1 /*- 2 * Copyright (c) 2000 Takanori Watanabe <takawata@jp.freebsd.org> 3 * Copyright (c) 2000 Mitsuru IWASAKI <iwasaki@jp.freebsd.org> 4 * Copyright (c) 2000, 2001 Michael Smith 5 * Copyright (c) 2000 BSDi 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 #include "opt_acpi.h" 32 33 #include <sys/param.h> 34 #include <sys/eventhandler.h> 35 #include <sys/kernel.h> 36 #include <sys/proc.h> 37 #include <sys/fcntl.h> 38 #include <sys/malloc.h> 39 #include <sys/module.h> 40 #include <sys/bus.h> 41 #include <sys/conf.h> 42 #include <sys/ioccom.h> 43 #include <sys/reboot.h> 44 #include <sys/sysctl.h> 45 #include <sys/ctype.h> 46 #include <sys/linker.h> 47 #include <sys/mount.h> 48 #include <sys/power.h> 49 #include <sys/sbuf.h> 50 #include <sys/sched.h> 51 #include <sys/smp.h> 52 #include <sys/timetc.h> 53 #include <sys/uuid.h> 54 55 #if defined(__i386__) || defined(__amd64__) 56 #include <machine/clock.h> 57 #include <machine/pci_cfgreg.h> 58 #endif 59 #include <machine/resource.h> 60 #include <machine/bus.h> 61 #include <sys/rman.h> 62 #include <isa/isavar.h> 63 #include <isa/pnpvar.h> 64 65 #include <contrib/dev/acpica/include/acpi.h> 66 #include <contrib/dev/acpica/include/accommon.h> 67 #include <contrib/dev/acpica/include/acnamesp.h> 68 69 #include <dev/acpica/acpivar.h> 70 #include <dev/acpica/acpiio.h> 71 72 #include <dev/pci/pcivar.h> 73 74 #include <vm/vm_param.h> 75 76 static MALLOC_DEFINE(M_ACPIDEV, "acpidev", "ACPI devices"); 77 78 /* Hooks for the ACPI CA debugging infrastructure */ 79 #define _COMPONENT ACPI_BUS 80 ACPI_MODULE_NAME("ACPI") 81 82 static d_open_t acpiopen; 83 static d_close_t acpiclose; 84 static d_ioctl_t acpiioctl; 85 86 static struct cdevsw acpi_cdevsw = { 87 .d_version = D_VERSION, 88 .d_open = acpiopen, 89 .d_close = acpiclose, 90 .d_ioctl = acpiioctl, 91 .d_name = "acpi", 92 }; 93 94 struct acpi_interface { 95 ACPI_STRING *data; 96 int num; 97 }; 98 99 static char *sysres_ids[] = { "PNP0C01", "PNP0C02", NULL }; 100 static char *pcilink_ids[] = { "PNP0C0F", NULL }; 101 102 /* Global mutex for locking access to the ACPI subsystem. */ 103 struct mtx acpi_mutex; 104 struct callout acpi_sleep_timer; 105 106 /* Bitmap of device quirks. */ 107 int acpi_quirks; 108 109 /* Supported sleep states. */ 110 static BOOLEAN acpi_sleep_states[ACPI_S_STATE_COUNT]; 111 112 static void acpi_lookup(void *arg, const char *name, device_t *dev); 113 static int acpi_modevent(struct module *mod, int event, void *junk); 114 115 static device_probe_t acpi_probe; 116 static device_attach_t acpi_attach; 117 static device_suspend_t acpi_suspend; 118 static device_resume_t acpi_resume; 119 static device_shutdown_t acpi_shutdown; 120 121 static bus_add_child_t acpi_add_child; 122 static bus_print_child_t acpi_print_child; 123 static bus_probe_nomatch_t acpi_probe_nomatch; 124 static bus_driver_added_t acpi_driver_added; 125 static bus_child_deleted_t acpi_child_deleted; 126 static bus_read_ivar_t acpi_read_ivar; 127 static bus_write_ivar_t acpi_write_ivar; 128 static bus_get_resource_list_t acpi_get_rlist; 129 static bus_get_rman_t acpi_get_rman; 130 static bus_set_resource_t acpi_set_resource; 131 static bus_alloc_resource_t acpi_alloc_resource; 132 static bus_adjust_resource_t acpi_adjust_resource; 133 static bus_release_resource_t acpi_release_resource; 134 static bus_delete_resource_t acpi_delete_resource; 135 static bus_activate_resource_t acpi_activate_resource; 136 static bus_deactivate_resource_t acpi_deactivate_resource; 137 static bus_map_resource_t acpi_map_resource; 138 static bus_unmap_resource_t acpi_unmap_resource; 139 static bus_child_pnpinfo_t acpi_child_pnpinfo_method; 140 static bus_child_location_t acpi_child_location_method; 141 static bus_hint_device_unit_t acpi_hint_device_unit; 142 static bus_get_property_t acpi_bus_get_prop; 143 static bus_get_device_path_t acpi_get_device_path; 144 145 static acpi_id_probe_t acpi_device_id_probe; 146 static acpi_evaluate_object_t acpi_device_eval_obj; 147 static acpi_get_property_t acpi_device_get_prop; 148 static acpi_scan_children_t acpi_device_scan_children; 149 150 static isa_pnp_probe_t acpi_isa_pnp_probe; 151 152 static void acpi_reserve_resources(device_t dev); 153 static int acpi_sysres_alloc(device_t dev); 154 static uint32_t acpi_isa_get_logicalid(device_t dev); 155 static int acpi_isa_get_compatid(device_t dev, uint32_t *cids, int count); 156 static ACPI_STATUS acpi_device_scan_cb(ACPI_HANDLE h, UINT32 level, 157 void *context, void **retval); 158 static ACPI_STATUS acpi_find_dsd(struct acpi_device *ad); 159 static void acpi_platform_osc(device_t dev); 160 static void acpi_probe_children(device_t bus); 161 static void acpi_probe_order(ACPI_HANDLE handle, int *order); 162 static ACPI_STATUS acpi_probe_child(ACPI_HANDLE handle, UINT32 level, 163 void *context, void **status); 164 static void acpi_sleep_enable(void *arg); 165 static ACPI_STATUS acpi_sleep_disable(struct acpi_softc *sc); 166 static ACPI_STATUS acpi_EnterSleepState(struct acpi_softc *sc, int state); 167 static void acpi_shutdown_final(void *arg, int howto); 168 static void acpi_enable_fixed_events(struct acpi_softc *sc); 169 static void acpi_resync_clock(struct acpi_softc *sc); 170 static int acpi_wake_sleep_prep(ACPI_HANDLE handle, int sstate); 171 static int acpi_wake_run_prep(ACPI_HANDLE handle, int sstate); 172 static int acpi_wake_prep_walk(int sstate); 173 static int acpi_wake_sysctl_walk(device_t dev); 174 static int acpi_wake_set_sysctl(SYSCTL_HANDLER_ARGS); 175 static void acpi_system_eventhandler_sleep(void *arg, int state); 176 static void acpi_system_eventhandler_wakeup(void *arg, int state); 177 static int acpi_sname2sstate(const char *sname); 178 static const char *acpi_sstate2sname(int sstate); 179 static int acpi_supported_sleep_state_sysctl(SYSCTL_HANDLER_ARGS); 180 static int acpi_sleep_state_sysctl(SYSCTL_HANDLER_ARGS); 181 static int acpi_debug_objects_sysctl(SYSCTL_HANDLER_ARGS); 182 static int acpi_pm_func(u_long cmd, void *arg, ...); 183 static void acpi_enable_pcie(void); 184 static void acpi_reset_interfaces(device_t dev); 185 186 static device_method_t acpi_methods[] = { 187 /* Device interface */ 188 DEVMETHOD(device_probe, acpi_probe), 189 DEVMETHOD(device_attach, acpi_attach), 190 DEVMETHOD(device_shutdown, acpi_shutdown), 191 DEVMETHOD(device_detach, bus_generic_detach), 192 DEVMETHOD(device_suspend, acpi_suspend), 193 DEVMETHOD(device_resume, acpi_resume), 194 195 /* Bus interface */ 196 DEVMETHOD(bus_add_child, acpi_add_child), 197 DEVMETHOD(bus_print_child, acpi_print_child), 198 DEVMETHOD(bus_probe_nomatch, acpi_probe_nomatch), 199 DEVMETHOD(bus_driver_added, acpi_driver_added), 200 DEVMETHOD(bus_child_deleted, acpi_child_deleted), 201 DEVMETHOD(bus_read_ivar, acpi_read_ivar), 202 DEVMETHOD(bus_write_ivar, acpi_write_ivar), 203 DEVMETHOD(bus_get_resource_list, acpi_get_rlist), 204 DEVMETHOD(bus_get_rman, acpi_get_rman), 205 DEVMETHOD(bus_set_resource, acpi_set_resource), 206 DEVMETHOD(bus_get_resource, bus_generic_rl_get_resource), 207 DEVMETHOD(bus_alloc_resource, acpi_alloc_resource), 208 DEVMETHOD(bus_adjust_resource, acpi_adjust_resource), 209 DEVMETHOD(bus_release_resource, acpi_release_resource), 210 DEVMETHOD(bus_delete_resource, acpi_delete_resource), 211 DEVMETHOD(bus_activate_resource, acpi_activate_resource), 212 DEVMETHOD(bus_deactivate_resource, acpi_deactivate_resource), 213 DEVMETHOD(bus_map_resource, acpi_map_resource), 214 DEVMETHOD(bus_unmap_resource, acpi_unmap_resource), 215 DEVMETHOD(bus_child_pnpinfo, acpi_child_pnpinfo_method), 216 DEVMETHOD(bus_child_location, acpi_child_location_method), 217 DEVMETHOD(bus_setup_intr, bus_generic_setup_intr), 218 DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr), 219 DEVMETHOD(bus_hint_device_unit, acpi_hint_device_unit), 220 DEVMETHOD(bus_get_cpus, acpi_get_cpus), 221 DEVMETHOD(bus_get_domain, acpi_get_domain), 222 DEVMETHOD(bus_get_property, acpi_bus_get_prop), 223 DEVMETHOD(bus_get_device_path, acpi_get_device_path), 224 225 /* ACPI bus */ 226 DEVMETHOD(acpi_id_probe, acpi_device_id_probe), 227 DEVMETHOD(acpi_evaluate_object, acpi_device_eval_obj), 228 DEVMETHOD(acpi_get_property, acpi_device_get_prop), 229 DEVMETHOD(acpi_pwr_for_sleep, acpi_device_pwr_for_sleep), 230 DEVMETHOD(acpi_scan_children, acpi_device_scan_children), 231 232 /* ISA emulation */ 233 DEVMETHOD(isa_pnp_probe, acpi_isa_pnp_probe), 234 235 DEVMETHOD_END 236 }; 237 238 static driver_t acpi_driver = { 239 "acpi", 240 acpi_methods, 241 sizeof(struct acpi_softc), 242 }; 243 244 EARLY_DRIVER_MODULE(acpi, nexus, acpi_driver, acpi_modevent, 0, 245 BUS_PASS_BUS + BUS_PASS_ORDER_MIDDLE); 246 MODULE_VERSION(acpi, 1); 247 248 ACPI_SERIAL_DECL(acpi, "ACPI root bus"); 249 250 /* Local pools for managing system resources for ACPI child devices. */ 251 static struct rman acpi_rman_io, acpi_rman_mem; 252 253 #define ACPI_MINIMUM_AWAKETIME 5 254 255 /* Holds the description of the acpi0 device. */ 256 static char acpi_desc[ACPI_OEM_ID_SIZE + ACPI_OEM_TABLE_ID_SIZE + 2]; 257 258 SYSCTL_NODE(_debug, OID_AUTO, acpi, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 259 "ACPI debugging"); 260 static char acpi_ca_version[12]; 261 SYSCTL_STRING(_debug_acpi, OID_AUTO, acpi_ca_version, CTLFLAG_RD, 262 acpi_ca_version, 0, "Version of Intel ACPI-CA"); 263 264 /* 265 * Allow overriding _OSI methods. 266 */ 267 static char acpi_install_interface[256]; 268 TUNABLE_STR("hw.acpi.install_interface", acpi_install_interface, 269 sizeof(acpi_install_interface)); 270 static char acpi_remove_interface[256]; 271 TUNABLE_STR("hw.acpi.remove_interface", acpi_remove_interface, 272 sizeof(acpi_remove_interface)); 273 274 /* Allow users to dump Debug objects without ACPI debugger. */ 275 static int acpi_debug_objects; 276 TUNABLE_INT("debug.acpi.enable_debug_objects", &acpi_debug_objects); 277 SYSCTL_PROC(_debug_acpi, OID_AUTO, enable_debug_objects, 278 CTLFLAG_RW | CTLTYPE_INT | CTLFLAG_MPSAFE, NULL, 0, 279 acpi_debug_objects_sysctl, "I", 280 "Enable Debug objects"); 281 282 /* Allow the interpreter to ignore common mistakes in BIOS. */ 283 static int acpi_interpreter_slack = 1; 284 TUNABLE_INT("debug.acpi.interpreter_slack", &acpi_interpreter_slack); 285 SYSCTL_INT(_debug_acpi, OID_AUTO, interpreter_slack, CTLFLAG_RDTUN, 286 &acpi_interpreter_slack, 1, "Turn on interpreter slack mode."); 287 288 /* Ignore register widths set by FADT and use default widths instead. */ 289 static int acpi_ignore_reg_width = 1; 290 TUNABLE_INT("debug.acpi.default_register_width", &acpi_ignore_reg_width); 291 SYSCTL_INT(_debug_acpi, OID_AUTO, default_register_width, CTLFLAG_RDTUN, 292 &acpi_ignore_reg_width, 1, "Ignore register widths set by FADT"); 293 294 /* Allow users to override quirks. */ 295 TUNABLE_INT("debug.acpi.quirks", &acpi_quirks); 296 297 int acpi_susp_bounce; 298 SYSCTL_INT(_debug_acpi, OID_AUTO, suspend_bounce, CTLFLAG_RW, 299 &acpi_susp_bounce, 0, "Don't actually suspend, just test devices."); 300 301 /* 302 * ACPI standard UUID for Device Specific Data Package 303 * "Device Properties UUID for _DSD" Rev. 2.0 304 */ 305 static const struct uuid acpi_dsd_uuid = { 306 0xdaffd814, 0x6eba, 0x4d8c, 0x8a, 0x91, 307 { 0xbc, 0x9b, 0xbf, 0x4a, 0xa3, 0x01 } 308 }; 309 310 /* 311 * ACPI can only be loaded as a module by the loader; activating it after 312 * system bootstrap time is not useful, and can be fatal to the system. 313 * It also cannot be unloaded, since the entire system bus hierarchy hangs 314 * off it. 315 */ 316 static int 317 acpi_modevent(struct module *mod, int event, void *junk) 318 { 319 switch (event) { 320 case MOD_LOAD: 321 if (!cold) { 322 printf("The ACPI driver cannot be loaded after boot.\n"); 323 return (EPERM); 324 } 325 break; 326 case MOD_UNLOAD: 327 if (!cold && power_pm_get_type() == POWER_PM_TYPE_ACPI) 328 return (EBUSY); 329 break; 330 default: 331 break; 332 } 333 return (0); 334 } 335 336 /* 337 * Perform early initialization. 338 */ 339 ACPI_STATUS 340 acpi_Startup(void) 341 { 342 static int started = 0; 343 ACPI_STATUS status; 344 int val; 345 346 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 347 348 /* Only run the startup code once. The MADT driver also calls this. */ 349 if (started) 350 return_VALUE (AE_OK); 351 started = 1; 352 353 /* 354 * Initialize the ACPICA subsystem. 355 */ 356 if (ACPI_FAILURE(status = AcpiInitializeSubsystem())) { 357 printf("ACPI: Could not initialize Subsystem: %s\n", 358 AcpiFormatException(status)); 359 return_VALUE (status); 360 } 361 362 /* 363 * Pre-allocate space for RSDT/XSDT and DSDT tables and allow resizing 364 * if more tables exist. 365 */ 366 if (ACPI_FAILURE(status = AcpiInitializeTables(NULL, 2, TRUE))) { 367 printf("ACPI: Table initialisation failed: %s\n", 368 AcpiFormatException(status)); 369 return_VALUE (status); 370 } 371 372 /* Set up any quirks we have for this system. */ 373 if (acpi_quirks == ACPI_Q_OK) 374 acpi_table_quirks(&acpi_quirks); 375 376 /* If the user manually set the disabled hint to 0, force-enable ACPI. */ 377 if (resource_int_value("acpi", 0, "disabled", &val) == 0 && val == 0) 378 acpi_quirks &= ~ACPI_Q_BROKEN; 379 if (acpi_quirks & ACPI_Q_BROKEN) { 380 printf("ACPI disabled by blacklist. Contact your BIOS vendor.\n"); 381 status = AE_SUPPORT; 382 } 383 384 return_VALUE (status); 385 } 386 387 /* 388 * Detect ACPI and perform early initialisation. 389 */ 390 int 391 acpi_identify(void) 392 { 393 ACPI_TABLE_RSDP *rsdp; 394 ACPI_TABLE_HEADER *rsdt; 395 ACPI_PHYSICAL_ADDRESS paddr; 396 struct sbuf sb; 397 398 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 399 400 if (!cold) 401 return (ENXIO); 402 403 /* Check that we haven't been disabled with a hint. */ 404 if (resource_disabled("acpi", 0)) 405 return (ENXIO); 406 407 /* Check for other PM systems. */ 408 if (power_pm_get_type() != POWER_PM_TYPE_NONE && 409 power_pm_get_type() != POWER_PM_TYPE_ACPI) { 410 printf("ACPI identify failed, other PM system enabled.\n"); 411 return (ENXIO); 412 } 413 414 /* Initialize root tables. */ 415 if (ACPI_FAILURE(acpi_Startup())) { 416 printf("ACPI: Try disabling either ACPI or apic support.\n"); 417 return (ENXIO); 418 } 419 420 if ((paddr = AcpiOsGetRootPointer()) == 0 || 421 (rsdp = AcpiOsMapMemory(paddr, sizeof(ACPI_TABLE_RSDP))) == NULL) 422 return (ENXIO); 423 if (rsdp->Revision > 1 && rsdp->XsdtPhysicalAddress != 0) 424 paddr = (ACPI_PHYSICAL_ADDRESS)rsdp->XsdtPhysicalAddress; 425 else 426 paddr = (ACPI_PHYSICAL_ADDRESS)rsdp->RsdtPhysicalAddress; 427 AcpiOsUnmapMemory(rsdp, sizeof(ACPI_TABLE_RSDP)); 428 429 if ((rsdt = AcpiOsMapMemory(paddr, sizeof(ACPI_TABLE_HEADER))) == NULL) 430 return (ENXIO); 431 sbuf_new(&sb, acpi_desc, sizeof(acpi_desc), SBUF_FIXEDLEN); 432 sbuf_bcat(&sb, rsdt->OemId, ACPI_OEM_ID_SIZE); 433 sbuf_trim(&sb); 434 sbuf_putc(&sb, ' '); 435 sbuf_bcat(&sb, rsdt->OemTableId, ACPI_OEM_TABLE_ID_SIZE); 436 sbuf_trim(&sb); 437 sbuf_finish(&sb); 438 sbuf_delete(&sb); 439 AcpiOsUnmapMemory(rsdt, sizeof(ACPI_TABLE_HEADER)); 440 441 snprintf(acpi_ca_version, sizeof(acpi_ca_version), "%x", ACPI_CA_VERSION); 442 443 return (0); 444 } 445 446 /* 447 * Fetch some descriptive data from ACPI to put in our attach message. 448 */ 449 static int 450 acpi_probe(device_t dev) 451 { 452 453 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 454 455 device_set_desc(dev, acpi_desc); 456 457 return_VALUE (BUS_PROBE_NOWILDCARD); 458 } 459 460 static int 461 acpi_attach(device_t dev) 462 { 463 struct acpi_softc *sc; 464 ACPI_STATUS status; 465 int error, state; 466 UINT32 flags; 467 UINT8 TypeA, TypeB; 468 char *env; 469 470 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 471 472 sc = device_get_softc(dev); 473 sc->acpi_dev = dev; 474 callout_init(&sc->susp_force_to, 1); 475 476 error = ENXIO; 477 478 /* Initialize resource manager. */ 479 acpi_rman_io.rm_type = RMAN_ARRAY; 480 acpi_rman_io.rm_start = 0; 481 acpi_rman_io.rm_end = 0xffff; 482 acpi_rman_io.rm_descr = "ACPI I/O ports"; 483 if (rman_init(&acpi_rman_io) != 0) 484 panic("acpi rman_init IO ports failed"); 485 acpi_rman_mem.rm_type = RMAN_ARRAY; 486 acpi_rman_mem.rm_descr = "ACPI I/O memory addresses"; 487 if (rman_init(&acpi_rman_mem) != 0) 488 panic("acpi rman_init memory failed"); 489 490 resource_list_init(&sc->sysres_rl); 491 492 /* Initialise the ACPI mutex */ 493 mtx_init(&acpi_mutex, "ACPI global lock", NULL, MTX_DEF); 494 495 /* 496 * Set the globals from our tunables. This is needed because ACPI-CA 497 * uses UINT8 for some values and we have no tunable_byte. 498 */ 499 AcpiGbl_EnableInterpreterSlack = acpi_interpreter_slack ? TRUE : FALSE; 500 AcpiGbl_EnableAmlDebugObject = acpi_debug_objects ? TRUE : FALSE; 501 AcpiGbl_UseDefaultRegisterWidths = acpi_ignore_reg_width ? TRUE : FALSE; 502 503 #ifndef ACPI_DEBUG 504 /* 505 * Disable all debugging layers and levels. 506 */ 507 AcpiDbgLayer = 0; 508 AcpiDbgLevel = 0; 509 #endif 510 511 /* Override OS interfaces if the user requested. */ 512 acpi_reset_interfaces(dev); 513 514 /* Load ACPI name space. */ 515 status = AcpiLoadTables(); 516 if (ACPI_FAILURE(status)) { 517 device_printf(dev, "Could not load Namespace: %s\n", 518 AcpiFormatException(status)); 519 goto out; 520 } 521 522 /* Handle MCFG table if present. */ 523 acpi_enable_pcie(); 524 525 /* 526 * Note that some systems (specifically, those with namespace evaluation 527 * issues that require the avoidance of parts of the namespace) must 528 * avoid running _INI and _STA on everything, as well as dodging the final 529 * object init pass. 530 * 531 * For these devices, we set ACPI_NO_DEVICE_INIT and ACPI_NO_OBJECT_INIT). 532 * 533 * XXX We should arrange for the object init pass after we have attached 534 * all our child devices, but on many systems it works here. 535 */ 536 flags = 0; 537 if (testenv("debug.acpi.avoid")) 538 flags = ACPI_NO_DEVICE_INIT | ACPI_NO_OBJECT_INIT; 539 540 /* Bring the hardware and basic handlers online. */ 541 if (ACPI_FAILURE(status = AcpiEnableSubsystem(flags))) { 542 device_printf(dev, "Could not enable ACPI: %s\n", 543 AcpiFormatException(status)); 544 goto out; 545 } 546 547 /* 548 * Call the ECDT probe function to provide EC functionality before 549 * the namespace has been evaluated. 550 * 551 * XXX This happens before the sysresource devices have been probed and 552 * attached so its resources come from nexus0. In practice, this isn't 553 * a problem but should be addressed eventually. 554 */ 555 acpi_ec_ecdt_probe(dev); 556 557 /* Bring device objects and regions online. */ 558 if (ACPI_FAILURE(status = AcpiInitializeObjects(flags))) { 559 device_printf(dev, "Could not initialize ACPI objects: %s\n", 560 AcpiFormatException(status)); 561 goto out; 562 } 563 564 /* 565 * Setup our sysctl tree. 566 * 567 * XXX: This doesn't check to make sure that none of these fail. 568 */ 569 sysctl_ctx_init(&sc->acpi_sysctl_ctx); 570 sc->acpi_sysctl_tree = SYSCTL_ADD_NODE(&sc->acpi_sysctl_ctx, 571 SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO, device_get_name(dev), 572 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, ""); 573 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 574 OID_AUTO, "supported_sleep_state", 575 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 576 0, 0, acpi_supported_sleep_state_sysctl, "A", 577 "List supported ACPI sleep states."); 578 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 579 OID_AUTO, "power_button_state", 580 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, 581 &sc->acpi_power_button_sx, 0, acpi_sleep_state_sysctl, "A", 582 "Power button ACPI sleep state."); 583 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 584 OID_AUTO, "sleep_button_state", 585 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, 586 &sc->acpi_sleep_button_sx, 0, acpi_sleep_state_sysctl, "A", 587 "Sleep button ACPI sleep state."); 588 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 589 OID_AUTO, "lid_switch_state", 590 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, 591 &sc->acpi_lid_switch_sx, 0, acpi_sleep_state_sysctl, "A", 592 "Lid ACPI sleep state. Set to S3 if you want to suspend your laptop when close the Lid."); 593 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 594 OID_AUTO, "standby_state", 595 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, 596 &sc->acpi_standby_sx, 0, acpi_sleep_state_sysctl, "A", ""); 597 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 598 OID_AUTO, "suspend_state", 599 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, 600 &sc->acpi_suspend_sx, 0, acpi_sleep_state_sysctl, "A", ""); 601 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 602 OID_AUTO, "sleep_delay", CTLFLAG_RW, &sc->acpi_sleep_delay, 0, 603 "sleep delay in seconds"); 604 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 605 OID_AUTO, "s4bios", CTLFLAG_RW, &sc->acpi_s4bios, 0, "S4BIOS mode"); 606 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 607 OID_AUTO, "verbose", CTLFLAG_RW, &sc->acpi_verbose, 0, "verbose mode"); 608 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 609 OID_AUTO, "disable_on_reboot", CTLFLAG_RW, 610 &sc->acpi_do_disable, 0, "Disable ACPI when rebooting/halting system"); 611 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 612 OID_AUTO, "handle_reboot", CTLFLAG_RW, 613 &sc->acpi_handle_reboot, 0, "Use ACPI Reset Register to reboot"); 614 615 /* 616 * Default to 1 second before sleeping to give some machines time to 617 * stabilize. 618 */ 619 sc->acpi_sleep_delay = 1; 620 if (bootverbose) 621 sc->acpi_verbose = 1; 622 if ((env = kern_getenv("hw.acpi.verbose")) != NULL) { 623 if (strcmp(env, "0") != 0) 624 sc->acpi_verbose = 1; 625 freeenv(env); 626 } 627 628 /* Only enable reboot by default if the FADT says it is available. */ 629 if (AcpiGbl_FADT.Flags & ACPI_FADT_RESET_REGISTER) 630 sc->acpi_handle_reboot = 1; 631 632 #if !ACPI_REDUCED_HARDWARE 633 /* Only enable S4BIOS by default if the FACS says it is available. */ 634 if (AcpiGbl_FACS != NULL && AcpiGbl_FACS->Flags & ACPI_FACS_S4_BIOS_PRESENT) 635 sc->acpi_s4bios = 1; 636 #endif 637 638 /* Probe all supported sleep states. */ 639 acpi_sleep_states[ACPI_STATE_S0] = TRUE; 640 for (state = ACPI_STATE_S1; state < ACPI_S_STATE_COUNT; state++) 641 if (ACPI_SUCCESS(AcpiEvaluateObject(ACPI_ROOT_OBJECT, 642 __DECONST(char *, AcpiGbl_SleepStateNames[state]), NULL, NULL)) && 643 ACPI_SUCCESS(AcpiGetSleepTypeData(state, &TypeA, &TypeB))) 644 acpi_sleep_states[state] = TRUE; 645 646 /* 647 * Dispatch the default sleep state to devices. The lid switch is set 648 * to UNKNOWN by default to avoid surprising users. 649 */ 650 sc->acpi_power_button_sx = acpi_sleep_states[ACPI_STATE_S5] ? 651 ACPI_STATE_S5 : ACPI_STATE_UNKNOWN; 652 sc->acpi_lid_switch_sx = ACPI_STATE_UNKNOWN; 653 sc->acpi_standby_sx = acpi_sleep_states[ACPI_STATE_S1] ? 654 ACPI_STATE_S1 : ACPI_STATE_UNKNOWN; 655 sc->acpi_suspend_sx = acpi_sleep_states[ACPI_STATE_S3] ? 656 ACPI_STATE_S3 : ACPI_STATE_UNKNOWN; 657 658 /* Pick the first valid sleep state for the sleep button default. */ 659 sc->acpi_sleep_button_sx = ACPI_STATE_UNKNOWN; 660 for (state = ACPI_STATE_S1; state <= ACPI_STATE_S4; state++) 661 if (acpi_sleep_states[state]) { 662 sc->acpi_sleep_button_sx = state; 663 break; 664 } 665 666 acpi_enable_fixed_events(sc); 667 668 /* 669 * Scan the namespace and attach/initialise children. 670 */ 671 672 /* Register our shutdown handler. */ 673 EVENTHANDLER_REGISTER(shutdown_final, acpi_shutdown_final, sc, 674 SHUTDOWN_PRI_LAST + 150); 675 676 /* 677 * Register our acpi event handlers. 678 * XXX should be configurable eg. via userland policy manager. 679 */ 680 EVENTHANDLER_REGISTER(acpi_sleep_event, acpi_system_eventhandler_sleep, 681 sc, ACPI_EVENT_PRI_LAST); 682 EVENTHANDLER_REGISTER(acpi_wakeup_event, acpi_system_eventhandler_wakeup, 683 sc, ACPI_EVENT_PRI_LAST); 684 685 /* Flag our initial states. */ 686 sc->acpi_enabled = TRUE; 687 sc->acpi_sstate = ACPI_STATE_S0; 688 sc->acpi_sleep_disabled = TRUE; 689 690 /* Create the control device */ 691 sc->acpi_dev_t = make_dev(&acpi_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0664, 692 "acpi"); 693 sc->acpi_dev_t->si_drv1 = sc; 694 695 if ((error = acpi_machdep_init(dev))) 696 goto out; 697 698 /* Register ACPI again to pass the correct argument of pm_func. */ 699 power_pm_register(POWER_PM_TYPE_ACPI, acpi_pm_func, sc); 700 701 acpi_platform_osc(dev); 702 703 if (!acpi_disabled("bus")) { 704 EVENTHANDLER_REGISTER(dev_lookup, acpi_lookup, NULL, 1000); 705 acpi_probe_children(dev); 706 } 707 708 /* Update all GPEs and enable runtime GPEs. */ 709 status = AcpiUpdateAllGpes(); 710 if (ACPI_FAILURE(status)) 711 device_printf(dev, "Could not update all GPEs: %s\n", 712 AcpiFormatException(status)); 713 714 /* Allow sleep request after a while. */ 715 callout_init_mtx(&acpi_sleep_timer, &acpi_mutex, 0); 716 callout_reset(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME, 717 acpi_sleep_enable, sc); 718 719 error = 0; 720 721 out: 722 return_VALUE (error); 723 } 724 725 static void 726 acpi_set_power_children(device_t dev, int state) 727 { 728 device_t child; 729 device_t *devlist; 730 int dstate, i, numdevs; 731 732 if (device_get_children(dev, &devlist, &numdevs) != 0) 733 return; 734 735 /* 736 * Retrieve and set D-state for the sleep state if _SxD is present. 737 * Skip children who aren't attached since they are handled separately. 738 */ 739 for (i = 0; i < numdevs; i++) { 740 child = devlist[i]; 741 dstate = state; 742 if (device_is_attached(child) && 743 acpi_device_pwr_for_sleep(dev, child, &dstate) == 0) 744 acpi_set_powerstate(child, dstate); 745 } 746 free(devlist, M_TEMP); 747 } 748 749 static int 750 acpi_suspend(device_t dev) 751 { 752 int error; 753 754 bus_topo_assert(); 755 756 error = bus_generic_suspend(dev); 757 if (error == 0) 758 acpi_set_power_children(dev, ACPI_STATE_D3); 759 760 return (error); 761 } 762 763 static int 764 acpi_resume(device_t dev) 765 { 766 767 bus_topo_assert(); 768 769 acpi_set_power_children(dev, ACPI_STATE_D0); 770 771 return (bus_generic_resume(dev)); 772 } 773 774 static int 775 acpi_shutdown(device_t dev) 776 { 777 778 bus_topo_assert(); 779 780 /* Allow children to shutdown first. */ 781 bus_generic_shutdown(dev); 782 783 /* 784 * Enable any GPEs that are able to power-on the system (i.e., RTC). 785 * Also, disable any that are not valid for this state (most). 786 */ 787 acpi_wake_prep_walk(ACPI_STATE_S5); 788 789 return (0); 790 } 791 792 /* 793 * Handle a new device being added 794 */ 795 static device_t 796 acpi_add_child(device_t bus, u_int order, const char *name, int unit) 797 { 798 struct acpi_device *ad; 799 device_t child; 800 801 if ((ad = malloc(sizeof(*ad), M_ACPIDEV, M_NOWAIT | M_ZERO)) == NULL) 802 return (NULL); 803 804 resource_list_init(&ad->ad_rl); 805 806 child = device_add_child_ordered(bus, order, name, unit); 807 if (child != NULL) 808 device_set_ivars(child, ad); 809 else 810 free(ad, M_ACPIDEV); 811 return (child); 812 } 813 814 static int 815 acpi_print_child(device_t bus, device_t child) 816 { 817 struct acpi_device *adev = device_get_ivars(child); 818 struct resource_list *rl = &adev->ad_rl; 819 int retval = 0; 820 821 retval += bus_print_child_header(bus, child); 822 retval += resource_list_print_type(rl, "port", SYS_RES_IOPORT, "%#jx"); 823 retval += resource_list_print_type(rl, "iomem", SYS_RES_MEMORY, "%#jx"); 824 retval += resource_list_print_type(rl, "irq", SYS_RES_IRQ, "%jd"); 825 retval += resource_list_print_type(rl, "drq", SYS_RES_DRQ, "%jd"); 826 if (device_get_flags(child)) 827 retval += printf(" flags %#x", device_get_flags(child)); 828 retval += bus_print_child_domain(bus, child); 829 retval += bus_print_child_footer(bus, child); 830 831 return (retval); 832 } 833 834 /* 835 * If this device is an ACPI child but no one claimed it, attempt 836 * to power it off. We'll power it back up when a driver is added. 837 * 838 * XXX Disabled for now since many necessary devices (like fdc and 839 * ATA) don't claim the devices we created for them but still expect 840 * them to be powered up. 841 */ 842 static void 843 acpi_probe_nomatch(device_t bus, device_t child) 844 { 845 #ifdef ACPI_ENABLE_POWERDOWN_NODRIVER 846 acpi_set_powerstate(child, ACPI_STATE_D3); 847 #endif 848 } 849 850 /* 851 * If a new driver has a chance to probe a child, first power it up. 852 * 853 * XXX Disabled for now (see acpi_probe_nomatch for details). 854 */ 855 static void 856 acpi_driver_added(device_t dev, driver_t *driver) 857 { 858 device_t child, *devlist; 859 int i, numdevs; 860 861 DEVICE_IDENTIFY(driver, dev); 862 if (device_get_children(dev, &devlist, &numdevs)) 863 return; 864 for (i = 0; i < numdevs; i++) { 865 child = devlist[i]; 866 if (device_get_state(child) == DS_NOTPRESENT) { 867 #ifdef ACPI_ENABLE_POWERDOWN_NODRIVER 868 acpi_set_powerstate(child, ACPI_STATE_D0); 869 if (device_probe_and_attach(child) != 0) 870 acpi_set_powerstate(child, ACPI_STATE_D3); 871 #else 872 device_probe_and_attach(child); 873 #endif 874 } 875 } 876 free(devlist, M_TEMP); 877 } 878 879 /* Location hint for devctl(8) */ 880 static int 881 acpi_child_location_method(device_t cbdev, device_t child, struct sbuf *sb) 882 { 883 struct acpi_device *dinfo = device_get_ivars(child); 884 int pxm; 885 886 if (dinfo->ad_handle) { 887 sbuf_printf(sb, "handle=%s", acpi_name(dinfo->ad_handle)); 888 if (ACPI_SUCCESS(acpi_GetInteger(dinfo->ad_handle, "_PXM", &pxm))) { 889 sbuf_printf(sb, " _PXM=%d", pxm); 890 } 891 } 892 return (0); 893 } 894 895 /* PnP information for devctl(8) */ 896 int 897 acpi_pnpinfo(ACPI_HANDLE handle, struct sbuf *sb) 898 { 899 ACPI_DEVICE_INFO *adinfo; 900 901 if (ACPI_FAILURE(AcpiGetObjectInfo(handle, &adinfo))) { 902 sbuf_printf(sb, "unknown"); 903 return (0); 904 } 905 906 sbuf_printf(sb, "_HID=%s _UID=%lu _CID=%s", 907 (adinfo->Valid & ACPI_VALID_HID) ? 908 adinfo->HardwareId.String : "none", 909 (adinfo->Valid & ACPI_VALID_UID) ? 910 strtoul(adinfo->UniqueId.String, NULL, 10) : 0UL, 911 ((adinfo->Valid & ACPI_VALID_CID) && 912 adinfo->CompatibleIdList.Count > 0) ? 913 adinfo->CompatibleIdList.Ids[0].String : "none"); 914 AcpiOsFree(adinfo); 915 916 return (0); 917 } 918 919 static int 920 acpi_child_pnpinfo_method(device_t cbdev, device_t child, struct sbuf *sb) 921 { 922 struct acpi_device *dinfo = device_get_ivars(child); 923 924 return (acpi_pnpinfo(dinfo->ad_handle, sb)); 925 } 926 927 /* 928 * Note: the check for ACPI locator may be redundant. However, this routine is 929 * suitable for both busses whose only locator is ACPI and as a building block 930 * for busses that have multiple locators to cope with. 931 */ 932 int 933 acpi_get_acpi_device_path(device_t bus, device_t child, const char *locator, struct sbuf *sb) 934 { 935 if (strcmp(locator, BUS_LOCATOR_ACPI) == 0) { 936 ACPI_HANDLE *handle = acpi_get_handle(child); 937 938 if (handle != NULL) 939 sbuf_printf(sb, "%s", acpi_name(handle)); 940 return (0); 941 } 942 943 return (bus_generic_get_device_path(bus, child, locator, sb)); 944 } 945 946 static int 947 acpi_get_device_path(device_t bus, device_t child, const char *locator, struct sbuf *sb) 948 { 949 struct acpi_device *dinfo = device_get_ivars(child); 950 951 if (strcmp(locator, BUS_LOCATOR_ACPI) == 0) 952 return (acpi_get_acpi_device_path(bus, child, locator, sb)); 953 954 if (strcmp(locator, BUS_LOCATOR_UEFI) == 0) { 955 ACPI_DEVICE_INFO *adinfo; 956 if (!ACPI_FAILURE(AcpiGetObjectInfo(dinfo->ad_handle, &adinfo)) && 957 dinfo->ad_handle != 0 && (adinfo->Valid & ACPI_VALID_HID)) { 958 const char *hid = adinfo->HardwareId.String; 959 u_long uid = (adinfo->Valid & ACPI_VALID_UID) ? 960 strtoul(adinfo->UniqueId.String, NULL, 10) : 0UL; 961 u_long hidval; 962 963 /* 964 * In UEFI Stanard Version 2.6, Section 9.6.1.6 Text 965 * Device Node Reference, there's an insanely long table 966 * 98. This implements the relevant bits from that 967 * table. Newer versions appear to have not required 968 * anything new. The EDK2 firmware presents both PciRoot 969 * and PcieRoot as PciRoot. Follow the EDK2 standard. 970 */ 971 if (strncmp("PNP", hid, 3) != 0) 972 goto nomatch; 973 hidval = strtoul(hid + 3, NULL, 16); 974 switch (hidval) { 975 case 0x0301: 976 sbuf_printf(sb, "Keyboard(0x%lx)", uid); 977 break; 978 case 0x0401: 979 sbuf_printf(sb, "ParallelPort(0x%lx)", uid); 980 break; 981 case 0x0501: 982 sbuf_printf(sb, "Serial(0x%lx)", uid); 983 break; 984 case 0x0604: 985 sbuf_printf(sb, "Floppy(0x%lx)", uid); 986 break; 987 case 0x0a03: 988 case 0x0a08: 989 sbuf_printf(sb, "PciRoot(0x%lx)", uid); 990 break; 991 default: /* Everything else gets a generic encode */ 992 nomatch: 993 sbuf_printf(sb, "Acpi(%s,0x%lx)", hid, uid); 994 break; 995 } 996 } 997 /* Not handled: AcpiAdr... unsure how to know it's one */ 998 } 999 1000 /* For the rest, punt to the default handler */ 1001 return (bus_generic_get_device_path(bus, child, locator, sb)); 1002 } 1003 1004 /* 1005 * Handle device deletion. 1006 */ 1007 static void 1008 acpi_child_deleted(device_t dev, device_t child) 1009 { 1010 struct acpi_device *dinfo = device_get_ivars(child); 1011 1012 if (acpi_get_device(dinfo->ad_handle) == child) 1013 AcpiDetachData(dinfo->ad_handle, acpi_fake_objhandler); 1014 } 1015 1016 /* 1017 * Handle per-device ivars 1018 */ 1019 static int 1020 acpi_read_ivar(device_t dev, device_t child, int index, uintptr_t *result) 1021 { 1022 struct acpi_device *ad; 1023 1024 if ((ad = device_get_ivars(child)) == NULL) { 1025 device_printf(child, "device has no ivars\n"); 1026 return (ENOENT); 1027 } 1028 1029 /* ACPI and ISA compatibility ivars */ 1030 switch(index) { 1031 case ACPI_IVAR_HANDLE: 1032 *(ACPI_HANDLE *)result = ad->ad_handle; 1033 break; 1034 case ACPI_IVAR_PRIVATE: 1035 *(void **)result = ad->ad_private; 1036 break; 1037 case ACPI_IVAR_FLAGS: 1038 *(int *)result = ad->ad_flags; 1039 break; 1040 case ISA_IVAR_VENDORID: 1041 case ISA_IVAR_SERIAL: 1042 case ISA_IVAR_COMPATID: 1043 *(int *)result = -1; 1044 break; 1045 case ISA_IVAR_LOGICALID: 1046 *(int *)result = acpi_isa_get_logicalid(child); 1047 break; 1048 case PCI_IVAR_CLASS: 1049 *(uint8_t*)result = (ad->ad_cls_class >> 16) & 0xff; 1050 break; 1051 case PCI_IVAR_SUBCLASS: 1052 *(uint8_t*)result = (ad->ad_cls_class >> 8) & 0xff; 1053 break; 1054 case PCI_IVAR_PROGIF: 1055 *(uint8_t*)result = (ad->ad_cls_class >> 0) & 0xff; 1056 break; 1057 default: 1058 return (ENOENT); 1059 } 1060 1061 return (0); 1062 } 1063 1064 static int 1065 acpi_write_ivar(device_t dev, device_t child, int index, uintptr_t value) 1066 { 1067 struct acpi_device *ad; 1068 1069 if ((ad = device_get_ivars(child)) == NULL) { 1070 device_printf(child, "device has no ivars\n"); 1071 return (ENOENT); 1072 } 1073 1074 switch(index) { 1075 case ACPI_IVAR_HANDLE: 1076 ad->ad_handle = (ACPI_HANDLE)value; 1077 break; 1078 case ACPI_IVAR_PRIVATE: 1079 ad->ad_private = (void *)value; 1080 break; 1081 case ACPI_IVAR_FLAGS: 1082 ad->ad_flags = (int)value; 1083 break; 1084 default: 1085 panic("bad ivar write request (%d)", index); 1086 return (ENOENT); 1087 } 1088 1089 return (0); 1090 } 1091 1092 /* 1093 * Handle child resource allocation/removal 1094 */ 1095 static struct resource_list * 1096 acpi_get_rlist(device_t dev, device_t child) 1097 { 1098 struct acpi_device *ad; 1099 1100 ad = device_get_ivars(child); 1101 return (&ad->ad_rl); 1102 } 1103 1104 static int 1105 acpi_match_resource_hint(device_t dev, int type, long value) 1106 { 1107 struct acpi_device *ad = device_get_ivars(dev); 1108 struct resource_list *rl = &ad->ad_rl; 1109 struct resource_list_entry *rle; 1110 1111 STAILQ_FOREACH(rle, rl, link) { 1112 if (rle->type != type) 1113 continue; 1114 if (rle->start <= value && rle->end >= value) 1115 return (1); 1116 } 1117 return (0); 1118 } 1119 1120 /* 1121 * Does this device match because the resources match? 1122 */ 1123 static bool 1124 acpi_hint_device_matches_resources(device_t child, const char *name, 1125 int unit) 1126 { 1127 long value; 1128 bool matches; 1129 1130 /* 1131 * Check for matching resources. We must have at least one match. 1132 * Since I/O and memory resources cannot be shared, if we get a 1133 * match on either of those, ignore any mismatches in IRQs or DRQs. 1134 * 1135 * XXX: We may want to revisit this to be more lenient and wire 1136 * as long as it gets one match. 1137 */ 1138 matches = false; 1139 if (resource_long_value(name, unit, "port", &value) == 0) { 1140 /* 1141 * Floppy drive controllers are notorious for having a 1142 * wide variety of resources not all of which include the 1143 * first port that is specified by the hint (typically 1144 * 0x3f0) (see the comment above fdc_isa_alloc_resources() 1145 * in fdc_isa.c). However, they do all seem to include 1146 * port + 2 (e.g. 0x3f2) so for a floppy device, look for 1147 * 'value + 2' in the port resources instead of the hint 1148 * value. 1149 */ 1150 if (strcmp(name, "fdc") == 0) 1151 value += 2; 1152 if (acpi_match_resource_hint(child, SYS_RES_IOPORT, value)) 1153 matches = true; 1154 else 1155 return false; 1156 } 1157 if (resource_long_value(name, unit, "maddr", &value) == 0) { 1158 if (acpi_match_resource_hint(child, SYS_RES_MEMORY, value)) 1159 matches = true; 1160 else 1161 return false; 1162 } 1163 1164 /* 1165 * If either the I/O address and/or the memory address matched, then 1166 * assumed this devices matches and that any mismatch in other resources 1167 * will be resolved by siltently ignoring those other resources. Otherwise 1168 * all further resources must match. 1169 */ 1170 if (matches) { 1171 return (true); 1172 } 1173 if (resource_long_value(name, unit, "irq", &value) == 0) { 1174 if (acpi_match_resource_hint(child, SYS_RES_IRQ, value)) 1175 matches = true; 1176 else 1177 return false; 1178 } 1179 if (resource_long_value(name, unit, "drq", &value) == 0) { 1180 if (acpi_match_resource_hint(child, SYS_RES_DRQ, value)) 1181 matches = true; 1182 else 1183 return false; 1184 } 1185 return matches; 1186 } 1187 1188 1189 /* 1190 * Wire device unit numbers based on resource matches in hints. 1191 */ 1192 static void 1193 acpi_hint_device_unit(device_t acdev, device_t child, const char *name, 1194 int *unitp) 1195 { 1196 device_location_cache_t *cache; 1197 const char *s; 1198 int line, unit; 1199 bool matches; 1200 1201 /* 1202 * Iterate over all the hints for the devices with the specified 1203 * name to see if one's resources are a subset of this device. 1204 */ 1205 line = 0; 1206 cache = dev_wired_cache_init(); 1207 while (resource_find_dev(&line, name, &unit, "at", NULL) == 0) { 1208 /* Must have an "at" for acpi or isa. */ 1209 resource_string_value(name, unit, "at", &s); 1210 matches = false; 1211 if (strcmp(s, "acpi0") == 0 || strcmp(s, "acpi") == 0 || 1212 strcmp(s, "isa0") == 0 || strcmp(s, "isa") == 0) 1213 matches = acpi_hint_device_matches_resources(child, name, unit); 1214 else 1215 matches = dev_wired_cache_match(cache, child, s); 1216 1217 if (matches) { 1218 /* We have a winner! */ 1219 *unitp = unit; 1220 break; 1221 } 1222 } 1223 dev_wired_cache_fini(cache); 1224 } 1225 1226 /* 1227 * Fetch the NUMA domain for a device by mapping the value returned by 1228 * _PXM to a NUMA domain. If the device does not have a _PXM method, 1229 * -2 is returned. If any other error occurs, -1 is returned. 1230 */ 1231 static int 1232 acpi_parse_pxm(device_t dev) 1233 { 1234 #ifdef NUMA 1235 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__) 1236 ACPI_HANDLE handle; 1237 ACPI_STATUS status; 1238 int pxm; 1239 1240 handle = acpi_get_handle(dev); 1241 if (handle == NULL) 1242 return (-2); 1243 status = acpi_GetInteger(handle, "_PXM", &pxm); 1244 if (ACPI_SUCCESS(status)) 1245 return (acpi_map_pxm_to_vm_domainid(pxm)); 1246 if (status == AE_NOT_FOUND) 1247 return (-2); 1248 #endif 1249 #endif 1250 return (-1); 1251 } 1252 1253 int 1254 acpi_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize, 1255 cpuset_t *cpuset) 1256 { 1257 int d, error; 1258 1259 d = acpi_parse_pxm(child); 1260 if (d < 0) 1261 return (bus_generic_get_cpus(dev, child, op, setsize, cpuset)); 1262 1263 switch (op) { 1264 case LOCAL_CPUS: 1265 if (setsize != sizeof(cpuset_t)) 1266 return (EINVAL); 1267 *cpuset = cpuset_domain[d]; 1268 return (0); 1269 case INTR_CPUS: 1270 error = bus_generic_get_cpus(dev, child, op, setsize, cpuset); 1271 if (error != 0) 1272 return (error); 1273 if (setsize != sizeof(cpuset_t)) 1274 return (EINVAL); 1275 CPU_AND(cpuset, cpuset, &cpuset_domain[d]); 1276 return (0); 1277 default: 1278 return (bus_generic_get_cpus(dev, child, op, setsize, cpuset)); 1279 } 1280 } 1281 1282 /* 1283 * Fetch the NUMA domain for the given device 'dev'. 1284 * 1285 * If a device has a _PXM method, map that to a NUMA domain. 1286 * Otherwise, pass the request up to the parent. 1287 * If there's no matching domain or the domain cannot be 1288 * determined, return ENOENT. 1289 */ 1290 int 1291 acpi_get_domain(device_t dev, device_t child, int *domain) 1292 { 1293 int d; 1294 1295 d = acpi_parse_pxm(child); 1296 if (d >= 0) { 1297 *domain = d; 1298 return (0); 1299 } 1300 if (d == -1) 1301 return (ENOENT); 1302 1303 /* No _PXM node; go up a level */ 1304 return (bus_generic_get_domain(dev, child, domain)); 1305 } 1306 1307 static struct rman * 1308 acpi_get_rman(device_t bus, int type, u_int flags) 1309 { 1310 /* Only memory and IO resources are managed. */ 1311 switch (type) { 1312 case SYS_RES_IOPORT: 1313 return (&acpi_rman_io); 1314 case SYS_RES_MEMORY: 1315 return (&acpi_rman_mem); 1316 default: 1317 return (NULL); 1318 } 1319 } 1320 1321 /* 1322 * Pre-allocate/manage all memory and IO resources. Since rman can't handle 1323 * duplicates, we merge any in the sysresource attach routine. 1324 */ 1325 static int 1326 acpi_sysres_alloc(device_t dev) 1327 { 1328 struct acpi_softc *sc = device_get_softc(dev); 1329 struct resource *res; 1330 struct resource_list_entry *rle; 1331 struct rman *rm; 1332 device_t *children; 1333 int child_count, i; 1334 1335 /* 1336 * Probe/attach any sysresource devices. This would be unnecessary if we 1337 * had multi-pass probe/attach. 1338 */ 1339 if (device_get_children(dev, &children, &child_count) != 0) 1340 return (ENXIO); 1341 for (i = 0; i < child_count; i++) { 1342 if (ACPI_ID_PROBE(dev, children[i], sysres_ids, NULL) <= 0) 1343 device_probe_and_attach(children[i]); 1344 } 1345 free(children, M_TEMP); 1346 1347 STAILQ_FOREACH(rle, &sc->sysres_rl, link) { 1348 if (rle->res != NULL) { 1349 device_printf(dev, "duplicate resource for %jx\n", rle->start); 1350 continue; 1351 } 1352 1353 /* Only memory and IO resources are valid here. */ 1354 rm = acpi_get_rman(dev, rle->type, 0); 1355 if (rm == NULL) 1356 continue; 1357 1358 /* Pre-allocate resource and add to our rman pool. */ 1359 res = bus_alloc_resource(dev, rle->type, 1360 &rle->rid, rle->start, rle->start + rle->count - 1, rle->count, 1361 RF_ACTIVE | RF_UNMAPPED); 1362 if (res != NULL) { 1363 rman_manage_region(rm, rman_get_start(res), rman_get_end(res)); 1364 rle->res = res; 1365 } else if (bootverbose) 1366 device_printf(dev, "reservation of %jx, %jx (%d) failed\n", 1367 rle->start, rle->count, rle->type); 1368 } 1369 return (0); 1370 } 1371 1372 /* 1373 * Reserve declared resources for devices found during attach once system 1374 * resources have been allocated. 1375 */ 1376 static void 1377 acpi_reserve_resources(device_t dev) 1378 { 1379 struct resource_list_entry *rle; 1380 struct resource_list *rl; 1381 struct acpi_device *ad; 1382 device_t *children; 1383 int child_count, i; 1384 1385 if (device_get_children(dev, &children, &child_count) != 0) 1386 return; 1387 for (i = 0; i < child_count; i++) { 1388 ad = device_get_ivars(children[i]); 1389 rl = &ad->ad_rl; 1390 1391 /* Don't reserve system resources. */ 1392 if (ACPI_ID_PROBE(dev, children[i], sysres_ids, NULL) <= 0) 1393 continue; 1394 1395 STAILQ_FOREACH(rle, rl, link) { 1396 /* 1397 * Don't reserve IRQ resources. There are many sticky things 1398 * to get right otherwise (e.g. IRQs for psm, atkbd, and HPET 1399 * when using legacy routing). 1400 */ 1401 if (rle->type == SYS_RES_IRQ) 1402 continue; 1403 1404 /* 1405 * Don't reserve the resource if it is already allocated. 1406 * The acpi_ec(4) driver can allocate its resources early 1407 * if ECDT is present. 1408 */ 1409 if (rle->res != NULL) 1410 continue; 1411 1412 /* 1413 * Try to reserve the resource from our parent. If this 1414 * fails because the resource is a system resource, just 1415 * let it be. The resource range is already reserved so 1416 * that other devices will not use it. If the driver 1417 * needs to allocate the resource, then 1418 * acpi_alloc_resource() will sub-alloc from the system 1419 * resource. 1420 */ 1421 resource_list_reserve(rl, dev, children[i], rle->type, &rle->rid, 1422 rle->start, rle->end, rle->count, 0); 1423 } 1424 } 1425 free(children, M_TEMP); 1426 } 1427 1428 static int 1429 acpi_set_resource(device_t dev, device_t child, int type, int rid, 1430 rman_res_t start, rman_res_t count) 1431 { 1432 struct acpi_device *ad = device_get_ivars(child); 1433 struct resource_list *rl = &ad->ad_rl; 1434 ACPI_DEVICE_INFO *devinfo; 1435 rman_res_t end; 1436 int allow; 1437 1438 /* Ignore IRQ resources for PCI link devices. */ 1439 if (type == SYS_RES_IRQ && 1440 ACPI_ID_PROBE(dev, child, pcilink_ids, NULL) <= 0) 1441 return (0); 1442 1443 /* 1444 * Ignore most resources for PCI root bridges. Some BIOSes 1445 * incorrectly enumerate the memory ranges they decode as plain 1446 * memory resources instead of as ResourceProducer ranges. Other 1447 * BIOSes incorrectly list system resource entries for I/O ranges 1448 * under the PCI bridge. Do allow the one known-correct case on 1449 * x86 of a PCI bridge claiming the I/O ports used for PCI config 1450 * access. 1451 */ 1452 if (type == SYS_RES_MEMORY || type == SYS_RES_IOPORT) { 1453 if (ACPI_SUCCESS(AcpiGetObjectInfo(ad->ad_handle, &devinfo))) { 1454 if ((devinfo->Flags & ACPI_PCI_ROOT_BRIDGE) != 0) { 1455 #if defined(__i386__) || defined(__amd64__) 1456 allow = (type == SYS_RES_IOPORT && start == CONF1_ADDR_PORT); 1457 #else 1458 allow = 0; 1459 #endif 1460 if (!allow) { 1461 AcpiOsFree(devinfo); 1462 return (0); 1463 } 1464 } 1465 AcpiOsFree(devinfo); 1466 } 1467 } 1468 1469 #ifdef INTRNG 1470 /* map with default for now */ 1471 if (type == SYS_RES_IRQ) 1472 start = (rman_res_t)acpi_map_intr(child, (u_int)start, 1473 acpi_get_handle(child)); 1474 #endif 1475 1476 /* If the resource is already allocated, fail. */ 1477 if (resource_list_busy(rl, type, rid)) 1478 return (EBUSY); 1479 1480 /* If the resource is already reserved, release it. */ 1481 if (resource_list_reserved(rl, type, rid)) 1482 resource_list_unreserve(rl, dev, child, type, rid); 1483 1484 /* Add the resource. */ 1485 end = (start + count - 1); 1486 resource_list_add(rl, type, rid, start, end, count); 1487 return (0); 1488 } 1489 1490 static struct resource * 1491 acpi_alloc_resource(device_t bus, device_t child, int type, int *rid, 1492 rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 1493 { 1494 #ifndef INTRNG 1495 ACPI_RESOURCE ares; 1496 #endif 1497 struct acpi_device *ad; 1498 struct resource_list_entry *rle; 1499 struct resource_list *rl; 1500 struct resource *res; 1501 int isdefault = RMAN_IS_DEFAULT_RANGE(start, end); 1502 1503 /* 1504 * First attempt at allocating the resource. For direct children, 1505 * use resource_list_alloc() to handle reserved resources. For 1506 * other devices, pass the request up to our parent. 1507 */ 1508 if (bus == device_get_parent(child)) { 1509 ad = device_get_ivars(child); 1510 rl = &ad->ad_rl; 1511 1512 /* 1513 * Simulate the behavior of the ISA bus for direct children 1514 * devices. That is, if a non-default range is specified for 1515 * a resource that doesn't exist, use bus_set_resource() to 1516 * add the resource before allocating it. Note that these 1517 * resources will not be reserved. 1518 */ 1519 if (!isdefault && resource_list_find(rl, type, *rid) == NULL) 1520 resource_list_add(rl, type, *rid, start, end, count); 1521 res = resource_list_alloc(rl, bus, child, type, rid, start, end, count, 1522 flags); 1523 #ifndef INTRNG 1524 if (res != NULL && type == SYS_RES_IRQ) { 1525 /* 1526 * Since bus_config_intr() takes immediate effect, we cannot 1527 * configure the interrupt associated with a device when we 1528 * parse the resources but have to defer it until a driver 1529 * actually allocates the interrupt via bus_alloc_resource(). 1530 * 1531 * XXX: Should we handle the lookup failing? 1532 */ 1533 if (ACPI_SUCCESS(acpi_lookup_irq_resource(child, *rid, res, &ares))) 1534 acpi_config_intr(child, &ares); 1535 } 1536 #endif 1537 1538 /* 1539 * If this is an allocation of the "default" range for a given 1540 * RID, fetch the exact bounds for this resource from the 1541 * resource list entry to try to allocate the range from the 1542 * system resource regions. 1543 */ 1544 if (res == NULL && isdefault) { 1545 rle = resource_list_find(rl, type, *rid); 1546 if (rle != NULL) { 1547 start = rle->start; 1548 end = rle->end; 1549 count = rle->count; 1550 } 1551 } 1552 } else 1553 res = bus_generic_alloc_resource(bus, child, type, rid, 1554 start, end, count, flags); 1555 1556 /* 1557 * If the first attempt failed and this is an allocation of a 1558 * specific range, try to satisfy the request via a suballocation 1559 * from our system resource regions. 1560 */ 1561 if (res == NULL && start + count - 1 == end) 1562 res = bus_generic_rman_alloc_resource(bus, child, type, rid, start, end, 1563 count, flags); 1564 return (res); 1565 } 1566 1567 static bool 1568 acpi_is_resource_managed(device_t bus, int type, struct resource *r) 1569 { 1570 struct rman *rm; 1571 1572 rm = acpi_get_rman(bus, type, 0); 1573 if (rm == NULL) 1574 return (false); 1575 return (rman_is_region_manager(r, rm)); 1576 } 1577 1578 static struct resource * 1579 acpi_managed_resource(device_t bus, int type, struct resource *r) 1580 { 1581 struct acpi_softc *sc = device_get_softc(bus); 1582 struct resource_list_entry *rle; 1583 1584 KASSERT(acpi_is_resource_managed(bus, type, r), 1585 ("resource %p is not suballocated", r)); 1586 1587 STAILQ_FOREACH(rle, &sc->sysres_rl, link) { 1588 if (rle->type != type || rle->res == NULL) 1589 continue; 1590 if (rman_get_start(r) >= rman_get_start(rle->res) && 1591 rman_get_end(r) <= rman_get_end(rle->res)) 1592 return (rle->res); 1593 } 1594 return (NULL); 1595 } 1596 1597 static int 1598 acpi_adjust_resource(device_t bus, device_t child, int type, struct resource *r, 1599 rman_res_t start, rman_res_t end) 1600 { 1601 1602 if (acpi_is_resource_managed(bus, type, r)) 1603 return (rman_adjust_resource(r, start, end)); 1604 return (bus_generic_adjust_resource(bus, child, type, r, start, end)); 1605 } 1606 1607 static int 1608 acpi_release_resource(device_t bus, device_t child, int type, int rid, 1609 struct resource *r) 1610 { 1611 /* 1612 * If this resource belongs to one of our internal managers, 1613 * deactivate it and release it to the local pool. 1614 */ 1615 if (acpi_is_resource_managed(bus, type, r)) 1616 return (bus_generic_rman_release_resource(bus, child, type, rid, r)); 1617 1618 return (bus_generic_rl_release_resource(bus, child, type, rid, r)); 1619 } 1620 1621 static void 1622 acpi_delete_resource(device_t bus, device_t child, int type, int rid) 1623 { 1624 struct resource_list *rl; 1625 1626 rl = acpi_get_rlist(bus, child); 1627 if (resource_list_busy(rl, type, rid)) { 1628 device_printf(bus, "delete_resource: Resource still owned by child" 1629 " (type=%d, rid=%d)\n", type, rid); 1630 return; 1631 } 1632 resource_list_unreserve(rl, bus, child, type, rid); 1633 resource_list_delete(rl, type, rid); 1634 } 1635 1636 static int 1637 acpi_activate_resource(device_t bus, device_t child, int type, int rid, 1638 struct resource *r) 1639 { 1640 if (acpi_is_resource_managed(bus, type, r)) 1641 return (bus_generic_rman_activate_resource(bus, child, type, 1642 rid, r)); 1643 return (bus_generic_activate_resource(bus, child, type, rid, r)); 1644 } 1645 1646 static int 1647 acpi_deactivate_resource(device_t bus, device_t child, int type, int rid, 1648 struct resource *r) 1649 { 1650 if (acpi_is_resource_managed(bus, type, r)) 1651 return (bus_generic_rman_deactivate_resource(bus, child, type, 1652 rid, r)); 1653 return (bus_generic_deactivate_resource(bus, child, type, rid, r)); 1654 } 1655 1656 static int 1657 acpi_map_resource(device_t bus, device_t child, int type, struct resource *r, 1658 struct resource_map_request *argsp, struct resource_map *map) 1659 { 1660 struct resource_map_request args; 1661 struct resource *sysres; 1662 rman_res_t length, start; 1663 int error; 1664 1665 if (!acpi_is_resource_managed(bus, type, r)) 1666 return (bus_generic_map_resource(bus, child, type, r, argsp, 1667 map)); 1668 1669 /* Resources must be active to be mapped. */ 1670 if (!(rman_get_flags(r) & RF_ACTIVE)) 1671 return (ENXIO); 1672 1673 resource_init_map_request(&args); 1674 error = resource_validate_map_request(r, argsp, &args, &start, &length); 1675 if (error) 1676 return (error); 1677 1678 sysres = acpi_managed_resource(bus, type, r); 1679 if (sysres == NULL) 1680 return (ENOENT); 1681 1682 args.offset = start - rman_get_start(sysres); 1683 args.length = length; 1684 return (bus_generic_map_resource(bus, child, type, sysres, &args, map)); 1685 } 1686 1687 static int 1688 acpi_unmap_resource(device_t bus, device_t child, int type, struct resource *r, 1689 struct resource_map *map) 1690 { 1691 if (acpi_is_resource_managed(bus, type, r)) { 1692 r = acpi_managed_resource(bus, type, r); 1693 if (r == NULL) 1694 return (ENOENT); 1695 } 1696 return (bus_generic_unmap_resource(bus, child, type, r, map)); 1697 } 1698 1699 /* Allocate an IO port or memory resource, given its GAS. */ 1700 int 1701 acpi_bus_alloc_gas(device_t dev, int *type, int *rid, ACPI_GENERIC_ADDRESS *gas, 1702 struct resource **res, u_int flags) 1703 { 1704 int error, res_type; 1705 1706 error = ENOMEM; 1707 if (type == NULL || rid == NULL || gas == NULL || res == NULL) 1708 return (EINVAL); 1709 1710 /* We only support memory and IO spaces. */ 1711 switch (gas->SpaceId) { 1712 case ACPI_ADR_SPACE_SYSTEM_MEMORY: 1713 res_type = SYS_RES_MEMORY; 1714 break; 1715 case ACPI_ADR_SPACE_SYSTEM_IO: 1716 res_type = SYS_RES_IOPORT; 1717 break; 1718 default: 1719 return (EOPNOTSUPP); 1720 } 1721 1722 /* 1723 * If the register width is less than 8, assume the BIOS author means 1724 * it is a bit field and just allocate a byte. 1725 */ 1726 if (gas->BitWidth && gas->BitWidth < 8) 1727 gas->BitWidth = 8; 1728 1729 /* Validate the address after we're sure we support the space. */ 1730 if (gas->Address == 0 || gas->BitWidth == 0) 1731 return (EINVAL); 1732 1733 bus_set_resource(dev, res_type, *rid, gas->Address, 1734 gas->BitWidth / 8); 1735 *res = bus_alloc_resource_any(dev, res_type, rid, RF_ACTIVE | flags); 1736 if (*res != NULL) { 1737 *type = res_type; 1738 error = 0; 1739 } else 1740 bus_delete_resource(dev, res_type, *rid); 1741 1742 return (error); 1743 } 1744 1745 /* Probe _HID and _CID for compatible ISA PNP ids. */ 1746 static uint32_t 1747 acpi_isa_get_logicalid(device_t dev) 1748 { 1749 ACPI_DEVICE_INFO *devinfo; 1750 ACPI_HANDLE h; 1751 uint32_t pnpid; 1752 1753 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1754 1755 /* Fetch and validate the HID. */ 1756 if ((h = acpi_get_handle(dev)) == NULL || 1757 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 1758 return_VALUE (0); 1759 1760 pnpid = (devinfo->Valid & ACPI_VALID_HID) != 0 && 1761 devinfo->HardwareId.Length >= ACPI_EISAID_STRING_SIZE ? 1762 PNP_EISAID(devinfo->HardwareId.String) : 0; 1763 AcpiOsFree(devinfo); 1764 1765 return_VALUE (pnpid); 1766 } 1767 1768 static int 1769 acpi_isa_get_compatid(device_t dev, uint32_t *cids, int count) 1770 { 1771 ACPI_DEVICE_INFO *devinfo; 1772 ACPI_PNP_DEVICE_ID *ids; 1773 ACPI_HANDLE h; 1774 uint32_t *pnpid; 1775 int i, valid; 1776 1777 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1778 1779 pnpid = cids; 1780 1781 /* Fetch and validate the CID */ 1782 if ((h = acpi_get_handle(dev)) == NULL || 1783 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 1784 return_VALUE (0); 1785 1786 if ((devinfo->Valid & ACPI_VALID_CID) == 0) { 1787 AcpiOsFree(devinfo); 1788 return_VALUE (0); 1789 } 1790 1791 if (devinfo->CompatibleIdList.Count < count) 1792 count = devinfo->CompatibleIdList.Count; 1793 ids = devinfo->CompatibleIdList.Ids; 1794 for (i = 0, valid = 0; i < count; i++) 1795 if (ids[i].Length >= ACPI_EISAID_STRING_SIZE && 1796 strncmp(ids[i].String, "PNP", 3) == 0) { 1797 *pnpid++ = PNP_EISAID(ids[i].String); 1798 valid++; 1799 } 1800 AcpiOsFree(devinfo); 1801 1802 return_VALUE (valid); 1803 } 1804 1805 static int 1806 acpi_device_id_probe(device_t bus, device_t dev, char **ids, char **match) 1807 { 1808 ACPI_HANDLE h; 1809 ACPI_OBJECT_TYPE t; 1810 int rv; 1811 int i; 1812 1813 h = acpi_get_handle(dev); 1814 if (ids == NULL || h == NULL) 1815 return (ENXIO); 1816 t = acpi_get_type(dev); 1817 if (t != ACPI_TYPE_DEVICE && t != ACPI_TYPE_PROCESSOR) 1818 return (ENXIO); 1819 1820 /* Try to match one of the array of IDs with a HID or CID. */ 1821 for (i = 0; ids[i] != NULL; i++) { 1822 rv = acpi_MatchHid(h, ids[i]); 1823 if (rv == ACPI_MATCHHID_NOMATCH) 1824 continue; 1825 1826 if (match != NULL) { 1827 *match = ids[i]; 1828 } 1829 return ((rv == ACPI_MATCHHID_HID)? 1830 BUS_PROBE_DEFAULT : BUS_PROBE_LOW_PRIORITY); 1831 } 1832 return (ENXIO); 1833 } 1834 1835 static ACPI_STATUS 1836 acpi_device_eval_obj(device_t bus, device_t dev, ACPI_STRING pathname, 1837 ACPI_OBJECT_LIST *parameters, ACPI_BUFFER *ret) 1838 { 1839 ACPI_HANDLE h; 1840 1841 if (dev == NULL) 1842 h = ACPI_ROOT_OBJECT; 1843 else if ((h = acpi_get_handle(dev)) == NULL) 1844 return (AE_BAD_PARAMETER); 1845 return (AcpiEvaluateObject(h, pathname, parameters, ret)); 1846 } 1847 1848 static ACPI_STATUS 1849 acpi_device_get_prop(device_t bus, device_t dev, ACPI_STRING propname, 1850 const ACPI_OBJECT **value) 1851 { 1852 const ACPI_OBJECT *pkg, *name, *val; 1853 struct acpi_device *ad; 1854 ACPI_STATUS status; 1855 int i; 1856 1857 ad = device_get_ivars(dev); 1858 1859 if (ad == NULL || propname == NULL) 1860 return (AE_BAD_PARAMETER); 1861 if (ad->dsd_pkg == NULL) { 1862 if (ad->dsd.Pointer == NULL) { 1863 status = acpi_find_dsd(ad); 1864 if (ACPI_FAILURE(status)) 1865 return (status); 1866 } else { 1867 return (AE_NOT_FOUND); 1868 } 1869 } 1870 1871 for (i = 0; i < ad->dsd_pkg->Package.Count; i ++) { 1872 pkg = &ad->dsd_pkg->Package.Elements[i]; 1873 if (pkg->Type != ACPI_TYPE_PACKAGE || pkg->Package.Count != 2) 1874 continue; 1875 1876 name = &pkg->Package.Elements[0]; 1877 val = &pkg->Package.Elements[1]; 1878 if (name->Type != ACPI_TYPE_STRING) 1879 continue; 1880 if (strncmp(propname, name->String.Pointer, name->String.Length) == 0) { 1881 if (value != NULL) 1882 *value = val; 1883 1884 return (AE_OK); 1885 } 1886 } 1887 1888 return (AE_NOT_FOUND); 1889 } 1890 1891 static ACPI_STATUS 1892 acpi_find_dsd(struct acpi_device *ad) 1893 { 1894 const ACPI_OBJECT *dsd, *guid, *pkg; 1895 ACPI_STATUS status; 1896 1897 ad->dsd.Length = ACPI_ALLOCATE_BUFFER; 1898 ad->dsd.Pointer = NULL; 1899 ad->dsd_pkg = NULL; 1900 1901 status = AcpiEvaluateObject(ad->ad_handle, "_DSD", NULL, &ad->dsd); 1902 if (ACPI_FAILURE(status)) 1903 return (status); 1904 1905 dsd = ad->dsd.Pointer; 1906 guid = &dsd->Package.Elements[0]; 1907 pkg = &dsd->Package.Elements[1]; 1908 1909 if (guid->Type != ACPI_TYPE_BUFFER || pkg->Type != ACPI_TYPE_PACKAGE || 1910 guid->Buffer.Length != sizeof(acpi_dsd_uuid)) 1911 return (AE_NOT_FOUND); 1912 if (memcmp(guid->Buffer.Pointer, &acpi_dsd_uuid, 1913 sizeof(acpi_dsd_uuid)) == 0) { 1914 1915 ad->dsd_pkg = pkg; 1916 return (AE_OK); 1917 } 1918 1919 return (AE_NOT_FOUND); 1920 } 1921 1922 static ssize_t 1923 acpi_bus_get_prop_handle(const ACPI_OBJECT *hobj, void *propvalue, size_t size) 1924 { 1925 ACPI_OBJECT *pobj; 1926 ACPI_HANDLE h; 1927 1928 if (hobj->Type != ACPI_TYPE_PACKAGE) 1929 goto err; 1930 if (hobj->Package.Count != 1) 1931 goto err; 1932 1933 pobj = &hobj->Package.Elements[0]; 1934 if (pobj == NULL) 1935 goto err; 1936 if (pobj->Type != ACPI_TYPE_LOCAL_REFERENCE) 1937 goto err; 1938 1939 h = acpi_GetReference(NULL, pobj); 1940 if (h == NULL) 1941 goto err; 1942 1943 if (propvalue != NULL && size >= sizeof(ACPI_HANDLE)) 1944 *(ACPI_HANDLE *)propvalue = h; 1945 return (sizeof(ACPI_HANDLE)); 1946 1947 err: 1948 return (-1); 1949 } 1950 1951 static ssize_t 1952 acpi_bus_get_prop(device_t bus, device_t child, const char *propname, 1953 void *propvalue, size_t size, device_property_type_t type) 1954 { 1955 ACPI_STATUS status; 1956 const ACPI_OBJECT *obj; 1957 1958 status = acpi_device_get_prop(bus, child, __DECONST(char *, propname), 1959 &obj); 1960 if (ACPI_FAILURE(status)) 1961 return (-1); 1962 1963 switch (type) { 1964 case DEVICE_PROP_ANY: 1965 case DEVICE_PROP_BUFFER: 1966 case DEVICE_PROP_UINT32: 1967 case DEVICE_PROP_UINT64: 1968 break; 1969 case DEVICE_PROP_HANDLE: 1970 return (acpi_bus_get_prop_handle(obj, propvalue, size)); 1971 default: 1972 return (-1); 1973 } 1974 1975 switch (obj->Type) { 1976 case ACPI_TYPE_INTEGER: 1977 if (type == DEVICE_PROP_UINT32) { 1978 if (propvalue != NULL && size >= sizeof(uint32_t)) 1979 *((uint32_t *)propvalue) = obj->Integer.Value; 1980 return (sizeof(uint32_t)); 1981 } 1982 if (propvalue != NULL && size >= sizeof(uint64_t)) 1983 *((uint64_t *) propvalue) = obj->Integer.Value; 1984 return (sizeof(uint64_t)); 1985 1986 case ACPI_TYPE_STRING: 1987 if (type != DEVICE_PROP_ANY && 1988 type != DEVICE_PROP_BUFFER) 1989 return (-1); 1990 1991 if (propvalue != NULL && size > 0) 1992 memcpy(propvalue, obj->String.Pointer, 1993 MIN(size, obj->String.Length)); 1994 return (obj->String.Length); 1995 1996 case ACPI_TYPE_BUFFER: 1997 if (propvalue != NULL && size > 0) 1998 memcpy(propvalue, obj->Buffer.Pointer, 1999 MIN(size, obj->Buffer.Length)); 2000 return (obj->Buffer.Length); 2001 2002 case ACPI_TYPE_PACKAGE: 2003 if (propvalue != NULL && size >= sizeof(ACPI_OBJECT *)) { 2004 *((ACPI_OBJECT **) propvalue) = 2005 __DECONST(ACPI_OBJECT *, obj); 2006 } 2007 return (sizeof(ACPI_OBJECT *)); 2008 2009 case ACPI_TYPE_LOCAL_REFERENCE: 2010 if (propvalue != NULL && size >= sizeof(ACPI_HANDLE)) { 2011 ACPI_HANDLE h; 2012 2013 h = acpi_GetReference(NULL, 2014 __DECONST(ACPI_OBJECT *, obj)); 2015 memcpy(propvalue, h, sizeof(ACPI_HANDLE)); 2016 } 2017 return (sizeof(ACPI_HANDLE)); 2018 default: 2019 return (0); 2020 } 2021 } 2022 2023 int 2024 acpi_device_pwr_for_sleep(device_t bus, device_t dev, int *dstate) 2025 { 2026 struct acpi_softc *sc; 2027 ACPI_HANDLE handle; 2028 ACPI_STATUS status; 2029 char sxd[8]; 2030 2031 handle = acpi_get_handle(dev); 2032 2033 /* 2034 * XXX If we find these devices, don't try to power them down. 2035 * The serial and IRDA ports on my T23 hang the system when 2036 * set to D3 and it appears that such legacy devices may 2037 * need special handling in their drivers. 2038 */ 2039 if (dstate == NULL || handle == NULL || 2040 acpi_MatchHid(handle, "PNP0500") || 2041 acpi_MatchHid(handle, "PNP0501") || 2042 acpi_MatchHid(handle, "PNP0502") || 2043 acpi_MatchHid(handle, "PNP0510") || 2044 acpi_MatchHid(handle, "PNP0511")) 2045 return (ENXIO); 2046 2047 /* 2048 * Override next state with the value from _SxD, if present. 2049 * Note illegal _S0D is evaluated because some systems expect this. 2050 */ 2051 sc = device_get_softc(bus); 2052 snprintf(sxd, sizeof(sxd), "_S%dD", sc->acpi_sstate); 2053 status = acpi_GetInteger(handle, sxd, dstate); 2054 if (ACPI_FAILURE(status) && status != AE_NOT_FOUND) { 2055 device_printf(dev, "failed to get %s on %s: %s\n", sxd, 2056 acpi_name(handle), AcpiFormatException(status)); 2057 return (ENXIO); 2058 } 2059 2060 return (0); 2061 } 2062 2063 /* Callback arg for our implementation of walking the namespace. */ 2064 struct acpi_device_scan_ctx { 2065 acpi_scan_cb_t user_fn; 2066 void *arg; 2067 ACPI_HANDLE parent; 2068 }; 2069 2070 static ACPI_STATUS 2071 acpi_device_scan_cb(ACPI_HANDLE h, UINT32 level, void *arg, void **retval) 2072 { 2073 struct acpi_device_scan_ctx *ctx; 2074 device_t dev, old_dev; 2075 ACPI_STATUS status; 2076 ACPI_OBJECT_TYPE type; 2077 2078 /* 2079 * Skip this device if we think we'll have trouble with it or it is 2080 * the parent where the scan began. 2081 */ 2082 ctx = (struct acpi_device_scan_ctx *)arg; 2083 if (acpi_avoid(h) || h == ctx->parent) 2084 return (AE_OK); 2085 2086 /* If this is not a valid device type (e.g., a method), skip it. */ 2087 if (ACPI_FAILURE(AcpiGetType(h, &type))) 2088 return (AE_OK); 2089 if (type != ACPI_TYPE_DEVICE && type != ACPI_TYPE_PROCESSOR && 2090 type != ACPI_TYPE_THERMAL && type != ACPI_TYPE_POWER) 2091 return (AE_OK); 2092 2093 /* 2094 * Call the user function with the current device. If it is unchanged 2095 * afterwards, return. Otherwise, we update the handle to the new dev. 2096 */ 2097 old_dev = acpi_get_device(h); 2098 dev = old_dev; 2099 status = ctx->user_fn(h, &dev, level, ctx->arg); 2100 if (ACPI_FAILURE(status) || old_dev == dev) 2101 return (status); 2102 2103 /* Remove the old child and its connection to the handle. */ 2104 if (old_dev != NULL) 2105 device_delete_child(device_get_parent(old_dev), old_dev); 2106 2107 /* Recreate the handle association if the user created a device. */ 2108 if (dev != NULL) 2109 AcpiAttachData(h, acpi_fake_objhandler, dev); 2110 2111 return (AE_OK); 2112 } 2113 2114 static ACPI_STATUS 2115 acpi_device_scan_children(device_t bus, device_t dev, int max_depth, 2116 acpi_scan_cb_t user_fn, void *arg) 2117 { 2118 ACPI_HANDLE h; 2119 struct acpi_device_scan_ctx ctx; 2120 2121 if (acpi_disabled("children")) 2122 return (AE_OK); 2123 2124 if (dev == NULL) 2125 h = ACPI_ROOT_OBJECT; 2126 else if ((h = acpi_get_handle(dev)) == NULL) 2127 return (AE_BAD_PARAMETER); 2128 ctx.user_fn = user_fn; 2129 ctx.arg = arg; 2130 ctx.parent = h; 2131 return (AcpiWalkNamespace(ACPI_TYPE_ANY, h, max_depth, 2132 acpi_device_scan_cb, NULL, &ctx, NULL)); 2133 } 2134 2135 /* 2136 * Even though ACPI devices are not PCI, we use the PCI approach for setting 2137 * device power states since it's close enough to ACPI. 2138 */ 2139 int 2140 acpi_set_powerstate(device_t child, int state) 2141 { 2142 ACPI_HANDLE h; 2143 ACPI_STATUS status; 2144 2145 h = acpi_get_handle(child); 2146 if (state < ACPI_STATE_D0 || state > ACPI_D_STATES_MAX) 2147 return (EINVAL); 2148 if (h == NULL) 2149 return (0); 2150 2151 /* Ignore errors if the power methods aren't present. */ 2152 status = acpi_pwr_switch_consumer(h, state); 2153 if (ACPI_SUCCESS(status)) { 2154 if (bootverbose) 2155 device_printf(child, "set ACPI power state D%d on %s\n", 2156 state, acpi_name(h)); 2157 } else if (status != AE_NOT_FOUND) 2158 device_printf(child, 2159 "failed to set ACPI power state D%d on %s: %s\n", state, 2160 acpi_name(h), AcpiFormatException(status)); 2161 2162 return (0); 2163 } 2164 2165 static int 2166 acpi_isa_pnp_probe(device_t bus, device_t child, struct isa_pnp_id *ids) 2167 { 2168 int result, cid_count, i; 2169 uint32_t lid, cids[8]; 2170 2171 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 2172 2173 /* 2174 * ISA-style drivers attached to ACPI may persist and 2175 * probe manually if we return ENOENT. We never want 2176 * that to happen, so don't ever return it. 2177 */ 2178 result = ENXIO; 2179 2180 /* Scan the supplied IDs for a match */ 2181 lid = acpi_isa_get_logicalid(child); 2182 cid_count = acpi_isa_get_compatid(child, cids, 8); 2183 while (ids && ids->ip_id) { 2184 if (lid == ids->ip_id) { 2185 result = 0; 2186 goto out; 2187 } 2188 for (i = 0; i < cid_count; i++) { 2189 if (cids[i] == ids->ip_id) { 2190 result = 0; 2191 goto out; 2192 } 2193 } 2194 ids++; 2195 } 2196 2197 out: 2198 if (result == 0 && ids->ip_desc) 2199 device_set_desc(child, ids->ip_desc); 2200 2201 return_VALUE (result); 2202 } 2203 2204 /* 2205 * Look for a MCFG table. If it is present, use the settings for 2206 * domain (segment) 0 to setup PCI config space access via the memory 2207 * map. 2208 * 2209 * On non-x86 architectures (arm64 for now), this will be done from the 2210 * PCI host bridge driver. 2211 */ 2212 static void 2213 acpi_enable_pcie(void) 2214 { 2215 #if defined(__i386__) || defined(__amd64__) 2216 ACPI_TABLE_HEADER *hdr; 2217 ACPI_MCFG_ALLOCATION *alloc, *end; 2218 ACPI_STATUS status; 2219 2220 status = AcpiGetTable(ACPI_SIG_MCFG, 1, &hdr); 2221 if (ACPI_FAILURE(status)) 2222 return; 2223 2224 end = (ACPI_MCFG_ALLOCATION *)((char *)hdr + hdr->Length); 2225 alloc = (ACPI_MCFG_ALLOCATION *)((ACPI_TABLE_MCFG *)hdr + 1); 2226 while (alloc < end) { 2227 pcie_cfgregopen(alloc->Address, alloc->PciSegment, 2228 alloc->StartBusNumber, alloc->EndBusNumber); 2229 alloc++; 2230 } 2231 #endif 2232 } 2233 2234 static void 2235 acpi_platform_osc(device_t dev) 2236 { 2237 ACPI_HANDLE sb_handle; 2238 ACPI_STATUS status; 2239 uint32_t cap_set[2]; 2240 2241 /* 0811B06E-4A27-44F9-8D60-3CBBC22E7B48 */ 2242 static uint8_t acpi_platform_uuid[ACPI_UUID_LENGTH] = { 2243 0x6e, 0xb0, 0x11, 0x08, 0x27, 0x4a, 0xf9, 0x44, 2244 0x8d, 0x60, 0x3c, 0xbb, 0xc2, 0x2e, 0x7b, 0x48 2245 }; 2246 2247 if (ACPI_FAILURE(AcpiGetHandle(ACPI_ROOT_OBJECT, "\\_SB_", &sb_handle))) 2248 return; 2249 2250 cap_set[1] = 0x10; /* APEI Support */ 2251 status = acpi_EvaluateOSC(sb_handle, acpi_platform_uuid, 1, 2252 nitems(cap_set), cap_set, cap_set, false); 2253 if (ACPI_FAILURE(status)) { 2254 if (status == AE_NOT_FOUND) 2255 return; 2256 device_printf(dev, "_OSC failed: %s\n", 2257 AcpiFormatException(status)); 2258 return; 2259 } 2260 } 2261 2262 /* 2263 * Scan all of the ACPI namespace and attach child devices. 2264 * 2265 * We should only expect to find devices in the \_PR, \_TZ, \_SI, and 2266 * \_SB scopes, and \_PR and \_TZ became obsolete in the ACPI 2.0 spec. 2267 * However, in violation of the spec, some systems place their PCI link 2268 * devices in \, so we have to walk the whole namespace. We check the 2269 * type of namespace nodes, so this should be ok. 2270 */ 2271 static void 2272 acpi_probe_children(device_t bus) 2273 { 2274 2275 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 2276 2277 /* 2278 * Scan the namespace and insert placeholders for all the devices that 2279 * we find. We also probe/attach any early devices. 2280 * 2281 * Note that we use AcpiWalkNamespace rather than AcpiGetDevices because 2282 * we want to create nodes for all devices, not just those that are 2283 * currently present. (This assumes that we don't want to create/remove 2284 * devices as they appear, which might be smarter.) 2285 */ 2286 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "namespace scan\n")); 2287 AcpiWalkNamespace(ACPI_TYPE_ANY, ACPI_ROOT_OBJECT, 100, acpi_probe_child, 2288 NULL, bus, NULL); 2289 2290 /* Pre-allocate resources for our rman from any sysresource devices. */ 2291 acpi_sysres_alloc(bus); 2292 2293 /* Reserve resources already allocated to children. */ 2294 acpi_reserve_resources(bus); 2295 2296 /* Create any static children by calling device identify methods. */ 2297 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "device identify routines\n")); 2298 bus_generic_probe(bus); 2299 2300 /* Probe/attach all children, created statically and from the namespace. */ 2301 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "acpi bus_generic_attach\n")); 2302 bus_generic_attach(bus); 2303 2304 /* Attach wake sysctls. */ 2305 acpi_wake_sysctl_walk(bus); 2306 2307 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "done attaching children\n")); 2308 return_VOID; 2309 } 2310 2311 /* 2312 * Determine the probe order for a given device. 2313 */ 2314 static void 2315 acpi_probe_order(ACPI_HANDLE handle, int *order) 2316 { 2317 ACPI_OBJECT_TYPE type; 2318 2319 /* 2320 * 0. CPUs 2321 * 1. I/O port and memory system resource holders 2322 * 2. Clocks and timers (to handle early accesses) 2323 * 3. Embedded controllers (to handle early accesses) 2324 * 4. PCI Link Devices 2325 */ 2326 AcpiGetType(handle, &type); 2327 if (type == ACPI_TYPE_PROCESSOR) 2328 *order = 0; 2329 else if (acpi_MatchHid(handle, "PNP0C01") || 2330 acpi_MatchHid(handle, "PNP0C02")) 2331 *order = 1; 2332 else if (acpi_MatchHid(handle, "PNP0100") || 2333 acpi_MatchHid(handle, "PNP0103") || 2334 acpi_MatchHid(handle, "PNP0B00")) 2335 *order = 2; 2336 else if (acpi_MatchHid(handle, "PNP0C09")) 2337 *order = 3; 2338 else if (acpi_MatchHid(handle, "PNP0C0F")) 2339 *order = 4; 2340 } 2341 2342 /* 2343 * Evaluate a child device and determine whether we might attach a device to 2344 * it. 2345 */ 2346 static ACPI_STATUS 2347 acpi_probe_child(ACPI_HANDLE handle, UINT32 level, void *context, void **status) 2348 { 2349 ACPI_DEVICE_INFO *devinfo; 2350 struct acpi_device *ad; 2351 struct acpi_prw_data prw; 2352 ACPI_OBJECT_TYPE type; 2353 ACPI_HANDLE h; 2354 device_t bus, child; 2355 char *handle_str; 2356 int order; 2357 2358 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 2359 2360 if (acpi_disabled("children")) 2361 return_ACPI_STATUS (AE_OK); 2362 2363 /* Skip this device if we think we'll have trouble with it. */ 2364 if (acpi_avoid(handle)) 2365 return_ACPI_STATUS (AE_OK); 2366 2367 bus = (device_t)context; 2368 if (ACPI_SUCCESS(AcpiGetType(handle, &type))) { 2369 handle_str = acpi_name(handle); 2370 switch (type) { 2371 case ACPI_TYPE_DEVICE: 2372 /* 2373 * Since we scan from \, be sure to skip system scope objects. 2374 * \_SB_ and \_TZ_ are defined in ACPICA as devices to work around 2375 * BIOS bugs. For example, \_SB_ is to allow \_SB_._INI to be run 2376 * during the initialization and \_TZ_ is to support Notify() on it. 2377 */ 2378 if (strcmp(handle_str, "\\_SB_") == 0 || 2379 strcmp(handle_str, "\\_TZ_") == 0) 2380 break; 2381 if (acpi_parse_prw(handle, &prw) == 0) 2382 AcpiSetupGpeForWake(handle, prw.gpe_handle, prw.gpe_bit); 2383 2384 /* 2385 * Ignore devices that do not have a _HID or _CID. They should 2386 * be discovered by other buses (e.g. the PCI bus driver). 2387 */ 2388 if (!acpi_has_hid(handle)) 2389 break; 2390 /* FALLTHROUGH */ 2391 case ACPI_TYPE_PROCESSOR: 2392 case ACPI_TYPE_THERMAL: 2393 case ACPI_TYPE_POWER: 2394 /* 2395 * Create a placeholder device for this node. Sort the 2396 * placeholder so that the probe/attach passes will run 2397 * breadth-first. Orders less than ACPI_DEV_BASE_ORDER 2398 * are reserved for special objects (i.e., system 2399 * resources). 2400 */ 2401 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "scanning '%s'\n", handle_str)); 2402 order = level * 10 + ACPI_DEV_BASE_ORDER; 2403 acpi_probe_order(handle, &order); 2404 child = BUS_ADD_CHILD(bus, order, NULL, -1); 2405 if (child == NULL) 2406 break; 2407 2408 /* Associate the handle with the device_t and vice versa. */ 2409 acpi_set_handle(child, handle); 2410 AcpiAttachData(handle, acpi_fake_objhandler, child); 2411 2412 /* 2413 * Check that the device is present. If it's not present, 2414 * leave it disabled (so that we have a device_t attached to 2415 * the handle, but we don't probe it). 2416 * 2417 * XXX PCI link devices sometimes report "present" but not 2418 * "functional" (i.e. if disabled). Go ahead and probe them 2419 * anyway since we may enable them later. 2420 */ 2421 if (type == ACPI_TYPE_DEVICE && !acpi_DeviceIsPresent(child)) { 2422 /* Never disable PCI link devices. */ 2423 if (acpi_MatchHid(handle, "PNP0C0F")) 2424 break; 2425 2426 /* 2427 * RTC Device should be enabled for CMOS register space 2428 * unless FADT indicate it is not present. 2429 * (checked in RTC probe routine.) 2430 */ 2431 if (acpi_MatchHid(handle, "PNP0B00")) 2432 break; 2433 2434 /* 2435 * Docking stations should remain enabled since the system 2436 * may be undocked at boot. 2437 */ 2438 if (ACPI_SUCCESS(AcpiGetHandle(handle, "_DCK", &h))) 2439 break; 2440 2441 device_disable(child); 2442 break; 2443 } 2444 2445 /* 2446 * Get the device's resource settings and attach them. 2447 * Note that if the device has _PRS but no _CRS, we need 2448 * to decide when it's appropriate to try to configure the 2449 * device. Ignore the return value here; it's OK for the 2450 * device not to have any resources. 2451 */ 2452 acpi_parse_resources(child, handle, &acpi_res_parse_set, NULL); 2453 2454 ad = device_get_ivars(child); 2455 ad->ad_cls_class = 0xffffff; 2456 if (ACPI_SUCCESS(AcpiGetObjectInfo(handle, &devinfo))) { 2457 if ((devinfo->Valid & ACPI_VALID_CLS) != 0 && 2458 devinfo->ClassCode.Length >= ACPI_PCICLS_STRING_SIZE) { 2459 ad->ad_cls_class = strtoul(devinfo->ClassCode.String, 2460 NULL, 16); 2461 } 2462 AcpiOsFree(devinfo); 2463 } 2464 break; 2465 } 2466 } 2467 2468 return_ACPI_STATUS (AE_OK); 2469 } 2470 2471 /* 2472 * AcpiAttachData() requires an object handler but never uses it. This is a 2473 * placeholder object handler so we can store a device_t in an ACPI_HANDLE. 2474 */ 2475 void 2476 acpi_fake_objhandler(ACPI_HANDLE h, void *data) 2477 { 2478 } 2479 2480 static void 2481 acpi_shutdown_final(void *arg, int howto) 2482 { 2483 struct acpi_softc *sc = (struct acpi_softc *)arg; 2484 register_t intr; 2485 ACPI_STATUS status; 2486 2487 /* 2488 * XXX Shutdown code should only run on the BSP (cpuid 0). 2489 * Some chipsets do not power off the system correctly if called from 2490 * an AP. 2491 */ 2492 if ((howto & RB_POWEROFF) != 0) { 2493 status = AcpiEnterSleepStatePrep(ACPI_STATE_S5); 2494 if (ACPI_FAILURE(status)) { 2495 device_printf(sc->acpi_dev, "AcpiEnterSleepStatePrep failed - %s\n", 2496 AcpiFormatException(status)); 2497 return; 2498 } 2499 device_printf(sc->acpi_dev, "Powering system off\n"); 2500 intr = intr_disable(); 2501 status = AcpiEnterSleepState(ACPI_STATE_S5); 2502 if (ACPI_FAILURE(status)) { 2503 intr_restore(intr); 2504 device_printf(sc->acpi_dev, "power-off failed - %s\n", 2505 AcpiFormatException(status)); 2506 } else { 2507 DELAY(1000000); 2508 intr_restore(intr); 2509 device_printf(sc->acpi_dev, "power-off failed - timeout\n"); 2510 } 2511 } else if ((howto & RB_HALT) == 0 && sc->acpi_handle_reboot) { 2512 /* Reboot using the reset register. */ 2513 status = AcpiReset(); 2514 if (ACPI_SUCCESS(status)) { 2515 DELAY(1000000); 2516 device_printf(sc->acpi_dev, "reset failed - timeout\n"); 2517 } else if (status != AE_NOT_EXIST) 2518 device_printf(sc->acpi_dev, "reset failed - %s\n", 2519 AcpiFormatException(status)); 2520 } else if (sc->acpi_do_disable && !KERNEL_PANICKED()) { 2521 /* 2522 * Only disable ACPI if the user requested. On some systems, writing 2523 * the disable value to SMI_CMD hangs the system. 2524 */ 2525 device_printf(sc->acpi_dev, "Shutting down\n"); 2526 AcpiTerminate(); 2527 } 2528 } 2529 2530 static void 2531 acpi_enable_fixed_events(struct acpi_softc *sc) 2532 { 2533 static int first_time = 1; 2534 2535 /* Enable and clear fixed events and install handlers. */ 2536 if ((AcpiGbl_FADT.Flags & ACPI_FADT_POWER_BUTTON) == 0) { 2537 AcpiClearEvent(ACPI_EVENT_POWER_BUTTON); 2538 AcpiInstallFixedEventHandler(ACPI_EVENT_POWER_BUTTON, 2539 acpi_event_power_button_sleep, sc); 2540 if (first_time) 2541 device_printf(sc->acpi_dev, "Power Button (fixed)\n"); 2542 } 2543 if ((AcpiGbl_FADT.Flags & ACPI_FADT_SLEEP_BUTTON) == 0) { 2544 AcpiClearEvent(ACPI_EVENT_SLEEP_BUTTON); 2545 AcpiInstallFixedEventHandler(ACPI_EVENT_SLEEP_BUTTON, 2546 acpi_event_sleep_button_sleep, sc); 2547 if (first_time) 2548 device_printf(sc->acpi_dev, "Sleep Button (fixed)\n"); 2549 } 2550 2551 first_time = 0; 2552 } 2553 2554 /* 2555 * Returns true if the device is actually present and should 2556 * be attached to. This requires the present, enabled, UI-visible 2557 * and diagnostics-passed bits to be set. 2558 */ 2559 BOOLEAN 2560 acpi_DeviceIsPresent(device_t dev) 2561 { 2562 ACPI_HANDLE h; 2563 UINT32 s; 2564 ACPI_STATUS status; 2565 2566 h = acpi_get_handle(dev); 2567 if (h == NULL) 2568 return (FALSE); 2569 2570 #ifdef ACPI_EARLY_EPYC_WAR 2571 /* 2572 * Certain Treadripper boards always returns 0 for FreeBSD because it 2573 * only returns non-zero for the OS string "Windows 2015". Otherwise it 2574 * will return zero. Force them to always be treated as present. 2575 * Beata versions were worse: they always returned 0. 2576 */ 2577 if (acpi_MatchHid(h, "AMDI0020") || acpi_MatchHid(h, "AMDI0010")) 2578 return (TRUE); 2579 #endif 2580 2581 status = acpi_GetInteger(h, "_STA", &s); 2582 2583 /* 2584 * If no _STA method or if it failed, then assume that 2585 * the device is present. 2586 */ 2587 if (ACPI_FAILURE(status)) 2588 return (TRUE); 2589 2590 return (ACPI_DEVICE_PRESENT(s) ? TRUE : FALSE); 2591 } 2592 2593 /* 2594 * Returns true if the battery is actually present and inserted. 2595 */ 2596 BOOLEAN 2597 acpi_BatteryIsPresent(device_t dev) 2598 { 2599 ACPI_HANDLE h; 2600 UINT32 s; 2601 ACPI_STATUS status; 2602 2603 h = acpi_get_handle(dev); 2604 if (h == NULL) 2605 return (FALSE); 2606 status = acpi_GetInteger(h, "_STA", &s); 2607 2608 /* 2609 * If no _STA method or if it failed, then assume that 2610 * the device is present. 2611 */ 2612 if (ACPI_FAILURE(status)) 2613 return (TRUE); 2614 2615 return (ACPI_BATTERY_PRESENT(s) ? TRUE : FALSE); 2616 } 2617 2618 /* 2619 * Returns true if a device has at least one valid device ID. 2620 */ 2621 BOOLEAN 2622 acpi_has_hid(ACPI_HANDLE h) 2623 { 2624 ACPI_DEVICE_INFO *devinfo; 2625 BOOLEAN ret; 2626 2627 if (h == NULL || 2628 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 2629 return (FALSE); 2630 2631 ret = FALSE; 2632 if ((devinfo->Valid & ACPI_VALID_HID) != 0) 2633 ret = TRUE; 2634 else if ((devinfo->Valid & ACPI_VALID_CID) != 0) 2635 if (devinfo->CompatibleIdList.Count > 0) 2636 ret = TRUE; 2637 2638 AcpiOsFree(devinfo); 2639 return (ret); 2640 } 2641 2642 /* 2643 * Match a HID string against a handle 2644 * returns ACPI_MATCHHID_HID if _HID match 2645 * ACPI_MATCHHID_CID if _CID match and not _HID match. 2646 * ACPI_MATCHHID_NOMATCH=0 if no match. 2647 */ 2648 int 2649 acpi_MatchHid(ACPI_HANDLE h, const char *hid) 2650 { 2651 ACPI_DEVICE_INFO *devinfo; 2652 BOOLEAN ret; 2653 int i; 2654 2655 if (hid == NULL || h == NULL || 2656 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 2657 return (ACPI_MATCHHID_NOMATCH); 2658 2659 ret = ACPI_MATCHHID_NOMATCH; 2660 if ((devinfo->Valid & ACPI_VALID_HID) != 0 && 2661 strcmp(hid, devinfo->HardwareId.String) == 0) 2662 ret = ACPI_MATCHHID_HID; 2663 else if ((devinfo->Valid & ACPI_VALID_CID) != 0) 2664 for (i = 0; i < devinfo->CompatibleIdList.Count; i++) { 2665 if (strcmp(hid, devinfo->CompatibleIdList.Ids[i].String) == 0) { 2666 ret = ACPI_MATCHHID_CID; 2667 break; 2668 } 2669 } 2670 2671 AcpiOsFree(devinfo); 2672 return (ret); 2673 } 2674 2675 /* 2676 * Return the handle of a named object within our scope, ie. that of (parent) 2677 * or one if its parents. 2678 */ 2679 ACPI_STATUS 2680 acpi_GetHandleInScope(ACPI_HANDLE parent, char *path, ACPI_HANDLE *result) 2681 { 2682 ACPI_HANDLE r; 2683 ACPI_STATUS status; 2684 2685 /* Walk back up the tree to the root */ 2686 for (;;) { 2687 status = AcpiGetHandle(parent, path, &r); 2688 if (ACPI_SUCCESS(status)) { 2689 *result = r; 2690 return (AE_OK); 2691 } 2692 /* XXX Return error here? */ 2693 if (status != AE_NOT_FOUND) 2694 return (AE_OK); 2695 if (ACPI_FAILURE(AcpiGetParent(parent, &r))) 2696 return (AE_NOT_FOUND); 2697 parent = r; 2698 } 2699 } 2700 2701 ACPI_STATUS 2702 acpi_GetProperty(device_t dev, ACPI_STRING propname, 2703 const ACPI_OBJECT **value) 2704 { 2705 device_t bus = device_get_parent(dev); 2706 2707 return (ACPI_GET_PROPERTY(bus, dev, propname, value)); 2708 } 2709 2710 /* 2711 * Allocate a buffer with a preset data size. 2712 */ 2713 ACPI_BUFFER * 2714 acpi_AllocBuffer(int size) 2715 { 2716 ACPI_BUFFER *buf; 2717 2718 if ((buf = malloc(size + sizeof(*buf), M_ACPIDEV, M_NOWAIT)) == NULL) 2719 return (NULL); 2720 buf->Length = size; 2721 buf->Pointer = (void *)(buf + 1); 2722 return (buf); 2723 } 2724 2725 ACPI_STATUS 2726 acpi_SetInteger(ACPI_HANDLE handle, char *path, UINT32 number) 2727 { 2728 ACPI_OBJECT arg1; 2729 ACPI_OBJECT_LIST args; 2730 2731 arg1.Type = ACPI_TYPE_INTEGER; 2732 arg1.Integer.Value = number; 2733 args.Count = 1; 2734 args.Pointer = &arg1; 2735 2736 return (AcpiEvaluateObject(handle, path, &args, NULL)); 2737 } 2738 2739 /* 2740 * Evaluate a path that should return an integer. 2741 */ 2742 ACPI_STATUS 2743 acpi_GetInteger(ACPI_HANDLE handle, char *path, UINT32 *number) 2744 { 2745 ACPI_STATUS status; 2746 ACPI_BUFFER buf; 2747 ACPI_OBJECT param; 2748 2749 if (handle == NULL) 2750 handle = ACPI_ROOT_OBJECT; 2751 2752 /* 2753 * Assume that what we've been pointed at is an Integer object, or 2754 * a method that will return an Integer. 2755 */ 2756 buf.Pointer = ¶m; 2757 buf.Length = sizeof(param); 2758 status = AcpiEvaluateObject(handle, path, NULL, &buf); 2759 if (ACPI_SUCCESS(status)) { 2760 if (param.Type == ACPI_TYPE_INTEGER) 2761 *number = param.Integer.Value; 2762 else 2763 status = AE_TYPE; 2764 } 2765 2766 /* 2767 * In some applications, a method that's expected to return an Integer 2768 * may instead return a Buffer (probably to simplify some internal 2769 * arithmetic). We'll try to fetch whatever it is, and if it's a Buffer, 2770 * convert it into an Integer as best we can. 2771 * 2772 * This is a hack. 2773 */ 2774 if (status == AE_BUFFER_OVERFLOW) { 2775 if ((buf.Pointer = AcpiOsAllocate(buf.Length)) == NULL) { 2776 status = AE_NO_MEMORY; 2777 } else { 2778 status = AcpiEvaluateObject(handle, path, NULL, &buf); 2779 if (ACPI_SUCCESS(status)) 2780 status = acpi_ConvertBufferToInteger(&buf, number); 2781 AcpiOsFree(buf.Pointer); 2782 } 2783 } 2784 return (status); 2785 } 2786 2787 ACPI_STATUS 2788 acpi_ConvertBufferToInteger(ACPI_BUFFER *bufp, UINT32 *number) 2789 { 2790 ACPI_OBJECT *p; 2791 UINT8 *val; 2792 int i; 2793 2794 p = (ACPI_OBJECT *)bufp->Pointer; 2795 if (p->Type == ACPI_TYPE_INTEGER) { 2796 *number = p->Integer.Value; 2797 return (AE_OK); 2798 } 2799 if (p->Type != ACPI_TYPE_BUFFER) 2800 return (AE_TYPE); 2801 if (p->Buffer.Length > sizeof(int)) 2802 return (AE_BAD_DATA); 2803 2804 *number = 0; 2805 val = p->Buffer.Pointer; 2806 for (i = 0; i < p->Buffer.Length; i++) 2807 *number += val[i] << (i * 8); 2808 return (AE_OK); 2809 } 2810 2811 /* 2812 * Iterate over the elements of an a package object, calling the supplied 2813 * function for each element. 2814 * 2815 * XXX possible enhancement might be to abort traversal on error. 2816 */ 2817 ACPI_STATUS 2818 acpi_ForeachPackageObject(ACPI_OBJECT *pkg, 2819 void (*func)(ACPI_OBJECT *comp, void *arg), void *arg) 2820 { 2821 ACPI_OBJECT *comp; 2822 int i; 2823 2824 if (pkg == NULL || pkg->Type != ACPI_TYPE_PACKAGE) 2825 return (AE_BAD_PARAMETER); 2826 2827 /* Iterate over components */ 2828 i = 0; 2829 comp = pkg->Package.Elements; 2830 for (; i < pkg->Package.Count; i++, comp++) 2831 func(comp, arg); 2832 2833 return (AE_OK); 2834 } 2835 2836 /* 2837 * Find the (index)th resource object in a set. 2838 */ 2839 ACPI_STATUS 2840 acpi_FindIndexedResource(ACPI_BUFFER *buf, int index, ACPI_RESOURCE **resp) 2841 { 2842 ACPI_RESOURCE *rp; 2843 int i; 2844 2845 rp = (ACPI_RESOURCE *)buf->Pointer; 2846 i = index; 2847 while (i-- > 0) { 2848 /* Range check */ 2849 if (rp > (ACPI_RESOURCE *)((u_int8_t *)buf->Pointer + buf->Length)) 2850 return (AE_BAD_PARAMETER); 2851 2852 /* Check for terminator */ 2853 if (rp->Type == ACPI_RESOURCE_TYPE_END_TAG || rp->Length == 0) 2854 return (AE_NOT_FOUND); 2855 rp = ACPI_NEXT_RESOURCE(rp); 2856 } 2857 if (resp != NULL) 2858 *resp = rp; 2859 2860 return (AE_OK); 2861 } 2862 2863 /* 2864 * Append an ACPI_RESOURCE to an ACPI_BUFFER. 2865 * 2866 * Given a pointer to an ACPI_RESOURCE structure, expand the ACPI_BUFFER 2867 * provided to contain it. If the ACPI_BUFFER is empty, allocate a sensible 2868 * backing block. If the ACPI_RESOURCE is NULL, return an empty set of 2869 * resources. 2870 */ 2871 #define ACPI_INITIAL_RESOURCE_BUFFER_SIZE 512 2872 2873 ACPI_STATUS 2874 acpi_AppendBufferResource(ACPI_BUFFER *buf, ACPI_RESOURCE *res) 2875 { 2876 ACPI_RESOURCE *rp; 2877 void *newp; 2878 2879 /* Initialise the buffer if necessary. */ 2880 if (buf->Pointer == NULL) { 2881 buf->Length = ACPI_INITIAL_RESOURCE_BUFFER_SIZE; 2882 if ((buf->Pointer = AcpiOsAllocate(buf->Length)) == NULL) 2883 return (AE_NO_MEMORY); 2884 rp = (ACPI_RESOURCE *)buf->Pointer; 2885 rp->Type = ACPI_RESOURCE_TYPE_END_TAG; 2886 rp->Length = ACPI_RS_SIZE_MIN; 2887 } 2888 if (res == NULL) 2889 return (AE_OK); 2890 2891 /* 2892 * Scan the current buffer looking for the terminator. 2893 * This will either find the terminator or hit the end 2894 * of the buffer and return an error. 2895 */ 2896 rp = (ACPI_RESOURCE *)buf->Pointer; 2897 for (;;) { 2898 /* Range check, don't go outside the buffer */ 2899 if (rp >= (ACPI_RESOURCE *)((u_int8_t *)buf->Pointer + buf->Length)) 2900 return (AE_BAD_PARAMETER); 2901 if (rp->Type == ACPI_RESOURCE_TYPE_END_TAG || rp->Length == 0) 2902 break; 2903 rp = ACPI_NEXT_RESOURCE(rp); 2904 } 2905 2906 /* 2907 * Check the size of the buffer and expand if required. 2908 * 2909 * Required size is: 2910 * size of existing resources before terminator + 2911 * size of new resource and header + 2912 * size of terminator. 2913 * 2914 * Note that this loop should really only run once, unless 2915 * for some reason we are stuffing a *really* huge resource. 2916 */ 2917 while ((((u_int8_t *)rp - (u_int8_t *)buf->Pointer) + 2918 res->Length + ACPI_RS_SIZE_NO_DATA + 2919 ACPI_RS_SIZE_MIN) >= buf->Length) { 2920 if ((newp = AcpiOsAllocate(buf->Length * 2)) == NULL) 2921 return (AE_NO_MEMORY); 2922 bcopy(buf->Pointer, newp, buf->Length); 2923 rp = (ACPI_RESOURCE *)((u_int8_t *)newp + 2924 ((u_int8_t *)rp - (u_int8_t *)buf->Pointer)); 2925 AcpiOsFree(buf->Pointer); 2926 buf->Pointer = newp; 2927 buf->Length += buf->Length; 2928 } 2929 2930 /* Insert the new resource. */ 2931 bcopy(res, rp, res->Length + ACPI_RS_SIZE_NO_DATA); 2932 2933 /* And add the terminator. */ 2934 rp = ACPI_NEXT_RESOURCE(rp); 2935 rp->Type = ACPI_RESOURCE_TYPE_END_TAG; 2936 rp->Length = ACPI_RS_SIZE_MIN; 2937 2938 return (AE_OK); 2939 } 2940 2941 UINT64 2942 acpi_DSMQuery(ACPI_HANDLE h, const uint8_t *uuid, int revision) 2943 { 2944 /* 2945 * ACPI spec 9.1.1 defines this. 2946 * 2947 * "Arg2: Function Index Represents a specific function whose meaning is 2948 * specific to the UUID and Revision ID. Function indices should start 2949 * with 1. Function number zero is a query function (see the special 2950 * return code defined below)." 2951 */ 2952 ACPI_BUFFER buf; 2953 ACPI_OBJECT *obj; 2954 UINT64 ret = 0; 2955 int i; 2956 2957 if (!ACPI_SUCCESS(acpi_EvaluateDSM(h, uuid, revision, 0, NULL, &buf))) { 2958 ACPI_INFO(("Failed to enumerate DSM functions\n")); 2959 return (0); 2960 } 2961 2962 obj = (ACPI_OBJECT *)buf.Pointer; 2963 KASSERT(obj, ("Object not allowed to be NULL\n")); 2964 2965 /* 2966 * From ACPI 6.2 spec 9.1.1: 2967 * If Function Index = 0, a Buffer containing a function index bitfield. 2968 * Otherwise, the return value and type depends on the UUID and revision 2969 * ID (see below). 2970 */ 2971 switch (obj->Type) { 2972 case ACPI_TYPE_BUFFER: 2973 for (i = 0; i < MIN(obj->Buffer.Length, sizeof(ret)); i++) 2974 ret |= (((uint64_t)obj->Buffer.Pointer[i]) << (i * 8)); 2975 break; 2976 case ACPI_TYPE_INTEGER: 2977 ACPI_BIOS_WARNING((AE_INFO, 2978 "Possibly buggy BIOS with ACPI_TYPE_INTEGER for function enumeration\n")); 2979 ret = obj->Integer.Value; 2980 break; 2981 default: 2982 ACPI_WARNING((AE_INFO, "Unexpected return type %u\n", obj->Type)); 2983 }; 2984 2985 AcpiOsFree(obj); 2986 return ret; 2987 } 2988 2989 /* 2990 * DSM may return multiple types depending on the function. It is therefore 2991 * unsafe to use the typed evaluation. It is highly recommended that the caller 2992 * check the type of the returned object. 2993 */ 2994 ACPI_STATUS 2995 acpi_EvaluateDSM(ACPI_HANDLE handle, const uint8_t *uuid, int revision, 2996 UINT64 function, ACPI_OBJECT *package, ACPI_BUFFER *out_buf) 2997 { 2998 return (acpi_EvaluateDSMTyped(handle, uuid, revision, function, 2999 package, out_buf, ACPI_TYPE_ANY)); 3000 } 3001 3002 ACPI_STATUS 3003 acpi_EvaluateDSMTyped(ACPI_HANDLE handle, const uint8_t *uuid, int revision, 3004 UINT64 function, ACPI_OBJECT *package, ACPI_BUFFER *out_buf, 3005 ACPI_OBJECT_TYPE type) 3006 { 3007 ACPI_OBJECT arg[4]; 3008 ACPI_OBJECT_LIST arglist; 3009 ACPI_BUFFER buf; 3010 ACPI_STATUS status; 3011 3012 if (out_buf == NULL) 3013 return (AE_NO_MEMORY); 3014 3015 arg[0].Type = ACPI_TYPE_BUFFER; 3016 arg[0].Buffer.Length = ACPI_UUID_LENGTH; 3017 arg[0].Buffer.Pointer = __DECONST(uint8_t *, uuid); 3018 arg[1].Type = ACPI_TYPE_INTEGER; 3019 arg[1].Integer.Value = revision; 3020 arg[2].Type = ACPI_TYPE_INTEGER; 3021 arg[2].Integer.Value = function; 3022 if (package) { 3023 arg[3] = *package; 3024 } else { 3025 arg[3].Type = ACPI_TYPE_PACKAGE; 3026 arg[3].Package.Count = 0; 3027 arg[3].Package.Elements = NULL; 3028 } 3029 3030 arglist.Pointer = arg; 3031 arglist.Count = 4; 3032 buf.Pointer = NULL; 3033 buf.Length = ACPI_ALLOCATE_BUFFER; 3034 status = AcpiEvaluateObjectTyped(handle, "_DSM", &arglist, &buf, type); 3035 if (ACPI_FAILURE(status)) 3036 return (status); 3037 3038 KASSERT(ACPI_SUCCESS(status), ("Unexpected status")); 3039 3040 *out_buf = buf; 3041 return (status); 3042 } 3043 3044 ACPI_STATUS 3045 acpi_EvaluateOSC(ACPI_HANDLE handle, uint8_t *uuid, int revision, int count, 3046 uint32_t *caps_in, uint32_t *caps_out, bool query) 3047 { 3048 ACPI_OBJECT arg[4], *ret; 3049 ACPI_OBJECT_LIST arglist; 3050 ACPI_BUFFER buf; 3051 ACPI_STATUS status; 3052 3053 arglist.Pointer = arg; 3054 arglist.Count = 4; 3055 arg[0].Type = ACPI_TYPE_BUFFER; 3056 arg[0].Buffer.Length = ACPI_UUID_LENGTH; 3057 arg[0].Buffer.Pointer = uuid; 3058 arg[1].Type = ACPI_TYPE_INTEGER; 3059 arg[1].Integer.Value = revision; 3060 arg[2].Type = ACPI_TYPE_INTEGER; 3061 arg[2].Integer.Value = count; 3062 arg[3].Type = ACPI_TYPE_BUFFER; 3063 arg[3].Buffer.Length = count * sizeof(*caps_in); 3064 arg[3].Buffer.Pointer = (uint8_t *)caps_in; 3065 caps_in[0] = query ? 1 : 0; 3066 buf.Pointer = NULL; 3067 buf.Length = ACPI_ALLOCATE_BUFFER; 3068 status = AcpiEvaluateObjectTyped(handle, "_OSC", &arglist, &buf, 3069 ACPI_TYPE_BUFFER); 3070 if (ACPI_FAILURE(status)) 3071 return (status); 3072 if (caps_out != NULL) { 3073 ret = buf.Pointer; 3074 if (ret->Buffer.Length != count * sizeof(*caps_out)) { 3075 AcpiOsFree(buf.Pointer); 3076 return (AE_BUFFER_OVERFLOW); 3077 } 3078 bcopy(ret->Buffer.Pointer, caps_out, ret->Buffer.Length); 3079 } 3080 AcpiOsFree(buf.Pointer); 3081 return (status); 3082 } 3083 3084 /* 3085 * Set interrupt model. 3086 */ 3087 ACPI_STATUS 3088 acpi_SetIntrModel(int model) 3089 { 3090 3091 return (acpi_SetInteger(ACPI_ROOT_OBJECT, "_PIC", model)); 3092 } 3093 3094 /* 3095 * Walk subtables of a table and call a callback routine for each 3096 * subtable. The caller should provide the first subtable and a 3097 * pointer to the end of the table. This can be used to walk tables 3098 * such as MADT and SRAT that use subtable entries. 3099 */ 3100 void 3101 acpi_walk_subtables(void *first, void *end, acpi_subtable_handler *handler, 3102 void *arg) 3103 { 3104 ACPI_SUBTABLE_HEADER *entry; 3105 3106 for (entry = first; (void *)entry < end; ) { 3107 /* Avoid an infinite loop if we hit a bogus entry. */ 3108 if (entry->Length < sizeof(ACPI_SUBTABLE_HEADER)) 3109 return; 3110 3111 handler(entry, arg); 3112 entry = ACPI_ADD_PTR(ACPI_SUBTABLE_HEADER, entry, entry->Length); 3113 } 3114 } 3115 3116 /* 3117 * DEPRECATED. This interface has serious deficiencies and will be 3118 * removed. 3119 * 3120 * Immediately enter the sleep state. In the old model, acpiconf(8) ran 3121 * rc.suspend and rc.resume so we don't have to notify devd(8) to do this. 3122 */ 3123 ACPI_STATUS 3124 acpi_SetSleepState(struct acpi_softc *sc, int state) 3125 { 3126 static int once; 3127 3128 if (!once) { 3129 device_printf(sc->acpi_dev, 3130 "warning: acpi_SetSleepState() deprecated, need to update your software\n"); 3131 once = 1; 3132 } 3133 return (acpi_EnterSleepState(sc, state)); 3134 } 3135 3136 #if defined(__amd64__) || defined(__i386__) 3137 static void 3138 acpi_sleep_force_task(void *context) 3139 { 3140 struct acpi_softc *sc = (struct acpi_softc *)context; 3141 3142 if (ACPI_FAILURE(acpi_EnterSleepState(sc, sc->acpi_next_sstate))) 3143 device_printf(sc->acpi_dev, "force sleep state S%d failed\n", 3144 sc->acpi_next_sstate); 3145 } 3146 3147 static void 3148 acpi_sleep_force(void *arg) 3149 { 3150 struct acpi_softc *sc = (struct acpi_softc *)arg; 3151 3152 device_printf(sc->acpi_dev, 3153 "suspend request timed out, forcing sleep now\n"); 3154 /* 3155 * XXX Suspending from callout causes freezes in DEVICE_SUSPEND(). 3156 * Suspend from acpi_task thread instead. 3157 */ 3158 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3159 acpi_sleep_force_task, sc))) 3160 device_printf(sc->acpi_dev, "AcpiOsExecute() for sleeping failed\n"); 3161 } 3162 #endif 3163 3164 /* 3165 * Request that the system enter the given suspend state. All /dev/apm 3166 * devices and devd(8) will be notified. Userland then has a chance to 3167 * save state and acknowledge the request. The system sleeps once all 3168 * acks are in. 3169 */ 3170 int 3171 acpi_ReqSleepState(struct acpi_softc *sc, int state) 3172 { 3173 #if defined(__amd64__) || defined(__i386__) 3174 struct apm_clone_data *clone; 3175 ACPI_STATUS status; 3176 3177 if (state < ACPI_STATE_S1 || state > ACPI_S_STATES_MAX) 3178 return (EINVAL); 3179 if (!acpi_sleep_states[state]) 3180 return (EOPNOTSUPP); 3181 3182 /* 3183 * If a reboot/shutdown/suspend request is already in progress or 3184 * suspend is blocked due to an upcoming shutdown, just return. 3185 */ 3186 if (rebooting || sc->acpi_next_sstate != 0 || suspend_blocked) { 3187 return (0); 3188 } 3189 3190 /* Wait until sleep is enabled. */ 3191 while (sc->acpi_sleep_disabled) { 3192 AcpiOsSleep(1000); 3193 } 3194 3195 ACPI_LOCK(acpi); 3196 3197 sc->acpi_next_sstate = state; 3198 3199 /* S5 (soft-off) should be entered directly with no waiting. */ 3200 if (state == ACPI_STATE_S5) { 3201 ACPI_UNLOCK(acpi); 3202 status = acpi_EnterSleepState(sc, state); 3203 return (ACPI_SUCCESS(status) ? 0 : ENXIO); 3204 } 3205 3206 /* Record the pending state and notify all apm devices. */ 3207 STAILQ_FOREACH(clone, &sc->apm_cdevs, entries) { 3208 clone->notify_status = APM_EV_NONE; 3209 if ((clone->flags & ACPI_EVF_DEVD) == 0) { 3210 selwakeuppri(&clone->sel_read, PZERO); 3211 KNOTE_LOCKED(&clone->sel_read.si_note, 0); 3212 } 3213 } 3214 3215 /* If devd(8) is not running, immediately enter the sleep state. */ 3216 if (!devctl_process_running()) { 3217 ACPI_UNLOCK(acpi); 3218 status = acpi_EnterSleepState(sc, state); 3219 return (ACPI_SUCCESS(status) ? 0 : ENXIO); 3220 } 3221 3222 /* 3223 * Set a timeout to fire if userland doesn't ack the suspend request 3224 * in time. This way we still eventually go to sleep if we were 3225 * overheating or running low on battery, even if userland is hung. 3226 * We cancel this timeout once all userland acks are in or the 3227 * suspend request is aborted. 3228 */ 3229 callout_reset(&sc->susp_force_to, 10 * hz, acpi_sleep_force, sc); 3230 ACPI_UNLOCK(acpi); 3231 3232 /* Now notify devd(8) also. */ 3233 acpi_UserNotify("Suspend", ACPI_ROOT_OBJECT, state); 3234 3235 return (0); 3236 #else 3237 /* This platform does not support acpi suspend/resume. */ 3238 return (EOPNOTSUPP); 3239 #endif 3240 } 3241 3242 /* 3243 * Acknowledge (or reject) a pending sleep state. The caller has 3244 * prepared for suspend and is now ready for it to proceed. If the 3245 * error argument is non-zero, it indicates suspend should be cancelled 3246 * and gives an errno value describing why. Once all votes are in, 3247 * we suspend the system. 3248 */ 3249 int 3250 acpi_AckSleepState(struct apm_clone_data *clone, int error) 3251 { 3252 #if defined(__amd64__) || defined(__i386__) 3253 struct acpi_softc *sc; 3254 int ret, sleeping; 3255 3256 /* If no pending sleep state, return an error. */ 3257 ACPI_LOCK(acpi); 3258 sc = clone->acpi_sc; 3259 if (sc->acpi_next_sstate == 0) { 3260 ACPI_UNLOCK(acpi); 3261 return (ENXIO); 3262 } 3263 3264 /* Caller wants to abort suspend process. */ 3265 if (error) { 3266 sc->acpi_next_sstate = 0; 3267 callout_stop(&sc->susp_force_to); 3268 device_printf(sc->acpi_dev, 3269 "listener on %s cancelled the pending suspend\n", 3270 devtoname(clone->cdev)); 3271 ACPI_UNLOCK(acpi); 3272 return (0); 3273 } 3274 3275 /* 3276 * Mark this device as acking the suspend request. Then, walk through 3277 * all devices, seeing if they agree yet. We only count devices that 3278 * are writable since read-only devices couldn't ack the request. 3279 */ 3280 sleeping = TRUE; 3281 clone->notify_status = APM_EV_ACKED; 3282 STAILQ_FOREACH(clone, &sc->apm_cdevs, entries) { 3283 if ((clone->flags & ACPI_EVF_WRITE) != 0 && 3284 clone->notify_status != APM_EV_ACKED) { 3285 sleeping = FALSE; 3286 break; 3287 } 3288 } 3289 3290 /* If all devices have voted "yes", we will suspend now. */ 3291 if (sleeping) 3292 callout_stop(&sc->susp_force_to); 3293 ACPI_UNLOCK(acpi); 3294 ret = 0; 3295 if (sleeping) { 3296 if (ACPI_FAILURE(acpi_EnterSleepState(sc, sc->acpi_next_sstate))) 3297 ret = ENODEV; 3298 } 3299 return (ret); 3300 #else 3301 /* This platform does not support acpi suspend/resume. */ 3302 return (EOPNOTSUPP); 3303 #endif 3304 } 3305 3306 static void 3307 acpi_sleep_enable(void *arg) 3308 { 3309 struct acpi_softc *sc = (struct acpi_softc *)arg; 3310 3311 ACPI_LOCK_ASSERT(acpi); 3312 3313 /* Reschedule if the system is not fully up and running. */ 3314 if (!AcpiGbl_SystemAwakeAndRunning) { 3315 callout_schedule(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME); 3316 return; 3317 } 3318 3319 sc->acpi_sleep_disabled = FALSE; 3320 } 3321 3322 static ACPI_STATUS 3323 acpi_sleep_disable(struct acpi_softc *sc) 3324 { 3325 ACPI_STATUS status; 3326 3327 /* Fail if the system is not fully up and running. */ 3328 if (!AcpiGbl_SystemAwakeAndRunning) 3329 return (AE_ERROR); 3330 3331 ACPI_LOCK(acpi); 3332 status = sc->acpi_sleep_disabled ? AE_ERROR : AE_OK; 3333 sc->acpi_sleep_disabled = TRUE; 3334 ACPI_UNLOCK(acpi); 3335 3336 return (status); 3337 } 3338 3339 enum acpi_sleep_state { 3340 ACPI_SS_NONE, 3341 ACPI_SS_GPE_SET, 3342 ACPI_SS_DEV_SUSPEND, 3343 ACPI_SS_SLP_PREP, 3344 ACPI_SS_SLEPT, 3345 }; 3346 3347 /* 3348 * Enter the desired system sleep state. 3349 * 3350 * Currently we support S1-S5 but S4 is only S4BIOS 3351 */ 3352 static ACPI_STATUS 3353 acpi_EnterSleepState(struct acpi_softc *sc, int state) 3354 { 3355 register_t intr; 3356 ACPI_STATUS status; 3357 ACPI_EVENT_STATUS power_button_status; 3358 enum acpi_sleep_state slp_state; 3359 int sleep_result; 3360 3361 ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state); 3362 3363 if (state < ACPI_STATE_S1 || state > ACPI_S_STATES_MAX) 3364 return_ACPI_STATUS (AE_BAD_PARAMETER); 3365 if (!acpi_sleep_states[state]) { 3366 device_printf(sc->acpi_dev, "Sleep state S%d not supported by BIOS\n", 3367 state); 3368 return (AE_SUPPORT); 3369 } 3370 3371 /* Re-entry once we're suspending is not allowed. */ 3372 status = acpi_sleep_disable(sc); 3373 if (ACPI_FAILURE(status)) { 3374 device_printf(sc->acpi_dev, 3375 "suspend request ignored (not ready yet)\n"); 3376 return (status); 3377 } 3378 3379 if (state == ACPI_STATE_S5) { 3380 /* 3381 * Shut down cleanly and power off. This will call us back through the 3382 * shutdown handlers. 3383 */ 3384 shutdown_nice(RB_POWEROFF); 3385 return_ACPI_STATUS (AE_OK); 3386 } 3387 3388 EVENTHANDLER_INVOKE(power_suspend_early); 3389 stop_all_proc(); 3390 suspend_all_fs(); 3391 EVENTHANDLER_INVOKE(power_suspend); 3392 3393 #ifdef EARLY_AP_STARTUP 3394 MPASS(mp_ncpus == 1 || smp_started); 3395 thread_lock(curthread); 3396 sched_bind(curthread, 0); 3397 thread_unlock(curthread); 3398 #else 3399 if (smp_started) { 3400 thread_lock(curthread); 3401 sched_bind(curthread, 0); 3402 thread_unlock(curthread); 3403 } 3404 #endif 3405 3406 /* 3407 * Be sure to hold Giant across DEVICE_SUSPEND/RESUME 3408 */ 3409 bus_topo_lock(); 3410 3411 slp_state = ACPI_SS_NONE; 3412 3413 sc->acpi_sstate = state; 3414 3415 /* Enable any GPEs as appropriate and requested by the user. */ 3416 acpi_wake_prep_walk(state); 3417 slp_state = ACPI_SS_GPE_SET; 3418 3419 /* 3420 * Inform all devices that we are going to sleep. If at least one 3421 * device fails, DEVICE_SUSPEND() automatically resumes the tree. 3422 * 3423 * XXX Note that a better two-pass approach with a 'veto' pass 3424 * followed by a "real thing" pass would be better, but the current 3425 * bus interface does not provide for this. 3426 */ 3427 if (DEVICE_SUSPEND(root_bus) != 0) { 3428 device_printf(sc->acpi_dev, "device_suspend failed\n"); 3429 goto backout; 3430 } 3431 slp_state = ACPI_SS_DEV_SUSPEND; 3432 3433 status = AcpiEnterSleepStatePrep(state); 3434 if (ACPI_FAILURE(status)) { 3435 device_printf(sc->acpi_dev, "AcpiEnterSleepStatePrep failed - %s\n", 3436 AcpiFormatException(status)); 3437 goto backout; 3438 } 3439 slp_state = ACPI_SS_SLP_PREP; 3440 3441 if (sc->acpi_sleep_delay > 0) 3442 DELAY(sc->acpi_sleep_delay * 1000000); 3443 3444 suspendclock(); 3445 intr = intr_disable(); 3446 if (state != ACPI_STATE_S1) { 3447 sleep_result = acpi_sleep_machdep(sc, state); 3448 acpi_wakeup_machdep(sc, state, sleep_result, 0); 3449 3450 /* 3451 * XXX According to ACPI specification SCI_EN bit should be restored 3452 * by ACPI platform (BIOS, firmware) to its pre-sleep state. 3453 * Unfortunately some BIOSes fail to do that and that leads to 3454 * unexpected and serious consequences during wake up like a system 3455 * getting stuck in SMI handlers. 3456 * This hack is picked up from Linux, which claims that it follows 3457 * Windows behavior. 3458 */ 3459 if (sleep_result == 1 && state != ACPI_STATE_S4) 3460 AcpiWriteBitRegister(ACPI_BITREG_SCI_ENABLE, ACPI_ENABLE_EVENT); 3461 3462 if (sleep_result == 1 && state == ACPI_STATE_S3) { 3463 /* 3464 * Prevent mis-interpretation of the wakeup by power button 3465 * as a request for power off. 3466 * Ideally we should post an appropriate wakeup event, 3467 * perhaps using acpi_event_power_button_wake or alike. 3468 * 3469 * Clearing of power button status after wakeup is mandated 3470 * by ACPI specification in section "Fixed Power Button". 3471 * 3472 * XXX As of ACPICA 20121114 AcpiGetEventStatus provides 3473 * status as 0/1 corressponding to inactive/active despite 3474 * its type being ACPI_EVENT_STATUS. In other words, 3475 * we should not test for ACPI_EVENT_FLAG_SET for time being. 3476 */ 3477 if (ACPI_SUCCESS(AcpiGetEventStatus(ACPI_EVENT_POWER_BUTTON, 3478 &power_button_status)) && power_button_status != 0) { 3479 AcpiClearEvent(ACPI_EVENT_POWER_BUTTON); 3480 device_printf(sc->acpi_dev, 3481 "cleared fixed power button status\n"); 3482 } 3483 } 3484 3485 intr_restore(intr); 3486 3487 /* call acpi_wakeup_machdep() again with interrupt enabled */ 3488 acpi_wakeup_machdep(sc, state, sleep_result, 1); 3489 3490 AcpiLeaveSleepStatePrep(state); 3491 3492 if (sleep_result == -1) 3493 goto backout; 3494 3495 /* Re-enable ACPI hardware on wakeup from sleep state 4. */ 3496 if (state == ACPI_STATE_S4) 3497 AcpiEnable(); 3498 } else { 3499 status = AcpiEnterSleepState(state); 3500 intr_restore(intr); 3501 AcpiLeaveSleepStatePrep(state); 3502 if (ACPI_FAILURE(status)) { 3503 device_printf(sc->acpi_dev, "AcpiEnterSleepState failed - %s\n", 3504 AcpiFormatException(status)); 3505 goto backout; 3506 } 3507 } 3508 slp_state = ACPI_SS_SLEPT; 3509 3510 /* 3511 * Back out state according to how far along we got in the suspend 3512 * process. This handles both the error and success cases. 3513 */ 3514 backout: 3515 if (slp_state >= ACPI_SS_SLP_PREP) 3516 resumeclock(); 3517 if (slp_state >= ACPI_SS_GPE_SET) { 3518 acpi_wake_prep_walk(state); 3519 sc->acpi_sstate = ACPI_STATE_S0; 3520 } 3521 if (slp_state >= ACPI_SS_DEV_SUSPEND) 3522 DEVICE_RESUME(root_bus); 3523 if (slp_state >= ACPI_SS_SLP_PREP) 3524 AcpiLeaveSleepState(state); 3525 if (slp_state >= ACPI_SS_SLEPT) { 3526 #if defined(__i386__) || defined(__amd64__) 3527 /* NB: we are still using ACPI timecounter at this point. */ 3528 resume_TSC(); 3529 #endif 3530 acpi_resync_clock(sc); 3531 acpi_enable_fixed_events(sc); 3532 } 3533 sc->acpi_next_sstate = 0; 3534 3535 bus_topo_unlock(); 3536 3537 #ifdef EARLY_AP_STARTUP 3538 thread_lock(curthread); 3539 sched_unbind(curthread); 3540 thread_unlock(curthread); 3541 #else 3542 if (smp_started) { 3543 thread_lock(curthread); 3544 sched_unbind(curthread); 3545 thread_unlock(curthread); 3546 } 3547 #endif 3548 3549 resume_all_fs(); 3550 resume_all_proc(); 3551 3552 EVENTHANDLER_INVOKE(power_resume); 3553 3554 /* Allow another sleep request after a while. */ 3555 callout_schedule(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME); 3556 3557 /* Run /etc/rc.resume after we are back. */ 3558 if (devctl_process_running()) 3559 acpi_UserNotify("Resume", ACPI_ROOT_OBJECT, state); 3560 3561 return_ACPI_STATUS (status); 3562 } 3563 3564 static void 3565 acpi_resync_clock(struct acpi_softc *sc) 3566 { 3567 3568 /* 3569 * Warm up timecounter again and reset system clock. 3570 */ 3571 (void)timecounter->tc_get_timecount(timecounter); 3572 inittodr(time_second + sc->acpi_sleep_delay); 3573 } 3574 3575 /* Enable or disable the device's wake GPE. */ 3576 int 3577 acpi_wake_set_enable(device_t dev, int enable) 3578 { 3579 struct acpi_prw_data prw; 3580 ACPI_STATUS status; 3581 int flags; 3582 3583 /* Make sure the device supports waking the system and get the GPE. */ 3584 if (acpi_parse_prw(acpi_get_handle(dev), &prw) != 0) 3585 return (ENXIO); 3586 3587 flags = acpi_get_flags(dev); 3588 if (enable) { 3589 status = AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, 3590 ACPI_GPE_ENABLE); 3591 if (ACPI_FAILURE(status)) { 3592 device_printf(dev, "enable wake failed\n"); 3593 return (ENXIO); 3594 } 3595 acpi_set_flags(dev, flags | ACPI_FLAG_WAKE_ENABLED); 3596 } else { 3597 status = AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, 3598 ACPI_GPE_DISABLE); 3599 if (ACPI_FAILURE(status)) { 3600 device_printf(dev, "disable wake failed\n"); 3601 return (ENXIO); 3602 } 3603 acpi_set_flags(dev, flags & ~ACPI_FLAG_WAKE_ENABLED); 3604 } 3605 3606 return (0); 3607 } 3608 3609 static int 3610 acpi_wake_sleep_prep(ACPI_HANDLE handle, int sstate) 3611 { 3612 struct acpi_prw_data prw; 3613 device_t dev; 3614 3615 /* Check that this is a wake-capable device and get its GPE. */ 3616 if (acpi_parse_prw(handle, &prw) != 0) 3617 return (ENXIO); 3618 dev = acpi_get_device(handle); 3619 3620 /* 3621 * The destination sleep state must be less than (i.e., higher power) 3622 * or equal to the value specified by _PRW. If this GPE cannot be 3623 * enabled for the next sleep state, then disable it. If it can and 3624 * the user requested it be enabled, turn on any required power resources 3625 * and set _PSW. 3626 */ 3627 if (sstate > prw.lowest_wake) { 3628 AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, ACPI_GPE_DISABLE); 3629 if (bootverbose) 3630 device_printf(dev, "wake_prep disabled wake for %s (S%d)\n", 3631 acpi_name(handle), sstate); 3632 } else if (dev && (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) != 0) { 3633 acpi_pwr_wake_enable(handle, 1); 3634 acpi_SetInteger(handle, "_PSW", 1); 3635 if (bootverbose) 3636 device_printf(dev, "wake_prep enabled for %s (S%d)\n", 3637 acpi_name(handle), sstate); 3638 } 3639 3640 return (0); 3641 } 3642 3643 static int 3644 acpi_wake_run_prep(ACPI_HANDLE handle, int sstate) 3645 { 3646 struct acpi_prw_data prw; 3647 device_t dev; 3648 3649 /* 3650 * Check that this is a wake-capable device and get its GPE. Return 3651 * now if the user didn't enable this device for wake. 3652 */ 3653 if (acpi_parse_prw(handle, &prw) != 0) 3654 return (ENXIO); 3655 dev = acpi_get_device(handle); 3656 if (dev == NULL || (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) == 0) 3657 return (0); 3658 3659 /* 3660 * If this GPE couldn't be enabled for the previous sleep state, it was 3661 * disabled before going to sleep so re-enable it. If it was enabled, 3662 * clear _PSW and turn off any power resources it used. 3663 */ 3664 if (sstate > prw.lowest_wake) { 3665 AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, ACPI_GPE_ENABLE); 3666 if (bootverbose) 3667 device_printf(dev, "run_prep re-enabled %s\n", acpi_name(handle)); 3668 } else { 3669 acpi_SetInteger(handle, "_PSW", 0); 3670 acpi_pwr_wake_enable(handle, 0); 3671 if (bootverbose) 3672 device_printf(dev, "run_prep cleaned up for %s\n", 3673 acpi_name(handle)); 3674 } 3675 3676 return (0); 3677 } 3678 3679 static ACPI_STATUS 3680 acpi_wake_prep(ACPI_HANDLE handle, UINT32 level, void *context, void **status) 3681 { 3682 int sstate; 3683 3684 /* If suspending, run the sleep prep function, otherwise wake. */ 3685 sstate = *(int *)context; 3686 if (AcpiGbl_SystemAwakeAndRunning) 3687 acpi_wake_sleep_prep(handle, sstate); 3688 else 3689 acpi_wake_run_prep(handle, sstate); 3690 return (AE_OK); 3691 } 3692 3693 /* Walk the tree rooted at acpi0 to prep devices for suspend/resume. */ 3694 static int 3695 acpi_wake_prep_walk(int sstate) 3696 { 3697 ACPI_HANDLE sb_handle; 3698 3699 if (ACPI_SUCCESS(AcpiGetHandle(ACPI_ROOT_OBJECT, "\\_SB_", &sb_handle))) 3700 AcpiWalkNamespace(ACPI_TYPE_DEVICE, sb_handle, 100, 3701 acpi_wake_prep, NULL, &sstate, NULL); 3702 return (0); 3703 } 3704 3705 /* Walk the tree rooted at acpi0 to attach per-device wake sysctls. */ 3706 static int 3707 acpi_wake_sysctl_walk(device_t dev) 3708 { 3709 int error, i, numdevs; 3710 device_t *devlist; 3711 device_t child; 3712 ACPI_STATUS status; 3713 3714 error = device_get_children(dev, &devlist, &numdevs); 3715 if (error != 0 || numdevs == 0) { 3716 if (numdevs == 0) 3717 free(devlist, M_TEMP); 3718 return (error); 3719 } 3720 for (i = 0; i < numdevs; i++) { 3721 child = devlist[i]; 3722 acpi_wake_sysctl_walk(child); 3723 if (!device_is_attached(child)) 3724 continue; 3725 status = AcpiEvaluateObject(acpi_get_handle(child), "_PRW", NULL, NULL); 3726 if (ACPI_SUCCESS(status)) { 3727 SYSCTL_ADD_PROC(device_get_sysctl_ctx(child), 3728 SYSCTL_CHILDREN(device_get_sysctl_tree(child)), OID_AUTO, 3729 "wake", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, child, 0, 3730 acpi_wake_set_sysctl, "I", "Device set to wake the system"); 3731 } 3732 } 3733 free(devlist, M_TEMP); 3734 3735 return (0); 3736 } 3737 3738 /* Enable or disable wake from userland. */ 3739 static int 3740 acpi_wake_set_sysctl(SYSCTL_HANDLER_ARGS) 3741 { 3742 int enable, error; 3743 device_t dev; 3744 3745 dev = (device_t)arg1; 3746 enable = (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) ? 1 : 0; 3747 3748 error = sysctl_handle_int(oidp, &enable, 0, req); 3749 if (error != 0 || req->newptr == NULL) 3750 return (error); 3751 if (enable != 0 && enable != 1) 3752 return (EINVAL); 3753 3754 return (acpi_wake_set_enable(dev, enable)); 3755 } 3756 3757 /* Parse a device's _PRW into a structure. */ 3758 int 3759 acpi_parse_prw(ACPI_HANDLE h, struct acpi_prw_data *prw) 3760 { 3761 ACPI_STATUS status; 3762 ACPI_BUFFER prw_buffer; 3763 ACPI_OBJECT *res, *res2; 3764 int error, i, power_count; 3765 3766 if (h == NULL || prw == NULL) 3767 return (EINVAL); 3768 3769 /* 3770 * The _PRW object (7.2.9) is only required for devices that have the 3771 * ability to wake the system from a sleeping state. 3772 */ 3773 error = EINVAL; 3774 prw_buffer.Pointer = NULL; 3775 prw_buffer.Length = ACPI_ALLOCATE_BUFFER; 3776 status = AcpiEvaluateObject(h, "_PRW", NULL, &prw_buffer); 3777 if (ACPI_FAILURE(status)) 3778 return (ENOENT); 3779 res = (ACPI_OBJECT *)prw_buffer.Pointer; 3780 if (res == NULL) 3781 return (ENOENT); 3782 if (!ACPI_PKG_VALID(res, 2)) 3783 goto out; 3784 3785 /* 3786 * Element 1 of the _PRW object: 3787 * The lowest power system sleeping state that can be entered while still 3788 * providing wake functionality. The sleeping state being entered must 3789 * be less than (i.e., higher power) or equal to this value. 3790 */ 3791 if (acpi_PkgInt32(res, 1, &prw->lowest_wake) != 0) 3792 goto out; 3793 3794 /* 3795 * Element 0 of the _PRW object: 3796 */ 3797 switch (res->Package.Elements[0].Type) { 3798 case ACPI_TYPE_INTEGER: 3799 /* 3800 * If the data type of this package element is numeric, then this 3801 * _PRW package element is the bit index in the GPEx_EN, in the 3802 * GPE blocks described in the FADT, of the enable bit that is 3803 * enabled for the wake event. 3804 */ 3805 prw->gpe_handle = NULL; 3806 prw->gpe_bit = res->Package.Elements[0].Integer.Value; 3807 error = 0; 3808 break; 3809 case ACPI_TYPE_PACKAGE: 3810 /* 3811 * If the data type of this package element is a package, then this 3812 * _PRW package element is itself a package containing two 3813 * elements. The first is an object reference to the GPE Block 3814 * device that contains the GPE that will be triggered by the wake 3815 * event. The second element is numeric and it contains the bit 3816 * index in the GPEx_EN, in the GPE Block referenced by the 3817 * first element in the package, of the enable bit that is enabled for 3818 * the wake event. 3819 * 3820 * For example, if this field is a package then it is of the form: 3821 * Package() {\_SB.PCI0.ISA.GPE, 2} 3822 */ 3823 res2 = &res->Package.Elements[0]; 3824 if (!ACPI_PKG_VALID(res2, 2)) 3825 goto out; 3826 prw->gpe_handle = acpi_GetReference(NULL, &res2->Package.Elements[0]); 3827 if (prw->gpe_handle == NULL) 3828 goto out; 3829 if (acpi_PkgInt32(res2, 1, &prw->gpe_bit) != 0) 3830 goto out; 3831 error = 0; 3832 break; 3833 default: 3834 goto out; 3835 } 3836 3837 /* Elements 2 to N of the _PRW object are power resources. */ 3838 power_count = res->Package.Count - 2; 3839 if (power_count > ACPI_PRW_MAX_POWERRES) { 3840 printf("ACPI device %s has too many power resources\n", acpi_name(h)); 3841 power_count = 0; 3842 } 3843 prw->power_res_count = power_count; 3844 for (i = 0; i < power_count; i++) 3845 prw->power_res[i] = res->Package.Elements[i]; 3846 3847 out: 3848 if (prw_buffer.Pointer != NULL) 3849 AcpiOsFree(prw_buffer.Pointer); 3850 return (error); 3851 } 3852 3853 /* 3854 * ACPI Event Handlers 3855 */ 3856 3857 /* System Event Handlers (registered by EVENTHANDLER_REGISTER) */ 3858 3859 static void 3860 acpi_system_eventhandler_sleep(void *arg, int state) 3861 { 3862 struct acpi_softc *sc = (struct acpi_softc *)arg; 3863 int ret; 3864 3865 ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state); 3866 3867 /* Check if button action is disabled or unknown. */ 3868 if (state == ACPI_STATE_UNKNOWN) 3869 return; 3870 3871 /* Request that the system prepare to enter the given suspend state. */ 3872 ret = acpi_ReqSleepState(sc, state); 3873 if (ret != 0) 3874 device_printf(sc->acpi_dev, 3875 "request to enter state S%d failed (err %d)\n", state, ret); 3876 3877 return_VOID; 3878 } 3879 3880 static void 3881 acpi_system_eventhandler_wakeup(void *arg, int state) 3882 { 3883 3884 ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state); 3885 3886 /* Currently, nothing to do for wakeup. */ 3887 3888 return_VOID; 3889 } 3890 3891 /* 3892 * ACPICA Event Handlers (FixedEvent, also called from button notify handler) 3893 */ 3894 static void 3895 acpi_invoke_sleep_eventhandler(void *context) 3896 { 3897 3898 EVENTHANDLER_INVOKE(acpi_sleep_event, *(int *)context); 3899 } 3900 3901 static void 3902 acpi_invoke_wake_eventhandler(void *context) 3903 { 3904 3905 EVENTHANDLER_INVOKE(acpi_wakeup_event, *(int *)context); 3906 } 3907 3908 UINT32 3909 acpi_event_power_button_sleep(void *context) 3910 { 3911 struct acpi_softc *sc = (struct acpi_softc *)context; 3912 3913 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3914 3915 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3916 acpi_invoke_sleep_eventhandler, &sc->acpi_power_button_sx))) 3917 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); 3918 return_VALUE (ACPI_INTERRUPT_HANDLED); 3919 } 3920 3921 UINT32 3922 acpi_event_power_button_wake(void *context) 3923 { 3924 struct acpi_softc *sc = (struct acpi_softc *)context; 3925 3926 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3927 3928 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3929 acpi_invoke_wake_eventhandler, &sc->acpi_power_button_sx))) 3930 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); 3931 return_VALUE (ACPI_INTERRUPT_HANDLED); 3932 } 3933 3934 UINT32 3935 acpi_event_sleep_button_sleep(void *context) 3936 { 3937 struct acpi_softc *sc = (struct acpi_softc *)context; 3938 3939 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3940 3941 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3942 acpi_invoke_sleep_eventhandler, &sc->acpi_sleep_button_sx))) 3943 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); 3944 return_VALUE (ACPI_INTERRUPT_HANDLED); 3945 } 3946 3947 UINT32 3948 acpi_event_sleep_button_wake(void *context) 3949 { 3950 struct acpi_softc *sc = (struct acpi_softc *)context; 3951 3952 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3953 3954 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3955 acpi_invoke_wake_eventhandler, &sc->acpi_sleep_button_sx))) 3956 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); 3957 return_VALUE (ACPI_INTERRUPT_HANDLED); 3958 } 3959 3960 /* 3961 * XXX This static buffer is suboptimal. There is no locking so only 3962 * use this for single-threaded callers. 3963 */ 3964 char * 3965 acpi_name(ACPI_HANDLE handle) 3966 { 3967 ACPI_BUFFER buf; 3968 static char data[256]; 3969 3970 buf.Length = sizeof(data); 3971 buf.Pointer = data; 3972 3973 if (handle && ACPI_SUCCESS(AcpiGetName(handle, ACPI_FULL_PATHNAME, &buf))) 3974 return (data); 3975 return ("(unknown)"); 3976 } 3977 3978 /* 3979 * Debugging/bug-avoidance. Avoid trying to fetch info on various 3980 * parts of the namespace. 3981 */ 3982 int 3983 acpi_avoid(ACPI_HANDLE handle) 3984 { 3985 char *cp, *env, *np; 3986 int len; 3987 3988 np = acpi_name(handle); 3989 if (*np == '\\') 3990 np++; 3991 if ((env = kern_getenv("debug.acpi.avoid")) == NULL) 3992 return (0); 3993 3994 /* Scan the avoid list checking for a match */ 3995 cp = env; 3996 for (;;) { 3997 while (*cp != 0 && isspace(*cp)) 3998 cp++; 3999 if (*cp == 0) 4000 break; 4001 len = 0; 4002 while (cp[len] != 0 && !isspace(cp[len])) 4003 len++; 4004 if (!strncmp(cp, np, len)) { 4005 freeenv(env); 4006 return(1); 4007 } 4008 cp += len; 4009 } 4010 freeenv(env); 4011 4012 return (0); 4013 } 4014 4015 /* 4016 * Debugging/bug-avoidance. Disable ACPI subsystem components. 4017 */ 4018 int 4019 acpi_disabled(char *subsys) 4020 { 4021 char *cp, *env; 4022 int len; 4023 4024 if ((env = kern_getenv("debug.acpi.disabled")) == NULL) 4025 return (0); 4026 if (strcmp(env, "all") == 0) { 4027 freeenv(env); 4028 return (1); 4029 } 4030 4031 /* Scan the disable list, checking for a match. */ 4032 cp = env; 4033 for (;;) { 4034 while (*cp != '\0' && isspace(*cp)) 4035 cp++; 4036 if (*cp == '\0') 4037 break; 4038 len = 0; 4039 while (cp[len] != '\0' && !isspace(cp[len])) 4040 len++; 4041 if (strncmp(cp, subsys, len) == 0) { 4042 freeenv(env); 4043 return (1); 4044 } 4045 cp += len; 4046 } 4047 freeenv(env); 4048 4049 return (0); 4050 } 4051 4052 static void 4053 acpi_lookup(void *arg, const char *name, device_t *dev) 4054 { 4055 ACPI_HANDLE handle; 4056 4057 if (*dev != NULL) 4058 return; 4059 4060 /* 4061 * Allow any handle name that is specified as an absolute path and 4062 * starts with '\'. We could restrict this to \_SB and friends, 4063 * but see acpi_probe_children() for notes on why we scan the entire 4064 * namespace for devices. 4065 * 4066 * XXX: The pathname argument to AcpiGetHandle() should be fixed to 4067 * be const. 4068 */ 4069 if (name[0] != '\\') 4070 return; 4071 if (ACPI_FAILURE(AcpiGetHandle(ACPI_ROOT_OBJECT, __DECONST(char *, name), 4072 &handle))) 4073 return; 4074 *dev = acpi_get_device(handle); 4075 } 4076 4077 /* 4078 * Control interface. 4079 * 4080 * We multiplex ioctls for all participating ACPI devices here. Individual 4081 * drivers wanting to be accessible via /dev/acpi should use the 4082 * register/deregister interface to make their handlers visible. 4083 */ 4084 struct acpi_ioctl_hook 4085 { 4086 TAILQ_ENTRY(acpi_ioctl_hook) link; 4087 u_long cmd; 4088 acpi_ioctl_fn fn; 4089 void *arg; 4090 }; 4091 4092 static TAILQ_HEAD(,acpi_ioctl_hook) acpi_ioctl_hooks; 4093 static int acpi_ioctl_hooks_initted; 4094 4095 int 4096 acpi_register_ioctl(u_long cmd, acpi_ioctl_fn fn, void *arg) 4097 { 4098 struct acpi_ioctl_hook *hp; 4099 4100 if ((hp = malloc(sizeof(*hp), M_ACPIDEV, M_NOWAIT)) == NULL) 4101 return (ENOMEM); 4102 hp->cmd = cmd; 4103 hp->fn = fn; 4104 hp->arg = arg; 4105 4106 ACPI_LOCK(acpi); 4107 if (acpi_ioctl_hooks_initted == 0) { 4108 TAILQ_INIT(&acpi_ioctl_hooks); 4109 acpi_ioctl_hooks_initted = 1; 4110 } 4111 TAILQ_INSERT_TAIL(&acpi_ioctl_hooks, hp, link); 4112 ACPI_UNLOCK(acpi); 4113 4114 return (0); 4115 } 4116 4117 void 4118 acpi_deregister_ioctl(u_long cmd, acpi_ioctl_fn fn) 4119 { 4120 struct acpi_ioctl_hook *hp; 4121 4122 ACPI_LOCK(acpi); 4123 TAILQ_FOREACH(hp, &acpi_ioctl_hooks, link) 4124 if (hp->cmd == cmd && hp->fn == fn) 4125 break; 4126 4127 if (hp != NULL) { 4128 TAILQ_REMOVE(&acpi_ioctl_hooks, hp, link); 4129 free(hp, M_ACPIDEV); 4130 } 4131 ACPI_UNLOCK(acpi); 4132 } 4133 4134 static int 4135 acpiopen(struct cdev *dev, int flag, int fmt, struct thread *td) 4136 { 4137 return (0); 4138 } 4139 4140 static int 4141 acpiclose(struct cdev *dev, int flag, int fmt, struct thread *td) 4142 { 4143 return (0); 4144 } 4145 4146 static int 4147 acpiioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 4148 { 4149 struct acpi_softc *sc; 4150 struct acpi_ioctl_hook *hp; 4151 int error, state; 4152 4153 error = 0; 4154 hp = NULL; 4155 sc = dev->si_drv1; 4156 4157 /* 4158 * Scan the list of registered ioctls, looking for handlers. 4159 */ 4160 ACPI_LOCK(acpi); 4161 if (acpi_ioctl_hooks_initted) 4162 TAILQ_FOREACH(hp, &acpi_ioctl_hooks, link) { 4163 if (hp->cmd == cmd) 4164 break; 4165 } 4166 ACPI_UNLOCK(acpi); 4167 if (hp) 4168 return (hp->fn(cmd, addr, hp->arg)); 4169 4170 /* 4171 * Core ioctls are not permitted for non-writable user. 4172 * Currently, other ioctls just fetch information. 4173 * Not changing system behavior. 4174 */ 4175 if ((flag & FWRITE) == 0) 4176 return (EPERM); 4177 4178 /* Core system ioctls. */ 4179 switch (cmd) { 4180 case ACPIIO_REQSLPSTATE: 4181 state = *(int *)addr; 4182 if (state != ACPI_STATE_S5) 4183 return (acpi_ReqSleepState(sc, state)); 4184 device_printf(sc->acpi_dev, "power off via acpi ioctl not supported\n"); 4185 error = EOPNOTSUPP; 4186 break; 4187 case ACPIIO_ACKSLPSTATE: 4188 error = *(int *)addr; 4189 error = acpi_AckSleepState(sc->acpi_clone, error); 4190 break; 4191 case ACPIIO_SETSLPSTATE: /* DEPRECATED */ 4192 state = *(int *)addr; 4193 if (state < ACPI_STATE_S0 || state > ACPI_S_STATES_MAX) 4194 return (EINVAL); 4195 if (!acpi_sleep_states[state]) 4196 return (EOPNOTSUPP); 4197 if (ACPI_FAILURE(acpi_SetSleepState(sc, state))) 4198 error = ENXIO; 4199 break; 4200 default: 4201 error = ENXIO; 4202 break; 4203 } 4204 4205 return (error); 4206 } 4207 4208 static int 4209 acpi_sname2sstate(const char *sname) 4210 { 4211 int sstate; 4212 4213 if (toupper(sname[0]) == 'S') { 4214 sstate = sname[1] - '0'; 4215 if (sstate >= ACPI_STATE_S0 && sstate <= ACPI_STATE_S5 && 4216 sname[2] == '\0') 4217 return (sstate); 4218 } else if (strcasecmp(sname, "NONE") == 0) 4219 return (ACPI_STATE_UNKNOWN); 4220 return (-1); 4221 } 4222 4223 static const char * 4224 acpi_sstate2sname(int sstate) 4225 { 4226 static const char *snames[] = { "S0", "S1", "S2", "S3", "S4", "S5" }; 4227 4228 if (sstate >= ACPI_STATE_S0 && sstate <= ACPI_STATE_S5) 4229 return (snames[sstate]); 4230 else if (sstate == ACPI_STATE_UNKNOWN) 4231 return ("NONE"); 4232 return (NULL); 4233 } 4234 4235 static int 4236 acpi_supported_sleep_state_sysctl(SYSCTL_HANDLER_ARGS) 4237 { 4238 int error; 4239 struct sbuf sb; 4240 UINT8 state; 4241 4242 sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND); 4243 for (state = ACPI_STATE_S1; state < ACPI_S_STATE_COUNT; state++) 4244 if (acpi_sleep_states[state]) 4245 sbuf_printf(&sb, "%s ", acpi_sstate2sname(state)); 4246 sbuf_trim(&sb); 4247 sbuf_finish(&sb); 4248 error = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req); 4249 sbuf_delete(&sb); 4250 return (error); 4251 } 4252 4253 static int 4254 acpi_sleep_state_sysctl(SYSCTL_HANDLER_ARGS) 4255 { 4256 char sleep_state[10]; 4257 int error, new_state, old_state; 4258 4259 old_state = *(int *)oidp->oid_arg1; 4260 strlcpy(sleep_state, acpi_sstate2sname(old_state), sizeof(sleep_state)); 4261 error = sysctl_handle_string(oidp, sleep_state, sizeof(sleep_state), req); 4262 if (error == 0 && req->newptr != NULL) { 4263 new_state = acpi_sname2sstate(sleep_state); 4264 if (new_state < ACPI_STATE_S1) 4265 return (EINVAL); 4266 if (new_state < ACPI_S_STATE_COUNT && !acpi_sleep_states[new_state]) 4267 return (EOPNOTSUPP); 4268 if (new_state != old_state) 4269 *(int *)oidp->oid_arg1 = new_state; 4270 } 4271 return (error); 4272 } 4273 4274 /* Inform devctl(4) when we receive a Notify. */ 4275 void 4276 acpi_UserNotify(const char *subsystem, ACPI_HANDLE h, uint8_t notify) 4277 { 4278 char notify_buf[16]; 4279 ACPI_BUFFER handle_buf; 4280 ACPI_STATUS status; 4281 4282 if (subsystem == NULL) 4283 return; 4284 4285 handle_buf.Pointer = NULL; 4286 handle_buf.Length = ACPI_ALLOCATE_BUFFER; 4287 status = AcpiNsHandleToPathname(h, &handle_buf, FALSE); 4288 if (ACPI_FAILURE(status)) 4289 return; 4290 snprintf(notify_buf, sizeof(notify_buf), "notify=0x%02x", notify); 4291 devctl_notify("ACPI", subsystem, handle_buf.Pointer, notify_buf); 4292 AcpiOsFree(handle_buf.Pointer); 4293 } 4294 4295 #ifdef ACPI_DEBUG 4296 /* 4297 * Support for parsing debug options from the kernel environment. 4298 * 4299 * Bits may be set in the AcpiDbgLayer and AcpiDbgLevel debug registers 4300 * by specifying the names of the bits in the debug.acpi.layer and 4301 * debug.acpi.level environment variables. Bits may be unset by 4302 * prefixing the bit name with !. 4303 */ 4304 struct debugtag 4305 { 4306 char *name; 4307 UINT32 value; 4308 }; 4309 4310 static struct debugtag dbg_layer[] = { 4311 {"ACPI_UTILITIES", ACPI_UTILITIES}, 4312 {"ACPI_HARDWARE", ACPI_HARDWARE}, 4313 {"ACPI_EVENTS", ACPI_EVENTS}, 4314 {"ACPI_TABLES", ACPI_TABLES}, 4315 {"ACPI_NAMESPACE", ACPI_NAMESPACE}, 4316 {"ACPI_PARSER", ACPI_PARSER}, 4317 {"ACPI_DISPATCHER", ACPI_DISPATCHER}, 4318 {"ACPI_EXECUTER", ACPI_EXECUTER}, 4319 {"ACPI_RESOURCES", ACPI_RESOURCES}, 4320 {"ACPI_CA_DEBUGGER", ACPI_CA_DEBUGGER}, 4321 {"ACPI_OS_SERVICES", ACPI_OS_SERVICES}, 4322 {"ACPI_CA_DISASSEMBLER", ACPI_CA_DISASSEMBLER}, 4323 {"ACPI_ALL_COMPONENTS", ACPI_ALL_COMPONENTS}, 4324 4325 {"ACPI_AC_ADAPTER", ACPI_AC_ADAPTER}, 4326 {"ACPI_BATTERY", ACPI_BATTERY}, 4327 {"ACPI_BUS", ACPI_BUS}, 4328 {"ACPI_BUTTON", ACPI_BUTTON}, 4329 {"ACPI_EC", ACPI_EC}, 4330 {"ACPI_FAN", ACPI_FAN}, 4331 {"ACPI_POWERRES", ACPI_POWERRES}, 4332 {"ACPI_PROCESSOR", ACPI_PROCESSOR}, 4333 {"ACPI_THERMAL", ACPI_THERMAL}, 4334 {"ACPI_TIMER", ACPI_TIMER}, 4335 {"ACPI_ALL_DRIVERS", ACPI_ALL_DRIVERS}, 4336 {NULL, 0} 4337 }; 4338 4339 static struct debugtag dbg_level[] = { 4340 {"ACPI_LV_INIT", ACPI_LV_INIT}, 4341 {"ACPI_LV_DEBUG_OBJECT", ACPI_LV_DEBUG_OBJECT}, 4342 {"ACPI_LV_INFO", ACPI_LV_INFO}, 4343 {"ACPI_LV_REPAIR", ACPI_LV_REPAIR}, 4344 {"ACPI_LV_ALL_EXCEPTIONS", ACPI_LV_ALL_EXCEPTIONS}, 4345 4346 /* Trace verbosity level 1 [Standard Trace Level] */ 4347 {"ACPI_LV_INIT_NAMES", ACPI_LV_INIT_NAMES}, 4348 {"ACPI_LV_PARSE", ACPI_LV_PARSE}, 4349 {"ACPI_LV_LOAD", ACPI_LV_LOAD}, 4350 {"ACPI_LV_DISPATCH", ACPI_LV_DISPATCH}, 4351 {"ACPI_LV_EXEC", ACPI_LV_EXEC}, 4352 {"ACPI_LV_NAMES", ACPI_LV_NAMES}, 4353 {"ACPI_LV_OPREGION", ACPI_LV_OPREGION}, 4354 {"ACPI_LV_BFIELD", ACPI_LV_BFIELD}, 4355 {"ACPI_LV_TABLES", ACPI_LV_TABLES}, 4356 {"ACPI_LV_VALUES", ACPI_LV_VALUES}, 4357 {"ACPI_LV_OBJECTS", ACPI_LV_OBJECTS}, 4358 {"ACPI_LV_RESOURCES", ACPI_LV_RESOURCES}, 4359 {"ACPI_LV_USER_REQUESTS", ACPI_LV_USER_REQUESTS}, 4360 {"ACPI_LV_PACKAGE", ACPI_LV_PACKAGE}, 4361 {"ACPI_LV_VERBOSITY1", ACPI_LV_VERBOSITY1}, 4362 4363 /* Trace verbosity level 2 [Function tracing and memory allocation] */ 4364 {"ACPI_LV_ALLOCATIONS", ACPI_LV_ALLOCATIONS}, 4365 {"ACPI_LV_FUNCTIONS", ACPI_LV_FUNCTIONS}, 4366 {"ACPI_LV_OPTIMIZATIONS", ACPI_LV_OPTIMIZATIONS}, 4367 {"ACPI_LV_VERBOSITY2", ACPI_LV_VERBOSITY2}, 4368 {"ACPI_LV_ALL", ACPI_LV_ALL}, 4369 4370 /* Trace verbosity level 3 [Threading, I/O, and Interrupts] */ 4371 {"ACPI_LV_MUTEX", ACPI_LV_MUTEX}, 4372 {"ACPI_LV_THREADS", ACPI_LV_THREADS}, 4373 {"ACPI_LV_IO", ACPI_LV_IO}, 4374 {"ACPI_LV_INTERRUPTS", ACPI_LV_INTERRUPTS}, 4375 {"ACPI_LV_VERBOSITY3", ACPI_LV_VERBOSITY3}, 4376 4377 /* Exceptionally verbose output -- also used in the global "DebugLevel" */ 4378 {"ACPI_LV_AML_DISASSEMBLE", ACPI_LV_AML_DISASSEMBLE}, 4379 {"ACPI_LV_VERBOSE_INFO", ACPI_LV_VERBOSE_INFO}, 4380 {"ACPI_LV_FULL_TABLES", ACPI_LV_FULL_TABLES}, 4381 {"ACPI_LV_EVENTS", ACPI_LV_EVENTS}, 4382 {"ACPI_LV_VERBOSE", ACPI_LV_VERBOSE}, 4383 {NULL, 0} 4384 }; 4385 4386 static void 4387 acpi_parse_debug(char *cp, struct debugtag *tag, UINT32 *flag) 4388 { 4389 char *ep; 4390 int i, l; 4391 int set; 4392 4393 while (*cp) { 4394 if (isspace(*cp)) { 4395 cp++; 4396 continue; 4397 } 4398 ep = cp; 4399 while (*ep && !isspace(*ep)) 4400 ep++; 4401 if (*cp == '!') { 4402 set = 0; 4403 cp++; 4404 if (cp == ep) 4405 continue; 4406 } else { 4407 set = 1; 4408 } 4409 l = ep - cp; 4410 for (i = 0; tag[i].name != NULL; i++) { 4411 if (!strncmp(cp, tag[i].name, l)) { 4412 if (set) 4413 *flag |= tag[i].value; 4414 else 4415 *flag &= ~tag[i].value; 4416 } 4417 } 4418 cp = ep; 4419 } 4420 } 4421 4422 static void 4423 acpi_set_debugging(void *junk) 4424 { 4425 char *layer, *level; 4426 4427 if (cold) { 4428 AcpiDbgLayer = 0; 4429 AcpiDbgLevel = 0; 4430 } 4431 4432 layer = kern_getenv("debug.acpi.layer"); 4433 level = kern_getenv("debug.acpi.level"); 4434 if (layer == NULL && level == NULL) 4435 return; 4436 4437 printf("ACPI set debug"); 4438 if (layer != NULL) { 4439 if (strcmp("NONE", layer) != 0) 4440 printf(" layer '%s'", layer); 4441 acpi_parse_debug(layer, &dbg_layer[0], &AcpiDbgLayer); 4442 freeenv(layer); 4443 } 4444 if (level != NULL) { 4445 if (strcmp("NONE", level) != 0) 4446 printf(" level '%s'", level); 4447 acpi_parse_debug(level, &dbg_level[0], &AcpiDbgLevel); 4448 freeenv(level); 4449 } 4450 printf("\n"); 4451 } 4452 4453 SYSINIT(acpi_debugging, SI_SUB_TUNABLES, SI_ORDER_ANY, acpi_set_debugging, 4454 NULL); 4455 4456 static int 4457 acpi_debug_sysctl(SYSCTL_HANDLER_ARGS) 4458 { 4459 int error, *dbg; 4460 struct debugtag *tag; 4461 struct sbuf sb; 4462 char temp[128]; 4463 4464 if (sbuf_new(&sb, NULL, 128, SBUF_AUTOEXTEND) == NULL) 4465 return (ENOMEM); 4466 if (strcmp(oidp->oid_arg1, "debug.acpi.layer") == 0) { 4467 tag = &dbg_layer[0]; 4468 dbg = &AcpiDbgLayer; 4469 } else { 4470 tag = &dbg_level[0]; 4471 dbg = &AcpiDbgLevel; 4472 } 4473 4474 /* Get old values if this is a get request. */ 4475 ACPI_SERIAL_BEGIN(acpi); 4476 if (*dbg == 0) { 4477 sbuf_cpy(&sb, "NONE"); 4478 } else if (req->newptr == NULL) { 4479 for (; tag->name != NULL; tag++) { 4480 if ((*dbg & tag->value) == tag->value) 4481 sbuf_printf(&sb, "%s ", tag->name); 4482 } 4483 } 4484 sbuf_trim(&sb); 4485 sbuf_finish(&sb); 4486 strlcpy(temp, sbuf_data(&sb), sizeof(temp)); 4487 sbuf_delete(&sb); 4488 4489 error = sysctl_handle_string(oidp, temp, sizeof(temp), req); 4490 4491 /* Check for error or no change */ 4492 if (error == 0 && req->newptr != NULL) { 4493 *dbg = 0; 4494 kern_setenv((char *)oidp->oid_arg1, temp); 4495 acpi_set_debugging(NULL); 4496 } 4497 ACPI_SERIAL_END(acpi); 4498 4499 return (error); 4500 } 4501 4502 SYSCTL_PROC(_debug_acpi, OID_AUTO, layer, 4503 CTLFLAG_RW | CTLTYPE_STRING | CTLFLAG_MPSAFE, "debug.acpi.layer", 0, 4504 acpi_debug_sysctl, "A", 4505 ""); 4506 SYSCTL_PROC(_debug_acpi, OID_AUTO, level, 4507 CTLFLAG_RW | CTLTYPE_STRING | CTLFLAG_MPSAFE, "debug.acpi.level", 0, 4508 acpi_debug_sysctl, "A", 4509 ""); 4510 #endif /* ACPI_DEBUG */ 4511 4512 static int 4513 acpi_debug_objects_sysctl(SYSCTL_HANDLER_ARGS) 4514 { 4515 int error; 4516 int old; 4517 4518 old = acpi_debug_objects; 4519 error = sysctl_handle_int(oidp, &acpi_debug_objects, 0, req); 4520 if (error != 0 || req->newptr == NULL) 4521 return (error); 4522 if (old == acpi_debug_objects || (old && acpi_debug_objects)) 4523 return (0); 4524 4525 ACPI_SERIAL_BEGIN(acpi); 4526 AcpiGbl_EnableAmlDebugObject = acpi_debug_objects ? TRUE : FALSE; 4527 ACPI_SERIAL_END(acpi); 4528 4529 return (0); 4530 } 4531 4532 static int 4533 acpi_parse_interfaces(char *str, struct acpi_interface *iface) 4534 { 4535 char *p; 4536 size_t len; 4537 int i, j; 4538 4539 p = str; 4540 while (isspace(*p) || *p == ',') 4541 p++; 4542 len = strlen(p); 4543 if (len == 0) 4544 return (0); 4545 p = strdup(p, M_TEMP); 4546 for (i = 0; i < len; i++) 4547 if (p[i] == ',') 4548 p[i] = '\0'; 4549 i = j = 0; 4550 while (i < len) 4551 if (isspace(p[i]) || p[i] == '\0') 4552 i++; 4553 else { 4554 i += strlen(p + i) + 1; 4555 j++; 4556 } 4557 if (j == 0) { 4558 free(p, M_TEMP); 4559 return (0); 4560 } 4561 iface->data = malloc(sizeof(*iface->data) * j, M_TEMP, M_WAITOK); 4562 iface->num = j; 4563 i = j = 0; 4564 while (i < len) 4565 if (isspace(p[i]) || p[i] == '\0') 4566 i++; 4567 else { 4568 iface->data[j] = p + i; 4569 i += strlen(p + i) + 1; 4570 j++; 4571 } 4572 4573 return (j); 4574 } 4575 4576 static void 4577 acpi_free_interfaces(struct acpi_interface *iface) 4578 { 4579 4580 free(iface->data[0], M_TEMP); 4581 free(iface->data, M_TEMP); 4582 } 4583 4584 static void 4585 acpi_reset_interfaces(device_t dev) 4586 { 4587 struct acpi_interface list; 4588 ACPI_STATUS status; 4589 int i; 4590 4591 if (acpi_parse_interfaces(acpi_install_interface, &list) > 0) { 4592 for (i = 0; i < list.num; i++) { 4593 status = AcpiInstallInterface(list.data[i]); 4594 if (ACPI_FAILURE(status)) 4595 device_printf(dev, 4596 "failed to install _OSI(\"%s\"): %s\n", 4597 list.data[i], AcpiFormatException(status)); 4598 else if (bootverbose) 4599 device_printf(dev, "installed _OSI(\"%s\")\n", 4600 list.data[i]); 4601 } 4602 acpi_free_interfaces(&list); 4603 } 4604 if (acpi_parse_interfaces(acpi_remove_interface, &list) > 0) { 4605 for (i = 0; i < list.num; i++) { 4606 status = AcpiRemoveInterface(list.data[i]); 4607 if (ACPI_FAILURE(status)) 4608 device_printf(dev, 4609 "failed to remove _OSI(\"%s\"): %s\n", 4610 list.data[i], AcpiFormatException(status)); 4611 else if (bootverbose) 4612 device_printf(dev, "removed _OSI(\"%s\")\n", 4613 list.data[i]); 4614 } 4615 acpi_free_interfaces(&list); 4616 } 4617 } 4618 4619 static int 4620 acpi_pm_func(u_long cmd, void *arg, ...) 4621 { 4622 int state, acpi_state; 4623 int error; 4624 struct acpi_softc *sc; 4625 va_list ap; 4626 4627 error = 0; 4628 switch (cmd) { 4629 case POWER_CMD_SUSPEND: 4630 sc = (struct acpi_softc *)arg; 4631 if (sc == NULL) { 4632 error = EINVAL; 4633 goto out; 4634 } 4635 4636 va_start(ap, arg); 4637 state = va_arg(ap, int); 4638 va_end(ap); 4639 4640 switch (state) { 4641 case POWER_SLEEP_STATE_STANDBY: 4642 acpi_state = sc->acpi_standby_sx; 4643 break; 4644 case POWER_SLEEP_STATE_SUSPEND: 4645 acpi_state = sc->acpi_suspend_sx; 4646 break; 4647 case POWER_SLEEP_STATE_HIBERNATE: 4648 acpi_state = ACPI_STATE_S4; 4649 break; 4650 default: 4651 error = EINVAL; 4652 goto out; 4653 } 4654 4655 if (ACPI_FAILURE(acpi_EnterSleepState(sc, acpi_state))) 4656 error = ENXIO; 4657 break; 4658 default: 4659 error = EINVAL; 4660 goto out; 4661 } 4662 4663 out: 4664 return (error); 4665 } 4666 4667 static void 4668 acpi_pm_register(void *arg) 4669 { 4670 if (!cold || resource_disabled("acpi", 0)) 4671 return; 4672 4673 power_pm_register(POWER_PM_TYPE_ACPI, acpi_pm_func, NULL); 4674 } 4675 4676 SYSINIT(power, SI_SUB_KLD, SI_ORDER_ANY, acpi_pm_register, NULL); 4677