACPI_PARSER}, 3795 {"ACPI_DISPATCHER", ACPI_DISPATCHER}, 3796 {"ACPI_EXECUTER", ACPI_EXECUTER}, 3797 {"ACPI_RESOURCES", ACPI_RESOURCES}, 3798 {"ACPI_CA_DEBUGGER", ACPI_CA_DEBUGGER}, 3799 {"ACPI_OS_SERVICES", ACPI_OS_SERVICES}, 3800 {"ACPI_CA_DISASSEMBLER", ACPI_CA_DISASSEMBLER}, 3801 {"ACPI_ALL_COMPONENTS", ACPI_ALL_COMPONENTS}, 3802 3803 {"ACPI_AC_ADAPTER", ACPI_AC_ADAPTER}, 3804 {"ACPI_BATTERY", ACPI_BATTERY}, 3805 {"ACPI_BUS", ACPI_BUS}, 3806 {"ACPI_BUTTON", ACPI_BUTTON}, 3807 {"ACPI_EC", ACPI_EC}, 3808 {"ACPI_FAN", ACPI_FAN}, 3809 {"ACPI_POWERRES", ACPI_POWERRES}, 3810 {"ACPI_PROCESSOR", ACPI_PROCESSOR}, 3811 {"ACPI_THERMAL", ACPI_THERMAL}, 3812 {"ACPI_TIMER", ACPI_TIMER}, 3813 {"ACPI_ALL_DRIVERS", ACPI_ALL_DRIVERS}, 3814 {NULL, 0} 3815 }; 3816 3817 static struct debugtag dbg_level[] = { 3818 {"ACPI_LV_INIT", ACPI_LV_INIT}, 3819 {"ACPI_LV_DEBUG_OBJECT", ACPI_LV_DEBUG_OBJECT}, 3820 {"ACPI_LV_INFO", ACPI_LV_INFO}, 3821 {"ACPI_LV_REPAIR", ACPI_LV_REPAIR}, 3822 {"ACPI_LV_ALL_EXCEPTIONS", ACPI_LV_ALL_EXCEPTIONS}, 3823 3824 /* Trace verbosity level 1 [Standard Trace Level] */ 3825 {"ACPI_LV_INIT_NAMES", ACPI_LV_INIT_NAMES}, 3826 {"ACPI_LV_PARSE", ACPI_LV_PARSE}, 3827 {"ACPI_LV_LOAD", ACPI_LV_LOAD}, 3828 {"ACPI_LV_DISPATCH", ACPI_LV_DISPATCH}, 3829 {"ACPI_LV_EXEC", ACPI_LV_EXEC}, 3830 {"ACPI_LV_NAMES", ACPI_LV_NAMES}, 3831 {"ACPI_LV_OPREGION", ACPI_LV_OPREGION}, 3832 {"ACPI_LV_BFIELD", ACPI_LV_BFIELD}, 3833 {"ACPI_LV_TABLES", ACPI_LV_TABLES}, 3834 {"ACPI_LV_VALUES", ACPI_LV_VALUES}, 3835 {"ACPI_LV_OBJECTS", ACPI_LV_OBJECTS}, 3836 {"ACPI_LV_RESOURCES", ACPI_LV_RESOURCES}, 3837 {"ACPI_LV_USER_REQUESTS", ACPI_LV_USER_REQUESTS}, 3838 {"ACPI_LV_PACKAGE", ACPI_LV_PACKAGE}, 3839 {"ACPI_LV_VERBOSITY1", ACPI_LV_VERBOSITY1}, 3840 3841 /* Trace verbosity level 2 [Function tracing and memory allocation] */ 3842 {"ACPI_LV_ALLOCATIONS", ACPI_LV_ALLOCATIONS}, 3843 {"ACPI_LV_FUNCTIONS", ACPI_LV_FUNCTIONS}, 3844 {"ACPI_LV_OPTIMIZATIONS", ACPI_LV_OPTIMIZATIONS}, 3845 {"ACPI_LV_VERBOSITY2", ACPI_LV_VERBOSITY2}, 3846 {"ACPI_LV_ALL", ACPI_LV_ALL}, 3847 3848 /* Trace verbosity level 3 [Threading, I/O, and Interrupts] */ 3849 {"ACPI_LV_MUTEX", ACPI_LV_MUTEX}, 3850 {"ACPI_LV_THREADS", ACPI_LV_THREADS}, 3851 {"ACPI_LV_IO", ACPI_LV_IO}, 3852 {"ACPI_LV_INTERRUPTS", ACPI_LV_INTERRUPTS}, 3853 {"ACPI_LV_VERBOSITY3", ACPI_LV_VERBOSITY3}, 3854 3855 /* Exceptionally verbose output -- also used in the global "DebugLevel" */ 3856 {"ACPI_LV_AML_DISASSEMBLE", ACPI_LV_AML_DISASSEMBLE}, 3857 {"ACPI_LV_VERBOSE_INFO", ACPI_LV_VERBOSE_INFO}, 3858 {"ACPI_LV_FULL_TABLES", ACPI_LV_FULL_TABLES}, 3859 {"ACPI_LV_EVENTS", ACPI_LV_EVENTS}, 3860 {"ACPI_LV_VERBOSE", ACPI_LV_VERBOSE}, 3861 {NULL, 0} 3862 }; 3863 3864 static void 3865 acpi_parse_debug(char *cp, struct debugtag *tag, UINT32 *flag) 3866 { 3867 char *ep; 3868 int i, l; 3869 int set; 3870 3871 while (*cp) { 3872 if (isspace(*cp)) { 3873 cp++; 3874 continue; 3875 } 3876 ep = cp; 3877 while (*ep && !isspace(*ep)) 3878 ep++; 3879 if (*cp == '!') { 3880 set = 0; 3881 cp++; 3882 if (cp == ep) 3883 continue; 3884 } else { 3885 set = 1; 3886 } 3887 l = ep - cp; 3888 for (i = 0; tag[i].name != NULL; i++) { 3889 if (!strncmp(cp, tag[i].name, l)) { 3890 if (set) 3891 *flag |= tag[i].value; 3892 else 3893 *flag &= ~tag[i].value; 3894 } 3895 } 3896 cp = ep; 3897 } 3898 } 3899 3900 static void 3901 acpi_set_debugging(void *junk) 3902 { 3903 char *layer, *level; 3904 3905 if (cold) { 3906 AcpiDbgLayer = 0; 3907 AcpiDbgLevel = 0; 3908 } 3909 3910 layer = kern_getenv("debug.acpi.layer"); 3911 level = kern_getenv("debug.acpi.level"); 3912 if (layer == NULL && level == NULL) 3913 return; 3914 3915 printf("ACPI set debug"); 3916 if (layer != NULL) { 3917 if (strcmp("NONE", layer) != 0) 3918 printf(" layer '%s'", layer); 3919 acpi_parse_debug(layer, &dbg_layer[0], &AcpiDbgLayer); 3920 freeenv(layer); 3921 } 3922 if (level != NULL) { 3923 if (strcmp("NONE", level) != 0) 3924 printf(" level '%s'", level); 3925 acpi_parse_debug(level, &dbg_level[0], &AcpiDbgLevel); 3926 freeenv(level); 3927 } 3928 printf("\n"); 3929 } 3930 3931 SYSINIT(acpi_debugging, SI_SUB_TUNABLES, SI_ORDER_ANY, acpi_set_debugging, 3932 NULL); 3933 3934 static int 3935 acpi_debug_sysctl(SYSCTL_HANDLER_ARGS) 3936 { 3937 int error, *dbg; 3938 struct debugtag *tag; 3939 struct sbuf sb; 3940 char temp[128]; 3941 3942 if (sbuf_new(&sb, NULL, 128, SBUF_AUTOEXTEND) == NULL) 3943 return (ENOMEM); 3944 if (strcmp(oidp->oid_arg1, "debug.acpi.layer") == 0) { 3945 tag = &dbg_layer[0]; 3946 dbg = &AcpiDbgLayer; 3947 } else { 3948 tag = &dbg_level[0]; 3949 dbg = &AcpiDbgLevel; 3950 } 3951 3952 /* Get old values if this is a get request. */ 3953 ACPI_SERIAL_BEGIN(acpi); 3954 if (*dbg == 0) { 3955 sbuf_cpy(&sb, "NONE"); 3956 } else if (req->newptr == NULL) { 3957 for (; tag->name != NULL; tag++) { 3958 if ((*dbg & tag->value) == tag->value) 3959 sbuf_printf(&sb, "%s ", tag->name); 3960 } 3961 } 3962 sbuf_trim(&sb); 3963 sbuf_finish(&sb); 3964 strlcpy(temp, sbuf_data(&sb), sizeof(temp)); 3965 sbuf_delete(&sb); 3966 3967 error = sysctl_handle_string(oidp, temp, sizeof(temp), req); 3968 3969 /* Check for error or no change */ 3970 if (error == 0 && req->newptr != NULL) { 3971 *dbg = 0; 3972 kern_setenv((char *)oidp->oid_arg1, temp); 3973 acpi_set_debugging(NULL); 3974 } 3975 ACPI_SERIAL_END(acpi); 3976 3977 return (error); 3978 } 3979 3980 SYSCTL_PROC(_debug_acpi, OID_AUTO, layer, CTLFLAG_RW | CTLTYPE_STRING, 3981 "debug.acpi.layer", 0, acpi_debug_sysctl, "A", ""); 3982 SYSCTL_PROC(_debug_acpi, OID_AUTO, level, CTLFLAG_RW | CTLTYPE_STRING, 3983 "debug.acpi.level", 0, acpi_debug_sysctl, "A", ""); 3984 #endif /* ACPI_DEBUG */ 3985 3986 static int 3987 acpi_debug_objects_sysctl(SYSCTL_HANDLER_ARGS) 3988 { 3989 int error; 3990 int old; 3991 3992 old = acpi_debug_objects; 3993 error = sysctl_handle_int(oidp, &acpi_debug_objects, 0, req); 3994 if (error != 0 || req->newptr == NULL) 3995 return (error); 3996 if (old == acpi_debug_objects || (old && acpi_debug_objects)) 3997 return (0); 3998 3999 ACPI_SERIAL_BEGIN(acpi); 4000 AcpiGbl_EnableAmlDebugObject = acpi_debug_objects ? TRUE : FALSE; 4001 ACPI_SERIAL_END(acpi); 4002 4003 return (0); 4004 } 4005 4006 static int 4007 acpi_parse_interfaces(char *str, struct acpi_interface *iface) 4008 { 4009 char *p; 4010 size_t len; 4011 int i, j; 4012 4013 p = str; 4014 while (isspace(*p) || *p == ',') 4015 p++; 4016 len = strlen(p); 4017 if (len == 0) 4018 return (0); 4019 p = strdup(p, M_TEMP); 4020 for (i = 0; i < len; i++) 4021 if (p[i] == ',') 4022 p[i] = '\0'; 4023 i = j = 0; 4024 while (i < len) 4025 if (isspace(p[i]) || p[i] == '\0') 4026 i++; 4027 else { 4028 i += strlen(p + i) + 1; 4029 j++; 4030 } 4031 if (j == 0) { 4032 free(p, M_TEMP); 4033 return (0); 4034 } 4035 iface->data = malloc(sizeof(*iface->data) * j, M_TEMP, M_WAITOK); 4036 iface->num = j; 4037 i = j = 0; 4038 while (i < len) 4039 if (isspace(p[i]) || p[i] == '\0') 4040 i++; 4041 else { 4042 iface->data[j] = p + i; 4043 i += strlen(p + i) + 1; 4044 j++; 4045 } 4046 4047 return (j); 4048 } 4049 4050 static void 4051 acpi_free_interfaces(struct acpi_interface *iface) 4052 { 4053 4054 free(iface->data[0], M_TEMP); 4055 free(iface->data, M_TEMP); 4056 } 4057 4058 static void 4059 acpi_reset_interfaces(device_t dev) 4060 { 4061 struct acpi_interface list; 4062 ACPI_STATUS status; 4063 int i; 4064 4065 if (acpi_parse_interfaces(acpi_install_interface, &list) > 0) { 4066 for (i = 0; i < list.num; i++) { 4067 status = AcpiInstallInterface(list.data[i]); 4068 if (ACPI_FAILURE(status)) 4069 device_printf(dev, 4070 "failed to install _OSI(\"%s\"): %s\n", 4071 list.data[i], AcpiFormatException(status)); 4072 else if (bootverbose) 4073 device_printf(dev, "installed _OSI(\"%s\")\n", 4074 list.data[i]); 4075 } 4076 acpi_free_interfaces(&list); 4077 } 4078 if (acpi_parse_interfaces(acpi_remove_interface, &list) > 0) { 4079 for (i = 0; i < list.num; i++) { 4080 status = AcpiRemoveInterface(list.data[i]); 4081 if (ACPI_FAILURE(status)) 4082 device_printf(dev, 4083 "failed to remove _OSI(\"%s\"): %s\n", 4084 list.data[i], AcpiFormatException(status)); 4085 else if (bootverbose) 4086 device_printf(dev, "removed _OSI(\"%s\")\n", 4087 list.data[i]); 4088 } 4089 acpi_free_interfaces(&list); 4090 } 4091 } 4092 4093 static int 4094 acpi_pm_func(u_long cmd, void *arg, ...) 4095 { 4096 int state, acpi_state; 4097 int error; 4098 struct acpi_softc *sc; 4099 va_list ap; 4100 4101 error = 0; 4102 switch (cmd) { 4103 case POWER_CMD_SUSPEND: 4104 sc = (struct acpi_softc *)arg; 4105 if (sc == NULL) { 4106 error = EINVAL; 4107 goto out; 4108 } 4109 4110 va_start(ap, arg); 4111 state = va_arg(ap, int); 4112 va_end(ap); 4113 4114 switch (state) { 4115 case POWER_SLEEP_STATE_STANDBY: 4116 acpi_state = sc->acpi_standby_sx; 4117 break; 4118 case POWER_SLEEP_STATE_SUSPEND: 4119 acpi_state = sc->acpi_suspend_sx; 4120 break; 4121 case POWER_SLEEP_STATE_HIBERNATE: 4122 acpi_state = ACPI_STATE_S4; 4123 break; 4124 default: 4125 error = EINVAL; 4126 goto out; 4127 } 4128 4129 if (ACPI_FAILURE(acpi_EnterSleepState(sc, acpi_state))) 4130 error = ENXIO; 4131 break; 4132 default: 4133 error = EINVAL; 4134 goto out; 4135 } 4136 4137 out: 4138 return (error); 4139 } 4140 4141 static void 4142 acpi_pm_register(void *arg) 4143 { 4144 if (!cold || resource_disabled("acpi", 0)) 4145 return; 4146 4147 power_pm_register(POWER_PM_TYPE_ACPI, acpi_pm_func, NULL); 4148 } 4149 4150 SYSINIT(power, SI_SUB_KLD, SI_ORDER_ANY, acpi_pm_register, 0); 4151