1 /*- 2 * Copyright (c) 2000 Takanori Watanabe <takawata@jp.freebsd.org> 3 * Copyright (c) 2000 Mitsuru IWASAKI <iwasaki@jp.freebsd.org> 4 * Copyright (c) 2000, 2001 Michael Smith 5 * Copyright (c) 2000 BSDi 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include "opt_acpi.h" 34 #include <sys/param.h> 35 #include <sys/kernel.h> 36 #include <sys/proc.h> 37 #include <sys/fcntl.h> 38 #include <sys/malloc.h> 39 #include <sys/module.h> 40 #include <sys/bus.h> 41 #include <sys/conf.h> 42 #include <sys/ioccom.h> 43 #include <sys/reboot.h> 44 #include <sys/sysctl.h> 45 #include <sys/ctype.h> 46 #include <sys/linker.h> 47 #include <sys/power.h> 48 #include <sys/sbuf.h> 49 #include <sys/sched.h> 50 #include <sys/smp.h> 51 #include <sys/timetc.h> 52 53 #if defined(__i386__) || defined(__amd64__) 54 #include <machine/pci_cfgreg.h> 55 #endif 56 #include <machine/resource.h> 57 #include <machine/bus.h> 58 #include <sys/rman.h> 59 #include <isa/isavar.h> 60 #include <isa/pnpvar.h> 61 62 #include <contrib/dev/acpica/include/acpi.h> 63 #include <contrib/dev/acpica/include/accommon.h> 64 #include <contrib/dev/acpica/include/acnamesp.h> 65 66 #include <dev/acpica/acpivar.h> 67 #include <dev/acpica/acpiio.h> 68 69 #include <vm/vm_param.h> 70 71 static MALLOC_DEFINE(M_ACPIDEV, "acpidev", "ACPI devices"); 72 73 /* Hooks for the ACPI CA debugging infrastructure */ 74 #define _COMPONENT ACPI_BUS 75 ACPI_MODULE_NAME("ACPI") 76 77 static d_open_t acpiopen; 78 static d_close_t acpiclose; 79 static d_ioctl_t acpiioctl; 80 81 static struct cdevsw acpi_cdevsw = { 82 .d_version = D_VERSION, 83 .d_open = acpiopen, 84 .d_close = acpiclose, 85 .d_ioctl = acpiioctl, 86 .d_name = "acpi", 87 }; 88 89 struct acpi_interface { 90 ACPI_STRING *data; 91 int num; 92 }; 93 94 /* Global mutex for locking access to the ACPI subsystem. */ 95 struct mtx acpi_mutex; 96 97 /* Bitmap of device quirks. */ 98 int acpi_quirks; 99 100 /* Supported sleep states. */ 101 static BOOLEAN acpi_sleep_states[ACPI_S_STATE_COUNT]; 102 103 static int acpi_modevent(struct module *mod, int event, void *junk); 104 static int acpi_probe(device_t dev); 105 static int acpi_attach(device_t dev); 106 static int acpi_suspend(device_t dev); 107 static int acpi_resume(device_t dev); 108 static int acpi_shutdown(device_t dev); 109 static device_t acpi_add_child(device_t bus, u_int order, const char *name, 110 int unit); 111 static int acpi_print_child(device_t bus, device_t child); 112 static void acpi_probe_nomatch(device_t bus, device_t child); 113 static void acpi_driver_added(device_t dev, driver_t *driver); 114 static int acpi_read_ivar(device_t dev, device_t child, int index, 115 uintptr_t *result); 116 static int acpi_write_ivar(device_t dev, device_t child, int index, 117 uintptr_t value); 118 static struct resource_list *acpi_get_rlist(device_t dev, device_t child); 119 static void acpi_reserve_resources(device_t dev); 120 static int acpi_sysres_alloc(device_t dev); 121 static int acpi_set_resource(device_t dev, device_t child, int type, 122 int rid, u_long start, u_long count); 123 static struct resource *acpi_alloc_resource(device_t bus, device_t child, 124 int type, int *rid, u_long start, u_long end, 125 u_long count, u_int flags); 126 static int acpi_adjust_resource(device_t bus, device_t child, int type, 127 struct resource *r, u_long start, u_long end); 128 static int acpi_release_resource(device_t bus, device_t child, int type, 129 int rid, struct resource *r); 130 static void acpi_delete_resource(device_t bus, device_t child, int type, 131 int rid); 132 static uint32_t acpi_isa_get_logicalid(device_t dev); 133 static int acpi_isa_get_compatid(device_t dev, uint32_t *cids, int count); 134 static char *acpi_device_id_probe(device_t bus, device_t dev, char **ids); 135 static ACPI_STATUS acpi_device_eval_obj(device_t bus, device_t dev, 136 ACPI_STRING pathname, ACPI_OBJECT_LIST *parameters, 137 ACPI_BUFFER *ret); 138 static ACPI_STATUS acpi_device_scan_cb(ACPI_HANDLE h, UINT32 level, 139 void *context, void **retval); 140 static ACPI_STATUS acpi_device_scan_children(device_t bus, device_t dev, 141 int max_depth, acpi_scan_cb_t user_fn, void *arg); 142 static int acpi_set_powerstate(device_t child, int state); 143 static int acpi_isa_pnp_probe(device_t bus, device_t child, 144 struct isa_pnp_id *ids); 145 static void acpi_probe_children(device_t bus); 146 static void acpi_probe_order(ACPI_HANDLE handle, int *order); 147 static ACPI_STATUS acpi_probe_child(ACPI_HANDLE handle, UINT32 level, 148 void *context, void **status); 149 static void acpi_sleep_enable(void *arg); 150 static ACPI_STATUS acpi_sleep_disable(struct acpi_softc *sc); 151 static ACPI_STATUS acpi_EnterSleepState(struct acpi_softc *sc, int state); 152 static void acpi_shutdown_final(void *arg, int howto); 153 static void acpi_enable_fixed_events(struct acpi_softc *sc); 154 static BOOLEAN acpi_has_hid(ACPI_HANDLE handle); 155 static void acpi_resync_clock(struct acpi_softc *sc); 156 static int acpi_wake_sleep_prep(ACPI_HANDLE handle, int sstate); 157 static int acpi_wake_run_prep(ACPI_HANDLE handle, int sstate); 158 static int acpi_wake_prep_walk(int sstate); 159 static int acpi_wake_sysctl_walk(device_t dev); 160 static int acpi_wake_set_sysctl(SYSCTL_HANDLER_ARGS); 161 static void acpi_system_eventhandler_sleep(void *arg, int state); 162 static void acpi_system_eventhandler_wakeup(void *arg, int state); 163 static int acpi_sname2sstate(const char *sname); 164 static const char *acpi_sstate2sname(int sstate); 165 static int acpi_supported_sleep_state_sysctl(SYSCTL_HANDLER_ARGS); 166 static int acpi_sleep_state_sysctl(SYSCTL_HANDLER_ARGS); 167 static int acpi_debug_objects_sysctl(SYSCTL_HANDLER_ARGS); 168 static int acpi_pm_func(u_long cmd, void *arg, ...); 169 static int acpi_child_location_str_method(device_t acdev, device_t child, 170 char *buf, size_t buflen); 171 static int acpi_child_pnpinfo_str_method(device_t acdev, device_t child, 172 char *buf, size_t buflen); 173 #if defined(__i386__) || defined(__amd64__) 174 static void acpi_enable_pcie(void); 175 #endif 176 static void acpi_hint_device_unit(device_t acdev, device_t child, 177 const char *name, int *unitp); 178 static void acpi_reset_interfaces(device_t dev); 179 180 static device_method_t acpi_methods[] = { 181 /* Device interface */ 182 DEVMETHOD(device_probe, acpi_probe), 183 DEVMETHOD(device_attach, acpi_attach), 184 DEVMETHOD(device_shutdown, acpi_shutdown), 185 DEVMETHOD(device_detach, bus_generic_detach), 186 DEVMETHOD(device_suspend, acpi_suspend), 187 DEVMETHOD(device_resume, acpi_resume), 188 189 /* Bus interface */ 190 DEVMETHOD(bus_add_child, acpi_add_child), 191 DEVMETHOD(bus_print_child, acpi_print_child), 192 DEVMETHOD(bus_probe_nomatch, acpi_probe_nomatch), 193 DEVMETHOD(bus_driver_added, acpi_driver_added), 194 DEVMETHOD(bus_read_ivar, acpi_read_ivar), 195 DEVMETHOD(bus_write_ivar, acpi_write_ivar), 196 DEVMETHOD(bus_get_resource_list, acpi_get_rlist), 197 DEVMETHOD(bus_set_resource, acpi_set_resource), 198 DEVMETHOD(bus_get_resource, bus_generic_rl_get_resource), 199 DEVMETHOD(bus_alloc_resource, acpi_alloc_resource), 200 DEVMETHOD(bus_adjust_resource, acpi_adjust_resource), 201 DEVMETHOD(bus_release_resource, acpi_release_resource), 202 DEVMETHOD(bus_delete_resource, acpi_delete_resource), 203 DEVMETHOD(bus_child_pnpinfo_str, acpi_child_pnpinfo_str_method), 204 DEVMETHOD(bus_child_location_str, acpi_child_location_str_method), 205 DEVMETHOD(bus_activate_resource, bus_generic_activate_resource), 206 DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource), 207 DEVMETHOD(bus_setup_intr, bus_generic_setup_intr), 208 DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr), 209 DEVMETHOD(bus_hint_device_unit, acpi_hint_device_unit), 210 211 /* ACPI bus */ 212 DEVMETHOD(acpi_id_probe, acpi_device_id_probe), 213 DEVMETHOD(acpi_evaluate_object, acpi_device_eval_obj), 214 DEVMETHOD(acpi_pwr_for_sleep, acpi_device_pwr_for_sleep), 215 DEVMETHOD(acpi_scan_children, acpi_device_scan_children), 216 217 /* ISA emulation */ 218 DEVMETHOD(isa_pnp_probe, acpi_isa_pnp_probe), 219 220 DEVMETHOD_END 221 }; 222 223 static driver_t acpi_driver = { 224 "acpi", 225 acpi_methods, 226 sizeof(struct acpi_softc), 227 }; 228 229 static devclass_t acpi_devclass; 230 DRIVER_MODULE(acpi, nexus, acpi_driver, acpi_devclass, acpi_modevent, 0); 231 MODULE_VERSION(acpi, 1); 232 233 ACPI_SERIAL_DECL(acpi, "ACPI root bus"); 234 235 /* Local pools for managing system resources for ACPI child devices. */ 236 static struct rman acpi_rman_io, acpi_rman_mem; 237 238 #define ACPI_MINIMUM_AWAKETIME 5 239 240 /* Holds the description of the acpi0 device. */ 241 static char acpi_desc[ACPI_OEM_ID_SIZE + ACPI_OEM_TABLE_ID_SIZE + 2]; 242 243 SYSCTL_NODE(_debug, OID_AUTO, acpi, CTLFLAG_RD, NULL, "ACPI debugging"); 244 static char acpi_ca_version[12]; 245 SYSCTL_STRING(_debug_acpi, OID_AUTO, acpi_ca_version, CTLFLAG_RD, 246 acpi_ca_version, 0, "Version of Intel ACPI-CA"); 247 248 /* 249 * Allow overriding _OSI methods. 250 */ 251 static char acpi_install_interface[256]; 252 TUNABLE_STR("hw.acpi.install_interface", acpi_install_interface, 253 sizeof(acpi_install_interface)); 254 static char acpi_remove_interface[256]; 255 TUNABLE_STR("hw.acpi.remove_interface", acpi_remove_interface, 256 sizeof(acpi_remove_interface)); 257 258 /* 259 * Allow override of whether methods execute in parallel or not. 260 * Enable this for serial behavior, which fixes "AE_ALREADY_EXISTS" 261 * errors for AML that really can't handle parallel method execution. 262 * It is off by default since this breaks recursive methods and 263 * some IBMs use such code. 264 */ 265 static int acpi_serialize_methods; 266 TUNABLE_INT("hw.acpi.serialize_methods", &acpi_serialize_methods); 267 268 /* Allow users to dump Debug objects without ACPI debugger. */ 269 static int acpi_debug_objects; 270 TUNABLE_INT("debug.acpi.enable_debug_objects", &acpi_debug_objects); 271 SYSCTL_PROC(_debug_acpi, OID_AUTO, enable_debug_objects, 272 CTLFLAG_RW | CTLTYPE_INT, NULL, 0, acpi_debug_objects_sysctl, "I", 273 "Enable Debug objects"); 274 275 /* Allow the interpreter to ignore common mistakes in BIOS. */ 276 static int acpi_interpreter_slack = 1; 277 TUNABLE_INT("debug.acpi.interpreter_slack", &acpi_interpreter_slack); 278 SYSCTL_INT(_debug_acpi, OID_AUTO, interpreter_slack, CTLFLAG_RDTUN, 279 &acpi_interpreter_slack, 1, "Turn on interpreter slack mode."); 280 281 #ifdef __amd64__ 282 /* Reset system clock while resuming. XXX Remove once tested. */ 283 static int acpi_reset_clock = 1; 284 TUNABLE_INT("debug.acpi.reset_clock", &acpi_reset_clock); 285 SYSCTL_INT(_debug_acpi, OID_AUTO, reset_clock, CTLFLAG_RW, 286 &acpi_reset_clock, 1, "Reset system clock while resuming."); 287 #endif 288 289 /* Allow users to override quirks. */ 290 TUNABLE_INT("debug.acpi.quirks", &acpi_quirks); 291 292 static int acpi_susp_bounce; 293 SYSCTL_INT(_debug_acpi, OID_AUTO, suspend_bounce, CTLFLAG_RW, 294 &acpi_susp_bounce, 0, "Don't actually suspend, just test devices."); 295 296 /* 297 * ACPI can only be loaded as a module by the loader; activating it after 298 * system bootstrap time is not useful, and can be fatal to the system. 299 * It also cannot be unloaded, since the entire system bus hierarchy hangs 300 * off it. 301 */ 302 static int 303 acpi_modevent(struct module *mod, int event, void *junk) 304 { 305 switch (event) { 306 case MOD_LOAD: 307 if (!cold) { 308 printf("The ACPI driver cannot be loaded after boot.\n"); 309 return (EPERM); 310 } 311 break; 312 case MOD_UNLOAD: 313 if (!cold && power_pm_get_type() == POWER_PM_TYPE_ACPI) 314 return (EBUSY); 315 break; 316 default: 317 break; 318 } 319 return (0); 320 } 321 322 /* 323 * Perform early initialization. 324 */ 325 ACPI_STATUS 326 acpi_Startup(void) 327 { 328 static int started = 0; 329 ACPI_STATUS status; 330 int val; 331 332 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 333 334 /* Only run the startup code once. The MADT driver also calls this. */ 335 if (started) 336 return_VALUE (AE_OK); 337 started = 1; 338 339 /* 340 * Pre-allocate space for RSDT/XSDT and DSDT tables and allow resizing 341 * if more tables exist. 342 */ 343 if (ACPI_FAILURE(status = AcpiInitializeTables(NULL, 2, TRUE))) { 344 printf("ACPI: Table initialisation failed: %s\n", 345 AcpiFormatException(status)); 346 return_VALUE (status); 347 } 348 349 /* Set up any quirks we have for this system. */ 350 if (acpi_quirks == ACPI_Q_OK) 351 acpi_table_quirks(&acpi_quirks); 352 353 /* If the user manually set the disabled hint to 0, force-enable ACPI. */ 354 if (resource_int_value("acpi", 0, "disabled", &val) == 0 && val == 0) 355 acpi_quirks &= ~ACPI_Q_BROKEN; 356 if (acpi_quirks & ACPI_Q_BROKEN) { 357 printf("ACPI disabled by blacklist. Contact your BIOS vendor.\n"); 358 status = AE_SUPPORT; 359 } 360 361 return_VALUE (status); 362 } 363 364 /* 365 * Detect ACPI and perform early initialisation. 366 */ 367 int 368 acpi_identify(void) 369 { 370 ACPI_TABLE_RSDP *rsdp; 371 ACPI_TABLE_HEADER *rsdt; 372 ACPI_PHYSICAL_ADDRESS paddr; 373 struct sbuf sb; 374 375 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 376 377 if (!cold) 378 return (ENXIO); 379 380 /* Check that we haven't been disabled with a hint. */ 381 if (resource_disabled("acpi", 0)) 382 return (ENXIO); 383 384 /* Check for other PM systems. */ 385 if (power_pm_get_type() != POWER_PM_TYPE_NONE && 386 power_pm_get_type() != POWER_PM_TYPE_ACPI) { 387 printf("ACPI identify failed, other PM system enabled.\n"); 388 return (ENXIO); 389 } 390 391 /* Initialize root tables. */ 392 if (ACPI_FAILURE(acpi_Startup())) { 393 printf("ACPI: Try disabling either ACPI or apic support.\n"); 394 return (ENXIO); 395 } 396 397 if ((paddr = AcpiOsGetRootPointer()) == 0 || 398 (rsdp = AcpiOsMapMemory(paddr, sizeof(ACPI_TABLE_RSDP))) == NULL) 399 return (ENXIO); 400 if (rsdp->Revision > 1 && rsdp->XsdtPhysicalAddress != 0) 401 paddr = (ACPI_PHYSICAL_ADDRESS)rsdp->XsdtPhysicalAddress; 402 else 403 paddr = (ACPI_PHYSICAL_ADDRESS)rsdp->RsdtPhysicalAddress; 404 AcpiOsUnmapMemory(rsdp, sizeof(ACPI_TABLE_RSDP)); 405 406 if ((rsdt = AcpiOsMapMemory(paddr, sizeof(ACPI_TABLE_HEADER))) == NULL) 407 return (ENXIO); 408 sbuf_new(&sb, acpi_desc, sizeof(acpi_desc), SBUF_FIXEDLEN); 409 sbuf_bcat(&sb, rsdt->OemId, ACPI_OEM_ID_SIZE); 410 sbuf_trim(&sb); 411 sbuf_putc(&sb, ' '); 412 sbuf_bcat(&sb, rsdt->OemTableId, ACPI_OEM_TABLE_ID_SIZE); 413 sbuf_trim(&sb); 414 sbuf_finish(&sb); 415 sbuf_delete(&sb); 416 AcpiOsUnmapMemory(rsdt, sizeof(ACPI_TABLE_HEADER)); 417 418 snprintf(acpi_ca_version, sizeof(acpi_ca_version), "%x", ACPI_CA_VERSION); 419 420 return (0); 421 } 422 423 /* 424 * Fetch some descriptive data from ACPI to put in our attach message. 425 */ 426 static int 427 acpi_probe(device_t dev) 428 { 429 430 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 431 432 device_set_desc(dev, acpi_desc); 433 434 return_VALUE (BUS_PROBE_NOWILDCARD); 435 } 436 437 static int 438 acpi_attach(device_t dev) 439 { 440 struct acpi_softc *sc; 441 ACPI_STATUS status; 442 int error, state; 443 UINT32 flags; 444 UINT8 TypeA, TypeB; 445 char *env; 446 447 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 448 449 sc = device_get_softc(dev); 450 sc->acpi_dev = dev; 451 callout_init(&sc->susp_force_to, TRUE); 452 453 error = ENXIO; 454 455 /* Initialize resource manager. */ 456 acpi_rman_io.rm_type = RMAN_ARRAY; 457 acpi_rman_io.rm_start = 0; 458 acpi_rman_io.rm_end = 0xffff; 459 acpi_rman_io.rm_descr = "ACPI I/O ports"; 460 if (rman_init(&acpi_rman_io) != 0) 461 panic("acpi rman_init IO ports failed"); 462 acpi_rman_mem.rm_type = RMAN_ARRAY; 463 acpi_rman_mem.rm_start = 0; 464 acpi_rman_mem.rm_end = ~0ul; 465 acpi_rman_mem.rm_descr = "ACPI I/O memory addresses"; 466 if (rman_init(&acpi_rman_mem) != 0) 467 panic("acpi rman_init memory failed"); 468 469 /* Initialise the ACPI mutex */ 470 mtx_init(&acpi_mutex, "ACPI global lock", NULL, MTX_DEF); 471 472 /* 473 * Set the globals from our tunables. This is needed because ACPI-CA 474 * uses UINT8 for some values and we have no tunable_byte. 475 */ 476 AcpiGbl_AllMethodsSerialized = acpi_serialize_methods ? TRUE : FALSE; 477 AcpiGbl_EnableInterpreterSlack = acpi_interpreter_slack ? TRUE : FALSE; 478 AcpiGbl_EnableAmlDebugObject = acpi_debug_objects ? TRUE : FALSE; 479 480 #ifndef ACPI_DEBUG 481 /* 482 * Disable all debugging layers and levels. 483 */ 484 AcpiDbgLayer = 0; 485 AcpiDbgLevel = 0; 486 #endif 487 488 /* Start up the ACPI CA subsystem. */ 489 status = AcpiInitializeSubsystem(); 490 if (ACPI_FAILURE(status)) { 491 device_printf(dev, "Could not initialize Subsystem: %s\n", 492 AcpiFormatException(status)); 493 goto out; 494 } 495 496 /* Override OS interfaces if the user requested. */ 497 acpi_reset_interfaces(dev); 498 499 /* Load ACPI name space. */ 500 status = AcpiLoadTables(); 501 if (ACPI_FAILURE(status)) { 502 device_printf(dev, "Could not load Namespace: %s\n", 503 AcpiFormatException(status)); 504 goto out; 505 } 506 507 #if defined(__i386__) || defined(__amd64__) 508 /* Handle MCFG table if present. */ 509 acpi_enable_pcie(); 510 #endif 511 512 /* 513 * Note that some systems (specifically, those with namespace evaluation 514 * issues that require the avoidance of parts of the namespace) must 515 * avoid running _INI and _STA on everything, as well as dodging the final 516 * object init pass. 517 * 518 * For these devices, we set ACPI_NO_DEVICE_INIT and ACPI_NO_OBJECT_INIT). 519 * 520 * XXX We should arrange for the object init pass after we have attached 521 * all our child devices, but on many systems it works here. 522 */ 523 flags = 0; 524 if (testenv("debug.acpi.avoid")) 525 flags = ACPI_NO_DEVICE_INIT | ACPI_NO_OBJECT_INIT; 526 527 /* Bring the hardware and basic handlers online. */ 528 if (ACPI_FAILURE(status = AcpiEnableSubsystem(flags))) { 529 device_printf(dev, "Could not enable ACPI: %s\n", 530 AcpiFormatException(status)); 531 goto out; 532 } 533 534 /* 535 * Call the ECDT probe function to provide EC functionality before 536 * the namespace has been evaluated. 537 * 538 * XXX This happens before the sysresource devices have been probed and 539 * attached so its resources come from nexus0. In practice, this isn't 540 * a problem but should be addressed eventually. 541 */ 542 acpi_ec_ecdt_probe(dev); 543 544 /* Bring device objects and regions online. */ 545 if (ACPI_FAILURE(status = AcpiInitializeObjects(flags))) { 546 device_printf(dev, "Could not initialize ACPI objects: %s\n", 547 AcpiFormatException(status)); 548 goto out; 549 } 550 551 /* 552 * Setup our sysctl tree. 553 * 554 * XXX: This doesn't check to make sure that none of these fail. 555 */ 556 sysctl_ctx_init(&sc->acpi_sysctl_ctx); 557 sc->acpi_sysctl_tree = SYSCTL_ADD_NODE(&sc->acpi_sysctl_ctx, 558 SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO, 559 device_get_name(dev), CTLFLAG_RD, 0, ""); 560 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 561 OID_AUTO, "supported_sleep_state", CTLTYPE_STRING | CTLFLAG_RD, 562 0, 0, acpi_supported_sleep_state_sysctl, "A", ""); 563 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 564 OID_AUTO, "power_button_state", CTLTYPE_STRING | CTLFLAG_RW, 565 &sc->acpi_power_button_sx, 0, acpi_sleep_state_sysctl, "A", ""); 566 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 567 OID_AUTO, "sleep_button_state", CTLTYPE_STRING | CTLFLAG_RW, 568 &sc->acpi_sleep_button_sx, 0, acpi_sleep_state_sysctl, "A", ""); 569 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 570 OID_AUTO, "lid_switch_state", CTLTYPE_STRING | CTLFLAG_RW, 571 &sc->acpi_lid_switch_sx, 0, acpi_sleep_state_sysctl, "A", ""); 572 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 573 OID_AUTO, "standby_state", CTLTYPE_STRING | CTLFLAG_RW, 574 &sc->acpi_standby_sx, 0, acpi_sleep_state_sysctl, "A", ""); 575 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 576 OID_AUTO, "suspend_state", CTLTYPE_STRING | CTLFLAG_RW, 577 &sc->acpi_suspend_sx, 0, acpi_sleep_state_sysctl, "A", ""); 578 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 579 OID_AUTO, "sleep_delay", CTLFLAG_RW, &sc->acpi_sleep_delay, 0, 580 "sleep delay in seconds"); 581 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 582 OID_AUTO, "s4bios", CTLFLAG_RW, &sc->acpi_s4bios, 0, "S4BIOS mode"); 583 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 584 OID_AUTO, "verbose", CTLFLAG_RW, &sc->acpi_verbose, 0, "verbose mode"); 585 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 586 OID_AUTO, "disable_on_reboot", CTLFLAG_RW, 587 &sc->acpi_do_disable, 0, "Disable ACPI when rebooting/halting system"); 588 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 589 OID_AUTO, "handle_reboot", CTLFLAG_RW, 590 &sc->acpi_handle_reboot, 0, "Use ACPI Reset Register to reboot"); 591 592 /* 593 * Default to 1 second before sleeping to give some machines time to 594 * stabilize. 595 */ 596 sc->acpi_sleep_delay = 1; 597 if (bootverbose) 598 sc->acpi_verbose = 1; 599 if ((env = getenv("hw.acpi.verbose")) != NULL) { 600 if (strcmp(env, "0") != 0) 601 sc->acpi_verbose = 1; 602 freeenv(env); 603 } 604 605 /* Only enable reboot by default if the FADT says it is available. */ 606 if (AcpiGbl_FADT.Flags & ACPI_FADT_RESET_REGISTER) 607 sc->acpi_handle_reboot = 1; 608 609 /* Only enable S4BIOS by default if the FACS says it is available. */ 610 if (AcpiGbl_FACS->Flags & ACPI_FACS_S4_BIOS_PRESENT) 611 sc->acpi_s4bios = 1; 612 613 /* Probe all supported sleep states. */ 614 acpi_sleep_states[ACPI_STATE_S0] = TRUE; 615 for (state = ACPI_STATE_S1; state < ACPI_S_STATE_COUNT; state++) 616 if (ACPI_SUCCESS(AcpiEvaluateObject(ACPI_ROOT_OBJECT, 617 __DECONST(char *, AcpiGbl_SleepStateNames[state]), NULL, NULL)) && 618 ACPI_SUCCESS(AcpiGetSleepTypeData(state, &TypeA, &TypeB))) 619 acpi_sleep_states[state] = TRUE; 620 621 /* 622 * Dispatch the default sleep state to devices. The lid switch is set 623 * to UNKNOWN by default to avoid surprising users. 624 */ 625 sc->acpi_power_button_sx = acpi_sleep_states[ACPI_STATE_S5] ? 626 ACPI_STATE_S5 : ACPI_STATE_UNKNOWN; 627 sc->acpi_lid_switch_sx = ACPI_STATE_UNKNOWN; 628 sc->acpi_standby_sx = acpi_sleep_states[ACPI_STATE_S1] ? 629 ACPI_STATE_S1 : ACPI_STATE_UNKNOWN; 630 sc->acpi_suspend_sx = acpi_sleep_states[ACPI_STATE_S3] ? 631 ACPI_STATE_S3 : ACPI_STATE_UNKNOWN; 632 633 /* Pick the first valid sleep state for the sleep button default. */ 634 sc->acpi_sleep_button_sx = ACPI_STATE_UNKNOWN; 635 for (state = ACPI_STATE_S1; state <= ACPI_STATE_S4; state++) 636 if (acpi_sleep_states[state]) { 637 sc->acpi_sleep_button_sx = state; 638 break; 639 } 640 641 acpi_enable_fixed_events(sc); 642 643 /* 644 * Scan the namespace and attach/initialise children. 645 */ 646 647 /* Register our shutdown handler. */ 648 EVENTHANDLER_REGISTER(shutdown_final, acpi_shutdown_final, sc, 649 SHUTDOWN_PRI_LAST); 650 651 /* 652 * Register our acpi event handlers. 653 * XXX should be configurable eg. via userland policy manager. 654 */ 655 EVENTHANDLER_REGISTER(acpi_sleep_event, acpi_system_eventhandler_sleep, 656 sc, ACPI_EVENT_PRI_LAST); 657 EVENTHANDLER_REGISTER(acpi_wakeup_event, acpi_system_eventhandler_wakeup, 658 sc, ACPI_EVENT_PRI_LAST); 659 660 /* Flag our initial states. */ 661 sc->acpi_enabled = TRUE; 662 sc->acpi_sstate = ACPI_STATE_S0; 663 sc->acpi_sleep_disabled = TRUE; 664 665 /* Create the control device */ 666 sc->acpi_dev_t = make_dev(&acpi_cdevsw, 0, UID_ROOT, GID_WHEEL, 0644, 667 "acpi"); 668 sc->acpi_dev_t->si_drv1 = sc; 669 670 if ((error = acpi_machdep_init(dev))) 671 goto out; 672 673 /* Register ACPI again to pass the correct argument of pm_func. */ 674 power_pm_register(POWER_PM_TYPE_ACPI, acpi_pm_func, sc); 675 676 if (!acpi_disabled("bus")) 677 acpi_probe_children(dev); 678 679 /* Update all GPEs and enable runtime GPEs. */ 680 status = AcpiUpdateAllGpes(); 681 if (ACPI_FAILURE(status)) 682 device_printf(dev, "Could not update all GPEs: %s\n", 683 AcpiFormatException(status)); 684 685 /* Allow sleep request after a while. */ 686 timeout(acpi_sleep_enable, sc, hz * ACPI_MINIMUM_AWAKETIME); 687 688 error = 0; 689 690 out: 691 return_VALUE (error); 692 } 693 694 static void 695 acpi_set_power_children(device_t dev, int state) 696 { 697 device_t child, parent; 698 device_t *devlist; 699 int dstate, i, numdevs; 700 701 if (device_get_children(dev, &devlist, &numdevs) != 0) 702 return; 703 704 /* 705 * Retrieve and set D-state for the sleep state if _SxD is present. 706 * Skip children who aren't attached since they are handled separately. 707 */ 708 parent = device_get_parent(dev); 709 for (i = 0; i < numdevs; i++) { 710 child = devlist[i]; 711 dstate = state; 712 if (device_is_attached(child) && 713 acpi_device_pwr_for_sleep(parent, dev, &dstate) == 0) 714 acpi_set_powerstate(child, dstate); 715 } 716 free(devlist, M_TEMP); 717 } 718 719 static int 720 acpi_suspend(device_t dev) 721 { 722 int error; 723 724 GIANT_REQUIRED; 725 726 error = bus_generic_suspend(dev); 727 if (error == 0) 728 acpi_set_power_children(dev, ACPI_STATE_D3); 729 730 return (error); 731 } 732 733 static int 734 acpi_resume(device_t dev) 735 { 736 737 GIANT_REQUIRED; 738 739 acpi_set_power_children(dev, ACPI_STATE_D0); 740 741 return (bus_generic_resume(dev)); 742 } 743 744 static int 745 acpi_shutdown(device_t dev) 746 { 747 748 GIANT_REQUIRED; 749 750 /* Allow children to shutdown first. */ 751 bus_generic_shutdown(dev); 752 753 /* 754 * Enable any GPEs that are able to power-on the system (i.e., RTC). 755 * Also, disable any that are not valid for this state (most). 756 */ 757 acpi_wake_prep_walk(ACPI_STATE_S5); 758 759 return (0); 760 } 761 762 /* 763 * Handle a new device being added 764 */ 765 static device_t 766 acpi_add_child(device_t bus, u_int order, const char *name, int unit) 767 { 768 struct acpi_device *ad; 769 device_t child; 770 771 if ((ad = malloc(sizeof(*ad), M_ACPIDEV, M_NOWAIT | M_ZERO)) == NULL) 772 return (NULL); 773 774 resource_list_init(&ad->ad_rl); 775 776 child = device_add_child_ordered(bus, order, name, unit); 777 if (child != NULL) 778 device_set_ivars(child, ad); 779 else 780 free(ad, M_ACPIDEV); 781 return (child); 782 } 783 784 static int 785 acpi_print_child(device_t bus, device_t child) 786 { 787 struct acpi_device *adev = device_get_ivars(child); 788 struct resource_list *rl = &adev->ad_rl; 789 int retval = 0; 790 791 retval += bus_print_child_header(bus, child); 792 retval += resource_list_print_type(rl, "port", SYS_RES_IOPORT, "%#lx"); 793 retval += resource_list_print_type(rl, "iomem", SYS_RES_MEMORY, "%#lx"); 794 retval += resource_list_print_type(rl, "irq", SYS_RES_IRQ, "%ld"); 795 retval += resource_list_print_type(rl, "drq", SYS_RES_DRQ, "%ld"); 796 if (device_get_flags(child)) 797 retval += printf(" flags %#x", device_get_flags(child)); 798 retval += bus_print_child_footer(bus, child); 799 800 return (retval); 801 } 802 803 /* 804 * If this device is an ACPI child but no one claimed it, attempt 805 * to power it off. We'll power it back up when a driver is added. 806 * 807 * XXX Disabled for now since many necessary devices (like fdc and 808 * ATA) don't claim the devices we created for them but still expect 809 * them to be powered up. 810 */ 811 static void 812 acpi_probe_nomatch(device_t bus, device_t child) 813 { 814 #ifdef ACPI_ENABLE_POWERDOWN_NODRIVER 815 acpi_set_powerstate(child, ACPI_STATE_D3); 816 #endif 817 } 818 819 /* 820 * If a new driver has a chance to probe a child, first power it up. 821 * 822 * XXX Disabled for now (see acpi_probe_nomatch for details). 823 */ 824 static void 825 acpi_driver_added(device_t dev, driver_t *driver) 826 { 827 device_t child, *devlist; 828 int i, numdevs; 829 830 DEVICE_IDENTIFY(driver, dev); 831 if (device_get_children(dev, &devlist, &numdevs)) 832 return; 833 for (i = 0; i < numdevs; i++) { 834 child = devlist[i]; 835 if (device_get_state(child) == DS_NOTPRESENT) { 836 #ifdef ACPI_ENABLE_POWERDOWN_NODRIVER 837 acpi_set_powerstate(child, ACPI_STATE_D0); 838 if (device_probe_and_attach(child) != 0) 839 acpi_set_powerstate(child, ACPI_STATE_D3); 840 #else 841 device_probe_and_attach(child); 842 #endif 843 } 844 } 845 free(devlist, M_TEMP); 846 } 847 848 /* Location hint for devctl(8) */ 849 static int 850 acpi_child_location_str_method(device_t cbdev, device_t child, char *buf, 851 size_t buflen) 852 { 853 struct acpi_device *dinfo = device_get_ivars(child); 854 855 if (dinfo->ad_handle) 856 snprintf(buf, buflen, "handle=%s", acpi_name(dinfo->ad_handle)); 857 else 858 snprintf(buf, buflen, "unknown"); 859 return (0); 860 } 861 862 /* PnP information for devctl(8) */ 863 static int 864 acpi_child_pnpinfo_str_method(device_t cbdev, device_t child, char *buf, 865 size_t buflen) 866 { 867 struct acpi_device *dinfo = device_get_ivars(child); 868 ACPI_DEVICE_INFO *adinfo; 869 870 if (ACPI_FAILURE(AcpiGetObjectInfo(dinfo->ad_handle, &adinfo))) { 871 snprintf(buf, buflen, "unknown"); 872 return (0); 873 } 874 875 snprintf(buf, buflen, "_HID=%s _UID=%lu", 876 (adinfo->Valid & ACPI_VALID_HID) ? 877 adinfo->HardwareId.String : "none", 878 (adinfo->Valid & ACPI_VALID_UID) ? 879 strtoul(adinfo->UniqueId.String, NULL, 10) : 0UL); 880 AcpiOsFree(adinfo); 881 882 return (0); 883 } 884 885 /* 886 * Handle per-device ivars 887 */ 888 static int 889 acpi_read_ivar(device_t dev, device_t child, int index, uintptr_t *result) 890 { 891 struct acpi_device *ad; 892 893 if ((ad = device_get_ivars(child)) == NULL) { 894 device_printf(child, "device has no ivars\n"); 895 return (ENOENT); 896 } 897 898 /* ACPI and ISA compatibility ivars */ 899 switch(index) { 900 case ACPI_IVAR_HANDLE: 901 *(ACPI_HANDLE *)result = ad->ad_handle; 902 break; 903 case ACPI_IVAR_PRIVATE: 904 *(void **)result = ad->ad_private; 905 break; 906 case ACPI_IVAR_FLAGS: 907 *(int *)result = ad->ad_flags; 908 break; 909 case ISA_IVAR_VENDORID: 910 case ISA_IVAR_SERIAL: 911 case ISA_IVAR_COMPATID: 912 *(int *)result = -1; 913 break; 914 case ISA_IVAR_LOGICALID: 915 *(int *)result = acpi_isa_get_logicalid(child); 916 break; 917 default: 918 return (ENOENT); 919 } 920 921 return (0); 922 } 923 924 static int 925 acpi_write_ivar(device_t dev, device_t child, int index, uintptr_t value) 926 { 927 struct acpi_device *ad; 928 929 if ((ad = device_get_ivars(child)) == NULL) { 930 device_printf(child, "device has no ivars\n"); 931 return (ENOENT); 932 } 933 934 switch(index) { 935 case ACPI_IVAR_HANDLE: 936 ad->ad_handle = (ACPI_HANDLE)value; 937 break; 938 case ACPI_IVAR_PRIVATE: 939 ad->ad_private = (void *)value; 940 break; 941 case ACPI_IVAR_FLAGS: 942 ad->ad_flags = (int)value; 943 break; 944 default: 945 panic("bad ivar write request (%d)", index); 946 return (ENOENT); 947 } 948 949 return (0); 950 } 951 952 /* 953 * Handle child resource allocation/removal 954 */ 955 static struct resource_list * 956 acpi_get_rlist(device_t dev, device_t child) 957 { 958 struct acpi_device *ad; 959 960 ad = device_get_ivars(child); 961 return (&ad->ad_rl); 962 } 963 964 static int 965 acpi_match_resource_hint(device_t dev, int type, long value) 966 { 967 struct acpi_device *ad = device_get_ivars(dev); 968 struct resource_list *rl = &ad->ad_rl; 969 struct resource_list_entry *rle; 970 971 STAILQ_FOREACH(rle, rl, link) { 972 if (rle->type != type) 973 continue; 974 if (rle->start <= value && rle->end >= value) 975 return (1); 976 } 977 return (0); 978 } 979 980 /* 981 * Wire device unit numbers based on resource matches in hints. 982 */ 983 static void 984 acpi_hint_device_unit(device_t acdev, device_t child, const char *name, 985 int *unitp) 986 { 987 const char *s; 988 long value; 989 int line, matches, unit; 990 991 /* 992 * Iterate over all the hints for the devices with the specified 993 * name to see if one's resources are a subset of this device. 994 */ 995 line = 0; 996 for (;;) { 997 if (resource_find_dev(&line, name, &unit, "at", NULL) != 0) 998 break; 999 1000 /* Must have an "at" for acpi or isa. */ 1001 resource_string_value(name, unit, "at", &s); 1002 if (!(strcmp(s, "acpi0") == 0 || strcmp(s, "acpi") == 0 || 1003 strcmp(s, "isa0") == 0 || strcmp(s, "isa") == 0)) 1004 continue; 1005 1006 /* 1007 * Check for matching resources. We must have at least one match. 1008 * Since I/O and memory resources cannot be shared, if we get a 1009 * match on either of those, ignore any mismatches in IRQs or DRQs. 1010 * 1011 * XXX: We may want to revisit this to be more lenient and wire 1012 * as long as it gets one match. 1013 */ 1014 matches = 0; 1015 if (resource_long_value(name, unit, "port", &value) == 0) { 1016 /* 1017 * Floppy drive controllers are notorious for having a 1018 * wide variety of resources not all of which include the 1019 * first port that is specified by the hint (typically 1020 * 0x3f0) (see the comment above fdc_isa_alloc_resources() 1021 * in fdc_isa.c). However, they do all seem to include 1022 * port + 2 (e.g. 0x3f2) so for a floppy device, look for 1023 * 'value + 2' in the port resources instead of the hint 1024 * value. 1025 */ 1026 if (strcmp(name, "fdc") == 0) 1027 value += 2; 1028 if (acpi_match_resource_hint(child, SYS_RES_IOPORT, value)) 1029 matches++; 1030 else 1031 continue; 1032 } 1033 if (resource_long_value(name, unit, "maddr", &value) == 0) { 1034 if (acpi_match_resource_hint(child, SYS_RES_MEMORY, value)) 1035 matches++; 1036 else 1037 continue; 1038 } 1039 if (matches > 0) 1040 goto matched; 1041 if (resource_long_value(name, unit, "irq", &value) == 0) { 1042 if (acpi_match_resource_hint(child, SYS_RES_IRQ, value)) 1043 matches++; 1044 else 1045 continue; 1046 } 1047 if (resource_long_value(name, unit, "drq", &value) == 0) { 1048 if (acpi_match_resource_hint(child, SYS_RES_DRQ, value)) 1049 matches++; 1050 else 1051 continue; 1052 } 1053 1054 matched: 1055 if (matches > 0) { 1056 /* We have a winner! */ 1057 *unitp = unit; 1058 break; 1059 } 1060 } 1061 } 1062 1063 /* 1064 * Pre-allocate/manage all memory and IO resources. Since rman can't handle 1065 * duplicates, we merge any in the sysresource attach routine. 1066 */ 1067 static int 1068 acpi_sysres_alloc(device_t dev) 1069 { 1070 struct resource *res; 1071 struct resource_list *rl; 1072 struct resource_list_entry *rle; 1073 struct rman *rm; 1074 char *sysres_ids[] = { "PNP0C01", "PNP0C02", NULL }; 1075 device_t *children; 1076 int child_count, i; 1077 1078 /* 1079 * Probe/attach any sysresource devices. This would be unnecessary if we 1080 * had multi-pass probe/attach. 1081 */ 1082 if (device_get_children(dev, &children, &child_count) != 0) 1083 return (ENXIO); 1084 for (i = 0; i < child_count; i++) { 1085 if (ACPI_ID_PROBE(dev, children[i], sysres_ids) != NULL) 1086 device_probe_and_attach(children[i]); 1087 } 1088 free(children, M_TEMP); 1089 1090 rl = BUS_GET_RESOURCE_LIST(device_get_parent(dev), dev); 1091 STAILQ_FOREACH(rle, rl, link) { 1092 if (rle->res != NULL) { 1093 device_printf(dev, "duplicate resource for %lx\n", rle->start); 1094 continue; 1095 } 1096 1097 /* Only memory and IO resources are valid here. */ 1098 switch (rle->type) { 1099 case SYS_RES_IOPORT: 1100 rm = &acpi_rman_io; 1101 break; 1102 case SYS_RES_MEMORY: 1103 rm = &acpi_rman_mem; 1104 break; 1105 default: 1106 continue; 1107 } 1108 1109 /* Pre-allocate resource and add to our rman pool. */ 1110 res = BUS_ALLOC_RESOURCE(device_get_parent(dev), dev, rle->type, 1111 &rle->rid, rle->start, rle->start + rle->count - 1, rle->count, 0); 1112 if (res != NULL) { 1113 rman_manage_region(rm, rman_get_start(res), rman_get_end(res)); 1114 rle->res = res; 1115 } else 1116 device_printf(dev, "reservation of %lx, %lx (%d) failed\n", 1117 rle->start, rle->count, rle->type); 1118 } 1119 return (0); 1120 } 1121 1122 static char *pcilink_ids[] = { "PNP0C0F", NULL }; 1123 static char *sysres_ids[] = { "PNP0C01", "PNP0C02", NULL }; 1124 1125 /* 1126 * Reserve declared resources for devices found during attach once system 1127 * resources have been allocated. 1128 */ 1129 static void 1130 acpi_reserve_resources(device_t dev) 1131 { 1132 struct resource_list_entry *rle; 1133 struct resource_list *rl; 1134 struct acpi_device *ad; 1135 struct acpi_softc *sc; 1136 device_t *children; 1137 int child_count, i; 1138 1139 sc = device_get_softc(dev); 1140 if (device_get_children(dev, &children, &child_count) != 0) 1141 return; 1142 for (i = 0; i < child_count; i++) { 1143 ad = device_get_ivars(children[i]); 1144 rl = &ad->ad_rl; 1145 1146 /* Don't reserve system resources. */ 1147 if (ACPI_ID_PROBE(dev, children[i], sysres_ids) != NULL) 1148 continue; 1149 1150 STAILQ_FOREACH(rle, rl, link) { 1151 /* 1152 * Don't reserve IRQ resources. There are many sticky things 1153 * to get right otherwise (e.g. IRQs for psm, atkbd, and HPET 1154 * when using legacy routing). 1155 */ 1156 if (rle->type == SYS_RES_IRQ) 1157 continue; 1158 1159 /* 1160 * Don't reserve the resource if it is already allocated. 1161 * The acpi_ec(4) driver can allocate its resources early 1162 * if ECDT is present. 1163 */ 1164 if (rle->res != NULL) 1165 continue; 1166 1167 /* 1168 * Try to reserve the resource from our parent. If this 1169 * fails because the resource is a system resource, just 1170 * let it be. The resource range is already reserved so 1171 * that other devices will not use it. If the driver 1172 * needs to allocate the resource, then 1173 * acpi_alloc_resource() will sub-alloc from the system 1174 * resource. 1175 */ 1176 resource_list_reserve(rl, dev, children[i], rle->type, &rle->rid, 1177 rle->start, rle->end, rle->count, 0); 1178 } 1179 } 1180 free(children, M_TEMP); 1181 sc->acpi_resources_reserved = 1; 1182 } 1183 1184 static int 1185 acpi_set_resource(device_t dev, device_t child, int type, int rid, 1186 u_long start, u_long count) 1187 { 1188 struct acpi_softc *sc = device_get_softc(dev); 1189 struct acpi_device *ad = device_get_ivars(child); 1190 struct resource_list *rl = &ad->ad_rl; 1191 ACPI_DEVICE_INFO *devinfo; 1192 u_long end; 1193 1194 /* Ignore IRQ resources for PCI link devices. */ 1195 if (type == SYS_RES_IRQ && ACPI_ID_PROBE(dev, child, pcilink_ids) != NULL) 1196 return (0); 1197 1198 /* 1199 * Ignore memory resources for PCI root bridges. Some BIOSes 1200 * incorrectly enumerate the memory ranges they decode as plain 1201 * memory resources instead of as a ResourceProducer range. 1202 */ 1203 if (type == SYS_RES_MEMORY) { 1204 if (ACPI_SUCCESS(AcpiGetObjectInfo(ad->ad_handle, &devinfo))) { 1205 if ((devinfo->Flags & ACPI_PCI_ROOT_BRIDGE) != 0) { 1206 AcpiOsFree(devinfo); 1207 return (0); 1208 } 1209 AcpiOsFree(devinfo); 1210 } 1211 } 1212 1213 /* If the resource is already allocated, fail. */ 1214 if (resource_list_busy(rl, type, rid)) 1215 return (EBUSY); 1216 1217 /* If the resource is already reserved, release it. */ 1218 if (resource_list_reserved(rl, type, rid)) 1219 resource_list_unreserve(rl, dev, child, type, rid); 1220 1221 /* Add the resource. */ 1222 end = (start + count - 1); 1223 resource_list_add(rl, type, rid, start, end, count); 1224 1225 /* Don't reserve resources until the system resources are allocated. */ 1226 if (!sc->acpi_resources_reserved) 1227 return (0); 1228 1229 /* Don't reserve system resources. */ 1230 if (ACPI_ID_PROBE(dev, child, sysres_ids) != NULL) 1231 return (0); 1232 1233 /* 1234 * Don't reserve IRQ resources. There are many sticky things to 1235 * get right otherwise (e.g. IRQs for psm, atkbd, and HPET when 1236 * using legacy routing). 1237 */ 1238 if (type == SYS_RES_IRQ) 1239 return (0); 1240 1241 /* 1242 * Reserve the resource. 1243 * 1244 * XXX: Ignores failure for now. Failure here is probably a 1245 * BIOS/firmware bug? 1246 */ 1247 resource_list_reserve(rl, dev, child, type, &rid, start, end, count, 0); 1248 return (0); 1249 } 1250 1251 static struct resource * 1252 acpi_alloc_resource(device_t bus, device_t child, int type, int *rid, 1253 u_long start, u_long end, u_long count, u_int flags) 1254 { 1255 ACPI_RESOURCE ares; 1256 struct acpi_device *ad; 1257 struct resource_list_entry *rle; 1258 struct resource_list *rl; 1259 struct resource *res; 1260 int isdefault = (start == 0UL && end == ~0UL); 1261 1262 /* 1263 * First attempt at allocating the resource. For direct children, 1264 * use resource_list_alloc() to handle reserved resources. For 1265 * other devices, pass the request up to our parent. 1266 */ 1267 if (bus == device_get_parent(child)) { 1268 ad = device_get_ivars(child); 1269 rl = &ad->ad_rl; 1270 1271 /* 1272 * Simulate the behavior of the ISA bus for direct children 1273 * devices. That is, if a non-default range is specified for 1274 * a resource that doesn't exist, use bus_set_resource() to 1275 * add the resource before allocating it. Note that these 1276 * resources will not be reserved. 1277 */ 1278 if (!isdefault && resource_list_find(rl, type, *rid) == NULL) 1279 resource_list_add(rl, type, *rid, start, end, count); 1280 res = resource_list_alloc(rl, bus, child, type, rid, start, end, count, 1281 flags); 1282 if (res != NULL && type == SYS_RES_IRQ) { 1283 /* 1284 * Since bus_config_intr() takes immediate effect, we cannot 1285 * configure the interrupt associated with a device when we 1286 * parse the resources but have to defer it until a driver 1287 * actually allocates the interrupt via bus_alloc_resource(). 1288 * 1289 * XXX: Should we handle the lookup failing? 1290 */ 1291 if (ACPI_SUCCESS(acpi_lookup_irq_resource(child, *rid, res, &ares))) 1292 acpi_config_intr(child, &ares); 1293 } 1294 1295 /* 1296 * If this is an allocation of the "default" range for a given 1297 * RID, fetch the exact bounds for this resource from the 1298 * resource list entry to try to allocate the range from the 1299 * system resource regions. 1300 */ 1301 if (res == NULL && isdefault) { 1302 rle = resource_list_find(rl, type, *rid); 1303 if (rle != NULL) { 1304 start = rle->start; 1305 end = rle->end; 1306 count = rle->count; 1307 } 1308 } 1309 } else 1310 res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, type, rid, 1311 start, end, count, flags); 1312 1313 /* 1314 * If the first attempt failed and this is an allocation of a 1315 * specific range, try to satisfy the request via a suballocation 1316 * from our system resource regions. 1317 */ 1318 if (res == NULL && start + count - 1 == end) 1319 res = acpi_alloc_sysres(child, type, rid, start, end, count, flags); 1320 return (res); 1321 } 1322 1323 /* 1324 * Attempt to allocate a specific resource range from the system 1325 * resource ranges. Note that we only handle memory and I/O port 1326 * system resources. 1327 */ 1328 struct resource * 1329 acpi_alloc_sysres(device_t child, int type, int *rid, u_long start, u_long end, 1330 u_long count, u_int flags) 1331 { 1332 struct rman *rm; 1333 struct resource *res; 1334 1335 switch (type) { 1336 case SYS_RES_IOPORT: 1337 rm = &acpi_rman_io; 1338 break; 1339 case SYS_RES_MEMORY: 1340 rm = &acpi_rman_mem; 1341 break; 1342 default: 1343 return (NULL); 1344 } 1345 1346 KASSERT(start + count - 1 == end, ("wildcard resource range")); 1347 res = rman_reserve_resource(rm, start, end, count, flags & ~RF_ACTIVE, 1348 child); 1349 if (res == NULL) 1350 return (NULL); 1351 1352 rman_set_rid(res, *rid); 1353 1354 /* If requested, activate the resource using the parent's method. */ 1355 if (flags & RF_ACTIVE) 1356 if (bus_activate_resource(child, type, *rid, res) != 0) { 1357 rman_release_resource(res); 1358 return (NULL); 1359 } 1360 1361 return (res); 1362 } 1363 1364 static int 1365 acpi_is_resource_managed(int type, struct resource *r) 1366 { 1367 1368 /* We only handle memory and IO resources through rman. */ 1369 switch (type) { 1370 case SYS_RES_IOPORT: 1371 return (rman_is_region_manager(r, &acpi_rman_io)); 1372 case SYS_RES_MEMORY: 1373 return (rman_is_region_manager(r, &acpi_rman_mem)); 1374 } 1375 return (0); 1376 } 1377 1378 static int 1379 acpi_adjust_resource(device_t bus, device_t child, int type, struct resource *r, 1380 u_long start, u_long end) 1381 { 1382 1383 if (acpi_is_resource_managed(type, r)) 1384 return (rman_adjust_resource(r, start, end)); 1385 return (bus_generic_adjust_resource(bus, child, type, r, start, end)); 1386 } 1387 1388 static int 1389 acpi_release_resource(device_t bus, device_t child, int type, int rid, 1390 struct resource *r) 1391 { 1392 int ret; 1393 1394 /* 1395 * If this resource belongs to one of our internal managers, 1396 * deactivate it and release it to the local pool. 1397 */ 1398 if (acpi_is_resource_managed(type, r)) { 1399 if (rman_get_flags(r) & RF_ACTIVE) { 1400 ret = bus_deactivate_resource(child, type, rid, r); 1401 if (ret != 0) 1402 return (ret); 1403 } 1404 return (rman_release_resource(r)); 1405 } 1406 1407 return (bus_generic_rl_release_resource(bus, child, type, rid, r)); 1408 } 1409 1410 static void 1411 acpi_delete_resource(device_t bus, device_t child, int type, int rid) 1412 { 1413 struct resource_list *rl; 1414 1415 rl = acpi_get_rlist(bus, child); 1416 if (resource_list_busy(rl, type, rid)) { 1417 device_printf(bus, "delete_resource: Resource still owned by child" 1418 " (type=%d, rid=%d)\n", type, rid); 1419 return; 1420 } 1421 resource_list_unreserve(rl, bus, child, type, rid); 1422 resource_list_delete(rl, type, rid); 1423 } 1424 1425 /* Allocate an IO port or memory resource, given its GAS. */ 1426 int 1427 acpi_bus_alloc_gas(device_t dev, int *type, int *rid, ACPI_GENERIC_ADDRESS *gas, 1428 struct resource **res, u_int flags) 1429 { 1430 int error, res_type; 1431 1432 error = ENOMEM; 1433 if (type == NULL || rid == NULL || gas == NULL || res == NULL) 1434 return (EINVAL); 1435 1436 /* We only support memory and IO spaces. */ 1437 switch (gas->SpaceId) { 1438 case ACPI_ADR_SPACE_SYSTEM_MEMORY: 1439 res_type = SYS_RES_MEMORY; 1440 break; 1441 case ACPI_ADR_SPACE_SYSTEM_IO: 1442 res_type = SYS_RES_IOPORT; 1443 break; 1444 default: 1445 return (EOPNOTSUPP); 1446 } 1447 1448 /* 1449 * If the register width is less than 8, assume the BIOS author means 1450 * it is a bit field and just allocate a byte. 1451 */ 1452 if (gas->BitWidth && gas->BitWidth < 8) 1453 gas->BitWidth = 8; 1454 1455 /* Validate the address after we're sure we support the space. */ 1456 if (gas->Address == 0 || gas->BitWidth == 0) 1457 return (EINVAL); 1458 1459 bus_set_resource(dev, res_type, *rid, gas->Address, 1460 gas->BitWidth / 8); 1461 *res = bus_alloc_resource_any(dev, res_type, rid, RF_ACTIVE | flags); 1462 if (*res != NULL) { 1463 *type = res_type; 1464 error = 0; 1465 } else 1466 bus_delete_resource(dev, res_type, *rid); 1467 1468 return (error); 1469 } 1470 1471 /* Probe _HID and _CID for compatible ISA PNP ids. */ 1472 static uint32_t 1473 acpi_isa_get_logicalid(device_t dev) 1474 { 1475 ACPI_DEVICE_INFO *devinfo; 1476 ACPI_HANDLE h; 1477 uint32_t pnpid; 1478 1479 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1480 1481 /* Fetch and validate the HID. */ 1482 if ((h = acpi_get_handle(dev)) == NULL || 1483 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 1484 return_VALUE (0); 1485 1486 pnpid = (devinfo->Valid & ACPI_VALID_HID) != 0 && 1487 devinfo->HardwareId.Length >= ACPI_EISAID_STRING_SIZE ? 1488 PNP_EISAID(devinfo->HardwareId.String) : 0; 1489 AcpiOsFree(devinfo); 1490 1491 return_VALUE (pnpid); 1492 } 1493 1494 static int 1495 acpi_isa_get_compatid(device_t dev, uint32_t *cids, int count) 1496 { 1497 ACPI_DEVICE_INFO *devinfo; 1498 ACPI_PNP_DEVICE_ID *ids; 1499 ACPI_HANDLE h; 1500 uint32_t *pnpid; 1501 int i, valid; 1502 1503 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1504 1505 pnpid = cids; 1506 1507 /* Fetch and validate the CID */ 1508 if ((h = acpi_get_handle(dev)) == NULL || 1509 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 1510 return_VALUE (0); 1511 1512 if ((devinfo->Valid & ACPI_VALID_CID) == 0) { 1513 AcpiOsFree(devinfo); 1514 return_VALUE (0); 1515 } 1516 1517 if (devinfo->CompatibleIdList.Count < count) 1518 count = devinfo->CompatibleIdList.Count; 1519 ids = devinfo->CompatibleIdList.Ids; 1520 for (i = 0, valid = 0; i < count; i++) 1521 if (ids[i].Length >= ACPI_EISAID_STRING_SIZE && 1522 strncmp(ids[i].String, "PNP", 3) == 0) { 1523 *pnpid++ = PNP_EISAID(ids[i].String); 1524 valid++; 1525 } 1526 AcpiOsFree(devinfo); 1527 1528 return_VALUE (valid); 1529 } 1530 1531 static char * 1532 acpi_device_id_probe(device_t bus, device_t dev, char **ids) 1533 { 1534 ACPI_HANDLE h; 1535 ACPI_OBJECT_TYPE t; 1536 int i; 1537 1538 h = acpi_get_handle(dev); 1539 if (ids == NULL || h == NULL) 1540 return (NULL); 1541 t = acpi_get_type(dev); 1542 if (t != ACPI_TYPE_DEVICE && t != ACPI_TYPE_PROCESSOR) 1543 return (NULL); 1544 1545 /* Try to match one of the array of IDs with a HID or CID. */ 1546 for (i = 0; ids[i] != NULL; i++) { 1547 if (acpi_MatchHid(h, ids[i])) 1548 return (ids[i]); 1549 } 1550 return (NULL); 1551 } 1552 1553 static ACPI_STATUS 1554 acpi_device_eval_obj(device_t bus, device_t dev, ACPI_STRING pathname, 1555 ACPI_OBJECT_LIST *parameters, ACPI_BUFFER *ret) 1556 { 1557 ACPI_HANDLE h; 1558 1559 if (dev == NULL) 1560 h = ACPI_ROOT_OBJECT; 1561 else if ((h = acpi_get_handle(dev)) == NULL) 1562 return (AE_BAD_PARAMETER); 1563 return (AcpiEvaluateObject(h, pathname, parameters, ret)); 1564 } 1565 1566 int 1567 acpi_device_pwr_for_sleep(device_t bus, device_t dev, int *dstate) 1568 { 1569 struct acpi_softc *sc; 1570 ACPI_HANDLE handle; 1571 ACPI_STATUS status; 1572 char sxd[8]; 1573 1574 handle = acpi_get_handle(dev); 1575 1576 /* 1577 * XXX If we find these devices, don't try to power them down. 1578 * The serial and IRDA ports on my T23 hang the system when 1579 * set to D3 and it appears that such legacy devices may 1580 * need special handling in their drivers. 1581 */ 1582 if (dstate == NULL || handle == NULL || 1583 acpi_MatchHid(handle, "PNP0500") || 1584 acpi_MatchHid(handle, "PNP0501") || 1585 acpi_MatchHid(handle, "PNP0502") || 1586 acpi_MatchHid(handle, "PNP0510") || 1587 acpi_MatchHid(handle, "PNP0511")) 1588 return (ENXIO); 1589 1590 /* 1591 * Override next state with the value from _SxD, if present. 1592 * Note illegal _S0D is evaluated because some systems expect this. 1593 */ 1594 sc = device_get_softc(bus); 1595 snprintf(sxd, sizeof(sxd), "_S%dD", sc->acpi_sstate); 1596 status = acpi_GetInteger(handle, sxd, dstate); 1597 if (ACPI_FAILURE(status) && status != AE_NOT_FOUND) { 1598 device_printf(dev, "failed to get %s on %s: %s\n", sxd, 1599 acpi_name(handle), AcpiFormatException(status)); 1600 return (ENXIO); 1601 } 1602 1603 return (0); 1604 } 1605 1606 /* Callback arg for our implementation of walking the namespace. */ 1607 struct acpi_device_scan_ctx { 1608 acpi_scan_cb_t user_fn; 1609 void *arg; 1610 ACPI_HANDLE parent; 1611 }; 1612 1613 static ACPI_STATUS 1614 acpi_device_scan_cb(ACPI_HANDLE h, UINT32 level, void *arg, void **retval) 1615 { 1616 struct acpi_device_scan_ctx *ctx; 1617 device_t dev, old_dev; 1618 ACPI_STATUS status; 1619 ACPI_OBJECT_TYPE type; 1620 1621 /* 1622 * Skip this device if we think we'll have trouble with it or it is 1623 * the parent where the scan began. 1624 */ 1625 ctx = (struct acpi_device_scan_ctx *)arg; 1626 if (acpi_avoid(h) || h == ctx->parent) 1627 return (AE_OK); 1628 1629 /* If this is not a valid device type (e.g., a method), skip it. */ 1630 if (ACPI_FAILURE(AcpiGetType(h, &type))) 1631 return (AE_OK); 1632 if (type != ACPI_TYPE_DEVICE && type != ACPI_TYPE_PROCESSOR && 1633 type != ACPI_TYPE_THERMAL && type != ACPI_TYPE_POWER) 1634 return (AE_OK); 1635 1636 /* 1637 * Call the user function with the current device. If it is unchanged 1638 * afterwards, return. Otherwise, we update the handle to the new dev. 1639 */ 1640 old_dev = acpi_get_device(h); 1641 dev = old_dev; 1642 status = ctx->user_fn(h, &dev, level, ctx->arg); 1643 if (ACPI_FAILURE(status) || old_dev == dev) 1644 return (status); 1645 1646 /* Remove the old child and its connection to the handle. */ 1647 if (old_dev != NULL) { 1648 device_delete_child(device_get_parent(old_dev), old_dev); 1649 AcpiDetachData(h, acpi_fake_objhandler); 1650 } 1651 1652 /* Recreate the handle association if the user created a device. */ 1653 if (dev != NULL) 1654 AcpiAttachData(h, acpi_fake_objhandler, dev); 1655 1656 return (AE_OK); 1657 } 1658 1659 static ACPI_STATUS 1660 acpi_device_scan_children(device_t bus, device_t dev, int max_depth, 1661 acpi_scan_cb_t user_fn, void *arg) 1662 { 1663 ACPI_HANDLE h; 1664 struct acpi_device_scan_ctx ctx; 1665 1666 if (acpi_disabled("children")) 1667 return (AE_OK); 1668 1669 if (dev == NULL) 1670 h = ACPI_ROOT_OBJECT; 1671 else if ((h = acpi_get_handle(dev)) == NULL) 1672 return (AE_BAD_PARAMETER); 1673 ctx.user_fn = user_fn; 1674 ctx.arg = arg; 1675 ctx.parent = h; 1676 return (AcpiWalkNamespace(ACPI_TYPE_ANY, h, max_depth, 1677 acpi_device_scan_cb, NULL, &ctx, NULL)); 1678 } 1679 1680 /* 1681 * Even though ACPI devices are not PCI, we use the PCI approach for setting 1682 * device power states since it's close enough to ACPI. 1683 */ 1684 static int 1685 acpi_set_powerstate(device_t child, int state) 1686 { 1687 ACPI_HANDLE h; 1688 ACPI_STATUS status; 1689 1690 h = acpi_get_handle(child); 1691 if (state < ACPI_STATE_D0 || state > ACPI_D_STATES_MAX) 1692 return (EINVAL); 1693 if (h == NULL) 1694 return (0); 1695 1696 /* Ignore errors if the power methods aren't present. */ 1697 status = acpi_pwr_switch_consumer(h, state); 1698 if (ACPI_SUCCESS(status)) { 1699 if (bootverbose) 1700 device_printf(child, "set ACPI power state D%d on %s\n", 1701 state, acpi_name(h)); 1702 } else if (status != AE_NOT_FOUND) 1703 device_printf(child, 1704 "failed to set ACPI power state D%d on %s: %s\n", state, 1705 acpi_name(h), AcpiFormatException(status)); 1706 1707 return (0); 1708 } 1709 1710 static int 1711 acpi_isa_pnp_probe(device_t bus, device_t child, struct isa_pnp_id *ids) 1712 { 1713 int result, cid_count, i; 1714 uint32_t lid, cids[8]; 1715 1716 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1717 1718 /* 1719 * ISA-style drivers attached to ACPI may persist and 1720 * probe manually if we return ENOENT. We never want 1721 * that to happen, so don't ever return it. 1722 */ 1723 result = ENXIO; 1724 1725 /* Scan the supplied IDs for a match */ 1726 lid = acpi_isa_get_logicalid(child); 1727 cid_count = acpi_isa_get_compatid(child, cids, 8); 1728 while (ids && ids->ip_id) { 1729 if (lid == ids->ip_id) { 1730 result = 0; 1731 goto out; 1732 } 1733 for (i = 0; i < cid_count; i++) { 1734 if (cids[i] == ids->ip_id) { 1735 result = 0; 1736 goto out; 1737 } 1738 } 1739 ids++; 1740 } 1741 1742 out: 1743 if (result == 0 && ids->ip_desc) 1744 device_set_desc(child, ids->ip_desc); 1745 1746 return_VALUE (result); 1747 } 1748 1749 #if defined(__i386__) || defined(__amd64__) 1750 /* 1751 * Look for a MCFG table. If it is present, use the settings for 1752 * domain (segment) 0 to setup PCI config space access via the memory 1753 * map. 1754 */ 1755 static void 1756 acpi_enable_pcie(void) 1757 { 1758 ACPI_TABLE_HEADER *hdr; 1759 ACPI_MCFG_ALLOCATION *alloc, *end; 1760 ACPI_STATUS status; 1761 1762 status = AcpiGetTable(ACPI_SIG_MCFG, 1, &hdr); 1763 if (ACPI_FAILURE(status)) 1764 return; 1765 1766 end = (ACPI_MCFG_ALLOCATION *)((char *)hdr + hdr->Length); 1767 alloc = (ACPI_MCFG_ALLOCATION *)((ACPI_TABLE_MCFG *)hdr + 1); 1768 while (alloc < end) { 1769 if (alloc->PciSegment == 0) { 1770 pcie_cfgregopen(alloc->Address, alloc->StartBusNumber, 1771 alloc->EndBusNumber); 1772 return; 1773 } 1774 alloc++; 1775 } 1776 } 1777 #endif 1778 1779 /* 1780 * Scan all of the ACPI namespace and attach child devices. 1781 * 1782 * We should only expect to find devices in the \_PR, \_TZ, \_SI, and 1783 * \_SB scopes, and \_PR and \_TZ became obsolete in the ACPI 2.0 spec. 1784 * However, in violation of the spec, some systems place their PCI link 1785 * devices in \, so we have to walk the whole namespace. We check the 1786 * type of namespace nodes, so this should be ok. 1787 */ 1788 static void 1789 acpi_probe_children(device_t bus) 1790 { 1791 1792 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1793 1794 /* 1795 * Scan the namespace and insert placeholders for all the devices that 1796 * we find. We also probe/attach any early devices. 1797 * 1798 * Note that we use AcpiWalkNamespace rather than AcpiGetDevices because 1799 * we want to create nodes for all devices, not just those that are 1800 * currently present. (This assumes that we don't want to create/remove 1801 * devices as they appear, which might be smarter.) 1802 */ 1803 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "namespace scan\n")); 1804 AcpiWalkNamespace(ACPI_TYPE_ANY, ACPI_ROOT_OBJECT, 100, acpi_probe_child, 1805 NULL, bus, NULL); 1806 1807 /* Pre-allocate resources for our rman from any sysresource devices. */ 1808 acpi_sysres_alloc(bus); 1809 1810 /* Reserve resources already allocated to children. */ 1811 acpi_reserve_resources(bus); 1812 1813 /* Create any static children by calling device identify methods. */ 1814 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "device identify routines\n")); 1815 bus_generic_probe(bus); 1816 1817 /* Probe/attach all children, created statically and from the namespace. */ 1818 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "acpi bus_generic_attach\n")); 1819 bus_generic_attach(bus); 1820 1821 /* Attach wake sysctls. */ 1822 acpi_wake_sysctl_walk(bus); 1823 1824 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "done attaching children\n")); 1825 return_VOID; 1826 } 1827 1828 /* 1829 * Determine the probe order for a given device. 1830 */ 1831 static void 1832 acpi_probe_order(ACPI_HANDLE handle, int *order) 1833 { 1834 ACPI_OBJECT_TYPE type; 1835 1836 /* 1837 * 0. CPUs 1838 * 1. I/O port and memory system resource holders 1839 * 2. Clocks and timers (to handle early accesses) 1840 * 3. Embedded controllers (to handle early accesses) 1841 * 4. PCI Link Devices 1842 */ 1843 AcpiGetType(handle, &type); 1844 if (type == ACPI_TYPE_PROCESSOR) 1845 *order = 0; 1846 else if (acpi_MatchHid(handle, "PNP0C01") || 1847 acpi_MatchHid(handle, "PNP0C02")) 1848 *order = 1; 1849 else if (acpi_MatchHid(handle, "PNP0100") || 1850 acpi_MatchHid(handle, "PNP0103") || 1851 acpi_MatchHid(handle, "PNP0B00")) 1852 *order = 2; 1853 else if (acpi_MatchHid(handle, "PNP0C09")) 1854 *order = 3; 1855 else if (acpi_MatchHid(handle, "PNP0C0F")) 1856 *order = 4; 1857 } 1858 1859 /* 1860 * Evaluate a child device and determine whether we might attach a device to 1861 * it. 1862 */ 1863 static ACPI_STATUS 1864 acpi_probe_child(ACPI_HANDLE handle, UINT32 level, void *context, void **status) 1865 { 1866 struct acpi_prw_data prw; 1867 ACPI_OBJECT_TYPE type; 1868 ACPI_HANDLE h; 1869 device_t bus, child; 1870 char *handle_str; 1871 int order; 1872 1873 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1874 1875 if (acpi_disabled("children")) 1876 return_ACPI_STATUS (AE_OK); 1877 1878 /* Skip this device if we think we'll have trouble with it. */ 1879 if (acpi_avoid(handle)) 1880 return_ACPI_STATUS (AE_OK); 1881 1882 bus = (device_t)context; 1883 if (ACPI_SUCCESS(AcpiGetType(handle, &type))) { 1884 handle_str = acpi_name(handle); 1885 switch (type) { 1886 case ACPI_TYPE_DEVICE: 1887 /* 1888 * Since we scan from \, be sure to skip system scope objects. 1889 * \_SB_ and \_TZ_ are defined in ACPICA as devices to work around 1890 * BIOS bugs. For example, \_SB_ is to allow \_SB_._INI to be run 1891 * during the intialization and \_TZ_ is to support Notify() on it. 1892 */ 1893 if (strcmp(handle_str, "\\_SB_") == 0 || 1894 strcmp(handle_str, "\\_TZ_") == 0) 1895 break; 1896 if (acpi_parse_prw(handle, &prw) == 0) 1897 AcpiSetupGpeForWake(handle, prw.gpe_handle, prw.gpe_bit); 1898 1899 /* 1900 * Ignore devices that do not have a _HID or _CID. They should 1901 * be discovered by other buses (e.g. the PCI bus driver). 1902 */ 1903 if (!acpi_has_hid(handle)) 1904 break; 1905 /* FALLTHROUGH */ 1906 case ACPI_TYPE_PROCESSOR: 1907 case ACPI_TYPE_THERMAL: 1908 case ACPI_TYPE_POWER: 1909 /* 1910 * Create a placeholder device for this node. Sort the 1911 * placeholder so that the probe/attach passes will run 1912 * breadth-first. Orders less than ACPI_DEV_BASE_ORDER 1913 * are reserved for special objects (i.e., system 1914 * resources). 1915 */ 1916 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "scanning '%s'\n", handle_str)); 1917 order = level * 10 + ACPI_DEV_BASE_ORDER; 1918 acpi_probe_order(handle, &order); 1919 child = BUS_ADD_CHILD(bus, order, NULL, -1); 1920 if (child == NULL) 1921 break; 1922 1923 /* Associate the handle with the device_t and vice versa. */ 1924 acpi_set_handle(child, handle); 1925 AcpiAttachData(handle, acpi_fake_objhandler, child); 1926 1927 /* 1928 * Check that the device is present. If it's not present, 1929 * leave it disabled (so that we have a device_t attached to 1930 * the handle, but we don't probe it). 1931 * 1932 * XXX PCI link devices sometimes report "present" but not 1933 * "functional" (i.e. if disabled). Go ahead and probe them 1934 * anyway since we may enable them later. 1935 */ 1936 if (type == ACPI_TYPE_DEVICE && !acpi_DeviceIsPresent(child)) { 1937 /* Never disable PCI link devices. */ 1938 if (acpi_MatchHid(handle, "PNP0C0F")) 1939 break; 1940 /* 1941 * Docking stations should remain enabled since the system 1942 * may be undocked at boot. 1943 */ 1944 if (ACPI_SUCCESS(AcpiGetHandle(handle, "_DCK", &h))) 1945 break; 1946 1947 device_disable(child); 1948 break; 1949 } 1950 1951 /* 1952 * Get the device's resource settings and attach them. 1953 * Note that if the device has _PRS but no _CRS, we need 1954 * to decide when it's appropriate to try to configure the 1955 * device. Ignore the return value here; it's OK for the 1956 * device not to have any resources. 1957 */ 1958 acpi_parse_resources(child, handle, &acpi_res_parse_set, NULL); 1959 break; 1960 } 1961 } 1962 1963 return_ACPI_STATUS (AE_OK); 1964 } 1965 1966 /* 1967 * AcpiAttachData() requires an object handler but never uses it. This is a 1968 * placeholder object handler so we can store a device_t in an ACPI_HANDLE. 1969 */ 1970 void 1971 acpi_fake_objhandler(ACPI_HANDLE h, void *data) 1972 { 1973 } 1974 1975 static void 1976 acpi_shutdown_final(void *arg, int howto) 1977 { 1978 struct acpi_softc *sc = (struct acpi_softc *)arg; 1979 register_t intr; 1980 ACPI_STATUS status; 1981 1982 /* 1983 * XXX Shutdown code should only run on the BSP (cpuid 0). 1984 * Some chipsets do not power off the system correctly if called from 1985 * an AP. 1986 */ 1987 if ((howto & RB_POWEROFF) != 0) { 1988 status = AcpiEnterSleepStatePrep(ACPI_STATE_S5); 1989 if (ACPI_FAILURE(status)) { 1990 device_printf(sc->acpi_dev, "AcpiEnterSleepStatePrep failed - %s\n", 1991 AcpiFormatException(status)); 1992 return; 1993 } 1994 device_printf(sc->acpi_dev, "Powering system off\n"); 1995 intr = intr_disable(); 1996 status = AcpiEnterSleepState(ACPI_STATE_S5); 1997 if (ACPI_FAILURE(status)) { 1998 intr_restore(intr); 1999 device_printf(sc->acpi_dev, "power-off failed - %s\n", 2000 AcpiFormatException(status)); 2001 } else { 2002 DELAY(1000000); 2003 intr_restore(intr); 2004 device_printf(sc->acpi_dev, "power-off failed - timeout\n"); 2005 } 2006 } else if ((howto & RB_HALT) == 0 && sc->acpi_handle_reboot) { 2007 /* Reboot using the reset register. */ 2008 status = AcpiReset(); 2009 if (ACPI_SUCCESS(status)) { 2010 DELAY(1000000); 2011 device_printf(sc->acpi_dev, "reset failed - timeout\n"); 2012 } else if (status != AE_NOT_EXIST) 2013 device_printf(sc->acpi_dev, "reset failed - %s\n", 2014 AcpiFormatException(status)); 2015 } else if (sc->acpi_do_disable && panicstr == NULL) { 2016 /* 2017 * Only disable ACPI if the user requested. On some systems, writing 2018 * the disable value to SMI_CMD hangs the system. 2019 */ 2020 device_printf(sc->acpi_dev, "Shutting down\n"); 2021 AcpiTerminate(); 2022 } 2023 } 2024 2025 static void 2026 acpi_enable_fixed_events(struct acpi_softc *sc) 2027 { 2028 static int first_time = 1; 2029 2030 /* Enable and clear fixed events and install handlers. */ 2031 if ((AcpiGbl_FADT.Flags & ACPI_FADT_POWER_BUTTON) == 0) { 2032 AcpiClearEvent(ACPI_EVENT_POWER_BUTTON); 2033 AcpiInstallFixedEventHandler(ACPI_EVENT_POWER_BUTTON, 2034 acpi_event_power_button_sleep, sc); 2035 if (first_time) 2036 device_printf(sc->acpi_dev, "Power Button (fixed)\n"); 2037 } 2038 if ((AcpiGbl_FADT.Flags & ACPI_FADT_SLEEP_BUTTON) == 0) { 2039 AcpiClearEvent(ACPI_EVENT_SLEEP_BUTTON); 2040 AcpiInstallFixedEventHandler(ACPI_EVENT_SLEEP_BUTTON, 2041 acpi_event_sleep_button_sleep, sc); 2042 if (first_time) 2043 device_printf(sc->acpi_dev, "Sleep Button (fixed)\n"); 2044 } 2045 2046 first_time = 0; 2047 } 2048 2049 /* 2050 * Returns true if the device is actually present and should 2051 * be attached to. This requires the present, enabled, UI-visible 2052 * and diagnostics-passed bits to be set. 2053 */ 2054 BOOLEAN 2055 acpi_DeviceIsPresent(device_t dev) 2056 { 2057 ACPI_DEVICE_INFO *devinfo; 2058 ACPI_HANDLE h; 2059 BOOLEAN present; 2060 2061 if ((h = acpi_get_handle(dev)) == NULL || 2062 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 2063 return (FALSE); 2064 2065 /* If no _STA method, must be present */ 2066 present = (devinfo->Valid & ACPI_VALID_STA) == 0 || 2067 ACPI_DEVICE_PRESENT(devinfo->CurrentStatus) ? TRUE : FALSE; 2068 2069 AcpiOsFree(devinfo); 2070 return (present); 2071 } 2072 2073 /* 2074 * Returns true if the battery is actually present and inserted. 2075 */ 2076 BOOLEAN 2077 acpi_BatteryIsPresent(device_t dev) 2078 { 2079 ACPI_DEVICE_INFO *devinfo; 2080 ACPI_HANDLE h; 2081 BOOLEAN present; 2082 2083 if ((h = acpi_get_handle(dev)) == NULL || 2084 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 2085 return (FALSE); 2086 2087 /* If no _STA method, must be present */ 2088 present = (devinfo->Valid & ACPI_VALID_STA) == 0 || 2089 ACPI_BATTERY_PRESENT(devinfo->CurrentStatus) ? TRUE : FALSE; 2090 2091 AcpiOsFree(devinfo); 2092 return (present); 2093 } 2094 2095 /* 2096 * Returns true if a device has at least one valid device ID. 2097 */ 2098 static BOOLEAN 2099 acpi_has_hid(ACPI_HANDLE h) 2100 { 2101 ACPI_DEVICE_INFO *devinfo; 2102 BOOLEAN ret; 2103 2104 if (h == NULL || 2105 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 2106 return (FALSE); 2107 2108 ret = FALSE; 2109 if ((devinfo->Valid & ACPI_VALID_HID) != 0) 2110 ret = TRUE; 2111 else if ((devinfo->Valid & ACPI_VALID_CID) != 0) 2112 if (devinfo->CompatibleIdList.Count > 0) 2113 ret = TRUE; 2114 2115 AcpiOsFree(devinfo); 2116 return (ret); 2117 } 2118 2119 /* 2120 * Match a HID string against a handle 2121 */ 2122 BOOLEAN 2123 acpi_MatchHid(ACPI_HANDLE h, const char *hid) 2124 { 2125 ACPI_DEVICE_INFO *devinfo; 2126 BOOLEAN ret; 2127 int i; 2128 2129 if (hid == NULL || h == NULL || 2130 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 2131 return (FALSE); 2132 2133 ret = FALSE; 2134 if ((devinfo->Valid & ACPI_VALID_HID) != 0 && 2135 strcmp(hid, devinfo->HardwareId.String) == 0) 2136 ret = TRUE; 2137 else if ((devinfo->Valid & ACPI_VALID_CID) != 0) 2138 for (i = 0; i < devinfo->CompatibleIdList.Count; i++) { 2139 if (strcmp(hid, devinfo->CompatibleIdList.Ids[i].String) == 0) { 2140 ret = TRUE; 2141 break; 2142 } 2143 } 2144 2145 AcpiOsFree(devinfo); 2146 return (ret); 2147 } 2148 2149 /* 2150 * Return the handle of a named object within our scope, ie. that of (parent) 2151 * or one if its parents. 2152 */ 2153 ACPI_STATUS 2154 acpi_GetHandleInScope(ACPI_HANDLE parent, char *path, ACPI_HANDLE *result) 2155 { 2156 ACPI_HANDLE r; 2157 ACPI_STATUS status; 2158 2159 /* Walk back up the tree to the root */ 2160 for (;;) { 2161 status = AcpiGetHandle(parent, path, &r); 2162 if (ACPI_SUCCESS(status)) { 2163 *result = r; 2164 return (AE_OK); 2165 } 2166 /* XXX Return error here? */ 2167 if (status != AE_NOT_FOUND) 2168 return (AE_OK); 2169 if (ACPI_FAILURE(AcpiGetParent(parent, &r))) 2170 return (AE_NOT_FOUND); 2171 parent = r; 2172 } 2173 } 2174 2175 /* 2176 * Allocate a buffer with a preset data size. 2177 */ 2178 ACPI_BUFFER * 2179 acpi_AllocBuffer(int size) 2180 { 2181 ACPI_BUFFER *buf; 2182 2183 if ((buf = malloc(size + sizeof(*buf), M_ACPIDEV, M_NOWAIT)) == NULL) 2184 return (NULL); 2185 buf->Length = size; 2186 buf->Pointer = (void *)(buf + 1); 2187 return (buf); 2188 } 2189 2190 ACPI_STATUS 2191 acpi_SetInteger(ACPI_HANDLE handle, char *path, UINT32 number) 2192 { 2193 ACPI_OBJECT arg1; 2194 ACPI_OBJECT_LIST args; 2195 2196 arg1.Type = ACPI_TYPE_INTEGER; 2197 arg1.Integer.Value = number; 2198 args.Count = 1; 2199 args.Pointer = &arg1; 2200 2201 return (AcpiEvaluateObject(handle, path, &args, NULL)); 2202 } 2203 2204 /* 2205 * Evaluate a path that should return an integer. 2206 */ 2207 ACPI_STATUS 2208 acpi_GetInteger(ACPI_HANDLE handle, char *path, UINT32 *number) 2209 { 2210 ACPI_STATUS status; 2211 ACPI_BUFFER buf; 2212 ACPI_OBJECT param; 2213 2214 if (handle == NULL) 2215 handle = ACPI_ROOT_OBJECT; 2216 2217 /* 2218 * Assume that what we've been pointed at is an Integer object, or 2219 * a method that will return an Integer. 2220 */ 2221 buf.Pointer = ¶m; 2222 buf.Length = sizeof(param); 2223 status = AcpiEvaluateObject(handle, path, NULL, &buf); 2224 if (ACPI_SUCCESS(status)) { 2225 if (param.Type == ACPI_TYPE_INTEGER) 2226 *number = param.Integer.Value; 2227 else 2228 status = AE_TYPE; 2229 } 2230 2231 /* 2232 * In some applications, a method that's expected to return an Integer 2233 * may instead return a Buffer (probably to simplify some internal 2234 * arithmetic). We'll try to fetch whatever it is, and if it's a Buffer, 2235 * convert it into an Integer as best we can. 2236 * 2237 * This is a hack. 2238 */ 2239 if (status == AE_BUFFER_OVERFLOW) { 2240 if ((buf.Pointer = AcpiOsAllocate(buf.Length)) == NULL) { 2241 status = AE_NO_MEMORY; 2242 } else { 2243 status = AcpiEvaluateObject(handle, path, NULL, &buf); 2244 if (ACPI_SUCCESS(status)) 2245 status = acpi_ConvertBufferToInteger(&buf, number); 2246 AcpiOsFree(buf.Pointer); 2247 } 2248 } 2249 return (status); 2250 } 2251 2252 ACPI_STATUS 2253 acpi_ConvertBufferToInteger(ACPI_BUFFER *bufp, UINT32 *number) 2254 { 2255 ACPI_OBJECT *p; 2256 UINT8 *val; 2257 int i; 2258 2259 p = (ACPI_OBJECT *)bufp->Pointer; 2260 if (p->Type == ACPI_TYPE_INTEGER) { 2261 *number = p->Integer.Value; 2262 return (AE_OK); 2263 } 2264 if (p->Type != ACPI_TYPE_BUFFER) 2265 return (AE_TYPE); 2266 if (p->Buffer.Length > sizeof(int)) 2267 return (AE_BAD_DATA); 2268 2269 *number = 0; 2270 val = p->Buffer.Pointer; 2271 for (i = 0; i < p->Buffer.Length; i++) 2272 *number += val[i] << (i * 8); 2273 return (AE_OK); 2274 } 2275 2276 /* 2277 * Iterate over the elements of an a package object, calling the supplied 2278 * function for each element. 2279 * 2280 * XXX possible enhancement might be to abort traversal on error. 2281 */ 2282 ACPI_STATUS 2283 acpi_ForeachPackageObject(ACPI_OBJECT *pkg, 2284 void (*func)(ACPI_OBJECT *comp, void *arg), void *arg) 2285 { 2286 ACPI_OBJECT *comp; 2287 int i; 2288 2289 if (pkg == NULL || pkg->Type != ACPI_TYPE_PACKAGE) 2290 return (AE_BAD_PARAMETER); 2291 2292 /* Iterate over components */ 2293 i = 0; 2294 comp = pkg->Package.Elements; 2295 for (; i < pkg->Package.Count; i++, comp++) 2296 func(comp, arg); 2297 2298 return (AE_OK); 2299 } 2300 2301 /* 2302 * Find the (index)th resource object in a set. 2303 */ 2304 ACPI_STATUS 2305 acpi_FindIndexedResource(ACPI_BUFFER *buf, int index, ACPI_RESOURCE **resp) 2306 { 2307 ACPI_RESOURCE *rp; 2308 int i; 2309 2310 rp = (ACPI_RESOURCE *)buf->Pointer; 2311 i = index; 2312 while (i-- > 0) { 2313 /* Range check */ 2314 if (rp > (ACPI_RESOURCE *)((u_int8_t *)buf->Pointer + buf->Length)) 2315 return (AE_BAD_PARAMETER); 2316 2317 /* Check for terminator */ 2318 if (rp->Type == ACPI_RESOURCE_TYPE_END_TAG || rp->Length == 0) 2319 return (AE_NOT_FOUND); 2320 rp = ACPI_NEXT_RESOURCE(rp); 2321 } 2322 if (resp != NULL) 2323 *resp = rp; 2324 2325 return (AE_OK); 2326 } 2327 2328 /* 2329 * Append an ACPI_RESOURCE to an ACPI_BUFFER. 2330 * 2331 * Given a pointer to an ACPI_RESOURCE structure, expand the ACPI_BUFFER 2332 * provided to contain it. If the ACPI_BUFFER is empty, allocate a sensible 2333 * backing block. If the ACPI_RESOURCE is NULL, return an empty set of 2334 * resources. 2335 */ 2336 #define ACPI_INITIAL_RESOURCE_BUFFER_SIZE 512 2337 2338 ACPI_STATUS 2339 acpi_AppendBufferResource(ACPI_BUFFER *buf, ACPI_RESOURCE *res) 2340 { 2341 ACPI_RESOURCE *rp; 2342 void *newp; 2343 2344 /* Initialise the buffer if necessary. */ 2345 if (buf->Pointer == NULL) { 2346 buf->Length = ACPI_INITIAL_RESOURCE_BUFFER_SIZE; 2347 if ((buf->Pointer = AcpiOsAllocate(buf->Length)) == NULL) 2348 return (AE_NO_MEMORY); 2349 rp = (ACPI_RESOURCE *)buf->Pointer; 2350 rp->Type = ACPI_RESOURCE_TYPE_END_TAG; 2351 rp->Length = ACPI_RS_SIZE_MIN; 2352 } 2353 if (res == NULL) 2354 return (AE_OK); 2355 2356 /* 2357 * Scan the current buffer looking for the terminator. 2358 * This will either find the terminator or hit the end 2359 * of the buffer and return an error. 2360 */ 2361 rp = (ACPI_RESOURCE *)buf->Pointer; 2362 for (;;) { 2363 /* Range check, don't go outside the buffer */ 2364 if (rp >= (ACPI_RESOURCE *)((u_int8_t *)buf->Pointer + buf->Length)) 2365 return (AE_BAD_PARAMETER); 2366 if (rp->Type == ACPI_RESOURCE_TYPE_END_TAG || rp->Length == 0) 2367 break; 2368 rp = ACPI_NEXT_RESOURCE(rp); 2369 } 2370 2371 /* 2372 * Check the size of the buffer and expand if required. 2373 * 2374 * Required size is: 2375 * size of existing resources before terminator + 2376 * size of new resource and header + 2377 * size of terminator. 2378 * 2379 * Note that this loop should really only run once, unless 2380 * for some reason we are stuffing a *really* huge resource. 2381 */ 2382 while ((((u_int8_t *)rp - (u_int8_t *)buf->Pointer) + 2383 res->Length + ACPI_RS_SIZE_NO_DATA + 2384 ACPI_RS_SIZE_MIN) >= buf->Length) { 2385 if ((newp = AcpiOsAllocate(buf->Length * 2)) == NULL) 2386 return (AE_NO_MEMORY); 2387 bcopy(buf->Pointer, newp, buf->Length); 2388 rp = (ACPI_RESOURCE *)((u_int8_t *)newp + 2389 ((u_int8_t *)rp - (u_int8_t *)buf->Pointer)); 2390 AcpiOsFree(buf->Pointer); 2391 buf->Pointer = newp; 2392 buf->Length += buf->Length; 2393 } 2394 2395 /* Insert the new resource. */ 2396 bcopy(res, rp, res->Length + ACPI_RS_SIZE_NO_DATA); 2397 2398 /* And add the terminator. */ 2399 rp = ACPI_NEXT_RESOURCE(rp); 2400 rp->Type = ACPI_RESOURCE_TYPE_END_TAG; 2401 rp->Length = ACPI_RS_SIZE_MIN; 2402 2403 return (AE_OK); 2404 } 2405 2406 /* 2407 * Set interrupt model. 2408 */ 2409 ACPI_STATUS 2410 acpi_SetIntrModel(int model) 2411 { 2412 2413 return (acpi_SetInteger(ACPI_ROOT_OBJECT, "_PIC", model)); 2414 } 2415 2416 /* 2417 * Walk subtables of a table and call a callback routine for each 2418 * subtable. The caller should provide the first subtable and a 2419 * pointer to the end of the table. This can be used to walk tables 2420 * such as MADT and SRAT that use subtable entries. 2421 */ 2422 void 2423 acpi_walk_subtables(void *first, void *end, acpi_subtable_handler *handler, 2424 void *arg) 2425 { 2426 ACPI_SUBTABLE_HEADER *entry; 2427 2428 for (entry = first; (void *)entry < end; ) { 2429 /* Avoid an infinite loop if we hit a bogus entry. */ 2430 if (entry->Length < sizeof(ACPI_SUBTABLE_HEADER)) 2431 return; 2432 2433 handler(entry, arg); 2434 entry = ACPI_ADD_PTR(ACPI_SUBTABLE_HEADER, entry, entry->Length); 2435 } 2436 } 2437 2438 /* 2439 * DEPRECATED. This interface has serious deficiencies and will be 2440 * removed. 2441 * 2442 * Immediately enter the sleep state. In the old model, acpiconf(8) ran 2443 * rc.suspend and rc.resume so we don't have to notify devd(8) to do this. 2444 */ 2445 ACPI_STATUS 2446 acpi_SetSleepState(struct acpi_softc *sc, int state) 2447 { 2448 static int once; 2449 2450 if (!once) { 2451 device_printf(sc->acpi_dev, 2452 "warning: acpi_SetSleepState() deprecated, need to update your software\n"); 2453 once = 1; 2454 } 2455 return (acpi_EnterSleepState(sc, state)); 2456 } 2457 2458 #if defined(__amd64__) || defined(__i386__) 2459 static void 2460 acpi_sleep_force_task(void *context) 2461 { 2462 struct acpi_softc *sc = (struct acpi_softc *)context; 2463 2464 if (ACPI_FAILURE(acpi_EnterSleepState(sc, sc->acpi_next_sstate))) 2465 device_printf(sc->acpi_dev, "force sleep state S%d failed\n", 2466 sc->acpi_next_sstate); 2467 } 2468 2469 static void 2470 acpi_sleep_force(void *arg) 2471 { 2472 struct acpi_softc *sc = (struct acpi_softc *)arg; 2473 2474 device_printf(sc->acpi_dev, 2475 "suspend request timed out, forcing sleep now\n"); 2476 /* 2477 * XXX Suspending from callout cause the freeze in DEVICE_SUSPEND(). 2478 * Suspend from acpi_task thread in stead. 2479 */ 2480 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 2481 acpi_sleep_force_task, sc))) 2482 device_printf(sc->acpi_dev, "AcpiOsExecute() for sleeping failed\n"); 2483 } 2484 #endif 2485 2486 /* 2487 * Request that the system enter the given suspend state. All /dev/apm 2488 * devices and devd(8) will be notified. Userland then has a chance to 2489 * save state and acknowledge the request. The system sleeps once all 2490 * acks are in. 2491 */ 2492 int 2493 acpi_ReqSleepState(struct acpi_softc *sc, int state) 2494 { 2495 #if defined(__amd64__) || defined(__i386__) 2496 struct apm_clone_data *clone; 2497 ACPI_STATUS status; 2498 2499 if (state < ACPI_STATE_S1 || state > ACPI_S_STATES_MAX) 2500 return (EINVAL); 2501 if (!acpi_sleep_states[state]) 2502 return (EOPNOTSUPP); 2503 2504 /* If a suspend request is already in progress, just return. */ 2505 if (sc->acpi_next_sstate != 0) { 2506 return (0); 2507 } 2508 2509 /* Wait until sleep is enabled. */ 2510 while (sc->acpi_sleep_disabled) { 2511 AcpiOsSleep(1000); 2512 } 2513 2514 ACPI_LOCK(acpi); 2515 2516 sc->acpi_next_sstate = state; 2517 2518 /* S5 (soft-off) should be entered directly with no waiting. */ 2519 if (state == ACPI_STATE_S5) { 2520 ACPI_UNLOCK(acpi); 2521 status = acpi_EnterSleepState(sc, state); 2522 return (ACPI_SUCCESS(status) ? 0 : ENXIO); 2523 } 2524 2525 /* Record the pending state and notify all apm devices. */ 2526 STAILQ_FOREACH(clone, &sc->apm_cdevs, entries) { 2527 clone->notify_status = APM_EV_NONE; 2528 if ((clone->flags & ACPI_EVF_DEVD) == 0) { 2529 selwakeuppri(&clone->sel_read, PZERO); 2530 KNOTE_LOCKED(&clone->sel_read.si_note, 0); 2531 } 2532 } 2533 2534 /* If devd(8) is not running, immediately enter the sleep state. */ 2535 if (!devctl_process_running()) { 2536 ACPI_UNLOCK(acpi); 2537 status = acpi_EnterSleepState(sc, state); 2538 return (ACPI_SUCCESS(status) ? 0 : ENXIO); 2539 } 2540 2541 /* 2542 * Set a timeout to fire if userland doesn't ack the suspend request 2543 * in time. This way we still eventually go to sleep if we were 2544 * overheating or running low on battery, even if userland is hung. 2545 * We cancel this timeout once all userland acks are in or the 2546 * suspend request is aborted. 2547 */ 2548 callout_reset(&sc->susp_force_to, 10 * hz, acpi_sleep_force, sc); 2549 ACPI_UNLOCK(acpi); 2550 2551 /* Now notify devd(8) also. */ 2552 acpi_UserNotify("Suspend", ACPI_ROOT_OBJECT, state); 2553 2554 return (0); 2555 #else 2556 /* This platform does not support acpi suspend/resume. */ 2557 return (EOPNOTSUPP); 2558 #endif 2559 } 2560 2561 /* 2562 * Acknowledge (or reject) a pending sleep state. The caller has 2563 * prepared for suspend and is now ready for it to proceed. If the 2564 * error argument is non-zero, it indicates suspend should be cancelled 2565 * and gives an errno value describing why. Once all votes are in, 2566 * we suspend the system. 2567 */ 2568 int 2569 acpi_AckSleepState(struct apm_clone_data *clone, int error) 2570 { 2571 #if defined(__amd64__) || defined(__i386__) 2572 struct acpi_softc *sc; 2573 int ret, sleeping; 2574 2575 /* If no pending sleep state, return an error. */ 2576 ACPI_LOCK(acpi); 2577 sc = clone->acpi_sc; 2578 if (sc->acpi_next_sstate == 0) { 2579 ACPI_UNLOCK(acpi); 2580 return (ENXIO); 2581 } 2582 2583 /* Caller wants to abort suspend process. */ 2584 if (error) { 2585 sc->acpi_next_sstate = 0; 2586 callout_stop(&sc->susp_force_to); 2587 device_printf(sc->acpi_dev, 2588 "listener on %s cancelled the pending suspend\n", 2589 devtoname(clone->cdev)); 2590 ACPI_UNLOCK(acpi); 2591 return (0); 2592 } 2593 2594 /* 2595 * Mark this device as acking the suspend request. Then, walk through 2596 * all devices, seeing if they agree yet. We only count devices that 2597 * are writable since read-only devices couldn't ack the request. 2598 */ 2599 sleeping = TRUE; 2600 clone->notify_status = APM_EV_ACKED; 2601 STAILQ_FOREACH(clone, &sc->apm_cdevs, entries) { 2602 if ((clone->flags & ACPI_EVF_WRITE) != 0 && 2603 clone->notify_status != APM_EV_ACKED) { 2604 sleeping = FALSE; 2605 break; 2606 } 2607 } 2608 2609 /* If all devices have voted "yes", we will suspend now. */ 2610 if (sleeping) 2611 callout_stop(&sc->susp_force_to); 2612 ACPI_UNLOCK(acpi); 2613 ret = 0; 2614 if (sleeping) { 2615 if (ACPI_FAILURE(acpi_EnterSleepState(sc, sc->acpi_next_sstate))) 2616 ret = ENODEV; 2617 } 2618 return (ret); 2619 #else 2620 /* This platform does not support acpi suspend/resume. */ 2621 return (EOPNOTSUPP); 2622 #endif 2623 } 2624 2625 static void 2626 acpi_sleep_enable(void *arg) 2627 { 2628 struct acpi_softc *sc = (struct acpi_softc *)arg; 2629 2630 /* Reschedule if the system is not fully up and running. */ 2631 if (!AcpiGbl_SystemAwakeAndRunning) { 2632 timeout(acpi_sleep_enable, sc, hz * ACPI_MINIMUM_AWAKETIME); 2633 return; 2634 } 2635 2636 ACPI_LOCK(acpi); 2637 sc->acpi_sleep_disabled = FALSE; 2638 ACPI_UNLOCK(acpi); 2639 } 2640 2641 static ACPI_STATUS 2642 acpi_sleep_disable(struct acpi_softc *sc) 2643 { 2644 ACPI_STATUS status; 2645 2646 /* Fail if the system is not fully up and running. */ 2647 if (!AcpiGbl_SystemAwakeAndRunning) 2648 return (AE_ERROR); 2649 2650 ACPI_LOCK(acpi); 2651 status = sc->acpi_sleep_disabled ? AE_ERROR : AE_OK; 2652 sc->acpi_sleep_disabled = TRUE; 2653 ACPI_UNLOCK(acpi); 2654 2655 return (status); 2656 } 2657 2658 enum acpi_sleep_state { 2659 ACPI_SS_NONE, 2660 ACPI_SS_GPE_SET, 2661 ACPI_SS_DEV_SUSPEND, 2662 ACPI_SS_SLP_PREP, 2663 ACPI_SS_SLEPT, 2664 }; 2665 2666 /* 2667 * Enter the desired system sleep state. 2668 * 2669 * Currently we support S1-S5 but S4 is only S4BIOS 2670 */ 2671 static ACPI_STATUS 2672 acpi_EnterSleepState(struct acpi_softc *sc, int state) 2673 { 2674 register_t intr; 2675 ACPI_STATUS status; 2676 ACPI_EVENT_STATUS power_button_status; 2677 enum acpi_sleep_state slp_state; 2678 int sleep_result; 2679 2680 ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state); 2681 2682 if (state < ACPI_STATE_S1 || state > ACPI_S_STATES_MAX) 2683 return_ACPI_STATUS (AE_BAD_PARAMETER); 2684 if (!acpi_sleep_states[state]) { 2685 device_printf(sc->acpi_dev, "Sleep state S%d not supported by BIOS\n", 2686 state); 2687 return (AE_SUPPORT); 2688 } 2689 2690 /* Re-entry once we're suspending is not allowed. */ 2691 status = acpi_sleep_disable(sc); 2692 if (ACPI_FAILURE(status)) { 2693 device_printf(sc->acpi_dev, 2694 "suspend request ignored (not ready yet)\n"); 2695 return (status); 2696 } 2697 2698 if (state == ACPI_STATE_S5) { 2699 /* 2700 * Shut down cleanly and power off. This will call us back through the 2701 * shutdown handlers. 2702 */ 2703 shutdown_nice(RB_POWEROFF); 2704 return_ACPI_STATUS (AE_OK); 2705 } 2706 2707 EVENTHANDLER_INVOKE(power_suspend); 2708 2709 if (smp_started) { 2710 thread_lock(curthread); 2711 sched_bind(curthread, 0); 2712 thread_unlock(curthread); 2713 } 2714 2715 /* 2716 * Be sure to hold Giant across DEVICE_SUSPEND/RESUME since non-MPSAFE 2717 * drivers need this. 2718 */ 2719 mtx_lock(&Giant); 2720 2721 slp_state = ACPI_SS_NONE; 2722 2723 sc->acpi_sstate = state; 2724 2725 /* Enable any GPEs as appropriate and requested by the user. */ 2726 acpi_wake_prep_walk(state); 2727 slp_state = ACPI_SS_GPE_SET; 2728 2729 /* 2730 * Inform all devices that we are going to sleep. If at least one 2731 * device fails, DEVICE_SUSPEND() automatically resumes the tree. 2732 * 2733 * XXX Note that a better two-pass approach with a 'veto' pass 2734 * followed by a "real thing" pass would be better, but the current 2735 * bus interface does not provide for this. 2736 */ 2737 if (DEVICE_SUSPEND(root_bus) != 0) { 2738 device_printf(sc->acpi_dev, "device_suspend failed\n"); 2739 goto backout; 2740 } 2741 slp_state = ACPI_SS_DEV_SUSPEND; 2742 2743 /* If testing device suspend only, back out of everything here. */ 2744 if (acpi_susp_bounce) 2745 goto backout; 2746 2747 status = AcpiEnterSleepStatePrep(state); 2748 if (ACPI_FAILURE(status)) { 2749 device_printf(sc->acpi_dev, "AcpiEnterSleepStatePrep failed - %s\n", 2750 AcpiFormatException(status)); 2751 goto backout; 2752 } 2753 slp_state = ACPI_SS_SLP_PREP; 2754 2755 if (sc->acpi_sleep_delay > 0) 2756 DELAY(sc->acpi_sleep_delay * 1000000); 2757 2758 intr = intr_disable(); 2759 if (state != ACPI_STATE_S1) { 2760 sleep_result = acpi_sleep_machdep(sc, state); 2761 acpi_wakeup_machdep(sc, state, sleep_result, 0); 2762 2763 /* 2764 * XXX According to ACPI specification SCI_EN bit should be restored 2765 * by ACPI platform (BIOS, firmware) to its pre-sleep state. 2766 * Unfortunately some BIOSes fail to do that and that leads to 2767 * unexpected and serious consequences during wake up like a system 2768 * getting stuck in SMI handlers. 2769 * This hack is picked up from Linux, which claims that it follows 2770 * Windows behavior. 2771 */ 2772 if (sleep_result == 1 && state != ACPI_STATE_S4) 2773 AcpiWriteBitRegister(ACPI_BITREG_SCI_ENABLE, ACPI_ENABLE_EVENT); 2774 2775 AcpiLeaveSleepStatePrep(state); 2776 2777 if (sleep_result == 1 && state == ACPI_STATE_S3) { 2778 /* 2779 * Prevent mis-interpretation of the wakeup by power button 2780 * as a request for power off. 2781 * Ideally we should post an appropriate wakeup event, 2782 * perhaps using acpi_event_power_button_wake or alike. 2783 * 2784 * Clearing of power button status after wakeup is mandated 2785 * by ACPI specification in section "Fixed Power Button". 2786 * 2787 * XXX As of ACPICA 20121114 AcpiGetEventStatus provides 2788 * status as 0/1 corressponding to inactive/active despite 2789 * its type being ACPI_EVENT_STATUS. In other words, 2790 * we should not test for ACPI_EVENT_FLAG_SET for time being. 2791 */ 2792 if (ACPI_SUCCESS(AcpiGetEventStatus(ACPI_EVENT_POWER_BUTTON, 2793 &power_button_status)) && power_button_status != 0) { 2794 AcpiClearEvent(ACPI_EVENT_POWER_BUTTON); 2795 device_printf(sc->acpi_dev, 2796 "cleared fixed power button status\n"); 2797 } 2798 } 2799 2800 intr_restore(intr); 2801 2802 /* call acpi_wakeup_machdep() again with interrupt enabled */ 2803 acpi_wakeup_machdep(sc, state, sleep_result, 1); 2804 2805 if (sleep_result == -1) 2806 goto backout; 2807 2808 /* Re-enable ACPI hardware on wakeup from sleep state 4. */ 2809 if (state == ACPI_STATE_S4) 2810 AcpiEnable(); 2811 } else { 2812 status = AcpiEnterSleepState(state); 2813 AcpiLeaveSleepStatePrep(state); 2814 intr_restore(intr); 2815 if (ACPI_FAILURE(status)) { 2816 device_printf(sc->acpi_dev, "AcpiEnterSleepState failed - %s\n", 2817 AcpiFormatException(status)); 2818 goto backout; 2819 } 2820 } 2821 slp_state = ACPI_SS_SLEPT; 2822 2823 /* 2824 * Back out state according to how far along we got in the suspend 2825 * process. This handles both the error and success cases. 2826 */ 2827 backout: 2828 if (slp_state >= ACPI_SS_GPE_SET) { 2829 acpi_wake_prep_walk(state); 2830 sc->acpi_sstate = ACPI_STATE_S0; 2831 } 2832 if (slp_state >= ACPI_SS_DEV_SUSPEND) 2833 DEVICE_RESUME(root_bus); 2834 if (slp_state >= ACPI_SS_SLP_PREP) 2835 AcpiLeaveSleepState(state); 2836 if (slp_state >= ACPI_SS_SLEPT) { 2837 acpi_resync_clock(sc); 2838 acpi_enable_fixed_events(sc); 2839 } 2840 sc->acpi_next_sstate = 0; 2841 2842 mtx_unlock(&Giant); 2843 2844 if (smp_started) { 2845 thread_lock(curthread); 2846 sched_unbind(curthread); 2847 thread_unlock(curthread); 2848 } 2849 2850 EVENTHANDLER_INVOKE(power_resume); 2851 2852 /* Allow another sleep request after a while. */ 2853 timeout(acpi_sleep_enable, sc, hz * ACPI_MINIMUM_AWAKETIME); 2854 2855 /* Run /etc/rc.resume after we are back. */ 2856 if (devctl_process_running()) 2857 acpi_UserNotify("Resume", ACPI_ROOT_OBJECT, state); 2858 2859 return_ACPI_STATUS (status); 2860 } 2861 2862 static void 2863 acpi_resync_clock(struct acpi_softc *sc) 2864 { 2865 #ifdef __amd64__ 2866 if (!acpi_reset_clock) 2867 return; 2868 2869 /* 2870 * Warm up timecounter again and reset system clock. 2871 */ 2872 (void)timecounter->tc_get_timecount(timecounter); 2873 (void)timecounter->tc_get_timecount(timecounter); 2874 inittodr(time_second + sc->acpi_sleep_delay); 2875 #endif 2876 } 2877 2878 /* Enable or disable the device's wake GPE. */ 2879 int 2880 acpi_wake_set_enable(device_t dev, int enable) 2881 { 2882 struct acpi_prw_data prw; 2883 ACPI_STATUS status; 2884 int flags; 2885 2886 /* Make sure the device supports waking the system and get the GPE. */ 2887 if (acpi_parse_prw(acpi_get_handle(dev), &prw) != 0) 2888 return (ENXIO); 2889 2890 flags = acpi_get_flags(dev); 2891 if (enable) { 2892 status = AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, 2893 ACPI_GPE_ENABLE); 2894 if (ACPI_FAILURE(status)) { 2895 device_printf(dev, "enable wake failed\n"); 2896 return (ENXIO); 2897 } 2898 acpi_set_flags(dev, flags | ACPI_FLAG_WAKE_ENABLED); 2899 } else { 2900 status = AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, 2901 ACPI_GPE_DISABLE); 2902 if (ACPI_FAILURE(status)) { 2903 device_printf(dev, "disable wake failed\n"); 2904 return (ENXIO); 2905 } 2906 acpi_set_flags(dev, flags & ~ACPI_FLAG_WAKE_ENABLED); 2907 } 2908 2909 return (0); 2910 } 2911 2912 static int 2913 acpi_wake_sleep_prep(ACPI_HANDLE handle, int sstate) 2914 { 2915 struct acpi_prw_data prw; 2916 device_t dev; 2917 2918 /* Check that this is a wake-capable device and get its GPE. */ 2919 if (acpi_parse_prw(handle, &prw) != 0) 2920 return (ENXIO); 2921 dev = acpi_get_device(handle); 2922 2923 /* 2924 * The destination sleep state must be less than (i.e., higher power) 2925 * or equal to the value specified by _PRW. If this GPE cannot be 2926 * enabled for the next sleep state, then disable it. If it can and 2927 * the user requested it be enabled, turn on any required power resources 2928 * and set _PSW. 2929 */ 2930 if (sstate > prw.lowest_wake) { 2931 AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, ACPI_GPE_DISABLE); 2932 if (bootverbose) 2933 device_printf(dev, "wake_prep disabled wake for %s (S%d)\n", 2934 acpi_name(handle), sstate); 2935 } else if (dev && (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) != 0) { 2936 acpi_pwr_wake_enable(handle, 1); 2937 acpi_SetInteger(handle, "_PSW", 1); 2938 if (bootverbose) 2939 device_printf(dev, "wake_prep enabled for %s (S%d)\n", 2940 acpi_name(handle), sstate); 2941 } 2942 2943 return (0); 2944 } 2945 2946 static int 2947 acpi_wake_run_prep(ACPI_HANDLE handle, int sstate) 2948 { 2949 struct acpi_prw_data prw; 2950 device_t dev; 2951 2952 /* 2953 * Check that this is a wake-capable device and get its GPE. Return 2954 * now if the user didn't enable this device for wake. 2955 */ 2956 if (acpi_parse_prw(handle, &prw) != 0) 2957 return (ENXIO); 2958 dev = acpi_get_device(handle); 2959 if (dev == NULL || (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) == 0) 2960 return (0); 2961 2962 /* 2963 * If this GPE couldn't be enabled for the previous sleep state, it was 2964 * disabled before going to sleep so re-enable it. If it was enabled, 2965 * clear _PSW and turn off any power resources it used. 2966 */ 2967 if (sstate > prw.lowest_wake) { 2968 AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, ACPI_GPE_ENABLE); 2969 if (bootverbose) 2970 device_printf(dev, "run_prep re-enabled %s\n", acpi_name(handle)); 2971 } else { 2972 acpi_SetInteger(handle, "_PSW", 0); 2973 acpi_pwr_wake_enable(handle, 0); 2974 if (bootverbose) 2975 device_printf(dev, "run_prep cleaned up for %s\n", 2976 acpi_name(handle)); 2977 } 2978 2979 return (0); 2980 } 2981 2982 static ACPI_STATUS 2983 acpi_wake_prep(ACPI_HANDLE handle, UINT32 level, void *context, void **status) 2984 { 2985 int sstate; 2986 2987 /* If suspending, run the sleep prep function, otherwise wake. */ 2988 sstate = *(int *)context; 2989 if (AcpiGbl_SystemAwakeAndRunning) 2990 acpi_wake_sleep_prep(handle, sstate); 2991 else 2992 acpi_wake_run_prep(handle, sstate); 2993 return (AE_OK); 2994 } 2995 2996 /* Walk the tree rooted at acpi0 to prep devices for suspend/resume. */ 2997 static int 2998 acpi_wake_prep_walk(int sstate) 2999 { 3000 ACPI_HANDLE sb_handle; 3001 3002 if (ACPI_SUCCESS(AcpiGetHandle(ACPI_ROOT_OBJECT, "\\_SB_", &sb_handle))) 3003 AcpiWalkNamespace(ACPI_TYPE_DEVICE, sb_handle, 100, 3004 acpi_wake_prep, NULL, &sstate, NULL); 3005 return (0); 3006 } 3007 3008 /* Walk the tree rooted at acpi0 to attach per-device wake sysctls. */ 3009 static int 3010 acpi_wake_sysctl_walk(device_t dev) 3011 { 3012 int error, i, numdevs; 3013 device_t *devlist; 3014 device_t child; 3015 ACPI_STATUS status; 3016 3017 error = device_get_children(dev, &devlist, &numdevs); 3018 if (error != 0 || numdevs == 0) { 3019 if (numdevs == 0) 3020 free(devlist, M_TEMP); 3021 return (error); 3022 } 3023 for (i = 0; i < numdevs; i++) { 3024 child = devlist[i]; 3025 acpi_wake_sysctl_walk(child); 3026 if (!device_is_attached(child)) 3027 continue; 3028 status = AcpiEvaluateObject(acpi_get_handle(child), "_PRW", NULL, NULL); 3029 if (ACPI_SUCCESS(status)) { 3030 SYSCTL_ADD_PROC(device_get_sysctl_ctx(child), 3031 SYSCTL_CHILDREN(device_get_sysctl_tree(child)), OID_AUTO, 3032 "wake", CTLTYPE_INT | CTLFLAG_RW, child, 0, 3033 acpi_wake_set_sysctl, "I", "Device set to wake the system"); 3034 } 3035 } 3036 free(devlist, M_TEMP); 3037 3038 return (0); 3039 } 3040 3041 /* Enable or disable wake from userland. */ 3042 static int 3043 acpi_wake_set_sysctl(SYSCTL_HANDLER_ARGS) 3044 { 3045 int enable, error; 3046 device_t dev; 3047 3048 dev = (device_t)arg1; 3049 enable = (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) ? 1 : 0; 3050 3051 error = sysctl_handle_int(oidp, &enable, 0, req); 3052 if (error != 0 || req->newptr == NULL) 3053 return (error); 3054 if (enable != 0 && enable != 1) 3055 return (EINVAL); 3056 3057 return (acpi_wake_set_enable(dev, enable)); 3058 } 3059 3060 /* Parse a device's _PRW into a structure. */ 3061 int 3062 acpi_parse_prw(ACPI_HANDLE h, struct acpi_prw_data *prw) 3063 { 3064 ACPI_STATUS status; 3065 ACPI_BUFFER prw_buffer; 3066 ACPI_OBJECT *res, *res2; 3067 int error, i, power_count; 3068 3069 if (h == NULL || prw == NULL) 3070 return (EINVAL); 3071 3072 /* 3073 * The _PRW object (7.2.9) is only required for devices that have the 3074 * ability to wake the system from a sleeping state. 3075 */ 3076 error = EINVAL; 3077 prw_buffer.Pointer = NULL; 3078 prw_buffer.Length = ACPI_ALLOCATE_BUFFER; 3079 status = AcpiEvaluateObject(h, "_PRW", NULL, &prw_buffer); 3080 if (ACPI_FAILURE(status)) 3081 return (ENOENT); 3082 res = (ACPI_OBJECT *)prw_buffer.Pointer; 3083 if (res == NULL) 3084 return (ENOENT); 3085 if (!ACPI_PKG_VALID(res, 2)) 3086 goto out; 3087 3088 /* 3089 * Element 1 of the _PRW object: 3090 * The lowest power system sleeping state that can be entered while still 3091 * providing wake functionality. The sleeping state being entered must 3092 * be less than (i.e., higher power) or equal to this value. 3093 */ 3094 if (acpi_PkgInt32(res, 1, &prw->lowest_wake) != 0) 3095 goto out; 3096 3097 /* 3098 * Element 0 of the _PRW object: 3099 */ 3100 switch (res->Package.Elements[0].Type) { 3101 case ACPI_TYPE_INTEGER: 3102 /* 3103 * If the data type of this package element is numeric, then this 3104 * _PRW package element is the bit index in the GPEx_EN, in the 3105 * GPE blocks described in the FADT, of the enable bit that is 3106 * enabled for the wake event. 3107 */ 3108 prw->gpe_handle = NULL; 3109 prw->gpe_bit = res->Package.Elements[0].Integer.Value; 3110 error = 0; 3111 break; 3112 case ACPI_TYPE_PACKAGE: 3113 /* 3114 * If the data type of this package element is a package, then this 3115 * _PRW package element is itself a package containing two 3116 * elements. The first is an object reference to the GPE Block 3117 * device that contains the GPE that will be triggered by the wake 3118 * event. The second element is numeric and it contains the bit 3119 * index in the GPEx_EN, in the GPE Block referenced by the 3120 * first element in the package, of the enable bit that is enabled for 3121 * the wake event. 3122 * 3123 * For example, if this field is a package then it is of the form: 3124 * Package() {\_SB.PCI0.ISA.GPE, 2} 3125 */ 3126 res2 = &res->Package.Elements[0]; 3127 if (!ACPI_PKG_VALID(res2, 2)) 3128 goto out; 3129 prw->gpe_handle = acpi_GetReference(NULL, &res2->Package.Elements[0]); 3130 if (prw->gpe_handle == NULL) 3131 goto out; 3132 if (acpi_PkgInt32(res2, 1, &prw->gpe_bit) != 0) 3133 goto out; 3134 error = 0; 3135 break; 3136 default: 3137 goto out; 3138 } 3139 3140 /* Elements 2 to N of the _PRW object are power resources. */ 3141 power_count = res->Package.Count - 2; 3142 if (power_count > ACPI_PRW_MAX_POWERRES) { 3143 printf("ACPI device %s has too many power resources\n", acpi_name(h)); 3144 power_count = 0; 3145 } 3146 prw->power_res_count = power_count; 3147 for (i = 0; i < power_count; i++) 3148 prw->power_res[i] = res->Package.Elements[i]; 3149 3150 out: 3151 if (prw_buffer.Pointer != NULL) 3152 AcpiOsFree(prw_buffer.Pointer); 3153 return (error); 3154 } 3155 3156 /* 3157 * ACPI Event Handlers 3158 */ 3159 3160 /* System Event Handlers (registered by EVENTHANDLER_REGISTER) */ 3161 3162 static void 3163 acpi_system_eventhandler_sleep(void *arg, int state) 3164 { 3165 struct acpi_softc *sc = (struct acpi_softc *)arg; 3166 int ret; 3167 3168 ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state); 3169 3170 /* Check if button action is disabled or unknown. */ 3171 if (state == ACPI_STATE_UNKNOWN) 3172 return; 3173 3174 /* Request that the system prepare to enter the given suspend state. */ 3175 ret = acpi_ReqSleepState(sc, state); 3176 if (ret != 0) 3177 device_printf(sc->acpi_dev, 3178 "request to enter state S%d failed (err %d)\n", state, ret); 3179 3180 return_VOID; 3181 } 3182 3183 static void 3184 acpi_system_eventhandler_wakeup(void *arg, int state) 3185 { 3186 3187 ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state); 3188 3189 /* Currently, nothing to do for wakeup. */ 3190 3191 return_VOID; 3192 } 3193 3194 /* 3195 * ACPICA Event Handlers (FixedEvent, also called from button notify handler) 3196 */ 3197 static void 3198 acpi_invoke_sleep_eventhandler(void *context) 3199 { 3200 3201 EVENTHANDLER_INVOKE(acpi_sleep_event, *(int *)context); 3202 } 3203 3204 static void 3205 acpi_invoke_wake_eventhandler(void *context) 3206 { 3207 3208 EVENTHANDLER_INVOKE(acpi_wakeup_event, *(int *)context); 3209 } 3210 3211 UINT32 3212 acpi_event_power_button_sleep(void *context) 3213 { 3214 struct acpi_softc *sc = (struct acpi_softc *)context; 3215 3216 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3217 3218 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3219 acpi_invoke_sleep_eventhandler, &sc->acpi_power_button_sx))) 3220 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); 3221 return_VALUE (ACPI_INTERRUPT_HANDLED); 3222 } 3223 3224 UINT32 3225 acpi_event_power_button_wake(void *context) 3226 { 3227 struct acpi_softc *sc = (struct acpi_softc *)context; 3228 3229 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3230 3231 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3232 acpi_invoke_wake_eventhandler, &sc->acpi_power_button_sx))) 3233 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); 3234 return_VALUE (ACPI_INTERRUPT_HANDLED); 3235 } 3236 3237 UINT32 3238 acpi_event_sleep_button_sleep(void *context) 3239 { 3240 struct acpi_softc *sc = (struct acpi_softc *)context; 3241 3242 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3243 3244 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3245 acpi_invoke_sleep_eventhandler, &sc->acpi_sleep_button_sx))) 3246 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); 3247 return_VALUE (ACPI_INTERRUPT_HANDLED); 3248 } 3249 3250 UINT32 3251 acpi_event_sleep_button_wake(void *context) 3252 { 3253 struct acpi_softc *sc = (struct acpi_softc *)context; 3254 3255 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3256 3257 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3258 acpi_invoke_wake_eventhandler, &sc->acpi_sleep_button_sx))) 3259 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); 3260 return_VALUE (ACPI_INTERRUPT_HANDLED); 3261 } 3262 3263 /* 3264 * XXX This static buffer is suboptimal. There is no locking so only 3265 * use this for single-threaded callers. 3266 */ 3267 char * 3268 acpi_name(ACPI_HANDLE handle) 3269 { 3270 ACPI_BUFFER buf; 3271 static char data[256]; 3272 3273 buf.Length = sizeof(data); 3274 buf.Pointer = data; 3275 3276 if (handle && ACPI_SUCCESS(AcpiGetName(handle, ACPI_FULL_PATHNAME, &buf))) 3277 return (data); 3278 return ("(unknown)"); 3279 } 3280 3281 /* 3282 * Debugging/bug-avoidance. Avoid trying to fetch info on various 3283 * parts of the namespace. 3284 */ 3285 int 3286 acpi_avoid(ACPI_HANDLE handle) 3287 { 3288 char *cp, *env, *np; 3289 int len; 3290 3291 np = acpi_name(handle); 3292 if (*np == '\\') 3293 np++; 3294 if ((env = getenv("debug.acpi.avoid")) == NULL) 3295 return (0); 3296 3297 /* Scan the avoid list checking for a match */ 3298 cp = env; 3299 for (;;) { 3300 while (*cp != 0 && isspace(*cp)) 3301 cp++; 3302 if (*cp == 0) 3303 break; 3304 len = 0; 3305 while (cp[len] != 0 && !isspace(cp[len])) 3306 len++; 3307 if (!strncmp(cp, np, len)) { 3308 freeenv(env); 3309 return(1); 3310 } 3311 cp += len; 3312 } 3313 freeenv(env); 3314 3315 return (0); 3316 } 3317 3318 /* 3319 * Debugging/bug-avoidance. Disable ACPI subsystem components. 3320 */ 3321 int 3322 acpi_disabled(char *subsys) 3323 { 3324 char *cp, *env; 3325 int len; 3326 3327 if ((env = getenv("debug.acpi.disabled")) == NULL) 3328 return (0); 3329 if (strcmp(env, "all") == 0) { 3330 freeenv(env); 3331 return (1); 3332 } 3333 3334 /* Scan the disable list, checking for a match. */ 3335 cp = env; 3336 for (;;) { 3337 while (*cp != '\0' && isspace(*cp)) 3338 cp++; 3339 if (*cp == '\0') 3340 break; 3341 len = 0; 3342 while (cp[len] != '\0' && !isspace(cp[len])) 3343 len++; 3344 if (strncmp(cp, subsys, len) == 0) { 3345 freeenv(env); 3346 return (1); 3347 } 3348 cp += len; 3349 } 3350 freeenv(env); 3351 3352 return (0); 3353 } 3354 3355 /* 3356 * Control interface. 3357 * 3358 * We multiplex ioctls for all participating ACPI devices here. Individual 3359 * drivers wanting to be accessible via /dev/acpi should use the 3360 * register/deregister interface to make their handlers visible. 3361 */ 3362 struct acpi_ioctl_hook 3363 { 3364 TAILQ_ENTRY(acpi_ioctl_hook) link; 3365 u_long cmd; 3366 acpi_ioctl_fn fn; 3367 void *arg; 3368 }; 3369 3370 static TAILQ_HEAD(,acpi_ioctl_hook) acpi_ioctl_hooks; 3371 static int acpi_ioctl_hooks_initted; 3372 3373 int 3374 acpi_register_ioctl(u_long cmd, acpi_ioctl_fn fn, void *arg) 3375 { 3376 struct acpi_ioctl_hook *hp; 3377 3378 if ((hp = malloc(sizeof(*hp), M_ACPIDEV, M_NOWAIT)) == NULL) 3379 return (ENOMEM); 3380 hp->cmd = cmd; 3381 hp->fn = fn; 3382 hp->arg = arg; 3383 3384 ACPI_LOCK(acpi); 3385 if (acpi_ioctl_hooks_initted == 0) { 3386 TAILQ_INIT(&acpi_ioctl_hooks); 3387 acpi_ioctl_hooks_initted = 1; 3388 } 3389 TAILQ_INSERT_TAIL(&acpi_ioctl_hooks, hp, link); 3390 ACPI_UNLOCK(acpi); 3391 3392 return (0); 3393 } 3394 3395 void 3396 acpi_deregister_ioctl(u_long cmd, acpi_ioctl_fn fn) 3397 { 3398 struct acpi_ioctl_hook *hp; 3399 3400 ACPI_LOCK(acpi); 3401 TAILQ_FOREACH(hp, &acpi_ioctl_hooks, link) 3402 if (hp->cmd == cmd && hp->fn == fn) 3403 break; 3404 3405 if (hp != NULL) { 3406 TAILQ_REMOVE(&acpi_ioctl_hooks, hp, link); 3407 free(hp, M_ACPIDEV); 3408 } 3409 ACPI_UNLOCK(acpi); 3410 } 3411 3412 static int 3413 acpiopen(struct cdev *dev, int flag, int fmt, struct thread *td) 3414 { 3415 return (0); 3416 } 3417 3418 static int 3419 acpiclose(struct cdev *dev, int flag, int fmt, struct thread *td) 3420 { 3421 return (0); 3422 } 3423 3424 static int 3425 acpiioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 3426 { 3427 struct acpi_softc *sc; 3428 struct acpi_ioctl_hook *hp; 3429 int error, state; 3430 3431 error = 0; 3432 hp = NULL; 3433 sc = dev->si_drv1; 3434 3435 /* 3436 * Scan the list of registered ioctls, looking for handlers. 3437 */ 3438 ACPI_LOCK(acpi); 3439 if (acpi_ioctl_hooks_initted) 3440 TAILQ_FOREACH(hp, &acpi_ioctl_hooks, link) { 3441 if (hp->cmd == cmd) 3442 break; 3443 } 3444 ACPI_UNLOCK(acpi); 3445 if (hp) 3446 return (hp->fn(cmd, addr, hp->arg)); 3447 3448 /* 3449 * Core ioctls are not permitted for non-writable user. 3450 * Currently, other ioctls just fetch information. 3451 * Not changing system behavior. 3452 */ 3453 if ((flag & FWRITE) == 0) 3454 return (EPERM); 3455 3456 /* Core system ioctls. */ 3457 switch (cmd) { 3458 case ACPIIO_REQSLPSTATE: 3459 state = *(int *)addr; 3460 if (state != ACPI_STATE_S5) 3461 return (acpi_ReqSleepState(sc, state)); 3462 device_printf(sc->acpi_dev, "power off via acpi ioctl not supported\n"); 3463 error = EOPNOTSUPP; 3464 break; 3465 case ACPIIO_ACKSLPSTATE: 3466 error = *(int *)addr; 3467 error = acpi_AckSleepState(sc->acpi_clone, error); 3468 break; 3469 case ACPIIO_SETSLPSTATE: /* DEPRECATED */ 3470 state = *(int *)addr; 3471 if (state < ACPI_STATE_S0 || state > ACPI_S_STATES_MAX) 3472 return (EINVAL); 3473 if (!acpi_sleep_states[state]) 3474 return (EOPNOTSUPP); 3475 if (ACPI_FAILURE(acpi_SetSleepState(sc, state))) 3476 error = ENXIO; 3477 break; 3478 default: 3479 error = ENXIO; 3480 break; 3481 } 3482 3483 return (error); 3484 } 3485 3486 static int 3487 acpi_sname2sstate(const char *sname) 3488 { 3489 int sstate; 3490 3491 if (toupper(sname[0]) == 'S') { 3492 sstate = sname[1] - '0'; 3493 if (sstate >= ACPI_STATE_S0 && sstate <= ACPI_STATE_S5 && 3494 sname[2] == '\0') 3495 return (sstate); 3496 } else if (strcasecmp(sname, "NONE") == 0) 3497 return (ACPI_STATE_UNKNOWN); 3498 return (-1); 3499 } 3500 3501 static const char * 3502 acpi_sstate2sname(int sstate) 3503 { 3504 static const char *snames[] = { "S0", "S1", "S2", "S3", "S4", "S5" }; 3505 3506 if (sstate >= ACPI_STATE_S0 && sstate <= ACPI_STATE_S5) 3507 return (snames[sstate]); 3508 else if (sstate == ACPI_STATE_UNKNOWN) 3509 return ("NONE"); 3510 return (NULL); 3511 } 3512 3513 static int 3514 acpi_supported_sleep_state_sysctl(SYSCTL_HANDLER_ARGS) 3515 { 3516 int error; 3517 struct sbuf sb; 3518 UINT8 state; 3519 3520 sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND); 3521 for (state = ACPI_STATE_S1; state < ACPI_S_STATE_COUNT; state++) 3522 if (acpi_sleep_states[state]) 3523 sbuf_printf(&sb, "%s ", acpi_sstate2sname(state)); 3524 sbuf_trim(&sb); 3525 sbuf_finish(&sb); 3526 error = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req); 3527 sbuf_delete(&sb); 3528 return (error); 3529 } 3530 3531 static int 3532 acpi_sleep_state_sysctl(SYSCTL_HANDLER_ARGS) 3533 { 3534 char sleep_state[10]; 3535 int error, new_state, old_state; 3536 3537 old_state = *(int *)oidp->oid_arg1; 3538 strlcpy(sleep_state, acpi_sstate2sname(old_state), sizeof(sleep_state)); 3539 error = sysctl_handle_string(oidp, sleep_state, sizeof(sleep_state), req); 3540 if (error == 0 && req->newptr != NULL) { 3541 new_state = acpi_sname2sstate(sleep_state); 3542 if (new_state < ACPI_STATE_S1) 3543 return (EINVAL); 3544 if (new_state < ACPI_S_STATE_COUNT && !acpi_sleep_states[new_state]) 3545 return (EOPNOTSUPP); 3546 if (new_state != old_state) 3547 *(int *)oidp->oid_arg1 = new_state; 3548 } 3549 return (error); 3550 } 3551 3552 /* Inform devctl(4) when we receive a Notify. */ 3553 void 3554 acpi_UserNotify(const char *subsystem, ACPI_HANDLE h, uint8_t notify) 3555 { 3556 char notify_buf[16]; 3557 ACPI_BUFFER handle_buf; 3558 ACPI_STATUS status; 3559 3560 if (subsystem == NULL) 3561 return; 3562 3563 handle_buf.Pointer = NULL; 3564 handle_buf.Length = ACPI_ALLOCATE_BUFFER; 3565 status = AcpiNsHandleToPathname(h, &handle_buf); 3566 if (ACPI_FAILURE(status)) 3567 return; 3568 snprintf(notify_buf, sizeof(notify_buf), "notify=0x%02x", notify); 3569 devctl_notify("ACPI", subsystem, handle_buf.Pointer, notify_buf); 3570 AcpiOsFree(handle_buf.Pointer); 3571 } 3572 3573 #ifdef ACPI_DEBUG 3574 /* 3575 * Support for parsing debug options from the kernel environment. 3576 * 3577 * Bits may be set in the AcpiDbgLayer and AcpiDbgLevel debug registers 3578 * by specifying the names of the bits in the debug.acpi.layer and 3579 * debug.acpi.level environment variables. Bits may be unset by 3580 * prefixing the bit name with !. 3581 */ 3582 struct debugtag 3583 { 3584 char *name; 3585 UINT32 value; 3586 }; 3587 3588 static struct debugtag dbg_layer[] = { 3589 {"ACPI_UTILITIES", ACPI_UTILITIES}, 3590 {"ACPI_HARDWARE", ACPI_HARDWARE}, 3591 {"ACPI_EVENTS", ACPI_EVENTS}, 3592 {"ACPI_TABLES", ACPI_TABLES}, 3593 {"ACPI_NAMESPACE", ACPI_NAMESPACE}, 3594 {"ACPI_PARSER", ACPI_PARSER}, 3595 {"ACPI_DISPATCHER", ACPI_DISPATCHER}, 3596 {"ACPI_EXECUTER", ACPI_EXECUTER}, 3597 {"ACPI_RESOURCES", ACPI_RESOURCES}, 3598 {"ACPI_CA_DEBUGGER", ACPI_CA_DEBUGGER}, 3599 {"ACPI_OS_SERVICES", ACPI_OS_SERVICES}, 3600 {"ACPI_CA_DISASSEMBLER", ACPI_CA_DISASSEMBLER}, 3601 {"ACPI_ALL_COMPONENTS", ACPI_ALL_COMPONENTS}, 3602 3603 {"ACPI_AC_ADAPTER", ACPI_AC_ADAPTER}, 3604 {"ACPI_BATTERY", ACPI_BATTERY}, 3605 {"ACPI_BUS", ACPI_BUS}, 3606 {"ACPI_BUTTON", ACPI_BUTTON}, 3607 {"ACPI_EC", ACPI_EC}, 3608 {"ACPI_FAN", ACPI_FAN}, 3609 {"ACPI_POWERRES", ACPI_POWERRES}, 3610 {"ACPI_PROCESSOR", ACPI_PROCESSOR}, 3611 {"ACPI_THERMAL", ACPI_THERMAL}, 3612 {"ACPI_TIMER", ACPI_TIMER}, 3613 {"ACPI_ALL_DRIVERS", ACPI_ALL_DRIVERS}, 3614 {NULL, 0} 3615 }; 3616 3617 static struct debugtag dbg_level[] = { 3618 {"ACPI_LV_INIT", ACPI_LV_INIT}, 3619 {"ACPI_LV_DEBUG_OBJECT", ACPI_LV_DEBUG_OBJECT}, 3620 {"ACPI_LV_INFO", ACPI_LV_INFO}, 3621 {"ACPI_LV_REPAIR", ACPI_LV_REPAIR}, 3622 {"ACPI_LV_ALL_EXCEPTIONS", ACPI_LV_ALL_EXCEPTIONS}, 3623 3624 /* Trace verbosity level 1 [Standard Trace Level] */ 3625 {"ACPI_LV_INIT_NAMES", ACPI_LV_INIT_NAMES}, 3626 {"ACPI_LV_PARSE", ACPI_LV_PARSE}, 3627 {"ACPI_LV_LOAD", ACPI_LV_LOAD}, 3628 {"ACPI_LV_DISPATCH", ACPI_LV_DISPATCH}, 3629 {"ACPI_LV_EXEC", ACPI_LV_EXEC}, 3630 {"ACPI_LV_NAMES", ACPI_LV_NAMES}, 3631 {"ACPI_LV_OPREGION", ACPI_LV_OPREGION}, 3632 {"ACPI_LV_BFIELD", ACPI_LV_BFIELD}, 3633 {"ACPI_LV_TABLES", ACPI_LV_TABLES}, 3634 {"ACPI_LV_VALUES", ACPI_LV_VALUES}, 3635 {"ACPI_LV_OBJECTS", ACPI_LV_OBJECTS}, 3636 {"ACPI_LV_RESOURCES", ACPI_LV_RESOURCES}, 3637 {"ACPI_LV_USER_REQUESTS", ACPI_LV_USER_REQUESTS}, 3638 {"ACPI_LV_PACKAGE", ACPI_LV_PACKAGE}, 3639 {"ACPI_LV_VERBOSITY1", ACPI_LV_VERBOSITY1}, 3640 3641 /* Trace verbosity level 2 [Function tracing and memory allocation] */ 3642 {"ACPI_LV_ALLOCATIONS", ACPI_LV_ALLOCATIONS}, 3643 {"ACPI_LV_FUNCTIONS", ACPI_LV_FUNCTIONS}, 3644 {"ACPI_LV_OPTIMIZATIONS", ACPI_LV_OPTIMIZATIONS}, 3645 {"ACPI_LV_VERBOSITY2", ACPI_LV_VERBOSITY2}, 3646 {"ACPI_LV_ALL", ACPI_LV_ALL}, 3647 3648 /* Trace verbosity level 3 [Threading, I/O, and Interrupts] */ 3649 {"ACPI_LV_MUTEX", ACPI_LV_MUTEX}, 3650 {"ACPI_LV_THREADS", ACPI_LV_THREADS}, 3651 {"ACPI_LV_IO", ACPI_LV_IO}, 3652 {"ACPI_LV_INTERRUPTS", ACPI_LV_INTERRUPTS}, 3653 {"ACPI_LV_VERBOSITY3", ACPI_LV_VERBOSITY3}, 3654 3655 /* Exceptionally verbose output -- also used in the global "DebugLevel" */ 3656 {"ACPI_LV_AML_DISASSEMBLE", ACPI_LV_AML_DISASSEMBLE}, 3657 {"ACPI_LV_VERBOSE_INFO", ACPI_LV_VERBOSE_INFO}, 3658 {"ACPI_LV_FULL_TABLES", ACPI_LV_FULL_TABLES}, 3659 {"ACPI_LV_EVENTS", ACPI_LV_EVENTS}, 3660 {"ACPI_LV_VERBOSE", ACPI_LV_VERBOSE}, 3661 {NULL, 0} 3662 }; 3663 3664 static void 3665 acpi_parse_debug(char *cp, struct debugtag *tag, UINT32 *flag) 3666 { 3667 char *ep; 3668 int i, l; 3669 int set; 3670 3671 while (*cp) { 3672 if (isspace(*cp)) { 3673 cp++; 3674 continue; 3675 } 3676 ep = cp; 3677 while (*ep && !isspace(*ep)) 3678 ep++; 3679 if (*cp == '!') { 3680 set = 0; 3681 cp++; 3682 if (cp == ep) 3683 continue; 3684 } else { 3685 set = 1; 3686 } 3687 l = ep - cp; 3688 for (i = 0; tag[i].name != NULL; i++) { 3689 if (!strncmp(cp, tag[i].name, l)) { 3690 if (set) 3691 *flag |= tag[i].value; 3692 else 3693 *flag &= ~tag[i].value; 3694 } 3695 } 3696 cp = ep; 3697 } 3698 } 3699 3700 static void 3701 acpi_set_debugging(void *junk) 3702 { 3703 char *layer, *level; 3704 3705 if (cold) { 3706 AcpiDbgLayer = 0; 3707 AcpiDbgLevel = 0; 3708 } 3709 3710 layer = getenv("debug.acpi.layer"); 3711 level = getenv("debug.acpi.level"); 3712 if (layer == NULL && level == NULL) 3713 return; 3714 3715 printf("ACPI set debug"); 3716 if (layer != NULL) { 3717 if (strcmp("NONE", layer) != 0) 3718 printf(" layer '%s'", layer); 3719 acpi_parse_debug(layer, &dbg_layer[0], &AcpiDbgLayer); 3720 freeenv(layer); 3721 } 3722 if (level != NULL) { 3723 if (strcmp("NONE", level) != 0) 3724 printf(" level '%s'", level); 3725 acpi_parse_debug(level, &dbg_level[0], &AcpiDbgLevel); 3726 freeenv(level); 3727 } 3728 printf("\n"); 3729 } 3730 3731 SYSINIT(acpi_debugging, SI_SUB_TUNABLES, SI_ORDER_ANY, acpi_set_debugging, 3732 NULL); 3733 3734 static int 3735 acpi_debug_sysctl(SYSCTL_HANDLER_ARGS) 3736 { 3737 int error, *dbg; 3738 struct debugtag *tag; 3739 struct sbuf sb; 3740 3741 if (sbuf_new(&sb, NULL, 128, SBUF_AUTOEXTEND) == NULL) 3742 return (ENOMEM); 3743 if (strcmp(oidp->oid_arg1, "debug.acpi.layer") == 0) { 3744 tag = &dbg_layer[0]; 3745 dbg = &AcpiDbgLayer; 3746 } else { 3747 tag = &dbg_level[0]; 3748 dbg = &AcpiDbgLevel; 3749 } 3750 3751 /* Get old values if this is a get request. */ 3752 ACPI_SERIAL_BEGIN(acpi); 3753 if (*dbg == 0) { 3754 sbuf_cpy(&sb, "NONE"); 3755 } else if (req->newptr == NULL) { 3756 for (; tag->name != NULL; tag++) { 3757 if ((*dbg & tag->value) == tag->value) 3758 sbuf_printf(&sb, "%s ", tag->name); 3759 } 3760 } 3761 sbuf_trim(&sb); 3762 sbuf_finish(&sb); 3763 3764 /* Copy out the old values to the user. */ 3765 error = SYSCTL_OUT(req, sbuf_data(&sb), sbuf_len(&sb)); 3766 sbuf_delete(&sb); 3767 3768 /* If the user is setting a string, parse it. */ 3769 if (error == 0 && req->newptr != NULL) { 3770 *dbg = 0; 3771 setenv((char *)oidp->oid_arg1, (char *)req->newptr); 3772 acpi_set_debugging(NULL); 3773 } 3774 ACPI_SERIAL_END(acpi); 3775 3776 return (error); 3777 } 3778 3779 SYSCTL_PROC(_debug_acpi, OID_AUTO, layer, CTLFLAG_RW | CTLTYPE_STRING, 3780 "debug.acpi.layer", 0, acpi_debug_sysctl, "A", ""); 3781 SYSCTL_PROC(_debug_acpi, OID_AUTO, level, CTLFLAG_RW | CTLTYPE_STRING, 3782 "debug.acpi.level", 0, acpi_debug_sysctl, "A", ""); 3783 #endif /* ACPI_DEBUG */ 3784 3785 static int 3786 acpi_debug_objects_sysctl(SYSCTL_HANDLER_ARGS) 3787 { 3788 int error; 3789 int old; 3790 3791 old = acpi_debug_objects; 3792 error = sysctl_handle_int(oidp, &acpi_debug_objects, 0, req); 3793 if (error != 0 || req->newptr == NULL) 3794 return (error); 3795 if (old == acpi_debug_objects || (old && acpi_debug_objects)) 3796 return (0); 3797 3798 ACPI_SERIAL_BEGIN(acpi); 3799 AcpiGbl_EnableAmlDebugObject = acpi_debug_objects ? TRUE : FALSE; 3800 ACPI_SERIAL_END(acpi); 3801 3802 return (0); 3803 } 3804 3805 static int 3806 acpi_parse_interfaces(char *str, struct acpi_interface *iface) 3807 { 3808 char *p; 3809 size_t len; 3810 int i, j; 3811 3812 p = str; 3813 while (isspace(*p) || *p == ',') 3814 p++; 3815 len = strlen(p); 3816 if (len == 0) 3817 return (0); 3818 p = strdup(p, M_TEMP); 3819 for (i = 0; i < len; i++) 3820 if (p[i] == ',') 3821 p[i] = '\0'; 3822 i = j = 0; 3823 while (i < len) 3824 if (isspace(p[i]) || p[i] == '\0') 3825 i++; 3826 else { 3827 i += strlen(p + i) + 1; 3828 j++; 3829 } 3830 if (j == 0) { 3831 free(p, M_TEMP); 3832 return (0); 3833 } 3834 iface->data = malloc(sizeof(*iface->data) * j, M_TEMP, M_WAITOK); 3835 iface->num = j; 3836 i = j = 0; 3837 while (i < len) 3838 if (isspace(p[i]) || p[i] == '\0') 3839 i++; 3840 else { 3841 iface->data[j] = p + i; 3842 i += strlen(p + i) + 1; 3843 j++; 3844 } 3845 3846 return (j); 3847 } 3848 3849 static void 3850 acpi_free_interfaces(struct acpi_interface *iface) 3851 { 3852 3853 free(iface->data[0], M_TEMP); 3854 free(iface->data, M_TEMP); 3855 } 3856 3857 static void 3858 acpi_reset_interfaces(device_t dev) 3859 { 3860 struct acpi_interface list; 3861 ACPI_STATUS status; 3862 int i; 3863 3864 if (acpi_parse_interfaces(acpi_install_interface, &list) > 0) { 3865 for (i = 0; i < list.num; i++) { 3866 status = AcpiInstallInterface(list.data[i]); 3867 if (ACPI_FAILURE(status)) 3868 device_printf(dev, 3869 "failed to install _OSI(\"%s\"): %s\n", 3870 list.data[i], AcpiFormatException(status)); 3871 else if (bootverbose) 3872 device_printf(dev, "installed _OSI(\"%s\")\n", 3873 list.data[i]); 3874 } 3875 acpi_free_interfaces(&list); 3876 } 3877 if (acpi_parse_interfaces(acpi_remove_interface, &list) > 0) { 3878 for (i = 0; i < list.num; i++) { 3879 status = AcpiRemoveInterface(list.data[i]); 3880 if (ACPI_FAILURE(status)) 3881 device_printf(dev, 3882 "failed to remove _OSI(\"%s\"): %s\n", 3883 list.data[i], AcpiFormatException(status)); 3884 else if (bootverbose) 3885 device_printf(dev, "removed _OSI(\"%s\")\n", 3886 list.data[i]); 3887 } 3888 acpi_free_interfaces(&list); 3889 } 3890 } 3891 3892 static int 3893 acpi_pm_func(u_long cmd, void *arg, ...) 3894 { 3895 int state, acpi_state; 3896 int error; 3897 struct acpi_softc *sc; 3898 va_list ap; 3899 3900 error = 0; 3901 switch (cmd) { 3902 case POWER_CMD_SUSPEND: 3903 sc = (struct acpi_softc *)arg; 3904 if (sc == NULL) { 3905 error = EINVAL; 3906 goto out; 3907 } 3908 3909 va_start(ap, arg); 3910 state = va_arg(ap, int); 3911 va_end(ap); 3912 3913 switch (state) { 3914 case POWER_SLEEP_STATE_STANDBY: 3915 acpi_state = sc->acpi_standby_sx; 3916 break; 3917 case POWER_SLEEP_STATE_SUSPEND: 3918 acpi_state = sc->acpi_suspend_sx; 3919 break; 3920 case POWER_SLEEP_STATE_HIBERNATE: 3921 acpi_state = ACPI_STATE_S4; 3922 break; 3923 default: 3924 error = EINVAL; 3925 goto out; 3926 } 3927 3928 if (ACPI_FAILURE(acpi_EnterSleepState(sc, acpi_state))) 3929 error = ENXIO; 3930 break; 3931 default: 3932 error = EINVAL; 3933 goto out; 3934 } 3935 3936 out: 3937 return (error); 3938 } 3939 3940 static void 3941 acpi_pm_register(void *arg) 3942 { 3943 if (!cold || resource_disabled("acpi", 0)) 3944 return; 3945 3946 power_pm_register(POWER_PM_TYPE_ACPI, acpi_pm_func, NULL); 3947 } 3948 3949 SYSINIT(power, SI_SUB_KLD, SI_ORDER_ANY, acpi_pm_register, 0); 3950