xref: /freebsd/sys/dev/acpica/acpi.c (revision 5ac01ce026aa871e24065f931b5b5c36024c96f9)
1 /*-
2  * Copyright (c) 2000 Takanori Watanabe <takawata@jp.freebsd.org>
3  * Copyright (c) 2000 Mitsuru IWASAKI <iwasaki@jp.freebsd.org>
4  * Copyright (c) 2000, 2001 Michael Smith
5  * Copyright (c) 2000 BSDi
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include "opt_acpi.h"
34 
35 #include <sys/param.h>
36 #include <sys/eventhandler.h>
37 #include <sys/kernel.h>
38 #include <sys/proc.h>
39 #include <sys/fcntl.h>
40 #include <sys/malloc.h>
41 #include <sys/module.h>
42 #include <sys/bus.h>
43 #include <sys/conf.h>
44 #include <sys/ioccom.h>
45 #include <sys/reboot.h>
46 #include <sys/sysctl.h>
47 #include <sys/ctype.h>
48 #include <sys/linker.h>
49 #include <sys/power.h>
50 #include <sys/sbuf.h>
51 #include <sys/sched.h>
52 #include <sys/smp.h>
53 #include <sys/timetc.h>
54 
55 #if defined(__i386__) || defined(__amd64__)
56 #include <machine/clock.h>
57 #include <machine/pci_cfgreg.h>
58 #endif
59 #include <machine/resource.h>
60 #include <machine/bus.h>
61 #include <sys/rman.h>
62 #include <isa/isavar.h>
63 #include <isa/pnpvar.h>
64 
65 #include <contrib/dev/acpica/include/acpi.h>
66 #include <contrib/dev/acpica/include/accommon.h>
67 #include <contrib/dev/acpica/include/acnamesp.h>
68 
69 #include <dev/acpica/acpivar.h>
70 #include <dev/acpica/acpiio.h>
71 
72 #include <dev/pci/pcivar.h>
73 
74 #include <vm/vm_param.h>
75 
76 static MALLOC_DEFINE(M_ACPIDEV, "acpidev", "ACPI devices");
77 
78 /* Hooks for the ACPI CA debugging infrastructure */
79 #define _COMPONENT	ACPI_BUS
80 ACPI_MODULE_NAME("ACPI")
81 
82 static d_open_t		acpiopen;
83 static d_close_t	acpiclose;
84 static d_ioctl_t	acpiioctl;
85 
86 static struct cdevsw acpi_cdevsw = {
87 	.d_version =	D_VERSION,
88 	.d_open =	acpiopen,
89 	.d_close =	acpiclose,
90 	.d_ioctl =	acpiioctl,
91 	.d_name =	"acpi",
92 };
93 
94 struct acpi_interface {
95 	ACPI_STRING	*data;
96 	int		num;
97 };
98 
99 static char *sysres_ids[] = { "PNP0C01", "PNP0C02", NULL };
100 static char *pcilink_ids[] = { "PNP0C0F", NULL };
101 
102 /* Global mutex for locking access to the ACPI subsystem. */
103 struct mtx	acpi_mutex;
104 struct callout	acpi_sleep_timer;
105 
106 /* Bitmap of device quirks. */
107 int		acpi_quirks;
108 
109 /* Supported sleep states. */
110 static BOOLEAN	acpi_sleep_states[ACPI_S_STATE_COUNT];
111 
112 static void	acpi_lookup(void *arg, const char *name, device_t *dev);
113 static int	acpi_modevent(struct module *mod, int event, void *junk);
114 static int	acpi_probe(device_t dev);
115 static int	acpi_attach(device_t dev);
116 static int	acpi_suspend(device_t dev);
117 static int	acpi_resume(device_t dev);
118 static int	acpi_shutdown(device_t dev);
119 static device_t	acpi_add_child(device_t bus, u_int order, const char *name,
120 			int unit);
121 static int	acpi_print_child(device_t bus, device_t child);
122 static void	acpi_probe_nomatch(device_t bus, device_t child);
123 static void	acpi_driver_added(device_t dev, driver_t *driver);
124 static void	acpi_child_deleted(device_t dev, device_t child);
125 static int	acpi_read_ivar(device_t dev, device_t child, int index,
126 			uintptr_t *result);
127 static int	acpi_write_ivar(device_t dev, device_t child, int index,
128 			uintptr_t value);
129 static struct resource_list *acpi_get_rlist(device_t dev, device_t child);
130 static void	acpi_reserve_resources(device_t dev);
131 static int	acpi_sysres_alloc(device_t dev);
132 static int	acpi_set_resource(device_t dev, device_t child, int type,
133 			int rid, rman_res_t start, rman_res_t count);
134 static struct resource *acpi_alloc_resource(device_t bus, device_t child,
135 			int type, int *rid, rman_res_t start, rman_res_t end,
136 			rman_res_t count, u_int flags);
137 static int	acpi_adjust_resource(device_t bus, device_t child, int type,
138 			struct resource *r, rman_res_t start, rman_res_t end);
139 static int	acpi_release_resource(device_t bus, device_t child, int type,
140 			int rid, struct resource *r);
141 static void	acpi_delete_resource(device_t bus, device_t child, int type,
142 		    int rid);
143 static uint32_t	acpi_isa_get_logicalid(device_t dev);
144 static int	acpi_isa_get_compatid(device_t dev, uint32_t *cids, int count);
145 static int	acpi_device_id_probe(device_t bus, device_t dev, char **ids, char **match);
146 static ACPI_STATUS acpi_device_eval_obj(device_t bus, device_t dev,
147 		    ACPI_STRING pathname, ACPI_OBJECT_LIST *parameters,
148 		    ACPI_BUFFER *ret);
149 static ACPI_STATUS acpi_device_scan_cb(ACPI_HANDLE h, UINT32 level,
150 		    void *context, void **retval);
151 static ACPI_STATUS acpi_device_scan_children(device_t bus, device_t dev,
152 		    int max_depth, acpi_scan_cb_t user_fn, void *arg);
153 static int	acpi_isa_pnp_probe(device_t bus, device_t child,
154 		    struct isa_pnp_id *ids);
155 static void	acpi_platform_osc(device_t dev);
156 static void	acpi_probe_children(device_t bus);
157 static void	acpi_probe_order(ACPI_HANDLE handle, int *order);
158 static ACPI_STATUS acpi_probe_child(ACPI_HANDLE handle, UINT32 level,
159 		    void *context, void **status);
160 static void	acpi_sleep_enable(void *arg);
161 static ACPI_STATUS acpi_sleep_disable(struct acpi_softc *sc);
162 static ACPI_STATUS acpi_EnterSleepState(struct acpi_softc *sc, int state);
163 static void	acpi_shutdown_final(void *arg, int howto);
164 static void	acpi_enable_fixed_events(struct acpi_softc *sc);
165 static void	acpi_resync_clock(struct acpi_softc *sc);
166 static int	acpi_wake_sleep_prep(ACPI_HANDLE handle, int sstate);
167 static int	acpi_wake_run_prep(ACPI_HANDLE handle, int sstate);
168 static int	acpi_wake_prep_walk(int sstate);
169 static int	acpi_wake_sysctl_walk(device_t dev);
170 static int	acpi_wake_set_sysctl(SYSCTL_HANDLER_ARGS);
171 static void	acpi_system_eventhandler_sleep(void *arg, int state);
172 static void	acpi_system_eventhandler_wakeup(void *arg, int state);
173 static int	acpi_sname2sstate(const char *sname);
174 static const char *acpi_sstate2sname(int sstate);
175 static int	acpi_supported_sleep_state_sysctl(SYSCTL_HANDLER_ARGS);
176 static int	acpi_sleep_state_sysctl(SYSCTL_HANDLER_ARGS);
177 static int	acpi_debug_objects_sysctl(SYSCTL_HANDLER_ARGS);
178 static int	acpi_pm_func(u_long cmd, void *arg, ...);
179 static int	acpi_child_location_str_method(device_t acdev, device_t child,
180 					       char *buf, size_t buflen);
181 static int	acpi_child_pnpinfo_str_method(device_t acdev, device_t child,
182 					      char *buf, size_t buflen);
183 static void	acpi_enable_pcie(void);
184 static void	acpi_hint_device_unit(device_t acdev, device_t child,
185 		    const char *name, int *unitp);
186 static void	acpi_reset_interfaces(device_t dev);
187 
188 static device_method_t acpi_methods[] = {
189     /* Device interface */
190     DEVMETHOD(device_probe,		acpi_probe),
191     DEVMETHOD(device_attach,		acpi_attach),
192     DEVMETHOD(device_shutdown,		acpi_shutdown),
193     DEVMETHOD(device_detach,		bus_generic_detach),
194     DEVMETHOD(device_suspend,		acpi_suspend),
195     DEVMETHOD(device_resume,		acpi_resume),
196 
197     /* Bus interface */
198     DEVMETHOD(bus_add_child,		acpi_add_child),
199     DEVMETHOD(bus_print_child,		acpi_print_child),
200     DEVMETHOD(bus_probe_nomatch,	acpi_probe_nomatch),
201     DEVMETHOD(bus_driver_added,		acpi_driver_added),
202     DEVMETHOD(bus_child_deleted,	acpi_child_deleted),
203     DEVMETHOD(bus_read_ivar,		acpi_read_ivar),
204     DEVMETHOD(bus_write_ivar,		acpi_write_ivar),
205     DEVMETHOD(bus_get_resource_list,	acpi_get_rlist),
206     DEVMETHOD(bus_set_resource,		acpi_set_resource),
207     DEVMETHOD(bus_get_resource,		bus_generic_rl_get_resource),
208     DEVMETHOD(bus_alloc_resource,	acpi_alloc_resource),
209     DEVMETHOD(bus_adjust_resource,	acpi_adjust_resource),
210     DEVMETHOD(bus_release_resource,	acpi_release_resource),
211     DEVMETHOD(bus_delete_resource,	acpi_delete_resource),
212     DEVMETHOD(bus_child_pnpinfo_str,	acpi_child_pnpinfo_str_method),
213     DEVMETHOD(bus_child_location_str,	acpi_child_location_str_method),
214     DEVMETHOD(bus_activate_resource,	bus_generic_activate_resource),
215     DEVMETHOD(bus_deactivate_resource,	bus_generic_deactivate_resource),
216     DEVMETHOD(bus_setup_intr,		bus_generic_setup_intr),
217     DEVMETHOD(bus_teardown_intr,	bus_generic_teardown_intr),
218     DEVMETHOD(bus_hint_device_unit,	acpi_hint_device_unit),
219     DEVMETHOD(bus_get_cpus,		acpi_get_cpus),
220     DEVMETHOD(bus_get_domain,		acpi_get_domain),
221 
222     /* ACPI bus */
223     DEVMETHOD(acpi_id_probe,		acpi_device_id_probe),
224     DEVMETHOD(acpi_evaluate_object,	acpi_device_eval_obj),
225     DEVMETHOD(acpi_pwr_for_sleep,	acpi_device_pwr_for_sleep),
226     DEVMETHOD(acpi_scan_children,	acpi_device_scan_children),
227 
228     /* ISA emulation */
229     DEVMETHOD(isa_pnp_probe,		acpi_isa_pnp_probe),
230 
231     DEVMETHOD_END
232 };
233 
234 static driver_t acpi_driver = {
235     "acpi",
236     acpi_methods,
237     sizeof(struct acpi_softc),
238 };
239 
240 static devclass_t acpi_devclass;
241 EARLY_DRIVER_MODULE(acpi, nexus, acpi_driver, acpi_devclass, acpi_modevent, 0,
242     BUS_PASS_BUS + BUS_PASS_ORDER_MIDDLE);
243 MODULE_VERSION(acpi, 1);
244 
245 ACPI_SERIAL_DECL(acpi, "ACPI root bus");
246 
247 /* Local pools for managing system resources for ACPI child devices. */
248 static struct rman acpi_rman_io, acpi_rman_mem;
249 
250 #define ACPI_MINIMUM_AWAKETIME	5
251 
252 /* Holds the description of the acpi0 device. */
253 static char acpi_desc[ACPI_OEM_ID_SIZE + ACPI_OEM_TABLE_ID_SIZE + 2];
254 
255 SYSCTL_NODE(_debug, OID_AUTO, acpi, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
256     "ACPI debugging");
257 static char acpi_ca_version[12];
258 SYSCTL_STRING(_debug_acpi, OID_AUTO, acpi_ca_version, CTLFLAG_RD,
259 	      acpi_ca_version, 0, "Version of Intel ACPI-CA");
260 
261 /*
262  * Allow overriding _OSI methods.
263  */
264 static char acpi_install_interface[256];
265 TUNABLE_STR("hw.acpi.install_interface", acpi_install_interface,
266     sizeof(acpi_install_interface));
267 static char acpi_remove_interface[256];
268 TUNABLE_STR("hw.acpi.remove_interface", acpi_remove_interface,
269     sizeof(acpi_remove_interface));
270 
271 /* Allow users to dump Debug objects without ACPI debugger. */
272 static int acpi_debug_objects;
273 TUNABLE_INT("debug.acpi.enable_debug_objects", &acpi_debug_objects);
274 SYSCTL_PROC(_debug_acpi, OID_AUTO, enable_debug_objects,
275     CTLFLAG_RW | CTLTYPE_INT | CTLFLAG_NEEDGIANT, NULL, 0,
276     acpi_debug_objects_sysctl, "I",
277     "Enable Debug objects");
278 
279 /* Allow the interpreter to ignore common mistakes in BIOS. */
280 static int acpi_interpreter_slack = 1;
281 TUNABLE_INT("debug.acpi.interpreter_slack", &acpi_interpreter_slack);
282 SYSCTL_INT(_debug_acpi, OID_AUTO, interpreter_slack, CTLFLAG_RDTUN,
283     &acpi_interpreter_slack, 1, "Turn on interpreter slack mode.");
284 
285 /* Ignore register widths set by FADT and use default widths instead. */
286 static int acpi_ignore_reg_width = 1;
287 TUNABLE_INT("debug.acpi.default_register_width", &acpi_ignore_reg_width);
288 SYSCTL_INT(_debug_acpi, OID_AUTO, default_register_width, CTLFLAG_RDTUN,
289     &acpi_ignore_reg_width, 1, "Ignore register widths set by FADT");
290 
291 /* Allow users to override quirks. */
292 TUNABLE_INT("debug.acpi.quirks", &acpi_quirks);
293 
294 int acpi_susp_bounce;
295 SYSCTL_INT(_debug_acpi, OID_AUTO, suspend_bounce, CTLFLAG_RW,
296     &acpi_susp_bounce, 0, "Don't actually suspend, just test devices.");
297 
298 /*
299  * ACPI can only be loaded as a module by the loader; activating it after
300  * system bootstrap time is not useful, and can be fatal to the system.
301  * It also cannot be unloaded, since the entire system bus hierarchy hangs
302  * off it.
303  */
304 static int
305 acpi_modevent(struct module *mod, int event, void *junk)
306 {
307     switch (event) {
308     case MOD_LOAD:
309 	if (!cold) {
310 	    printf("The ACPI driver cannot be loaded after boot.\n");
311 	    return (EPERM);
312 	}
313 	break;
314     case MOD_UNLOAD:
315 	if (!cold && power_pm_get_type() == POWER_PM_TYPE_ACPI)
316 	    return (EBUSY);
317 	break;
318     default:
319 	break;
320     }
321     return (0);
322 }
323 
324 /*
325  * Perform early initialization.
326  */
327 ACPI_STATUS
328 acpi_Startup(void)
329 {
330     static int started = 0;
331     ACPI_STATUS status;
332     int val;
333 
334     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
335 
336     /* Only run the startup code once.  The MADT driver also calls this. */
337     if (started)
338 	return_VALUE (AE_OK);
339     started = 1;
340 
341     /*
342      * Initialize the ACPICA subsystem.
343      */
344     if (ACPI_FAILURE(status = AcpiInitializeSubsystem())) {
345 	printf("ACPI: Could not initialize Subsystem: %s\n",
346 	    AcpiFormatException(status));
347 	return_VALUE (status);
348     }
349 
350     /*
351      * Pre-allocate space for RSDT/XSDT and DSDT tables and allow resizing
352      * if more tables exist.
353      */
354     if (ACPI_FAILURE(status = AcpiInitializeTables(NULL, 2, TRUE))) {
355 	printf("ACPI: Table initialisation failed: %s\n",
356 	    AcpiFormatException(status));
357 	return_VALUE (status);
358     }
359 
360     /* Set up any quirks we have for this system. */
361     if (acpi_quirks == ACPI_Q_OK)
362 	acpi_table_quirks(&acpi_quirks);
363 
364     /* If the user manually set the disabled hint to 0, force-enable ACPI. */
365     if (resource_int_value("acpi", 0, "disabled", &val) == 0 && val == 0)
366 	acpi_quirks &= ~ACPI_Q_BROKEN;
367     if (acpi_quirks & ACPI_Q_BROKEN) {
368 	printf("ACPI disabled by blacklist.  Contact your BIOS vendor.\n");
369 	status = AE_SUPPORT;
370     }
371 
372     return_VALUE (status);
373 }
374 
375 /*
376  * Detect ACPI and perform early initialisation.
377  */
378 int
379 acpi_identify(void)
380 {
381     ACPI_TABLE_RSDP	*rsdp;
382     ACPI_TABLE_HEADER	*rsdt;
383     ACPI_PHYSICAL_ADDRESS paddr;
384     struct sbuf		sb;
385 
386     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
387 
388     if (!cold)
389 	return (ENXIO);
390 
391     /* Check that we haven't been disabled with a hint. */
392     if (resource_disabled("acpi", 0))
393 	return (ENXIO);
394 
395     /* Check for other PM systems. */
396     if (power_pm_get_type() != POWER_PM_TYPE_NONE &&
397 	power_pm_get_type() != POWER_PM_TYPE_ACPI) {
398 	printf("ACPI identify failed, other PM system enabled.\n");
399 	return (ENXIO);
400     }
401 
402     /* Initialize root tables. */
403     if (ACPI_FAILURE(acpi_Startup())) {
404 	printf("ACPI: Try disabling either ACPI or apic support.\n");
405 	return (ENXIO);
406     }
407 
408     if ((paddr = AcpiOsGetRootPointer()) == 0 ||
409 	(rsdp = AcpiOsMapMemory(paddr, sizeof(ACPI_TABLE_RSDP))) == NULL)
410 	return (ENXIO);
411     if (rsdp->Revision > 1 && rsdp->XsdtPhysicalAddress != 0)
412 	paddr = (ACPI_PHYSICAL_ADDRESS)rsdp->XsdtPhysicalAddress;
413     else
414 	paddr = (ACPI_PHYSICAL_ADDRESS)rsdp->RsdtPhysicalAddress;
415     AcpiOsUnmapMemory(rsdp, sizeof(ACPI_TABLE_RSDP));
416 
417     if ((rsdt = AcpiOsMapMemory(paddr, sizeof(ACPI_TABLE_HEADER))) == NULL)
418 	return (ENXIO);
419     sbuf_new(&sb, acpi_desc, sizeof(acpi_desc), SBUF_FIXEDLEN);
420     sbuf_bcat(&sb, rsdt->OemId, ACPI_OEM_ID_SIZE);
421     sbuf_trim(&sb);
422     sbuf_putc(&sb, ' ');
423     sbuf_bcat(&sb, rsdt->OemTableId, ACPI_OEM_TABLE_ID_SIZE);
424     sbuf_trim(&sb);
425     sbuf_finish(&sb);
426     sbuf_delete(&sb);
427     AcpiOsUnmapMemory(rsdt, sizeof(ACPI_TABLE_HEADER));
428 
429     snprintf(acpi_ca_version, sizeof(acpi_ca_version), "%x", ACPI_CA_VERSION);
430 
431     return (0);
432 }
433 
434 /*
435  * Fetch some descriptive data from ACPI to put in our attach message.
436  */
437 static int
438 acpi_probe(device_t dev)
439 {
440 
441     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
442 
443     device_set_desc(dev, acpi_desc);
444 
445     return_VALUE (BUS_PROBE_NOWILDCARD);
446 }
447 
448 static int
449 acpi_attach(device_t dev)
450 {
451     struct acpi_softc	*sc;
452     ACPI_STATUS		status;
453     int			error, state;
454     UINT32		flags;
455     UINT8		TypeA, TypeB;
456     char		*env;
457 
458     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
459 
460     sc = device_get_softc(dev);
461     sc->acpi_dev = dev;
462     callout_init(&sc->susp_force_to, 1);
463 
464     error = ENXIO;
465 
466     /* Initialize resource manager. */
467     acpi_rman_io.rm_type = RMAN_ARRAY;
468     acpi_rman_io.rm_start = 0;
469     acpi_rman_io.rm_end = 0xffff;
470     acpi_rman_io.rm_descr = "ACPI I/O ports";
471     if (rman_init(&acpi_rman_io) != 0)
472 	panic("acpi rman_init IO ports failed");
473     acpi_rman_mem.rm_type = RMAN_ARRAY;
474     acpi_rman_mem.rm_descr = "ACPI I/O memory addresses";
475     if (rman_init(&acpi_rman_mem) != 0)
476 	panic("acpi rman_init memory failed");
477 
478     /* Initialise the ACPI mutex */
479     mtx_init(&acpi_mutex, "ACPI global lock", NULL, MTX_DEF);
480 
481     /*
482      * Set the globals from our tunables.  This is needed because ACPI-CA
483      * uses UINT8 for some values and we have no tunable_byte.
484      */
485     AcpiGbl_EnableInterpreterSlack = acpi_interpreter_slack ? TRUE : FALSE;
486     AcpiGbl_EnableAmlDebugObject = acpi_debug_objects ? TRUE : FALSE;
487     AcpiGbl_UseDefaultRegisterWidths = acpi_ignore_reg_width ? TRUE : FALSE;
488 
489 #ifndef ACPI_DEBUG
490     /*
491      * Disable all debugging layers and levels.
492      */
493     AcpiDbgLayer = 0;
494     AcpiDbgLevel = 0;
495 #endif
496 
497     /* Override OS interfaces if the user requested. */
498     acpi_reset_interfaces(dev);
499 
500     /* Load ACPI name space. */
501     status = AcpiLoadTables();
502     if (ACPI_FAILURE(status)) {
503 	device_printf(dev, "Could not load Namespace: %s\n",
504 		      AcpiFormatException(status));
505 	goto out;
506     }
507 
508     /* Handle MCFG table if present. */
509     acpi_enable_pcie();
510 
511     /*
512      * Note that some systems (specifically, those with namespace evaluation
513      * issues that require the avoidance of parts of the namespace) must
514      * avoid running _INI and _STA on everything, as well as dodging the final
515      * object init pass.
516      *
517      * For these devices, we set ACPI_NO_DEVICE_INIT and ACPI_NO_OBJECT_INIT).
518      *
519      * XXX We should arrange for the object init pass after we have attached
520      *     all our child devices, but on many systems it works here.
521      */
522     flags = 0;
523     if (testenv("debug.acpi.avoid"))
524 	flags = ACPI_NO_DEVICE_INIT | ACPI_NO_OBJECT_INIT;
525 
526     /* Bring the hardware and basic handlers online. */
527     if (ACPI_FAILURE(status = AcpiEnableSubsystem(flags))) {
528 	device_printf(dev, "Could not enable ACPI: %s\n",
529 		      AcpiFormatException(status));
530 	goto out;
531     }
532 
533     /*
534      * Call the ECDT probe function to provide EC functionality before
535      * the namespace has been evaluated.
536      *
537      * XXX This happens before the sysresource devices have been probed and
538      * attached so its resources come from nexus0.  In practice, this isn't
539      * a problem but should be addressed eventually.
540      */
541     acpi_ec_ecdt_probe(dev);
542 
543     /* Bring device objects and regions online. */
544     if (ACPI_FAILURE(status = AcpiInitializeObjects(flags))) {
545 	device_printf(dev, "Could not initialize ACPI objects: %s\n",
546 		      AcpiFormatException(status));
547 	goto out;
548     }
549 
550     /*
551      * Setup our sysctl tree.
552      *
553      * XXX: This doesn't check to make sure that none of these fail.
554      */
555     sysctl_ctx_init(&sc->acpi_sysctl_ctx);
556     sc->acpi_sysctl_tree = SYSCTL_ADD_NODE(&sc->acpi_sysctl_ctx,
557         SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO, device_get_name(dev),
558 	CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "");
559     SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
560 	OID_AUTO, "supported_sleep_state",
561 	CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
562 	0, 0, acpi_supported_sleep_state_sysctl, "A",
563 	"List supported ACPI sleep states.");
564     SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
565 	OID_AUTO, "power_button_state",
566 	CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
567 	&sc->acpi_power_button_sx, 0, acpi_sleep_state_sysctl, "A",
568 	"Power button ACPI sleep state.");
569     SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
570 	OID_AUTO, "sleep_button_state",
571 	CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
572 	&sc->acpi_sleep_button_sx, 0, acpi_sleep_state_sysctl, "A",
573 	"Sleep button ACPI sleep state.");
574     SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
575 	OID_AUTO, "lid_switch_state",
576 	CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
577 	&sc->acpi_lid_switch_sx, 0, acpi_sleep_state_sysctl, "A",
578 	"Lid ACPI sleep state. Set to S3 if you want to suspend your laptop when close the Lid.");
579     SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
580 	OID_AUTO, "standby_state",
581 	CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
582 	&sc->acpi_standby_sx, 0, acpi_sleep_state_sysctl, "A", "");
583     SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
584 	OID_AUTO, "suspend_state",
585 	CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
586 	&sc->acpi_suspend_sx, 0, acpi_sleep_state_sysctl, "A", "");
587     SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
588 	OID_AUTO, "sleep_delay", CTLFLAG_RW, &sc->acpi_sleep_delay, 0,
589 	"sleep delay in seconds");
590     SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
591 	OID_AUTO, "s4bios", CTLFLAG_RW, &sc->acpi_s4bios, 0, "S4BIOS mode");
592     SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
593 	OID_AUTO, "verbose", CTLFLAG_RW, &sc->acpi_verbose, 0, "verbose mode");
594     SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
595 	OID_AUTO, "disable_on_reboot", CTLFLAG_RW,
596 	&sc->acpi_do_disable, 0, "Disable ACPI when rebooting/halting system");
597     SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
598 	OID_AUTO, "handle_reboot", CTLFLAG_RW,
599 	&sc->acpi_handle_reboot, 0, "Use ACPI Reset Register to reboot");
600 
601     /*
602      * Default to 1 second before sleeping to give some machines time to
603      * stabilize.
604      */
605     sc->acpi_sleep_delay = 1;
606     if (bootverbose)
607 	sc->acpi_verbose = 1;
608     if ((env = kern_getenv("hw.acpi.verbose")) != NULL) {
609 	if (strcmp(env, "0") != 0)
610 	    sc->acpi_verbose = 1;
611 	freeenv(env);
612     }
613 
614     /* Only enable reboot by default if the FADT says it is available. */
615     if (AcpiGbl_FADT.Flags & ACPI_FADT_RESET_REGISTER)
616 	sc->acpi_handle_reboot = 1;
617 
618 #if !ACPI_REDUCED_HARDWARE
619     /* Only enable S4BIOS by default if the FACS says it is available. */
620     if (AcpiGbl_FACS != NULL && AcpiGbl_FACS->Flags & ACPI_FACS_S4_BIOS_PRESENT)
621 	sc->acpi_s4bios = 1;
622 #endif
623 
624     /* Probe all supported sleep states. */
625     acpi_sleep_states[ACPI_STATE_S0] = TRUE;
626     for (state = ACPI_STATE_S1; state < ACPI_S_STATE_COUNT; state++)
627 	if (ACPI_SUCCESS(AcpiEvaluateObject(ACPI_ROOT_OBJECT,
628 	    __DECONST(char *, AcpiGbl_SleepStateNames[state]), NULL, NULL)) &&
629 	    ACPI_SUCCESS(AcpiGetSleepTypeData(state, &TypeA, &TypeB)))
630 	    acpi_sleep_states[state] = TRUE;
631 
632     /*
633      * Dispatch the default sleep state to devices.  The lid switch is set
634      * to UNKNOWN by default to avoid surprising users.
635      */
636     sc->acpi_power_button_sx = acpi_sleep_states[ACPI_STATE_S5] ?
637 	ACPI_STATE_S5 : ACPI_STATE_UNKNOWN;
638     sc->acpi_lid_switch_sx = ACPI_STATE_UNKNOWN;
639     sc->acpi_standby_sx = acpi_sleep_states[ACPI_STATE_S1] ?
640 	ACPI_STATE_S1 : ACPI_STATE_UNKNOWN;
641     sc->acpi_suspend_sx = acpi_sleep_states[ACPI_STATE_S3] ?
642 	ACPI_STATE_S3 : ACPI_STATE_UNKNOWN;
643 
644     /* Pick the first valid sleep state for the sleep button default. */
645     sc->acpi_sleep_button_sx = ACPI_STATE_UNKNOWN;
646     for (state = ACPI_STATE_S1; state <= ACPI_STATE_S4; state++)
647 	if (acpi_sleep_states[state]) {
648 	    sc->acpi_sleep_button_sx = state;
649 	    break;
650 	}
651 
652     acpi_enable_fixed_events(sc);
653 
654     /*
655      * Scan the namespace and attach/initialise children.
656      */
657 
658     /* Register our shutdown handler. */
659     EVENTHANDLER_REGISTER(shutdown_final, acpi_shutdown_final, sc,
660 	SHUTDOWN_PRI_LAST);
661 
662     /*
663      * Register our acpi event handlers.
664      * XXX should be configurable eg. via userland policy manager.
665      */
666     EVENTHANDLER_REGISTER(acpi_sleep_event, acpi_system_eventhandler_sleep,
667 	sc, ACPI_EVENT_PRI_LAST);
668     EVENTHANDLER_REGISTER(acpi_wakeup_event, acpi_system_eventhandler_wakeup,
669 	sc, ACPI_EVENT_PRI_LAST);
670 
671     /* Flag our initial states. */
672     sc->acpi_enabled = TRUE;
673     sc->acpi_sstate = ACPI_STATE_S0;
674     sc->acpi_sleep_disabled = TRUE;
675 
676     /* Create the control device */
677     sc->acpi_dev_t = make_dev(&acpi_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0664,
678 			      "acpi");
679     sc->acpi_dev_t->si_drv1 = sc;
680 
681     if ((error = acpi_machdep_init(dev)))
682 	goto out;
683 
684     /* Register ACPI again to pass the correct argument of pm_func. */
685     power_pm_register(POWER_PM_TYPE_ACPI, acpi_pm_func, sc);
686 
687     acpi_platform_osc(dev);
688 
689     if (!acpi_disabled("bus")) {
690 	EVENTHANDLER_REGISTER(dev_lookup, acpi_lookup, NULL, 1000);
691 	acpi_probe_children(dev);
692     }
693 
694     /* Update all GPEs and enable runtime GPEs. */
695     status = AcpiUpdateAllGpes();
696     if (ACPI_FAILURE(status))
697 	device_printf(dev, "Could not update all GPEs: %s\n",
698 	    AcpiFormatException(status));
699 
700     /* Allow sleep request after a while. */
701     callout_init_mtx(&acpi_sleep_timer, &acpi_mutex, 0);
702     callout_reset(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME,
703 	acpi_sleep_enable, sc);
704 
705     error = 0;
706 
707  out:
708     return_VALUE (error);
709 }
710 
711 static void
712 acpi_set_power_children(device_t dev, int state)
713 {
714 	device_t child;
715 	device_t *devlist;
716 	int dstate, i, numdevs;
717 
718 	if (device_get_children(dev, &devlist, &numdevs) != 0)
719 		return;
720 
721 	/*
722 	 * Retrieve and set D-state for the sleep state if _SxD is present.
723 	 * Skip children who aren't attached since they are handled separately.
724 	 */
725 	for (i = 0; i < numdevs; i++) {
726 		child = devlist[i];
727 		dstate = state;
728 		if (device_is_attached(child) &&
729 		    acpi_device_pwr_for_sleep(dev, child, &dstate) == 0)
730 			acpi_set_powerstate(child, dstate);
731 	}
732 	free(devlist, M_TEMP);
733 }
734 
735 static int
736 acpi_suspend(device_t dev)
737 {
738     int error;
739 
740     GIANT_REQUIRED;
741 
742     error = bus_generic_suspend(dev);
743     if (error == 0)
744 	acpi_set_power_children(dev, ACPI_STATE_D3);
745 
746     return (error);
747 }
748 
749 static int
750 acpi_resume(device_t dev)
751 {
752 
753     GIANT_REQUIRED;
754 
755     acpi_set_power_children(dev, ACPI_STATE_D0);
756 
757     return (bus_generic_resume(dev));
758 }
759 
760 static int
761 acpi_shutdown(device_t dev)
762 {
763 
764     GIANT_REQUIRED;
765 
766     /* Allow children to shutdown first. */
767     bus_generic_shutdown(dev);
768 
769     /*
770      * Enable any GPEs that are able to power-on the system (i.e., RTC).
771      * Also, disable any that are not valid for this state (most).
772      */
773     acpi_wake_prep_walk(ACPI_STATE_S5);
774 
775     return (0);
776 }
777 
778 /*
779  * Handle a new device being added
780  */
781 static device_t
782 acpi_add_child(device_t bus, u_int order, const char *name, int unit)
783 {
784     struct acpi_device	*ad;
785     device_t		child;
786 
787     if ((ad = malloc(sizeof(*ad), M_ACPIDEV, M_NOWAIT | M_ZERO)) == NULL)
788 	return (NULL);
789 
790     resource_list_init(&ad->ad_rl);
791 
792     child = device_add_child_ordered(bus, order, name, unit);
793     if (child != NULL)
794 	device_set_ivars(child, ad);
795     else
796 	free(ad, M_ACPIDEV);
797     return (child);
798 }
799 
800 static int
801 acpi_print_child(device_t bus, device_t child)
802 {
803     struct acpi_device	 *adev = device_get_ivars(child);
804     struct resource_list *rl = &adev->ad_rl;
805     int retval = 0;
806 
807     retval += bus_print_child_header(bus, child);
808     retval += resource_list_print_type(rl, "port",  SYS_RES_IOPORT, "%#jx");
809     retval += resource_list_print_type(rl, "iomem", SYS_RES_MEMORY, "%#jx");
810     retval += resource_list_print_type(rl, "irq",   SYS_RES_IRQ,    "%jd");
811     retval += resource_list_print_type(rl, "drq",   SYS_RES_DRQ,    "%jd");
812     if (device_get_flags(child))
813 	retval += printf(" flags %#x", device_get_flags(child));
814     retval += bus_print_child_domain(bus, child);
815     retval += bus_print_child_footer(bus, child);
816 
817     return (retval);
818 }
819 
820 /*
821  * If this device is an ACPI child but no one claimed it, attempt
822  * to power it off.  We'll power it back up when a driver is added.
823  *
824  * XXX Disabled for now since many necessary devices (like fdc and
825  * ATA) don't claim the devices we created for them but still expect
826  * them to be powered up.
827  */
828 static void
829 acpi_probe_nomatch(device_t bus, device_t child)
830 {
831 #ifdef ACPI_ENABLE_POWERDOWN_NODRIVER
832     acpi_set_powerstate(child, ACPI_STATE_D3);
833 #endif
834 }
835 
836 /*
837  * If a new driver has a chance to probe a child, first power it up.
838  *
839  * XXX Disabled for now (see acpi_probe_nomatch for details).
840  */
841 static void
842 acpi_driver_added(device_t dev, driver_t *driver)
843 {
844     device_t child, *devlist;
845     int i, numdevs;
846 
847     DEVICE_IDENTIFY(driver, dev);
848     if (device_get_children(dev, &devlist, &numdevs))
849 	    return;
850     for (i = 0; i < numdevs; i++) {
851 	child = devlist[i];
852 	if (device_get_state(child) == DS_NOTPRESENT) {
853 #ifdef ACPI_ENABLE_POWERDOWN_NODRIVER
854 	    acpi_set_powerstate(child, ACPI_STATE_D0);
855 	    if (device_probe_and_attach(child) != 0)
856 		acpi_set_powerstate(child, ACPI_STATE_D3);
857 #else
858 	    device_probe_and_attach(child);
859 #endif
860 	}
861     }
862     free(devlist, M_TEMP);
863 }
864 
865 /* Location hint for devctl(8) */
866 static int
867 acpi_child_location_str_method(device_t cbdev, device_t child, char *buf,
868     size_t buflen)
869 {
870     struct acpi_device *dinfo = device_get_ivars(child);
871     char buf2[32];
872     int pxm;
873 
874     if (dinfo->ad_handle) {
875         snprintf(buf, buflen, "handle=%s", acpi_name(dinfo->ad_handle));
876         if (ACPI_SUCCESS(acpi_GetInteger(dinfo->ad_handle, "_PXM", &pxm))) {
877                 snprintf(buf2, 32, " _PXM=%d", pxm);
878                 strlcat(buf, buf2, buflen);
879         }
880     } else {
881         snprintf(buf, buflen, "");
882     }
883     return (0);
884 }
885 
886 /* PnP information for devctl(8) */
887 int
888 acpi_pnpinfo_str(ACPI_HANDLE handle, char *buf, size_t buflen)
889 {
890     ACPI_DEVICE_INFO *adinfo;
891 
892     if (ACPI_FAILURE(AcpiGetObjectInfo(handle, &adinfo))) {
893 	snprintf(buf, buflen, "unknown");
894 	return (0);
895     }
896 
897     snprintf(buf, buflen, "_HID=%s _UID=%lu _CID=%s",
898 	(adinfo->Valid & ACPI_VALID_HID) ?
899 	adinfo->HardwareId.String : "none",
900 	(adinfo->Valid & ACPI_VALID_UID) ?
901 	strtoul(adinfo->UniqueId.String, NULL, 10) : 0UL,
902 	((adinfo->Valid & ACPI_VALID_CID) &&
903 	 adinfo->CompatibleIdList.Count > 0) ?
904 	adinfo->CompatibleIdList.Ids[0].String : "none");
905     AcpiOsFree(adinfo);
906 
907     return (0);
908 }
909 
910 static int
911 acpi_child_pnpinfo_str_method(device_t cbdev, device_t child, char *buf,
912     size_t buflen)
913 {
914     struct acpi_device *dinfo = device_get_ivars(child);
915 
916     return (acpi_pnpinfo_str(dinfo->ad_handle, buf, buflen));
917 }
918 
919 /*
920  * Handle device deletion.
921  */
922 static void
923 acpi_child_deleted(device_t dev, device_t child)
924 {
925     struct acpi_device *dinfo = device_get_ivars(child);
926 
927     if (acpi_get_device(dinfo->ad_handle) == child)
928 	AcpiDetachData(dinfo->ad_handle, acpi_fake_objhandler);
929 }
930 
931 /*
932  * Handle per-device ivars
933  */
934 static int
935 acpi_read_ivar(device_t dev, device_t child, int index, uintptr_t *result)
936 {
937     struct acpi_device	*ad;
938 
939     if ((ad = device_get_ivars(child)) == NULL) {
940 	device_printf(child, "device has no ivars\n");
941 	return (ENOENT);
942     }
943 
944     /* ACPI and ISA compatibility ivars */
945     switch(index) {
946     case ACPI_IVAR_HANDLE:
947 	*(ACPI_HANDLE *)result = ad->ad_handle;
948 	break;
949     case ACPI_IVAR_PRIVATE:
950 	*(void **)result = ad->ad_private;
951 	break;
952     case ACPI_IVAR_FLAGS:
953 	*(int *)result = ad->ad_flags;
954 	break;
955     case ISA_IVAR_VENDORID:
956     case ISA_IVAR_SERIAL:
957     case ISA_IVAR_COMPATID:
958 	*(int *)result = -1;
959 	break;
960     case ISA_IVAR_LOGICALID:
961 	*(int *)result = acpi_isa_get_logicalid(child);
962 	break;
963     case PCI_IVAR_CLASS:
964 	*(uint8_t*)result = (ad->ad_cls_class >> 16) & 0xff;
965 	break;
966     case PCI_IVAR_SUBCLASS:
967 	*(uint8_t*)result = (ad->ad_cls_class >> 8) & 0xff;
968 	break;
969     case PCI_IVAR_PROGIF:
970 	*(uint8_t*)result = (ad->ad_cls_class >> 0) & 0xff;
971 	break;
972     default:
973 	return (ENOENT);
974     }
975 
976     return (0);
977 }
978 
979 static int
980 acpi_write_ivar(device_t dev, device_t child, int index, uintptr_t value)
981 {
982     struct acpi_device	*ad;
983 
984     if ((ad = device_get_ivars(child)) == NULL) {
985 	device_printf(child, "device has no ivars\n");
986 	return (ENOENT);
987     }
988 
989     switch(index) {
990     case ACPI_IVAR_HANDLE:
991 	ad->ad_handle = (ACPI_HANDLE)value;
992 	break;
993     case ACPI_IVAR_PRIVATE:
994 	ad->ad_private = (void *)value;
995 	break;
996     case ACPI_IVAR_FLAGS:
997 	ad->ad_flags = (int)value;
998 	break;
999     default:
1000 	panic("bad ivar write request (%d)", index);
1001 	return (ENOENT);
1002     }
1003 
1004     return (0);
1005 }
1006 
1007 /*
1008  * Handle child resource allocation/removal
1009  */
1010 static struct resource_list *
1011 acpi_get_rlist(device_t dev, device_t child)
1012 {
1013     struct acpi_device		*ad;
1014 
1015     ad = device_get_ivars(child);
1016     return (&ad->ad_rl);
1017 }
1018 
1019 static int
1020 acpi_match_resource_hint(device_t dev, int type, long value)
1021 {
1022     struct acpi_device *ad = device_get_ivars(dev);
1023     struct resource_list *rl = &ad->ad_rl;
1024     struct resource_list_entry *rle;
1025 
1026     STAILQ_FOREACH(rle, rl, link) {
1027 	if (rle->type != type)
1028 	    continue;
1029 	if (rle->start <= value && rle->end >= value)
1030 	    return (1);
1031     }
1032     return (0);
1033 }
1034 
1035 /*
1036  * Wire device unit numbers based on resource matches in hints.
1037  */
1038 static void
1039 acpi_hint_device_unit(device_t acdev, device_t child, const char *name,
1040     int *unitp)
1041 {
1042     const char *s;
1043     long value;
1044     int line, matches, unit;
1045 
1046     /*
1047      * Iterate over all the hints for the devices with the specified
1048      * name to see if one's resources are a subset of this device.
1049      */
1050     line = 0;
1051     while (resource_find_dev(&line, name, &unit, "at", NULL) == 0) {
1052 	/* Must have an "at" for acpi or isa. */
1053 	resource_string_value(name, unit, "at", &s);
1054 	if (!(strcmp(s, "acpi0") == 0 || strcmp(s, "acpi") == 0 ||
1055 	    strcmp(s, "isa0") == 0 || strcmp(s, "isa") == 0))
1056 	    continue;
1057 
1058 	/*
1059 	 * Check for matching resources.  We must have at least one match.
1060 	 * Since I/O and memory resources cannot be shared, if we get a
1061 	 * match on either of those, ignore any mismatches in IRQs or DRQs.
1062 	 *
1063 	 * XXX: We may want to revisit this to be more lenient and wire
1064 	 * as long as it gets one match.
1065 	 */
1066 	matches = 0;
1067 	if (resource_long_value(name, unit, "port", &value) == 0) {
1068 	    /*
1069 	     * Floppy drive controllers are notorious for having a
1070 	     * wide variety of resources not all of which include the
1071 	     * first port that is specified by the hint (typically
1072 	     * 0x3f0) (see the comment above fdc_isa_alloc_resources()
1073 	     * in fdc_isa.c).  However, they do all seem to include
1074 	     * port + 2 (e.g. 0x3f2) so for a floppy device, look for
1075 	     * 'value + 2' in the port resources instead of the hint
1076 	     * value.
1077 	     */
1078 	    if (strcmp(name, "fdc") == 0)
1079 		value += 2;
1080 	    if (acpi_match_resource_hint(child, SYS_RES_IOPORT, value))
1081 		matches++;
1082 	    else
1083 		continue;
1084 	}
1085 	if (resource_long_value(name, unit, "maddr", &value) == 0) {
1086 	    if (acpi_match_resource_hint(child, SYS_RES_MEMORY, value))
1087 		matches++;
1088 	    else
1089 		continue;
1090 	}
1091 	if (matches > 0)
1092 	    goto matched;
1093 	if (resource_long_value(name, unit, "irq", &value) == 0) {
1094 	    if (acpi_match_resource_hint(child, SYS_RES_IRQ, value))
1095 		matches++;
1096 	    else
1097 		continue;
1098 	}
1099 	if (resource_long_value(name, unit, "drq", &value) == 0) {
1100 	    if (acpi_match_resource_hint(child, SYS_RES_DRQ, value))
1101 		matches++;
1102 	    else
1103 		continue;
1104 	}
1105 
1106     matched:
1107 	if (matches > 0) {
1108 	    /* We have a winner! */
1109 	    *unitp = unit;
1110 	    break;
1111 	}
1112     }
1113 }
1114 
1115 /*
1116  * Fetch the NUMA domain for a device by mapping the value returned by
1117  * _PXM to a NUMA domain.  If the device does not have a _PXM method,
1118  * -2 is returned.  If any other error occurs, -1 is returned.
1119  */
1120 static int
1121 acpi_parse_pxm(device_t dev)
1122 {
1123 #ifdef NUMA
1124 #if defined(__i386__) || defined(__amd64__)
1125 	ACPI_HANDLE handle;
1126 	ACPI_STATUS status;
1127 	int pxm;
1128 
1129 	handle = acpi_get_handle(dev);
1130 	if (handle == NULL)
1131 		return (-2);
1132 	status = acpi_GetInteger(handle, "_PXM", &pxm);
1133 	if (ACPI_SUCCESS(status))
1134 		return (acpi_map_pxm_to_vm_domainid(pxm));
1135 	if (status == AE_NOT_FOUND)
1136 		return (-2);
1137 #endif
1138 #endif
1139 	return (-1);
1140 }
1141 
1142 int
1143 acpi_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize,
1144     cpuset_t *cpuset)
1145 {
1146 	int d, error;
1147 
1148 	d = acpi_parse_pxm(child);
1149 	if (d < 0)
1150 		return (bus_generic_get_cpus(dev, child, op, setsize, cpuset));
1151 
1152 	switch (op) {
1153 	case LOCAL_CPUS:
1154 		if (setsize != sizeof(cpuset_t))
1155 			return (EINVAL);
1156 		*cpuset = cpuset_domain[d];
1157 		return (0);
1158 	case INTR_CPUS:
1159 		error = bus_generic_get_cpus(dev, child, op, setsize, cpuset);
1160 		if (error != 0)
1161 			return (error);
1162 		if (setsize != sizeof(cpuset_t))
1163 			return (EINVAL);
1164 		CPU_AND(cpuset, &cpuset_domain[d]);
1165 		return (0);
1166 	default:
1167 		return (bus_generic_get_cpus(dev, child, op, setsize, cpuset));
1168 	}
1169 }
1170 
1171 /*
1172  * Fetch the NUMA domain for the given device 'dev'.
1173  *
1174  * If a device has a _PXM method, map that to a NUMA domain.
1175  * Otherwise, pass the request up to the parent.
1176  * If there's no matching domain or the domain cannot be
1177  * determined, return ENOENT.
1178  */
1179 int
1180 acpi_get_domain(device_t dev, device_t child, int *domain)
1181 {
1182 	int d;
1183 
1184 	d = acpi_parse_pxm(child);
1185 	if (d >= 0) {
1186 		*domain = d;
1187 		return (0);
1188 	}
1189 	if (d == -1)
1190 		return (ENOENT);
1191 
1192 	/* No _PXM node; go up a level */
1193 	return (bus_generic_get_domain(dev, child, domain));
1194 }
1195 
1196 /*
1197  * Pre-allocate/manage all memory and IO resources.  Since rman can't handle
1198  * duplicates, we merge any in the sysresource attach routine.
1199  */
1200 static int
1201 acpi_sysres_alloc(device_t dev)
1202 {
1203     struct resource *res;
1204     struct resource_list *rl;
1205     struct resource_list_entry *rle;
1206     struct rman *rm;
1207     device_t *children;
1208     int child_count, i;
1209 
1210     /*
1211      * Probe/attach any sysresource devices.  This would be unnecessary if we
1212      * had multi-pass probe/attach.
1213      */
1214     if (device_get_children(dev, &children, &child_count) != 0)
1215 	return (ENXIO);
1216     for (i = 0; i < child_count; i++) {
1217 	if (ACPI_ID_PROBE(dev, children[i], sysres_ids, NULL) <= 0)
1218 	    device_probe_and_attach(children[i]);
1219     }
1220     free(children, M_TEMP);
1221 
1222     rl = BUS_GET_RESOURCE_LIST(device_get_parent(dev), dev);
1223     STAILQ_FOREACH(rle, rl, link) {
1224 	if (rle->res != NULL) {
1225 	    device_printf(dev, "duplicate resource for %jx\n", rle->start);
1226 	    continue;
1227 	}
1228 
1229 	/* Only memory and IO resources are valid here. */
1230 	switch (rle->type) {
1231 	case SYS_RES_IOPORT:
1232 	    rm = &acpi_rman_io;
1233 	    break;
1234 	case SYS_RES_MEMORY:
1235 	    rm = &acpi_rman_mem;
1236 	    break;
1237 	default:
1238 	    continue;
1239 	}
1240 
1241 	/* Pre-allocate resource and add to our rman pool. */
1242 	res = BUS_ALLOC_RESOURCE(device_get_parent(dev), dev, rle->type,
1243 	    &rle->rid, rle->start, rle->start + rle->count - 1, rle->count, 0);
1244 	if (res != NULL) {
1245 	    rman_manage_region(rm, rman_get_start(res), rman_get_end(res));
1246 	    rle->res = res;
1247 	} else if (bootverbose)
1248 	    device_printf(dev, "reservation of %jx, %jx (%d) failed\n",
1249 		rle->start, rle->count, rle->type);
1250     }
1251     return (0);
1252 }
1253 
1254 /*
1255  * Reserve declared resources for devices found during attach once system
1256  * resources have been allocated.
1257  */
1258 static void
1259 acpi_reserve_resources(device_t dev)
1260 {
1261     struct resource_list_entry *rle;
1262     struct resource_list *rl;
1263     struct acpi_device *ad;
1264     struct acpi_softc *sc;
1265     device_t *children;
1266     int child_count, i;
1267 
1268     sc = device_get_softc(dev);
1269     if (device_get_children(dev, &children, &child_count) != 0)
1270 	return;
1271     for (i = 0; i < child_count; i++) {
1272 	ad = device_get_ivars(children[i]);
1273 	rl = &ad->ad_rl;
1274 
1275 	/* Don't reserve system resources. */
1276 	if (ACPI_ID_PROBE(dev, children[i], sysres_ids, NULL) <= 0)
1277 	    continue;
1278 
1279 	STAILQ_FOREACH(rle, rl, link) {
1280 	    /*
1281 	     * Don't reserve IRQ resources.  There are many sticky things
1282 	     * to get right otherwise (e.g. IRQs for psm, atkbd, and HPET
1283 	     * when using legacy routing).
1284 	     */
1285 	    if (rle->type == SYS_RES_IRQ)
1286 		continue;
1287 
1288 	    /*
1289 	     * Don't reserve the resource if it is already allocated.
1290 	     * The acpi_ec(4) driver can allocate its resources early
1291 	     * if ECDT is present.
1292 	     */
1293 	    if (rle->res != NULL)
1294 		continue;
1295 
1296 	    /*
1297 	     * Try to reserve the resource from our parent.  If this
1298 	     * fails because the resource is a system resource, just
1299 	     * let it be.  The resource range is already reserved so
1300 	     * that other devices will not use it.  If the driver
1301 	     * needs to allocate the resource, then
1302 	     * acpi_alloc_resource() will sub-alloc from the system
1303 	     * resource.
1304 	     */
1305 	    resource_list_reserve(rl, dev, children[i], rle->type, &rle->rid,
1306 		rle->start, rle->end, rle->count, 0);
1307 	}
1308     }
1309     free(children, M_TEMP);
1310     sc->acpi_resources_reserved = 1;
1311 }
1312 
1313 static int
1314 acpi_set_resource(device_t dev, device_t child, int type, int rid,
1315     rman_res_t start, rman_res_t count)
1316 {
1317     struct acpi_softc *sc = device_get_softc(dev);
1318     struct acpi_device *ad = device_get_ivars(child);
1319     struct resource_list *rl = &ad->ad_rl;
1320     ACPI_DEVICE_INFO *devinfo;
1321     rman_res_t end;
1322     int allow;
1323 
1324     /* Ignore IRQ resources for PCI link devices. */
1325     if (type == SYS_RES_IRQ &&
1326 	ACPI_ID_PROBE(dev, child, pcilink_ids, NULL) <= 0)
1327 	return (0);
1328 
1329     /*
1330      * Ignore most resources for PCI root bridges.  Some BIOSes
1331      * incorrectly enumerate the memory ranges they decode as plain
1332      * memory resources instead of as ResourceProducer ranges.  Other
1333      * BIOSes incorrectly list system resource entries for I/O ranges
1334      * under the PCI bridge.  Do allow the one known-correct case on
1335      * x86 of a PCI bridge claiming the I/O ports used for PCI config
1336      * access.
1337      */
1338     if (type == SYS_RES_MEMORY || type == SYS_RES_IOPORT) {
1339 	if (ACPI_SUCCESS(AcpiGetObjectInfo(ad->ad_handle, &devinfo))) {
1340 	    if ((devinfo->Flags & ACPI_PCI_ROOT_BRIDGE) != 0) {
1341 #if defined(__i386__) || defined(__amd64__)
1342 		allow = (type == SYS_RES_IOPORT && start == CONF1_ADDR_PORT);
1343 #else
1344 		allow = 0;
1345 #endif
1346 		if (!allow) {
1347 		    AcpiOsFree(devinfo);
1348 		    return (0);
1349 		}
1350 	    }
1351 	    AcpiOsFree(devinfo);
1352 	}
1353     }
1354 
1355 #ifdef INTRNG
1356     /* map with default for now */
1357     if (type == SYS_RES_IRQ)
1358 	start = (rman_res_t)acpi_map_intr(child, (u_int)start,
1359 			acpi_get_handle(child));
1360 #endif
1361 
1362     /* If the resource is already allocated, fail. */
1363     if (resource_list_busy(rl, type, rid))
1364 	return (EBUSY);
1365 
1366     /* If the resource is already reserved, release it. */
1367     if (resource_list_reserved(rl, type, rid))
1368 	resource_list_unreserve(rl, dev, child, type, rid);
1369 
1370     /* Add the resource. */
1371     end = (start + count - 1);
1372     resource_list_add(rl, type, rid, start, end, count);
1373 
1374     /* Don't reserve resources until the system resources are allocated. */
1375     if (!sc->acpi_resources_reserved)
1376 	return (0);
1377 
1378     /* Don't reserve system resources. */
1379     if (ACPI_ID_PROBE(dev, child, sysres_ids, NULL) <= 0)
1380 	return (0);
1381 
1382     /*
1383      * Don't reserve IRQ resources.  There are many sticky things to
1384      * get right otherwise (e.g. IRQs for psm, atkbd, and HPET when
1385      * using legacy routing).
1386      */
1387     if (type == SYS_RES_IRQ)
1388 	return (0);
1389 
1390     /*
1391      * Don't reserve resources for CPU devices.  Some of these
1392      * resources need to be allocated as shareable, but reservations
1393      * are always non-shareable.
1394      */
1395     if (device_get_devclass(child) == devclass_find("cpu"))
1396 	return (0);
1397 
1398     /*
1399      * Reserve the resource.
1400      *
1401      * XXX: Ignores failure for now.  Failure here is probably a
1402      * BIOS/firmware bug?
1403      */
1404     resource_list_reserve(rl, dev, child, type, &rid, start, end, count, 0);
1405     return (0);
1406 }
1407 
1408 static struct resource *
1409 acpi_alloc_resource(device_t bus, device_t child, int type, int *rid,
1410     rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
1411 {
1412 #ifndef INTRNG
1413     ACPI_RESOURCE ares;
1414 #endif
1415     struct acpi_device *ad;
1416     struct resource_list_entry *rle;
1417     struct resource_list *rl;
1418     struct resource *res;
1419     int isdefault = RMAN_IS_DEFAULT_RANGE(start, end);
1420 
1421     /*
1422      * First attempt at allocating the resource.  For direct children,
1423      * use resource_list_alloc() to handle reserved resources.  For
1424      * other devices, pass the request up to our parent.
1425      */
1426     if (bus == device_get_parent(child)) {
1427 	ad = device_get_ivars(child);
1428 	rl = &ad->ad_rl;
1429 
1430 	/*
1431 	 * Simulate the behavior of the ISA bus for direct children
1432 	 * devices.  That is, if a non-default range is specified for
1433 	 * a resource that doesn't exist, use bus_set_resource() to
1434 	 * add the resource before allocating it.  Note that these
1435 	 * resources will not be reserved.
1436 	 */
1437 	if (!isdefault && resource_list_find(rl, type, *rid) == NULL)
1438 		resource_list_add(rl, type, *rid, start, end, count);
1439 	res = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
1440 	    flags);
1441 #ifndef INTRNG
1442 	if (res != NULL && type == SYS_RES_IRQ) {
1443 	    /*
1444 	     * Since bus_config_intr() takes immediate effect, we cannot
1445 	     * configure the interrupt associated with a device when we
1446 	     * parse the resources but have to defer it until a driver
1447 	     * actually allocates the interrupt via bus_alloc_resource().
1448 	     *
1449 	     * XXX: Should we handle the lookup failing?
1450 	     */
1451 	    if (ACPI_SUCCESS(acpi_lookup_irq_resource(child, *rid, res, &ares)))
1452 		acpi_config_intr(child, &ares);
1453 	}
1454 #endif
1455 
1456 	/*
1457 	 * If this is an allocation of the "default" range for a given
1458 	 * RID, fetch the exact bounds for this resource from the
1459 	 * resource list entry to try to allocate the range from the
1460 	 * system resource regions.
1461 	 */
1462 	if (res == NULL && isdefault) {
1463 	    rle = resource_list_find(rl, type, *rid);
1464 	    if (rle != NULL) {
1465 		start = rle->start;
1466 		end = rle->end;
1467 		count = rle->count;
1468 	    }
1469 	}
1470     } else
1471 	res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, type, rid,
1472 	    start, end, count, flags);
1473 
1474     /*
1475      * If the first attempt failed and this is an allocation of a
1476      * specific range, try to satisfy the request via a suballocation
1477      * from our system resource regions.
1478      */
1479     if (res == NULL && start + count - 1 == end)
1480 	res = acpi_alloc_sysres(child, type, rid, start, end, count, flags);
1481     return (res);
1482 }
1483 
1484 /*
1485  * Attempt to allocate a specific resource range from the system
1486  * resource ranges.  Note that we only handle memory and I/O port
1487  * system resources.
1488  */
1489 struct resource *
1490 acpi_alloc_sysres(device_t child, int type, int *rid, rman_res_t start,
1491     rman_res_t end, rman_res_t count, u_int flags)
1492 {
1493     struct rman *rm;
1494     struct resource *res;
1495 
1496     switch (type) {
1497     case SYS_RES_IOPORT:
1498 	rm = &acpi_rman_io;
1499 	break;
1500     case SYS_RES_MEMORY:
1501 	rm = &acpi_rman_mem;
1502 	break;
1503     default:
1504 	return (NULL);
1505     }
1506 
1507     KASSERT(start + count - 1 == end, ("wildcard resource range"));
1508     res = rman_reserve_resource(rm, start, end, count, flags & ~RF_ACTIVE,
1509 	child);
1510     if (res == NULL)
1511 	return (NULL);
1512 
1513     rman_set_rid(res, *rid);
1514 
1515     /* If requested, activate the resource using the parent's method. */
1516     if (flags & RF_ACTIVE)
1517 	if (bus_activate_resource(child, type, *rid, res) != 0) {
1518 	    rman_release_resource(res);
1519 	    return (NULL);
1520 	}
1521 
1522     return (res);
1523 }
1524 
1525 static int
1526 acpi_is_resource_managed(int type, struct resource *r)
1527 {
1528 
1529     /* We only handle memory and IO resources through rman. */
1530     switch (type) {
1531     case SYS_RES_IOPORT:
1532 	return (rman_is_region_manager(r, &acpi_rman_io));
1533     case SYS_RES_MEMORY:
1534 	return (rman_is_region_manager(r, &acpi_rman_mem));
1535     }
1536     return (0);
1537 }
1538 
1539 static int
1540 acpi_adjust_resource(device_t bus, device_t child, int type, struct resource *r,
1541     rman_res_t start, rman_res_t end)
1542 {
1543 
1544     if (acpi_is_resource_managed(type, r))
1545 	return (rman_adjust_resource(r, start, end));
1546     return (bus_generic_adjust_resource(bus, child, type, r, start, end));
1547 }
1548 
1549 static int
1550 acpi_release_resource(device_t bus, device_t child, int type, int rid,
1551     struct resource *r)
1552 {
1553     int ret;
1554 
1555     /*
1556      * If this resource belongs to one of our internal managers,
1557      * deactivate it and release it to the local pool.
1558      */
1559     if (acpi_is_resource_managed(type, r)) {
1560 	if (rman_get_flags(r) & RF_ACTIVE) {
1561 	    ret = bus_deactivate_resource(child, type, rid, r);
1562 	    if (ret != 0)
1563 		return (ret);
1564 	}
1565 	return (rman_release_resource(r));
1566     }
1567 
1568     return (bus_generic_rl_release_resource(bus, child, type, rid, r));
1569 }
1570 
1571 static void
1572 acpi_delete_resource(device_t bus, device_t child, int type, int rid)
1573 {
1574     struct resource_list *rl;
1575 
1576     rl = acpi_get_rlist(bus, child);
1577     if (resource_list_busy(rl, type, rid)) {
1578 	device_printf(bus, "delete_resource: Resource still owned by child"
1579 	    " (type=%d, rid=%d)\n", type, rid);
1580 	return;
1581     }
1582     resource_list_unreserve(rl, bus, child, type, rid);
1583     resource_list_delete(rl, type, rid);
1584 }
1585 
1586 /* Allocate an IO port or memory resource, given its GAS. */
1587 int
1588 acpi_bus_alloc_gas(device_t dev, int *type, int *rid, ACPI_GENERIC_ADDRESS *gas,
1589     struct resource **res, u_int flags)
1590 {
1591     int error, res_type;
1592 
1593     error = ENOMEM;
1594     if (type == NULL || rid == NULL || gas == NULL || res == NULL)
1595 	return (EINVAL);
1596 
1597     /* We only support memory and IO spaces. */
1598     switch (gas->SpaceId) {
1599     case ACPI_ADR_SPACE_SYSTEM_MEMORY:
1600 	res_type = SYS_RES_MEMORY;
1601 	break;
1602     case ACPI_ADR_SPACE_SYSTEM_IO:
1603 	res_type = SYS_RES_IOPORT;
1604 	break;
1605     default:
1606 	return (EOPNOTSUPP);
1607     }
1608 
1609     /*
1610      * If the register width is less than 8, assume the BIOS author means
1611      * it is a bit field and just allocate a byte.
1612      */
1613     if (gas->BitWidth && gas->BitWidth < 8)
1614 	gas->BitWidth = 8;
1615 
1616     /* Validate the address after we're sure we support the space. */
1617     if (gas->Address == 0 || gas->BitWidth == 0)
1618 	return (EINVAL);
1619 
1620     bus_set_resource(dev, res_type, *rid, gas->Address,
1621 	gas->BitWidth / 8);
1622     *res = bus_alloc_resource_any(dev, res_type, rid, RF_ACTIVE | flags);
1623     if (*res != NULL) {
1624 	*type = res_type;
1625 	error = 0;
1626     } else
1627 	bus_delete_resource(dev, res_type, *rid);
1628 
1629     return (error);
1630 }
1631 
1632 /* Probe _HID and _CID for compatible ISA PNP ids. */
1633 static uint32_t
1634 acpi_isa_get_logicalid(device_t dev)
1635 {
1636     ACPI_DEVICE_INFO	*devinfo;
1637     ACPI_HANDLE		h;
1638     uint32_t		pnpid;
1639 
1640     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
1641 
1642     /* Fetch and validate the HID. */
1643     if ((h = acpi_get_handle(dev)) == NULL ||
1644 	ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo)))
1645 	return_VALUE (0);
1646 
1647     pnpid = (devinfo->Valid & ACPI_VALID_HID) != 0 &&
1648 	devinfo->HardwareId.Length >= ACPI_EISAID_STRING_SIZE ?
1649 	PNP_EISAID(devinfo->HardwareId.String) : 0;
1650     AcpiOsFree(devinfo);
1651 
1652     return_VALUE (pnpid);
1653 }
1654 
1655 static int
1656 acpi_isa_get_compatid(device_t dev, uint32_t *cids, int count)
1657 {
1658     ACPI_DEVICE_INFO	*devinfo;
1659     ACPI_PNP_DEVICE_ID	*ids;
1660     ACPI_HANDLE		h;
1661     uint32_t		*pnpid;
1662     int			i, valid;
1663 
1664     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
1665 
1666     pnpid = cids;
1667 
1668     /* Fetch and validate the CID */
1669     if ((h = acpi_get_handle(dev)) == NULL ||
1670 	ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo)))
1671 	return_VALUE (0);
1672 
1673     if ((devinfo->Valid & ACPI_VALID_CID) == 0) {
1674 	AcpiOsFree(devinfo);
1675 	return_VALUE (0);
1676     }
1677 
1678     if (devinfo->CompatibleIdList.Count < count)
1679 	count = devinfo->CompatibleIdList.Count;
1680     ids = devinfo->CompatibleIdList.Ids;
1681     for (i = 0, valid = 0; i < count; i++)
1682 	if (ids[i].Length >= ACPI_EISAID_STRING_SIZE &&
1683 	    strncmp(ids[i].String, "PNP", 3) == 0) {
1684 	    *pnpid++ = PNP_EISAID(ids[i].String);
1685 	    valid++;
1686 	}
1687     AcpiOsFree(devinfo);
1688 
1689     return_VALUE (valid);
1690 }
1691 
1692 static int
1693 acpi_device_id_probe(device_t bus, device_t dev, char **ids, char **match)
1694 {
1695     ACPI_HANDLE h;
1696     ACPI_OBJECT_TYPE t;
1697     int rv;
1698     int i;
1699 
1700     h = acpi_get_handle(dev);
1701     if (ids == NULL || h == NULL)
1702 	return (ENXIO);
1703     t = acpi_get_type(dev);
1704     if (t != ACPI_TYPE_DEVICE && t != ACPI_TYPE_PROCESSOR)
1705 	return (ENXIO);
1706 
1707     /* Try to match one of the array of IDs with a HID or CID. */
1708     for (i = 0; ids[i] != NULL; i++) {
1709 	rv = acpi_MatchHid(h, ids[i]);
1710 	if (rv == ACPI_MATCHHID_NOMATCH)
1711 	    continue;
1712 
1713 	if (match != NULL) {
1714 	    *match = ids[i];
1715 	}
1716 	return ((rv == ACPI_MATCHHID_HID)?
1717 		    BUS_PROBE_DEFAULT : BUS_PROBE_LOW_PRIORITY);
1718     }
1719     return (ENXIO);
1720 }
1721 
1722 static ACPI_STATUS
1723 acpi_device_eval_obj(device_t bus, device_t dev, ACPI_STRING pathname,
1724     ACPI_OBJECT_LIST *parameters, ACPI_BUFFER *ret)
1725 {
1726     ACPI_HANDLE h;
1727 
1728     if (dev == NULL)
1729 	h = ACPI_ROOT_OBJECT;
1730     else if ((h = acpi_get_handle(dev)) == NULL)
1731 	return (AE_BAD_PARAMETER);
1732     return (AcpiEvaluateObject(h, pathname, parameters, ret));
1733 }
1734 
1735 int
1736 acpi_device_pwr_for_sleep(device_t bus, device_t dev, int *dstate)
1737 {
1738     struct acpi_softc *sc;
1739     ACPI_HANDLE handle;
1740     ACPI_STATUS status;
1741     char sxd[8];
1742 
1743     handle = acpi_get_handle(dev);
1744 
1745     /*
1746      * XXX If we find these devices, don't try to power them down.
1747      * The serial and IRDA ports on my T23 hang the system when
1748      * set to D3 and it appears that such legacy devices may
1749      * need special handling in their drivers.
1750      */
1751     if (dstate == NULL || handle == NULL ||
1752 	acpi_MatchHid(handle, "PNP0500") ||
1753 	acpi_MatchHid(handle, "PNP0501") ||
1754 	acpi_MatchHid(handle, "PNP0502") ||
1755 	acpi_MatchHid(handle, "PNP0510") ||
1756 	acpi_MatchHid(handle, "PNP0511"))
1757 	return (ENXIO);
1758 
1759     /*
1760      * Override next state with the value from _SxD, if present.
1761      * Note illegal _S0D is evaluated because some systems expect this.
1762      */
1763     sc = device_get_softc(bus);
1764     snprintf(sxd, sizeof(sxd), "_S%dD", sc->acpi_sstate);
1765     status = acpi_GetInteger(handle, sxd, dstate);
1766     if (ACPI_FAILURE(status) && status != AE_NOT_FOUND) {
1767 	    device_printf(dev, "failed to get %s on %s: %s\n", sxd,
1768 		acpi_name(handle), AcpiFormatException(status));
1769 	    return (ENXIO);
1770     }
1771 
1772     return (0);
1773 }
1774 
1775 /* Callback arg for our implementation of walking the namespace. */
1776 struct acpi_device_scan_ctx {
1777     acpi_scan_cb_t	user_fn;
1778     void		*arg;
1779     ACPI_HANDLE		parent;
1780 };
1781 
1782 static ACPI_STATUS
1783 acpi_device_scan_cb(ACPI_HANDLE h, UINT32 level, void *arg, void **retval)
1784 {
1785     struct acpi_device_scan_ctx *ctx;
1786     device_t dev, old_dev;
1787     ACPI_STATUS status;
1788     ACPI_OBJECT_TYPE type;
1789 
1790     /*
1791      * Skip this device if we think we'll have trouble with it or it is
1792      * the parent where the scan began.
1793      */
1794     ctx = (struct acpi_device_scan_ctx *)arg;
1795     if (acpi_avoid(h) || h == ctx->parent)
1796 	return (AE_OK);
1797 
1798     /* If this is not a valid device type (e.g., a method), skip it. */
1799     if (ACPI_FAILURE(AcpiGetType(h, &type)))
1800 	return (AE_OK);
1801     if (type != ACPI_TYPE_DEVICE && type != ACPI_TYPE_PROCESSOR &&
1802 	type != ACPI_TYPE_THERMAL && type != ACPI_TYPE_POWER)
1803 	return (AE_OK);
1804 
1805     /*
1806      * Call the user function with the current device.  If it is unchanged
1807      * afterwards, return.  Otherwise, we update the handle to the new dev.
1808      */
1809     old_dev = acpi_get_device(h);
1810     dev = old_dev;
1811     status = ctx->user_fn(h, &dev, level, ctx->arg);
1812     if (ACPI_FAILURE(status) || old_dev == dev)
1813 	return (status);
1814 
1815     /* Remove the old child and its connection to the handle. */
1816     if (old_dev != NULL)
1817 	device_delete_child(device_get_parent(old_dev), old_dev);
1818 
1819     /* Recreate the handle association if the user created a device. */
1820     if (dev != NULL)
1821 	AcpiAttachData(h, acpi_fake_objhandler, dev);
1822 
1823     return (AE_OK);
1824 }
1825 
1826 static ACPI_STATUS
1827 acpi_device_scan_children(device_t bus, device_t dev, int max_depth,
1828     acpi_scan_cb_t user_fn, void *arg)
1829 {
1830     ACPI_HANDLE h;
1831     struct acpi_device_scan_ctx ctx;
1832 
1833     if (acpi_disabled("children"))
1834 	return (AE_OK);
1835 
1836     if (dev == NULL)
1837 	h = ACPI_ROOT_OBJECT;
1838     else if ((h = acpi_get_handle(dev)) == NULL)
1839 	return (AE_BAD_PARAMETER);
1840     ctx.user_fn = user_fn;
1841     ctx.arg = arg;
1842     ctx.parent = h;
1843     return (AcpiWalkNamespace(ACPI_TYPE_ANY, h, max_depth,
1844 	acpi_device_scan_cb, NULL, &ctx, NULL));
1845 }
1846 
1847 /*
1848  * Even though ACPI devices are not PCI, we use the PCI approach for setting
1849  * device power states since it's close enough to ACPI.
1850  */
1851 int
1852 acpi_set_powerstate(device_t child, int state)
1853 {
1854     ACPI_HANDLE h;
1855     ACPI_STATUS status;
1856 
1857     h = acpi_get_handle(child);
1858     if (state < ACPI_STATE_D0 || state > ACPI_D_STATES_MAX)
1859 	return (EINVAL);
1860     if (h == NULL)
1861 	return (0);
1862 
1863     /* Ignore errors if the power methods aren't present. */
1864     status = acpi_pwr_switch_consumer(h, state);
1865     if (ACPI_SUCCESS(status)) {
1866 	if (bootverbose)
1867 	    device_printf(child, "set ACPI power state D%d on %s\n",
1868 		state, acpi_name(h));
1869     } else if (status != AE_NOT_FOUND)
1870 	device_printf(child,
1871 	    "failed to set ACPI power state D%d on %s: %s\n", state,
1872 	    acpi_name(h), AcpiFormatException(status));
1873 
1874     return (0);
1875 }
1876 
1877 static int
1878 acpi_isa_pnp_probe(device_t bus, device_t child, struct isa_pnp_id *ids)
1879 {
1880     int			result, cid_count, i;
1881     uint32_t		lid, cids[8];
1882 
1883     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
1884 
1885     /*
1886      * ISA-style drivers attached to ACPI may persist and
1887      * probe manually if we return ENOENT.  We never want
1888      * that to happen, so don't ever return it.
1889      */
1890     result = ENXIO;
1891 
1892     /* Scan the supplied IDs for a match */
1893     lid = acpi_isa_get_logicalid(child);
1894     cid_count = acpi_isa_get_compatid(child, cids, 8);
1895     while (ids && ids->ip_id) {
1896 	if (lid == ids->ip_id) {
1897 	    result = 0;
1898 	    goto out;
1899 	}
1900 	for (i = 0; i < cid_count; i++) {
1901 	    if (cids[i] == ids->ip_id) {
1902 		result = 0;
1903 		goto out;
1904 	    }
1905 	}
1906 	ids++;
1907     }
1908 
1909  out:
1910     if (result == 0 && ids->ip_desc)
1911 	device_set_desc(child, ids->ip_desc);
1912 
1913     return_VALUE (result);
1914 }
1915 
1916 /*
1917  * Look for a MCFG table.  If it is present, use the settings for
1918  * domain (segment) 0 to setup PCI config space access via the memory
1919  * map.
1920  *
1921  * On non-x86 architectures (arm64 for now), this will be done from the
1922  * PCI host bridge driver.
1923  */
1924 static void
1925 acpi_enable_pcie(void)
1926 {
1927 #if defined(__i386__) || defined(__amd64__)
1928 	ACPI_TABLE_HEADER *hdr;
1929 	ACPI_MCFG_ALLOCATION *alloc, *end;
1930 	ACPI_STATUS status;
1931 
1932 	status = AcpiGetTable(ACPI_SIG_MCFG, 1, &hdr);
1933 	if (ACPI_FAILURE(status))
1934 		return;
1935 
1936 	end = (ACPI_MCFG_ALLOCATION *)((char *)hdr + hdr->Length);
1937 	alloc = (ACPI_MCFG_ALLOCATION *)((ACPI_TABLE_MCFG *)hdr + 1);
1938 	while (alloc < end) {
1939 		if (alloc->PciSegment == 0) {
1940 			pcie_cfgregopen(alloc->Address, alloc->StartBusNumber,
1941 			    alloc->EndBusNumber);
1942 			return;
1943 		}
1944 		alloc++;
1945 	}
1946 #endif
1947 }
1948 
1949 static void
1950 acpi_platform_osc(device_t dev)
1951 {
1952 	ACPI_HANDLE sb_handle;
1953 	ACPI_STATUS status;
1954 	uint32_t cap_set[2];
1955 
1956 	/* 0811B06E-4A27-44F9-8D60-3CBBC22E7B48 */
1957 	static uint8_t acpi_platform_uuid[ACPI_UUID_LENGTH] = {
1958 		0x6e, 0xb0, 0x11, 0x08, 0x27, 0x4a, 0xf9, 0x44,
1959 		0x8d, 0x60, 0x3c, 0xbb, 0xc2, 0x2e, 0x7b, 0x48
1960 	};
1961 
1962 	if (ACPI_FAILURE(AcpiGetHandle(ACPI_ROOT_OBJECT, "\\_SB_", &sb_handle)))
1963 		return;
1964 
1965 	cap_set[1] = 0x10;	/* APEI Support */
1966 	status = acpi_EvaluateOSC(sb_handle, acpi_platform_uuid, 1,
1967 	    nitems(cap_set), cap_set, cap_set, false);
1968 	if (ACPI_FAILURE(status)) {
1969 		if (status == AE_NOT_FOUND)
1970 			return;
1971 		device_printf(dev, "_OSC failed: %s\n",
1972 		    AcpiFormatException(status));
1973 		return;
1974 	}
1975 }
1976 
1977 /*
1978  * Scan all of the ACPI namespace and attach child devices.
1979  *
1980  * We should only expect to find devices in the \_PR, \_TZ, \_SI, and
1981  * \_SB scopes, and \_PR and \_TZ became obsolete in the ACPI 2.0 spec.
1982  * However, in violation of the spec, some systems place their PCI link
1983  * devices in \, so we have to walk the whole namespace.  We check the
1984  * type of namespace nodes, so this should be ok.
1985  */
1986 static void
1987 acpi_probe_children(device_t bus)
1988 {
1989 
1990     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
1991 
1992     /*
1993      * Scan the namespace and insert placeholders for all the devices that
1994      * we find.  We also probe/attach any early devices.
1995      *
1996      * Note that we use AcpiWalkNamespace rather than AcpiGetDevices because
1997      * we want to create nodes for all devices, not just those that are
1998      * currently present. (This assumes that we don't want to create/remove
1999      * devices as they appear, which might be smarter.)
2000      */
2001     ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "namespace scan\n"));
2002     AcpiWalkNamespace(ACPI_TYPE_ANY, ACPI_ROOT_OBJECT, 100, acpi_probe_child,
2003 	NULL, bus, NULL);
2004 
2005     /* Pre-allocate resources for our rman from any sysresource devices. */
2006     acpi_sysres_alloc(bus);
2007 
2008     /* Reserve resources already allocated to children. */
2009     acpi_reserve_resources(bus);
2010 
2011     /* Create any static children by calling device identify methods. */
2012     ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "device identify routines\n"));
2013     bus_generic_probe(bus);
2014 
2015     /* Probe/attach all children, created statically and from the namespace. */
2016     ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "acpi bus_generic_attach\n"));
2017     bus_generic_attach(bus);
2018 
2019     /* Attach wake sysctls. */
2020     acpi_wake_sysctl_walk(bus);
2021 
2022     ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "done attaching children\n"));
2023     return_VOID;
2024 }
2025 
2026 /*
2027  * Determine the probe order for a given device.
2028  */
2029 static void
2030 acpi_probe_order(ACPI_HANDLE handle, int *order)
2031 {
2032 	ACPI_OBJECT_TYPE type;
2033 
2034 	/*
2035 	 * 0. CPUs
2036 	 * 1. I/O port and memory system resource holders
2037 	 * 2. Clocks and timers (to handle early accesses)
2038 	 * 3. Embedded controllers (to handle early accesses)
2039 	 * 4. PCI Link Devices
2040 	 */
2041 	AcpiGetType(handle, &type);
2042 	if (type == ACPI_TYPE_PROCESSOR)
2043 		*order = 0;
2044 	else if (acpi_MatchHid(handle, "PNP0C01") ||
2045 	    acpi_MatchHid(handle, "PNP0C02"))
2046 		*order = 1;
2047 	else if (acpi_MatchHid(handle, "PNP0100") ||
2048 	    acpi_MatchHid(handle, "PNP0103") ||
2049 	    acpi_MatchHid(handle, "PNP0B00"))
2050 		*order = 2;
2051 	else if (acpi_MatchHid(handle, "PNP0C09"))
2052 		*order = 3;
2053 	else if (acpi_MatchHid(handle, "PNP0C0F"))
2054 		*order = 4;
2055 }
2056 
2057 /*
2058  * Evaluate a child device and determine whether we might attach a device to
2059  * it.
2060  */
2061 static ACPI_STATUS
2062 acpi_probe_child(ACPI_HANDLE handle, UINT32 level, void *context, void **status)
2063 {
2064     ACPI_DEVICE_INFO *devinfo;
2065     struct acpi_device	*ad;
2066     struct acpi_prw_data prw;
2067     ACPI_OBJECT_TYPE type;
2068     ACPI_HANDLE h;
2069     device_t bus, child;
2070     char *handle_str;
2071     int order;
2072 
2073     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
2074 
2075     if (acpi_disabled("children"))
2076 	return_ACPI_STATUS (AE_OK);
2077 
2078     /* Skip this device if we think we'll have trouble with it. */
2079     if (acpi_avoid(handle))
2080 	return_ACPI_STATUS (AE_OK);
2081 
2082     bus = (device_t)context;
2083     if (ACPI_SUCCESS(AcpiGetType(handle, &type))) {
2084 	handle_str = acpi_name(handle);
2085 	switch (type) {
2086 	case ACPI_TYPE_DEVICE:
2087 	    /*
2088 	     * Since we scan from \, be sure to skip system scope objects.
2089 	     * \_SB_ and \_TZ_ are defined in ACPICA as devices to work around
2090 	     * BIOS bugs.  For example, \_SB_ is to allow \_SB_._INI to be run
2091 	     * during the initialization and \_TZ_ is to support Notify() on it.
2092 	     */
2093 	    if (strcmp(handle_str, "\\_SB_") == 0 ||
2094 		strcmp(handle_str, "\\_TZ_") == 0)
2095 		break;
2096 	    if (acpi_parse_prw(handle, &prw) == 0)
2097 		AcpiSetupGpeForWake(handle, prw.gpe_handle, prw.gpe_bit);
2098 
2099 	    /*
2100 	     * Ignore devices that do not have a _HID or _CID.  They should
2101 	     * be discovered by other buses (e.g. the PCI bus driver).
2102 	     */
2103 	    if (!acpi_has_hid(handle))
2104 		break;
2105 	    /* FALLTHROUGH */
2106 	case ACPI_TYPE_PROCESSOR:
2107 	case ACPI_TYPE_THERMAL:
2108 	case ACPI_TYPE_POWER:
2109 	    /*
2110 	     * Create a placeholder device for this node.  Sort the
2111 	     * placeholder so that the probe/attach passes will run
2112 	     * breadth-first.  Orders less than ACPI_DEV_BASE_ORDER
2113 	     * are reserved for special objects (i.e., system
2114 	     * resources).
2115 	     */
2116 	    ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "scanning '%s'\n", handle_str));
2117 	    order = level * 10 + ACPI_DEV_BASE_ORDER;
2118 	    acpi_probe_order(handle, &order);
2119 	    child = BUS_ADD_CHILD(bus, order, NULL, -1);
2120 	    if (child == NULL)
2121 		break;
2122 
2123 	    /* Associate the handle with the device_t and vice versa. */
2124 	    acpi_set_handle(child, handle);
2125 	    AcpiAttachData(handle, acpi_fake_objhandler, child);
2126 
2127 	    /*
2128 	     * Check that the device is present.  If it's not present,
2129 	     * leave it disabled (so that we have a device_t attached to
2130 	     * the handle, but we don't probe it).
2131 	     *
2132 	     * XXX PCI link devices sometimes report "present" but not
2133 	     * "functional" (i.e. if disabled).  Go ahead and probe them
2134 	     * anyway since we may enable them later.
2135 	     */
2136 	    if (type == ACPI_TYPE_DEVICE && !acpi_DeviceIsPresent(child)) {
2137 		/* Never disable PCI link devices. */
2138 		if (acpi_MatchHid(handle, "PNP0C0F"))
2139 		    break;
2140 		/*
2141 		 * Docking stations should remain enabled since the system
2142 		 * may be undocked at boot.
2143 		 */
2144 		if (ACPI_SUCCESS(AcpiGetHandle(handle, "_DCK", &h)))
2145 		    break;
2146 
2147 		device_disable(child);
2148 		break;
2149 	    }
2150 
2151 	    /*
2152 	     * Get the device's resource settings and attach them.
2153 	     * Note that if the device has _PRS but no _CRS, we need
2154 	     * to decide when it's appropriate to try to configure the
2155 	     * device.  Ignore the return value here; it's OK for the
2156 	     * device not to have any resources.
2157 	     */
2158 	    acpi_parse_resources(child, handle, &acpi_res_parse_set, NULL);
2159 
2160 	    ad = device_get_ivars(child);
2161 	    ad->ad_cls_class = 0xffffff;
2162 	    if (ACPI_SUCCESS(AcpiGetObjectInfo(handle, &devinfo))) {
2163 		if ((devinfo->Valid & ACPI_VALID_CLS) != 0 &&
2164 		    devinfo->ClassCode.Length >= ACPI_PCICLS_STRING_SIZE) {
2165 		    ad->ad_cls_class = strtoul(devinfo->ClassCode.String,
2166 			NULL, 16);
2167 		}
2168 		AcpiOsFree(devinfo);
2169 	    }
2170 	    break;
2171 	}
2172     }
2173 
2174     return_ACPI_STATUS (AE_OK);
2175 }
2176 
2177 /*
2178  * AcpiAttachData() requires an object handler but never uses it.  This is a
2179  * placeholder object handler so we can store a device_t in an ACPI_HANDLE.
2180  */
2181 void
2182 acpi_fake_objhandler(ACPI_HANDLE h, void *data)
2183 {
2184 }
2185 
2186 static void
2187 acpi_shutdown_final(void *arg, int howto)
2188 {
2189     struct acpi_softc *sc = (struct acpi_softc *)arg;
2190     register_t intr;
2191     ACPI_STATUS status;
2192 
2193     /*
2194      * XXX Shutdown code should only run on the BSP (cpuid 0).
2195      * Some chipsets do not power off the system correctly if called from
2196      * an AP.
2197      */
2198     if ((howto & RB_POWEROFF) != 0) {
2199 	status = AcpiEnterSleepStatePrep(ACPI_STATE_S5);
2200 	if (ACPI_FAILURE(status)) {
2201 	    device_printf(sc->acpi_dev, "AcpiEnterSleepStatePrep failed - %s\n",
2202 		AcpiFormatException(status));
2203 	    return;
2204 	}
2205 	device_printf(sc->acpi_dev, "Powering system off\n");
2206 	intr = intr_disable();
2207 	status = AcpiEnterSleepState(ACPI_STATE_S5);
2208 	if (ACPI_FAILURE(status)) {
2209 	    intr_restore(intr);
2210 	    device_printf(sc->acpi_dev, "power-off failed - %s\n",
2211 		AcpiFormatException(status));
2212 	} else {
2213 	    DELAY(1000000);
2214 	    intr_restore(intr);
2215 	    device_printf(sc->acpi_dev, "power-off failed - timeout\n");
2216 	}
2217     } else if ((howto & RB_HALT) == 0 && sc->acpi_handle_reboot) {
2218 	/* Reboot using the reset register. */
2219 	status = AcpiReset();
2220 	if (ACPI_SUCCESS(status)) {
2221 	    DELAY(1000000);
2222 	    device_printf(sc->acpi_dev, "reset failed - timeout\n");
2223 	} else if (status != AE_NOT_EXIST)
2224 	    device_printf(sc->acpi_dev, "reset failed - %s\n",
2225 		AcpiFormatException(status));
2226     } else if (sc->acpi_do_disable && !KERNEL_PANICKED()) {
2227 	/*
2228 	 * Only disable ACPI if the user requested.  On some systems, writing
2229 	 * the disable value to SMI_CMD hangs the system.
2230 	 */
2231 	device_printf(sc->acpi_dev, "Shutting down\n");
2232 	AcpiTerminate();
2233     }
2234 }
2235 
2236 static void
2237 acpi_enable_fixed_events(struct acpi_softc *sc)
2238 {
2239     static int	first_time = 1;
2240 
2241     /* Enable and clear fixed events and install handlers. */
2242     if ((AcpiGbl_FADT.Flags & ACPI_FADT_POWER_BUTTON) == 0) {
2243 	AcpiClearEvent(ACPI_EVENT_POWER_BUTTON);
2244 	AcpiInstallFixedEventHandler(ACPI_EVENT_POWER_BUTTON,
2245 				     acpi_event_power_button_sleep, sc);
2246 	if (first_time)
2247 	    device_printf(sc->acpi_dev, "Power Button (fixed)\n");
2248     }
2249     if ((AcpiGbl_FADT.Flags & ACPI_FADT_SLEEP_BUTTON) == 0) {
2250 	AcpiClearEvent(ACPI_EVENT_SLEEP_BUTTON);
2251 	AcpiInstallFixedEventHandler(ACPI_EVENT_SLEEP_BUTTON,
2252 				     acpi_event_sleep_button_sleep, sc);
2253 	if (first_time)
2254 	    device_printf(sc->acpi_dev, "Sleep Button (fixed)\n");
2255     }
2256 
2257     first_time = 0;
2258 }
2259 
2260 /*
2261  * Returns true if the device is actually present and should
2262  * be attached to.  This requires the present, enabled, UI-visible
2263  * and diagnostics-passed bits to be set.
2264  */
2265 BOOLEAN
2266 acpi_DeviceIsPresent(device_t dev)
2267 {
2268 	ACPI_HANDLE h;
2269 	UINT32 s;
2270 	ACPI_STATUS status;
2271 
2272 	h = acpi_get_handle(dev);
2273 	if (h == NULL)
2274 		return (FALSE);
2275 	/*
2276 	 * Certain Treadripper boards always returns 0 for FreeBSD because it
2277 	 * only returns non-zero for the OS string "Windows 2015". Otherwise it
2278 	 * will return zero. Force them to always be treated as present.
2279 	 * Beata versions were worse: they always returned 0.
2280 	 */
2281 	if (acpi_MatchHid(h, "AMDI0020") || acpi_MatchHid(h, "AMDI0010"))
2282 		return (TRUE);
2283 
2284 	status = acpi_GetInteger(h, "_STA", &s);
2285 
2286 	/*
2287 	 * If no _STA method or if it failed, then assume that
2288 	 * the device is present.
2289 	 */
2290 	if (ACPI_FAILURE(status))
2291 		return (TRUE);
2292 
2293 	return (ACPI_DEVICE_PRESENT(s) ? TRUE : FALSE);
2294 }
2295 
2296 /*
2297  * Returns true if the battery is actually present and inserted.
2298  */
2299 BOOLEAN
2300 acpi_BatteryIsPresent(device_t dev)
2301 {
2302 	ACPI_HANDLE h;
2303 	UINT32 s;
2304 	ACPI_STATUS status;
2305 
2306 	h = acpi_get_handle(dev);
2307 	if (h == NULL)
2308 		return (FALSE);
2309 	status = acpi_GetInteger(h, "_STA", &s);
2310 
2311 	/*
2312 	 * If no _STA method or if it failed, then assume that
2313 	 * the device is present.
2314 	 */
2315 	if (ACPI_FAILURE(status))
2316 		return (TRUE);
2317 
2318 	return (ACPI_BATTERY_PRESENT(s) ? TRUE : FALSE);
2319 }
2320 
2321 /*
2322  * Returns true if a device has at least one valid device ID.
2323  */
2324 BOOLEAN
2325 acpi_has_hid(ACPI_HANDLE h)
2326 {
2327     ACPI_DEVICE_INFO	*devinfo;
2328     BOOLEAN		ret;
2329 
2330     if (h == NULL ||
2331 	ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo)))
2332 	return (FALSE);
2333 
2334     ret = FALSE;
2335     if ((devinfo->Valid & ACPI_VALID_HID) != 0)
2336 	ret = TRUE;
2337     else if ((devinfo->Valid & ACPI_VALID_CID) != 0)
2338 	if (devinfo->CompatibleIdList.Count > 0)
2339 	    ret = TRUE;
2340 
2341     AcpiOsFree(devinfo);
2342     return (ret);
2343 }
2344 
2345 /*
2346  * Match a HID string against a handle
2347  * returns ACPI_MATCHHID_HID if _HID match
2348  *         ACPI_MATCHHID_CID if _CID match and not _HID match.
2349  *         ACPI_MATCHHID_NOMATCH=0 if no match.
2350  */
2351 int
2352 acpi_MatchHid(ACPI_HANDLE h, const char *hid)
2353 {
2354     ACPI_DEVICE_INFO	*devinfo;
2355     BOOLEAN		ret;
2356     int			i;
2357 
2358     if (hid == NULL || h == NULL ||
2359 	ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo)))
2360 	return (ACPI_MATCHHID_NOMATCH);
2361 
2362     ret = ACPI_MATCHHID_NOMATCH;
2363     if ((devinfo->Valid & ACPI_VALID_HID) != 0 &&
2364 	strcmp(hid, devinfo->HardwareId.String) == 0)
2365 	    ret = ACPI_MATCHHID_HID;
2366     else if ((devinfo->Valid & ACPI_VALID_CID) != 0)
2367 	for (i = 0; i < devinfo->CompatibleIdList.Count; i++) {
2368 	    if (strcmp(hid, devinfo->CompatibleIdList.Ids[i].String) == 0) {
2369 		ret = ACPI_MATCHHID_CID;
2370 		break;
2371 	    }
2372 	}
2373 
2374     AcpiOsFree(devinfo);
2375     return (ret);
2376 }
2377 
2378 /*
2379  * Return the handle of a named object within our scope, ie. that of (parent)
2380  * or one if its parents.
2381  */
2382 ACPI_STATUS
2383 acpi_GetHandleInScope(ACPI_HANDLE parent, char *path, ACPI_HANDLE *result)
2384 {
2385     ACPI_HANDLE		r;
2386     ACPI_STATUS		status;
2387 
2388     /* Walk back up the tree to the root */
2389     for (;;) {
2390 	status = AcpiGetHandle(parent, path, &r);
2391 	if (ACPI_SUCCESS(status)) {
2392 	    *result = r;
2393 	    return (AE_OK);
2394 	}
2395 	/* XXX Return error here? */
2396 	if (status != AE_NOT_FOUND)
2397 	    return (AE_OK);
2398 	if (ACPI_FAILURE(AcpiGetParent(parent, &r)))
2399 	    return (AE_NOT_FOUND);
2400 	parent = r;
2401     }
2402 }
2403 
2404 /*
2405  * Allocate a buffer with a preset data size.
2406  */
2407 ACPI_BUFFER *
2408 acpi_AllocBuffer(int size)
2409 {
2410     ACPI_BUFFER	*buf;
2411 
2412     if ((buf = malloc(size + sizeof(*buf), M_ACPIDEV, M_NOWAIT)) == NULL)
2413 	return (NULL);
2414     buf->Length = size;
2415     buf->Pointer = (void *)(buf + 1);
2416     return (buf);
2417 }
2418 
2419 ACPI_STATUS
2420 acpi_SetInteger(ACPI_HANDLE handle, char *path, UINT32 number)
2421 {
2422     ACPI_OBJECT arg1;
2423     ACPI_OBJECT_LIST args;
2424 
2425     arg1.Type = ACPI_TYPE_INTEGER;
2426     arg1.Integer.Value = number;
2427     args.Count = 1;
2428     args.Pointer = &arg1;
2429 
2430     return (AcpiEvaluateObject(handle, path, &args, NULL));
2431 }
2432 
2433 /*
2434  * Evaluate a path that should return an integer.
2435  */
2436 ACPI_STATUS
2437 acpi_GetInteger(ACPI_HANDLE handle, char *path, UINT32 *number)
2438 {
2439     ACPI_STATUS	status;
2440     ACPI_BUFFER	buf;
2441     ACPI_OBJECT	param;
2442 
2443     if (handle == NULL)
2444 	handle = ACPI_ROOT_OBJECT;
2445 
2446     /*
2447      * Assume that what we've been pointed at is an Integer object, or
2448      * a method that will return an Integer.
2449      */
2450     buf.Pointer = &param;
2451     buf.Length = sizeof(param);
2452     status = AcpiEvaluateObject(handle, path, NULL, &buf);
2453     if (ACPI_SUCCESS(status)) {
2454 	if (param.Type == ACPI_TYPE_INTEGER)
2455 	    *number = param.Integer.Value;
2456 	else
2457 	    status = AE_TYPE;
2458     }
2459 
2460     /*
2461      * In some applications, a method that's expected to return an Integer
2462      * may instead return a Buffer (probably to simplify some internal
2463      * arithmetic).  We'll try to fetch whatever it is, and if it's a Buffer,
2464      * convert it into an Integer as best we can.
2465      *
2466      * This is a hack.
2467      */
2468     if (status == AE_BUFFER_OVERFLOW) {
2469 	if ((buf.Pointer = AcpiOsAllocate(buf.Length)) == NULL) {
2470 	    status = AE_NO_MEMORY;
2471 	} else {
2472 	    status = AcpiEvaluateObject(handle, path, NULL, &buf);
2473 	    if (ACPI_SUCCESS(status))
2474 		status = acpi_ConvertBufferToInteger(&buf, number);
2475 	    AcpiOsFree(buf.Pointer);
2476 	}
2477     }
2478     return (status);
2479 }
2480 
2481 ACPI_STATUS
2482 acpi_ConvertBufferToInteger(ACPI_BUFFER *bufp, UINT32 *number)
2483 {
2484     ACPI_OBJECT	*p;
2485     UINT8	*val;
2486     int		i;
2487 
2488     p = (ACPI_OBJECT *)bufp->Pointer;
2489     if (p->Type == ACPI_TYPE_INTEGER) {
2490 	*number = p->Integer.Value;
2491 	return (AE_OK);
2492     }
2493     if (p->Type != ACPI_TYPE_BUFFER)
2494 	return (AE_TYPE);
2495     if (p->Buffer.Length > sizeof(int))
2496 	return (AE_BAD_DATA);
2497 
2498     *number = 0;
2499     val = p->Buffer.Pointer;
2500     for (i = 0; i < p->Buffer.Length; i++)
2501 	*number += val[i] << (i * 8);
2502     return (AE_OK);
2503 }
2504 
2505 /*
2506  * Iterate over the elements of an a package object, calling the supplied
2507  * function for each element.
2508  *
2509  * XXX possible enhancement might be to abort traversal on error.
2510  */
2511 ACPI_STATUS
2512 acpi_ForeachPackageObject(ACPI_OBJECT *pkg,
2513 	void (*func)(ACPI_OBJECT *comp, void *arg), void *arg)
2514 {
2515     ACPI_OBJECT	*comp;
2516     int		i;
2517 
2518     if (pkg == NULL || pkg->Type != ACPI_TYPE_PACKAGE)
2519 	return (AE_BAD_PARAMETER);
2520 
2521     /* Iterate over components */
2522     i = 0;
2523     comp = pkg->Package.Elements;
2524     for (; i < pkg->Package.Count; i++, comp++)
2525 	func(comp, arg);
2526 
2527     return (AE_OK);
2528 }
2529 
2530 /*
2531  * Find the (index)th resource object in a set.
2532  */
2533 ACPI_STATUS
2534 acpi_FindIndexedResource(ACPI_BUFFER *buf, int index, ACPI_RESOURCE **resp)
2535 {
2536     ACPI_RESOURCE	*rp;
2537     int			i;
2538 
2539     rp = (ACPI_RESOURCE *)buf->Pointer;
2540     i = index;
2541     while (i-- > 0) {
2542 	/* Range check */
2543 	if (rp > (ACPI_RESOURCE *)((u_int8_t *)buf->Pointer + buf->Length))
2544 	    return (AE_BAD_PARAMETER);
2545 
2546 	/* Check for terminator */
2547 	if (rp->Type == ACPI_RESOURCE_TYPE_END_TAG || rp->Length == 0)
2548 	    return (AE_NOT_FOUND);
2549 	rp = ACPI_NEXT_RESOURCE(rp);
2550     }
2551     if (resp != NULL)
2552 	*resp = rp;
2553 
2554     return (AE_OK);
2555 }
2556 
2557 /*
2558  * Append an ACPI_RESOURCE to an ACPI_BUFFER.
2559  *
2560  * Given a pointer to an ACPI_RESOURCE structure, expand the ACPI_BUFFER
2561  * provided to contain it.  If the ACPI_BUFFER is empty, allocate a sensible
2562  * backing block.  If the ACPI_RESOURCE is NULL, return an empty set of
2563  * resources.
2564  */
2565 #define ACPI_INITIAL_RESOURCE_BUFFER_SIZE	512
2566 
2567 ACPI_STATUS
2568 acpi_AppendBufferResource(ACPI_BUFFER *buf, ACPI_RESOURCE *res)
2569 {
2570     ACPI_RESOURCE	*rp;
2571     void		*newp;
2572 
2573     /* Initialise the buffer if necessary. */
2574     if (buf->Pointer == NULL) {
2575 	buf->Length = ACPI_INITIAL_RESOURCE_BUFFER_SIZE;
2576 	if ((buf->Pointer = AcpiOsAllocate(buf->Length)) == NULL)
2577 	    return (AE_NO_MEMORY);
2578 	rp = (ACPI_RESOURCE *)buf->Pointer;
2579 	rp->Type = ACPI_RESOURCE_TYPE_END_TAG;
2580 	rp->Length = ACPI_RS_SIZE_MIN;
2581     }
2582     if (res == NULL)
2583 	return (AE_OK);
2584 
2585     /*
2586      * Scan the current buffer looking for the terminator.
2587      * This will either find the terminator or hit the end
2588      * of the buffer and return an error.
2589      */
2590     rp = (ACPI_RESOURCE *)buf->Pointer;
2591     for (;;) {
2592 	/* Range check, don't go outside the buffer */
2593 	if (rp >= (ACPI_RESOURCE *)((u_int8_t *)buf->Pointer + buf->Length))
2594 	    return (AE_BAD_PARAMETER);
2595 	if (rp->Type == ACPI_RESOURCE_TYPE_END_TAG || rp->Length == 0)
2596 	    break;
2597 	rp = ACPI_NEXT_RESOURCE(rp);
2598     }
2599 
2600     /*
2601      * Check the size of the buffer and expand if required.
2602      *
2603      * Required size is:
2604      *	size of existing resources before terminator +
2605      *	size of new resource and header +
2606      * 	size of terminator.
2607      *
2608      * Note that this loop should really only run once, unless
2609      * for some reason we are stuffing a *really* huge resource.
2610      */
2611     while ((((u_int8_t *)rp - (u_int8_t *)buf->Pointer) +
2612 	    res->Length + ACPI_RS_SIZE_NO_DATA +
2613 	    ACPI_RS_SIZE_MIN) >= buf->Length) {
2614 	if ((newp = AcpiOsAllocate(buf->Length * 2)) == NULL)
2615 	    return (AE_NO_MEMORY);
2616 	bcopy(buf->Pointer, newp, buf->Length);
2617 	rp = (ACPI_RESOURCE *)((u_int8_t *)newp +
2618 			       ((u_int8_t *)rp - (u_int8_t *)buf->Pointer));
2619 	AcpiOsFree(buf->Pointer);
2620 	buf->Pointer = newp;
2621 	buf->Length += buf->Length;
2622     }
2623 
2624     /* Insert the new resource. */
2625     bcopy(res, rp, res->Length + ACPI_RS_SIZE_NO_DATA);
2626 
2627     /* And add the terminator. */
2628     rp = ACPI_NEXT_RESOURCE(rp);
2629     rp->Type = ACPI_RESOURCE_TYPE_END_TAG;
2630     rp->Length = ACPI_RS_SIZE_MIN;
2631 
2632     return (AE_OK);
2633 }
2634 
2635 UINT8
2636 acpi_DSMQuery(ACPI_HANDLE h, uint8_t *uuid, int revision)
2637 {
2638     /*
2639      * ACPI spec 9.1.1 defines this.
2640      *
2641      * "Arg2: Function Index Represents a specific function whose meaning is
2642      * specific to the UUID and Revision ID. Function indices should start
2643      * with 1. Function number zero is a query function (see the special
2644      * return code defined below)."
2645      */
2646     ACPI_BUFFER buf;
2647     ACPI_OBJECT *obj;
2648     UINT8 ret = 0;
2649 
2650     if (!ACPI_SUCCESS(acpi_EvaluateDSM(h, uuid, revision, 0, NULL, &buf))) {
2651 	ACPI_INFO(("Failed to enumerate DSM functions\n"));
2652 	return (0);
2653     }
2654 
2655     obj = (ACPI_OBJECT *)buf.Pointer;
2656     KASSERT(obj, ("Object not allowed to be NULL\n"));
2657 
2658     /*
2659      * From ACPI 6.2 spec 9.1.1:
2660      * If Function Index = 0, a Buffer containing a function index bitfield.
2661      * Otherwise, the return value and type depends on the UUID and revision
2662      * ID (see below).
2663      */
2664     switch (obj->Type) {
2665     case ACPI_TYPE_BUFFER:
2666 	ret = *(uint8_t *)obj->Buffer.Pointer;
2667 	break;
2668     case ACPI_TYPE_INTEGER:
2669 	ACPI_BIOS_WARNING((AE_INFO,
2670 	    "Possibly buggy BIOS with ACPI_TYPE_INTEGER for function enumeration\n"));
2671 	ret = obj->Integer.Value & 0xFF;
2672 	break;
2673     default:
2674 	ACPI_WARNING((AE_INFO, "Unexpected return type %u\n", obj->Type));
2675     };
2676 
2677     AcpiOsFree(obj);
2678     return ret;
2679 }
2680 
2681 /*
2682  * DSM may return multiple types depending on the function. It is therefore
2683  * unsafe to use the typed evaluation. It is highly recommended that the caller
2684  * check the type of the returned object.
2685  */
2686 ACPI_STATUS
2687 acpi_EvaluateDSM(ACPI_HANDLE handle, uint8_t *uuid, int revision,
2688     uint64_t function, union acpi_object *package, ACPI_BUFFER *out_buf)
2689 {
2690     ACPI_OBJECT arg[4];
2691     ACPI_OBJECT_LIST arglist;
2692     ACPI_BUFFER buf;
2693     ACPI_STATUS status;
2694 
2695     if (out_buf == NULL)
2696 	return (AE_NO_MEMORY);
2697 
2698     arg[0].Type = ACPI_TYPE_BUFFER;
2699     arg[0].Buffer.Length = ACPI_UUID_LENGTH;
2700     arg[0].Buffer.Pointer = uuid;
2701     arg[1].Type = ACPI_TYPE_INTEGER;
2702     arg[1].Integer.Value = revision;
2703     arg[2].Type = ACPI_TYPE_INTEGER;
2704     arg[2].Integer.Value = function;
2705     if (package) {
2706 	arg[3] = *package;
2707     } else {
2708 	arg[3].Type = ACPI_TYPE_PACKAGE;
2709 	arg[3].Package.Count = 0;
2710 	arg[3].Package.Elements = NULL;
2711     }
2712 
2713     arglist.Pointer = arg;
2714     arglist.Count = 4;
2715     buf.Pointer = NULL;
2716     buf.Length = ACPI_ALLOCATE_BUFFER;
2717     status = AcpiEvaluateObject(handle, "_DSM", &arglist, &buf);
2718     if (ACPI_FAILURE(status))
2719 	return (status);
2720 
2721     KASSERT(ACPI_SUCCESS(status), ("Unexpected status"));
2722 
2723     *out_buf = buf;
2724     return (status);
2725 }
2726 
2727 ACPI_STATUS
2728 acpi_EvaluateOSC(ACPI_HANDLE handle, uint8_t *uuid, int revision, int count,
2729     uint32_t *caps_in, uint32_t *caps_out, bool query)
2730 {
2731 	ACPI_OBJECT arg[4], *ret;
2732 	ACPI_OBJECT_LIST arglist;
2733 	ACPI_BUFFER buf;
2734 	ACPI_STATUS status;
2735 
2736 	arglist.Pointer = arg;
2737 	arglist.Count = 4;
2738 	arg[0].Type = ACPI_TYPE_BUFFER;
2739 	arg[0].Buffer.Length = ACPI_UUID_LENGTH;
2740 	arg[0].Buffer.Pointer = uuid;
2741 	arg[1].Type = ACPI_TYPE_INTEGER;
2742 	arg[1].Integer.Value = revision;
2743 	arg[2].Type = ACPI_TYPE_INTEGER;
2744 	arg[2].Integer.Value = count;
2745 	arg[3].Type = ACPI_TYPE_BUFFER;
2746 	arg[3].Buffer.Length = count * sizeof(*caps_in);
2747 	arg[3].Buffer.Pointer = (uint8_t *)caps_in;
2748 	caps_in[0] = query ? 1 : 0;
2749 	buf.Pointer = NULL;
2750 	buf.Length = ACPI_ALLOCATE_BUFFER;
2751 	status = AcpiEvaluateObjectTyped(handle, "_OSC", &arglist, &buf,
2752 	    ACPI_TYPE_BUFFER);
2753 	if (ACPI_FAILURE(status))
2754 		return (status);
2755 	if (caps_out != NULL) {
2756 		ret = buf.Pointer;
2757 		if (ret->Buffer.Length != count * sizeof(*caps_out)) {
2758 			AcpiOsFree(buf.Pointer);
2759 			return (AE_BUFFER_OVERFLOW);
2760 		}
2761 		bcopy(ret->Buffer.Pointer, caps_out, ret->Buffer.Length);
2762 	}
2763 	AcpiOsFree(buf.Pointer);
2764 	return (status);
2765 }
2766 
2767 /*
2768  * Set interrupt model.
2769  */
2770 ACPI_STATUS
2771 acpi_SetIntrModel(int model)
2772 {
2773 
2774     return (acpi_SetInteger(ACPI_ROOT_OBJECT, "_PIC", model));
2775 }
2776 
2777 /*
2778  * Walk subtables of a table and call a callback routine for each
2779  * subtable.  The caller should provide the first subtable and a
2780  * pointer to the end of the table.  This can be used to walk tables
2781  * such as MADT and SRAT that use subtable entries.
2782  */
2783 void
2784 acpi_walk_subtables(void *first, void *end, acpi_subtable_handler *handler,
2785     void *arg)
2786 {
2787     ACPI_SUBTABLE_HEADER *entry;
2788 
2789     for (entry = first; (void *)entry < end; ) {
2790 	/* Avoid an infinite loop if we hit a bogus entry. */
2791 	if (entry->Length < sizeof(ACPI_SUBTABLE_HEADER))
2792 	    return;
2793 
2794 	handler(entry, arg);
2795 	entry = ACPI_ADD_PTR(ACPI_SUBTABLE_HEADER, entry, entry->Length);
2796     }
2797 }
2798 
2799 /*
2800  * DEPRECATED.  This interface has serious deficiencies and will be
2801  * removed.
2802  *
2803  * Immediately enter the sleep state.  In the old model, acpiconf(8) ran
2804  * rc.suspend and rc.resume so we don't have to notify devd(8) to do this.
2805  */
2806 ACPI_STATUS
2807 acpi_SetSleepState(struct acpi_softc *sc, int state)
2808 {
2809     static int once;
2810 
2811     if (!once) {
2812 	device_printf(sc->acpi_dev,
2813 "warning: acpi_SetSleepState() deprecated, need to update your software\n");
2814 	once = 1;
2815     }
2816     return (acpi_EnterSleepState(sc, state));
2817 }
2818 
2819 #if defined(__amd64__) || defined(__i386__)
2820 static void
2821 acpi_sleep_force_task(void *context)
2822 {
2823     struct acpi_softc *sc = (struct acpi_softc *)context;
2824 
2825     if (ACPI_FAILURE(acpi_EnterSleepState(sc, sc->acpi_next_sstate)))
2826 	device_printf(sc->acpi_dev, "force sleep state S%d failed\n",
2827 	    sc->acpi_next_sstate);
2828 }
2829 
2830 static void
2831 acpi_sleep_force(void *arg)
2832 {
2833     struct acpi_softc *sc = (struct acpi_softc *)arg;
2834 
2835     device_printf(sc->acpi_dev,
2836 	"suspend request timed out, forcing sleep now\n");
2837     /*
2838      * XXX Suspending from callout causes freezes in DEVICE_SUSPEND().
2839      * Suspend from acpi_task thread instead.
2840      */
2841     if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER,
2842 	acpi_sleep_force_task, sc)))
2843 	device_printf(sc->acpi_dev, "AcpiOsExecute() for sleeping failed\n");
2844 }
2845 #endif
2846 
2847 /*
2848  * Request that the system enter the given suspend state.  All /dev/apm
2849  * devices and devd(8) will be notified.  Userland then has a chance to
2850  * save state and acknowledge the request.  The system sleeps once all
2851  * acks are in.
2852  */
2853 int
2854 acpi_ReqSleepState(struct acpi_softc *sc, int state)
2855 {
2856 #if defined(__amd64__) || defined(__i386__)
2857     struct apm_clone_data *clone;
2858     ACPI_STATUS status;
2859 
2860     if (state < ACPI_STATE_S1 || state > ACPI_S_STATES_MAX)
2861 	return (EINVAL);
2862     if (!acpi_sleep_states[state])
2863 	return (EOPNOTSUPP);
2864 
2865     /*
2866      * If a reboot/shutdown/suspend request is already in progress or
2867      * suspend is blocked due to an upcoming shutdown, just return.
2868      */
2869     if (rebooting || sc->acpi_next_sstate != 0 || suspend_blocked) {
2870 	return (0);
2871     }
2872 
2873     /* Wait until sleep is enabled. */
2874     while (sc->acpi_sleep_disabled) {
2875 	AcpiOsSleep(1000);
2876     }
2877 
2878     ACPI_LOCK(acpi);
2879 
2880     sc->acpi_next_sstate = state;
2881 
2882     /* S5 (soft-off) should be entered directly with no waiting. */
2883     if (state == ACPI_STATE_S5) {
2884     	ACPI_UNLOCK(acpi);
2885 	status = acpi_EnterSleepState(sc, state);
2886 	return (ACPI_SUCCESS(status) ? 0 : ENXIO);
2887     }
2888 
2889     /* Record the pending state and notify all apm devices. */
2890     STAILQ_FOREACH(clone, &sc->apm_cdevs, entries) {
2891 	clone->notify_status = APM_EV_NONE;
2892 	if ((clone->flags & ACPI_EVF_DEVD) == 0) {
2893 	    selwakeuppri(&clone->sel_read, PZERO);
2894 	    KNOTE_LOCKED(&clone->sel_read.si_note, 0);
2895 	}
2896     }
2897 
2898     /* If devd(8) is not running, immediately enter the sleep state. */
2899     if (!devctl_process_running()) {
2900 	ACPI_UNLOCK(acpi);
2901 	status = acpi_EnterSleepState(sc, state);
2902 	return (ACPI_SUCCESS(status) ? 0 : ENXIO);
2903     }
2904 
2905     /*
2906      * Set a timeout to fire if userland doesn't ack the suspend request
2907      * in time.  This way we still eventually go to sleep if we were
2908      * overheating or running low on battery, even if userland is hung.
2909      * We cancel this timeout once all userland acks are in or the
2910      * suspend request is aborted.
2911      */
2912     callout_reset(&sc->susp_force_to, 10 * hz, acpi_sleep_force, sc);
2913     ACPI_UNLOCK(acpi);
2914 
2915     /* Now notify devd(8) also. */
2916     acpi_UserNotify("Suspend", ACPI_ROOT_OBJECT, state);
2917 
2918     return (0);
2919 #else
2920     /* This platform does not support acpi suspend/resume. */
2921     return (EOPNOTSUPP);
2922 #endif
2923 }
2924 
2925 /*
2926  * Acknowledge (or reject) a pending sleep state.  The caller has
2927  * prepared for suspend and is now ready for it to proceed.  If the
2928  * error argument is non-zero, it indicates suspend should be cancelled
2929  * and gives an errno value describing why.  Once all votes are in,
2930  * we suspend the system.
2931  */
2932 int
2933 acpi_AckSleepState(struct apm_clone_data *clone, int error)
2934 {
2935 #if defined(__amd64__) || defined(__i386__)
2936     struct acpi_softc *sc;
2937     int ret, sleeping;
2938 
2939     /* If no pending sleep state, return an error. */
2940     ACPI_LOCK(acpi);
2941     sc = clone->acpi_sc;
2942     if (sc->acpi_next_sstate == 0) {
2943     	ACPI_UNLOCK(acpi);
2944 	return (ENXIO);
2945     }
2946 
2947     /* Caller wants to abort suspend process. */
2948     if (error) {
2949 	sc->acpi_next_sstate = 0;
2950 	callout_stop(&sc->susp_force_to);
2951 	device_printf(sc->acpi_dev,
2952 	    "listener on %s cancelled the pending suspend\n",
2953 	    devtoname(clone->cdev));
2954     	ACPI_UNLOCK(acpi);
2955 	return (0);
2956     }
2957 
2958     /*
2959      * Mark this device as acking the suspend request.  Then, walk through
2960      * all devices, seeing if they agree yet.  We only count devices that
2961      * are writable since read-only devices couldn't ack the request.
2962      */
2963     sleeping = TRUE;
2964     clone->notify_status = APM_EV_ACKED;
2965     STAILQ_FOREACH(clone, &sc->apm_cdevs, entries) {
2966 	if ((clone->flags & ACPI_EVF_WRITE) != 0 &&
2967 	    clone->notify_status != APM_EV_ACKED) {
2968 	    sleeping = FALSE;
2969 	    break;
2970 	}
2971     }
2972 
2973     /* If all devices have voted "yes", we will suspend now. */
2974     if (sleeping)
2975 	callout_stop(&sc->susp_force_to);
2976     ACPI_UNLOCK(acpi);
2977     ret = 0;
2978     if (sleeping) {
2979 	if (ACPI_FAILURE(acpi_EnterSleepState(sc, sc->acpi_next_sstate)))
2980 		ret = ENODEV;
2981     }
2982     return (ret);
2983 #else
2984     /* This platform does not support acpi suspend/resume. */
2985     return (EOPNOTSUPP);
2986 #endif
2987 }
2988 
2989 static void
2990 acpi_sleep_enable(void *arg)
2991 {
2992     struct acpi_softc	*sc = (struct acpi_softc *)arg;
2993 
2994     ACPI_LOCK_ASSERT(acpi);
2995 
2996     /* Reschedule if the system is not fully up and running. */
2997     if (!AcpiGbl_SystemAwakeAndRunning) {
2998 	callout_schedule(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME);
2999 	return;
3000     }
3001 
3002     sc->acpi_sleep_disabled = FALSE;
3003 }
3004 
3005 static ACPI_STATUS
3006 acpi_sleep_disable(struct acpi_softc *sc)
3007 {
3008     ACPI_STATUS		status;
3009 
3010     /* Fail if the system is not fully up and running. */
3011     if (!AcpiGbl_SystemAwakeAndRunning)
3012 	return (AE_ERROR);
3013 
3014     ACPI_LOCK(acpi);
3015     status = sc->acpi_sleep_disabled ? AE_ERROR : AE_OK;
3016     sc->acpi_sleep_disabled = TRUE;
3017     ACPI_UNLOCK(acpi);
3018 
3019     return (status);
3020 }
3021 
3022 enum acpi_sleep_state {
3023     ACPI_SS_NONE,
3024     ACPI_SS_GPE_SET,
3025     ACPI_SS_DEV_SUSPEND,
3026     ACPI_SS_SLP_PREP,
3027     ACPI_SS_SLEPT,
3028 };
3029 
3030 /*
3031  * Enter the desired system sleep state.
3032  *
3033  * Currently we support S1-S5 but S4 is only S4BIOS
3034  */
3035 static ACPI_STATUS
3036 acpi_EnterSleepState(struct acpi_softc *sc, int state)
3037 {
3038     register_t intr;
3039     ACPI_STATUS status;
3040     ACPI_EVENT_STATUS power_button_status;
3041     enum acpi_sleep_state slp_state;
3042     int sleep_result;
3043 
3044     ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state);
3045 
3046     if (state < ACPI_STATE_S1 || state > ACPI_S_STATES_MAX)
3047 	return_ACPI_STATUS (AE_BAD_PARAMETER);
3048     if (!acpi_sleep_states[state]) {
3049 	device_printf(sc->acpi_dev, "Sleep state S%d not supported by BIOS\n",
3050 	    state);
3051 	return (AE_SUPPORT);
3052     }
3053 
3054     /* Re-entry once we're suspending is not allowed. */
3055     status = acpi_sleep_disable(sc);
3056     if (ACPI_FAILURE(status)) {
3057 	device_printf(sc->acpi_dev,
3058 	    "suspend request ignored (not ready yet)\n");
3059 	return (status);
3060     }
3061 
3062     if (state == ACPI_STATE_S5) {
3063 	/*
3064 	 * Shut down cleanly and power off.  This will call us back through the
3065 	 * shutdown handlers.
3066 	 */
3067 	shutdown_nice(RB_POWEROFF);
3068 	return_ACPI_STATUS (AE_OK);
3069     }
3070 
3071     EVENTHANDLER_INVOKE(power_suspend_early);
3072     stop_all_proc();
3073     EVENTHANDLER_INVOKE(power_suspend);
3074 
3075 #ifdef EARLY_AP_STARTUP
3076     MPASS(mp_ncpus == 1 || smp_started);
3077     thread_lock(curthread);
3078     sched_bind(curthread, 0);
3079     thread_unlock(curthread);
3080 #else
3081     if (smp_started) {
3082 	thread_lock(curthread);
3083 	sched_bind(curthread, 0);
3084 	thread_unlock(curthread);
3085     }
3086 #endif
3087 
3088     /*
3089      * Be sure to hold Giant across DEVICE_SUSPEND/RESUME since non-MPSAFE
3090      * drivers need this.
3091      */
3092     mtx_lock(&Giant);
3093 
3094     slp_state = ACPI_SS_NONE;
3095 
3096     sc->acpi_sstate = state;
3097 
3098     /* Enable any GPEs as appropriate and requested by the user. */
3099     acpi_wake_prep_walk(state);
3100     slp_state = ACPI_SS_GPE_SET;
3101 
3102     /*
3103      * Inform all devices that we are going to sleep.  If at least one
3104      * device fails, DEVICE_SUSPEND() automatically resumes the tree.
3105      *
3106      * XXX Note that a better two-pass approach with a 'veto' pass
3107      * followed by a "real thing" pass would be better, but the current
3108      * bus interface does not provide for this.
3109      */
3110     if (DEVICE_SUSPEND(root_bus) != 0) {
3111 	device_printf(sc->acpi_dev, "device_suspend failed\n");
3112 	goto backout;
3113     }
3114     slp_state = ACPI_SS_DEV_SUSPEND;
3115 
3116     status = AcpiEnterSleepStatePrep(state);
3117     if (ACPI_FAILURE(status)) {
3118 	device_printf(sc->acpi_dev, "AcpiEnterSleepStatePrep failed - %s\n",
3119 		      AcpiFormatException(status));
3120 	goto backout;
3121     }
3122     slp_state = ACPI_SS_SLP_PREP;
3123 
3124     if (sc->acpi_sleep_delay > 0)
3125 	DELAY(sc->acpi_sleep_delay * 1000000);
3126 
3127     suspendclock();
3128     intr = intr_disable();
3129     if (state != ACPI_STATE_S1) {
3130 	sleep_result = acpi_sleep_machdep(sc, state);
3131 	acpi_wakeup_machdep(sc, state, sleep_result, 0);
3132 
3133 	/*
3134 	 * XXX According to ACPI specification SCI_EN bit should be restored
3135 	 * by ACPI platform (BIOS, firmware) to its pre-sleep state.
3136 	 * Unfortunately some BIOSes fail to do that and that leads to
3137 	 * unexpected and serious consequences during wake up like a system
3138 	 * getting stuck in SMI handlers.
3139 	 * This hack is picked up from Linux, which claims that it follows
3140 	 * Windows behavior.
3141 	 */
3142 	if (sleep_result == 1 && state != ACPI_STATE_S4)
3143 	    AcpiWriteBitRegister(ACPI_BITREG_SCI_ENABLE, ACPI_ENABLE_EVENT);
3144 
3145 	if (sleep_result == 1 && state == ACPI_STATE_S3) {
3146 	    /*
3147 	     * Prevent mis-interpretation of the wakeup by power button
3148 	     * as a request for power off.
3149 	     * Ideally we should post an appropriate wakeup event,
3150 	     * perhaps using acpi_event_power_button_wake or alike.
3151 	     *
3152 	     * Clearing of power button status after wakeup is mandated
3153 	     * by ACPI specification in section "Fixed Power Button".
3154 	     *
3155 	     * XXX As of ACPICA 20121114 AcpiGetEventStatus provides
3156 	     * status as 0/1 corressponding to inactive/active despite
3157 	     * its type being ACPI_EVENT_STATUS.  In other words,
3158 	     * we should not test for ACPI_EVENT_FLAG_SET for time being.
3159 	     */
3160 	    if (ACPI_SUCCESS(AcpiGetEventStatus(ACPI_EVENT_POWER_BUTTON,
3161 		&power_button_status)) && power_button_status != 0) {
3162 		AcpiClearEvent(ACPI_EVENT_POWER_BUTTON);
3163 		device_printf(sc->acpi_dev,
3164 		    "cleared fixed power button status\n");
3165 	    }
3166 	}
3167 
3168 	intr_restore(intr);
3169 
3170 	/* call acpi_wakeup_machdep() again with interrupt enabled */
3171 	acpi_wakeup_machdep(sc, state, sleep_result, 1);
3172 
3173 	AcpiLeaveSleepStatePrep(state);
3174 
3175 	if (sleep_result == -1)
3176 		goto backout;
3177 
3178 	/* Re-enable ACPI hardware on wakeup from sleep state 4. */
3179 	if (state == ACPI_STATE_S4)
3180 	    AcpiEnable();
3181     } else {
3182 	status = AcpiEnterSleepState(state);
3183 	intr_restore(intr);
3184 	AcpiLeaveSleepStatePrep(state);
3185 	if (ACPI_FAILURE(status)) {
3186 	    device_printf(sc->acpi_dev, "AcpiEnterSleepState failed - %s\n",
3187 			  AcpiFormatException(status));
3188 	    goto backout;
3189 	}
3190     }
3191     slp_state = ACPI_SS_SLEPT;
3192 
3193     /*
3194      * Back out state according to how far along we got in the suspend
3195      * process.  This handles both the error and success cases.
3196      */
3197 backout:
3198     if (slp_state >= ACPI_SS_SLP_PREP)
3199 	resumeclock();
3200     if (slp_state >= ACPI_SS_GPE_SET) {
3201 	acpi_wake_prep_walk(state);
3202 	sc->acpi_sstate = ACPI_STATE_S0;
3203     }
3204     if (slp_state >= ACPI_SS_DEV_SUSPEND)
3205 	DEVICE_RESUME(root_bus);
3206     if (slp_state >= ACPI_SS_SLP_PREP)
3207 	AcpiLeaveSleepState(state);
3208     if (slp_state >= ACPI_SS_SLEPT) {
3209 #if defined(__i386__) || defined(__amd64__)
3210 	/* NB: we are still using ACPI timecounter at this point. */
3211 	resume_TSC();
3212 #endif
3213 	acpi_resync_clock(sc);
3214 	acpi_enable_fixed_events(sc);
3215     }
3216     sc->acpi_next_sstate = 0;
3217 
3218     mtx_unlock(&Giant);
3219 
3220 #ifdef EARLY_AP_STARTUP
3221     thread_lock(curthread);
3222     sched_unbind(curthread);
3223     thread_unlock(curthread);
3224 #else
3225     if (smp_started) {
3226 	thread_lock(curthread);
3227 	sched_unbind(curthread);
3228 	thread_unlock(curthread);
3229     }
3230 #endif
3231 
3232     resume_all_proc();
3233 
3234     EVENTHANDLER_INVOKE(power_resume);
3235 
3236     /* Allow another sleep request after a while. */
3237     callout_schedule(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME);
3238 
3239     /* Run /etc/rc.resume after we are back. */
3240     if (devctl_process_running())
3241 	acpi_UserNotify("Resume", ACPI_ROOT_OBJECT, state);
3242 
3243     return_ACPI_STATUS (status);
3244 }
3245 
3246 static void
3247 acpi_resync_clock(struct acpi_softc *sc)
3248 {
3249 
3250     /*
3251      * Warm up timecounter again and reset system clock.
3252      */
3253     (void)timecounter->tc_get_timecount(timecounter);
3254     inittodr(time_second + sc->acpi_sleep_delay);
3255 }
3256 
3257 /* Enable or disable the device's wake GPE. */
3258 int
3259 acpi_wake_set_enable(device_t dev, int enable)
3260 {
3261     struct acpi_prw_data prw;
3262     ACPI_STATUS status;
3263     int flags;
3264 
3265     /* Make sure the device supports waking the system and get the GPE. */
3266     if (acpi_parse_prw(acpi_get_handle(dev), &prw) != 0)
3267 	return (ENXIO);
3268 
3269     flags = acpi_get_flags(dev);
3270     if (enable) {
3271 	status = AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit,
3272 	    ACPI_GPE_ENABLE);
3273 	if (ACPI_FAILURE(status)) {
3274 	    device_printf(dev, "enable wake failed\n");
3275 	    return (ENXIO);
3276 	}
3277 	acpi_set_flags(dev, flags | ACPI_FLAG_WAKE_ENABLED);
3278     } else {
3279 	status = AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit,
3280 	    ACPI_GPE_DISABLE);
3281 	if (ACPI_FAILURE(status)) {
3282 	    device_printf(dev, "disable wake failed\n");
3283 	    return (ENXIO);
3284 	}
3285 	acpi_set_flags(dev, flags & ~ACPI_FLAG_WAKE_ENABLED);
3286     }
3287 
3288     return (0);
3289 }
3290 
3291 static int
3292 acpi_wake_sleep_prep(ACPI_HANDLE handle, int sstate)
3293 {
3294     struct acpi_prw_data prw;
3295     device_t dev;
3296 
3297     /* Check that this is a wake-capable device and get its GPE. */
3298     if (acpi_parse_prw(handle, &prw) != 0)
3299 	return (ENXIO);
3300     dev = acpi_get_device(handle);
3301 
3302     /*
3303      * The destination sleep state must be less than (i.e., higher power)
3304      * or equal to the value specified by _PRW.  If this GPE cannot be
3305      * enabled for the next sleep state, then disable it.  If it can and
3306      * the user requested it be enabled, turn on any required power resources
3307      * and set _PSW.
3308      */
3309     if (sstate > prw.lowest_wake) {
3310 	AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, ACPI_GPE_DISABLE);
3311 	if (bootverbose)
3312 	    device_printf(dev, "wake_prep disabled wake for %s (S%d)\n",
3313 		acpi_name(handle), sstate);
3314     } else if (dev && (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) != 0) {
3315 	acpi_pwr_wake_enable(handle, 1);
3316 	acpi_SetInteger(handle, "_PSW", 1);
3317 	if (bootverbose)
3318 	    device_printf(dev, "wake_prep enabled for %s (S%d)\n",
3319 		acpi_name(handle), sstate);
3320     }
3321 
3322     return (0);
3323 }
3324 
3325 static int
3326 acpi_wake_run_prep(ACPI_HANDLE handle, int sstate)
3327 {
3328     struct acpi_prw_data prw;
3329     device_t dev;
3330 
3331     /*
3332      * Check that this is a wake-capable device and get its GPE.  Return
3333      * now if the user didn't enable this device for wake.
3334      */
3335     if (acpi_parse_prw(handle, &prw) != 0)
3336 	return (ENXIO);
3337     dev = acpi_get_device(handle);
3338     if (dev == NULL || (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) == 0)
3339 	return (0);
3340 
3341     /*
3342      * If this GPE couldn't be enabled for the previous sleep state, it was
3343      * disabled before going to sleep so re-enable it.  If it was enabled,
3344      * clear _PSW and turn off any power resources it used.
3345      */
3346     if (sstate > prw.lowest_wake) {
3347 	AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, ACPI_GPE_ENABLE);
3348 	if (bootverbose)
3349 	    device_printf(dev, "run_prep re-enabled %s\n", acpi_name(handle));
3350     } else {
3351 	acpi_SetInteger(handle, "_PSW", 0);
3352 	acpi_pwr_wake_enable(handle, 0);
3353 	if (bootverbose)
3354 	    device_printf(dev, "run_prep cleaned up for %s\n",
3355 		acpi_name(handle));
3356     }
3357 
3358     return (0);
3359 }
3360 
3361 static ACPI_STATUS
3362 acpi_wake_prep(ACPI_HANDLE handle, UINT32 level, void *context, void **status)
3363 {
3364     int sstate;
3365 
3366     /* If suspending, run the sleep prep function, otherwise wake. */
3367     sstate = *(int *)context;
3368     if (AcpiGbl_SystemAwakeAndRunning)
3369 	acpi_wake_sleep_prep(handle, sstate);
3370     else
3371 	acpi_wake_run_prep(handle, sstate);
3372     return (AE_OK);
3373 }
3374 
3375 /* Walk the tree rooted at acpi0 to prep devices for suspend/resume. */
3376 static int
3377 acpi_wake_prep_walk(int sstate)
3378 {
3379     ACPI_HANDLE sb_handle;
3380 
3381     if (ACPI_SUCCESS(AcpiGetHandle(ACPI_ROOT_OBJECT, "\\_SB_", &sb_handle)))
3382 	AcpiWalkNamespace(ACPI_TYPE_DEVICE, sb_handle, 100,
3383 	    acpi_wake_prep, NULL, &sstate, NULL);
3384     return (0);
3385 }
3386 
3387 /* Walk the tree rooted at acpi0 to attach per-device wake sysctls. */
3388 static int
3389 acpi_wake_sysctl_walk(device_t dev)
3390 {
3391     int error, i, numdevs;
3392     device_t *devlist;
3393     device_t child;
3394     ACPI_STATUS status;
3395 
3396     error = device_get_children(dev, &devlist, &numdevs);
3397     if (error != 0 || numdevs == 0) {
3398 	if (numdevs == 0)
3399 	    free(devlist, M_TEMP);
3400 	return (error);
3401     }
3402     for (i = 0; i < numdevs; i++) {
3403 	child = devlist[i];
3404 	acpi_wake_sysctl_walk(child);
3405 	if (!device_is_attached(child))
3406 	    continue;
3407 	status = AcpiEvaluateObject(acpi_get_handle(child), "_PRW", NULL, NULL);
3408 	if (ACPI_SUCCESS(status)) {
3409 	    SYSCTL_ADD_PROC(device_get_sysctl_ctx(child),
3410 		SYSCTL_CHILDREN(device_get_sysctl_tree(child)), OID_AUTO,
3411 		"wake", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, child, 0,
3412 		acpi_wake_set_sysctl, "I", "Device set to wake the system");
3413 	}
3414     }
3415     free(devlist, M_TEMP);
3416 
3417     return (0);
3418 }
3419 
3420 /* Enable or disable wake from userland. */
3421 static int
3422 acpi_wake_set_sysctl(SYSCTL_HANDLER_ARGS)
3423 {
3424     int enable, error;
3425     device_t dev;
3426 
3427     dev = (device_t)arg1;
3428     enable = (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) ? 1 : 0;
3429 
3430     error = sysctl_handle_int(oidp, &enable, 0, req);
3431     if (error != 0 || req->newptr == NULL)
3432 	return (error);
3433     if (enable != 0 && enable != 1)
3434 	return (EINVAL);
3435 
3436     return (acpi_wake_set_enable(dev, enable));
3437 }
3438 
3439 /* Parse a device's _PRW into a structure. */
3440 int
3441 acpi_parse_prw(ACPI_HANDLE h, struct acpi_prw_data *prw)
3442 {
3443     ACPI_STATUS			status;
3444     ACPI_BUFFER			prw_buffer;
3445     ACPI_OBJECT			*res, *res2;
3446     int				error, i, power_count;
3447 
3448     if (h == NULL || prw == NULL)
3449 	return (EINVAL);
3450 
3451     /*
3452      * The _PRW object (7.2.9) is only required for devices that have the
3453      * ability to wake the system from a sleeping state.
3454      */
3455     error = EINVAL;
3456     prw_buffer.Pointer = NULL;
3457     prw_buffer.Length = ACPI_ALLOCATE_BUFFER;
3458     status = AcpiEvaluateObject(h, "_PRW", NULL, &prw_buffer);
3459     if (ACPI_FAILURE(status))
3460 	return (ENOENT);
3461     res = (ACPI_OBJECT *)prw_buffer.Pointer;
3462     if (res == NULL)
3463 	return (ENOENT);
3464     if (!ACPI_PKG_VALID(res, 2))
3465 	goto out;
3466 
3467     /*
3468      * Element 1 of the _PRW object:
3469      * The lowest power system sleeping state that can be entered while still
3470      * providing wake functionality.  The sleeping state being entered must
3471      * be less than (i.e., higher power) or equal to this value.
3472      */
3473     if (acpi_PkgInt32(res, 1, &prw->lowest_wake) != 0)
3474 	goto out;
3475 
3476     /*
3477      * Element 0 of the _PRW object:
3478      */
3479     switch (res->Package.Elements[0].Type) {
3480     case ACPI_TYPE_INTEGER:
3481 	/*
3482 	 * If the data type of this package element is numeric, then this
3483 	 * _PRW package element is the bit index in the GPEx_EN, in the
3484 	 * GPE blocks described in the FADT, of the enable bit that is
3485 	 * enabled for the wake event.
3486 	 */
3487 	prw->gpe_handle = NULL;
3488 	prw->gpe_bit = res->Package.Elements[0].Integer.Value;
3489 	error = 0;
3490 	break;
3491     case ACPI_TYPE_PACKAGE:
3492 	/*
3493 	 * If the data type of this package element is a package, then this
3494 	 * _PRW package element is itself a package containing two
3495 	 * elements.  The first is an object reference to the GPE Block
3496 	 * device that contains the GPE that will be triggered by the wake
3497 	 * event.  The second element is numeric and it contains the bit
3498 	 * index in the GPEx_EN, in the GPE Block referenced by the
3499 	 * first element in the package, of the enable bit that is enabled for
3500 	 * the wake event.
3501 	 *
3502 	 * For example, if this field is a package then it is of the form:
3503 	 * Package() {\_SB.PCI0.ISA.GPE, 2}
3504 	 */
3505 	res2 = &res->Package.Elements[0];
3506 	if (!ACPI_PKG_VALID(res2, 2))
3507 	    goto out;
3508 	prw->gpe_handle = acpi_GetReference(NULL, &res2->Package.Elements[0]);
3509 	if (prw->gpe_handle == NULL)
3510 	    goto out;
3511 	if (acpi_PkgInt32(res2, 1, &prw->gpe_bit) != 0)
3512 	    goto out;
3513 	error = 0;
3514 	break;
3515     default:
3516 	goto out;
3517     }
3518 
3519     /* Elements 2 to N of the _PRW object are power resources. */
3520     power_count = res->Package.Count - 2;
3521     if (power_count > ACPI_PRW_MAX_POWERRES) {
3522 	printf("ACPI device %s has too many power resources\n", acpi_name(h));
3523 	power_count = 0;
3524     }
3525     prw->power_res_count = power_count;
3526     for (i = 0; i < power_count; i++)
3527 	prw->power_res[i] = res->Package.Elements[i];
3528 
3529 out:
3530     if (prw_buffer.Pointer != NULL)
3531 	AcpiOsFree(prw_buffer.Pointer);
3532     return (error);
3533 }
3534 
3535 /*
3536  * ACPI Event Handlers
3537  */
3538 
3539 /* System Event Handlers (registered by EVENTHANDLER_REGISTER) */
3540 
3541 static void
3542 acpi_system_eventhandler_sleep(void *arg, int state)
3543 {
3544     struct acpi_softc *sc = (struct acpi_softc *)arg;
3545     int ret;
3546 
3547     ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state);
3548 
3549     /* Check if button action is disabled or unknown. */
3550     if (state == ACPI_STATE_UNKNOWN)
3551 	return;
3552 
3553     /* Request that the system prepare to enter the given suspend state. */
3554     ret = acpi_ReqSleepState(sc, state);
3555     if (ret != 0)
3556 	device_printf(sc->acpi_dev,
3557 	    "request to enter state S%d failed (err %d)\n", state, ret);
3558 
3559     return_VOID;
3560 }
3561 
3562 static void
3563 acpi_system_eventhandler_wakeup(void *arg, int state)
3564 {
3565 
3566     ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state);
3567 
3568     /* Currently, nothing to do for wakeup. */
3569 
3570     return_VOID;
3571 }
3572 
3573 /*
3574  * ACPICA Event Handlers (FixedEvent, also called from button notify handler)
3575  */
3576 static void
3577 acpi_invoke_sleep_eventhandler(void *context)
3578 {
3579 
3580     EVENTHANDLER_INVOKE(acpi_sleep_event, *(int *)context);
3581 }
3582 
3583 static void
3584 acpi_invoke_wake_eventhandler(void *context)
3585 {
3586 
3587     EVENTHANDLER_INVOKE(acpi_wakeup_event, *(int *)context);
3588 }
3589 
3590 UINT32
3591 acpi_event_power_button_sleep(void *context)
3592 {
3593     struct acpi_softc	*sc = (struct acpi_softc *)context;
3594 
3595     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
3596 
3597     if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER,
3598 	acpi_invoke_sleep_eventhandler, &sc->acpi_power_button_sx)))
3599 	return_VALUE (ACPI_INTERRUPT_NOT_HANDLED);
3600     return_VALUE (ACPI_INTERRUPT_HANDLED);
3601 }
3602 
3603 UINT32
3604 acpi_event_power_button_wake(void *context)
3605 {
3606     struct acpi_softc	*sc = (struct acpi_softc *)context;
3607 
3608     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
3609 
3610     if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER,
3611 	acpi_invoke_wake_eventhandler, &sc->acpi_power_button_sx)))
3612 	return_VALUE (ACPI_INTERRUPT_NOT_HANDLED);
3613     return_VALUE (ACPI_INTERRUPT_HANDLED);
3614 }
3615 
3616 UINT32
3617 acpi_event_sleep_button_sleep(void *context)
3618 {
3619     struct acpi_softc	*sc = (struct acpi_softc *)context;
3620 
3621     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
3622 
3623     if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER,
3624 	acpi_invoke_sleep_eventhandler, &sc->acpi_sleep_button_sx)))
3625 	return_VALUE (ACPI_INTERRUPT_NOT_HANDLED);
3626     return_VALUE (ACPI_INTERRUPT_HANDLED);
3627 }
3628 
3629 UINT32
3630 acpi_event_sleep_button_wake(void *context)
3631 {
3632     struct acpi_softc	*sc = (struct acpi_softc *)context;
3633 
3634     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
3635 
3636     if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER,
3637 	acpi_invoke_wake_eventhandler, &sc->acpi_sleep_button_sx)))
3638 	return_VALUE (ACPI_INTERRUPT_NOT_HANDLED);
3639     return_VALUE (ACPI_INTERRUPT_HANDLED);
3640 }
3641 
3642 /*
3643  * XXX This static buffer is suboptimal.  There is no locking so only
3644  * use this for single-threaded callers.
3645  */
3646 char *
3647 acpi_name(ACPI_HANDLE handle)
3648 {
3649     ACPI_BUFFER buf;
3650     static char data[256];
3651 
3652     buf.Length = sizeof(data);
3653     buf.Pointer = data;
3654 
3655     if (handle && ACPI_SUCCESS(AcpiGetName(handle, ACPI_FULL_PATHNAME, &buf)))
3656 	return (data);
3657     return ("(unknown)");
3658 }
3659 
3660 /*
3661  * Debugging/bug-avoidance.  Avoid trying to fetch info on various
3662  * parts of the namespace.
3663  */
3664 int
3665 acpi_avoid(ACPI_HANDLE handle)
3666 {
3667     char	*cp, *env, *np;
3668     int		len;
3669 
3670     np = acpi_name(handle);
3671     if (*np == '\\')
3672 	np++;
3673     if ((env = kern_getenv("debug.acpi.avoid")) == NULL)
3674 	return (0);
3675 
3676     /* Scan the avoid list checking for a match */
3677     cp = env;
3678     for (;;) {
3679 	while (*cp != 0 && isspace(*cp))
3680 	    cp++;
3681 	if (*cp == 0)
3682 	    break;
3683 	len = 0;
3684 	while (cp[len] != 0 && !isspace(cp[len]))
3685 	    len++;
3686 	if (!strncmp(cp, np, len)) {
3687 	    freeenv(env);
3688 	    return(1);
3689 	}
3690 	cp += len;
3691     }
3692     freeenv(env);
3693 
3694     return (0);
3695 }
3696 
3697 /*
3698  * Debugging/bug-avoidance.  Disable ACPI subsystem components.
3699  */
3700 int
3701 acpi_disabled(char *subsys)
3702 {
3703     char	*cp, *env;
3704     int		len;
3705 
3706     if ((env = kern_getenv("debug.acpi.disabled")) == NULL)
3707 	return (0);
3708     if (strcmp(env, "all") == 0) {
3709 	freeenv(env);
3710 	return (1);
3711     }
3712 
3713     /* Scan the disable list, checking for a match. */
3714     cp = env;
3715     for (;;) {
3716 	while (*cp != '\0' && isspace(*cp))
3717 	    cp++;
3718 	if (*cp == '\0')
3719 	    break;
3720 	len = 0;
3721 	while (cp[len] != '\0' && !isspace(cp[len]))
3722 	    len++;
3723 	if (strncmp(cp, subsys, len) == 0) {
3724 	    freeenv(env);
3725 	    return (1);
3726 	}
3727 	cp += len;
3728     }
3729     freeenv(env);
3730 
3731     return (0);
3732 }
3733 
3734 static void
3735 acpi_lookup(void *arg, const char *name, device_t *dev)
3736 {
3737     ACPI_HANDLE handle;
3738 
3739     if (*dev != NULL)
3740 	return;
3741 
3742     /*
3743      * Allow any handle name that is specified as an absolute path and
3744      * starts with '\'.  We could restrict this to \_SB and friends,
3745      * but see acpi_probe_children() for notes on why we scan the entire
3746      * namespace for devices.
3747      *
3748      * XXX: The pathname argument to AcpiGetHandle() should be fixed to
3749      * be const.
3750      */
3751     if (name[0] != '\\')
3752 	return;
3753     if (ACPI_FAILURE(AcpiGetHandle(ACPI_ROOT_OBJECT, __DECONST(char *, name),
3754 	&handle)))
3755 	return;
3756     *dev = acpi_get_device(handle);
3757 }
3758 
3759 /*
3760  * Control interface.
3761  *
3762  * We multiplex ioctls for all participating ACPI devices here.  Individual
3763  * drivers wanting to be accessible via /dev/acpi should use the
3764  * register/deregister interface to make their handlers visible.
3765  */
3766 struct acpi_ioctl_hook
3767 {
3768     TAILQ_ENTRY(acpi_ioctl_hook) link;
3769     u_long			 cmd;
3770     acpi_ioctl_fn		 fn;
3771     void			 *arg;
3772 };
3773 
3774 static TAILQ_HEAD(,acpi_ioctl_hook)	acpi_ioctl_hooks;
3775 static int				acpi_ioctl_hooks_initted;
3776 
3777 int
3778 acpi_register_ioctl(u_long cmd, acpi_ioctl_fn fn, void *arg)
3779 {
3780     struct acpi_ioctl_hook	*hp;
3781 
3782     if ((hp = malloc(sizeof(*hp), M_ACPIDEV, M_NOWAIT)) == NULL)
3783 	return (ENOMEM);
3784     hp->cmd = cmd;
3785     hp->fn = fn;
3786     hp->arg = arg;
3787 
3788     ACPI_LOCK(acpi);
3789     if (acpi_ioctl_hooks_initted == 0) {
3790 	TAILQ_INIT(&acpi_ioctl_hooks);
3791 	acpi_ioctl_hooks_initted = 1;
3792     }
3793     TAILQ_INSERT_TAIL(&acpi_ioctl_hooks, hp, link);
3794     ACPI_UNLOCK(acpi);
3795 
3796     return (0);
3797 }
3798 
3799 void
3800 acpi_deregister_ioctl(u_long cmd, acpi_ioctl_fn fn)
3801 {
3802     struct acpi_ioctl_hook	*hp;
3803 
3804     ACPI_LOCK(acpi);
3805     TAILQ_FOREACH(hp, &acpi_ioctl_hooks, link)
3806 	if (hp->cmd == cmd && hp->fn == fn)
3807 	    break;
3808 
3809     if (hp != NULL) {
3810 	TAILQ_REMOVE(&acpi_ioctl_hooks, hp, link);
3811 	free(hp, M_ACPIDEV);
3812     }
3813     ACPI_UNLOCK(acpi);
3814 }
3815 
3816 static int
3817 acpiopen(struct cdev *dev, int flag, int fmt, struct thread *td)
3818 {
3819     return (0);
3820 }
3821 
3822 static int
3823 acpiclose(struct cdev *dev, int flag, int fmt, struct thread *td)
3824 {
3825     return (0);
3826 }
3827 
3828 static int
3829 acpiioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
3830 {
3831     struct acpi_softc		*sc;
3832     struct acpi_ioctl_hook	*hp;
3833     int				error, state;
3834 
3835     error = 0;
3836     hp = NULL;
3837     sc = dev->si_drv1;
3838 
3839     /*
3840      * Scan the list of registered ioctls, looking for handlers.
3841      */
3842     ACPI_LOCK(acpi);
3843     if (acpi_ioctl_hooks_initted)
3844 	TAILQ_FOREACH(hp, &acpi_ioctl_hooks, link) {
3845 	    if (hp->cmd == cmd)
3846 		break;
3847 	}
3848     ACPI_UNLOCK(acpi);
3849     if (hp)
3850 	return (hp->fn(cmd, addr, hp->arg));
3851 
3852     /*
3853      * Core ioctls are not permitted for non-writable user.
3854      * Currently, other ioctls just fetch information.
3855      * Not changing system behavior.
3856      */
3857     if ((flag & FWRITE) == 0)
3858 	return (EPERM);
3859 
3860     /* Core system ioctls. */
3861     switch (cmd) {
3862     case ACPIIO_REQSLPSTATE:
3863 	state = *(int *)addr;
3864 	if (state != ACPI_STATE_S5)
3865 	    return (acpi_ReqSleepState(sc, state));
3866 	device_printf(sc->acpi_dev, "power off via acpi ioctl not supported\n");
3867 	error = EOPNOTSUPP;
3868 	break;
3869     case ACPIIO_ACKSLPSTATE:
3870 	error = *(int *)addr;
3871 	error = acpi_AckSleepState(sc->acpi_clone, error);
3872 	break;
3873     case ACPIIO_SETSLPSTATE:	/* DEPRECATED */
3874 	state = *(int *)addr;
3875 	if (state < ACPI_STATE_S0 || state > ACPI_S_STATES_MAX)
3876 	    return (EINVAL);
3877 	if (!acpi_sleep_states[state])
3878 	    return (EOPNOTSUPP);
3879 	if (ACPI_FAILURE(acpi_SetSleepState(sc, state)))
3880 	    error = ENXIO;
3881 	break;
3882     default:
3883 	error = ENXIO;
3884 	break;
3885     }
3886 
3887     return (error);
3888 }
3889 
3890 static int
3891 acpi_sname2sstate(const char *sname)
3892 {
3893     int sstate;
3894 
3895     if (toupper(sname[0]) == 'S') {
3896 	sstate = sname[1] - '0';
3897 	if (sstate >= ACPI_STATE_S0 && sstate <= ACPI_STATE_S5 &&
3898 	    sname[2] == '\0')
3899 	    return (sstate);
3900     } else if (strcasecmp(sname, "NONE") == 0)
3901 	return (ACPI_STATE_UNKNOWN);
3902     return (-1);
3903 }
3904 
3905 static const char *
3906 acpi_sstate2sname(int sstate)
3907 {
3908     static const char *snames[] = { "S0", "S1", "S2", "S3", "S4", "S5" };
3909 
3910     if (sstate >= ACPI_STATE_S0 && sstate <= ACPI_STATE_S5)
3911 	return (snames[sstate]);
3912     else if (sstate == ACPI_STATE_UNKNOWN)
3913 	return ("NONE");
3914     return (NULL);
3915 }
3916 
3917 static int
3918 acpi_supported_sleep_state_sysctl(SYSCTL_HANDLER_ARGS)
3919 {
3920     int error;
3921     struct sbuf sb;
3922     UINT8 state;
3923 
3924     sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND);
3925     for (state = ACPI_STATE_S1; state < ACPI_S_STATE_COUNT; state++)
3926 	if (acpi_sleep_states[state])
3927 	    sbuf_printf(&sb, "%s ", acpi_sstate2sname(state));
3928     sbuf_trim(&sb);
3929     sbuf_finish(&sb);
3930     error = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
3931     sbuf_delete(&sb);
3932     return (error);
3933 }
3934 
3935 static int
3936 acpi_sleep_state_sysctl(SYSCTL_HANDLER_ARGS)
3937 {
3938     char sleep_state[10];
3939     int error, new_state, old_state;
3940 
3941     old_state = *(int *)oidp->oid_arg1;
3942     strlcpy(sleep_state, acpi_sstate2sname(old_state), sizeof(sleep_state));
3943     error = sysctl_handle_string(oidp, sleep_state, sizeof(sleep_state), req);
3944     if (error == 0 && req->newptr != NULL) {
3945 	new_state = acpi_sname2sstate(sleep_state);
3946 	if (new_state < ACPI_STATE_S1)
3947 	    return (EINVAL);
3948 	if (new_state < ACPI_S_STATE_COUNT && !acpi_sleep_states[new_state])
3949 	    return (EOPNOTSUPP);
3950 	if (new_state != old_state)
3951 	    *(int *)oidp->oid_arg1 = new_state;
3952     }
3953     return (error);
3954 }
3955 
3956 /* Inform devctl(4) when we receive a Notify. */
3957 void
3958 acpi_UserNotify(const char *subsystem, ACPI_HANDLE h, uint8_t notify)
3959 {
3960     char		notify_buf[16];
3961     ACPI_BUFFER		handle_buf;
3962     ACPI_STATUS		status;
3963 
3964     if (subsystem == NULL)
3965 	return;
3966 
3967     handle_buf.Pointer = NULL;
3968     handle_buf.Length = ACPI_ALLOCATE_BUFFER;
3969     status = AcpiNsHandleToPathname(h, &handle_buf, FALSE);
3970     if (ACPI_FAILURE(status))
3971 	return;
3972     snprintf(notify_buf, sizeof(notify_buf), "notify=0x%02x", notify);
3973     devctl_notify("ACPI", subsystem, handle_buf.Pointer, notify_buf);
3974     AcpiOsFree(handle_buf.Pointer);
3975 }
3976 
3977 #ifdef ACPI_DEBUG
3978 /*
3979  * Support for parsing debug options from the kernel environment.
3980  *
3981  * Bits may be set in the AcpiDbgLayer and AcpiDbgLevel debug registers
3982  * by specifying the names of the bits in the debug.acpi.layer and
3983  * debug.acpi.level environment variables.  Bits may be unset by
3984  * prefixing the bit name with !.
3985  */
3986 struct debugtag
3987 {
3988     char	*name;
3989     UINT32	value;
3990 };
3991 
3992 static struct debugtag	dbg_layer[] = {
3993     {"ACPI_UTILITIES",		ACPI_UTILITIES},
3994     {"ACPI_HARDWARE",		ACPI_HARDWARE},
3995     {"ACPI_EVENTS",		ACPI_EVENTS},
3996     {"ACPI_TABLES",		ACPI_TABLES},
3997     {"ACPI_NAMESPACE",		ACPI_NAMESPACE},
3998     {"ACPI_PARSER",		ACPI_PARSER},
3999     {"ACPI_DISPATCHER",		ACPI_DISPATCHER},
4000     {"ACPI_EXECUTER",		ACPI_EXECUTER},
4001     {"ACPI_RESOURCES",		ACPI_RESOURCES},
4002     {"ACPI_CA_DEBUGGER",	ACPI_CA_DEBUGGER},
4003     {"ACPI_OS_SERVICES",	ACPI_OS_SERVICES},
4004     {"ACPI_CA_DISASSEMBLER",	ACPI_CA_DISASSEMBLER},
4005     {"ACPI_ALL_COMPONENTS",	ACPI_ALL_COMPONENTS},
4006 
4007     {"ACPI_AC_ADAPTER",		ACPI_AC_ADAPTER},
4008     {"ACPI_BATTERY",		ACPI_BATTERY},
4009     {"ACPI_BUS",		ACPI_BUS},
4010     {"ACPI_BUTTON",		ACPI_BUTTON},
4011     {"ACPI_EC", 		ACPI_EC},
4012     {"ACPI_FAN",		ACPI_FAN},
4013     {"ACPI_POWERRES",		ACPI_POWERRES},
4014     {"ACPI_PROCESSOR",		ACPI_PROCESSOR},
4015     {"ACPI_THERMAL",		ACPI_THERMAL},
4016     {"ACPI_TIMER",		ACPI_TIMER},
4017     {"ACPI_ALL_DRIVERS",	ACPI_ALL_DRIVERS},
4018     {NULL, 0}
4019 };
4020 
4021 static struct debugtag dbg_level[] = {
4022     {"ACPI_LV_INIT",		ACPI_LV_INIT},
4023     {"ACPI_LV_DEBUG_OBJECT",	ACPI_LV_DEBUG_OBJECT},
4024     {"ACPI_LV_INFO",		ACPI_LV_INFO},
4025     {"ACPI_LV_REPAIR",		ACPI_LV_REPAIR},
4026     {"ACPI_LV_ALL_EXCEPTIONS",	ACPI_LV_ALL_EXCEPTIONS},
4027 
4028     /* Trace verbosity level 1 [Standard Trace Level] */
4029     {"ACPI_LV_INIT_NAMES",	ACPI_LV_INIT_NAMES},
4030     {"ACPI_LV_PARSE",		ACPI_LV_PARSE},
4031     {"ACPI_LV_LOAD",		ACPI_LV_LOAD},
4032     {"ACPI_LV_DISPATCH",	ACPI_LV_DISPATCH},
4033     {"ACPI_LV_EXEC",		ACPI_LV_EXEC},
4034     {"ACPI_LV_NAMES",		ACPI_LV_NAMES},
4035     {"ACPI_LV_OPREGION",	ACPI_LV_OPREGION},
4036     {"ACPI_LV_BFIELD",		ACPI_LV_BFIELD},
4037     {"ACPI_LV_TABLES",		ACPI_LV_TABLES},
4038     {"ACPI_LV_VALUES",		ACPI_LV_VALUES},
4039     {"ACPI_LV_OBJECTS",		ACPI_LV_OBJECTS},
4040     {"ACPI_LV_RESOURCES",	ACPI_LV_RESOURCES},
4041     {"ACPI_LV_USER_REQUESTS",	ACPI_LV_USER_REQUESTS},
4042     {"ACPI_LV_PACKAGE",		ACPI_LV_PACKAGE},
4043     {"ACPI_LV_VERBOSITY1",	ACPI_LV_VERBOSITY1},
4044 
4045     /* Trace verbosity level 2 [Function tracing and memory allocation] */
4046     {"ACPI_LV_ALLOCATIONS",	ACPI_LV_ALLOCATIONS},
4047     {"ACPI_LV_FUNCTIONS",	ACPI_LV_FUNCTIONS},
4048     {"ACPI_LV_OPTIMIZATIONS",	ACPI_LV_OPTIMIZATIONS},
4049     {"ACPI_LV_VERBOSITY2",	ACPI_LV_VERBOSITY2},
4050     {"ACPI_LV_ALL",		ACPI_LV_ALL},
4051 
4052     /* Trace verbosity level 3 [Threading, I/O, and Interrupts] */
4053     {"ACPI_LV_MUTEX",		ACPI_LV_MUTEX},
4054     {"ACPI_LV_THREADS",		ACPI_LV_THREADS},
4055     {"ACPI_LV_IO",		ACPI_LV_IO},
4056     {"ACPI_LV_INTERRUPTS",	ACPI_LV_INTERRUPTS},
4057     {"ACPI_LV_VERBOSITY3",	ACPI_LV_VERBOSITY3},
4058 
4059     /* Exceptionally verbose output -- also used in the global "DebugLevel"  */
4060     {"ACPI_LV_AML_DISASSEMBLE",	ACPI_LV_AML_DISASSEMBLE},
4061     {"ACPI_LV_VERBOSE_INFO",	ACPI_LV_VERBOSE_INFO},
4062     {"ACPI_LV_FULL_TABLES",	ACPI_LV_FULL_TABLES},
4063     {"ACPI_LV_EVENTS",		ACPI_LV_EVENTS},
4064     {"ACPI_LV_VERBOSE",		ACPI_LV_VERBOSE},
4065     {NULL, 0}
4066 };
4067 
4068 static void
4069 acpi_parse_debug(char *cp, struct debugtag *tag, UINT32 *flag)
4070 {
4071     char	*ep;
4072     int		i, l;
4073     int		set;
4074 
4075     while (*cp) {
4076 	if (isspace(*cp)) {
4077 	    cp++;
4078 	    continue;
4079 	}
4080 	ep = cp;
4081 	while (*ep && !isspace(*ep))
4082 	    ep++;
4083 	if (*cp == '!') {
4084 	    set = 0;
4085 	    cp++;
4086 	    if (cp == ep)
4087 		continue;
4088 	} else {
4089 	    set = 1;
4090 	}
4091 	l = ep - cp;
4092 	for (i = 0; tag[i].name != NULL; i++) {
4093 	    if (!strncmp(cp, tag[i].name, l)) {
4094 		if (set)
4095 		    *flag |= tag[i].value;
4096 		else
4097 		    *flag &= ~tag[i].value;
4098 	    }
4099 	}
4100 	cp = ep;
4101     }
4102 }
4103 
4104 static void
4105 acpi_set_debugging(void *junk)
4106 {
4107     char	*layer, *level;
4108 
4109     if (cold) {
4110 	AcpiDbgLayer = 0;
4111 	AcpiDbgLevel = 0;
4112     }
4113 
4114     layer = kern_getenv("debug.acpi.layer");
4115     level = kern_getenv("debug.acpi.level");
4116     if (layer == NULL && level == NULL)
4117 	return;
4118 
4119     printf("ACPI set debug");
4120     if (layer != NULL) {
4121 	if (strcmp("NONE", layer) != 0)
4122 	    printf(" layer '%s'", layer);
4123 	acpi_parse_debug(layer, &dbg_layer[0], &AcpiDbgLayer);
4124 	freeenv(layer);
4125     }
4126     if (level != NULL) {
4127 	if (strcmp("NONE", level) != 0)
4128 	    printf(" level '%s'", level);
4129 	acpi_parse_debug(level, &dbg_level[0], &AcpiDbgLevel);
4130 	freeenv(level);
4131     }
4132     printf("\n");
4133 }
4134 
4135 SYSINIT(acpi_debugging, SI_SUB_TUNABLES, SI_ORDER_ANY, acpi_set_debugging,
4136 	NULL);
4137 
4138 static int
4139 acpi_debug_sysctl(SYSCTL_HANDLER_ARGS)
4140 {
4141     int		 error, *dbg;
4142     struct	 debugtag *tag;
4143     struct	 sbuf sb;
4144     char	 temp[128];
4145 
4146     if (sbuf_new(&sb, NULL, 128, SBUF_AUTOEXTEND) == NULL)
4147 	return (ENOMEM);
4148     if (strcmp(oidp->oid_arg1, "debug.acpi.layer") == 0) {
4149 	tag = &dbg_layer[0];
4150 	dbg = &AcpiDbgLayer;
4151     } else {
4152 	tag = &dbg_level[0];
4153 	dbg = &AcpiDbgLevel;
4154     }
4155 
4156     /* Get old values if this is a get request. */
4157     ACPI_SERIAL_BEGIN(acpi);
4158     if (*dbg == 0) {
4159 	sbuf_cpy(&sb, "NONE");
4160     } else if (req->newptr == NULL) {
4161 	for (; tag->name != NULL; tag++) {
4162 	    if ((*dbg & tag->value) == tag->value)
4163 		sbuf_printf(&sb, "%s ", tag->name);
4164 	}
4165     }
4166     sbuf_trim(&sb);
4167     sbuf_finish(&sb);
4168     strlcpy(temp, sbuf_data(&sb), sizeof(temp));
4169     sbuf_delete(&sb);
4170 
4171     error = sysctl_handle_string(oidp, temp, sizeof(temp), req);
4172 
4173     /* Check for error or no change */
4174     if (error == 0 && req->newptr != NULL) {
4175 	*dbg = 0;
4176 	kern_setenv((char *)oidp->oid_arg1, temp);
4177 	acpi_set_debugging(NULL);
4178     }
4179     ACPI_SERIAL_END(acpi);
4180 
4181     return (error);
4182 }
4183 
4184 SYSCTL_PROC(_debug_acpi, OID_AUTO, layer,
4185     CTLFLAG_RW | CTLTYPE_STRING | CTLFLAG_NEEDGIANT, "debug.acpi.layer", 0,
4186     acpi_debug_sysctl, "A",
4187     "");
4188 SYSCTL_PROC(_debug_acpi, OID_AUTO, level,
4189     CTLFLAG_RW | CTLTYPE_STRING | CTLFLAG_NEEDGIANT, "debug.acpi.level", 0,
4190     acpi_debug_sysctl, "A",
4191     "");
4192 #endif /* ACPI_DEBUG */
4193 
4194 static int
4195 acpi_debug_objects_sysctl(SYSCTL_HANDLER_ARGS)
4196 {
4197 	int	error;
4198 	int	old;
4199 
4200 	old = acpi_debug_objects;
4201 	error = sysctl_handle_int(oidp, &acpi_debug_objects, 0, req);
4202 	if (error != 0 || req->newptr == NULL)
4203 		return (error);
4204 	if (old == acpi_debug_objects || (old && acpi_debug_objects))
4205 		return (0);
4206 
4207 	ACPI_SERIAL_BEGIN(acpi);
4208 	AcpiGbl_EnableAmlDebugObject = acpi_debug_objects ? TRUE : FALSE;
4209 	ACPI_SERIAL_END(acpi);
4210 
4211 	return (0);
4212 }
4213 
4214 static int
4215 acpi_parse_interfaces(char *str, struct acpi_interface *iface)
4216 {
4217 	char *p;
4218 	size_t len;
4219 	int i, j;
4220 
4221 	p = str;
4222 	while (isspace(*p) || *p == ',')
4223 		p++;
4224 	len = strlen(p);
4225 	if (len == 0)
4226 		return (0);
4227 	p = strdup(p, M_TEMP);
4228 	for (i = 0; i < len; i++)
4229 		if (p[i] == ',')
4230 			p[i] = '\0';
4231 	i = j = 0;
4232 	while (i < len)
4233 		if (isspace(p[i]) || p[i] == '\0')
4234 			i++;
4235 		else {
4236 			i += strlen(p + i) + 1;
4237 			j++;
4238 		}
4239 	if (j == 0) {
4240 		free(p, M_TEMP);
4241 		return (0);
4242 	}
4243 	iface->data = malloc(sizeof(*iface->data) * j, M_TEMP, M_WAITOK);
4244 	iface->num = j;
4245 	i = j = 0;
4246 	while (i < len)
4247 		if (isspace(p[i]) || p[i] == '\0')
4248 			i++;
4249 		else {
4250 			iface->data[j] = p + i;
4251 			i += strlen(p + i) + 1;
4252 			j++;
4253 		}
4254 
4255 	return (j);
4256 }
4257 
4258 static void
4259 acpi_free_interfaces(struct acpi_interface *iface)
4260 {
4261 
4262 	free(iface->data[0], M_TEMP);
4263 	free(iface->data, M_TEMP);
4264 }
4265 
4266 static void
4267 acpi_reset_interfaces(device_t dev)
4268 {
4269 	struct acpi_interface list;
4270 	ACPI_STATUS status;
4271 	int i;
4272 
4273 	if (acpi_parse_interfaces(acpi_install_interface, &list) > 0) {
4274 		for (i = 0; i < list.num; i++) {
4275 			status = AcpiInstallInterface(list.data[i]);
4276 			if (ACPI_FAILURE(status))
4277 				device_printf(dev,
4278 				    "failed to install _OSI(\"%s\"): %s\n",
4279 				    list.data[i], AcpiFormatException(status));
4280 			else if (bootverbose)
4281 				device_printf(dev, "installed _OSI(\"%s\")\n",
4282 				    list.data[i]);
4283 		}
4284 		acpi_free_interfaces(&list);
4285 	}
4286 	if (acpi_parse_interfaces(acpi_remove_interface, &list) > 0) {
4287 		for (i = 0; i < list.num; i++) {
4288 			status = AcpiRemoveInterface(list.data[i]);
4289 			if (ACPI_FAILURE(status))
4290 				device_printf(dev,
4291 				    "failed to remove _OSI(\"%s\"): %s\n",
4292 				    list.data[i], AcpiFormatException(status));
4293 			else if (bootverbose)
4294 				device_printf(dev, "removed _OSI(\"%s\")\n",
4295 				    list.data[i]);
4296 		}
4297 		acpi_free_interfaces(&list);
4298 	}
4299 }
4300 
4301 static int
4302 acpi_pm_func(u_long cmd, void *arg, ...)
4303 {
4304 	int	state, acpi_state;
4305 	int	error;
4306 	struct	acpi_softc *sc;
4307 	va_list	ap;
4308 
4309 	error = 0;
4310 	switch (cmd) {
4311 	case POWER_CMD_SUSPEND:
4312 		sc = (struct acpi_softc *)arg;
4313 		if (sc == NULL) {
4314 			error = EINVAL;
4315 			goto out;
4316 		}
4317 
4318 		va_start(ap, arg);
4319 		state = va_arg(ap, int);
4320 		va_end(ap);
4321 
4322 		switch (state) {
4323 		case POWER_SLEEP_STATE_STANDBY:
4324 			acpi_state = sc->acpi_standby_sx;
4325 			break;
4326 		case POWER_SLEEP_STATE_SUSPEND:
4327 			acpi_state = sc->acpi_suspend_sx;
4328 			break;
4329 		case POWER_SLEEP_STATE_HIBERNATE:
4330 			acpi_state = ACPI_STATE_S4;
4331 			break;
4332 		default:
4333 			error = EINVAL;
4334 			goto out;
4335 		}
4336 
4337 		if (ACPI_FAILURE(acpi_EnterSleepState(sc, acpi_state)))
4338 			error = ENXIO;
4339 		break;
4340 	default:
4341 		error = EINVAL;
4342 		goto out;
4343 	}
4344 
4345 out:
4346 	return (error);
4347 }
4348 
4349 static void
4350 acpi_pm_register(void *arg)
4351 {
4352     if (!cold || resource_disabled("acpi", 0))
4353 	return;
4354 
4355     power_pm_register(POWER_PM_TYPE_ACPI, acpi_pm_func, NULL);
4356 }
4357 
4358 SYSINIT(power, SI_SUB_KLD, SI_ORDER_ANY, acpi_pm_register, NULL);
4359