1 /*- 2 * Copyright (c) 2000 Takanori Watanabe <takawata@jp.freebsd.org> 3 * Copyright (c) 2000 Mitsuru IWASAKI <iwasaki@jp.freebsd.org> 4 * Copyright (c) 2000, 2001 Michael Smith 5 * Copyright (c) 2000 BSDi 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include "opt_acpi.h" 34 35 #include <sys/param.h> 36 #include <sys/kernel.h> 37 #include <sys/proc.h> 38 #include <sys/fcntl.h> 39 #include <sys/malloc.h> 40 #include <sys/module.h> 41 #include <sys/bus.h> 42 #include <sys/conf.h> 43 #include <sys/ioccom.h> 44 #include <sys/reboot.h> 45 #include <sys/sysctl.h> 46 #include <sys/ctype.h> 47 #include <sys/linker.h> 48 #include <sys/power.h> 49 #include <sys/sbuf.h> 50 #include <sys/sched.h> 51 #include <sys/smp.h> 52 #include <sys/timetc.h> 53 54 #if defined(__i386__) || defined(__amd64__) 55 #include <machine/clock.h> 56 #include <machine/pci_cfgreg.h> 57 #endif 58 #include <machine/resource.h> 59 #include <machine/bus.h> 60 #include <sys/rman.h> 61 #include <isa/isavar.h> 62 #include <isa/pnpvar.h> 63 64 #include <contrib/dev/acpica/include/acpi.h> 65 #include <contrib/dev/acpica/include/accommon.h> 66 #include <contrib/dev/acpica/include/acnamesp.h> 67 68 #include <dev/acpica/acpivar.h> 69 #include <dev/acpica/acpiio.h> 70 71 #include <dev/pci/pcivar.h> 72 73 #include <vm/vm_param.h> 74 75 static MALLOC_DEFINE(M_ACPIDEV, "acpidev", "ACPI devices"); 76 77 /* Hooks for the ACPI CA debugging infrastructure */ 78 #define _COMPONENT ACPI_BUS 79 ACPI_MODULE_NAME("ACPI") 80 81 static d_open_t acpiopen; 82 static d_close_t acpiclose; 83 static d_ioctl_t acpiioctl; 84 85 static struct cdevsw acpi_cdevsw = { 86 .d_version = D_VERSION, 87 .d_open = acpiopen, 88 .d_close = acpiclose, 89 .d_ioctl = acpiioctl, 90 .d_name = "acpi", 91 }; 92 93 struct acpi_interface { 94 ACPI_STRING *data; 95 int num; 96 }; 97 98 static char *sysres_ids[] = { "PNP0C01", "PNP0C02", NULL }; 99 static char *pcilink_ids[] = { "PNP0C0F", NULL }; 100 101 /* Global mutex for locking access to the ACPI subsystem. */ 102 struct mtx acpi_mutex; 103 struct callout acpi_sleep_timer; 104 105 /* Bitmap of device quirks. */ 106 int acpi_quirks; 107 108 /* Supported sleep states. */ 109 static BOOLEAN acpi_sleep_states[ACPI_S_STATE_COUNT]; 110 111 static void acpi_lookup(void *arg, const char *name, device_t *dev); 112 static int acpi_modevent(struct module *mod, int event, void *junk); 113 static int acpi_probe(device_t dev); 114 static int acpi_attach(device_t dev); 115 static int acpi_suspend(device_t dev); 116 static int acpi_resume(device_t dev); 117 static int acpi_shutdown(device_t dev); 118 static device_t acpi_add_child(device_t bus, u_int order, const char *name, 119 int unit); 120 static int acpi_print_child(device_t bus, device_t child); 121 static void acpi_probe_nomatch(device_t bus, device_t child); 122 static void acpi_driver_added(device_t dev, driver_t *driver); 123 static int acpi_read_ivar(device_t dev, device_t child, int index, 124 uintptr_t *result); 125 static int acpi_write_ivar(device_t dev, device_t child, int index, 126 uintptr_t value); 127 static struct resource_list *acpi_get_rlist(device_t dev, device_t child); 128 static void acpi_reserve_resources(device_t dev); 129 static int acpi_sysres_alloc(device_t dev); 130 static int acpi_set_resource(device_t dev, device_t child, int type, 131 int rid, rman_res_t start, rman_res_t count); 132 static struct resource *acpi_alloc_resource(device_t bus, device_t child, 133 int type, int *rid, rman_res_t start, rman_res_t end, 134 rman_res_t count, u_int flags); 135 static int acpi_adjust_resource(device_t bus, device_t child, int type, 136 struct resource *r, rman_res_t start, rman_res_t end); 137 static int acpi_release_resource(device_t bus, device_t child, int type, 138 int rid, struct resource *r); 139 static void acpi_delete_resource(device_t bus, device_t child, int type, 140 int rid); 141 static uint32_t acpi_isa_get_logicalid(device_t dev); 142 static int acpi_isa_get_compatid(device_t dev, uint32_t *cids, int count); 143 static int acpi_device_id_probe(device_t bus, device_t dev, char **ids, char **match); 144 static ACPI_STATUS acpi_device_eval_obj(device_t bus, device_t dev, 145 ACPI_STRING pathname, ACPI_OBJECT_LIST *parameters, 146 ACPI_BUFFER *ret); 147 static ACPI_STATUS acpi_device_scan_cb(ACPI_HANDLE h, UINT32 level, 148 void *context, void **retval); 149 static ACPI_STATUS acpi_device_scan_children(device_t bus, device_t dev, 150 int max_depth, acpi_scan_cb_t user_fn, void *arg); 151 static int acpi_set_powerstate(device_t child, int state); 152 static int acpi_isa_pnp_probe(device_t bus, device_t child, 153 struct isa_pnp_id *ids); 154 static void acpi_probe_children(device_t bus); 155 static void acpi_probe_order(ACPI_HANDLE handle, int *order); 156 static ACPI_STATUS acpi_probe_child(ACPI_HANDLE handle, UINT32 level, 157 void *context, void **status); 158 static void acpi_sleep_enable(void *arg); 159 static ACPI_STATUS acpi_sleep_disable(struct acpi_softc *sc); 160 static ACPI_STATUS acpi_EnterSleepState(struct acpi_softc *sc, int state); 161 static void acpi_shutdown_final(void *arg, int howto); 162 static void acpi_enable_fixed_events(struct acpi_softc *sc); 163 static BOOLEAN acpi_has_hid(ACPI_HANDLE handle); 164 static void acpi_resync_clock(struct acpi_softc *sc); 165 static int acpi_wake_sleep_prep(ACPI_HANDLE handle, int sstate); 166 static int acpi_wake_run_prep(ACPI_HANDLE handle, int sstate); 167 static int acpi_wake_prep_walk(int sstate); 168 static int acpi_wake_sysctl_walk(device_t dev); 169 static int acpi_wake_set_sysctl(SYSCTL_HANDLER_ARGS); 170 static void acpi_system_eventhandler_sleep(void *arg, int state); 171 static void acpi_system_eventhandler_wakeup(void *arg, int state); 172 static int acpi_sname2sstate(const char *sname); 173 static const char *acpi_sstate2sname(int sstate); 174 static int acpi_supported_sleep_state_sysctl(SYSCTL_HANDLER_ARGS); 175 static int acpi_sleep_state_sysctl(SYSCTL_HANDLER_ARGS); 176 static int acpi_debug_objects_sysctl(SYSCTL_HANDLER_ARGS); 177 static int acpi_pm_func(u_long cmd, void *arg, ...); 178 static int acpi_child_location_str_method(device_t acdev, device_t child, 179 char *buf, size_t buflen); 180 static int acpi_child_pnpinfo_str_method(device_t acdev, device_t child, 181 char *buf, size_t buflen); 182 static void acpi_enable_pcie(void); 183 static void acpi_hint_device_unit(device_t acdev, device_t child, 184 const char *name, int *unitp); 185 static void acpi_reset_interfaces(device_t dev); 186 187 static device_method_t acpi_methods[] = { 188 /* Device interface */ 189 DEVMETHOD(device_probe, acpi_probe), 190 DEVMETHOD(device_attach, acpi_attach), 191 DEVMETHOD(device_shutdown, acpi_shutdown), 192 DEVMETHOD(device_detach, bus_generic_detach), 193 DEVMETHOD(device_suspend, acpi_suspend), 194 DEVMETHOD(device_resume, acpi_resume), 195 196 /* Bus interface */ 197 DEVMETHOD(bus_add_child, acpi_add_child), 198 DEVMETHOD(bus_print_child, acpi_print_child), 199 DEVMETHOD(bus_probe_nomatch, acpi_probe_nomatch), 200 DEVMETHOD(bus_driver_added, acpi_driver_added), 201 DEVMETHOD(bus_read_ivar, acpi_read_ivar), 202 DEVMETHOD(bus_write_ivar, acpi_write_ivar), 203 DEVMETHOD(bus_get_resource_list, acpi_get_rlist), 204 DEVMETHOD(bus_set_resource, acpi_set_resource), 205 DEVMETHOD(bus_get_resource, bus_generic_rl_get_resource), 206 DEVMETHOD(bus_alloc_resource, acpi_alloc_resource), 207 DEVMETHOD(bus_adjust_resource, acpi_adjust_resource), 208 DEVMETHOD(bus_release_resource, acpi_release_resource), 209 DEVMETHOD(bus_delete_resource, acpi_delete_resource), 210 DEVMETHOD(bus_child_pnpinfo_str, acpi_child_pnpinfo_str_method), 211 DEVMETHOD(bus_child_location_str, acpi_child_location_str_method), 212 DEVMETHOD(bus_activate_resource, bus_generic_activate_resource), 213 DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource), 214 DEVMETHOD(bus_setup_intr, bus_generic_setup_intr), 215 DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr), 216 DEVMETHOD(bus_hint_device_unit, acpi_hint_device_unit), 217 DEVMETHOD(bus_get_cpus, acpi_get_cpus), 218 DEVMETHOD(bus_get_domain, acpi_get_domain), 219 220 /* ACPI bus */ 221 DEVMETHOD(acpi_id_probe, acpi_device_id_probe), 222 DEVMETHOD(acpi_evaluate_object, acpi_device_eval_obj), 223 DEVMETHOD(acpi_pwr_for_sleep, acpi_device_pwr_for_sleep), 224 DEVMETHOD(acpi_scan_children, acpi_device_scan_children), 225 226 /* ISA emulation */ 227 DEVMETHOD(isa_pnp_probe, acpi_isa_pnp_probe), 228 229 DEVMETHOD_END 230 }; 231 232 static driver_t acpi_driver = { 233 "acpi", 234 acpi_methods, 235 sizeof(struct acpi_softc), 236 }; 237 238 static devclass_t acpi_devclass; 239 DRIVER_MODULE(acpi, nexus, acpi_driver, acpi_devclass, acpi_modevent, 0); 240 MODULE_VERSION(acpi, 1); 241 242 ACPI_SERIAL_DECL(acpi, "ACPI root bus"); 243 244 /* Local pools for managing system resources for ACPI child devices. */ 245 static struct rman acpi_rman_io, acpi_rman_mem; 246 247 #define ACPI_MINIMUM_AWAKETIME 5 248 249 /* Holds the description of the acpi0 device. */ 250 static char acpi_desc[ACPI_OEM_ID_SIZE + ACPI_OEM_TABLE_ID_SIZE + 2]; 251 252 SYSCTL_NODE(_debug, OID_AUTO, acpi, CTLFLAG_RD, NULL, "ACPI debugging"); 253 static char acpi_ca_version[12]; 254 SYSCTL_STRING(_debug_acpi, OID_AUTO, acpi_ca_version, CTLFLAG_RD, 255 acpi_ca_version, 0, "Version of Intel ACPI-CA"); 256 257 /* 258 * Allow overriding _OSI methods. 259 */ 260 static char acpi_install_interface[256]; 261 TUNABLE_STR("hw.acpi.install_interface", acpi_install_interface, 262 sizeof(acpi_install_interface)); 263 static char acpi_remove_interface[256]; 264 TUNABLE_STR("hw.acpi.remove_interface", acpi_remove_interface, 265 sizeof(acpi_remove_interface)); 266 267 /* Allow users to dump Debug objects without ACPI debugger. */ 268 static int acpi_debug_objects; 269 TUNABLE_INT("debug.acpi.enable_debug_objects", &acpi_debug_objects); 270 SYSCTL_PROC(_debug_acpi, OID_AUTO, enable_debug_objects, 271 CTLFLAG_RW | CTLTYPE_INT, NULL, 0, acpi_debug_objects_sysctl, "I", 272 "Enable Debug objects"); 273 274 /* Allow the interpreter to ignore common mistakes in BIOS. */ 275 static int acpi_interpreter_slack = 1; 276 TUNABLE_INT("debug.acpi.interpreter_slack", &acpi_interpreter_slack); 277 SYSCTL_INT(_debug_acpi, OID_AUTO, interpreter_slack, CTLFLAG_RDTUN, 278 &acpi_interpreter_slack, 1, "Turn on interpreter slack mode."); 279 280 /* Ignore register widths set by FADT and use default widths instead. */ 281 static int acpi_ignore_reg_width = 1; 282 TUNABLE_INT("debug.acpi.default_register_width", &acpi_ignore_reg_width); 283 SYSCTL_INT(_debug_acpi, OID_AUTO, default_register_width, CTLFLAG_RDTUN, 284 &acpi_ignore_reg_width, 1, "Ignore register widths set by FADT"); 285 286 /* Allow users to override quirks. */ 287 TUNABLE_INT("debug.acpi.quirks", &acpi_quirks); 288 289 int acpi_susp_bounce; 290 SYSCTL_INT(_debug_acpi, OID_AUTO, suspend_bounce, CTLFLAG_RW, 291 &acpi_susp_bounce, 0, "Don't actually suspend, just test devices."); 292 293 /* 294 * ACPI can only be loaded as a module by the loader; activating it after 295 * system bootstrap time is not useful, and can be fatal to the system. 296 * It also cannot be unloaded, since the entire system bus hierarchy hangs 297 * off it. 298 */ 299 static int 300 acpi_modevent(struct module *mod, int event, void *junk) 301 { 302 switch (event) { 303 case MOD_LOAD: 304 if (!cold) { 305 printf("The ACPI driver cannot be loaded after boot.\n"); 306 return (EPERM); 307 } 308 break; 309 case MOD_UNLOAD: 310 if (!cold && power_pm_get_type() == POWER_PM_TYPE_ACPI) 311 return (EBUSY); 312 break; 313 default: 314 break; 315 } 316 return (0); 317 } 318 319 /* 320 * Perform early initialization. 321 */ 322 ACPI_STATUS 323 acpi_Startup(void) 324 { 325 static int started = 0; 326 ACPI_STATUS status; 327 int val; 328 329 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 330 331 /* Only run the startup code once. The MADT driver also calls this. */ 332 if (started) 333 return_VALUE (AE_OK); 334 started = 1; 335 336 /* 337 * Initialize the ACPICA subsystem. 338 */ 339 if (ACPI_FAILURE(status = AcpiInitializeSubsystem())) { 340 printf("ACPI: Could not initialize Subsystem: %s\n", 341 AcpiFormatException(status)); 342 return_VALUE (status); 343 } 344 345 /* 346 * Pre-allocate space for RSDT/XSDT and DSDT tables and allow resizing 347 * if more tables exist. 348 */ 349 if (ACPI_FAILURE(status = AcpiInitializeTables(NULL, 2, TRUE))) { 350 printf("ACPI: Table initialisation failed: %s\n", 351 AcpiFormatException(status)); 352 return_VALUE (status); 353 } 354 355 /* Set up any quirks we have for this system. */ 356 if (acpi_quirks == ACPI_Q_OK) 357 acpi_table_quirks(&acpi_quirks); 358 359 /* If the user manually set the disabled hint to 0, force-enable ACPI. */ 360 if (resource_int_value("acpi", 0, "disabled", &val) == 0 && val == 0) 361 acpi_quirks &= ~ACPI_Q_BROKEN; 362 if (acpi_quirks & ACPI_Q_BROKEN) { 363 printf("ACPI disabled by blacklist. Contact your BIOS vendor.\n"); 364 status = AE_SUPPORT; 365 } 366 367 return_VALUE (status); 368 } 369 370 /* 371 * Detect ACPI and perform early initialisation. 372 */ 373 int 374 acpi_identify(void) 375 { 376 ACPI_TABLE_RSDP *rsdp; 377 ACPI_TABLE_HEADER *rsdt; 378 ACPI_PHYSICAL_ADDRESS paddr; 379 struct sbuf sb; 380 381 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 382 383 if (!cold) 384 return (ENXIO); 385 386 /* Check that we haven't been disabled with a hint. */ 387 if (resource_disabled("acpi", 0)) 388 return (ENXIO); 389 390 /* Check for other PM systems. */ 391 if (power_pm_get_type() != POWER_PM_TYPE_NONE && 392 power_pm_get_type() != POWER_PM_TYPE_ACPI) { 393 printf("ACPI identify failed, other PM system enabled.\n"); 394 return (ENXIO); 395 } 396 397 /* Initialize root tables. */ 398 if (ACPI_FAILURE(acpi_Startup())) { 399 printf("ACPI: Try disabling either ACPI or apic support.\n"); 400 return (ENXIO); 401 } 402 403 if ((paddr = AcpiOsGetRootPointer()) == 0 || 404 (rsdp = AcpiOsMapMemory(paddr, sizeof(ACPI_TABLE_RSDP))) == NULL) 405 return (ENXIO); 406 if (rsdp->Revision > 1 && rsdp->XsdtPhysicalAddress != 0) 407 paddr = (ACPI_PHYSICAL_ADDRESS)rsdp->XsdtPhysicalAddress; 408 else 409 paddr = (ACPI_PHYSICAL_ADDRESS)rsdp->RsdtPhysicalAddress; 410 AcpiOsUnmapMemory(rsdp, sizeof(ACPI_TABLE_RSDP)); 411 412 if ((rsdt = AcpiOsMapMemory(paddr, sizeof(ACPI_TABLE_HEADER))) == NULL) 413 return (ENXIO); 414 sbuf_new(&sb, acpi_desc, sizeof(acpi_desc), SBUF_FIXEDLEN); 415 sbuf_bcat(&sb, rsdt->OemId, ACPI_OEM_ID_SIZE); 416 sbuf_trim(&sb); 417 sbuf_putc(&sb, ' '); 418 sbuf_bcat(&sb, rsdt->OemTableId, ACPI_OEM_TABLE_ID_SIZE); 419 sbuf_trim(&sb); 420 sbuf_finish(&sb); 421 sbuf_delete(&sb); 422 AcpiOsUnmapMemory(rsdt, sizeof(ACPI_TABLE_HEADER)); 423 424 snprintf(acpi_ca_version, sizeof(acpi_ca_version), "%x", ACPI_CA_VERSION); 425 426 return (0); 427 } 428 429 /* 430 * Fetch some descriptive data from ACPI to put in our attach message. 431 */ 432 static int 433 acpi_probe(device_t dev) 434 { 435 436 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 437 438 device_set_desc(dev, acpi_desc); 439 440 return_VALUE (BUS_PROBE_NOWILDCARD); 441 } 442 443 static int 444 acpi_attach(device_t dev) 445 { 446 struct acpi_softc *sc; 447 ACPI_STATUS status; 448 int error, state; 449 UINT32 flags; 450 UINT8 TypeA, TypeB; 451 char *env; 452 453 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 454 455 sc = device_get_softc(dev); 456 sc->acpi_dev = dev; 457 callout_init(&sc->susp_force_to, 1); 458 459 error = ENXIO; 460 461 /* Initialize resource manager. */ 462 acpi_rman_io.rm_type = RMAN_ARRAY; 463 acpi_rman_io.rm_start = 0; 464 acpi_rman_io.rm_end = 0xffff; 465 acpi_rman_io.rm_descr = "ACPI I/O ports"; 466 if (rman_init(&acpi_rman_io) != 0) 467 panic("acpi rman_init IO ports failed"); 468 acpi_rman_mem.rm_type = RMAN_ARRAY; 469 acpi_rman_mem.rm_descr = "ACPI I/O memory addresses"; 470 if (rman_init(&acpi_rman_mem) != 0) 471 panic("acpi rman_init memory failed"); 472 473 /* Initialise the ACPI mutex */ 474 mtx_init(&acpi_mutex, "ACPI global lock", NULL, MTX_DEF); 475 476 /* 477 * Set the globals from our tunables. This is needed because ACPI-CA 478 * uses UINT8 for some values and we have no tunable_byte. 479 */ 480 AcpiGbl_EnableInterpreterSlack = acpi_interpreter_slack ? TRUE : FALSE; 481 AcpiGbl_EnableAmlDebugObject = acpi_debug_objects ? TRUE : FALSE; 482 AcpiGbl_UseDefaultRegisterWidths = acpi_ignore_reg_width ? TRUE : FALSE; 483 484 #ifndef ACPI_DEBUG 485 /* 486 * Disable all debugging layers and levels. 487 */ 488 AcpiDbgLayer = 0; 489 AcpiDbgLevel = 0; 490 #endif 491 492 /* Override OS interfaces if the user requested. */ 493 acpi_reset_interfaces(dev); 494 495 /* Load ACPI name space. */ 496 status = AcpiLoadTables(); 497 if (ACPI_FAILURE(status)) { 498 device_printf(dev, "Could not load Namespace: %s\n", 499 AcpiFormatException(status)); 500 goto out; 501 } 502 503 /* Handle MCFG table if present. */ 504 acpi_enable_pcie(); 505 506 /* 507 * Note that some systems (specifically, those with namespace evaluation 508 * issues that require the avoidance of parts of the namespace) must 509 * avoid running _INI and _STA on everything, as well as dodging the final 510 * object init pass. 511 * 512 * For these devices, we set ACPI_NO_DEVICE_INIT and ACPI_NO_OBJECT_INIT). 513 * 514 * XXX We should arrange for the object init pass after we have attached 515 * all our child devices, but on many systems it works here. 516 */ 517 flags = 0; 518 if (testenv("debug.acpi.avoid")) 519 flags = ACPI_NO_DEVICE_INIT | ACPI_NO_OBJECT_INIT; 520 521 /* Bring the hardware and basic handlers online. */ 522 if (ACPI_FAILURE(status = AcpiEnableSubsystem(flags))) { 523 device_printf(dev, "Could not enable ACPI: %s\n", 524 AcpiFormatException(status)); 525 goto out; 526 } 527 528 /* 529 * Call the ECDT probe function to provide EC functionality before 530 * the namespace has been evaluated. 531 * 532 * XXX This happens before the sysresource devices have been probed and 533 * attached so its resources come from nexus0. In practice, this isn't 534 * a problem but should be addressed eventually. 535 */ 536 acpi_ec_ecdt_probe(dev); 537 538 /* Bring device objects and regions online. */ 539 if (ACPI_FAILURE(status = AcpiInitializeObjects(flags))) { 540 device_printf(dev, "Could not initialize ACPI objects: %s\n", 541 AcpiFormatException(status)); 542 goto out; 543 } 544 545 /* 546 * Setup our sysctl tree. 547 * 548 * XXX: This doesn't check to make sure that none of these fail. 549 */ 550 sysctl_ctx_init(&sc->acpi_sysctl_ctx); 551 sc->acpi_sysctl_tree = SYSCTL_ADD_NODE(&sc->acpi_sysctl_ctx, 552 SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO, 553 device_get_name(dev), CTLFLAG_RD, 0, ""); 554 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 555 OID_AUTO, "supported_sleep_state", CTLTYPE_STRING | CTLFLAG_RD, 556 0, 0, acpi_supported_sleep_state_sysctl, "A", 557 "List supported ACPI sleep states."); 558 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 559 OID_AUTO, "power_button_state", CTLTYPE_STRING | CTLFLAG_RW, 560 &sc->acpi_power_button_sx, 0, acpi_sleep_state_sysctl, "A", 561 "Power button ACPI sleep state."); 562 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 563 OID_AUTO, "sleep_button_state", CTLTYPE_STRING | CTLFLAG_RW, 564 &sc->acpi_sleep_button_sx, 0, acpi_sleep_state_sysctl, "A", 565 "Sleep button ACPI sleep state."); 566 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 567 OID_AUTO, "lid_switch_state", CTLTYPE_STRING | CTLFLAG_RW, 568 &sc->acpi_lid_switch_sx, 0, acpi_sleep_state_sysctl, "A", 569 "Lid ACPI sleep state. Set to S3 if you want to suspend your laptop when close the Lid."); 570 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 571 OID_AUTO, "standby_state", CTLTYPE_STRING | CTLFLAG_RW, 572 &sc->acpi_standby_sx, 0, acpi_sleep_state_sysctl, "A", ""); 573 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 574 OID_AUTO, "suspend_state", CTLTYPE_STRING | CTLFLAG_RW, 575 &sc->acpi_suspend_sx, 0, acpi_sleep_state_sysctl, "A", ""); 576 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 577 OID_AUTO, "sleep_delay", CTLFLAG_RW, &sc->acpi_sleep_delay, 0, 578 "sleep delay in seconds"); 579 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 580 OID_AUTO, "s4bios", CTLFLAG_RW, &sc->acpi_s4bios, 0, "S4BIOS mode"); 581 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 582 OID_AUTO, "verbose", CTLFLAG_RW, &sc->acpi_verbose, 0, "verbose mode"); 583 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 584 OID_AUTO, "disable_on_reboot", CTLFLAG_RW, 585 &sc->acpi_do_disable, 0, "Disable ACPI when rebooting/halting system"); 586 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 587 OID_AUTO, "handle_reboot", CTLFLAG_RW, 588 &sc->acpi_handle_reboot, 0, "Use ACPI Reset Register to reboot"); 589 590 /* 591 * Default to 1 second before sleeping to give some machines time to 592 * stabilize. 593 */ 594 sc->acpi_sleep_delay = 1; 595 if (bootverbose) 596 sc->acpi_verbose = 1; 597 if ((env = kern_getenv("hw.acpi.verbose")) != NULL) { 598 if (strcmp(env, "0") != 0) 599 sc->acpi_verbose = 1; 600 freeenv(env); 601 } 602 603 /* Only enable reboot by default if the FADT says it is available. */ 604 if (AcpiGbl_FADT.Flags & ACPI_FADT_RESET_REGISTER) 605 sc->acpi_handle_reboot = 1; 606 607 #if !ACPI_REDUCED_HARDWARE 608 /* Only enable S4BIOS by default if the FACS says it is available. */ 609 if (AcpiGbl_FACS != NULL && AcpiGbl_FACS->Flags & ACPI_FACS_S4_BIOS_PRESENT) 610 sc->acpi_s4bios = 1; 611 #endif 612 613 /* Probe all supported sleep states. */ 614 acpi_sleep_states[ACPI_STATE_S0] = TRUE; 615 for (state = ACPI_STATE_S1; state < ACPI_S_STATE_COUNT; state++) 616 if (ACPI_SUCCESS(AcpiEvaluateObject(ACPI_ROOT_OBJECT, 617 __DECONST(char *, AcpiGbl_SleepStateNames[state]), NULL, NULL)) && 618 ACPI_SUCCESS(AcpiGetSleepTypeData(state, &TypeA, &TypeB))) 619 acpi_sleep_states[state] = TRUE; 620 621 /* 622 * Dispatch the default sleep state to devices. The lid switch is set 623 * to UNKNOWN by default to avoid surprising users. 624 */ 625 sc->acpi_power_button_sx = acpi_sleep_states[ACPI_STATE_S5] ? 626 ACPI_STATE_S5 : ACPI_STATE_UNKNOWN; 627 sc->acpi_lid_switch_sx = ACPI_STATE_UNKNOWN; 628 sc->acpi_standby_sx = acpi_sleep_states[ACPI_STATE_S1] ? 629 ACPI_STATE_S1 : ACPI_STATE_UNKNOWN; 630 sc->acpi_suspend_sx = acpi_sleep_states[ACPI_STATE_S3] ? 631 ACPI_STATE_S3 : ACPI_STATE_UNKNOWN; 632 633 /* Pick the first valid sleep state for the sleep button default. */ 634 sc->acpi_sleep_button_sx = ACPI_STATE_UNKNOWN; 635 for (state = ACPI_STATE_S1; state <= ACPI_STATE_S4; state++) 636 if (acpi_sleep_states[state]) { 637 sc->acpi_sleep_button_sx = state; 638 break; 639 } 640 641 acpi_enable_fixed_events(sc); 642 643 /* 644 * Scan the namespace and attach/initialise children. 645 */ 646 647 /* Register our shutdown handler. */ 648 EVENTHANDLER_REGISTER(shutdown_final, acpi_shutdown_final, sc, 649 SHUTDOWN_PRI_LAST); 650 651 /* 652 * Register our acpi event handlers. 653 * XXX should be configurable eg. via userland policy manager. 654 */ 655 EVENTHANDLER_REGISTER(acpi_sleep_event, acpi_system_eventhandler_sleep, 656 sc, ACPI_EVENT_PRI_LAST); 657 EVENTHANDLER_REGISTER(acpi_wakeup_event, acpi_system_eventhandler_wakeup, 658 sc, ACPI_EVENT_PRI_LAST); 659 660 /* Flag our initial states. */ 661 sc->acpi_enabled = TRUE; 662 sc->acpi_sstate = ACPI_STATE_S0; 663 sc->acpi_sleep_disabled = TRUE; 664 665 /* Create the control device */ 666 sc->acpi_dev_t = make_dev(&acpi_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0664, 667 "acpi"); 668 sc->acpi_dev_t->si_drv1 = sc; 669 670 if ((error = acpi_machdep_init(dev))) 671 goto out; 672 673 /* Register ACPI again to pass the correct argument of pm_func. */ 674 power_pm_register(POWER_PM_TYPE_ACPI, acpi_pm_func, sc); 675 676 if (!acpi_disabled("bus")) { 677 EVENTHANDLER_REGISTER(dev_lookup, acpi_lookup, NULL, 1000); 678 acpi_probe_children(dev); 679 } 680 681 /* Update all GPEs and enable runtime GPEs. */ 682 status = AcpiUpdateAllGpes(); 683 if (ACPI_FAILURE(status)) 684 device_printf(dev, "Could not update all GPEs: %s\n", 685 AcpiFormatException(status)); 686 687 /* Allow sleep request after a while. */ 688 callout_init_mtx(&acpi_sleep_timer, &acpi_mutex, 0); 689 callout_reset(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME, 690 acpi_sleep_enable, sc); 691 692 error = 0; 693 694 out: 695 return_VALUE (error); 696 } 697 698 static void 699 acpi_set_power_children(device_t dev, int state) 700 { 701 device_t child; 702 device_t *devlist; 703 int dstate, i, numdevs; 704 705 if (device_get_children(dev, &devlist, &numdevs) != 0) 706 return; 707 708 /* 709 * Retrieve and set D-state for the sleep state if _SxD is present. 710 * Skip children who aren't attached since they are handled separately. 711 */ 712 for (i = 0; i < numdevs; i++) { 713 child = devlist[i]; 714 dstate = state; 715 if (device_is_attached(child) && 716 acpi_device_pwr_for_sleep(dev, child, &dstate) == 0) 717 acpi_set_powerstate(child, dstate); 718 } 719 free(devlist, M_TEMP); 720 } 721 722 static int 723 acpi_suspend(device_t dev) 724 { 725 int error; 726 727 GIANT_REQUIRED; 728 729 error = bus_generic_suspend(dev); 730 if (error == 0) 731 acpi_set_power_children(dev, ACPI_STATE_D3); 732 733 return (error); 734 } 735 736 static int 737 acpi_resume(device_t dev) 738 { 739 740 GIANT_REQUIRED; 741 742 acpi_set_power_children(dev, ACPI_STATE_D0); 743 744 return (bus_generic_resume(dev)); 745 } 746 747 static int 748 acpi_shutdown(device_t dev) 749 { 750 751 GIANT_REQUIRED; 752 753 /* Allow children to shutdown first. */ 754 bus_generic_shutdown(dev); 755 756 /* 757 * Enable any GPEs that are able to power-on the system (i.e., RTC). 758 * Also, disable any that are not valid for this state (most). 759 */ 760 acpi_wake_prep_walk(ACPI_STATE_S5); 761 762 return (0); 763 } 764 765 /* 766 * Handle a new device being added 767 */ 768 static device_t 769 acpi_add_child(device_t bus, u_int order, const char *name, int unit) 770 { 771 struct acpi_device *ad; 772 device_t child; 773 774 if ((ad = malloc(sizeof(*ad), M_ACPIDEV, M_NOWAIT | M_ZERO)) == NULL) 775 return (NULL); 776 777 resource_list_init(&ad->ad_rl); 778 779 child = device_add_child_ordered(bus, order, name, unit); 780 if (child != NULL) 781 device_set_ivars(child, ad); 782 else 783 free(ad, M_ACPIDEV); 784 return (child); 785 } 786 787 static int 788 acpi_print_child(device_t bus, device_t child) 789 { 790 struct acpi_device *adev = device_get_ivars(child); 791 struct resource_list *rl = &adev->ad_rl; 792 int retval = 0; 793 794 retval += bus_print_child_header(bus, child); 795 retval += resource_list_print_type(rl, "port", SYS_RES_IOPORT, "%#jx"); 796 retval += resource_list_print_type(rl, "iomem", SYS_RES_MEMORY, "%#jx"); 797 retval += resource_list_print_type(rl, "irq", SYS_RES_IRQ, "%jd"); 798 retval += resource_list_print_type(rl, "drq", SYS_RES_DRQ, "%jd"); 799 if (device_get_flags(child)) 800 retval += printf(" flags %#x", device_get_flags(child)); 801 retval += bus_print_child_domain(bus, child); 802 retval += bus_print_child_footer(bus, child); 803 804 return (retval); 805 } 806 807 /* 808 * If this device is an ACPI child but no one claimed it, attempt 809 * to power it off. We'll power it back up when a driver is added. 810 * 811 * XXX Disabled for now since many necessary devices (like fdc and 812 * ATA) don't claim the devices we created for them but still expect 813 * them to be powered up. 814 */ 815 static void 816 acpi_probe_nomatch(device_t bus, device_t child) 817 { 818 #ifdef ACPI_ENABLE_POWERDOWN_NODRIVER 819 acpi_set_powerstate(child, ACPI_STATE_D3); 820 #endif 821 } 822 823 /* 824 * If a new driver has a chance to probe a child, first power it up. 825 * 826 * XXX Disabled for now (see acpi_probe_nomatch for details). 827 */ 828 static void 829 acpi_driver_added(device_t dev, driver_t *driver) 830 { 831 device_t child, *devlist; 832 int i, numdevs; 833 834 DEVICE_IDENTIFY(driver, dev); 835 if (device_get_children(dev, &devlist, &numdevs)) 836 return; 837 for (i = 0; i < numdevs; i++) { 838 child = devlist[i]; 839 if (device_get_state(child) == DS_NOTPRESENT) { 840 #ifdef ACPI_ENABLE_POWERDOWN_NODRIVER 841 acpi_set_powerstate(child, ACPI_STATE_D0); 842 if (device_probe_and_attach(child) != 0) 843 acpi_set_powerstate(child, ACPI_STATE_D3); 844 #else 845 device_probe_and_attach(child); 846 #endif 847 } 848 } 849 free(devlist, M_TEMP); 850 } 851 852 /* Location hint for devctl(8) */ 853 static int 854 acpi_child_location_str_method(device_t cbdev, device_t child, char *buf, 855 size_t buflen) 856 { 857 struct acpi_device *dinfo = device_get_ivars(child); 858 char buf2[32]; 859 int pxm; 860 861 if (dinfo->ad_handle) { 862 snprintf(buf, buflen, "handle=%s", acpi_name(dinfo->ad_handle)); 863 if (ACPI_SUCCESS(acpi_GetInteger(dinfo->ad_handle, "_PXM", &pxm))) { 864 snprintf(buf2, 32, " _PXM=%d", pxm); 865 strlcat(buf, buf2, buflen); 866 } 867 } else { 868 snprintf(buf, buflen, "unknown"); 869 } 870 return (0); 871 } 872 873 /* PnP information for devctl(8) */ 874 static int 875 acpi_child_pnpinfo_str_method(device_t cbdev, device_t child, char *buf, 876 size_t buflen) 877 { 878 struct acpi_device *dinfo = device_get_ivars(child); 879 ACPI_DEVICE_INFO *adinfo; 880 881 if (ACPI_FAILURE(AcpiGetObjectInfo(dinfo->ad_handle, &adinfo))) { 882 snprintf(buf, buflen, "unknown"); 883 return (0); 884 } 885 886 snprintf(buf, buflen, "_HID=%s _UID=%lu", 887 (adinfo->Valid & ACPI_VALID_HID) ? 888 adinfo->HardwareId.String : "none", 889 (adinfo->Valid & ACPI_VALID_UID) ? 890 strtoul(adinfo->UniqueId.String, NULL, 10) : 0UL); 891 AcpiOsFree(adinfo); 892 893 return (0); 894 } 895 896 /* 897 * Handle per-device ivars 898 */ 899 static int 900 acpi_read_ivar(device_t dev, device_t child, int index, uintptr_t *result) 901 { 902 struct acpi_device *ad; 903 904 if ((ad = device_get_ivars(child)) == NULL) { 905 device_printf(child, "device has no ivars\n"); 906 return (ENOENT); 907 } 908 909 /* ACPI and ISA compatibility ivars */ 910 switch(index) { 911 case ACPI_IVAR_HANDLE: 912 *(ACPI_HANDLE *)result = ad->ad_handle; 913 break; 914 case ACPI_IVAR_PRIVATE: 915 *(void **)result = ad->ad_private; 916 break; 917 case ACPI_IVAR_FLAGS: 918 *(int *)result = ad->ad_flags; 919 break; 920 case ISA_IVAR_VENDORID: 921 case ISA_IVAR_SERIAL: 922 case ISA_IVAR_COMPATID: 923 *(int *)result = -1; 924 break; 925 case ISA_IVAR_LOGICALID: 926 *(int *)result = acpi_isa_get_logicalid(child); 927 break; 928 case PCI_IVAR_CLASS: 929 *(uint8_t*)result = (ad->ad_cls_class >> 16) & 0xff; 930 break; 931 case PCI_IVAR_SUBCLASS: 932 *(uint8_t*)result = (ad->ad_cls_class >> 8) & 0xff; 933 break; 934 case PCI_IVAR_PROGIF: 935 *(uint8_t*)result = (ad->ad_cls_class >> 0) & 0xff; 936 break; 937 default: 938 return (ENOENT); 939 } 940 941 return (0); 942 } 943 944 static int 945 acpi_write_ivar(device_t dev, device_t child, int index, uintptr_t value) 946 { 947 struct acpi_device *ad; 948 949 if ((ad = device_get_ivars(child)) == NULL) { 950 device_printf(child, "device has no ivars\n"); 951 return (ENOENT); 952 } 953 954 switch(index) { 955 case ACPI_IVAR_HANDLE: 956 ad->ad_handle = (ACPI_HANDLE)value; 957 break; 958 case ACPI_IVAR_PRIVATE: 959 ad->ad_private = (void *)value; 960 break; 961 case ACPI_IVAR_FLAGS: 962 ad->ad_flags = (int)value; 963 break; 964 default: 965 panic("bad ivar write request (%d)", index); 966 return (ENOENT); 967 } 968 969 return (0); 970 } 971 972 /* 973 * Handle child resource allocation/removal 974 */ 975 static struct resource_list * 976 acpi_get_rlist(device_t dev, device_t child) 977 { 978 struct acpi_device *ad; 979 980 ad = device_get_ivars(child); 981 return (&ad->ad_rl); 982 } 983 984 static int 985 acpi_match_resource_hint(device_t dev, int type, long value) 986 { 987 struct acpi_device *ad = device_get_ivars(dev); 988 struct resource_list *rl = &ad->ad_rl; 989 struct resource_list_entry *rle; 990 991 STAILQ_FOREACH(rle, rl, link) { 992 if (rle->type != type) 993 continue; 994 if (rle->start <= value && rle->end >= value) 995 return (1); 996 } 997 return (0); 998 } 999 1000 /* 1001 * Wire device unit numbers based on resource matches in hints. 1002 */ 1003 static void 1004 acpi_hint_device_unit(device_t acdev, device_t child, const char *name, 1005 int *unitp) 1006 { 1007 const char *s; 1008 long value; 1009 int line, matches, unit; 1010 1011 /* 1012 * Iterate over all the hints for the devices with the specified 1013 * name to see if one's resources are a subset of this device. 1014 */ 1015 line = 0; 1016 while (resource_find_dev(&line, name, &unit, "at", NULL) == 0) { 1017 /* Must have an "at" for acpi or isa. */ 1018 resource_string_value(name, unit, "at", &s); 1019 if (!(strcmp(s, "acpi0") == 0 || strcmp(s, "acpi") == 0 || 1020 strcmp(s, "isa0") == 0 || strcmp(s, "isa") == 0)) 1021 continue; 1022 1023 /* 1024 * Check for matching resources. We must have at least one match. 1025 * Since I/O and memory resources cannot be shared, if we get a 1026 * match on either of those, ignore any mismatches in IRQs or DRQs. 1027 * 1028 * XXX: We may want to revisit this to be more lenient and wire 1029 * as long as it gets one match. 1030 */ 1031 matches = 0; 1032 if (resource_long_value(name, unit, "port", &value) == 0) { 1033 /* 1034 * Floppy drive controllers are notorious for having a 1035 * wide variety of resources not all of which include the 1036 * first port that is specified by the hint (typically 1037 * 0x3f0) (see the comment above fdc_isa_alloc_resources() 1038 * in fdc_isa.c). However, they do all seem to include 1039 * port + 2 (e.g. 0x3f2) so for a floppy device, look for 1040 * 'value + 2' in the port resources instead of the hint 1041 * value. 1042 */ 1043 if (strcmp(name, "fdc") == 0) 1044 value += 2; 1045 if (acpi_match_resource_hint(child, SYS_RES_IOPORT, value)) 1046 matches++; 1047 else 1048 continue; 1049 } 1050 if (resource_long_value(name, unit, "maddr", &value) == 0) { 1051 if (acpi_match_resource_hint(child, SYS_RES_MEMORY, value)) 1052 matches++; 1053 else 1054 continue; 1055 } 1056 if (matches > 0) 1057 goto matched; 1058 if (resource_long_value(name, unit, "irq", &value) == 0) { 1059 if (acpi_match_resource_hint(child, SYS_RES_IRQ, value)) 1060 matches++; 1061 else 1062 continue; 1063 } 1064 if (resource_long_value(name, unit, "drq", &value) == 0) { 1065 if (acpi_match_resource_hint(child, SYS_RES_DRQ, value)) 1066 matches++; 1067 else 1068 continue; 1069 } 1070 1071 matched: 1072 if (matches > 0) { 1073 /* We have a winner! */ 1074 *unitp = unit; 1075 break; 1076 } 1077 } 1078 } 1079 1080 /* 1081 * Fetch the NUMA domain for a device by mapping the value returned by 1082 * _PXM to a NUMA domain. If the device does not have a _PXM method, 1083 * -2 is returned. If any other error occurs, -1 is returned. 1084 */ 1085 static int 1086 acpi_parse_pxm(device_t dev) 1087 { 1088 #ifdef NUMA 1089 #if defined(__i386__) || defined(__amd64__) 1090 ACPI_HANDLE handle; 1091 ACPI_STATUS status; 1092 int pxm; 1093 1094 handle = acpi_get_handle(dev); 1095 if (handle == NULL) 1096 return (-2); 1097 status = acpi_GetInteger(handle, "_PXM", &pxm); 1098 if (ACPI_SUCCESS(status)) 1099 return (acpi_map_pxm_to_vm_domainid(pxm)); 1100 if (status == AE_NOT_FOUND) 1101 return (-2); 1102 #endif 1103 #endif 1104 return (-1); 1105 } 1106 1107 int 1108 acpi_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize, 1109 cpuset_t *cpuset) 1110 { 1111 int d, error; 1112 1113 d = acpi_parse_pxm(child); 1114 if (d < 0) 1115 return (bus_generic_get_cpus(dev, child, op, setsize, cpuset)); 1116 1117 switch (op) { 1118 case LOCAL_CPUS: 1119 if (setsize != sizeof(cpuset_t)) 1120 return (EINVAL); 1121 *cpuset = cpuset_domain[d]; 1122 return (0); 1123 case INTR_CPUS: 1124 error = bus_generic_get_cpus(dev, child, op, setsize, cpuset); 1125 if (error != 0) 1126 return (error); 1127 if (setsize != sizeof(cpuset_t)) 1128 return (EINVAL); 1129 CPU_AND(cpuset, &cpuset_domain[d]); 1130 return (0); 1131 default: 1132 return (bus_generic_get_cpus(dev, child, op, setsize, cpuset)); 1133 } 1134 } 1135 1136 /* 1137 * Fetch the NUMA domain for the given device 'dev'. 1138 * 1139 * If a device has a _PXM method, map that to a NUMA domain. 1140 * Otherwise, pass the request up to the parent. 1141 * If there's no matching domain or the domain cannot be 1142 * determined, return ENOENT. 1143 */ 1144 int 1145 acpi_get_domain(device_t dev, device_t child, int *domain) 1146 { 1147 int d; 1148 1149 d = acpi_parse_pxm(child); 1150 if (d >= 0) { 1151 *domain = d; 1152 return (0); 1153 } 1154 if (d == -1) 1155 return (ENOENT); 1156 1157 /* No _PXM node; go up a level */ 1158 return (bus_generic_get_domain(dev, child, domain)); 1159 } 1160 1161 /* 1162 * Pre-allocate/manage all memory and IO resources. Since rman can't handle 1163 * duplicates, we merge any in the sysresource attach routine. 1164 */ 1165 static int 1166 acpi_sysres_alloc(device_t dev) 1167 { 1168 struct resource *res; 1169 struct resource_list *rl; 1170 struct resource_list_entry *rle; 1171 struct rman *rm; 1172 device_t *children; 1173 int child_count, i; 1174 1175 /* 1176 * Probe/attach any sysresource devices. This would be unnecessary if we 1177 * had multi-pass probe/attach. 1178 */ 1179 if (device_get_children(dev, &children, &child_count) != 0) 1180 return (ENXIO); 1181 for (i = 0; i < child_count; i++) { 1182 if (ACPI_ID_PROBE(dev, children[i], sysres_ids, NULL) <= 0) 1183 device_probe_and_attach(children[i]); 1184 } 1185 free(children, M_TEMP); 1186 1187 rl = BUS_GET_RESOURCE_LIST(device_get_parent(dev), dev); 1188 STAILQ_FOREACH(rle, rl, link) { 1189 if (rle->res != NULL) { 1190 device_printf(dev, "duplicate resource for %jx\n", rle->start); 1191 continue; 1192 } 1193 1194 /* Only memory and IO resources are valid here. */ 1195 switch (rle->type) { 1196 case SYS_RES_IOPORT: 1197 rm = &acpi_rman_io; 1198 break; 1199 case SYS_RES_MEMORY: 1200 rm = &acpi_rman_mem; 1201 break; 1202 default: 1203 continue; 1204 } 1205 1206 /* Pre-allocate resource and add to our rman pool. */ 1207 res = BUS_ALLOC_RESOURCE(device_get_parent(dev), dev, rle->type, 1208 &rle->rid, rle->start, rle->start + rle->count - 1, rle->count, 0); 1209 if (res != NULL) { 1210 rman_manage_region(rm, rman_get_start(res), rman_get_end(res)); 1211 rle->res = res; 1212 } else if (bootverbose) 1213 device_printf(dev, "reservation of %jx, %jx (%d) failed\n", 1214 rle->start, rle->count, rle->type); 1215 } 1216 return (0); 1217 } 1218 1219 /* 1220 * Reserve declared resources for devices found during attach once system 1221 * resources have been allocated. 1222 */ 1223 static void 1224 acpi_reserve_resources(device_t dev) 1225 { 1226 struct resource_list_entry *rle; 1227 struct resource_list *rl; 1228 struct acpi_device *ad; 1229 struct acpi_softc *sc; 1230 device_t *children; 1231 int child_count, i; 1232 1233 sc = device_get_softc(dev); 1234 if (device_get_children(dev, &children, &child_count) != 0) 1235 return; 1236 for (i = 0; i < child_count; i++) { 1237 ad = device_get_ivars(children[i]); 1238 rl = &ad->ad_rl; 1239 1240 /* Don't reserve system resources. */ 1241 if (ACPI_ID_PROBE(dev, children[i], sysres_ids, NULL) <= 0) 1242 continue; 1243 1244 STAILQ_FOREACH(rle, rl, link) { 1245 /* 1246 * Don't reserve IRQ resources. There are many sticky things 1247 * to get right otherwise (e.g. IRQs for psm, atkbd, and HPET 1248 * when using legacy routing). 1249 */ 1250 if (rle->type == SYS_RES_IRQ) 1251 continue; 1252 1253 /* 1254 * Don't reserve the resource if it is already allocated. 1255 * The acpi_ec(4) driver can allocate its resources early 1256 * if ECDT is present. 1257 */ 1258 if (rle->res != NULL) 1259 continue; 1260 1261 /* 1262 * Try to reserve the resource from our parent. If this 1263 * fails because the resource is a system resource, just 1264 * let it be. The resource range is already reserved so 1265 * that other devices will not use it. If the driver 1266 * needs to allocate the resource, then 1267 * acpi_alloc_resource() will sub-alloc from the system 1268 * resource. 1269 */ 1270 resource_list_reserve(rl, dev, children[i], rle->type, &rle->rid, 1271 rle->start, rle->end, rle->count, 0); 1272 } 1273 } 1274 free(children, M_TEMP); 1275 sc->acpi_resources_reserved = 1; 1276 } 1277 1278 static int 1279 acpi_set_resource(device_t dev, device_t child, int type, int rid, 1280 rman_res_t start, rman_res_t count) 1281 { 1282 struct acpi_softc *sc = device_get_softc(dev); 1283 struct acpi_device *ad = device_get_ivars(child); 1284 struct resource_list *rl = &ad->ad_rl; 1285 ACPI_DEVICE_INFO *devinfo; 1286 rman_res_t end; 1287 int allow; 1288 1289 /* Ignore IRQ resources for PCI link devices. */ 1290 if (type == SYS_RES_IRQ && 1291 ACPI_ID_PROBE(dev, child, pcilink_ids, NULL) <= 0) 1292 return (0); 1293 1294 /* 1295 * Ignore most resources for PCI root bridges. Some BIOSes 1296 * incorrectly enumerate the memory ranges they decode as plain 1297 * memory resources instead of as ResourceProducer ranges. Other 1298 * BIOSes incorrectly list system resource entries for I/O ranges 1299 * under the PCI bridge. Do allow the one known-correct case on 1300 * x86 of a PCI bridge claiming the I/O ports used for PCI config 1301 * access. 1302 */ 1303 if (type == SYS_RES_MEMORY || type == SYS_RES_IOPORT) { 1304 if (ACPI_SUCCESS(AcpiGetObjectInfo(ad->ad_handle, &devinfo))) { 1305 if ((devinfo->Flags & ACPI_PCI_ROOT_BRIDGE) != 0) { 1306 #if defined(__i386__) || defined(__amd64__) 1307 allow = (type == SYS_RES_IOPORT && start == CONF1_ADDR_PORT); 1308 #else 1309 allow = 0; 1310 #endif 1311 if (!allow) { 1312 AcpiOsFree(devinfo); 1313 return (0); 1314 } 1315 } 1316 AcpiOsFree(devinfo); 1317 } 1318 } 1319 1320 #ifdef INTRNG 1321 /* map with default for now */ 1322 if (type == SYS_RES_IRQ) 1323 start = (rman_res_t)acpi_map_intr(child, (u_int)start, 1324 acpi_get_handle(child)); 1325 #endif 1326 1327 /* If the resource is already allocated, fail. */ 1328 if (resource_list_busy(rl, type, rid)) 1329 return (EBUSY); 1330 1331 /* If the resource is already reserved, release it. */ 1332 if (resource_list_reserved(rl, type, rid)) 1333 resource_list_unreserve(rl, dev, child, type, rid); 1334 1335 /* Add the resource. */ 1336 end = (start + count - 1); 1337 resource_list_add(rl, type, rid, start, end, count); 1338 1339 /* Don't reserve resources until the system resources are allocated. */ 1340 if (!sc->acpi_resources_reserved) 1341 return (0); 1342 1343 /* Don't reserve system resources. */ 1344 if (ACPI_ID_PROBE(dev, child, sysres_ids, NULL) <= 0) 1345 return (0); 1346 1347 /* 1348 * Don't reserve IRQ resources. There are many sticky things to 1349 * get right otherwise (e.g. IRQs for psm, atkbd, and HPET when 1350 * using legacy routing). 1351 */ 1352 if (type == SYS_RES_IRQ) 1353 return (0); 1354 1355 /* 1356 * Don't reserve resources for CPU devices. Some of these 1357 * resources need to be allocated as shareable, but reservations 1358 * are always non-shareable. 1359 */ 1360 if (device_get_devclass(child) == devclass_find("cpu")) 1361 return (0); 1362 1363 /* 1364 * Reserve the resource. 1365 * 1366 * XXX: Ignores failure for now. Failure here is probably a 1367 * BIOS/firmware bug? 1368 */ 1369 resource_list_reserve(rl, dev, child, type, &rid, start, end, count, 0); 1370 return (0); 1371 } 1372 1373 static struct resource * 1374 acpi_alloc_resource(device_t bus, device_t child, int type, int *rid, 1375 rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 1376 { 1377 #ifndef INTRNG 1378 ACPI_RESOURCE ares; 1379 #endif 1380 struct acpi_device *ad; 1381 struct resource_list_entry *rle; 1382 struct resource_list *rl; 1383 struct resource *res; 1384 int isdefault = RMAN_IS_DEFAULT_RANGE(start, end); 1385 1386 /* 1387 * First attempt at allocating the resource. For direct children, 1388 * use resource_list_alloc() to handle reserved resources. For 1389 * other devices, pass the request up to our parent. 1390 */ 1391 if (bus == device_get_parent(child)) { 1392 ad = device_get_ivars(child); 1393 rl = &ad->ad_rl; 1394 1395 /* 1396 * Simulate the behavior of the ISA bus for direct children 1397 * devices. That is, if a non-default range is specified for 1398 * a resource that doesn't exist, use bus_set_resource() to 1399 * add the resource before allocating it. Note that these 1400 * resources will not be reserved. 1401 */ 1402 if (!isdefault && resource_list_find(rl, type, *rid) == NULL) 1403 resource_list_add(rl, type, *rid, start, end, count); 1404 res = resource_list_alloc(rl, bus, child, type, rid, start, end, count, 1405 flags); 1406 #ifndef INTRNG 1407 if (res != NULL && type == SYS_RES_IRQ) { 1408 /* 1409 * Since bus_config_intr() takes immediate effect, we cannot 1410 * configure the interrupt associated with a device when we 1411 * parse the resources but have to defer it until a driver 1412 * actually allocates the interrupt via bus_alloc_resource(). 1413 * 1414 * XXX: Should we handle the lookup failing? 1415 */ 1416 if (ACPI_SUCCESS(acpi_lookup_irq_resource(child, *rid, res, &ares))) 1417 acpi_config_intr(child, &ares); 1418 } 1419 #endif 1420 1421 /* 1422 * If this is an allocation of the "default" range for a given 1423 * RID, fetch the exact bounds for this resource from the 1424 * resource list entry to try to allocate the range from the 1425 * system resource regions. 1426 */ 1427 if (res == NULL && isdefault) { 1428 rle = resource_list_find(rl, type, *rid); 1429 if (rle != NULL) { 1430 start = rle->start; 1431 end = rle->end; 1432 count = rle->count; 1433 } 1434 } 1435 } else 1436 res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, type, rid, 1437 start, end, count, flags); 1438 1439 /* 1440 * If the first attempt failed and this is an allocation of a 1441 * specific range, try to satisfy the request via a suballocation 1442 * from our system resource regions. 1443 */ 1444 if (res == NULL && start + count - 1 == end) 1445 res = acpi_alloc_sysres(child, type, rid, start, end, count, flags); 1446 return (res); 1447 } 1448 1449 /* 1450 * Attempt to allocate a specific resource range from the system 1451 * resource ranges. Note that we only handle memory and I/O port 1452 * system resources. 1453 */ 1454 struct resource * 1455 acpi_alloc_sysres(device_t child, int type, int *rid, rman_res_t start, 1456 rman_res_t end, rman_res_t count, u_int flags) 1457 { 1458 struct rman *rm; 1459 struct resource *res; 1460 1461 switch (type) { 1462 case SYS_RES_IOPORT: 1463 rm = &acpi_rman_io; 1464 break; 1465 case SYS_RES_MEMORY: 1466 rm = &acpi_rman_mem; 1467 break; 1468 default: 1469 return (NULL); 1470 } 1471 1472 KASSERT(start + count - 1 == end, ("wildcard resource range")); 1473 res = rman_reserve_resource(rm, start, end, count, flags & ~RF_ACTIVE, 1474 child); 1475 if (res == NULL) 1476 return (NULL); 1477 1478 rman_set_rid(res, *rid); 1479 1480 /* If requested, activate the resource using the parent's method. */ 1481 if (flags & RF_ACTIVE) 1482 if (bus_activate_resource(child, type, *rid, res) != 0) { 1483 rman_release_resource(res); 1484 return (NULL); 1485 } 1486 1487 return (res); 1488 } 1489 1490 static int 1491 acpi_is_resource_managed(int type, struct resource *r) 1492 { 1493 1494 /* We only handle memory and IO resources through rman. */ 1495 switch (type) { 1496 case SYS_RES_IOPORT: 1497 return (rman_is_region_manager(r, &acpi_rman_io)); 1498 case SYS_RES_MEMORY: 1499 return (rman_is_region_manager(r, &acpi_rman_mem)); 1500 } 1501 return (0); 1502 } 1503 1504 static int 1505 acpi_adjust_resource(device_t bus, device_t child, int type, struct resource *r, 1506 rman_res_t start, rman_res_t end) 1507 { 1508 1509 if (acpi_is_resource_managed(type, r)) 1510 return (rman_adjust_resource(r, start, end)); 1511 return (bus_generic_adjust_resource(bus, child, type, r, start, end)); 1512 } 1513 1514 static int 1515 acpi_release_resource(device_t bus, device_t child, int type, int rid, 1516 struct resource *r) 1517 { 1518 int ret; 1519 1520 /* 1521 * If this resource belongs to one of our internal managers, 1522 * deactivate it and release it to the local pool. 1523 */ 1524 if (acpi_is_resource_managed(type, r)) { 1525 if (rman_get_flags(r) & RF_ACTIVE) { 1526 ret = bus_deactivate_resource(child, type, rid, r); 1527 if (ret != 0) 1528 return (ret); 1529 } 1530 return (rman_release_resource(r)); 1531 } 1532 1533 return (bus_generic_rl_release_resource(bus, child, type, rid, r)); 1534 } 1535 1536 static void 1537 acpi_delete_resource(device_t bus, device_t child, int type, int rid) 1538 { 1539 struct resource_list *rl; 1540 1541 rl = acpi_get_rlist(bus, child); 1542 if (resource_list_busy(rl, type, rid)) { 1543 device_printf(bus, "delete_resource: Resource still owned by child" 1544 " (type=%d, rid=%d)\n", type, rid); 1545 return; 1546 } 1547 resource_list_unreserve(rl, bus, child, type, rid); 1548 resource_list_delete(rl, type, rid); 1549 } 1550 1551 /* Allocate an IO port or memory resource, given its GAS. */ 1552 int 1553 acpi_bus_alloc_gas(device_t dev, int *type, int *rid, ACPI_GENERIC_ADDRESS *gas, 1554 struct resource **res, u_int flags) 1555 { 1556 int error, res_type; 1557 1558 error = ENOMEM; 1559 if (type == NULL || rid == NULL || gas == NULL || res == NULL) 1560 return (EINVAL); 1561 1562 /* We only support memory and IO spaces. */ 1563 switch (gas->SpaceId) { 1564 case ACPI_ADR_SPACE_SYSTEM_MEMORY: 1565 res_type = SYS_RES_MEMORY; 1566 break; 1567 case ACPI_ADR_SPACE_SYSTEM_IO: 1568 res_type = SYS_RES_IOPORT; 1569 break; 1570 default: 1571 return (EOPNOTSUPP); 1572 } 1573 1574 /* 1575 * If the register width is less than 8, assume the BIOS author means 1576 * it is a bit field and just allocate a byte. 1577 */ 1578 if (gas->BitWidth && gas->BitWidth < 8) 1579 gas->BitWidth = 8; 1580 1581 /* Validate the address after we're sure we support the space. */ 1582 if (gas->Address == 0 || gas->BitWidth == 0) 1583 return (EINVAL); 1584 1585 bus_set_resource(dev, res_type, *rid, gas->Address, 1586 gas->BitWidth / 8); 1587 *res = bus_alloc_resource_any(dev, res_type, rid, RF_ACTIVE | flags); 1588 if (*res != NULL) { 1589 *type = res_type; 1590 error = 0; 1591 } else 1592 bus_delete_resource(dev, res_type, *rid); 1593 1594 return (error); 1595 } 1596 1597 /* Probe _HID and _CID for compatible ISA PNP ids. */ 1598 static uint32_t 1599 acpi_isa_get_logicalid(device_t dev) 1600 { 1601 ACPI_DEVICE_INFO *devinfo; 1602 ACPI_HANDLE h; 1603 uint32_t pnpid; 1604 1605 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1606 1607 /* Fetch and validate the HID. */ 1608 if ((h = acpi_get_handle(dev)) == NULL || 1609 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 1610 return_VALUE (0); 1611 1612 pnpid = (devinfo->Valid & ACPI_VALID_HID) != 0 && 1613 devinfo->HardwareId.Length >= ACPI_EISAID_STRING_SIZE ? 1614 PNP_EISAID(devinfo->HardwareId.String) : 0; 1615 AcpiOsFree(devinfo); 1616 1617 return_VALUE (pnpid); 1618 } 1619 1620 static int 1621 acpi_isa_get_compatid(device_t dev, uint32_t *cids, int count) 1622 { 1623 ACPI_DEVICE_INFO *devinfo; 1624 ACPI_PNP_DEVICE_ID *ids; 1625 ACPI_HANDLE h; 1626 uint32_t *pnpid; 1627 int i, valid; 1628 1629 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1630 1631 pnpid = cids; 1632 1633 /* Fetch and validate the CID */ 1634 if ((h = acpi_get_handle(dev)) == NULL || 1635 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 1636 return_VALUE (0); 1637 1638 if ((devinfo->Valid & ACPI_VALID_CID) == 0) { 1639 AcpiOsFree(devinfo); 1640 return_VALUE (0); 1641 } 1642 1643 if (devinfo->CompatibleIdList.Count < count) 1644 count = devinfo->CompatibleIdList.Count; 1645 ids = devinfo->CompatibleIdList.Ids; 1646 for (i = 0, valid = 0; i < count; i++) 1647 if (ids[i].Length >= ACPI_EISAID_STRING_SIZE && 1648 strncmp(ids[i].String, "PNP", 3) == 0) { 1649 *pnpid++ = PNP_EISAID(ids[i].String); 1650 valid++; 1651 } 1652 AcpiOsFree(devinfo); 1653 1654 return_VALUE (valid); 1655 } 1656 1657 static int 1658 acpi_device_id_probe(device_t bus, device_t dev, char **ids, char **match) 1659 { 1660 ACPI_HANDLE h; 1661 ACPI_OBJECT_TYPE t; 1662 int rv; 1663 int i; 1664 1665 h = acpi_get_handle(dev); 1666 if (ids == NULL || h == NULL) 1667 return (ENXIO); 1668 t = acpi_get_type(dev); 1669 if (t != ACPI_TYPE_DEVICE && t != ACPI_TYPE_PROCESSOR) 1670 return (ENXIO); 1671 1672 /* Try to match one of the array of IDs with a HID or CID. */ 1673 for (i = 0; ids[i] != NULL; i++) { 1674 rv = acpi_MatchHid(h, ids[i]); 1675 if (rv == ACPI_MATCHHID_NOMATCH) 1676 continue; 1677 1678 if (match != NULL) { 1679 *match = ids[i]; 1680 } 1681 return ((rv == ACPI_MATCHHID_HID)? 1682 BUS_PROBE_DEFAULT : BUS_PROBE_LOW_PRIORITY); 1683 } 1684 return (ENXIO); 1685 } 1686 1687 static ACPI_STATUS 1688 acpi_device_eval_obj(device_t bus, device_t dev, ACPI_STRING pathname, 1689 ACPI_OBJECT_LIST *parameters, ACPI_BUFFER *ret) 1690 { 1691 ACPI_HANDLE h; 1692 1693 if (dev == NULL) 1694 h = ACPI_ROOT_OBJECT; 1695 else if ((h = acpi_get_handle(dev)) == NULL) 1696 return (AE_BAD_PARAMETER); 1697 return (AcpiEvaluateObject(h, pathname, parameters, ret)); 1698 } 1699 1700 int 1701 acpi_device_pwr_for_sleep(device_t bus, device_t dev, int *dstate) 1702 { 1703 struct acpi_softc *sc; 1704 ACPI_HANDLE handle; 1705 ACPI_STATUS status; 1706 char sxd[8]; 1707 1708 handle = acpi_get_handle(dev); 1709 1710 /* 1711 * XXX If we find these devices, don't try to power them down. 1712 * The serial and IRDA ports on my T23 hang the system when 1713 * set to D3 and it appears that such legacy devices may 1714 * need special handling in their drivers. 1715 */ 1716 if (dstate == NULL || handle == NULL || 1717 acpi_MatchHid(handle, "PNP0500") || 1718 acpi_MatchHid(handle, "PNP0501") || 1719 acpi_MatchHid(handle, "PNP0502") || 1720 acpi_MatchHid(handle, "PNP0510") || 1721 acpi_MatchHid(handle, "PNP0511")) 1722 return (ENXIO); 1723 1724 /* 1725 * Override next state with the value from _SxD, if present. 1726 * Note illegal _S0D is evaluated because some systems expect this. 1727 */ 1728 sc = device_get_softc(bus); 1729 snprintf(sxd, sizeof(sxd), "_S%dD", sc->acpi_sstate); 1730 status = acpi_GetInteger(handle, sxd, dstate); 1731 if (ACPI_FAILURE(status) && status != AE_NOT_FOUND) { 1732 device_printf(dev, "failed to get %s on %s: %s\n", sxd, 1733 acpi_name(handle), AcpiFormatException(status)); 1734 return (ENXIO); 1735 } 1736 1737 return (0); 1738 } 1739 1740 /* Callback arg for our implementation of walking the namespace. */ 1741 struct acpi_device_scan_ctx { 1742 acpi_scan_cb_t user_fn; 1743 void *arg; 1744 ACPI_HANDLE parent; 1745 }; 1746 1747 static ACPI_STATUS 1748 acpi_device_scan_cb(ACPI_HANDLE h, UINT32 level, void *arg, void **retval) 1749 { 1750 struct acpi_device_scan_ctx *ctx; 1751 device_t dev, old_dev; 1752 ACPI_STATUS status; 1753 ACPI_OBJECT_TYPE type; 1754 1755 /* 1756 * Skip this device if we think we'll have trouble with it or it is 1757 * the parent where the scan began. 1758 */ 1759 ctx = (struct acpi_device_scan_ctx *)arg; 1760 if (acpi_avoid(h) || h == ctx->parent) 1761 return (AE_OK); 1762 1763 /* If this is not a valid device type (e.g., a method), skip it. */ 1764 if (ACPI_FAILURE(AcpiGetType(h, &type))) 1765 return (AE_OK); 1766 if (type != ACPI_TYPE_DEVICE && type != ACPI_TYPE_PROCESSOR && 1767 type != ACPI_TYPE_THERMAL && type != ACPI_TYPE_POWER) 1768 return (AE_OK); 1769 1770 /* 1771 * Call the user function with the current device. If it is unchanged 1772 * afterwards, return. Otherwise, we update the handle to the new dev. 1773 */ 1774 old_dev = acpi_get_device(h); 1775 dev = old_dev; 1776 status = ctx->user_fn(h, &dev, level, ctx->arg); 1777 if (ACPI_FAILURE(status) || old_dev == dev) 1778 return (status); 1779 1780 /* Remove the old child and its connection to the handle. */ 1781 if (old_dev != NULL) { 1782 device_delete_child(device_get_parent(old_dev), old_dev); 1783 AcpiDetachData(h, acpi_fake_objhandler); 1784 } 1785 1786 /* Recreate the handle association if the user created a device. */ 1787 if (dev != NULL) 1788 AcpiAttachData(h, acpi_fake_objhandler, dev); 1789 1790 return (AE_OK); 1791 } 1792 1793 static ACPI_STATUS 1794 acpi_device_scan_children(device_t bus, device_t dev, int max_depth, 1795 acpi_scan_cb_t user_fn, void *arg) 1796 { 1797 ACPI_HANDLE h; 1798 struct acpi_device_scan_ctx ctx; 1799 1800 if (acpi_disabled("children")) 1801 return (AE_OK); 1802 1803 if (dev == NULL) 1804 h = ACPI_ROOT_OBJECT; 1805 else if ((h = acpi_get_handle(dev)) == NULL) 1806 return (AE_BAD_PARAMETER); 1807 ctx.user_fn = user_fn; 1808 ctx.arg = arg; 1809 ctx.parent = h; 1810 return (AcpiWalkNamespace(ACPI_TYPE_ANY, h, max_depth, 1811 acpi_device_scan_cb, NULL, &ctx, NULL)); 1812 } 1813 1814 /* 1815 * Even though ACPI devices are not PCI, we use the PCI approach for setting 1816 * device power states since it's close enough to ACPI. 1817 */ 1818 static int 1819 acpi_set_powerstate(device_t child, int state) 1820 { 1821 ACPI_HANDLE h; 1822 ACPI_STATUS status; 1823 1824 h = acpi_get_handle(child); 1825 if (state < ACPI_STATE_D0 || state > ACPI_D_STATES_MAX) 1826 return (EINVAL); 1827 if (h == NULL) 1828 return (0); 1829 1830 /* Ignore errors if the power methods aren't present. */ 1831 status = acpi_pwr_switch_consumer(h, state); 1832 if (ACPI_SUCCESS(status)) { 1833 if (bootverbose) 1834 device_printf(child, "set ACPI power state D%d on %s\n", 1835 state, acpi_name(h)); 1836 } else if (status != AE_NOT_FOUND) 1837 device_printf(child, 1838 "failed to set ACPI power state D%d on %s: %s\n", state, 1839 acpi_name(h), AcpiFormatException(status)); 1840 1841 return (0); 1842 } 1843 1844 static int 1845 acpi_isa_pnp_probe(device_t bus, device_t child, struct isa_pnp_id *ids) 1846 { 1847 int result, cid_count, i; 1848 uint32_t lid, cids[8]; 1849 1850 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1851 1852 /* 1853 * ISA-style drivers attached to ACPI may persist and 1854 * probe manually if we return ENOENT. We never want 1855 * that to happen, so don't ever return it. 1856 */ 1857 result = ENXIO; 1858 1859 /* Scan the supplied IDs for a match */ 1860 lid = acpi_isa_get_logicalid(child); 1861 cid_count = acpi_isa_get_compatid(child, cids, 8); 1862 while (ids && ids->ip_id) { 1863 if (lid == ids->ip_id) { 1864 result = 0; 1865 goto out; 1866 } 1867 for (i = 0; i < cid_count; i++) { 1868 if (cids[i] == ids->ip_id) { 1869 result = 0; 1870 goto out; 1871 } 1872 } 1873 ids++; 1874 } 1875 1876 out: 1877 if (result == 0 && ids->ip_desc) 1878 device_set_desc(child, ids->ip_desc); 1879 1880 return_VALUE (result); 1881 } 1882 1883 /* 1884 * Look for a MCFG table. If it is present, use the settings for 1885 * domain (segment) 0 to setup PCI config space access via the memory 1886 * map. 1887 * 1888 * On non-x86 architectures (arm64 for now), this will be done from the 1889 * PCI host bridge driver. 1890 */ 1891 static void 1892 acpi_enable_pcie(void) 1893 { 1894 #if defined(__i386__) || defined(__amd64__) 1895 ACPI_TABLE_HEADER *hdr; 1896 ACPI_MCFG_ALLOCATION *alloc, *end; 1897 ACPI_STATUS status; 1898 1899 status = AcpiGetTable(ACPI_SIG_MCFG, 1, &hdr); 1900 if (ACPI_FAILURE(status)) 1901 return; 1902 1903 end = (ACPI_MCFG_ALLOCATION *)((char *)hdr + hdr->Length); 1904 alloc = (ACPI_MCFG_ALLOCATION *)((ACPI_TABLE_MCFG *)hdr + 1); 1905 while (alloc < end) { 1906 if (alloc->PciSegment == 0) { 1907 pcie_cfgregopen(alloc->Address, alloc->StartBusNumber, 1908 alloc->EndBusNumber); 1909 return; 1910 } 1911 alloc++; 1912 } 1913 #endif 1914 } 1915 1916 /* 1917 * Scan all of the ACPI namespace and attach child devices. 1918 * 1919 * We should only expect to find devices in the \_PR, \_TZ, \_SI, and 1920 * \_SB scopes, and \_PR and \_TZ became obsolete in the ACPI 2.0 spec. 1921 * However, in violation of the spec, some systems place their PCI link 1922 * devices in \, so we have to walk the whole namespace. We check the 1923 * type of namespace nodes, so this should be ok. 1924 */ 1925 static void 1926 acpi_probe_children(device_t bus) 1927 { 1928 1929 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1930 1931 /* 1932 * Scan the namespace and insert placeholders for all the devices that 1933 * we find. We also probe/attach any early devices. 1934 * 1935 * Note that we use AcpiWalkNamespace rather than AcpiGetDevices because 1936 * we want to create nodes for all devices, not just those that are 1937 * currently present. (This assumes that we don't want to create/remove 1938 * devices as they appear, which might be smarter.) 1939 */ 1940 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "namespace scan\n")); 1941 AcpiWalkNamespace(ACPI_TYPE_ANY, ACPI_ROOT_OBJECT, 100, acpi_probe_child, 1942 NULL, bus, NULL); 1943 1944 /* Pre-allocate resources for our rman from any sysresource devices. */ 1945 acpi_sysres_alloc(bus); 1946 1947 /* Reserve resources already allocated to children. */ 1948 acpi_reserve_resources(bus); 1949 1950 /* Create any static children by calling device identify methods. */ 1951 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "device identify routines\n")); 1952 bus_generic_probe(bus); 1953 1954 /* Probe/attach all children, created statically and from the namespace. */ 1955 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "acpi bus_generic_attach\n")); 1956 bus_generic_attach(bus); 1957 1958 /* Attach wake sysctls. */ 1959 acpi_wake_sysctl_walk(bus); 1960 1961 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "done attaching children\n")); 1962 return_VOID; 1963 } 1964 1965 /* 1966 * Determine the probe order for a given device. 1967 */ 1968 static void 1969 acpi_probe_order(ACPI_HANDLE handle, int *order) 1970 { 1971 ACPI_OBJECT_TYPE type; 1972 1973 /* 1974 * 0. CPUs 1975 * 1. I/O port and memory system resource holders 1976 * 2. Clocks and timers (to handle early accesses) 1977 * 3. Embedded controllers (to handle early accesses) 1978 * 4. PCI Link Devices 1979 */ 1980 AcpiGetType(handle, &type); 1981 if (type == ACPI_TYPE_PROCESSOR) 1982 *order = 0; 1983 else if (acpi_MatchHid(handle, "PNP0C01") || 1984 acpi_MatchHid(handle, "PNP0C02")) 1985 *order = 1; 1986 else if (acpi_MatchHid(handle, "PNP0100") || 1987 acpi_MatchHid(handle, "PNP0103") || 1988 acpi_MatchHid(handle, "PNP0B00")) 1989 *order = 2; 1990 else if (acpi_MatchHid(handle, "PNP0C09")) 1991 *order = 3; 1992 else if (acpi_MatchHid(handle, "PNP0C0F")) 1993 *order = 4; 1994 } 1995 1996 /* 1997 * Evaluate a child device and determine whether we might attach a device to 1998 * it. 1999 */ 2000 static ACPI_STATUS 2001 acpi_probe_child(ACPI_HANDLE handle, UINT32 level, void *context, void **status) 2002 { 2003 ACPI_DEVICE_INFO *devinfo; 2004 struct acpi_device *ad; 2005 struct acpi_prw_data prw; 2006 ACPI_OBJECT_TYPE type; 2007 ACPI_HANDLE h; 2008 device_t bus, child; 2009 char *handle_str; 2010 int order; 2011 2012 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 2013 2014 if (acpi_disabled("children")) 2015 return_ACPI_STATUS (AE_OK); 2016 2017 /* Skip this device if we think we'll have trouble with it. */ 2018 if (acpi_avoid(handle)) 2019 return_ACPI_STATUS (AE_OK); 2020 2021 bus = (device_t)context; 2022 if (ACPI_SUCCESS(AcpiGetType(handle, &type))) { 2023 handle_str = acpi_name(handle); 2024 switch (type) { 2025 case ACPI_TYPE_DEVICE: 2026 /* 2027 * Since we scan from \, be sure to skip system scope objects. 2028 * \_SB_ and \_TZ_ are defined in ACPICA as devices to work around 2029 * BIOS bugs. For example, \_SB_ is to allow \_SB_._INI to be run 2030 * during the initialization and \_TZ_ is to support Notify() on it. 2031 */ 2032 if (strcmp(handle_str, "\\_SB_") == 0 || 2033 strcmp(handle_str, "\\_TZ_") == 0) 2034 break; 2035 if (acpi_parse_prw(handle, &prw) == 0) 2036 AcpiSetupGpeForWake(handle, prw.gpe_handle, prw.gpe_bit); 2037 2038 /* 2039 * Ignore devices that do not have a _HID or _CID. They should 2040 * be discovered by other buses (e.g. the PCI bus driver). 2041 */ 2042 if (!acpi_has_hid(handle)) 2043 break; 2044 /* FALLTHROUGH */ 2045 case ACPI_TYPE_PROCESSOR: 2046 case ACPI_TYPE_THERMAL: 2047 case ACPI_TYPE_POWER: 2048 /* 2049 * Create a placeholder device for this node. Sort the 2050 * placeholder so that the probe/attach passes will run 2051 * breadth-first. Orders less than ACPI_DEV_BASE_ORDER 2052 * are reserved for special objects (i.e., system 2053 * resources). 2054 */ 2055 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "scanning '%s'\n", handle_str)); 2056 order = level * 10 + ACPI_DEV_BASE_ORDER; 2057 acpi_probe_order(handle, &order); 2058 child = BUS_ADD_CHILD(bus, order, NULL, -1); 2059 if (child == NULL) 2060 break; 2061 2062 /* Associate the handle with the device_t and vice versa. */ 2063 acpi_set_handle(child, handle); 2064 AcpiAttachData(handle, acpi_fake_objhandler, child); 2065 2066 /* 2067 * Check that the device is present. If it's not present, 2068 * leave it disabled (so that we have a device_t attached to 2069 * the handle, but we don't probe it). 2070 * 2071 * XXX PCI link devices sometimes report "present" but not 2072 * "functional" (i.e. if disabled). Go ahead and probe them 2073 * anyway since we may enable them later. 2074 */ 2075 if (type == ACPI_TYPE_DEVICE && !acpi_DeviceIsPresent(child)) { 2076 /* Never disable PCI link devices. */ 2077 if (acpi_MatchHid(handle, "PNP0C0F")) 2078 break; 2079 /* 2080 * Docking stations should remain enabled since the system 2081 * may be undocked at boot. 2082 */ 2083 if (ACPI_SUCCESS(AcpiGetHandle(handle, "_DCK", &h))) 2084 break; 2085 2086 device_disable(child); 2087 break; 2088 } 2089 2090 /* 2091 * Get the device's resource settings and attach them. 2092 * Note that if the device has _PRS but no _CRS, we need 2093 * to decide when it's appropriate to try to configure the 2094 * device. Ignore the return value here; it's OK for the 2095 * device not to have any resources. 2096 */ 2097 acpi_parse_resources(child, handle, &acpi_res_parse_set, NULL); 2098 2099 ad = device_get_ivars(child); 2100 ad->ad_cls_class = 0xffffff; 2101 if (ACPI_SUCCESS(AcpiGetObjectInfo(handle, &devinfo))) { 2102 if ((devinfo->Valid & ACPI_VALID_CLS) != 0 && 2103 devinfo->ClassCode.Length >= ACPI_PCICLS_STRING_SIZE) { 2104 ad->ad_cls_class = strtoul(devinfo->ClassCode.String, 2105 NULL, 16); 2106 } 2107 AcpiOsFree(devinfo); 2108 } 2109 break; 2110 } 2111 } 2112 2113 return_ACPI_STATUS (AE_OK); 2114 } 2115 2116 /* 2117 * AcpiAttachData() requires an object handler but never uses it. This is a 2118 * placeholder object handler so we can store a device_t in an ACPI_HANDLE. 2119 */ 2120 void 2121 acpi_fake_objhandler(ACPI_HANDLE h, void *data) 2122 { 2123 } 2124 2125 static void 2126 acpi_shutdown_final(void *arg, int howto) 2127 { 2128 struct acpi_softc *sc = (struct acpi_softc *)arg; 2129 register_t intr; 2130 ACPI_STATUS status; 2131 2132 /* 2133 * XXX Shutdown code should only run on the BSP (cpuid 0). 2134 * Some chipsets do not power off the system correctly if called from 2135 * an AP. 2136 */ 2137 if ((howto & RB_POWEROFF) != 0) { 2138 status = AcpiEnterSleepStatePrep(ACPI_STATE_S5); 2139 if (ACPI_FAILURE(status)) { 2140 device_printf(sc->acpi_dev, "AcpiEnterSleepStatePrep failed - %s\n", 2141 AcpiFormatException(status)); 2142 return; 2143 } 2144 device_printf(sc->acpi_dev, "Powering system off\n"); 2145 intr = intr_disable(); 2146 status = AcpiEnterSleepState(ACPI_STATE_S5); 2147 if (ACPI_FAILURE(status)) { 2148 intr_restore(intr); 2149 device_printf(sc->acpi_dev, "power-off failed - %s\n", 2150 AcpiFormatException(status)); 2151 } else { 2152 DELAY(1000000); 2153 intr_restore(intr); 2154 device_printf(sc->acpi_dev, "power-off failed - timeout\n"); 2155 } 2156 } else if ((howto & RB_HALT) == 0 && sc->acpi_handle_reboot) { 2157 /* Reboot using the reset register. */ 2158 status = AcpiReset(); 2159 if (ACPI_SUCCESS(status)) { 2160 DELAY(1000000); 2161 device_printf(sc->acpi_dev, "reset failed - timeout\n"); 2162 } else if (status != AE_NOT_EXIST) 2163 device_printf(sc->acpi_dev, "reset failed - %s\n", 2164 AcpiFormatException(status)); 2165 } else if (sc->acpi_do_disable && panicstr == NULL) { 2166 /* 2167 * Only disable ACPI if the user requested. On some systems, writing 2168 * the disable value to SMI_CMD hangs the system. 2169 */ 2170 device_printf(sc->acpi_dev, "Shutting down\n"); 2171 AcpiTerminate(); 2172 } 2173 } 2174 2175 static void 2176 acpi_enable_fixed_events(struct acpi_softc *sc) 2177 { 2178 static int first_time = 1; 2179 2180 /* Enable and clear fixed events and install handlers. */ 2181 if ((AcpiGbl_FADT.Flags & ACPI_FADT_POWER_BUTTON) == 0) { 2182 AcpiClearEvent(ACPI_EVENT_POWER_BUTTON); 2183 AcpiInstallFixedEventHandler(ACPI_EVENT_POWER_BUTTON, 2184 acpi_event_power_button_sleep, sc); 2185 if (first_time) 2186 device_printf(sc->acpi_dev, "Power Button (fixed)\n"); 2187 } 2188 if ((AcpiGbl_FADT.Flags & ACPI_FADT_SLEEP_BUTTON) == 0) { 2189 AcpiClearEvent(ACPI_EVENT_SLEEP_BUTTON); 2190 AcpiInstallFixedEventHandler(ACPI_EVENT_SLEEP_BUTTON, 2191 acpi_event_sleep_button_sleep, sc); 2192 if (first_time) 2193 device_printf(sc->acpi_dev, "Sleep Button (fixed)\n"); 2194 } 2195 2196 first_time = 0; 2197 } 2198 2199 /* 2200 * Returns true if the device is actually present and should 2201 * be attached to. This requires the present, enabled, UI-visible 2202 * and diagnostics-passed bits to be set. 2203 */ 2204 BOOLEAN 2205 acpi_DeviceIsPresent(device_t dev) 2206 { 2207 ACPI_HANDLE h; 2208 UINT32 s; 2209 ACPI_STATUS status; 2210 2211 h = acpi_get_handle(dev); 2212 if (h == NULL) 2213 return (FALSE); 2214 /* 2215 * Certain Treadripper boards always returns 0 for FreeBSD because it 2216 * only returns non-zero for the OS string "Windows 2015". Otherwise it 2217 * will return zero. Force them to always be treated as present. 2218 * Beata versions were worse: they always returned 0. 2219 */ 2220 if (acpi_MatchHid(h, "AMDI0020") || acpi_MatchHid(h, "AMDI0010")) 2221 return (TRUE); 2222 2223 status = acpi_GetInteger(h, "_STA", &s); 2224 2225 /* 2226 * If no _STA method or if it failed, then assume that 2227 * the device is present. 2228 */ 2229 if (ACPI_FAILURE(status)) 2230 return (TRUE); 2231 2232 return (ACPI_DEVICE_PRESENT(s) ? TRUE : FALSE); 2233 } 2234 2235 /* 2236 * Returns true if the battery is actually present and inserted. 2237 */ 2238 BOOLEAN 2239 acpi_BatteryIsPresent(device_t dev) 2240 { 2241 ACPI_HANDLE h; 2242 UINT32 s; 2243 ACPI_STATUS status; 2244 2245 h = acpi_get_handle(dev); 2246 if (h == NULL) 2247 return (FALSE); 2248 status = acpi_GetInteger(h, "_STA", &s); 2249 2250 /* 2251 * If no _STA method or if it failed, then assume that 2252 * the device is present. 2253 */ 2254 if (ACPI_FAILURE(status)) 2255 return (TRUE); 2256 2257 return (ACPI_BATTERY_PRESENT(s) ? TRUE : FALSE); 2258 } 2259 2260 /* 2261 * Returns true if a device has at least one valid device ID. 2262 */ 2263 static BOOLEAN 2264 acpi_has_hid(ACPI_HANDLE h) 2265 { 2266 ACPI_DEVICE_INFO *devinfo; 2267 BOOLEAN ret; 2268 2269 if (h == NULL || 2270 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 2271 return (FALSE); 2272 2273 ret = FALSE; 2274 if ((devinfo->Valid & ACPI_VALID_HID) != 0) 2275 ret = TRUE; 2276 else if ((devinfo->Valid & ACPI_VALID_CID) != 0) 2277 if (devinfo->CompatibleIdList.Count > 0) 2278 ret = TRUE; 2279 2280 AcpiOsFree(devinfo); 2281 return (ret); 2282 } 2283 2284 /* 2285 * Match a HID string against a handle 2286 * returns ACPI_MATCHHID_HID if _HID match 2287 * ACPI_MATCHHID_CID if _CID match and not _HID match. 2288 * ACPI_MATCHHID_NOMATCH=0 if no match. 2289 */ 2290 int 2291 acpi_MatchHid(ACPI_HANDLE h, const char *hid) 2292 { 2293 ACPI_DEVICE_INFO *devinfo; 2294 BOOLEAN ret; 2295 int i; 2296 2297 if (hid == NULL || h == NULL || 2298 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 2299 return (ACPI_MATCHHID_NOMATCH); 2300 2301 ret = ACPI_MATCHHID_NOMATCH; 2302 if ((devinfo->Valid & ACPI_VALID_HID) != 0 && 2303 strcmp(hid, devinfo->HardwareId.String) == 0) 2304 ret = ACPI_MATCHHID_HID; 2305 else if ((devinfo->Valid & ACPI_VALID_CID) != 0) 2306 for (i = 0; i < devinfo->CompatibleIdList.Count; i++) { 2307 if (strcmp(hid, devinfo->CompatibleIdList.Ids[i].String) == 0) { 2308 ret = ACPI_MATCHHID_CID; 2309 break; 2310 } 2311 } 2312 2313 AcpiOsFree(devinfo); 2314 return (ret); 2315 } 2316 2317 /* 2318 * Return the handle of a named object within our scope, ie. that of (parent) 2319 * or one if its parents. 2320 */ 2321 ACPI_STATUS 2322 acpi_GetHandleInScope(ACPI_HANDLE parent, char *path, ACPI_HANDLE *result) 2323 { 2324 ACPI_HANDLE r; 2325 ACPI_STATUS status; 2326 2327 /* Walk back up the tree to the root */ 2328 for (;;) { 2329 status = AcpiGetHandle(parent, path, &r); 2330 if (ACPI_SUCCESS(status)) { 2331 *result = r; 2332 return (AE_OK); 2333 } 2334 /* XXX Return error here? */ 2335 if (status != AE_NOT_FOUND) 2336 return (AE_OK); 2337 if (ACPI_FAILURE(AcpiGetParent(parent, &r))) 2338 return (AE_NOT_FOUND); 2339 parent = r; 2340 } 2341 } 2342 2343 /* 2344 * Allocate a buffer with a preset data size. 2345 */ 2346 ACPI_BUFFER * 2347 acpi_AllocBuffer(int size) 2348 { 2349 ACPI_BUFFER *buf; 2350 2351 if ((buf = malloc(size + sizeof(*buf), M_ACPIDEV, M_NOWAIT)) == NULL) 2352 return (NULL); 2353 buf->Length = size; 2354 buf->Pointer = (void *)(buf + 1); 2355 return (buf); 2356 } 2357 2358 ACPI_STATUS 2359 acpi_SetInteger(ACPI_HANDLE handle, char *path, UINT32 number) 2360 { 2361 ACPI_OBJECT arg1; 2362 ACPI_OBJECT_LIST args; 2363 2364 arg1.Type = ACPI_TYPE_INTEGER; 2365 arg1.Integer.Value = number; 2366 args.Count = 1; 2367 args.Pointer = &arg1; 2368 2369 return (AcpiEvaluateObject(handle, path, &args, NULL)); 2370 } 2371 2372 /* 2373 * Evaluate a path that should return an integer. 2374 */ 2375 ACPI_STATUS 2376 acpi_GetInteger(ACPI_HANDLE handle, char *path, UINT32 *number) 2377 { 2378 ACPI_STATUS status; 2379 ACPI_BUFFER buf; 2380 ACPI_OBJECT param; 2381 2382 if (handle == NULL) 2383 handle = ACPI_ROOT_OBJECT; 2384 2385 /* 2386 * Assume that what we've been pointed at is an Integer object, or 2387 * a method that will return an Integer. 2388 */ 2389 buf.Pointer = ¶m; 2390 buf.Length = sizeof(param); 2391 status = AcpiEvaluateObject(handle, path, NULL, &buf); 2392 if (ACPI_SUCCESS(status)) { 2393 if (param.Type == ACPI_TYPE_INTEGER) 2394 *number = param.Integer.Value; 2395 else 2396 status = AE_TYPE; 2397 } 2398 2399 /* 2400 * In some applications, a method that's expected to return an Integer 2401 * may instead return a Buffer (probably to simplify some internal 2402 * arithmetic). We'll try to fetch whatever it is, and if it's a Buffer, 2403 * convert it into an Integer as best we can. 2404 * 2405 * This is a hack. 2406 */ 2407 if (status == AE_BUFFER_OVERFLOW) { 2408 if ((buf.Pointer = AcpiOsAllocate(buf.Length)) == NULL) { 2409 status = AE_NO_MEMORY; 2410 } else { 2411 status = AcpiEvaluateObject(handle, path, NULL, &buf); 2412 if (ACPI_SUCCESS(status)) 2413 status = acpi_ConvertBufferToInteger(&buf, number); 2414 AcpiOsFree(buf.Pointer); 2415 } 2416 } 2417 return (status); 2418 } 2419 2420 ACPI_STATUS 2421 acpi_ConvertBufferToInteger(ACPI_BUFFER *bufp, UINT32 *number) 2422 { 2423 ACPI_OBJECT *p; 2424 UINT8 *val; 2425 int i; 2426 2427 p = (ACPI_OBJECT *)bufp->Pointer; 2428 if (p->Type == ACPI_TYPE_INTEGER) { 2429 *number = p->Integer.Value; 2430 return (AE_OK); 2431 } 2432 if (p->Type != ACPI_TYPE_BUFFER) 2433 return (AE_TYPE); 2434 if (p->Buffer.Length > sizeof(int)) 2435 return (AE_BAD_DATA); 2436 2437 *number = 0; 2438 val = p->Buffer.Pointer; 2439 for (i = 0; i < p->Buffer.Length; i++) 2440 *number += val[i] << (i * 8); 2441 return (AE_OK); 2442 } 2443 2444 /* 2445 * Iterate over the elements of an a package object, calling the supplied 2446 * function for each element. 2447 * 2448 * XXX possible enhancement might be to abort traversal on error. 2449 */ 2450 ACPI_STATUS 2451 acpi_ForeachPackageObject(ACPI_OBJECT *pkg, 2452 void (*func)(ACPI_OBJECT *comp, void *arg), void *arg) 2453 { 2454 ACPI_OBJECT *comp; 2455 int i; 2456 2457 if (pkg == NULL || pkg->Type != ACPI_TYPE_PACKAGE) 2458 return (AE_BAD_PARAMETER); 2459 2460 /* Iterate over components */ 2461 i = 0; 2462 comp = pkg->Package.Elements; 2463 for (; i < pkg->Package.Count; i++, comp++) 2464 func(comp, arg); 2465 2466 return (AE_OK); 2467 } 2468 2469 /* 2470 * Find the (index)th resource object in a set. 2471 */ 2472 ACPI_STATUS 2473 acpi_FindIndexedResource(ACPI_BUFFER *buf, int index, ACPI_RESOURCE **resp) 2474 { 2475 ACPI_RESOURCE *rp; 2476 int i; 2477 2478 rp = (ACPI_RESOURCE *)buf->Pointer; 2479 i = index; 2480 while (i-- > 0) { 2481 /* Range check */ 2482 if (rp > (ACPI_RESOURCE *)((u_int8_t *)buf->Pointer + buf->Length)) 2483 return (AE_BAD_PARAMETER); 2484 2485 /* Check for terminator */ 2486 if (rp->Type == ACPI_RESOURCE_TYPE_END_TAG || rp->Length == 0) 2487 return (AE_NOT_FOUND); 2488 rp = ACPI_NEXT_RESOURCE(rp); 2489 } 2490 if (resp != NULL) 2491 *resp = rp; 2492 2493 return (AE_OK); 2494 } 2495 2496 /* 2497 * Append an ACPI_RESOURCE to an ACPI_BUFFER. 2498 * 2499 * Given a pointer to an ACPI_RESOURCE structure, expand the ACPI_BUFFER 2500 * provided to contain it. If the ACPI_BUFFER is empty, allocate a sensible 2501 * backing block. If the ACPI_RESOURCE is NULL, return an empty set of 2502 * resources. 2503 */ 2504 #define ACPI_INITIAL_RESOURCE_BUFFER_SIZE 512 2505 2506 ACPI_STATUS 2507 acpi_AppendBufferResource(ACPI_BUFFER *buf, ACPI_RESOURCE *res) 2508 { 2509 ACPI_RESOURCE *rp; 2510 void *newp; 2511 2512 /* Initialise the buffer if necessary. */ 2513 if (buf->Pointer == NULL) { 2514 buf->Length = ACPI_INITIAL_RESOURCE_BUFFER_SIZE; 2515 if ((buf->Pointer = AcpiOsAllocate(buf->Length)) == NULL) 2516 return (AE_NO_MEMORY); 2517 rp = (ACPI_RESOURCE *)buf->Pointer; 2518 rp->Type = ACPI_RESOURCE_TYPE_END_TAG; 2519 rp->Length = ACPI_RS_SIZE_MIN; 2520 } 2521 if (res == NULL) 2522 return (AE_OK); 2523 2524 /* 2525 * Scan the current buffer looking for the terminator. 2526 * This will either find the terminator or hit the end 2527 * of the buffer and return an error. 2528 */ 2529 rp = (ACPI_RESOURCE *)buf->Pointer; 2530 for (;;) { 2531 /* Range check, don't go outside the buffer */ 2532 if (rp >= (ACPI_RESOURCE *)((u_int8_t *)buf->Pointer + buf->Length)) 2533 return (AE_BAD_PARAMETER); 2534 if (rp->Type == ACPI_RESOURCE_TYPE_END_TAG || rp->Length == 0) 2535 break; 2536 rp = ACPI_NEXT_RESOURCE(rp); 2537 } 2538 2539 /* 2540 * Check the size of the buffer and expand if required. 2541 * 2542 * Required size is: 2543 * size of existing resources before terminator + 2544 * size of new resource and header + 2545 * size of terminator. 2546 * 2547 * Note that this loop should really only run once, unless 2548 * for some reason we are stuffing a *really* huge resource. 2549 */ 2550 while ((((u_int8_t *)rp - (u_int8_t *)buf->Pointer) + 2551 res->Length + ACPI_RS_SIZE_NO_DATA + 2552 ACPI_RS_SIZE_MIN) >= buf->Length) { 2553 if ((newp = AcpiOsAllocate(buf->Length * 2)) == NULL) 2554 return (AE_NO_MEMORY); 2555 bcopy(buf->Pointer, newp, buf->Length); 2556 rp = (ACPI_RESOURCE *)((u_int8_t *)newp + 2557 ((u_int8_t *)rp - (u_int8_t *)buf->Pointer)); 2558 AcpiOsFree(buf->Pointer); 2559 buf->Pointer = newp; 2560 buf->Length += buf->Length; 2561 } 2562 2563 /* Insert the new resource. */ 2564 bcopy(res, rp, res->Length + ACPI_RS_SIZE_NO_DATA); 2565 2566 /* And add the terminator. */ 2567 rp = ACPI_NEXT_RESOURCE(rp); 2568 rp->Type = ACPI_RESOURCE_TYPE_END_TAG; 2569 rp->Length = ACPI_RS_SIZE_MIN; 2570 2571 return (AE_OK); 2572 } 2573 2574 UINT8 2575 acpi_DSMQuery(ACPI_HANDLE h, uint8_t *uuid, int revision) 2576 { 2577 /* 2578 * ACPI spec 9.1.1 defines this. 2579 * 2580 * "Arg2: Function Index Represents a specific function whose meaning is 2581 * specific to the UUID and Revision ID. Function indices should start 2582 * with 1. Function number zero is a query function (see the special 2583 * return code defined below)." 2584 */ 2585 ACPI_BUFFER buf; 2586 ACPI_OBJECT *obj; 2587 UINT8 ret = 0; 2588 2589 if (!ACPI_SUCCESS(acpi_EvaluateDSM(h, uuid, revision, 0, NULL, &buf))) { 2590 ACPI_INFO(("Failed to enumerate DSM functions\n")); 2591 return (0); 2592 } 2593 2594 obj = (ACPI_OBJECT *)buf.Pointer; 2595 KASSERT(obj, ("Object not allowed to be NULL\n")); 2596 2597 /* 2598 * From ACPI 6.2 spec 9.1.1: 2599 * If Function Index = 0, a Buffer containing a function index bitfield. 2600 * Otherwise, the return value and type depends on the UUID and revision 2601 * ID (see below). 2602 */ 2603 switch (obj->Type) { 2604 case ACPI_TYPE_BUFFER: 2605 ret = *(uint8_t *)obj->Buffer.Pointer; 2606 break; 2607 case ACPI_TYPE_INTEGER: 2608 ACPI_BIOS_WARNING((AE_INFO, 2609 "Possibly buggy BIOS with ACPI_TYPE_INTEGER for function enumeration\n")); 2610 ret = obj->Integer.Value & 0xFF; 2611 break; 2612 default: 2613 ACPI_WARNING((AE_INFO, "Unexpected return type %u\n", obj->Type)); 2614 }; 2615 2616 AcpiOsFree(obj); 2617 return ret; 2618 } 2619 2620 /* 2621 * DSM may return multiple types depending on the function. It is therefore 2622 * unsafe to use the typed evaluation. It is highly recommended that the caller 2623 * check the type of the returned object. 2624 */ 2625 ACPI_STATUS 2626 acpi_EvaluateDSM(ACPI_HANDLE handle, uint8_t *uuid, int revision, 2627 uint64_t function, union acpi_object *package, ACPI_BUFFER *out_buf) 2628 { 2629 ACPI_OBJECT arg[4]; 2630 ACPI_OBJECT_LIST arglist; 2631 ACPI_BUFFER buf; 2632 ACPI_STATUS status; 2633 2634 if (out_buf == NULL) 2635 return (AE_NO_MEMORY); 2636 2637 arg[0].Type = ACPI_TYPE_BUFFER; 2638 arg[0].Buffer.Length = ACPI_UUID_LENGTH; 2639 arg[0].Buffer.Pointer = uuid; 2640 arg[1].Type = ACPI_TYPE_INTEGER; 2641 arg[1].Integer.Value = revision; 2642 arg[2].Type = ACPI_TYPE_INTEGER; 2643 arg[2].Integer.Value = function; 2644 if (package) { 2645 arg[3] = *package; 2646 } else { 2647 arg[3].Type = ACPI_TYPE_PACKAGE; 2648 arg[3].Package.Count = 0; 2649 arg[3].Package.Elements = NULL; 2650 } 2651 2652 arglist.Pointer = arg; 2653 arglist.Count = 4; 2654 buf.Pointer = NULL; 2655 buf.Length = ACPI_ALLOCATE_BUFFER; 2656 status = AcpiEvaluateObject(handle, "_DSM", &arglist, &buf); 2657 if (ACPI_FAILURE(status)) 2658 return (status); 2659 2660 KASSERT(ACPI_SUCCESS(status), ("Unexpected status")); 2661 2662 *out_buf = buf; 2663 return (status); 2664 } 2665 2666 ACPI_STATUS 2667 acpi_EvaluateOSC(ACPI_HANDLE handle, uint8_t *uuid, int revision, int count, 2668 uint32_t *caps_in, uint32_t *caps_out, bool query) 2669 { 2670 ACPI_OBJECT arg[4], *ret; 2671 ACPI_OBJECT_LIST arglist; 2672 ACPI_BUFFER buf; 2673 ACPI_STATUS status; 2674 2675 arglist.Pointer = arg; 2676 arglist.Count = 4; 2677 arg[0].Type = ACPI_TYPE_BUFFER; 2678 arg[0].Buffer.Length = ACPI_UUID_LENGTH; 2679 arg[0].Buffer.Pointer = uuid; 2680 arg[1].Type = ACPI_TYPE_INTEGER; 2681 arg[1].Integer.Value = revision; 2682 arg[2].Type = ACPI_TYPE_INTEGER; 2683 arg[2].Integer.Value = count; 2684 arg[3].Type = ACPI_TYPE_BUFFER; 2685 arg[3].Buffer.Length = count * sizeof(*caps_in); 2686 arg[3].Buffer.Pointer = (uint8_t *)caps_in; 2687 caps_in[0] = query ? 1 : 0; 2688 buf.Pointer = NULL; 2689 buf.Length = ACPI_ALLOCATE_BUFFER; 2690 status = AcpiEvaluateObjectTyped(handle, "_OSC", &arglist, &buf, 2691 ACPI_TYPE_BUFFER); 2692 if (ACPI_FAILURE(status)) 2693 return (status); 2694 if (caps_out != NULL) { 2695 ret = buf.Pointer; 2696 if (ret->Buffer.Length != count * sizeof(*caps_out)) { 2697 AcpiOsFree(buf.Pointer); 2698 return (AE_BUFFER_OVERFLOW); 2699 } 2700 bcopy(ret->Buffer.Pointer, caps_out, ret->Buffer.Length); 2701 } 2702 AcpiOsFree(buf.Pointer); 2703 return (status); 2704 } 2705 2706 /* 2707 * Set interrupt model. 2708 */ 2709 ACPI_STATUS 2710 acpi_SetIntrModel(int model) 2711 { 2712 2713 return (acpi_SetInteger(ACPI_ROOT_OBJECT, "_PIC", model)); 2714 } 2715 2716 /* 2717 * Walk subtables of a table and call a callback routine for each 2718 * subtable. The caller should provide the first subtable and a 2719 * pointer to the end of the table. This can be used to walk tables 2720 * such as MADT and SRAT that use subtable entries. 2721 */ 2722 void 2723 acpi_walk_subtables(void *first, void *end, acpi_subtable_handler *handler, 2724 void *arg) 2725 { 2726 ACPI_SUBTABLE_HEADER *entry; 2727 2728 for (entry = first; (void *)entry < end; ) { 2729 /* Avoid an infinite loop if we hit a bogus entry. */ 2730 if (entry->Length < sizeof(ACPI_SUBTABLE_HEADER)) 2731 return; 2732 2733 handler(entry, arg); 2734 entry = ACPI_ADD_PTR(ACPI_SUBTABLE_HEADER, entry, entry->Length); 2735 } 2736 } 2737 2738 /* 2739 * DEPRECATED. This interface has serious deficiencies and will be 2740 * removed. 2741 * 2742 * Immediately enter the sleep state. In the old model, acpiconf(8) ran 2743 * rc.suspend and rc.resume so we don't have to notify devd(8) to do this. 2744 */ 2745 ACPI_STATUS 2746 acpi_SetSleepState(struct acpi_softc *sc, int state) 2747 { 2748 static int once; 2749 2750 if (!once) { 2751 device_printf(sc->acpi_dev, 2752 "warning: acpi_SetSleepState() deprecated, need to update your software\n"); 2753 once = 1; 2754 } 2755 return (acpi_EnterSleepState(sc, state)); 2756 } 2757 2758 #if defined(__amd64__) || defined(__i386__) 2759 static void 2760 acpi_sleep_force_task(void *context) 2761 { 2762 struct acpi_softc *sc = (struct acpi_softc *)context; 2763 2764 if (ACPI_FAILURE(acpi_EnterSleepState(sc, sc->acpi_next_sstate))) 2765 device_printf(sc->acpi_dev, "force sleep state S%d failed\n", 2766 sc->acpi_next_sstate); 2767 } 2768 2769 static void 2770 acpi_sleep_force(void *arg) 2771 { 2772 struct acpi_softc *sc = (struct acpi_softc *)arg; 2773 2774 device_printf(sc->acpi_dev, 2775 "suspend request timed out, forcing sleep now\n"); 2776 /* 2777 * XXX Suspending from callout causes freezes in DEVICE_SUSPEND(). 2778 * Suspend from acpi_task thread instead. 2779 */ 2780 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 2781 acpi_sleep_force_task, sc))) 2782 device_printf(sc->acpi_dev, "AcpiOsExecute() for sleeping failed\n"); 2783 } 2784 #endif 2785 2786 /* 2787 * Request that the system enter the given suspend state. All /dev/apm 2788 * devices and devd(8) will be notified. Userland then has a chance to 2789 * save state and acknowledge the request. The system sleeps once all 2790 * acks are in. 2791 */ 2792 int 2793 acpi_ReqSleepState(struct acpi_softc *sc, int state) 2794 { 2795 #if defined(__amd64__) || defined(__i386__) 2796 struct apm_clone_data *clone; 2797 ACPI_STATUS status; 2798 2799 if (state < ACPI_STATE_S1 || state > ACPI_S_STATES_MAX) 2800 return (EINVAL); 2801 if (!acpi_sleep_states[state]) 2802 return (EOPNOTSUPP); 2803 2804 /* 2805 * If a reboot/shutdown/suspend request is already in progress or 2806 * suspend is blocked due to an upcoming shutdown, just return. 2807 */ 2808 if (rebooting || sc->acpi_next_sstate != 0 || suspend_blocked) { 2809 return (0); 2810 } 2811 2812 /* Wait until sleep is enabled. */ 2813 while (sc->acpi_sleep_disabled) { 2814 AcpiOsSleep(1000); 2815 } 2816 2817 ACPI_LOCK(acpi); 2818 2819 sc->acpi_next_sstate = state; 2820 2821 /* S5 (soft-off) should be entered directly with no waiting. */ 2822 if (state == ACPI_STATE_S5) { 2823 ACPI_UNLOCK(acpi); 2824 status = acpi_EnterSleepState(sc, state); 2825 return (ACPI_SUCCESS(status) ? 0 : ENXIO); 2826 } 2827 2828 /* Record the pending state and notify all apm devices. */ 2829 STAILQ_FOREACH(clone, &sc->apm_cdevs, entries) { 2830 clone->notify_status = APM_EV_NONE; 2831 if ((clone->flags & ACPI_EVF_DEVD) == 0) { 2832 selwakeuppri(&clone->sel_read, PZERO); 2833 KNOTE_LOCKED(&clone->sel_read.si_note, 0); 2834 } 2835 } 2836 2837 /* If devd(8) is not running, immediately enter the sleep state. */ 2838 if (!devctl_process_running()) { 2839 ACPI_UNLOCK(acpi); 2840 status = acpi_EnterSleepState(sc, state); 2841 return (ACPI_SUCCESS(status) ? 0 : ENXIO); 2842 } 2843 2844 /* 2845 * Set a timeout to fire if userland doesn't ack the suspend request 2846 * in time. This way we still eventually go to sleep if we were 2847 * overheating or running low on battery, even if userland is hung. 2848 * We cancel this timeout once all userland acks are in or the 2849 * suspend request is aborted. 2850 */ 2851 callout_reset(&sc->susp_force_to, 10 * hz, acpi_sleep_force, sc); 2852 ACPI_UNLOCK(acpi); 2853 2854 /* Now notify devd(8) also. */ 2855 acpi_UserNotify("Suspend", ACPI_ROOT_OBJECT, state); 2856 2857 return (0); 2858 #else 2859 /* This platform does not support acpi suspend/resume. */ 2860 return (EOPNOTSUPP); 2861 #endif 2862 } 2863 2864 /* 2865 * Acknowledge (or reject) a pending sleep state. The caller has 2866 * prepared for suspend and is now ready for it to proceed. If the 2867 * error argument is non-zero, it indicates suspend should be cancelled 2868 * and gives an errno value describing why. Once all votes are in, 2869 * we suspend the system. 2870 */ 2871 int 2872 acpi_AckSleepState(struct apm_clone_data *clone, int error) 2873 { 2874 #if defined(__amd64__) || defined(__i386__) 2875 struct acpi_softc *sc; 2876 int ret, sleeping; 2877 2878 /* If no pending sleep state, return an error. */ 2879 ACPI_LOCK(acpi); 2880 sc = clone->acpi_sc; 2881 if (sc->acpi_next_sstate == 0) { 2882 ACPI_UNLOCK(acpi); 2883 return (ENXIO); 2884 } 2885 2886 /* Caller wants to abort suspend process. */ 2887 if (error) { 2888 sc->acpi_next_sstate = 0; 2889 callout_stop(&sc->susp_force_to); 2890 device_printf(sc->acpi_dev, 2891 "listener on %s cancelled the pending suspend\n", 2892 devtoname(clone->cdev)); 2893 ACPI_UNLOCK(acpi); 2894 return (0); 2895 } 2896 2897 /* 2898 * Mark this device as acking the suspend request. Then, walk through 2899 * all devices, seeing if they agree yet. We only count devices that 2900 * are writable since read-only devices couldn't ack the request. 2901 */ 2902 sleeping = TRUE; 2903 clone->notify_status = APM_EV_ACKED; 2904 STAILQ_FOREACH(clone, &sc->apm_cdevs, entries) { 2905 if ((clone->flags & ACPI_EVF_WRITE) != 0 && 2906 clone->notify_status != APM_EV_ACKED) { 2907 sleeping = FALSE; 2908 break; 2909 } 2910 } 2911 2912 /* If all devices have voted "yes", we will suspend now. */ 2913 if (sleeping) 2914 callout_stop(&sc->susp_force_to); 2915 ACPI_UNLOCK(acpi); 2916 ret = 0; 2917 if (sleeping) { 2918 if (ACPI_FAILURE(acpi_EnterSleepState(sc, sc->acpi_next_sstate))) 2919 ret = ENODEV; 2920 } 2921 return (ret); 2922 #else 2923 /* This platform does not support acpi suspend/resume. */ 2924 return (EOPNOTSUPP); 2925 #endif 2926 } 2927 2928 static void 2929 acpi_sleep_enable(void *arg) 2930 { 2931 struct acpi_softc *sc = (struct acpi_softc *)arg; 2932 2933 ACPI_LOCK_ASSERT(acpi); 2934 2935 /* Reschedule if the system is not fully up and running. */ 2936 if (!AcpiGbl_SystemAwakeAndRunning) { 2937 callout_schedule(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME); 2938 return; 2939 } 2940 2941 sc->acpi_sleep_disabled = FALSE; 2942 } 2943 2944 static ACPI_STATUS 2945 acpi_sleep_disable(struct acpi_softc *sc) 2946 { 2947 ACPI_STATUS status; 2948 2949 /* Fail if the system is not fully up and running. */ 2950 if (!AcpiGbl_SystemAwakeAndRunning) 2951 return (AE_ERROR); 2952 2953 ACPI_LOCK(acpi); 2954 status = sc->acpi_sleep_disabled ? AE_ERROR : AE_OK; 2955 sc->acpi_sleep_disabled = TRUE; 2956 ACPI_UNLOCK(acpi); 2957 2958 return (status); 2959 } 2960 2961 enum acpi_sleep_state { 2962 ACPI_SS_NONE, 2963 ACPI_SS_GPE_SET, 2964 ACPI_SS_DEV_SUSPEND, 2965 ACPI_SS_SLP_PREP, 2966 ACPI_SS_SLEPT, 2967 }; 2968 2969 /* 2970 * Enter the desired system sleep state. 2971 * 2972 * Currently we support S1-S5 but S4 is only S4BIOS 2973 */ 2974 static ACPI_STATUS 2975 acpi_EnterSleepState(struct acpi_softc *sc, int state) 2976 { 2977 register_t intr; 2978 ACPI_STATUS status; 2979 ACPI_EVENT_STATUS power_button_status; 2980 enum acpi_sleep_state slp_state; 2981 int sleep_result; 2982 2983 ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state); 2984 2985 if (state < ACPI_STATE_S1 || state > ACPI_S_STATES_MAX) 2986 return_ACPI_STATUS (AE_BAD_PARAMETER); 2987 if (!acpi_sleep_states[state]) { 2988 device_printf(sc->acpi_dev, "Sleep state S%d not supported by BIOS\n", 2989 state); 2990 return (AE_SUPPORT); 2991 } 2992 2993 /* Re-entry once we're suspending is not allowed. */ 2994 status = acpi_sleep_disable(sc); 2995 if (ACPI_FAILURE(status)) { 2996 device_printf(sc->acpi_dev, 2997 "suspend request ignored (not ready yet)\n"); 2998 return (status); 2999 } 3000 3001 if (state == ACPI_STATE_S5) { 3002 /* 3003 * Shut down cleanly and power off. This will call us back through the 3004 * shutdown handlers. 3005 */ 3006 shutdown_nice(RB_POWEROFF); 3007 return_ACPI_STATUS (AE_OK); 3008 } 3009 3010 EVENTHANDLER_INVOKE(power_suspend_early); 3011 stop_all_proc(); 3012 EVENTHANDLER_INVOKE(power_suspend); 3013 3014 #ifdef EARLY_AP_STARTUP 3015 MPASS(mp_ncpus == 1 || smp_started); 3016 thread_lock(curthread); 3017 sched_bind(curthread, 0); 3018 thread_unlock(curthread); 3019 #else 3020 if (smp_started) { 3021 thread_lock(curthread); 3022 sched_bind(curthread, 0); 3023 thread_unlock(curthread); 3024 } 3025 #endif 3026 3027 /* 3028 * Be sure to hold Giant across DEVICE_SUSPEND/RESUME since non-MPSAFE 3029 * drivers need this. 3030 */ 3031 mtx_lock(&Giant); 3032 3033 slp_state = ACPI_SS_NONE; 3034 3035 sc->acpi_sstate = state; 3036 3037 /* Enable any GPEs as appropriate and requested by the user. */ 3038 acpi_wake_prep_walk(state); 3039 slp_state = ACPI_SS_GPE_SET; 3040 3041 /* 3042 * Inform all devices that we are going to sleep. If at least one 3043 * device fails, DEVICE_SUSPEND() automatically resumes the tree. 3044 * 3045 * XXX Note that a better two-pass approach with a 'veto' pass 3046 * followed by a "real thing" pass would be better, but the current 3047 * bus interface does not provide for this. 3048 */ 3049 if (DEVICE_SUSPEND(root_bus) != 0) { 3050 device_printf(sc->acpi_dev, "device_suspend failed\n"); 3051 goto backout; 3052 } 3053 slp_state = ACPI_SS_DEV_SUSPEND; 3054 3055 status = AcpiEnterSleepStatePrep(state); 3056 if (ACPI_FAILURE(status)) { 3057 device_printf(sc->acpi_dev, "AcpiEnterSleepStatePrep failed - %s\n", 3058 AcpiFormatException(status)); 3059 goto backout; 3060 } 3061 slp_state = ACPI_SS_SLP_PREP; 3062 3063 if (sc->acpi_sleep_delay > 0) 3064 DELAY(sc->acpi_sleep_delay * 1000000); 3065 3066 suspendclock(); 3067 intr = intr_disable(); 3068 if (state != ACPI_STATE_S1) { 3069 sleep_result = acpi_sleep_machdep(sc, state); 3070 acpi_wakeup_machdep(sc, state, sleep_result, 0); 3071 3072 /* 3073 * XXX According to ACPI specification SCI_EN bit should be restored 3074 * by ACPI platform (BIOS, firmware) to its pre-sleep state. 3075 * Unfortunately some BIOSes fail to do that and that leads to 3076 * unexpected and serious consequences during wake up like a system 3077 * getting stuck in SMI handlers. 3078 * This hack is picked up from Linux, which claims that it follows 3079 * Windows behavior. 3080 */ 3081 if (sleep_result == 1 && state != ACPI_STATE_S4) 3082 AcpiWriteBitRegister(ACPI_BITREG_SCI_ENABLE, ACPI_ENABLE_EVENT); 3083 3084 if (sleep_result == 1 && state == ACPI_STATE_S3) { 3085 /* 3086 * Prevent mis-interpretation of the wakeup by power button 3087 * as a request for power off. 3088 * Ideally we should post an appropriate wakeup event, 3089 * perhaps using acpi_event_power_button_wake or alike. 3090 * 3091 * Clearing of power button status after wakeup is mandated 3092 * by ACPI specification in section "Fixed Power Button". 3093 * 3094 * XXX As of ACPICA 20121114 AcpiGetEventStatus provides 3095 * status as 0/1 corressponding to inactive/active despite 3096 * its type being ACPI_EVENT_STATUS. In other words, 3097 * we should not test for ACPI_EVENT_FLAG_SET for time being. 3098 */ 3099 if (ACPI_SUCCESS(AcpiGetEventStatus(ACPI_EVENT_POWER_BUTTON, 3100 &power_button_status)) && power_button_status != 0) { 3101 AcpiClearEvent(ACPI_EVENT_POWER_BUTTON); 3102 device_printf(sc->acpi_dev, 3103 "cleared fixed power button status\n"); 3104 } 3105 } 3106 3107 intr_restore(intr); 3108 3109 /* call acpi_wakeup_machdep() again with interrupt enabled */ 3110 acpi_wakeup_machdep(sc, state, sleep_result, 1); 3111 3112 AcpiLeaveSleepStatePrep(state); 3113 3114 if (sleep_result == -1) 3115 goto backout; 3116 3117 /* Re-enable ACPI hardware on wakeup from sleep state 4. */ 3118 if (state == ACPI_STATE_S4) 3119 AcpiEnable(); 3120 } else { 3121 status = AcpiEnterSleepState(state); 3122 intr_restore(intr); 3123 AcpiLeaveSleepStatePrep(state); 3124 if (ACPI_FAILURE(status)) { 3125 device_printf(sc->acpi_dev, "AcpiEnterSleepState failed - %s\n", 3126 AcpiFormatException(status)); 3127 goto backout; 3128 } 3129 } 3130 slp_state = ACPI_SS_SLEPT; 3131 3132 /* 3133 * Back out state according to how far along we got in the suspend 3134 * process. This handles both the error and success cases. 3135 */ 3136 backout: 3137 if (slp_state >= ACPI_SS_SLP_PREP) 3138 resumeclock(); 3139 if (slp_state >= ACPI_SS_GPE_SET) { 3140 acpi_wake_prep_walk(state); 3141 sc->acpi_sstate = ACPI_STATE_S0; 3142 } 3143 if (slp_state >= ACPI_SS_DEV_SUSPEND) 3144 DEVICE_RESUME(root_bus); 3145 if (slp_state >= ACPI_SS_SLP_PREP) 3146 AcpiLeaveSleepState(state); 3147 if (slp_state >= ACPI_SS_SLEPT) { 3148 #if defined(__i386__) || defined(__amd64__) 3149 /* NB: we are still using ACPI timecounter at this point. */ 3150 resume_TSC(); 3151 #endif 3152 acpi_resync_clock(sc); 3153 acpi_enable_fixed_events(sc); 3154 } 3155 sc->acpi_next_sstate = 0; 3156 3157 mtx_unlock(&Giant); 3158 3159 #ifdef EARLY_AP_STARTUP 3160 thread_lock(curthread); 3161 sched_unbind(curthread); 3162 thread_unlock(curthread); 3163 #else 3164 if (smp_started) { 3165 thread_lock(curthread); 3166 sched_unbind(curthread); 3167 thread_unlock(curthread); 3168 } 3169 #endif 3170 3171 resume_all_proc(); 3172 3173 EVENTHANDLER_INVOKE(power_resume); 3174 3175 /* Allow another sleep request after a while. */ 3176 callout_schedule(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME); 3177 3178 /* Run /etc/rc.resume after we are back. */ 3179 if (devctl_process_running()) 3180 acpi_UserNotify("Resume", ACPI_ROOT_OBJECT, state); 3181 3182 return_ACPI_STATUS (status); 3183 } 3184 3185 static void 3186 acpi_resync_clock(struct acpi_softc *sc) 3187 { 3188 3189 /* 3190 * Warm up timecounter again and reset system clock. 3191 */ 3192 (void)timecounter->tc_get_timecount(timecounter); 3193 (void)timecounter->tc_get_timecount(timecounter); 3194 inittodr(time_second + sc->acpi_sleep_delay); 3195 } 3196 3197 /* Enable or disable the device's wake GPE. */ 3198 int 3199 acpi_wake_set_enable(device_t dev, int enable) 3200 { 3201 struct acpi_prw_data prw; 3202 ACPI_STATUS status; 3203 int flags; 3204 3205 /* Make sure the device supports waking the system and get the GPE. */ 3206 if (acpi_parse_prw(acpi_get_handle(dev), &prw) != 0) 3207 return (ENXIO); 3208 3209 flags = acpi_get_flags(dev); 3210 if (enable) { 3211 status = AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, 3212 ACPI_GPE_ENABLE); 3213 if (ACPI_FAILURE(status)) { 3214 device_printf(dev, "enable wake failed\n"); 3215 return (ENXIO); 3216 } 3217 acpi_set_flags(dev, flags | ACPI_FLAG_WAKE_ENABLED); 3218 } else { 3219 status = AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, 3220 ACPI_GPE_DISABLE); 3221 if (ACPI_FAILURE(status)) { 3222 device_printf(dev, "disable wake failed\n"); 3223 return (ENXIO); 3224 } 3225 acpi_set_flags(dev, flags & ~ACPI_FLAG_WAKE_ENABLED); 3226 } 3227 3228 return (0); 3229 } 3230 3231 static int 3232 acpi_wake_sleep_prep(ACPI_HANDLE handle, int sstate) 3233 { 3234 struct acpi_prw_data prw; 3235 device_t dev; 3236 3237 /* Check that this is a wake-capable device and get its GPE. */ 3238 if (acpi_parse_prw(handle, &prw) != 0) 3239 return (ENXIO); 3240 dev = acpi_get_device(handle); 3241 3242 /* 3243 * The destination sleep state must be less than (i.e., higher power) 3244 * or equal to the value specified by _PRW. If this GPE cannot be 3245 * enabled for the next sleep state, then disable it. If it can and 3246 * the user requested it be enabled, turn on any required power resources 3247 * and set _PSW. 3248 */ 3249 if (sstate > prw.lowest_wake) { 3250 AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, ACPI_GPE_DISABLE); 3251 if (bootverbose) 3252 device_printf(dev, "wake_prep disabled wake for %s (S%d)\n", 3253 acpi_name(handle), sstate); 3254 } else if (dev && (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) != 0) { 3255 acpi_pwr_wake_enable(handle, 1); 3256 acpi_SetInteger(handle, "_PSW", 1); 3257 if (bootverbose) 3258 device_printf(dev, "wake_prep enabled for %s (S%d)\n", 3259 acpi_name(handle), sstate); 3260 } 3261 3262 return (0); 3263 } 3264 3265 static int 3266 acpi_wake_run_prep(ACPI_HANDLE handle, int sstate) 3267 { 3268 struct acpi_prw_data prw; 3269 device_t dev; 3270 3271 /* 3272 * Check that this is a wake-capable device and get its GPE. Return 3273 * now if the user didn't enable this device for wake. 3274 */ 3275 if (acpi_parse_prw(handle, &prw) != 0) 3276 return (ENXIO); 3277 dev = acpi_get_device(handle); 3278 if (dev == NULL || (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) == 0) 3279 return (0); 3280 3281 /* 3282 * If this GPE couldn't be enabled for the previous sleep state, it was 3283 * disabled before going to sleep so re-enable it. If it was enabled, 3284 * clear _PSW and turn off any power resources it used. 3285 */ 3286 if (sstate > prw.lowest_wake) { 3287 AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, ACPI_GPE_ENABLE); 3288 if (bootverbose) 3289 device_printf(dev, "run_prep re-enabled %s\n", acpi_name(handle)); 3290 } else { 3291 acpi_SetInteger(handle, "_PSW", 0); 3292 acpi_pwr_wake_enable(handle, 0); 3293 if (bootverbose) 3294 device_printf(dev, "run_prep cleaned up for %s\n", 3295 acpi_name(handle)); 3296 } 3297 3298 return (0); 3299 } 3300 3301 static ACPI_STATUS 3302 acpi_wake_prep(ACPI_HANDLE handle, UINT32 level, void *context, void **status) 3303 { 3304 int sstate; 3305 3306 /* If suspending, run the sleep prep function, otherwise wake. */ 3307 sstate = *(int *)context; 3308 if (AcpiGbl_SystemAwakeAndRunning) 3309 acpi_wake_sleep_prep(handle, sstate); 3310 else 3311 acpi_wake_run_prep(handle, sstate); 3312 return (AE_OK); 3313 } 3314 3315 /* Walk the tree rooted at acpi0 to prep devices for suspend/resume. */ 3316 static int 3317 acpi_wake_prep_walk(int sstate) 3318 { 3319 ACPI_HANDLE sb_handle; 3320 3321 if (ACPI_SUCCESS(AcpiGetHandle(ACPI_ROOT_OBJECT, "\\_SB_", &sb_handle))) 3322 AcpiWalkNamespace(ACPI_TYPE_DEVICE, sb_handle, 100, 3323 acpi_wake_prep, NULL, &sstate, NULL); 3324 return (0); 3325 } 3326 3327 /* Walk the tree rooted at acpi0 to attach per-device wake sysctls. */ 3328 static int 3329 acpi_wake_sysctl_walk(device_t dev) 3330 { 3331 int error, i, numdevs; 3332 device_t *devlist; 3333 device_t child; 3334 ACPI_STATUS status; 3335 3336 error = device_get_children(dev, &devlist, &numdevs); 3337 if (error != 0 || numdevs == 0) { 3338 if (numdevs == 0) 3339 free(devlist, M_TEMP); 3340 return (error); 3341 } 3342 for (i = 0; i < numdevs; i++) { 3343 child = devlist[i]; 3344 acpi_wake_sysctl_walk(child); 3345 if (!device_is_attached(child)) 3346 continue; 3347 status = AcpiEvaluateObject(acpi_get_handle(child), "_PRW", NULL, NULL); 3348 if (ACPI_SUCCESS(status)) { 3349 SYSCTL_ADD_PROC(device_get_sysctl_ctx(child), 3350 SYSCTL_CHILDREN(device_get_sysctl_tree(child)), OID_AUTO, 3351 "wake", CTLTYPE_INT | CTLFLAG_RW, child, 0, 3352 acpi_wake_set_sysctl, "I", "Device set to wake the system"); 3353 } 3354 } 3355 free(devlist, M_TEMP); 3356 3357 return (0); 3358 } 3359 3360 /* Enable or disable wake from userland. */ 3361 static int 3362 acpi_wake_set_sysctl(SYSCTL_HANDLER_ARGS) 3363 { 3364 int enable, error; 3365 device_t dev; 3366 3367 dev = (device_t)arg1; 3368 enable = (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) ? 1 : 0; 3369 3370 error = sysctl_handle_int(oidp, &enable, 0, req); 3371 if (error != 0 || req->newptr == NULL) 3372 return (error); 3373 if (enable != 0 && enable != 1) 3374 return (EINVAL); 3375 3376 return (acpi_wake_set_enable(dev, enable)); 3377 } 3378 3379 /* Parse a device's _PRW into a structure. */ 3380 int 3381 acpi_parse_prw(ACPI_HANDLE h, struct acpi_prw_data *prw) 3382 { 3383 ACPI_STATUS status; 3384 ACPI_BUFFER prw_buffer; 3385 ACPI_OBJECT *res, *res2; 3386 int error, i, power_count; 3387 3388 if (h == NULL || prw == NULL) 3389 return (EINVAL); 3390 3391 /* 3392 * The _PRW object (7.2.9) is only required for devices that have the 3393 * ability to wake the system from a sleeping state. 3394 */ 3395 error = EINVAL; 3396 prw_buffer.Pointer = NULL; 3397 prw_buffer.Length = ACPI_ALLOCATE_BUFFER; 3398 status = AcpiEvaluateObject(h, "_PRW", NULL, &prw_buffer); 3399 if (ACPI_FAILURE(status)) 3400 return (ENOENT); 3401 res = (ACPI_OBJECT *)prw_buffer.Pointer; 3402 if (res == NULL) 3403 return (ENOENT); 3404 if (!ACPI_PKG_VALID(res, 2)) 3405 goto out; 3406 3407 /* 3408 * Element 1 of the _PRW object: 3409 * The lowest power system sleeping state that can be entered while still 3410 * providing wake functionality. The sleeping state being entered must 3411 * be less than (i.e., higher power) or equal to this value. 3412 */ 3413 if (acpi_PkgInt32(res, 1, &prw->lowest_wake) != 0) 3414 goto out; 3415 3416 /* 3417 * Element 0 of the _PRW object: 3418 */ 3419 switch (res->Package.Elements[0].Type) { 3420 case ACPI_TYPE_INTEGER: 3421 /* 3422 * If the data type of this package element is numeric, then this 3423 * _PRW package element is the bit index in the GPEx_EN, in the 3424 * GPE blocks described in the FADT, of the enable bit that is 3425 * enabled for the wake event. 3426 */ 3427 prw->gpe_handle = NULL; 3428 prw->gpe_bit = res->Package.Elements[0].Integer.Value; 3429 error = 0; 3430 break; 3431 case ACPI_TYPE_PACKAGE: 3432 /* 3433 * If the data type of this package element is a package, then this 3434 * _PRW package element is itself a package containing two 3435 * elements. The first is an object reference to the GPE Block 3436 * device that contains the GPE that will be triggered by the wake 3437 * event. The second element is numeric and it contains the bit 3438 * index in the GPEx_EN, in the GPE Block referenced by the 3439 * first element in the package, of the enable bit that is enabled for 3440 * the wake event. 3441 * 3442 * For example, if this field is a package then it is of the form: 3443 * Package() {\_SB.PCI0.ISA.GPE, 2} 3444 */ 3445 res2 = &res->Package.Elements[0]; 3446 if (!ACPI_PKG_VALID(res2, 2)) 3447 goto out; 3448 prw->gpe_handle = acpi_GetReference(NULL, &res2->Package.Elements[0]); 3449 if (prw->gpe_handle == NULL) 3450 goto out; 3451 if (acpi_PkgInt32(res2, 1, &prw->gpe_bit) != 0) 3452 goto out; 3453 error = 0; 3454 break; 3455 default: 3456 goto out; 3457 } 3458 3459 /* Elements 2 to N of the _PRW object are power resources. */ 3460 power_count = res->Package.Count - 2; 3461 if (power_count > ACPI_PRW_MAX_POWERRES) { 3462 printf("ACPI device %s has too many power resources\n", acpi_name(h)); 3463 power_count = 0; 3464 } 3465 prw->power_res_count = power_count; 3466 for (i = 0; i < power_count; i++) 3467 prw->power_res[i] = res->Package.Elements[i]; 3468 3469 out: 3470 if (prw_buffer.Pointer != NULL) 3471 AcpiOsFree(prw_buffer.Pointer); 3472 return (error); 3473 } 3474 3475 /* 3476 * ACPI Event Handlers 3477 */ 3478 3479 /* System Event Handlers (registered by EVENTHANDLER_REGISTER) */ 3480 3481 static void 3482 acpi_system_eventhandler_sleep(void *arg, int state) 3483 { 3484 struct acpi_softc *sc = (struct acpi_softc *)arg; 3485 int ret; 3486 3487 ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state); 3488 3489 /* Check if button action is disabled or unknown. */ 3490 if (state == ACPI_STATE_UNKNOWN) 3491 return; 3492 3493 /* Request that the system prepare to enter the given suspend state. */ 3494 ret = acpi_ReqSleepState(sc, state); 3495 if (ret != 0) 3496 device_printf(sc->acpi_dev, 3497 "request to enter state S%d failed (err %d)\n", state, ret); 3498 3499 return_VOID; 3500 } 3501 3502 static void 3503 acpi_system_eventhandler_wakeup(void *arg, int state) 3504 { 3505 3506 ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state); 3507 3508 /* Currently, nothing to do for wakeup. */ 3509 3510 return_VOID; 3511 } 3512 3513 /* 3514 * ACPICA Event Handlers (FixedEvent, also called from button notify handler) 3515 */ 3516 static void 3517 acpi_invoke_sleep_eventhandler(void *context) 3518 { 3519 3520 EVENTHANDLER_INVOKE(acpi_sleep_event, *(int *)context); 3521 } 3522 3523 static void 3524 acpi_invoke_wake_eventhandler(void *context) 3525 { 3526 3527 EVENTHANDLER_INVOKE(acpi_wakeup_event, *(int *)context); 3528 } 3529 3530 UINT32 3531 acpi_event_power_button_sleep(void *context) 3532 { 3533 struct acpi_softc *sc = (struct acpi_softc *)context; 3534 3535 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3536 3537 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3538 acpi_invoke_sleep_eventhandler, &sc->acpi_power_button_sx))) 3539 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); 3540 return_VALUE (ACPI_INTERRUPT_HANDLED); 3541 } 3542 3543 UINT32 3544 acpi_event_power_button_wake(void *context) 3545 { 3546 struct acpi_softc *sc = (struct acpi_softc *)context; 3547 3548 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3549 3550 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3551 acpi_invoke_wake_eventhandler, &sc->acpi_power_button_sx))) 3552 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); 3553 return_VALUE (ACPI_INTERRUPT_HANDLED); 3554 } 3555 3556 UINT32 3557 acpi_event_sleep_button_sleep(void *context) 3558 { 3559 struct acpi_softc *sc = (struct acpi_softc *)context; 3560 3561 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3562 3563 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3564 acpi_invoke_sleep_eventhandler, &sc->acpi_sleep_button_sx))) 3565 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); 3566 return_VALUE (ACPI_INTERRUPT_HANDLED); 3567 } 3568 3569 UINT32 3570 acpi_event_sleep_button_wake(void *context) 3571 { 3572 struct acpi_softc *sc = (struct acpi_softc *)context; 3573 3574 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3575 3576 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3577 acpi_invoke_wake_eventhandler, &sc->acpi_sleep_button_sx))) 3578 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); 3579 return_VALUE (ACPI_INTERRUPT_HANDLED); 3580 } 3581 3582 /* 3583 * XXX This static buffer is suboptimal. There is no locking so only 3584 * use this for single-threaded callers. 3585 */ 3586 char * 3587 acpi_name(ACPI_HANDLE handle) 3588 { 3589 ACPI_BUFFER buf; 3590 static char data[256]; 3591 3592 buf.Length = sizeof(data); 3593 buf.Pointer = data; 3594 3595 if (handle && ACPI_SUCCESS(AcpiGetName(handle, ACPI_FULL_PATHNAME, &buf))) 3596 return (data); 3597 return ("(unknown)"); 3598 } 3599 3600 /* 3601 * Debugging/bug-avoidance. Avoid trying to fetch info on various 3602 * parts of the namespace. 3603 */ 3604 int 3605 acpi_avoid(ACPI_HANDLE handle) 3606 { 3607 char *cp, *env, *np; 3608 int len; 3609 3610 np = acpi_name(handle); 3611 if (*np == '\\') 3612 np++; 3613 if ((env = kern_getenv("debug.acpi.avoid")) == NULL) 3614 return (0); 3615 3616 /* Scan the avoid list checking for a match */ 3617 cp = env; 3618 for (;;) { 3619 while (*cp != 0 && isspace(*cp)) 3620 cp++; 3621 if (*cp == 0) 3622 break; 3623 len = 0; 3624 while (cp[len] != 0 && !isspace(cp[len])) 3625 len++; 3626 if (!strncmp(cp, np, len)) { 3627 freeenv(env); 3628 return(1); 3629 } 3630 cp += len; 3631 } 3632 freeenv(env); 3633 3634 return (0); 3635 } 3636 3637 /* 3638 * Debugging/bug-avoidance. Disable ACPI subsystem components. 3639 */ 3640 int 3641 acpi_disabled(char *subsys) 3642 { 3643 char *cp, *env; 3644 int len; 3645 3646 if ((env = kern_getenv("debug.acpi.disabled")) == NULL) 3647 return (0); 3648 if (strcmp(env, "all") == 0) { 3649 freeenv(env); 3650 return (1); 3651 } 3652 3653 /* Scan the disable list, checking for a match. */ 3654 cp = env; 3655 for (;;) { 3656 while (*cp != '\0' && isspace(*cp)) 3657 cp++; 3658 if (*cp == '\0') 3659 break; 3660 len = 0; 3661 while (cp[len] != '\0' && !isspace(cp[len])) 3662 len++; 3663 if (strncmp(cp, subsys, len) == 0) { 3664 freeenv(env); 3665 return (1); 3666 } 3667 cp += len; 3668 } 3669 freeenv(env); 3670 3671 return (0); 3672 } 3673 3674 static void 3675 acpi_lookup(void *arg, const char *name, device_t *dev) 3676 { 3677 ACPI_HANDLE handle; 3678 3679 if (*dev != NULL) 3680 return; 3681 3682 /* 3683 * Allow any handle name that is specified as an absolute path and 3684 * starts with '\'. We could restrict this to \_SB and friends, 3685 * but see acpi_probe_children() for notes on why we scan the entire 3686 * namespace for devices. 3687 * 3688 * XXX: The pathname argument to AcpiGetHandle() should be fixed to 3689 * be const. 3690 */ 3691 if (name[0] != '\\') 3692 return; 3693 if (ACPI_FAILURE(AcpiGetHandle(ACPI_ROOT_OBJECT, __DECONST(char *, name), 3694 &handle))) 3695 return; 3696 *dev = acpi_get_device(handle); 3697 } 3698 3699 /* 3700 * Control interface. 3701 * 3702 * We multiplex ioctls for all participating ACPI devices here. Individual 3703 * drivers wanting to be accessible via /dev/acpi should use the 3704 * register/deregister interface to make their handlers visible. 3705 */ 3706 struct acpi_ioctl_hook 3707 { 3708 TAILQ_ENTRY(acpi_ioctl_hook) link; 3709 u_long cmd; 3710 acpi_ioctl_fn fn; 3711 void *arg; 3712 }; 3713 3714 static TAILQ_HEAD(,acpi_ioctl_hook) acpi_ioctl_hooks; 3715 static int acpi_ioctl_hooks_initted; 3716 3717 int 3718 acpi_register_ioctl(u_long cmd, acpi_ioctl_fn fn, void *arg) 3719 { 3720 struct acpi_ioctl_hook *hp; 3721 3722 if ((hp = malloc(sizeof(*hp), M_ACPIDEV, M_NOWAIT)) == NULL) 3723 return (ENOMEM); 3724 hp->cmd = cmd; 3725 hp->fn = fn; 3726 hp->arg = arg; 3727 3728 ACPI_LOCK(acpi); 3729 if (acpi_ioctl_hooks_initted == 0) { 3730 TAILQ_INIT(&acpi_ioctl_hooks); 3731 acpi_ioctl_hooks_initted = 1; 3732 } 3733 TAILQ_INSERT_TAIL(&acpi_ioctl_hooks, hp, link); 3734 ACPI_UNLOCK(acpi); 3735 3736 return (0); 3737 } 3738 3739 void 3740 acpi_deregister_ioctl(u_long cmd, acpi_ioctl_fn fn) 3741 { 3742 struct acpi_ioctl_hook *hp; 3743 3744 ACPI_LOCK(acpi); 3745 TAILQ_FOREACH(hp, &acpi_ioctl_hooks, link) 3746 if (hp->cmd == cmd && hp->fn == fn) 3747 break; 3748 3749 if (hp != NULL) { 3750 TAILQ_REMOVE(&acpi_ioctl_hooks, hp, link); 3751 free(hp, M_ACPIDEV); 3752 } 3753 ACPI_UNLOCK(acpi); 3754 } 3755 3756 static int 3757 acpiopen(struct cdev *dev, int flag, int fmt, struct thread *td) 3758 { 3759 return (0); 3760 } 3761 3762 static int 3763 acpiclose(struct cdev *dev, int flag, int fmt, struct thread *td) 3764 { 3765 return (0); 3766 } 3767 3768 static int 3769 acpiioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 3770 { 3771 struct acpi_softc *sc; 3772 struct acpi_ioctl_hook *hp; 3773 int error, state; 3774 3775 error = 0; 3776 hp = NULL; 3777 sc = dev->si_drv1; 3778 3779 /* 3780 * Scan the list of registered ioctls, looking for handlers. 3781 */ 3782 ACPI_LOCK(acpi); 3783 if (acpi_ioctl_hooks_initted) 3784 TAILQ_FOREACH(hp, &acpi_ioctl_hooks, link) { 3785 if (hp->cmd == cmd) 3786 break; 3787 } 3788 ACPI_UNLOCK(acpi); 3789 if (hp) 3790 return (hp->fn(cmd, addr, hp->arg)); 3791 3792 /* 3793 * Core ioctls are not permitted for non-writable user. 3794 * Currently, other ioctls just fetch information. 3795 * Not changing system behavior. 3796 */ 3797 if ((flag & FWRITE) == 0) 3798 return (EPERM); 3799 3800 /* Core system ioctls. */ 3801 switch (cmd) { 3802 case ACPIIO_REQSLPSTATE: 3803 state = *(int *)addr; 3804 if (state != ACPI_STATE_S5) 3805 return (acpi_ReqSleepState(sc, state)); 3806 device_printf(sc->acpi_dev, "power off via acpi ioctl not supported\n"); 3807 error = EOPNOTSUPP; 3808 break; 3809 case ACPIIO_ACKSLPSTATE: 3810 error = *(int *)addr; 3811 error = acpi_AckSleepState(sc->acpi_clone, error); 3812 break; 3813 case ACPIIO_SETSLPSTATE: /* DEPRECATED */ 3814 state = *(int *)addr; 3815 if (state < ACPI_STATE_S0 || state > ACPI_S_STATES_MAX) 3816 return (EINVAL); 3817 if (!acpi_sleep_states[state]) 3818 return (EOPNOTSUPP); 3819 if (ACPI_FAILURE(acpi_SetSleepState(sc, state))) 3820 error = ENXIO; 3821 break; 3822 default: 3823 error = ENXIO; 3824 break; 3825 } 3826 3827 return (error); 3828 } 3829 3830 static int 3831 acpi_sname2sstate(const char *sname) 3832 { 3833 int sstate; 3834 3835 if (toupper(sname[0]) == 'S') { 3836 sstate = sname[1] - '0'; 3837 if (sstate >= ACPI_STATE_S0 && sstate <= ACPI_STATE_S5 && 3838 sname[2] == '\0') 3839 return (sstate); 3840 } else if (strcasecmp(sname, "NONE") == 0) 3841 return (ACPI_STATE_UNKNOWN); 3842 return (-1); 3843 } 3844 3845 static const char * 3846 acpi_sstate2sname(int sstate) 3847 { 3848 static const char *snames[] = { "S0", "S1", "S2", "S3", "S4", "S5" }; 3849 3850 if (sstate >= ACPI_STATE_S0 && sstate <= ACPI_STATE_S5) 3851 return (snames[sstate]); 3852 else if (sstate == ACPI_STATE_UNKNOWN) 3853 return ("NONE"); 3854 return (NULL); 3855 } 3856 3857 static int 3858 acpi_supported_sleep_state_sysctl(SYSCTL_HANDLER_ARGS) 3859 { 3860 int error; 3861 struct sbuf sb; 3862 UINT8 state; 3863 3864 sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND); 3865 for (state = ACPI_STATE_S1; state < ACPI_S_STATE_COUNT; state++) 3866 if (acpi_sleep_states[state]) 3867 sbuf_printf(&sb, "%s ", acpi_sstate2sname(state)); 3868 sbuf_trim(&sb); 3869 sbuf_finish(&sb); 3870 error = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req); 3871 sbuf_delete(&sb); 3872 return (error); 3873 } 3874 3875 static int 3876 acpi_sleep_state_sysctl(SYSCTL_HANDLER_ARGS) 3877 { 3878 char sleep_state[10]; 3879 int error, new_state, old_state; 3880 3881 old_state = *(int *)oidp->oid_arg1; 3882 strlcpy(sleep_state, acpi_sstate2sname(old_state), sizeof(sleep_state)); 3883 error = sysctl_handle_string(oidp, sleep_state, sizeof(sleep_state), req); 3884 if (error == 0 && req->newptr != NULL) { 3885 new_state = acpi_sname2sstate(sleep_state); 3886 if (new_state < ACPI_STATE_S1) 3887 return (EINVAL); 3888 if (new_state < ACPI_S_STATE_COUNT && !acpi_sleep_states[new_state]) 3889 return (EOPNOTSUPP); 3890 if (new_state != old_state) 3891 *(int *)oidp->oid_arg1 = new_state; 3892 } 3893 return (error); 3894 } 3895 3896 /* Inform devctl(4) when we receive a Notify. */ 3897 void 3898 acpi_UserNotify(const char *subsystem, ACPI_HANDLE h, uint8_t notify) 3899 { 3900 char notify_buf[16]; 3901 ACPI_BUFFER handle_buf; 3902 ACPI_STATUS status; 3903 3904 if (subsystem == NULL) 3905 return; 3906 3907 handle_buf.Pointer = NULL; 3908 handle_buf.Length = ACPI_ALLOCATE_BUFFER; 3909 status = AcpiNsHandleToPathname(h, &handle_buf, FALSE); 3910 if (ACPI_FAILURE(status)) 3911 return; 3912 snprintf(notify_buf, sizeof(notify_buf), "notify=0x%02x", notify); 3913 devctl_notify("ACPI", subsystem, handle_buf.Pointer, notify_buf); 3914 AcpiOsFree(handle_buf.Pointer); 3915 } 3916 3917 #ifdef ACPI_DEBUG 3918 /* 3919 * Support for parsing debug options from the kernel environment. 3920 * 3921 * Bits may be set in the AcpiDbgLayer and AcpiDbgLevel debug registers 3922 * by specifying the names of the bits in the debug.acpi.layer and 3923 * debug.acpi.level environment variables. Bits may be unset by 3924 * prefixing the bit name with !. 3925 */ 3926 struct debugtag 3927 { 3928 char *name; 3929 UINT32 value; 3930 }; 3931 3932 static struct debugtag dbg_layer[] = { 3933 {"ACPI_UTILITIES", ACPI_UTILITIES}, 3934 {"ACPI_HARDWARE", ACPI_HARDWARE}, 3935 {"ACPI_EVENTS", ACPI_EVENTS}, 3936 {"ACPI_TABLES", ACPI_TABLES}, 3937 {"ACPI_NAMESPACE", ACPI_NAMESPACE}, 3938 {"ACPI_PARSER", ACPI_PARSER}, 3939 {"ACPI_DISPATCHER", ACPI_DISPATCHER}, 3940 {"ACPI_EXECUTER", ACPI_EXECUTER}, 3941 {"ACPI_RESOURCES", ACPI_RESOURCES}, 3942 {"ACPI_CA_DEBUGGER", ACPI_CA_DEBUGGER}, 3943 {"ACPI_OS_SERVICES", ACPI_OS_SERVICES}, 3944 {"ACPI_CA_DISASSEMBLER", ACPI_CA_DISASSEMBLER}, 3945 {"ACPI_ALL_COMPONENTS", ACPI_ALL_COMPONENTS}, 3946 3947 {"ACPI_AC_ADAPTER", ACPI_AC_ADAPTER}, 3948 {"ACPI_BATTERY", ACPI_BATTERY}, 3949 {"ACPI_BUS", ACPI_BUS}, 3950 {"ACPI_BUTTON", ACPI_BUTTON}, 3951 {"ACPI_EC", ACPI_EC}, 3952 {"ACPI_FAN", ACPI_FAN}, 3953 {"ACPI_POWERRES", ACPI_POWERRES}, 3954 {"ACPI_PROCESSOR", ACPI_PROCESSOR}, 3955 {"ACPI_THERMAL", ACPI_THERMAL}, 3956 {"ACPI_TIMER", ACPI_TIMER}, 3957 {"ACPI_ALL_DRIVERS", ACPI_ALL_DRIVERS}, 3958 {NULL, 0} 3959 }; 3960 3961 static struct debugtag dbg_level[] = { 3962 {"ACPI_LV_INIT", ACPI_LV_INIT}, 3963 {"ACPI_LV_DEBUG_OBJECT", ACPI_LV_DEBUG_OBJECT}, 3964 {"ACPI_LV_INFO", ACPI_LV_INFO}, 3965 {"ACPI_LV_REPAIR", ACPI_LV_REPAIR}, 3966 {"ACPI_LV_ALL_EXCEPTIONS", ACPI_LV_ALL_EXCEPTIONS}, 3967 3968 /* Trace verbosity level 1 [Standard Trace Level] */ 3969 {"ACPI_LV_INIT_NAMES", ACPI_LV_INIT_NAMES}, 3970 {"ACPI_LV_PARSE", ACPI_LV_PARSE}, 3971 {"ACPI_LV_LOAD", ACPI_LV_LOAD}, 3972 {"ACPI_LV_DISPATCH", ACPI_LV_DISPATCH}, 3973 {"ACPI_LV_EXEC", ACPI_LV_EXEC}, 3974 {"ACPI_LV_NAMES", ACPI_LV_NAMES}, 3975 {"ACPI_LV_OPREGION", ACPI_LV_OPREGION}, 3976 {"ACPI_LV_BFIELD", ACPI_LV_BFIELD}, 3977 {"ACPI_LV_TABLES", ACPI_LV_TABLES}, 3978 {"ACPI_LV_VALUES", ACPI_LV_VALUES}, 3979 {"ACPI_LV_OBJECTS", ACPI_LV_OBJECTS}, 3980 {"ACPI_LV_RESOURCES", ACPI_LV_RESOURCES}, 3981 {"ACPI_LV_USER_REQUESTS", ACPI_LV_USER_REQUESTS}, 3982 {"ACPI_LV_PACKAGE", ACPI_LV_PACKAGE}, 3983 {"ACPI_LV_VERBOSITY1", ACPI_LV_VERBOSITY1}, 3984 3985 /* Trace verbosity level 2 [Function tracing and memory allocation] */ 3986 {"ACPI_LV_ALLOCATIONS", ACPI_LV_ALLOCATIONS}, 3987 {"ACPI_LV_FUNCTIONS", ACPI_LV_FUNCTIONS}, 3988 {"ACPI_LV_OPTIMIZATIONS", ACPI_LV_OPTIMIZATIONS}, 3989 {"ACPI_LV_VERBOSITY2", ACPI_LV_VERBOSITY2}, 3990 {"ACPI_LV_ALL", ACPI_LV_ALL}, 3991 3992 /* Trace verbosity level 3 [Threading, I/O, and Interrupts] */ 3993 {"ACPI_LV_MUTEX", ACPI_LV_MUTEX}, 3994 {"ACPI_LV_THREADS", ACPI_LV_THREADS}, 3995 {"ACPI_LV_IO", ACPI_LV_IO}, 3996 {"ACPI_LV_INTERRUPTS", ACPI_LV_INTERRUPTS}, 3997 {"ACPI_LV_VERBOSITY3", ACPI_LV_VERBOSITY3}, 3998 3999 /* Exceptionally verbose output -- also used in the global "DebugLevel" */ 4000 {"ACPI_LV_AML_DISASSEMBLE", ACPI_LV_AML_DISASSEMBLE}, 4001 {"ACPI_LV_VERBOSE_INFO", ACPI_LV_VERBOSE_INFO}, 4002 {"ACPI_LV_FULL_TABLES", ACPI_LV_FULL_TABLES}, 4003 {"ACPI_LV_EVENTS", ACPI_LV_EVENTS}, 4004 {"ACPI_LV_VERBOSE", ACPI_LV_VERBOSE}, 4005 {NULL, 0} 4006 }; 4007 4008 static void 4009 acpi_parse_debug(char *cp, struct debugtag *tag, UINT32 *flag) 4010 { 4011 char *ep; 4012 int i, l; 4013 int set; 4014 4015 while (*cp) { 4016 if (isspace(*cp)) { 4017 cp++; 4018 continue; 4019 } 4020 ep = cp; 4021 while (*ep && !isspace(*ep)) 4022 ep++; 4023 if (*cp == '!') { 4024 set = 0; 4025 cp++; 4026 if (cp == ep) 4027 continue; 4028 } else { 4029 set = 1; 4030 } 4031 l = ep - cp; 4032 for (i = 0; tag[i].name != NULL; i++) { 4033 if (!strncmp(cp, tag[i].name, l)) { 4034 if (set) 4035 *flag |= tag[i].value; 4036 else 4037 *flag &= ~tag[i].value; 4038 } 4039 } 4040 cp = ep; 4041 } 4042 } 4043 4044 static void 4045 acpi_set_debugging(void *junk) 4046 { 4047 char *layer, *level; 4048 4049 if (cold) { 4050 AcpiDbgLayer = 0; 4051 AcpiDbgLevel = 0; 4052 } 4053 4054 layer = kern_getenv("debug.acpi.layer"); 4055 level = kern_getenv("debug.acpi.level"); 4056 if (layer == NULL && level == NULL) 4057 return; 4058 4059 printf("ACPI set debug"); 4060 if (layer != NULL) { 4061 if (strcmp("NONE", layer) != 0) 4062 printf(" layer '%s'", layer); 4063 acpi_parse_debug(layer, &dbg_layer[0], &AcpiDbgLayer); 4064 freeenv(layer); 4065 } 4066 if (level != NULL) { 4067 if (strcmp("NONE", level) != 0) 4068 printf(" level '%s'", level); 4069 acpi_parse_debug(level, &dbg_level[0], &AcpiDbgLevel); 4070 freeenv(level); 4071 } 4072 printf("\n"); 4073 } 4074 4075 SYSINIT(acpi_debugging, SI_SUB_TUNABLES, SI_ORDER_ANY, acpi_set_debugging, 4076 NULL); 4077 4078 static int 4079 acpi_debug_sysctl(SYSCTL_HANDLER_ARGS) 4080 { 4081 int error, *dbg; 4082 struct debugtag *tag; 4083 struct sbuf sb; 4084 char temp[128]; 4085 4086 if (sbuf_new(&sb, NULL, 128, SBUF_AUTOEXTEND) == NULL) 4087 return (ENOMEM); 4088 if (strcmp(oidp->oid_arg1, "debug.acpi.layer") == 0) { 4089 tag = &dbg_layer[0]; 4090 dbg = &AcpiDbgLayer; 4091 } else { 4092 tag = &dbg_level[0]; 4093 dbg = &AcpiDbgLevel; 4094 } 4095 4096 /* Get old values if this is a get request. */ 4097 ACPI_SERIAL_BEGIN(acpi); 4098 if (*dbg == 0) { 4099 sbuf_cpy(&sb, "NONE"); 4100 } else if (req->newptr == NULL) { 4101 for (; tag->name != NULL; tag++) { 4102 if ((*dbg & tag->value) == tag->value) 4103 sbuf_printf(&sb, "%s ", tag->name); 4104 } 4105 } 4106 sbuf_trim(&sb); 4107 sbuf_finish(&sb); 4108 strlcpy(temp, sbuf_data(&sb), sizeof(temp)); 4109 sbuf_delete(&sb); 4110 4111 error = sysctl_handle_string(oidp, temp, sizeof(temp), req); 4112 4113 /* Check for error or no change */ 4114 if (error == 0 && req->newptr != NULL) { 4115 *dbg = 0; 4116 kern_setenv((char *)oidp->oid_arg1, temp); 4117 acpi_set_debugging(NULL); 4118 } 4119 ACPI_SERIAL_END(acpi); 4120 4121 return (error); 4122 } 4123 4124 SYSCTL_PROC(_debug_acpi, OID_AUTO, layer, CTLFLAG_RW | CTLTYPE_STRING, 4125 "debug.acpi.layer", 0, acpi_debug_sysctl, "A", ""); 4126 SYSCTL_PROC(_debug_acpi, OID_AUTO, level, CTLFLAG_RW | CTLTYPE_STRING, 4127 "debug.acpi.level", 0, acpi_debug_sysctl, "A", ""); 4128 #endif /* ACPI_DEBUG */ 4129 4130 static int 4131 acpi_debug_objects_sysctl(SYSCTL_HANDLER_ARGS) 4132 { 4133 int error; 4134 int old; 4135 4136 old = acpi_debug_objects; 4137 error = sysctl_handle_int(oidp, &acpi_debug_objects, 0, req); 4138 if (error != 0 || req->newptr == NULL) 4139 return (error); 4140 if (old == acpi_debug_objects || (old && acpi_debug_objects)) 4141 return (0); 4142 4143 ACPI_SERIAL_BEGIN(acpi); 4144 AcpiGbl_EnableAmlDebugObject = acpi_debug_objects ? TRUE : FALSE; 4145 ACPI_SERIAL_END(acpi); 4146 4147 return (0); 4148 } 4149 4150 static int 4151 acpi_parse_interfaces(char *str, struct acpi_interface *iface) 4152 { 4153 char *p; 4154 size_t len; 4155 int i, j; 4156 4157 p = str; 4158 while (isspace(*p) || *p == ',') 4159 p++; 4160 len = strlen(p); 4161 if (len == 0) 4162 return (0); 4163 p = strdup(p, M_TEMP); 4164 for (i = 0; i < len; i++) 4165 if (p[i] == ',') 4166 p[i] = '\0'; 4167 i = j = 0; 4168 while (i < len) 4169 if (isspace(p[i]) || p[i] == '\0') 4170 i++; 4171 else { 4172 i += strlen(p + i) + 1; 4173 j++; 4174 } 4175 if (j == 0) { 4176 free(p, M_TEMP); 4177 return (0); 4178 } 4179 iface->data = malloc(sizeof(*iface->data) * j, M_TEMP, M_WAITOK); 4180 iface->num = j; 4181 i = j = 0; 4182 while (i < len) 4183 if (isspace(p[i]) || p[i] == '\0') 4184 i++; 4185 else { 4186 iface->data[j] = p + i; 4187 i += strlen(p + i) + 1; 4188 j++; 4189 } 4190 4191 return (j); 4192 } 4193 4194 static void 4195 acpi_free_interfaces(struct acpi_interface *iface) 4196 { 4197 4198 free(iface->data[0], M_TEMP); 4199 free(iface->data, M_TEMP); 4200 } 4201 4202 static void 4203 acpi_reset_interfaces(device_t dev) 4204 { 4205 struct acpi_interface list; 4206 ACPI_STATUS status; 4207 int i; 4208 4209 if (acpi_parse_interfaces(acpi_install_interface, &list) > 0) { 4210 for (i = 0; i < list.num; i++) { 4211 status = AcpiInstallInterface(list.data[i]); 4212 if (ACPI_FAILURE(status)) 4213 device_printf(dev, 4214 "failed to install _OSI(\"%s\"): %s\n", 4215 list.data[i], AcpiFormatException(status)); 4216 else if (bootverbose) 4217 device_printf(dev, "installed _OSI(\"%s\")\n", 4218 list.data[i]); 4219 } 4220 acpi_free_interfaces(&list); 4221 } 4222 if (acpi_parse_interfaces(acpi_remove_interface, &list) > 0) { 4223 for (i = 0; i < list.num; i++) { 4224 status = AcpiRemoveInterface(list.data[i]); 4225 if (ACPI_FAILURE(status)) 4226 device_printf(dev, 4227 "failed to remove _OSI(\"%s\"): %s\n", 4228 list.data[i], AcpiFormatException(status)); 4229 else if (bootverbose) 4230 device_printf(dev, "removed _OSI(\"%s\")\n", 4231 list.data[i]); 4232 } 4233 acpi_free_interfaces(&list); 4234 } 4235 } 4236 4237 static int 4238 acpi_pm_func(u_long cmd, void *arg, ...) 4239 { 4240 int state, acpi_state; 4241 int error; 4242 struct acpi_softc *sc; 4243 va_list ap; 4244 4245 error = 0; 4246 switch (cmd) { 4247 case POWER_CMD_SUSPEND: 4248 sc = (struct acpi_softc *)arg; 4249 if (sc == NULL) { 4250 error = EINVAL; 4251 goto out; 4252 } 4253 4254 va_start(ap, arg); 4255 state = va_arg(ap, int); 4256 va_end(ap); 4257 4258 switch (state) { 4259 case POWER_SLEEP_STATE_STANDBY: 4260 acpi_state = sc->acpi_standby_sx; 4261 break; 4262 case POWER_SLEEP_STATE_SUSPEND: 4263 acpi_state = sc->acpi_suspend_sx; 4264 break; 4265 case POWER_SLEEP_STATE_HIBERNATE: 4266 acpi_state = ACPI_STATE_S4; 4267 break; 4268 default: 4269 error = EINVAL; 4270 goto out; 4271 } 4272 4273 if (ACPI_FAILURE(acpi_EnterSleepState(sc, acpi_state))) 4274 error = ENXIO; 4275 break; 4276 default: 4277 error = EINVAL; 4278 goto out; 4279 } 4280 4281 out: 4282 return (error); 4283 } 4284 4285 static void 4286 acpi_pm_register(void *arg) 4287 { 4288 if (!cold || resource_disabled("acpi", 0)) 4289 return; 4290 4291 power_pm_register(POWER_PM_TYPE_ACPI, acpi_pm_func, NULL); 4292 } 4293 4294 SYSINIT(power, SI_SUB_KLD, SI_ORDER_ANY, acpi_pm_register, NULL); 4295