1 /*- 2 * Copyright (c) 2000 Takanori Watanabe <takawata@jp.freebsd.org> 3 * Copyright (c) 2000 Mitsuru IWASAKI <iwasaki@jp.freebsd.org> 4 * Copyright (c) 2000, 2001 Michael Smith 5 * Copyright (c) 2000 BSDi 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include "opt_acpi.h" 34 35 #include <sys/param.h> 36 #include <sys/eventhandler.h> 37 #include <sys/kernel.h> 38 #include <sys/proc.h> 39 #include <sys/fcntl.h> 40 #include <sys/malloc.h> 41 #include <sys/module.h> 42 #include <sys/bus.h> 43 #include <sys/conf.h> 44 #include <sys/ioccom.h> 45 #include <sys/reboot.h> 46 #include <sys/sysctl.h> 47 #include <sys/ctype.h> 48 #include <sys/linker.h> 49 #include <sys/power.h> 50 #include <sys/sbuf.h> 51 #include <sys/sched.h> 52 #include <sys/smp.h> 53 #include <sys/timetc.h> 54 55 #if defined(__i386__) || defined(__amd64__) 56 #include <machine/clock.h> 57 #include <machine/pci_cfgreg.h> 58 #endif 59 #include <machine/resource.h> 60 #include <machine/bus.h> 61 #include <sys/rman.h> 62 #include <isa/isavar.h> 63 #include <isa/pnpvar.h> 64 65 #include <contrib/dev/acpica/include/acpi.h> 66 #include <contrib/dev/acpica/include/accommon.h> 67 #include <contrib/dev/acpica/include/acnamesp.h> 68 69 #include <dev/acpica/acpivar.h> 70 #include <dev/acpica/acpiio.h> 71 72 #include <dev/pci/pcivar.h> 73 74 #include <vm/vm_param.h> 75 76 static MALLOC_DEFINE(M_ACPIDEV, "acpidev", "ACPI devices"); 77 78 /* Hooks for the ACPI CA debugging infrastructure */ 79 #define _COMPONENT ACPI_BUS 80 ACPI_MODULE_NAME("ACPI") 81 82 static d_open_t acpiopen; 83 static d_close_t acpiclose; 84 static d_ioctl_t acpiioctl; 85 86 static struct cdevsw acpi_cdevsw = { 87 .d_version = D_VERSION, 88 .d_open = acpiopen, 89 .d_close = acpiclose, 90 .d_ioctl = acpiioctl, 91 .d_name = "acpi", 92 }; 93 94 struct acpi_interface { 95 ACPI_STRING *data; 96 int num; 97 }; 98 99 static char *sysres_ids[] = { "PNP0C01", "PNP0C02", NULL }; 100 static char *pcilink_ids[] = { "PNP0C0F", NULL }; 101 102 /* Global mutex for locking access to the ACPI subsystem. */ 103 struct mtx acpi_mutex; 104 struct callout acpi_sleep_timer; 105 106 /* Bitmap of device quirks. */ 107 int acpi_quirks; 108 109 /* Supported sleep states. */ 110 static BOOLEAN acpi_sleep_states[ACPI_S_STATE_COUNT]; 111 112 static void acpi_lookup(void *arg, const char *name, device_t *dev); 113 static int acpi_modevent(struct module *mod, int event, void *junk); 114 static int acpi_probe(device_t dev); 115 static int acpi_attach(device_t dev); 116 static int acpi_suspend(device_t dev); 117 static int acpi_resume(device_t dev); 118 static int acpi_shutdown(device_t dev); 119 static device_t acpi_add_child(device_t bus, u_int order, const char *name, 120 int unit); 121 static int acpi_print_child(device_t bus, device_t child); 122 static void acpi_probe_nomatch(device_t bus, device_t child); 123 static void acpi_driver_added(device_t dev, driver_t *driver); 124 static void acpi_child_deleted(device_t dev, device_t child); 125 static int acpi_read_ivar(device_t dev, device_t child, int index, 126 uintptr_t *result); 127 static int acpi_write_ivar(device_t dev, device_t child, int index, 128 uintptr_t value); 129 static struct resource_list *acpi_get_rlist(device_t dev, device_t child); 130 static void acpi_reserve_resources(device_t dev); 131 static int acpi_sysres_alloc(device_t dev); 132 static int acpi_set_resource(device_t dev, device_t child, int type, 133 int rid, rman_res_t start, rman_res_t count); 134 static struct resource *acpi_alloc_resource(device_t bus, device_t child, 135 int type, int *rid, rman_res_t start, rman_res_t end, 136 rman_res_t count, u_int flags); 137 static int acpi_adjust_resource(device_t bus, device_t child, int type, 138 struct resource *r, rman_res_t start, rman_res_t end); 139 static int acpi_release_resource(device_t bus, device_t child, int type, 140 int rid, struct resource *r); 141 static void acpi_delete_resource(device_t bus, device_t child, int type, 142 int rid); 143 static uint32_t acpi_isa_get_logicalid(device_t dev); 144 static int acpi_isa_get_compatid(device_t dev, uint32_t *cids, int count); 145 static int acpi_device_id_probe(device_t bus, device_t dev, char **ids, char **match); 146 static ACPI_STATUS acpi_device_eval_obj(device_t bus, device_t dev, 147 ACPI_STRING pathname, ACPI_OBJECT_LIST *parameters, 148 ACPI_BUFFER *ret); 149 static ACPI_STATUS acpi_device_scan_cb(ACPI_HANDLE h, UINT32 level, 150 void *context, void **retval); 151 static ACPI_STATUS acpi_device_scan_children(device_t bus, device_t dev, 152 int max_depth, acpi_scan_cb_t user_fn, void *arg); 153 static int acpi_isa_pnp_probe(device_t bus, device_t child, 154 struct isa_pnp_id *ids); 155 static void acpi_platform_osc(device_t dev); 156 static void acpi_probe_children(device_t bus); 157 static void acpi_probe_order(ACPI_HANDLE handle, int *order); 158 static ACPI_STATUS acpi_probe_child(ACPI_HANDLE handle, UINT32 level, 159 void *context, void **status); 160 static void acpi_sleep_enable(void *arg); 161 static ACPI_STATUS acpi_sleep_disable(struct acpi_softc *sc); 162 static ACPI_STATUS acpi_EnterSleepState(struct acpi_softc *sc, int state); 163 static void acpi_shutdown_final(void *arg, int howto); 164 static void acpi_enable_fixed_events(struct acpi_softc *sc); 165 static void acpi_resync_clock(struct acpi_softc *sc); 166 static int acpi_wake_sleep_prep(ACPI_HANDLE handle, int sstate); 167 static int acpi_wake_run_prep(ACPI_HANDLE handle, int sstate); 168 static int acpi_wake_prep_walk(int sstate); 169 static int acpi_wake_sysctl_walk(device_t dev); 170 static int acpi_wake_set_sysctl(SYSCTL_HANDLER_ARGS); 171 static void acpi_system_eventhandler_sleep(void *arg, int state); 172 static void acpi_system_eventhandler_wakeup(void *arg, int state); 173 static int acpi_sname2sstate(const char *sname); 174 static const char *acpi_sstate2sname(int sstate); 175 static int acpi_supported_sleep_state_sysctl(SYSCTL_HANDLER_ARGS); 176 static int acpi_sleep_state_sysctl(SYSCTL_HANDLER_ARGS); 177 static int acpi_debug_objects_sysctl(SYSCTL_HANDLER_ARGS); 178 static int acpi_pm_func(u_long cmd, void *arg, ...); 179 static int acpi_child_location_str_method(device_t acdev, device_t child, 180 char *buf, size_t buflen); 181 static int acpi_child_pnpinfo_str_method(device_t acdev, device_t child, 182 char *buf, size_t buflen); 183 static void acpi_enable_pcie(void); 184 static void acpi_hint_device_unit(device_t acdev, device_t child, 185 const char *name, int *unitp); 186 static void acpi_reset_interfaces(device_t dev); 187 188 static device_method_t acpi_methods[] = { 189 /* Device interface */ 190 DEVMETHOD(device_probe, acpi_probe), 191 DEVMETHOD(device_attach, acpi_attach), 192 DEVMETHOD(device_shutdown, acpi_shutdown), 193 DEVMETHOD(device_detach, bus_generic_detach), 194 DEVMETHOD(device_suspend, acpi_suspend), 195 DEVMETHOD(device_resume, acpi_resume), 196 197 /* Bus interface */ 198 DEVMETHOD(bus_add_child, acpi_add_child), 199 DEVMETHOD(bus_print_child, acpi_print_child), 200 DEVMETHOD(bus_probe_nomatch, acpi_probe_nomatch), 201 DEVMETHOD(bus_driver_added, acpi_driver_added), 202 DEVMETHOD(bus_child_deleted, acpi_child_deleted), 203 DEVMETHOD(bus_read_ivar, acpi_read_ivar), 204 DEVMETHOD(bus_write_ivar, acpi_write_ivar), 205 DEVMETHOD(bus_get_resource_list, acpi_get_rlist), 206 DEVMETHOD(bus_set_resource, acpi_set_resource), 207 DEVMETHOD(bus_get_resource, bus_generic_rl_get_resource), 208 DEVMETHOD(bus_alloc_resource, acpi_alloc_resource), 209 DEVMETHOD(bus_adjust_resource, acpi_adjust_resource), 210 DEVMETHOD(bus_release_resource, acpi_release_resource), 211 DEVMETHOD(bus_delete_resource, acpi_delete_resource), 212 DEVMETHOD(bus_child_pnpinfo_str, acpi_child_pnpinfo_str_method), 213 DEVMETHOD(bus_child_location_str, acpi_child_location_str_method), 214 DEVMETHOD(bus_activate_resource, bus_generic_activate_resource), 215 DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource), 216 DEVMETHOD(bus_setup_intr, bus_generic_setup_intr), 217 DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr), 218 DEVMETHOD(bus_hint_device_unit, acpi_hint_device_unit), 219 DEVMETHOD(bus_get_cpus, acpi_get_cpus), 220 DEVMETHOD(bus_get_domain, acpi_get_domain), 221 222 /* ACPI bus */ 223 DEVMETHOD(acpi_id_probe, acpi_device_id_probe), 224 DEVMETHOD(acpi_evaluate_object, acpi_device_eval_obj), 225 DEVMETHOD(acpi_pwr_for_sleep, acpi_device_pwr_for_sleep), 226 DEVMETHOD(acpi_scan_children, acpi_device_scan_children), 227 228 /* ISA emulation */ 229 DEVMETHOD(isa_pnp_probe, acpi_isa_pnp_probe), 230 231 DEVMETHOD_END 232 }; 233 234 static driver_t acpi_driver = { 235 "acpi", 236 acpi_methods, 237 sizeof(struct acpi_softc), 238 }; 239 240 static devclass_t acpi_devclass; 241 EARLY_DRIVER_MODULE(acpi, nexus, acpi_driver, acpi_devclass, acpi_modevent, 0, 242 BUS_PASS_BUS + BUS_PASS_ORDER_MIDDLE); 243 MODULE_VERSION(acpi, 1); 244 245 ACPI_SERIAL_DECL(acpi, "ACPI root bus"); 246 247 /* Local pools for managing system resources for ACPI child devices. */ 248 static struct rman acpi_rman_io, acpi_rman_mem; 249 250 #define ACPI_MINIMUM_AWAKETIME 5 251 252 /* Holds the description of the acpi0 device. */ 253 static char acpi_desc[ACPI_OEM_ID_SIZE + ACPI_OEM_TABLE_ID_SIZE + 2]; 254 255 SYSCTL_NODE(_debug, OID_AUTO, acpi, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 256 "ACPI debugging"); 257 static char acpi_ca_version[12]; 258 SYSCTL_STRING(_debug_acpi, OID_AUTO, acpi_ca_version, CTLFLAG_RD, 259 acpi_ca_version, 0, "Version of Intel ACPI-CA"); 260 261 /* 262 * Allow overriding _OSI methods. 263 */ 264 static char acpi_install_interface[256]; 265 TUNABLE_STR("hw.acpi.install_interface", acpi_install_interface, 266 sizeof(acpi_install_interface)); 267 static char acpi_remove_interface[256]; 268 TUNABLE_STR("hw.acpi.remove_interface", acpi_remove_interface, 269 sizeof(acpi_remove_interface)); 270 271 /* Allow users to dump Debug objects without ACPI debugger. */ 272 static int acpi_debug_objects; 273 TUNABLE_INT("debug.acpi.enable_debug_objects", &acpi_debug_objects); 274 SYSCTL_PROC(_debug_acpi, OID_AUTO, enable_debug_objects, 275 CTLFLAG_RW | CTLTYPE_INT | CTLFLAG_NEEDGIANT, NULL, 0, 276 acpi_debug_objects_sysctl, "I", 277 "Enable Debug objects"); 278 279 /* Allow the interpreter to ignore common mistakes in BIOS. */ 280 static int acpi_interpreter_slack = 1; 281 TUNABLE_INT("debug.acpi.interpreter_slack", &acpi_interpreter_slack); 282 SYSCTL_INT(_debug_acpi, OID_AUTO, interpreter_slack, CTLFLAG_RDTUN, 283 &acpi_interpreter_slack, 1, "Turn on interpreter slack mode."); 284 285 /* Ignore register widths set by FADT and use default widths instead. */ 286 static int acpi_ignore_reg_width = 1; 287 TUNABLE_INT("debug.acpi.default_register_width", &acpi_ignore_reg_width); 288 SYSCTL_INT(_debug_acpi, OID_AUTO, default_register_width, CTLFLAG_RDTUN, 289 &acpi_ignore_reg_width, 1, "Ignore register widths set by FADT"); 290 291 /* Allow users to override quirks. */ 292 TUNABLE_INT("debug.acpi.quirks", &acpi_quirks); 293 294 int acpi_susp_bounce; 295 SYSCTL_INT(_debug_acpi, OID_AUTO, suspend_bounce, CTLFLAG_RW, 296 &acpi_susp_bounce, 0, "Don't actually suspend, just test devices."); 297 298 /* 299 * ACPI can only be loaded as a module by the loader; activating it after 300 * system bootstrap time is not useful, and can be fatal to the system. 301 * It also cannot be unloaded, since the entire system bus hierarchy hangs 302 * off it. 303 */ 304 static int 305 acpi_modevent(struct module *mod, int event, void *junk) 306 { 307 switch (event) { 308 case MOD_LOAD: 309 if (!cold) { 310 printf("The ACPI driver cannot be loaded after boot.\n"); 311 return (EPERM); 312 } 313 break; 314 case MOD_UNLOAD: 315 if (!cold && power_pm_get_type() == POWER_PM_TYPE_ACPI) 316 return (EBUSY); 317 break; 318 default: 319 break; 320 } 321 return (0); 322 } 323 324 /* 325 * Perform early initialization. 326 */ 327 ACPI_STATUS 328 acpi_Startup(void) 329 { 330 static int started = 0; 331 ACPI_STATUS status; 332 int val; 333 334 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 335 336 /* Only run the startup code once. The MADT driver also calls this. */ 337 if (started) 338 return_VALUE (AE_OK); 339 started = 1; 340 341 /* 342 * Initialize the ACPICA subsystem. 343 */ 344 if (ACPI_FAILURE(status = AcpiInitializeSubsystem())) { 345 printf("ACPI: Could not initialize Subsystem: %s\n", 346 AcpiFormatException(status)); 347 return_VALUE (status); 348 } 349 350 /* 351 * Pre-allocate space for RSDT/XSDT and DSDT tables and allow resizing 352 * if more tables exist. 353 */ 354 if (ACPI_FAILURE(status = AcpiInitializeTables(NULL, 2, TRUE))) { 355 printf("ACPI: Table initialisation failed: %s\n", 356 AcpiFormatException(status)); 357 return_VALUE (status); 358 } 359 360 /* Set up any quirks we have for this system. */ 361 if (acpi_quirks == ACPI_Q_OK) 362 acpi_table_quirks(&acpi_quirks); 363 364 /* If the user manually set the disabled hint to 0, force-enable ACPI. */ 365 if (resource_int_value("acpi", 0, "disabled", &val) == 0 && val == 0) 366 acpi_quirks &= ~ACPI_Q_BROKEN; 367 if (acpi_quirks & ACPI_Q_BROKEN) { 368 printf("ACPI disabled by blacklist. Contact your BIOS vendor.\n"); 369 status = AE_SUPPORT; 370 } 371 372 return_VALUE (status); 373 } 374 375 /* 376 * Detect ACPI and perform early initialisation. 377 */ 378 int 379 acpi_identify(void) 380 { 381 ACPI_TABLE_RSDP *rsdp; 382 ACPI_TABLE_HEADER *rsdt; 383 ACPI_PHYSICAL_ADDRESS paddr; 384 struct sbuf sb; 385 386 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 387 388 if (!cold) 389 return (ENXIO); 390 391 /* Check that we haven't been disabled with a hint. */ 392 if (resource_disabled("acpi", 0)) 393 return (ENXIO); 394 395 /* Check for other PM systems. */ 396 if (power_pm_get_type() != POWER_PM_TYPE_NONE && 397 power_pm_get_type() != POWER_PM_TYPE_ACPI) { 398 printf("ACPI identify failed, other PM system enabled.\n"); 399 return (ENXIO); 400 } 401 402 /* Initialize root tables. */ 403 if (ACPI_FAILURE(acpi_Startup())) { 404 printf("ACPI: Try disabling either ACPI or apic support.\n"); 405 return (ENXIO); 406 } 407 408 if ((paddr = AcpiOsGetRootPointer()) == 0 || 409 (rsdp = AcpiOsMapMemory(paddr, sizeof(ACPI_TABLE_RSDP))) == NULL) 410 return (ENXIO); 411 if (rsdp->Revision > 1 && rsdp->XsdtPhysicalAddress != 0) 412 paddr = (ACPI_PHYSICAL_ADDRESS)rsdp->XsdtPhysicalAddress; 413 else 414 paddr = (ACPI_PHYSICAL_ADDRESS)rsdp->RsdtPhysicalAddress; 415 AcpiOsUnmapMemory(rsdp, sizeof(ACPI_TABLE_RSDP)); 416 417 if ((rsdt = AcpiOsMapMemory(paddr, sizeof(ACPI_TABLE_HEADER))) == NULL) 418 return (ENXIO); 419 sbuf_new(&sb, acpi_desc, sizeof(acpi_desc), SBUF_FIXEDLEN); 420 sbuf_bcat(&sb, rsdt->OemId, ACPI_OEM_ID_SIZE); 421 sbuf_trim(&sb); 422 sbuf_putc(&sb, ' '); 423 sbuf_bcat(&sb, rsdt->OemTableId, ACPI_OEM_TABLE_ID_SIZE); 424 sbuf_trim(&sb); 425 sbuf_finish(&sb); 426 sbuf_delete(&sb); 427 AcpiOsUnmapMemory(rsdt, sizeof(ACPI_TABLE_HEADER)); 428 429 snprintf(acpi_ca_version, sizeof(acpi_ca_version), "%x", ACPI_CA_VERSION); 430 431 return (0); 432 } 433 434 /* 435 * Fetch some descriptive data from ACPI to put in our attach message. 436 */ 437 static int 438 acpi_probe(device_t dev) 439 { 440 441 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 442 443 device_set_desc(dev, acpi_desc); 444 445 return_VALUE (BUS_PROBE_NOWILDCARD); 446 } 447 448 static int 449 acpi_attach(device_t dev) 450 { 451 struct acpi_softc *sc; 452 ACPI_STATUS status; 453 int error, state; 454 UINT32 flags; 455 UINT8 TypeA, TypeB; 456 char *env; 457 458 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 459 460 sc = device_get_softc(dev); 461 sc->acpi_dev = dev; 462 callout_init(&sc->susp_force_to, 1); 463 464 error = ENXIO; 465 466 /* Initialize resource manager. */ 467 acpi_rman_io.rm_type = RMAN_ARRAY; 468 acpi_rman_io.rm_start = 0; 469 acpi_rman_io.rm_end = 0xffff; 470 acpi_rman_io.rm_descr = "ACPI I/O ports"; 471 if (rman_init(&acpi_rman_io) != 0) 472 panic("acpi rman_init IO ports failed"); 473 acpi_rman_mem.rm_type = RMAN_ARRAY; 474 acpi_rman_mem.rm_descr = "ACPI I/O memory addresses"; 475 if (rman_init(&acpi_rman_mem) != 0) 476 panic("acpi rman_init memory failed"); 477 478 /* Initialise the ACPI mutex */ 479 mtx_init(&acpi_mutex, "ACPI global lock", NULL, MTX_DEF); 480 481 /* 482 * Set the globals from our tunables. This is needed because ACPI-CA 483 * uses UINT8 for some values and we have no tunable_byte. 484 */ 485 AcpiGbl_EnableInterpreterSlack = acpi_interpreter_slack ? TRUE : FALSE; 486 AcpiGbl_EnableAmlDebugObject = acpi_debug_objects ? TRUE : FALSE; 487 AcpiGbl_UseDefaultRegisterWidths = acpi_ignore_reg_width ? TRUE : FALSE; 488 489 #ifndef ACPI_DEBUG 490 /* 491 * Disable all debugging layers and levels. 492 */ 493 AcpiDbgLayer = 0; 494 AcpiDbgLevel = 0; 495 #endif 496 497 /* Override OS interfaces if the user requested. */ 498 acpi_reset_interfaces(dev); 499 500 /* Load ACPI name space. */ 501 status = AcpiLoadTables(); 502 if (ACPI_FAILURE(status)) { 503 device_printf(dev, "Could not load Namespace: %s\n", 504 AcpiFormatException(status)); 505 goto out; 506 } 507 508 /* Handle MCFG table if present. */ 509 acpi_enable_pcie(); 510 511 /* 512 * Note that some systems (specifically, those with namespace evaluation 513 * issues that require the avoidance of parts of the namespace) must 514 * avoid running _INI and _STA on everything, as well as dodging the final 515 * object init pass. 516 * 517 * For these devices, we set ACPI_NO_DEVICE_INIT and ACPI_NO_OBJECT_INIT). 518 * 519 * XXX We should arrange for the object init pass after we have attached 520 * all our child devices, but on many systems it works here. 521 */ 522 flags = 0; 523 if (testenv("debug.acpi.avoid")) 524 flags = ACPI_NO_DEVICE_INIT | ACPI_NO_OBJECT_INIT; 525 526 /* Bring the hardware and basic handlers online. */ 527 if (ACPI_FAILURE(status = AcpiEnableSubsystem(flags))) { 528 device_printf(dev, "Could not enable ACPI: %s\n", 529 AcpiFormatException(status)); 530 goto out; 531 } 532 533 /* 534 * Call the ECDT probe function to provide EC functionality before 535 * the namespace has been evaluated. 536 * 537 * XXX This happens before the sysresource devices have been probed and 538 * attached so its resources come from nexus0. In practice, this isn't 539 * a problem but should be addressed eventually. 540 */ 541 acpi_ec_ecdt_probe(dev); 542 543 /* Bring device objects and regions online. */ 544 if (ACPI_FAILURE(status = AcpiInitializeObjects(flags))) { 545 device_printf(dev, "Could not initialize ACPI objects: %s\n", 546 AcpiFormatException(status)); 547 goto out; 548 } 549 550 /* 551 * Setup our sysctl tree. 552 * 553 * XXX: This doesn't check to make sure that none of these fail. 554 */ 555 sysctl_ctx_init(&sc->acpi_sysctl_ctx); 556 sc->acpi_sysctl_tree = SYSCTL_ADD_NODE(&sc->acpi_sysctl_ctx, 557 SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO, device_get_name(dev), 558 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, ""); 559 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 560 OID_AUTO, "supported_sleep_state", 561 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 562 0, 0, acpi_supported_sleep_state_sysctl, "A", 563 "List supported ACPI sleep states."); 564 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 565 OID_AUTO, "power_button_state", 566 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 567 &sc->acpi_power_button_sx, 0, acpi_sleep_state_sysctl, "A", 568 "Power button ACPI sleep state."); 569 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 570 OID_AUTO, "sleep_button_state", 571 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 572 &sc->acpi_sleep_button_sx, 0, acpi_sleep_state_sysctl, "A", 573 "Sleep button ACPI sleep state."); 574 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 575 OID_AUTO, "lid_switch_state", 576 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 577 &sc->acpi_lid_switch_sx, 0, acpi_sleep_state_sysctl, "A", 578 "Lid ACPI sleep state. Set to S3 if you want to suspend your laptop when close the Lid."); 579 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 580 OID_AUTO, "standby_state", 581 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 582 &sc->acpi_standby_sx, 0, acpi_sleep_state_sysctl, "A", ""); 583 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 584 OID_AUTO, "suspend_state", 585 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 586 &sc->acpi_suspend_sx, 0, acpi_sleep_state_sysctl, "A", ""); 587 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 588 OID_AUTO, "sleep_delay", CTLFLAG_RW, &sc->acpi_sleep_delay, 0, 589 "sleep delay in seconds"); 590 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 591 OID_AUTO, "s4bios", CTLFLAG_RW, &sc->acpi_s4bios, 0, "S4BIOS mode"); 592 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 593 OID_AUTO, "verbose", CTLFLAG_RW, &sc->acpi_verbose, 0, "verbose mode"); 594 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 595 OID_AUTO, "disable_on_reboot", CTLFLAG_RW, 596 &sc->acpi_do_disable, 0, "Disable ACPI when rebooting/halting system"); 597 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 598 OID_AUTO, "handle_reboot", CTLFLAG_RW, 599 &sc->acpi_handle_reboot, 0, "Use ACPI Reset Register to reboot"); 600 601 /* 602 * Default to 1 second before sleeping to give some machines time to 603 * stabilize. 604 */ 605 sc->acpi_sleep_delay = 1; 606 if (bootverbose) 607 sc->acpi_verbose = 1; 608 if ((env = kern_getenv("hw.acpi.verbose")) != NULL) { 609 if (strcmp(env, "0") != 0) 610 sc->acpi_verbose = 1; 611 freeenv(env); 612 } 613 614 /* Only enable reboot by default if the FADT says it is available. */ 615 if (AcpiGbl_FADT.Flags & ACPI_FADT_RESET_REGISTER) 616 sc->acpi_handle_reboot = 1; 617 618 #if !ACPI_REDUCED_HARDWARE 619 /* Only enable S4BIOS by default if the FACS says it is available. */ 620 if (AcpiGbl_FACS != NULL && AcpiGbl_FACS->Flags & ACPI_FACS_S4_BIOS_PRESENT) 621 sc->acpi_s4bios = 1; 622 #endif 623 624 /* Probe all supported sleep states. */ 625 acpi_sleep_states[ACPI_STATE_S0] = TRUE; 626 for (state = ACPI_STATE_S1; state < ACPI_S_STATE_COUNT; state++) 627 if (ACPI_SUCCESS(AcpiEvaluateObject(ACPI_ROOT_OBJECT, 628 __DECONST(char *, AcpiGbl_SleepStateNames[state]), NULL, NULL)) && 629 ACPI_SUCCESS(AcpiGetSleepTypeData(state, &TypeA, &TypeB))) 630 acpi_sleep_states[state] = TRUE; 631 632 /* 633 * Dispatch the default sleep state to devices. The lid switch is set 634 * to UNKNOWN by default to avoid surprising users. 635 */ 636 sc->acpi_power_button_sx = acpi_sleep_states[ACPI_STATE_S5] ? 637 ACPI_STATE_S5 : ACPI_STATE_UNKNOWN; 638 sc->acpi_lid_switch_sx = ACPI_STATE_UNKNOWN; 639 sc->acpi_standby_sx = acpi_sleep_states[ACPI_STATE_S1] ? 640 ACPI_STATE_S1 : ACPI_STATE_UNKNOWN; 641 sc->acpi_suspend_sx = acpi_sleep_states[ACPI_STATE_S3] ? 642 ACPI_STATE_S3 : ACPI_STATE_UNKNOWN; 643 644 /* Pick the first valid sleep state for the sleep button default. */ 645 sc->acpi_sleep_button_sx = ACPI_STATE_UNKNOWN; 646 for (state = ACPI_STATE_S1; state <= ACPI_STATE_S4; state++) 647 if (acpi_sleep_states[state]) { 648 sc->acpi_sleep_button_sx = state; 649 break; 650 } 651 652 acpi_enable_fixed_events(sc); 653 654 /* 655 * Scan the namespace and attach/initialise children. 656 */ 657 658 /* Register our shutdown handler. */ 659 EVENTHANDLER_REGISTER(shutdown_final, acpi_shutdown_final, sc, 660 SHUTDOWN_PRI_LAST); 661 662 /* 663 * Register our acpi event handlers. 664 * XXX should be configurable eg. via userland policy manager. 665 */ 666 EVENTHANDLER_REGISTER(acpi_sleep_event, acpi_system_eventhandler_sleep, 667 sc, ACPI_EVENT_PRI_LAST); 668 EVENTHANDLER_REGISTER(acpi_wakeup_event, acpi_system_eventhandler_wakeup, 669 sc, ACPI_EVENT_PRI_LAST); 670 671 /* Flag our initial states. */ 672 sc->acpi_enabled = TRUE; 673 sc->acpi_sstate = ACPI_STATE_S0; 674 sc->acpi_sleep_disabled = TRUE; 675 676 /* Create the control device */ 677 sc->acpi_dev_t = make_dev(&acpi_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0664, 678 "acpi"); 679 sc->acpi_dev_t->si_drv1 = sc; 680 681 if ((error = acpi_machdep_init(dev))) 682 goto out; 683 684 /* Register ACPI again to pass the correct argument of pm_func. */ 685 power_pm_register(POWER_PM_TYPE_ACPI, acpi_pm_func, sc); 686 687 acpi_platform_osc(dev); 688 689 if (!acpi_disabled("bus")) { 690 EVENTHANDLER_REGISTER(dev_lookup, acpi_lookup, NULL, 1000); 691 acpi_probe_children(dev); 692 } 693 694 /* Update all GPEs and enable runtime GPEs. */ 695 status = AcpiUpdateAllGpes(); 696 if (ACPI_FAILURE(status)) 697 device_printf(dev, "Could not update all GPEs: %s\n", 698 AcpiFormatException(status)); 699 700 /* Allow sleep request after a while. */ 701 callout_init_mtx(&acpi_sleep_timer, &acpi_mutex, 0); 702 callout_reset(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME, 703 acpi_sleep_enable, sc); 704 705 error = 0; 706 707 out: 708 return_VALUE (error); 709 } 710 711 static void 712 acpi_set_power_children(device_t dev, int state) 713 { 714 device_t child; 715 device_t *devlist; 716 int dstate, i, numdevs; 717 718 if (device_get_children(dev, &devlist, &numdevs) != 0) 719 return; 720 721 /* 722 * Retrieve and set D-state for the sleep state if _SxD is present. 723 * Skip children who aren't attached since they are handled separately. 724 */ 725 for (i = 0; i < numdevs; i++) { 726 child = devlist[i]; 727 dstate = state; 728 if (device_is_attached(child) && 729 acpi_device_pwr_for_sleep(dev, child, &dstate) == 0) 730 acpi_set_powerstate(child, dstate); 731 } 732 free(devlist, M_TEMP); 733 } 734 735 static int 736 acpi_suspend(device_t dev) 737 { 738 int error; 739 740 GIANT_REQUIRED; 741 742 error = bus_generic_suspend(dev); 743 if (error == 0) 744 acpi_set_power_children(dev, ACPI_STATE_D3); 745 746 return (error); 747 } 748 749 static int 750 acpi_resume(device_t dev) 751 { 752 753 GIANT_REQUIRED; 754 755 acpi_set_power_children(dev, ACPI_STATE_D0); 756 757 return (bus_generic_resume(dev)); 758 } 759 760 static int 761 acpi_shutdown(device_t dev) 762 { 763 764 GIANT_REQUIRED; 765 766 /* Allow children to shutdown first. */ 767 bus_generic_shutdown(dev); 768 769 /* 770 * Enable any GPEs that are able to power-on the system (i.e., RTC). 771 * Also, disable any that are not valid for this state (most). 772 */ 773 acpi_wake_prep_walk(ACPI_STATE_S5); 774 775 return (0); 776 } 777 778 /* 779 * Handle a new device being added 780 */ 781 static device_t 782 acpi_add_child(device_t bus, u_int order, const char *name, int unit) 783 { 784 struct acpi_device *ad; 785 device_t child; 786 787 if ((ad = malloc(sizeof(*ad), M_ACPIDEV, M_NOWAIT | M_ZERO)) == NULL) 788 return (NULL); 789 790 resource_list_init(&ad->ad_rl); 791 792 child = device_add_child_ordered(bus, order, name, unit); 793 if (child != NULL) 794 device_set_ivars(child, ad); 795 else 796 free(ad, M_ACPIDEV); 797 return (child); 798 } 799 800 static int 801 acpi_print_child(device_t bus, device_t child) 802 { 803 struct acpi_device *adev = device_get_ivars(child); 804 struct resource_list *rl = &adev->ad_rl; 805 int retval = 0; 806 807 retval += bus_print_child_header(bus, child); 808 retval += resource_list_print_type(rl, "port", SYS_RES_IOPORT, "%#jx"); 809 retval += resource_list_print_type(rl, "iomem", SYS_RES_MEMORY, "%#jx"); 810 retval += resource_list_print_type(rl, "irq", SYS_RES_IRQ, "%jd"); 811 retval += resource_list_print_type(rl, "drq", SYS_RES_DRQ, "%jd"); 812 if (device_get_flags(child)) 813 retval += printf(" flags %#x", device_get_flags(child)); 814 retval += bus_print_child_domain(bus, child); 815 retval += bus_print_child_footer(bus, child); 816 817 return (retval); 818 } 819 820 /* 821 * If this device is an ACPI child but no one claimed it, attempt 822 * to power it off. We'll power it back up when a driver is added. 823 * 824 * XXX Disabled for now since many necessary devices (like fdc and 825 * ATA) don't claim the devices we created for them but still expect 826 * them to be powered up. 827 */ 828 static void 829 acpi_probe_nomatch(device_t bus, device_t child) 830 { 831 #ifdef ACPI_ENABLE_POWERDOWN_NODRIVER 832 acpi_set_powerstate(child, ACPI_STATE_D3); 833 #endif 834 } 835 836 /* 837 * If a new driver has a chance to probe a child, first power it up. 838 * 839 * XXX Disabled for now (see acpi_probe_nomatch for details). 840 */ 841 static void 842 acpi_driver_added(device_t dev, driver_t *driver) 843 { 844 device_t child, *devlist; 845 int i, numdevs; 846 847 DEVICE_IDENTIFY(driver, dev); 848 if (device_get_children(dev, &devlist, &numdevs)) 849 return; 850 for (i = 0; i < numdevs; i++) { 851 child = devlist[i]; 852 if (device_get_state(child) == DS_NOTPRESENT) { 853 #ifdef ACPI_ENABLE_POWERDOWN_NODRIVER 854 acpi_set_powerstate(child, ACPI_STATE_D0); 855 if (device_probe_and_attach(child) != 0) 856 acpi_set_powerstate(child, ACPI_STATE_D3); 857 #else 858 device_probe_and_attach(child); 859 #endif 860 } 861 } 862 free(devlist, M_TEMP); 863 } 864 865 /* Location hint for devctl(8) */ 866 static int 867 acpi_child_location_str_method(device_t cbdev, device_t child, char *buf, 868 size_t buflen) 869 { 870 struct acpi_device *dinfo = device_get_ivars(child); 871 char buf2[32]; 872 int pxm; 873 874 if (dinfo->ad_handle) { 875 snprintf(buf, buflen, "handle=%s", acpi_name(dinfo->ad_handle)); 876 if (ACPI_SUCCESS(acpi_GetInteger(dinfo->ad_handle, "_PXM", &pxm))) { 877 snprintf(buf2, 32, " _PXM=%d", pxm); 878 strlcat(buf, buf2, buflen); 879 } 880 } else { 881 snprintf(buf, buflen, ""); 882 } 883 return (0); 884 } 885 886 /* PnP information for devctl(8) */ 887 int 888 acpi_pnpinfo_str(ACPI_HANDLE handle, char *buf, size_t buflen) 889 { 890 ACPI_DEVICE_INFO *adinfo; 891 892 if (ACPI_FAILURE(AcpiGetObjectInfo(handle, &adinfo))) { 893 snprintf(buf, buflen, "unknown"); 894 return (0); 895 } 896 897 snprintf(buf, buflen, "_HID=%s _UID=%lu _CID=%s", 898 (adinfo->Valid & ACPI_VALID_HID) ? 899 adinfo->HardwareId.String : "none", 900 (adinfo->Valid & ACPI_VALID_UID) ? 901 strtoul(adinfo->UniqueId.String, NULL, 10) : 0UL, 902 ((adinfo->Valid & ACPI_VALID_CID) && 903 adinfo->CompatibleIdList.Count > 0) ? 904 adinfo->CompatibleIdList.Ids[0].String : "none"); 905 AcpiOsFree(adinfo); 906 907 return (0); 908 } 909 910 static int 911 acpi_child_pnpinfo_str_method(device_t cbdev, device_t child, char *buf, 912 size_t buflen) 913 { 914 struct acpi_device *dinfo = device_get_ivars(child); 915 916 return (acpi_pnpinfo_str(dinfo->ad_handle, buf, buflen)); 917 } 918 919 /* 920 * Handle device deletion. 921 */ 922 static void 923 acpi_child_deleted(device_t dev, device_t child) 924 { 925 struct acpi_device *dinfo = device_get_ivars(child); 926 927 if (acpi_get_device(dinfo->ad_handle) == child) 928 AcpiDetachData(dinfo->ad_handle, acpi_fake_objhandler); 929 } 930 931 /* 932 * Handle per-device ivars 933 */ 934 static int 935 acpi_read_ivar(device_t dev, device_t child, int index, uintptr_t *result) 936 { 937 struct acpi_device *ad; 938 939 if ((ad = device_get_ivars(child)) == NULL) { 940 device_printf(child, "device has no ivars\n"); 941 return (ENOENT); 942 } 943 944 /* ACPI and ISA compatibility ivars */ 945 switch(index) { 946 case ACPI_IVAR_HANDLE: 947 *(ACPI_HANDLE *)result = ad->ad_handle; 948 break; 949 case ACPI_IVAR_PRIVATE: 950 *(void **)result = ad->ad_private; 951 break; 952 case ACPI_IVAR_FLAGS: 953 *(int *)result = ad->ad_flags; 954 break; 955 case ISA_IVAR_VENDORID: 956 case ISA_IVAR_SERIAL: 957 case ISA_IVAR_COMPATID: 958 *(int *)result = -1; 959 break; 960 case ISA_IVAR_LOGICALID: 961 *(int *)result = acpi_isa_get_logicalid(child); 962 break; 963 case PCI_IVAR_CLASS: 964 *(uint8_t*)result = (ad->ad_cls_class >> 16) & 0xff; 965 break; 966 case PCI_IVAR_SUBCLASS: 967 *(uint8_t*)result = (ad->ad_cls_class >> 8) & 0xff; 968 break; 969 case PCI_IVAR_PROGIF: 970 *(uint8_t*)result = (ad->ad_cls_class >> 0) & 0xff; 971 break; 972 default: 973 return (ENOENT); 974 } 975 976 return (0); 977 } 978 979 static int 980 acpi_write_ivar(device_t dev, device_t child, int index, uintptr_t value) 981 { 982 struct acpi_device *ad; 983 984 if ((ad = device_get_ivars(child)) == NULL) { 985 device_printf(child, "device has no ivars\n"); 986 return (ENOENT); 987 } 988 989 switch(index) { 990 case ACPI_IVAR_HANDLE: 991 ad->ad_handle = (ACPI_HANDLE)value; 992 break; 993 case ACPI_IVAR_PRIVATE: 994 ad->ad_private = (void *)value; 995 break; 996 case ACPI_IVAR_FLAGS: 997 ad->ad_flags = (int)value; 998 break; 999 default: 1000 panic("bad ivar write request (%d)", index); 1001 return (ENOENT); 1002 } 1003 1004 return (0); 1005 } 1006 1007 /* 1008 * Handle child resource allocation/removal 1009 */ 1010 static struct resource_list * 1011 acpi_get_rlist(device_t dev, device_t child) 1012 { 1013 struct acpi_device *ad; 1014 1015 ad = device_get_ivars(child); 1016 return (&ad->ad_rl); 1017 } 1018 1019 static int 1020 acpi_match_resource_hint(device_t dev, int type, long value) 1021 { 1022 struct acpi_device *ad = device_get_ivars(dev); 1023 struct resource_list *rl = &ad->ad_rl; 1024 struct resource_list_entry *rle; 1025 1026 STAILQ_FOREACH(rle, rl, link) { 1027 if (rle->type != type) 1028 continue; 1029 if (rle->start <= value && rle->end >= value) 1030 return (1); 1031 } 1032 return (0); 1033 } 1034 1035 /* 1036 * Wire device unit numbers based on resource matches in hints. 1037 */ 1038 static void 1039 acpi_hint_device_unit(device_t acdev, device_t child, const char *name, 1040 int *unitp) 1041 { 1042 const char *s; 1043 long value; 1044 int line, matches, unit; 1045 1046 /* 1047 * Iterate over all the hints for the devices with the specified 1048 * name to see if one's resources are a subset of this device. 1049 */ 1050 line = 0; 1051 while (resource_find_dev(&line, name, &unit, "at", NULL) == 0) { 1052 /* Must have an "at" for acpi or isa. */ 1053 resource_string_value(name, unit, "at", &s); 1054 if (!(strcmp(s, "acpi0") == 0 || strcmp(s, "acpi") == 0 || 1055 strcmp(s, "isa0") == 0 || strcmp(s, "isa") == 0)) 1056 continue; 1057 1058 /* 1059 * Check for matching resources. We must have at least one match. 1060 * Since I/O and memory resources cannot be shared, if we get a 1061 * match on either of those, ignore any mismatches in IRQs or DRQs. 1062 * 1063 * XXX: We may want to revisit this to be more lenient and wire 1064 * as long as it gets one match. 1065 */ 1066 matches = 0; 1067 if (resource_long_value(name, unit, "port", &value) == 0) { 1068 /* 1069 * Floppy drive controllers are notorious for having a 1070 * wide variety of resources not all of which include the 1071 * first port that is specified by the hint (typically 1072 * 0x3f0) (see the comment above fdc_isa_alloc_resources() 1073 * in fdc_isa.c). However, they do all seem to include 1074 * port + 2 (e.g. 0x3f2) so for a floppy device, look for 1075 * 'value + 2' in the port resources instead of the hint 1076 * value. 1077 */ 1078 if (strcmp(name, "fdc") == 0) 1079 value += 2; 1080 if (acpi_match_resource_hint(child, SYS_RES_IOPORT, value)) 1081 matches++; 1082 else 1083 continue; 1084 } 1085 if (resource_long_value(name, unit, "maddr", &value) == 0) { 1086 if (acpi_match_resource_hint(child, SYS_RES_MEMORY, value)) 1087 matches++; 1088 else 1089 continue; 1090 } 1091 if (matches > 0) 1092 goto matched; 1093 if (resource_long_value(name, unit, "irq", &value) == 0) { 1094 if (acpi_match_resource_hint(child, SYS_RES_IRQ, value)) 1095 matches++; 1096 else 1097 continue; 1098 } 1099 if (resource_long_value(name, unit, "drq", &value) == 0) { 1100 if (acpi_match_resource_hint(child, SYS_RES_DRQ, value)) 1101 matches++; 1102 else 1103 continue; 1104 } 1105 1106 matched: 1107 if (matches > 0) { 1108 /* We have a winner! */ 1109 *unitp = unit; 1110 break; 1111 } 1112 } 1113 } 1114 1115 /* 1116 * Fetch the NUMA domain for a device by mapping the value returned by 1117 * _PXM to a NUMA domain. If the device does not have a _PXM method, 1118 * -2 is returned. If any other error occurs, -1 is returned. 1119 */ 1120 static int 1121 acpi_parse_pxm(device_t dev) 1122 { 1123 #ifdef NUMA 1124 #if defined(__i386__) || defined(__amd64__) 1125 ACPI_HANDLE handle; 1126 ACPI_STATUS status; 1127 int pxm; 1128 1129 handle = acpi_get_handle(dev); 1130 if (handle == NULL) 1131 return (-2); 1132 status = acpi_GetInteger(handle, "_PXM", &pxm); 1133 if (ACPI_SUCCESS(status)) 1134 return (acpi_map_pxm_to_vm_domainid(pxm)); 1135 if (status == AE_NOT_FOUND) 1136 return (-2); 1137 #endif 1138 #endif 1139 return (-1); 1140 } 1141 1142 int 1143 acpi_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize, 1144 cpuset_t *cpuset) 1145 { 1146 int d, error; 1147 1148 d = acpi_parse_pxm(child); 1149 if (d < 0) 1150 return (bus_generic_get_cpus(dev, child, op, setsize, cpuset)); 1151 1152 switch (op) { 1153 case LOCAL_CPUS: 1154 if (setsize != sizeof(cpuset_t)) 1155 return (EINVAL); 1156 *cpuset = cpuset_domain[d]; 1157 return (0); 1158 case INTR_CPUS: 1159 error = bus_generic_get_cpus(dev, child, op, setsize, cpuset); 1160 if (error != 0) 1161 return (error); 1162 if (setsize != sizeof(cpuset_t)) 1163 return (EINVAL); 1164 CPU_AND(cpuset, &cpuset_domain[d]); 1165 return (0); 1166 default: 1167 return (bus_generic_get_cpus(dev, child, op, setsize, cpuset)); 1168 } 1169 } 1170 1171 /* 1172 * Fetch the NUMA domain for the given device 'dev'. 1173 * 1174 * If a device has a _PXM method, map that to a NUMA domain. 1175 * Otherwise, pass the request up to the parent. 1176 * If there's no matching domain or the domain cannot be 1177 * determined, return ENOENT. 1178 */ 1179 int 1180 acpi_get_domain(device_t dev, device_t child, int *domain) 1181 { 1182 int d; 1183 1184 d = acpi_parse_pxm(child); 1185 if (d >= 0) { 1186 *domain = d; 1187 return (0); 1188 } 1189 if (d == -1) 1190 return (ENOENT); 1191 1192 /* No _PXM node; go up a level */ 1193 return (bus_generic_get_domain(dev, child, domain)); 1194 } 1195 1196 /* 1197 * Pre-allocate/manage all memory and IO resources. Since rman can't handle 1198 * duplicates, we merge any in the sysresource attach routine. 1199 */ 1200 static int 1201 acpi_sysres_alloc(device_t dev) 1202 { 1203 struct resource *res; 1204 struct resource_list *rl; 1205 struct resource_list_entry *rle; 1206 struct rman *rm; 1207 device_t *children; 1208 int child_count, i; 1209 1210 /* 1211 * Probe/attach any sysresource devices. This would be unnecessary if we 1212 * had multi-pass probe/attach. 1213 */ 1214 if (device_get_children(dev, &children, &child_count) != 0) 1215 return (ENXIO); 1216 for (i = 0; i < child_count; i++) { 1217 if (ACPI_ID_PROBE(dev, children[i], sysres_ids, NULL) <= 0) 1218 device_probe_and_attach(children[i]); 1219 } 1220 free(children, M_TEMP); 1221 1222 rl = BUS_GET_RESOURCE_LIST(device_get_parent(dev), dev); 1223 STAILQ_FOREACH(rle, rl, link) { 1224 if (rle->res != NULL) { 1225 device_printf(dev, "duplicate resource for %jx\n", rle->start); 1226 continue; 1227 } 1228 1229 /* Only memory and IO resources are valid here. */ 1230 switch (rle->type) { 1231 case SYS_RES_IOPORT: 1232 rm = &acpi_rman_io; 1233 break; 1234 case SYS_RES_MEMORY: 1235 rm = &acpi_rman_mem; 1236 break; 1237 default: 1238 continue; 1239 } 1240 1241 /* Pre-allocate resource and add to our rman pool. */ 1242 res = BUS_ALLOC_RESOURCE(device_get_parent(dev), dev, rle->type, 1243 &rle->rid, rle->start, rle->start + rle->count - 1, rle->count, 0); 1244 if (res != NULL) { 1245 rman_manage_region(rm, rman_get_start(res), rman_get_end(res)); 1246 rle->res = res; 1247 } else if (bootverbose) 1248 device_printf(dev, "reservation of %jx, %jx (%d) failed\n", 1249 rle->start, rle->count, rle->type); 1250 } 1251 return (0); 1252 } 1253 1254 /* 1255 * Reserve declared resources for devices found during attach once system 1256 * resources have been allocated. 1257 */ 1258 static void 1259 acpi_reserve_resources(device_t dev) 1260 { 1261 struct resource_list_entry *rle; 1262 struct resource_list *rl; 1263 struct acpi_device *ad; 1264 struct acpi_softc *sc; 1265 device_t *children; 1266 int child_count, i; 1267 1268 sc = device_get_softc(dev); 1269 if (device_get_children(dev, &children, &child_count) != 0) 1270 return; 1271 for (i = 0; i < child_count; i++) { 1272 ad = device_get_ivars(children[i]); 1273 rl = &ad->ad_rl; 1274 1275 /* Don't reserve system resources. */ 1276 if (ACPI_ID_PROBE(dev, children[i], sysres_ids, NULL) <= 0) 1277 continue; 1278 1279 STAILQ_FOREACH(rle, rl, link) { 1280 /* 1281 * Don't reserve IRQ resources. There are many sticky things 1282 * to get right otherwise (e.g. IRQs for psm, atkbd, and HPET 1283 * when using legacy routing). 1284 */ 1285 if (rle->type == SYS_RES_IRQ) 1286 continue; 1287 1288 /* 1289 * Don't reserve the resource if it is already allocated. 1290 * The acpi_ec(4) driver can allocate its resources early 1291 * if ECDT is present. 1292 */ 1293 if (rle->res != NULL) 1294 continue; 1295 1296 /* 1297 * Try to reserve the resource from our parent. If this 1298 * fails because the resource is a system resource, just 1299 * let it be. The resource range is already reserved so 1300 * that other devices will not use it. If the driver 1301 * needs to allocate the resource, then 1302 * acpi_alloc_resource() will sub-alloc from the system 1303 * resource. 1304 */ 1305 resource_list_reserve(rl, dev, children[i], rle->type, &rle->rid, 1306 rle->start, rle->end, rle->count, 0); 1307 } 1308 } 1309 free(children, M_TEMP); 1310 sc->acpi_resources_reserved = 1; 1311 } 1312 1313 static int 1314 acpi_set_resource(device_t dev, device_t child, int type, int rid, 1315 rman_res_t start, rman_res_t count) 1316 { 1317 struct acpi_softc *sc = device_get_softc(dev); 1318 struct acpi_device *ad = device_get_ivars(child); 1319 struct resource_list *rl = &ad->ad_rl; 1320 ACPI_DEVICE_INFO *devinfo; 1321 rman_res_t end; 1322 int allow; 1323 1324 /* Ignore IRQ resources for PCI link devices. */ 1325 if (type == SYS_RES_IRQ && 1326 ACPI_ID_PROBE(dev, child, pcilink_ids, NULL) <= 0) 1327 return (0); 1328 1329 /* 1330 * Ignore most resources for PCI root bridges. Some BIOSes 1331 * incorrectly enumerate the memory ranges they decode as plain 1332 * memory resources instead of as ResourceProducer ranges. Other 1333 * BIOSes incorrectly list system resource entries for I/O ranges 1334 * under the PCI bridge. Do allow the one known-correct case on 1335 * x86 of a PCI bridge claiming the I/O ports used for PCI config 1336 * access. 1337 */ 1338 if (type == SYS_RES_MEMORY || type == SYS_RES_IOPORT) { 1339 if (ACPI_SUCCESS(AcpiGetObjectInfo(ad->ad_handle, &devinfo))) { 1340 if ((devinfo->Flags & ACPI_PCI_ROOT_BRIDGE) != 0) { 1341 #if defined(__i386__) || defined(__amd64__) 1342 allow = (type == SYS_RES_IOPORT && start == CONF1_ADDR_PORT); 1343 #else 1344 allow = 0; 1345 #endif 1346 if (!allow) { 1347 AcpiOsFree(devinfo); 1348 return (0); 1349 } 1350 } 1351 AcpiOsFree(devinfo); 1352 } 1353 } 1354 1355 #ifdef INTRNG 1356 /* map with default for now */ 1357 if (type == SYS_RES_IRQ) 1358 start = (rman_res_t)acpi_map_intr(child, (u_int)start, 1359 acpi_get_handle(child)); 1360 #endif 1361 1362 /* If the resource is already allocated, fail. */ 1363 if (resource_list_busy(rl, type, rid)) 1364 return (EBUSY); 1365 1366 /* If the resource is already reserved, release it. */ 1367 if (resource_list_reserved(rl, type, rid)) 1368 resource_list_unreserve(rl, dev, child, type, rid); 1369 1370 /* Add the resource. */ 1371 end = (start + count - 1); 1372 resource_list_add(rl, type, rid, start, end, count); 1373 1374 /* Don't reserve resources until the system resources are allocated. */ 1375 if (!sc->acpi_resources_reserved) 1376 return (0); 1377 1378 /* Don't reserve system resources. */ 1379 if (ACPI_ID_PROBE(dev, child, sysres_ids, NULL) <= 0) 1380 return (0); 1381 1382 /* 1383 * Don't reserve IRQ resources. There are many sticky things to 1384 * get right otherwise (e.g. IRQs for psm, atkbd, and HPET when 1385 * using legacy routing). 1386 */ 1387 if (type == SYS_RES_IRQ) 1388 return (0); 1389 1390 /* 1391 * Don't reserve resources for CPU devices. Some of these 1392 * resources need to be allocated as shareable, but reservations 1393 * are always non-shareable. 1394 */ 1395 if (device_get_devclass(child) == devclass_find("cpu")) 1396 return (0); 1397 1398 /* 1399 * Reserve the resource. 1400 * 1401 * XXX: Ignores failure for now. Failure here is probably a 1402 * BIOS/firmware bug? 1403 */ 1404 resource_list_reserve(rl, dev, child, type, &rid, start, end, count, 0); 1405 return (0); 1406 } 1407 1408 static struct resource * 1409 acpi_alloc_resource(device_t bus, device_t child, int type, int *rid, 1410 rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 1411 { 1412 #ifndef INTRNG 1413 ACPI_RESOURCE ares; 1414 #endif 1415 struct acpi_device *ad; 1416 struct resource_list_entry *rle; 1417 struct resource_list *rl; 1418 struct resource *res; 1419 int isdefault = RMAN_IS_DEFAULT_RANGE(start, end); 1420 1421 /* 1422 * First attempt at allocating the resource. For direct children, 1423 * use resource_list_alloc() to handle reserved resources. For 1424 * other devices, pass the request up to our parent. 1425 */ 1426 if (bus == device_get_parent(child)) { 1427 ad = device_get_ivars(child); 1428 rl = &ad->ad_rl; 1429 1430 /* 1431 * Simulate the behavior of the ISA bus for direct children 1432 * devices. That is, if a non-default range is specified for 1433 * a resource that doesn't exist, use bus_set_resource() to 1434 * add the resource before allocating it. Note that these 1435 * resources will not be reserved. 1436 */ 1437 if (!isdefault && resource_list_find(rl, type, *rid) == NULL) 1438 resource_list_add(rl, type, *rid, start, end, count); 1439 res = resource_list_alloc(rl, bus, child, type, rid, start, end, count, 1440 flags); 1441 #ifndef INTRNG 1442 if (res != NULL && type == SYS_RES_IRQ) { 1443 /* 1444 * Since bus_config_intr() takes immediate effect, we cannot 1445 * configure the interrupt associated with a device when we 1446 * parse the resources but have to defer it until a driver 1447 * actually allocates the interrupt via bus_alloc_resource(). 1448 * 1449 * XXX: Should we handle the lookup failing? 1450 */ 1451 if (ACPI_SUCCESS(acpi_lookup_irq_resource(child, *rid, res, &ares))) 1452 acpi_config_intr(child, &ares); 1453 } 1454 #endif 1455 1456 /* 1457 * If this is an allocation of the "default" range for a given 1458 * RID, fetch the exact bounds for this resource from the 1459 * resource list entry to try to allocate the range from the 1460 * system resource regions. 1461 */ 1462 if (res == NULL && isdefault) { 1463 rle = resource_list_find(rl, type, *rid); 1464 if (rle != NULL) { 1465 start = rle->start; 1466 end = rle->end; 1467 count = rle->count; 1468 } 1469 } 1470 } else 1471 res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, type, rid, 1472 start, end, count, flags); 1473 1474 /* 1475 * If the first attempt failed and this is an allocation of a 1476 * specific range, try to satisfy the request via a suballocation 1477 * from our system resource regions. 1478 */ 1479 if (res == NULL && start + count - 1 == end) 1480 res = acpi_alloc_sysres(child, type, rid, start, end, count, flags); 1481 return (res); 1482 } 1483 1484 /* 1485 * Attempt to allocate a specific resource range from the system 1486 * resource ranges. Note that we only handle memory and I/O port 1487 * system resources. 1488 */ 1489 struct resource * 1490 acpi_alloc_sysres(device_t child, int type, int *rid, rman_res_t start, 1491 rman_res_t end, rman_res_t count, u_int flags) 1492 { 1493 struct rman *rm; 1494 struct resource *res; 1495 1496 switch (type) { 1497 case SYS_RES_IOPORT: 1498 rm = &acpi_rman_io; 1499 break; 1500 case SYS_RES_MEMORY: 1501 rm = &acpi_rman_mem; 1502 break; 1503 default: 1504 return (NULL); 1505 } 1506 1507 KASSERT(start + count - 1 == end, ("wildcard resource range")); 1508 res = rman_reserve_resource(rm, start, end, count, flags & ~RF_ACTIVE, 1509 child); 1510 if (res == NULL) 1511 return (NULL); 1512 1513 rman_set_rid(res, *rid); 1514 1515 /* If requested, activate the resource using the parent's method. */ 1516 if (flags & RF_ACTIVE) 1517 if (bus_activate_resource(child, type, *rid, res) != 0) { 1518 rman_release_resource(res); 1519 return (NULL); 1520 } 1521 1522 return (res); 1523 } 1524 1525 static int 1526 acpi_is_resource_managed(int type, struct resource *r) 1527 { 1528 1529 /* We only handle memory and IO resources through rman. */ 1530 switch (type) { 1531 case SYS_RES_IOPORT: 1532 return (rman_is_region_manager(r, &acpi_rman_io)); 1533 case SYS_RES_MEMORY: 1534 return (rman_is_region_manager(r, &acpi_rman_mem)); 1535 } 1536 return (0); 1537 } 1538 1539 static int 1540 acpi_adjust_resource(device_t bus, device_t child, int type, struct resource *r, 1541 rman_res_t start, rman_res_t end) 1542 { 1543 1544 if (acpi_is_resource_managed(type, r)) 1545 return (rman_adjust_resource(r, start, end)); 1546 return (bus_generic_adjust_resource(bus, child, type, r, start, end)); 1547 } 1548 1549 static int 1550 acpi_release_resource(device_t bus, device_t child, int type, int rid, 1551 struct resource *r) 1552 { 1553 int ret; 1554 1555 /* 1556 * If this resource belongs to one of our internal managers, 1557 * deactivate it and release it to the local pool. 1558 */ 1559 if (acpi_is_resource_managed(type, r)) { 1560 if (rman_get_flags(r) & RF_ACTIVE) { 1561 ret = bus_deactivate_resource(child, type, rid, r); 1562 if (ret != 0) 1563 return (ret); 1564 } 1565 return (rman_release_resource(r)); 1566 } 1567 1568 return (bus_generic_rl_release_resource(bus, child, type, rid, r)); 1569 } 1570 1571 static void 1572 acpi_delete_resource(device_t bus, device_t child, int type, int rid) 1573 { 1574 struct resource_list *rl; 1575 1576 rl = acpi_get_rlist(bus, child); 1577 if (resource_list_busy(rl, type, rid)) { 1578 device_printf(bus, "delete_resource: Resource still owned by child" 1579 " (type=%d, rid=%d)\n", type, rid); 1580 return; 1581 } 1582 resource_list_unreserve(rl, bus, child, type, rid); 1583 resource_list_delete(rl, type, rid); 1584 } 1585 1586 /* Allocate an IO port or memory resource, given its GAS. */ 1587 int 1588 acpi_bus_alloc_gas(device_t dev, int *type, int *rid, ACPI_GENERIC_ADDRESS *gas, 1589 struct resource **res, u_int flags) 1590 { 1591 int error, res_type; 1592 1593 error = ENOMEM; 1594 if (type == NULL || rid == NULL || gas == NULL || res == NULL) 1595 return (EINVAL); 1596 1597 /* We only support memory and IO spaces. */ 1598 switch (gas->SpaceId) { 1599 case ACPI_ADR_SPACE_SYSTEM_MEMORY: 1600 res_type = SYS_RES_MEMORY; 1601 break; 1602 case ACPI_ADR_SPACE_SYSTEM_IO: 1603 res_type = SYS_RES_IOPORT; 1604 break; 1605 default: 1606 return (EOPNOTSUPP); 1607 } 1608 1609 /* 1610 * If the register width is less than 8, assume the BIOS author means 1611 * it is a bit field and just allocate a byte. 1612 */ 1613 if (gas->BitWidth && gas->BitWidth < 8) 1614 gas->BitWidth = 8; 1615 1616 /* Validate the address after we're sure we support the space. */ 1617 if (gas->Address == 0 || gas->BitWidth == 0) 1618 return (EINVAL); 1619 1620 bus_set_resource(dev, res_type, *rid, gas->Address, 1621 gas->BitWidth / 8); 1622 *res = bus_alloc_resource_any(dev, res_type, rid, RF_ACTIVE | flags); 1623 if (*res != NULL) { 1624 *type = res_type; 1625 error = 0; 1626 } else 1627 bus_delete_resource(dev, res_type, *rid); 1628 1629 return (error); 1630 } 1631 1632 /* Probe _HID and _CID for compatible ISA PNP ids. */ 1633 static uint32_t 1634 acpi_isa_get_logicalid(device_t dev) 1635 { 1636 ACPI_DEVICE_INFO *devinfo; 1637 ACPI_HANDLE h; 1638 uint32_t pnpid; 1639 1640 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1641 1642 /* Fetch and validate the HID. */ 1643 if ((h = acpi_get_handle(dev)) == NULL || 1644 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 1645 return_VALUE (0); 1646 1647 pnpid = (devinfo->Valid & ACPI_VALID_HID) != 0 && 1648 devinfo->HardwareId.Length >= ACPI_EISAID_STRING_SIZE ? 1649 PNP_EISAID(devinfo->HardwareId.String) : 0; 1650 AcpiOsFree(devinfo); 1651 1652 return_VALUE (pnpid); 1653 } 1654 1655 static int 1656 acpi_isa_get_compatid(device_t dev, uint32_t *cids, int count) 1657 { 1658 ACPI_DEVICE_INFO *devinfo; 1659 ACPI_PNP_DEVICE_ID *ids; 1660 ACPI_HANDLE h; 1661 uint32_t *pnpid; 1662 int i, valid; 1663 1664 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1665 1666 pnpid = cids; 1667 1668 /* Fetch and validate the CID */ 1669 if ((h = acpi_get_handle(dev)) == NULL || 1670 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 1671 return_VALUE (0); 1672 1673 if ((devinfo->Valid & ACPI_VALID_CID) == 0) { 1674 AcpiOsFree(devinfo); 1675 return_VALUE (0); 1676 } 1677 1678 if (devinfo->CompatibleIdList.Count < count) 1679 count = devinfo->CompatibleIdList.Count; 1680 ids = devinfo->CompatibleIdList.Ids; 1681 for (i = 0, valid = 0; i < count; i++) 1682 if (ids[i].Length >= ACPI_EISAID_STRING_SIZE && 1683 strncmp(ids[i].String, "PNP", 3) == 0) { 1684 *pnpid++ = PNP_EISAID(ids[i].String); 1685 valid++; 1686 } 1687 AcpiOsFree(devinfo); 1688 1689 return_VALUE (valid); 1690 } 1691 1692 static int 1693 acpi_device_id_probe(device_t bus, device_t dev, char **ids, char **match) 1694 { 1695 ACPI_HANDLE h; 1696 ACPI_OBJECT_TYPE t; 1697 int rv; 1698 int i; 1699 1700 h = acpi_get_handle(dev); 1701 if (ids == NULL || h == NULL) 1702 return (ENXIO); 1703 t = acpi_get_type(dev); 1704 if (t != ACPI_TYPE_DEVICE && t != ACPI_TYPE_PROCESSOR) 1705 return (ENXIO); 1706 1707 /* Try to match one of the array of IDs with a HID or CID. */ 1708 for (i = 0; ids[i] != NULL; i++) { 1709 rv = acpi_MatchHid(h, ids[i]); 1710 if (rv == ACPI_MATCHHID_NOMATCH) 1711 continue; 1712 1713 if (match != NULL) { 1714 *match = ids[i]; 1715 } 1716 return ((rv == ACPI_MATCHHID_HID)? 1717 BUS_PROBE_DEFAULT : BUS_PROBE_LOW_PRIORITY); 1718 } 1719 return (ENXIO); 1720 } 1721 1722 static ACPI_STATUS 1723 acpi_device_eval_obj(device_t bus, device_t dev, ACPI_STRING pathname, 1724 ACPI_OBJECT_LIST *parameters, ACPI_BUFFER *ret) 1725 { 1726 ACPI_HANDLE h; 1727 1728 if (dev == NULL) 1729 h = ACPI_ROOT_OBJECT; 1730 else if ((h = acpi_get_handle(dev)) == NULL) 1731 return (AE_BAD_PARAMETER); 1732 return (AcpiEvaluateObject(h, pathname, parameters, ret)); 1733 } 1734 1735 int 1736 acpi_device_pwr_for_sleep(device_t bus, device_t dev, int *dstate) 1737 { 1738 struct acpi_softc *sc; 1739 ACPI_HANDLE handle; 1740 ACPI_STATUS status; 1741 char sxd[8]; 1742 1743 handle = acpi_get_handle(dev); 1744 1745 /* 1746 * XXX If we find these devices, don't try to power them down. 1747 * The serial and IRDA ports on my T23 hang the system when 1748 * set to D3 and it appears that such legacy devices may 1749 * need special handling in their drivers. 1750 */ 1751 if (dstate == NULL || handle == NULL || 1752 acpi_MatchHid(handle, "PNP0500") || 1753 acpi_MatchHid(handle, "PNP0501") || 1754 acpi_MatchHid(handle, "PNP0502") || 1755 acpi_MatchHid(handle, "PNP0510") || 1756 acpi_MatchHid(handle, "PNP0511")) 1757 return (ENXIO); 1758 1759 /* 1760 * Override next state with the value from _SxD, if present. 1761 * Note illegal _S0D is evaluated because some systems expect this. 1762 */ 1763 sc = device_get_softc(bus); 1764 snprintf(sxd, sizeof(sxd), "_S%dD", sc->acpi_sstate); 1765 status = acpi_GetInteger(handle, sxd, dstate); 1766 if (ACPI_FAILURE(status) && status != AE_NOT_FOUND) { 1767 device_printf(dev, "failed to get %s on %s: %s\n", sxd, 1768 acpi_name(handle), AcpiFormatException(status)); 1769 return (ENXIO); 1770 } 1771 1772 return (0); 1773 } 1774 1775 /* Callback arg for our implementation of walking the namespace. */ 1776 struct acpi_device_scan_ctx { 1777 acpi_scan_cb_t user_fn; 1778 void *arg; 1779 ACPI_HANDLE parent; 1780 }; 1781 1782 static ACPI_STATUS 1783 acpi_device_scan_cb(ACPI_HANDLE h, UINT32 level, void *arg, void **retval) 1784 { 1785 struct acpi_device_scan_ctx *ctx; 1786 device_t dev, old_dev; 1787 ACPI_STATUS status; 1788 ACPI_OBJECT_TYPE type; 1789 1790 /* 1791 * Skip this device if we think we'll have trouble with it or it is 1792 * the parent where the scan began. 1793 */ 1794 ctx = (struct acpi_device_scan_ctx *)arg; 1795 if (acpi_avoid(h) || h == ctx->parent) 1796 return (AE_OK); 1797 1798 /* If this is not a valid device type (e.g., a method), skip it. */ 1799 if (ACPI_FAILURE(AcpiGetType(h, &type))) 1800 return (AE_OK); 1801 if (type != ACPI_TYPE_DEVICE && type != ACPI_TYPE_PROCESSOR && 1802 type != ACPI_TYPE_THERMAL && type != ACPI_TYPE_POWER) 1803 return (AE_OK); 1804 1805 /* 1806 * Call the user function with the current device. If it is unchanged 1807 * afterwards, return. Otherwise, we update the handle to the new dev. 1808 */ 1809 old_dev = acpi_get_device(h); 1810 dev = old_dev; 1811 status = ctx->user_fn(h, &dev, level, ctx->arg); 1812 if (ACPI_FAILURE(status) || old_dev == dev) 1813 return (status); 1814 1815 /* Remove the old child and its connection to the handle. */ 1816 if (old_dev != NULL) 1817 device_delete_child(device_get_parent(old_dev), old_dev); 1818 1819 /* Recreate the handle association if the user created a device. */ 1820 if (dev != NULL) 1821 AcpiAttachData(h, acpi_fake_objhandler, dev); 1822 1823 return (AE_OK); 1824 } 1825 1826 static ACPI_STATUS 1827 acpi_device_scan_children(device_t bus, device_t dev, int max_depth, 1828 acpi_scan_cb_t user_fn, void *arg) 1829 { 1830 ACPI_HANDLE h; 1831 struct acpi_device_scan_ctx ctx; 1832 1833 if (acpi_disabled("children")) 1834 return (AE_OK); 1835 1836 if (dev == NULL) 1837 h = ACPI_ROOT_OBJECT; 1838 else if ((h = acpi_get_handle(dev)) == NULL) 1839 return (AE_BAD_PARAMETER); 1840 ctx.user_fn = user_fn; 1841 ctx.arg = arg; 1842 ctx.parent = h; 1843 return (AcpiWalkNamespace(ACPI_TYPE_ANY, h, max_depth, 1844 acpi_device_scan_cb, NULL, &ctx, NULL)); 1845 } 1846 1847 /* 1848 * Even though ACPI devices are not PCI, we use the PCI approach for setting 1849 * device power states since it's close enough to ACPI. 1850 */ 1851 int 1852 acpi_set_powerstate(device_t child, int state) 1853 { 1854 ACPI_HANDLE h; 1855 ACPI_STATUS status; 1856 1857 h = acpi_get_handle(child); 1858 if (state < ACPI_STATE_D0 || state > ACPI_D_STATES_MAX) 1859 return (EINVAL); 1860 if (h == NULL) 1861 return (0); 1862 1863 /* Ignore errors if the power methods aren't present. */ 1864 status = acpi_pwr_switch_consumer(h, state); 1865 if (ACPI_SUCCESS(status)) { 1866 if (bootverbose) 1867 device_printf(child, "set ACPI power state D%d on %s\n", 1868 state, acpi_name(h)); 1869 } else if (status != AE_NOT_FOUND) 1870 device_printf(child, 1871 "failed to set ACPI power state D%d on %s: %s\n", state, 1872 acpi_name(h), AcpiFormatException(status)); 1873 1874 return (0); 1875 } 1876 1877 static int 1878 acpi_isa_pnp_probe(device_t bus, device_t child, struct isa_pnp_id *ids) 1879 { 1880 int result, cid_count, i; 1881 uint32_t lid, cids[8]; 1882 1883 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1884 1885 /* 1886 * ISA-style drivers attached to ACPI may persist and 1887 * probe manually if we return ENOENT. We never want 1888 * that to happen, so don't ever return it. 1889 */ 1890 result = ENXIO; 1891 1892 /* Scan the supplied IDs for a match */ 1893 lid = acpi_isa_get_logicalid(child); 1894 cid_count = acpi_isa_get_compatid(child, cids, 8); 1895 while (ids && ids->ip_id) { 1896 if (lid == ids->ip_id) { 1897 result = 0; 1898 goto out; 1899 } 1900 for (i = 0; i < cid_count; i++) { 1901 if (cids[i] == ids->ip_id) { 1902 result = 0; 1903 goto out; 1904 } 1905 } 1906 ids++; 1907 } 1908 1909 out: 1910 if (result == 0 && ids->ip_desc) 1911 device_set_desc(child, ids->ip_desc); 1912 1913 return_VALUE (result); 1914 } 1915 1916 /* 1917 * Look for a MCFG table. If it is present, use the settings for 1918 * domain (segment) 0 to setup PCI config space access via the memory 1919 * map. 1920 * 1921 * On non-x86 architectures (arm64 for now), this will be done from the 1922 * PCI host bridge driver. 1923 */ 1924 static void 1925 acpi_enable_pcie(void) 1926 { 1927 #if defined(__i386__) || defined(__amd64__) 1928 ACPI_TABLE_HEADER *hdr; 1929 ACPI_MCFG_ALLOCATION *alloc, *end; 1930 ACPI_STATUS status; 1931 1932 status = AcpiGetTable(ACPI_SIG_MCFG, 1, &hdr); 1933 if (ACPI_FAILURE(status)) 1934 return; 1935 1936 end = (ACPI_MCFG_ALLOCATION *)((char *)hdr + hdr->Length); 1937 alloc = (ACPI_MCFG_ALLOCATION *)((ACPI_TABLE_MCFG *)hdr + 1); 1938 while (alloc < end) { 1939 if (alloc->PciSegment == 0) { 1940 pcie_cfgregopen(alloc->Address, alloc->StartBusNumber, 1941 alloc->EndBusNumber); 1942 return; 1943 } 1944 alloc++; 1945 } 1946 #endif 1947 } 1948 1949 static void 1950 acpi_platform_osc(device_t dev) 1951 { 1952 ACPI_HANDLE sb_handle; 1953 ACPI_STATUS status; 1954 uint32_t cap_set[2]; 1955 1956 /* 0811B06E-4A27-44F9-8D60-3CBBC22E7B48 */ 1957 static uint8_t acpi_platform_uuid[ACPI_UUID_LENGTH] = { 1958 0x6e, 0xb0, 0x11, 0x08, 0x27, 0x4a, 0xf9, 0x44, 1959 0x8d, 0x60, 0x3c, 0xbb, 0xc2, 0x2e, 0x7b, 0x48 1960 }; 1961 1962 if (ACPI_FAILURE(AcpiGetHandle(ACPI_ROOT_OBJECT, "\\_SB_", &sb_handle))) 1963 return; 1964 1965 cap_set[1] = 0x10; /* APEI Support */ 1966 status = acpi_EvaluateOSC(sb_handle, acpi_platform_uuid, 1, 1967 nitems(cap_set), cap_set, cap_set, false); 1968 if (ACPI_FAILURE(status)) { 1969 if (status == AE_NOT_FOUND) 1970 return; 1971 device_printf(dev, "_OSC failed: %s\n", 1972 AcpiFormatException(status)); 1973 return; 1974 } 1975 } 1976 1977 /* 1978 * Scan all of the ACPI namespace and attach child devices. 1979 * 1980 * We should only expect to find devices in the \_PR, \_TZ, \_SI, and 1981 * \_SB scopes, and \_PR and \_TZ became obsolete in the ACPI 2.0 spec. 1982 * However, in violation of the spec, some systems place their PCI link 1983 * devices in \, so we have to walk the whole namespace. We check the 1984 * type of namespace nodes, so this should be ok. 1985 */ 1986 static void 1987 acpi_probe_children(device_t bus) 1988 { 1989 1990 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1991 1992 /* 1993 * Scan the namespace and insert placeholders for all the devices that 1994 * we find. We also probe/attach any early devices. 1995 * 1996 * Note that we use AcpiWalkNamespace rather than AcpiGetDevices because 1997 * we want to create nodes for all devices, not just those that are 1998 * currently present. (This assumes that we don't want to create/remove 1999 * devices as they appear, which might be smarter.) 2000 */ 2001 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "namespace scan\n")); 2002 AcpiWalkNamespace(ACPI_TYPE_ANY, ACPI_ROOT_OBJECT, 100, acpi_probe_child, 2003 NULL, bus, NULL); 2004 2005 /* Pre-allocate resources for our rman from any sysresource devices. */ 2006 acpi_sysres_alloc(bus); 2007 2008 /* Reserve resources already allocated to children. */ 2009 acpi_reserve_resources(bus); 2010 2011 /* Create any static children by calling device identify methods. */ 2012 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "device identify routines\n")); 2013 bus_generic_probe(bus); 2014 2015 /* Probe/attach all children, created statically and from the namespace. */ 2016 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "acpi bus_generic_attach\n")); 2017 bus_generic_attach(bus); 2018 2019 /* Attach wake sysctls. */ 2020 acpi_wake_sysctl_walk(bus); 2021 2022 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "done attaching children\n")); 2023 return_VOID; 2024 } 2025 2026 /* 2027 * Determine the probe order for a given device. 2028 */ 2029 static void 2030 acpi_probe_order(ACPI_HANDLE handle, int *order) 2031 { 2032 ACPI_OBJECT_TYPE type; 2033 2034 /* 2035 * 0. CPUs 2036 * 1. I/O port and memory system resource holders 2037 * 2. Clocks and timers (to handle early accesses) 2038 * 3. Embedded controllers (to handle early accesses) 2039 * 4. PCI Link Devices 2040 */ 2041 AcpiGetType(handle, &type); 2042 if (type == ACPI_TYPE_PROCESSOR) 2043 *order = 0; 2044 else if (acpi_MatchHid(handle, "PNP0C01") || 2045 acpi_MatchHid(handle, "PNP0C02")) 2046 *order = 1; 2047 else if (acpi_MatchHid(handle, "PNP0100") || 2048 acpi_MatchHid(handle, "PNP0103") || 2049 acpi_MatchHid(handle, "PNP0B00")) 2050 *order = 2; 2051 else if (acpi_MatchHid(handle, "PNP0C09")) 2052 *order = 3; 2053 else if (acpi_MatchHid(handle, "PNP0C0F")) 2054 *order = 4; 2055 } 2056 2057 /* 2058 * Evaluate a child device and determine whether we might attach a device to 2059 * it. 2060 */ 2061 static ACPI_STATUS 2062 acpi_probe_child(ACPI_HANDLE handle, UINT32 level, void *context, void **status) 2063 { 2064 ACPI_DEVICE_INFO *devinfo; 2065 struct acpi_device *ad; 2066 struct acpi_prw_data prw; 2067 ACPI_OBJECT_TYPE type; 2068 ACPI_HANDLE h; 2069 device_t bus, child; 2070 char *handle_str; 2071 int order; 2072 2073 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 2074 2075 if (acpi_disabled("children")) 2076 return_ACPI_STATUS (AE_OK); 2077 2078 /* Skip this device if we think we'll have trouble with it. */ 2079 if (acpi_avoid(handle)) 2080 return_ACPI_STATUS (AE_OK); 2081 2082 bus = (device_t)context; 2083 if (ACPI_SUCCESS(AcpiGetType(handle, &type))) { 2084 handle_str = acpi_name(handle); 2085 switch (type) { 2086 case ACPI_TYPE_DEVICE: 2087 /* 2088 * Since we scan from \, be sure to skip system scope objects. 2089 * \_SB_ and \_TZ_ are defined in ACPICA as devices to work around 2090 * BIOS bugs. For example, \_SB_ is to allow \_SB_._INI to be run 2091 * during the initialization and \_TZ_ is to support Notify() on it. 2092 */ 2093 if (strcmp(handle_str, "\\_SB_") == 0 || 2094 strcmp(handle_str, "\\_TZ_") == 0) 2095 break; 2096 if (acpi_parse_prw(handle, &prw) == 0) 2097 AcpiSetupGpeForWake(handle, prw.gpe_handle, prw.gpe_bit); 2098 2099 /* 2100 * Ignore devices that do not have a _HID or _CID. They should 2101 * be discovered by other buses (e.g. the PCI bus driver). 2102 */ 2103 if (!acpi_has_hid(handle)) 2104 break; 2105 /* FALLTHROUGH */ 2106 case ACPI_TYPE_PROCESSOR: 2107 case ACPI_TYPE_THERMAL: 2108 case ACPI_TYPE_POWER: 2109 /* 2110 * Create a placeholder device for this node. Sort the 2111 * placeholder so that the probe/attach passes will run 2112 * breadth-first. Orders less than ACPI_DEV_BASE_ORDER 2113 * are reserved for special objects (i.e., system 2114 * resources). 2115 */ 2116 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "scanning '%s'\n", handle_str)); 2117 order = level * 10 + ACPI_DEV_BASE_ORDER; 2118 acpi_probe_order(handle, &order); 2119 child = BUS_ADD_CHILD(bus, order, NULL, -1); 2120 if (child == NULL) 2121 break; 2122 2123 /* Associate the handle with the device_t and vice versa. */ 2124 acpi_set_handle(child, handle); 2125 AcpiAttachData(handle, acpi_fake_objhandler, child); 2126 2127 /* 2128 * Check that the device is present. If it's not present, 2129 * leave it disabled (so that we have a device_t attached to 2130 * the handle, but we don't probe it). 2131 * 2132 * XXX PCI link devices sometimes report "present" but not 2133 * "functional" (i.e. if disabled). Go ahead and probe them 2134 * anyway since we may enable them later. 2135 */ 2136 if (type == ACPI_TYPE_DEVICE && !acpi_DeviceIsPresent(child)) { 2137 /* Never disable PCI link devices. */ 2138 if (acpi_MatchHid(handle, "PNP0C0F")) 2139 break; 2140 /* 2141 * Docking stations should remain enabled since the system 2142 * may be undocked at boot. 2143 */ 2144 if (ACPI_SUCCESS(AcpiGetHandle(handle, "_DCK", &h))) 2145 break; 2146 2147 device_disable(child); 2148 break; 2149 } 2150 2151 /* 2152 * Get the device's resource settings and attach them. 2153 * Note that if the device has _PRS but no _CRS, we need 2154 * to decide when it's appropriate to try to configure the 2155 * device. Ignore the return value here; it's OK for the 2156 * device not to have any resources. 2157 */ 2158 acpi_parse_resources(child, handle, &acpi_res_parse_set, NULL); 2159 2160 ad = device_get_ivars(child); 2161 ad->ad_cls_class = 0xffffff; 2162 if (ACPI_SUCCESS(AcpiGetObjectInfo(handle, &devinfo))) { 2163 if ((devinfo->Valid & ACPI_VALID_CLS) != 0 && 2164 devinfo->ClassCode.Length >= ACPI_PCICLS_STRING_SIZE) { 2165 ad->ad_cls_class = strtoul(devinfo->ClassCode.String, 2166 NULL, 16); 2167 } 2168 AcpiOsFree(devinfo); 2169 } 2170 break; 2171 } 2172 } 2173 2174 return_ACPI_STATUS (AE_OK); 2175 } 2176 2177 /* 2178 * AcpiAttachData() requires an object handler but never uses it. This is a 2179 * placeholder object handler so we can store a device_t in an ACPI_HANDLE. 2180 */ 2181 void 2182 acpi_fake_objhandler(ACPI_HANDLE h, void *data) 2183 { 2184 } 2185 2186 static void 2187 acpi_shutdown_final(void *arg, int howto) 2188 { 2189 struct acpi_softc *sc = (struct acpi_softc *)arg; 2190 register_t intr; 2191 ACPI_STATUS status; 2192 2193 /* 2194 * XXX Shutdown code should only run on the BSP (cpuid 0). 2195 * Some chipsets do not power off the system correctly if called from 2196 * an AP. 2197 */ 2198 if ((howto & RB_POWEROFF) != 0) { 2199 status = AcpiEnterSleepStatePrep(ACPI_STATE_S5); 2200 if (ACPI_FAILURE(status)) { 2201 device_printf(sc->acpi_dev, "AcpiEnterSleepStatePrep failed - %s\n", 2202 AcpiFormatException(status)); 2203 return; 2204 } 2205 device_printf(sc->acpi_dev, "Powering system off\n"); 2206 intr = intr_disable(); 2207 status = AcpiEnterSleepState(ACPI_STATE_S5); 2208 if (ACPI_FAILURE(status)) { 2209 intr_restore(intr); 2210 device_printf(sc->acpi_dev, "power-off failed - %s\n", 2211 AcpiFormatException(status)); 2212 } else { 2213 DELAY(1000000); 2214 intr_restore(intr); 2215 device_printf(sc->acpi_dev, "power-off failed - timeout\n"); 2216 } 2217 } else if ((howto & RB_HALT) == 0 && sc->acpi_handle_reboot) { 2218 /* Reboot using the reset register. */ 2219 status = AcpiReset(); 2220 if (ACPI_SUCCESS(status)) { 2221 DELAY(1000000); 2222 device_printf(sc->acpi_dev, "reset failed - timeout\n"); 2223 } else if (status != AE_NOT_EXIST) 2224 device_printf(sc->acpi_dev, "reset failed - %s\n", 2225 AcpiFormatException(status)); 2226 } else if (sc->acpi_do_disable && !KERNEL_PANICKED()) { 2227 /* 2228 * Only disable ACPI if the user requested. On some systems, writing 2229 * the disable value to SMI_CMD hangs the system. 2230 */ 2231 device_printf(sc->acpi_dev, "Shutting down\n"); 2232 AcpiTerminate(); 2233 } 2234 } 2235 2236 static void 2237 acpi_enable_fixed_events(struct acpi_softc *sc) 2238 { 2239 static int first_time = 1; 2240 2241 /* Enable and clear fixed events and install handlers. */ 2242 if ((AcpiGbl_FADT.Flags & ACPI_FADT_POWER_BUTTON) == 0) { 2243 AcpiClearEvent(ACPI_EVENT_POWER_BUTTON); 2244 AcpiInstallFixedEventHandler(ACPI_EVENT_POWER_BUTTON, 2245 acpi_event_power_button_sleep, sc); 2246 if (first_time) 2247 device_printf(sc->acpi_dev, "Power Button (fixed)\n"); 2248 } 2249 if ((AcpiGbl_FADT.Flags & ACPI_FADT_SLEEP_BUTTON) == 0) { 2250 AcpiClearEvent(ACPI_EVENT_SLEEP_BUTTON); 2251 AcpiInstallFixedEventHandler(ACPI_EVENT_SLEEP_BUTTON, 2252 acpi_event_sleep_button_sleep, sc); 2253 if (first_time) 2254 device_printf(sc->acpi_dev, "Sleep Button (fixed)\n"); 2255 } 2256 2257 first_time = 0; 2258 } 2259 2260 /* 2261 * Returns true if the device is actually present and should 2262 * be attached to. This requires the present, enabled, UI-visible 2263 * and diagnostics-passed bits to be set. 2264 */ 2265 BOOLEAN 2266 acpi_DeviceIsPresent(device_t dev) 2267 { 2268 ACPI_HANDLE h; 2269 UINT32 s; 2270 ACPI_STATUS status; 2271 2272 h = acpi_get_handle(dev); 2273 if (h == NULL) 2274 return (FALSE); 2275 /* 2276 * Certain Treadripper boards always returns 0 for FreeBSD because it 2277 * only returns non-zero for the OS string "Windows 2015". Otherwise it 2278 * will return zero. Force them to always be treated as present. 2279 * Beata versions were worse: they always returned 0. 2280 */ 2281 if (acpi_MatchHid(h, "AMDI0020") || acpi_MatchHid(h, "AMDI0010")) 2282 return (TRUE); 2283 2284 status = acpi_GetInteger(h, "_STA", &s); 2285 2286 /* 2287 * If no _STA method or if it failed, then assume that 2288 * the device is present. 2289 */ 2290 if (ACPI_FAILURE(status)) 2291 return (TRUE); 2292 2293 return (ACPI_DEVICE_PRESENT(s) ? TRUE : FALSE); 2294 } 2295 2296 /* 2297 * Returns true if the battery is actually present and inserted. 2298 */ 2299 BOOLEAN 2300 acpi_BatteryIsPresent(device_t dev) 2301 { 2302 ACPI_HANDLE h; 2303 UINT32 s; 2304 ACPI_STATUS status; 2305 2306 h = acpi_get_handle(dev); 2307 if (h == NULL) 2308 return (FALSE); 2309 status = acpi_GetInteger(h, "_STA", &s); 2310 2311 /* 2312 * If no _STA method or if it failed, then assume that 2313 * the device is present. 2314 */ 2315 if (ACPI_FAILURE(status)) 2316 return (TRUE); 2317 2318 return (ACPI_BATTERY_PRESENT(s) ? TRUE : FALSE); 2319 } 2320 2321 /* 2322 * Returns true if a device has at least one valid device ID. 2323 */ 2324 BOOLEAN 2325 acpi_has_hid(ACPI_HANDLE h) 2326 { 2327 ACPI_DEVICE_INFO *devinfo; 2328 BOOLEAN ret; 2329 2330 if (h == NULL || 2331 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 2332 return (FALSE); 2333 2334 ret = FALSE; 2335 if ((devinfo->Valid & ACPI_VALID_HID) != 0) 2336 ret = TRUE; 2337 else if ((devinfo->Valid & ACPI_VALID_CID) != 0) 2338 if (devinfo->CompatibleIdList.Count > 0) 2339 ret = TRUE; 2340 2341 AcpiOsFree(devinfo); 2342 return (ret); 2343 } 2344 2345 /* 2346 * Match a HID string against a handle 2347 * returns ACPI_MATCHHID_HID if _HID match 2348 * ACPI_MATCHHID_CID if _CID match and not _HID match. 2349 * ACPI_MATCHHID_NOMATCH=0 if no match. 2350 */ 2351 int 2352 acpi_MatchHid(ACPI_HANDLE h, const char *hid) 2353 { 2354 ACPI_DEVICE_INFO *devinfo; 2355 BOOLEAN ret; 2356 int i; 2357 2358 if (hid == NULL || h == NULL || 2359 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 2360 return (ACPI_MATCHHID_NOMATCH); 2361 2362 ret = ACPI_MATCHHID_NOMATCH; 2363 if ((devinfo->Valid & ACPI_VALID_HID) != 0 && 2364 strcmp(hid, devinfo->HardwareId.String) == 0) 2365 ret = ACPI_MATCHHID_HID; 2366 else if ((devinfo->Valid & ACPI_VALID_CID) != 0) 2367 for (i = 0; i < devinfo->CompatibleIdList.Count; i++) { 2368 if (strcmp(hid, devinfo->CompatibleIdList.Ids[i].String) == 0) { 2369 ret = ACPI_MATCHHID_CID; 2370 break; 2371 } 2372 } 2373 2374 AcpiOsFree(devinfo); 2375 return (ret); 2376 } 2377 2378 /* 2379 * Return the handle of a named object within our scope, ie. that of (parent) 2380 * or one if its parents. 2381 */ 2382 ACPI_STATUS 2383 acpi_GetHandleInScope(ACPI_HANDLE parent, char *path, ACPI_HANDLE *result) 2384 { 2385 ACPI_HANDLE r; 2386 ACPI_STATUS status; 2387 2388 /* Walk back up the tree to the root */ 2389 for (;;) { 2390 status = AcpiGetHandle(parent, path, &r); 2391 if (ACPI_SUCCESS(status)) { 2392 *result = r; 2393 return (AE_OK); 2394 } 2395 /* XXX Return error here? */ 2396 if (status != AE_NOT_FOUND) 2397 return (AE_OK); 2398 if (ACPI_FAILURE(AcpiGetParent(parent, &r))) 2399 return (AE_NOT_FOUND); 2400 parent = r; 2401 } 2402 } 2403 2404 /* 2405 * Allocate a buffer with a preset data size. 2406 */ 2407 ACPI_BUFFER * 2408 acpi_AllocBuffer(int size) 2409 { 2410 ACPI_BUFFER *buf; 2411 2412 if ((buf = malloc(size + sizeof(*buf), M_ACPIDEV, M_NOWAIT)) == NULL) 2413 return (NULL); 2414 buf->Length = size; 2415 buf->Pointer = (void *)(buf + 1); 2416 return (buf); 2417 } 2418 2419 ACPI_STATUS 2420 acpi_SetInteger(ACPI_HANDLE handle, char *path, UINT32 number) 2421 { 2422 ACPI_OBJECT arg1; 2423 ACPI_OBJECT_LIST args; 2424 2425 arg1.Type = ACPI_TYPE_INTEGER; 2426 arg1.Integer.Value = number; 2427 args.Count = 1; 2428 args.Pointer = &arg1; 2429 2430 return (AcpiEvaluateObject(handle, path, &args, NULL)); 2431 } 2432 2433 /* 2434 * Evaluate a path that should return an integer. 2435 */ 2436 ACPI_STATUS 2437 acpi_GetInteger(ACPI_HANDLE handle, char *path, UINT32 *number) 2438 { 2439 ACPI_STATUS status; 2440 ACPI_BUFFER buf; 2441 ACPI_OBJECT param; 2442 2443 if (handle == NULL) 2444 handle = ACPI_ROOT_OBJECT; 2445 2446 /* 2447 * Assume that what we've been pointed at is an Integer object, or 2448 * a method that will return an Integer. 2449 */ 2450 buf.Pointer = ¶m; 2451 buf.Length = sizeof(param); 2452 status = AcpiEvaluateObject(handle, path, NULL, &buf); 2453 if (ACPI_SUCCESS(status)) { 2454 if (param.Type == ACPI_TYPE_INTEGER) 2455 *number = param.Integer.Value; 2456 else 2457 status = AE_TYPE; 2458 } 2459 2460 /* 2461 * In some applications, a method that's expected to return an Integer 2462 * may instead return a Buffer (probably to simplify some internal 2463 * arithmetic). We'll try to fetch whatever it is, and if it's a Buffer, 2464 * convert it into an Integer as best we can. 2465 * 2466 * This is a hack. 2467 */ 2468 if (status == AE_BUFFER_OVERFLOW) { 2469 if ((buf.Pointer = AcpiOsAllocate(buf.Length)) == NULL) { 2470 status = AE_NO_MEMORY; 2471 } else { 2472 status = AcpiEvaluateObject(handle, path, NULL, &buf); 2473 if (ACPI_SUCCESS(status)) 2474 status = acpi_ConvertBufferToInteger(&buf, number); 2475 AcpiOsFree(buf.Pointer); 2476 } 2477 } 2478 return (status); 2479 } 2480 2481 ACPI_STATUS 2482 acpi_ConvertBufferToInteger(ACPI_BUFFER *bufp, UINT32 *number) 2483 { 2484 ACPI_OBJECT *p; 2485 UINT8 *val; 2486 int i; 2487 2488 p = (ACPI_OBJECT *)bufp->Pointer; 2489 if (p->Type == ACPI_TYPE_INTEGER) { 2490 *number = p->Integer.Value; 2491 return (AE_OK); 2492 } 2493 if (p->Type != ACPI_TYPE_BUFFER) 2494 return (AE_TYPE); 2495 if (p->Buffer.Length > sizeof(int)) 2496 return (AE_BAD_DATA); 2497 2498 *number = 0; 2499 val = p->Buffer.Pointer; 2500 for (i = 0; i < p->Buffer.Length; i++) 2501 *number += val[i] << (i * 8); 2502 return (AE_OK); 2503 } 2504 2505 /* 2506 * Iterate over the elements of an a package object, calling the supplied 2507 * function for each element. 2508 * 2509 * XXX possible enhancement might be to abort traversal on error. 2510 */ 2511 ACPI_STATUS 2512 acpi_ForeachPackageObject(ACPI_OBJECT *pkg, 2513 void (*func)(ACPI_OBJECT *comp, void *arg), void *arg) 2514 { 2515 ACPI_OBJECT *comp; 2516 int i; 2517 2518 if (pkg == NULL || pkg->Type != ACPI_TYPE_PACKAGE) 2519 return (AE_BAD_PARAMETER); 2520 2521 /* Iterate over components */ 2522 i = 0; 2523 comp = pkg->Package.Elements; 2524 for (; i < pkg->Package.Count; i++, comp++) 2525 func(comp, arg); 2526 2527 return (AE_OK); 2528 } 2529 2530 /* 2531 * Find the (index)th resource object in a set. 2532 */ 2533 ACPI_STATUS 2534 acpi_FindIndexedResource(ACPI_BUFFER *buf, int index, ACPI_RESOURCE **resp) 2535 { 2536 ACPI_RESOURCE *rp; 2537 int i; 2538 2539 rp = (ACPI_RESOURCE *)buf->Pointer; 2540 i = index; 2541 while (i-- > 0) { 2542 /* Range check */ 2543 if (rp > (ACPI_RESOURCE *)((u_int8_t *)buf->Pointer + buf->Length)) 2544 return (AE_BAD_PARAMETER); 2545 2546 /* Check for terminator */ 2547 if (rp->Type == ACPI_RESOURCE_TYPE_END_TAG || rp->Length == 0) 2548 return (AE_NOT_FOUND); 2549 rp = ACPI_NEXT_RESOURCE(rp); 2550 } 2551 if (resp != NULL) 2552 *resp = rp; 2553 2554 return (AE_OK); 2555 } 2556 2557 /* 2558 * Append an ACPI_RESOURCE to an ACPI_BUFFER. 2559 * 2560 * Given a pointer to an ACPI_RESOURCE structure, expand the ACPI_BUFFER 2561 * provided to contain it. If the ACPI_BUFFER is empty, allocate a sensible 2562 * backing block. If the ACPI_RESOURCE is NULL, return an empty set of 2563 * resources. 2564 */ 2565 #define ACPI_INITIAL_RESOURCE_BUFFER_SIZE 512 2566 2567 ACPI_STATUS 2568 acpi_AppendBufferResource(ACPI_BUFFER *buf, ACPI_RESOURCE *res) 2569 { 2570 ACPI_RESOURCE *rp; 2571 void *newp; 2572 2573 /* Initialise the buffer if necessary. */ 2574 if (buf->Pointer == NULL) { 2575 buf->Length = ACPI_INITIAL_RESOURCE_BUFFER_SIZE; 2576 if ((buf->Pointer = AcpiOsAllocate(buf->Length)) == NULL) 2577 return (AE_NO_MEMORY); 2578 rp = (ACPI_RESOURCE *)buf->Pointer; 2579 rp->Type = ACPI_RESOURCE_TYPE_END_TAG; 2580 rp->Length = ACPI_RS_SIZE_MIN; 2581 } 2582 if (res == NULL) 2583 return (AE_OK); 2584 2585 /* 2586 * Scan the current buffer looking for the terminator. 2587 * This will either find the terminator or hit the end 2588 * of the buffer and return an error. 2589 */ 2590 rp = (ACPI_RESOURCE *)buf->Pointer; 2591 for (;;) { 2592 /* Range check, don't go outside the buffer */ 2593 if (rp >= (ACPI_RESOURCE *)((u_int8_t *)buf->Pointer + buf->Length)) 2594 return (AE_BAD_PARAMETER); 2595 if (rp->Type == ACPI_RESOURCE_TYPE_END_TAG || rp->Length == 0) 2596 break; 2597 rp = ACPI_NEXT_RESOURCE(rp); 2598 } 2599 2600 /* 2601 * Check the size of the buffer and expand if required. 2602 * 2603 * Required size is: 2604 * size of existing resources before terminator + 2605 * size of new resource and header + 2606 * size of terminator. 2607 * 2608 * Note that this loop should really only run once, unless 2609 * for some reason we are stuffing a *really* huge resource. 2610 */ 2611 while ((((u_int8_t *)rp - (u_int8_t *)buf->Pointer) + 2612 res->Length + ACPI_RS_SIZE_NO_DATA + 2613 ACPI_RS_SIZE_MIN) >= buf->Length) { 2614 if ((newp = AcpiOsAllocate(buf->Length * 2)) == NULL) 2615 return (AE_NO_MEMORY); 2616 bcopy(buf->Pointer, newp, buf->Length); 2617 rp = (ACPI_RESOURCE *)((u_int8_t *)newp + 2618 ((u_int8_t *)rp - (u_int8_t *)buf->Pointer)); 2619 AcpiOsFree(buf->Pointer); 2620 buf->Pointer = newp; 2621 buf->Length += buf->Length; 2622 } 2623 2624 /* Insert the new resource. */ 2625 bcopy(res, rp, res->Length + ACPI_RS_SIZE_NO_DATA); 2626 2627 /* And add the terminator. */ 2628 rp = ACPI_NEXT_RESOURCE(rp); 2629 rp->Type = ACPI_RESOURCE_TYPE_END_TAG; 2630 rp->Length = ACPI_RS_SIZE_MIN; 2631 2632 return (AE_OK); 2633 } 2634 2635 UINT64 2636 acpi_DSMQuery(ACPI_HANDLE h, const uint8_t *uuid, int revision) 2637 { 2638 /* 2639 * ACPI spec 9.1.1 defines this. 2640 * 2641 * "Arg2: Function Index Represents a specific function whose meaning is 2642 * specific to the UUID and Revision ID. Function indices should start 2643 * with 1. Function number zero is a query function (see the special 2644 * return code defined below)." 2645 */ 2646 ACPI_BUFFER buf; 2647 ACPI_OBJECT *obj; 2648 UINT64 ret = 0; 2649 int i; 2650 2651 if (!ACPI_SUCCESS(acpi_EvaluateDSM(h, uuid, revision, 0, NULL, &buf))) { 2652 ACPI_INFO(("Failed to enumerate DSM functions\n")); 2653 return (0); 2654 } 2655 2656 obj = (ACPI_OBJECT *)buf.Pointer; 2657 KASSERT(obj, ("Object not allowed to be NULL\n")); 2658 2659 /* 2660 * From ACPI 6.2 spec 9.1.1: 2661 * If Function Index = 0, a Buffer containing a function index bitfield. 2662 * Otherwise, the return value and type depends on the UUID and revision 2663 * ID (see below). 2664 */ 2665 switch (obj->Type) { 2666 case ACPI_TYPE_BUFFER: 2667 for (i = 0; i < MIN(obj->Buffer.Length, sizeof(ret)); i++) 2668 ret |= (((uint64_t)obj->Buffer.Pointer[i]) << (i * 8)); 2669 break; 2670 case ACPI_TYPE_INTEGER: 2671 ACPI_BIOS_WARNING((AE_INFO, 2672 "Possibly buggy BIOS with ACPI_TYPE_INTEGER for function enumeration\n")); 2673 ret = obj->Integer.Value; 2674 break; 2675 default: 2676 ACPI_WARNING((AE_INFO, "Unexpected return type %u\n", obj->Type)); 2677 }; 2678 2679 AcpiOsFree(obj); 2680 return ret; 2681 } 2682 2683 /* 2684 * DSM may return multiple types depending on the function. It is therefore 2685 * unsafe to use the typed evaluation. It is highly recommended that the caller 2686 * check the type of the returned object. 2687 */ 2688 ACPI_STATUS 2689 acpi_EvaluateDSM(ACPI_HANDLE handle, const uint8_t *uuid, int revision, 2690 UINT64 function, ACPI_OBJECT *package, ACPI_BUFFER *out_buf) 2691 { 2692 return (acpi_EvaluateDSMTyped(handle, uuid, revision, function, 2693 package, out_buf, ACPI_TYPE_ANY)); 2694 } 2695 2696 ACPI_STATUS 2697 acpi_EvaluateDSMTyped(ACPI_HANDLE handle, const uint8_t *uuid, int revision, 2698 UINT64 function, ACPI_OBJECT *package, ACPI_BUFFER *out_buf, 2699 ACPI_OBJECT_TYPE type) 2700 { 2701 ACPI_OBJECT arg[4]; 2702 ACPI_OBJECT_LIST arglist; 2703 ACPI_BUFFER buf; 2704 ACPI_STATUS status; 2705 2706 if (out_buf == NULL) 2707 return (AE_NO_MEMORY); 2708 2709 arg[0].Type = ACPI_TYPE_BUFFER; 2710 arg[0].Buffer.Length = ACPI_UUID_LENGTH; 2711 arg[0].Buffer.Pointer = __DECONST(uint8_t *, uuid); 2712 arg[1].Type = ACPI_TYPE_INTEGER; 2713 arg[1].Integer.Value = revision; 2714 arg[2].Type = ACPI_TYPE_INTEGER; 2715 arg[2].Integer.Value = function; 2716 if (package) { 2717 arg[3] = *package; 2718 } else { 2719 arg[3].Type = ACPI_TYPE_PACKAGE; 2720 arg[3].Package.Count = 0; 2721 arg[3].Package.Elements = NULL; 2722 } 2723 2724 arglist.Pointer = arg; 2725 arglist.Count = 4; 2726 buf.Pointer = NULL; 2727 buf.Length = ACPI_ALLOCATE_BUFFER; 2728 status = AcpiEvaluateObjectTyped(handle, "_DSM", &arglist, &buf, type); 2729 if (ACPI_FAILURE(status)) 2730 return (status); 2731 2732 KASSERT(ACPI_SUCCESS(status), ("Unexpected status")); 2733 2734 *out_buf = buf; 2735 return (status); 2736 } 2737 2738 ACPI_STATUS 2739 acpi_EvaluateOSC(ACPI_HANDLE handle, uint8_t *uuid, int revision, int count, 2740 uint32_t *caps_in, uint32_t *caps_out, bool query) 2741 { 2742 ACPI_OBJECT arg[4], *ret; 2743 ACPI_OBJECT_LIST arglist; 2744 ACPI_BUFFER buf; 2745 ACPI_STATUS status; 2746 2747 arglist.Pointer = arg; 2748 arglist.Count = 4; 2749 arg[0].Type = ACPI_TYPE_BUFFER; 2750 arg[0].Buffer.Length = ACPI_UUID_LENGTH; 2751 arg[0].Buffer.Pointer = uuid; 2752 arg[1].Type = ACPI_TYPE_INTEGER; 2753 arg[1].Integer.Value = revision; 2754 arg[2].Type = ACPI_TYPE_INTEGER; 2755 arg[2].Integer.Value = count; 2756 arg[3].Type = ACPI_TYPE_BUFFER; 2757 arg[3].Buffer.Length = count * sizeof(*caps_in); 2758 arg[3].Buffer.Pointer = (uint8_t *)caps_in; 2759 caps_in[0] = query ? 1 : 0; 2760 buf.Pointer = NULL; 2761 buf.Length = ACPI_ALLOCATE_BUFFER; 2762 status = AcpiEvaluateObjectTyped(handle, "_OSC", &arglist, &buf, 2763 ACPI_TYPE_BUFFER); 2764 if (ACPI_FAILURE(status)) 2765 return (status); 2766 if (caps_out != NULL) { 2767 ret = buf.Pointer; 2768 if (ret->Buffer.Length != count * sizeof(*caps_out)) { 2769 AcpiOsFree(buf.Pointer); 2770 return (AE_BUFFER_OVERFLOW); 2771 } 2772 bcopy(ret->Buffer.Pointer, caps_out, ret->Buffer.Length); 2773 } 2774 AcpiOsFree(buf.Pointer); 2775 return (status); 2776 } 2777 2778 /* 2779 * Set interrupt model. 2780 */ 2781 ACPI_STATUS 2782 acpi_SetIntrModel(int model) 2783 { 2784 2785 return (acpi_SetInteger(ACPI_ROOT_OBJECT, "_PIC", model)); 2786 } 2787 2788 /* 2789 * Walk subtables of a table and call a callback routine for each 2790 * subtable. The caller should provide the first subtable and a 2791 * pointer to the end of the table. This can be used to walk tables 2792 * such as MADT and SRAT that use subtable entries. 2793 */ 2794 void 2795 acpi_walk_subtables(void *first, void *end, acpi_subtable_handler *handler, 2796 void *arg) 2797 { 2798 ACPI_SUBTABLE_HEADER *entry; 2799 2800 for (entry = first; (void *)entry < end; ) { 2801 /* Avoid an infinite loop if we hit a bogus entry. */ 2802 if (entry->Length < sizeof(ACPI_SUBTABLE_HEADER)) 2803 return; 2804 2805 handler(entry, arg); 2806 entry = ACPI_ADD_PTR(ACPI_SUBTABLE_HEADER, entry, entry->Length); 2807 } 2808 } 2809 2810 /* 2811 * DEPRECATED. This interface has serious deficiencies and will be 2812 * removed. 2813 * 2814 * Immediately enter the sleep state. In the old model, acpiconf(8) ran 2815 * rc.suspend and rc.resume so we don't have to notify devd(8) to do this. 2816 */ 2817 ACPI_STATUS 2818 acpi_SetSleepState(struct acpi_softc *sc, int state) 2819 { 2820 static int once; 2821 2822 if (!once) { 2823 device_printf(sc->acpi_dev, 2824 "warning: acpi_SetSleepState() deprecated, need to update your software\n"); 2825 once = 1; 2826 } 2827 return (acpi_EnterSleepState(sc, state)); 2828 } 2829 2830 #if defined(__amd64__) || defined(__i386__) 2831 static void 2832 acpi_sleep_force_task(void *context) 2833 { 2834 struct acpi_softc *sc = (struct acpi_softc *)context; 2835 2836 if (ACPI_FAILURE(acpi_EnterSleepState(sc, sc->acpi_next_sstate))) 2837 device_printf(sc->acpi_dev, "force sleep state S%d failed\n", 2838 sc->acpi_next_sstate); 2839 } 2840 2841 static void 2842 acpi_sleep_force(void *arg) 2843 { 2844 struct acpi_softc *sc = (struct acpi_softc *)arg; 2845 2846 device_printf(sc->acpi_dev, 2847 "suspend request timed out, forcing sleep now\n"); 2848 /* 2849 * XXX Suspending from callout causes freezes in DEVICE_SUSPEND(). 2850 * Suspend from acpi_task thread instead. 2851 */ 2852 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 2853 acpi_sleep_force_task, sc))) 2854 device_printf(sc->acpi_dev, "AcpiOsExecute() for sleeping failed\n"); 2855 } 2856 #endif 2857 2858 /* 2859 * Request that the system enter the given suspend state. All /dev/apm 2860 * devices and devd(8) will be notified. Userland then has a chance to 2861 * save state and acknowledge the request. The system sleeps once all 2862 * acks are in. 2863 */ 2864 int 2865 acpi_ReqSleepState(struct acpi_softc *sc, int state) 2866 { 2867 #if defined(__amd64__) || defined(__i386__) 2868 struct apm_clone_data *clone; 2869 ACPI_STATUS status; 2870 2871 if (state < ACPI_STATE_S1 || state > ACPI_S_STATES_MAX) 2872 return (EINVAL); 2873 if (!acpi_sleep_states[state]) 2874 return (EOPNOTSUPP); 2875 2876 /* 2877 * If a reboot/shutdown/suspend request is already in progress or 2878 * suspend is blocked due to an upcoming shutdown, just return. 2879 */ 2880 if (rebooting || sc->acpi_next_sstate != 0 || suspend_blocked) { 2881 return (0); 2882 } 2883 2884 /* Wait until sleep is enabled. */ 2885 while (sc->acpi_sleep_disabled) { 2886 AcpiOsSleep(1000); 2887 } 2888 2889 ACPI_LOCK(acpi); 2890 2891 sc->acpi_next_sstate = state; 2892 2893 /* S5 (soft-off) should be entered directly with no waiting. */ 2894 if (state == ACPI_STATE_S5) { 2895 ACPI_UNLOCK(acpi); 2896 status = acpi_EnterSleepState(sc, state); 2897 return (ACPI_SUCCESS(status) ? 0 : ENXIO); 2898 } 2899 2900 /* Record the pending state and notify all apm devices. */ 2901 STAILQ_FOREACH(clone, &sc->apm_cdevs, entries) { 2902 clone->notify_status = APM_EV_NONE; 2903 if ((clone->flags & ACPI_EVF_DEVD) == 0) { 2904 selwakeuppri(&clone->sel_read, PZERO); 2905 KNOTE_LOCKED(&clone->sel_read.si_note, 0); 2906 } 2907 } 2908 2909 /* If devd(8) is not running, immediately enter the sleep state. */ 2910 if (!devctl_process_running()) { 2911 ACPI_UNLOCK(acpi); 2912 status = acpi_EnterSleepState(sc, state); 2913 return (ACPI_SUCCESS(status) ? 0 : ENXIO); 2914 } 2915 2916 /* 2917 * Set a timeout to fire if userland doesn't ack the suspend request 2918 * in time. This way we still eventually go to sleep if we were 2919 * overheating or running low on battery, even if userland is hung. 2920 * We cancel this timeout once all userland acks are in or the 2921 * suspend request is aborted. 2922 */ 2923 callout_reset(&sc->susp_force_to, 10 * hz, acpi_sleep_force, sc); 2924 ACPI_UNLOCK(acpi); 2925 2926 /* Now notify devd(8) also. */ 2927 acpi_UserNotify("Suspend", ACPI_ROOT_OBJECT, state); 2928 2929 return (0); 2930 #else 2931 /* This platform does not support acpi suspend/resume. */ 2932 return (EOPNOTSUPP); 2933 #endif 2934 } 2935 2936 /* 2937 * Acknowledge (or reject) a pending sleep state. The caller has 2938 * prepared for suspend and is now ready for it to proceed. If the 2939 * error argument is non-zero, it indicates suspend should be cancelled 2940 * and gives an errno value describing why. Once all votes are in, 2941 * we suspend the system. 2942 */ 2943 int 2944 acpi_AckSleepState(struct apm_clone_data *clone, int error) 2945 { 2946 #if defined(__amd64__) || defined(__i386__) 2947 struct acpi_softc *sc; 2948 int ret, sleeping; 2949 2950 /* If no pending sleep state, return an error. */ 2951 ACPI_LOCK(acpi); 2952 sc = clone->acpi_sc; 2953 if (sc->acpi_next_sstate == 0) { 2954 ACPI_UNLOCK(acpi); 2955 return (ENXIO); 2956 } 2957 2958 /* Caller wants to abort suspend process. */ 2959 if (error) { 2960 sc->acpi_next_sstate = 0; 2961 callout_stop(&sc->susp_force_to); 2962 device_printf(sc->acpi_dev, 2963 "listener on %s cancelled the pending suspend\n", 2964 devtoname(clone->cdev)); 2965 ACPI_UNLOCK(acpi); 2966 return (0); 2967 } 2968 2969 /* 2970 * Mark this device as acking the suspend request. Then, walk through 2971 * all devices, seeing if they agree yet. We only count devices that 2972 * are writable since read-only devices couldn't ack the request. 2973 */ 2974 sleeping = TRUE; 2975 clone->notify_status = APM_EV_ACKED; 2976 STAILQ_FOREACH(clone, &sc->apm_cdevs, entries) { 2977 if ((clone->flags & ACPI_EVF_WRITE) != 0 && 2978 clone->notify_status != APM_EV_ACKED) { 2979 sleeping = FALSE; 2980 break; 2981 } 2982 } 2983 2984 /* If all devices have voted "yes", we will suspend now. */ 2985 if (sleeping) 2986 callout_stop(&sc->susp_force_to); 2987 ACPI_UNLOCK(acpi); 2988 ret = 0; 2989 if (sleeping) { 2990 if (ACPI_FAILURE(acpi_EnterSleepState(sc, sc->acpi_next_sstate))) 2991 ret = ENODEV; 2992 } 2993 return (ret); 2994 #else 2995 /* This platform does not support acpi suspend/resume. */ 2996 return (EOPNOTSUPP); 2997 #endif 2998 } 2999 3000 static void 3001 acpi_sleep_enable(void *arg) 3002 { 3003 struct acpi_softc *sc = (struct acpi_softc *)arg; 3004 3005 ACPI_LOCK_ASSERT(acpi); 3006 3007 /* Reschedule if the system is not fully up and running. */ 3008 if (!AcpiGbl_SystemAwakeAndRunning) { 3009 callout_schedule(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME); 3010 return; 3011 } 3012 3013 sc->acpi_sleep_disabled = FALSE; 3014 } 3015 3016 static ACPI_STATUS 3017 acpi_sleep_disable(struct acpi_softc *sc) 3018 { 3019 ACPI_STATUS status; 3020 3021 /* Fail if the system is not fully up and running. */ 3022 if (!AcpiGbl_SystemAwakeAndRunning) 3023 return (AE_ERROR); 3024 3025 ACPI_LOCK(acpi); 3026 status = sc->acpi_sleep_disabled ? AE_ERROR : AE_OK; 3027 sc->acpi_sleep_disabled = TRUE; 3028 ACPI_UNLOCK(acpi); 3029 3030 return (status); 3031 } 3032 3033 enum acpi_sleep_state { 3034 ACPI_SS_NONE, 3035 ACPI_SS_GPE_SET, 3036 ACPI_SS_DEV_SUSPEND, 3037 ACPI_SS_SLP_PREP, 3038 ACPI_SS_SLEPT, 3039 }; 3040 3041 /* 3042 * Enter the desired system sleep state. 3043 * 3044 * Currently we support S1-S5 but S4 is only S4BIOS 3045 */ 3046 static ACPI_STATUS 3047 acpi_EnterSleepState(struct acpi_softc *sc, int state) 3048 { 3049 register_t intr; 3050 ACPI_STATUS status; 3051 ACPI_EVENT_STATUS power_button_status; 3052 enum acpi_sleep_state slp_state; 3053 int sleep_result; 3054 3055 ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state); 3056 3057 if (state < ACPI_STATE_S1 || state > ACPI_S_STATES_MAX) 3058 return_ACPI_STATUS (AE_BAD_PARAMETER); 3059 if (!acpi_sleep_states[state]) { 3060 device_printf(sc->acpi_dev, "Sleep state S%d not supported by BIOS\n", 3061 state); 3062 return (AE_SUPPORT); 3063 } 3064 3065 /* Re-entry once we're suspending is not allowed. */ 3066 status = acpi_sleep_disable(sc); 3067 if (ACPI_FAILURE(status)) { 3068 device_printf(sc->acpi_dev, 3069 "suspend request ignored (not ready yet)\n"); 3070 return (status); 3071 } 3072 3073 if (state == ACPI_STATE_S5) { 3074 /* 3075 * Shut down cleanly and power off. This will call us back through the 3076 * shutdown handlers. 3077 */ 3078 shutdown_nice(RB_POWEROFF); 3079 return_ACPI_STATUS (AE_OK); 3080 } 3081 3082 EVENTHANDLER_INVOKE(power_suspend_early); 3083 stop_all_proc(); 3084 EVENTHANDLER_INVOKE(power_suspend); 3085 3086 #ifdef EARLY_AP_STARTUP 3087 MPASS(mp_ncpus == 1 || smp_started); 3088 thread_lock(curthread); 3089 sched_bind(curthread, 0); 3090 thread_unlock(curthread); 3091 #else 3092 if (smp_started) { 3093 thread_lock(curthread); 3094 sched_bind(curthread, 0); 3095 thread_unlock(curthread); 3096 } 3097 #endif 3098 3099 /* 3100 * Be sure to hold Giant across DEVICE_SUSPEND/RESUME since non-MPSAFE 3101 * drivers need this. 3102 */ 3103 mtx_lock(&Giant); 3104 3105 slp_state = ACPI_SS_NONE; 3106 3107 sc->acpi_sstate = state; 3108 3109 /* Enable any GPEs as appropriate and requested by the user. */ 3110 acpi_wake_prep_walk(state); 3111 slp_state = ACPI_SS_GPE_SET; 3112 3113 /* 3114 * Inform all devices that we are going to sleep. If at least one 3115 * device fails, DEVICE_SUSPEND() automatically resumes the tree. 3116 * 3117 * XXX Note that a better two-pass approach with a 'veto' pass 3118 * followed by a "real thing" pass would be better, but the current 3119 * bus interface does not provide for this. 3120 */ 3121 if (DEVICE_SUSPEND(root_bus) != 0) { 3122 device_printf(sc->acpi_dev, "device_suspend failed\n"); 3123 goto backout; 3124 } 3125 slp_state = ACPI_SS_DEV_SUSPEND; 3126 3127 status = AcpiEnterSleepStatePrep(state); 3128 if (ACPI_FAILURE(status)) { 3129 device_printf(sc->acpi_dev, "AcpiEnterSleepStatePrep failed - %s\n", 3130 AcpiFormatException(status)); 3131 goto backout; 3132 } 3133 slp_state = ACPI_SS_SLP_PREP; 3134 3135 if (sc->acpi_sleep_delay > 0) 3136 DELAY(sc->acpi_sleep_delay * 1000000); 3137 3138 suspendclock(); 3139 intr = intr_disable(); 3140 if (state != ACPI_STATE_S1) { 3141 sleep_result = acpi_sleep_machdep(sc, state); 3142 acpi_wakeup_machdep(sc, state, sleep_result, 0); 3143 3144 /* 3145 * XXX According to ACPI specification SCI_EN bit should be restored 3146 * by ACPI platform (BIOS, firmware) to its pre-sleep state. 3147 * Unfortunately some BIOSes fail to do that and that leads to 3148 * unexpected and serious consequences during wake up like a system 3149 * getting stuck in SMI handlers. 3150 * This hack is picked up from Linux, which claims that it follows 3151 * Windows behavior. 3152 */ 3153 if (sleep_result == 1 && state != ACPI_STATE_S4) 3154 AcpiWriteBitRegister(ACPI_BITREG_SCI_ENABLE, ACPI_ENABLE_EVENT); 3155 3156 if (sleep_result == 1 && state == ACPI_STATE_S3) { 3157 /* 3158 * Prevent mis-interpretation of the wakeup by power button 3159 * as a request for power off. 3160 * Ideally we should post an appropriate wakeup event, 3161 * perhaps using acpi_event_power_button_wake or alike. 3162 * 3163 * Clearing of power button status after wakeup is mandated 3164 * by ACPI specification in section "Fixed Power Button". 3165 * 3166 * XXX As of ACPICA 20121114 AcpiGetEventStatus provides 3167 * status as 0/1 corressponding to inactive/active despite 3168 * its type being ACPI_EVENT_STATUS. In other words, 3169 * we should not test for ACPI_EVENT_FLAG_SET for time being. 3170 */ 3171 if (ACPI_SUCCESS(AcpiGetEventStatus(ACPI_EVENT_POWER_BUTTON, 3172 &power_button_status)) && power_button_status != 0) { 3173 AcpiClearEvent(ACPI_EVENT_POWER_BUTTON); 3174 device_printf(sc->acpi_dev, 3175 "cleared fixed power button status\n"); 3176 } 3177 } 3178 3179 intr_restore(intr); 3180 3181 /* call acpi_wakeup_machdep() again with interrupt enabled */ 3182 acpi_wakeup_machdep(sc, state, sleep_result, 1); 3183 3184 AcpiLeaveSleepStatePrep(state); 3185 3186 if (sleep_result == -1) 3187 goto backout; 3188 3189 /* Re-enable ACPI hardware on wakeup from sleep state 4. */ 3190 if (state == ACPI_STATE_S4) 3191 AcpiEnable(); 3192 } else { 3193 status = AcpiEnterSleepState(state); 3194 intr_restore(intr); 3195 AcpiLeaveSleepStatePrep(state); 3196 if (ACPI_FAILURE(status)) { 3197 device_printf(sc->acpi_dev, "AcpiEnterSleepState failed - %s\n", 3198 AcpiFormatException(status)); 3199 goto backout; 3200 } 3201 } 3202 slp_state = ACPI_SS_SLEPT; 3203 3204 /* 3205 * Back out state according to how far along we got in the suspend 3206 * process. This handles both the error and success cases. 3207 */ 3208 backout: 3209 if (slp_state >= ACPI_SS_SLP_PREP) 3210 resumeclock(); 3211 if (slp_state >= ACPI_SS_GPE_SET) { 3212 acpi_wake_prep_walk(state); 3213 sc->acpi_sstate = ACPI_STATE_S0; 3214 } 3215 if (slp_state >= ACPI_SS_DEV_SUSPEND) 3216 DEVICE_RESUME(root_bus); 3217 if (slp_state >= ACPI_SS_SLP_PREP) 3218 AcpiLeaveSleepState(state); 3219 if (slp_state >= ACPI_SS_SLEPT) { 3220 #if defined(__i386__) || defined(__amd64__) 3221 /* NB: we are still using ACPI timecounter at this point. */ 3222 resume_TSC(); 3223 #endif 3224 acpi_resync_clock(sc); 3225 acpi_enable_fixed_events(sc); 3226 } 3227 sc->acpi_next_sstate = 0; 3228 3229 mtx_unlock(&Giant); 3230 3231 #ifdef EARLY_AP_STARTUP 3232 thread_lock(curthread); 3233 sched_unbind(curthread); 3234 thread_unlock(curthread); 3235 #else 3236 if (smp_started) { 3237 thread_lock(curthread); 3238 sched_unbind(curthread); 3239 thread_unlock(curthread); 3240 } 3241 #endif 3242 3243 resume_all_proc(); 3244 3245 EVENTHANDLER_INVOKE(power_resume); 3246 3247 /* Allow another sleep request after a while. */ 3248 callout_schedule(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME); 3249 3250 /* Run /etc/rc.resume after we are back. */ 3251 if (devctl_process_running()) 3252 acpi_UserNotify("Resume", ACPI_ROOT_OBJECT, state); 3253 3254 return_ACPI_STATUS (status); 3255 } 3256 3257 static void 3258 acpi_resync_clock(struct acpi_softc *sc) 3259 { 3260 3261 /* 3262 * Warm up timecounter again and reset system clock. 3263 */ 3264 (void)timecounter->tc_get_timecount(timecounter); 3265 inittodr(time_second + sc->acpi_sleep_delay); 3266 } 3267 3268 /* Enable or disable the device's wake GPE. */ 3269 int 3270 acpi_wake_set_enable(device_t dev, int enable) 3271 { 3272 struct acpi_prw_data prw; 3273 ACPI_STATUS status; 3274 int flags; 3275 3276 /* Make sure the device supports waking the system and get the GPE. */ 3277 if (acpi_parse_prw(acpi_get_handle(dev), &prw) != 0) 3278 return (ENXIO); 3279 3280 flags = acpi_get_flags(dev); 3281 if (enable) { 3282 status = AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, 3283 ACPI_GPE_ENABLE); 3284 if (ACPI_FAILURE(status)) { 3285 device_printf(dev, "enable wake failed\n"); 3286 return (ENXIO); 3287 } 3288 acpi_set_flags(dev, flags | ACPI_FLAG_WAKE_ENABLED); 3289 } else { 3290 status = AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, 3291 ACPI_GPE_DISABLE); 3292 if (ACPI_FAILURE(status)) { 3293 device_printf(dev, "disable wake failed\n"); 3294 return (ENXIO); 3295 } 3296 acpi_set_flags(dev, flags & ~ACPI_FLAG_WAKE_ENABLED); 3297 } 3298 3299 return (0); 3300 } 3301 3302 static int 3303 acpi_wake_sleep_prep(ACPI_HANDLE handle, int sstate) 3304 { 3305 struct acpi_prw_data prw; 3306 device_t dev; 3307 3308 /* Check that this is a wake-capable device and get its GPE. */ 3309 if (acpi_parse_prw(handle, &prw) != 0) 3310 return (ENXIO); 3311 dev = acpi_get_device(handle); 3312 3313 /* 3314 * The destination sleep state must be less than (i.e., higher power) 3315 * or equal to the value specified by _PRW. If this GPE cannot be 3316 * enabled for the next sleep state, then disable it. If it can and 3317 * the user requested it be enabled, turn on any required power resources 3318 * and set _PSW. 3319 */ 3320 if (sstate > prw.lowest_wake) { 3321 AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, ACPI_GPE_DISABLE); 3322 if (bootverbose) 3323 device_printf(dev, "wake_prep disabled wake for %s (S%d)\n", 3324 acpi_name(handle), sstate); 3325 } else if (dev && (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) != 0) { 3326 acpi_pwr_wake_enable(handle, 1); 3327 acpi_SetInteger(handle, "_PSW", 1); 3328 if (bootverbose) 3329 device_printf(dev, "wake_prep enabled for %s (S%d)\n", 3330 acpi_name(handle), sstate); 3331 } 3332 3333 return (0); 3334 } 3335 3336 static int 3337 acpi_wake_run_prep(ACPI_HANDLE handle, int sstate) 3338 { 3339 struct acpi_prw_data prw; 3340 device_t dev; 3341 3342 /* 3343 * Check that this is a wake-capable device and get its GPE. Return 3344 * now if the user didn't enable this device for wake. 3345 */ 3346 if (acpi_parse_prw(handle, &prw) != 0) 3347 return (ENXIO); 3348 dev = acpi_get_device(handle); 3349 if (dev == NULL || (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) == 0) 3350 return (0); 3351 3352 /* 3353 * If this GPE couldn't be enabled for the previous sleep state, it was 3354 * disabled before going to sleep so re-enable it. If it was enabled, 3355 * clear _PSW and turn off any power resources it used. 3356 */ 3357 if (sstate > prw.lowest_wake) { 3358 AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, ACPI_GPE_ENABLE); 3359 if (bootverbose) 3360 device_printf(dev, "run_prep re-enabled %s\n", acpi_name(handle)); 3361 } else { 3362 acpi_SetInteger(handle, "_PSW", 0); 3363 acpi_pwr_wake_enable(handle, 0); 3364 if (bootverbose) 3365 device_printf(dev, "run_prep cleaned up for %s\n", 3366 acpi_name(handle)); 3367 } 3368 3369 return (0); 3370 } 3371 3372 static ACPI_STATUS 3373 acpi_wake_prep(ACPI_HANDLE handle, UINT32 level, void *context, void **status) 3374 { 3375 int sstate; 3376 3377 /* If suspending, run the sleep prep function, otherwise wake. */ 3378 sstate = *(int *)context; 3379 if (AcpiGbl_SystemAwakeAndRunning) 3380 acpi_wake_sleep_prep(handle, sstate); 3381 else 3382 acpi_wake_run_prep(handle, sstate); 3383 return (AE_OK); 3384 } 3385 3386 /* Walk the tree rooted at acpi0 to prep devices for suspend/resume. */ 3387 static int 3388 acpi_wake_prep_walk(int sstate) 3389 { 3390 ACPI_HANDLE sb_handle; 3391 3392 if (ACPI_SUCCESS(AcpiGetHandle(ACPI_ROOT_OBJECT, "\\_SB_", &sb_handle))) 3393 AcpiWalkNamespace(ACPI_TYPE_DEVICE, sb_handle, 100, 3394 acpi_wake_prep, NULL, &sstate, NULL); 3395 return (0); 3396 } 3397 3398 /* Walk the tree rooted at acpi0 to attach per-device wake sysctls. */ 3399 static int 3400 acpi_wake_sysctl_walk(device_t dev) 3401 { 3402 int error, i, numdevs; 3403 device_t *devlist; 3404 device_t child; 3405 ACPI_STATUS status; 3406 3407 error = device_get_children(dev, &devlist, &numdevs); 3408 if (error != 0 || numdevs == 0) { 3409 if (numdevs == 0) 3410 free(devlist, M_TEMP); 3411 return (error); 3412 } 3413 for (i = 0; i < numdevs; i++) { 3414 child = devlist[i]; 3415 acpi_wake_sysctl_walk(child); 3416 if (!device_is_attached(child)) 3417 continue; 3418 status = AcpiEvaluateObject(acpi_get_handle(child), "_PRW", NULL, NULL); 3419 if (ACPI_SUCCESS(status)) { 3420 SYSCTL_ADD_PROC(device_get_sysctl_ctx(child), 3421 SYSCTL_CHILDREN(device_get_sysctl_tree(child)), OID_AUTO, 3422 "wake", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, child, 0, 3423 acpi_wake_set_sysctl, "I", "Device set to wake the system"); 3424 } 3425 } 3426 free(devlist, M_TEMP); 3427 3428 return (0); 3429 } 3430 3431 /* Enable or disable wake from userland. */ 3432 static int 3433 acpi_wake_set_sysctl(SYSCTL_HANDLER_ARGS) 3434 { 3435 int enable, error; 3436 device_t dev; 3437 3438 dev = (device_t)arg1; 3439 enable = (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) ? 1 : 0; 3440 3441 error = sysctl_handle_int(oidp, &enable, 0, req); 3442 if (error != 0 || req->newptr == NULL) 3443 return (error); 3444 if (enable != 0 && enable != 1) 3445 return (EINVAL); 3446 3447 return (acpi_wake_set_enable(dev, enable)); 3448 } 3449 3450 /* Parse a device's _PRW into a structure. */ 3451 int 3452 acpi_parse_prw(ACPI_HANDLE h, struct acpi_prw_data *prw) 3453 { 3454 ACPI_STATUS status; 3455 ACPI_BUFFER prw_buffer; 3456 ACPI_OBJECT *res, *res2; 3457 int error, i, power_count; 3458 3459 if (h == NULL || prw == NULL) 3460 return (EINVAL); 3461 3462 /* 3463 * The _PRW object (7.2.9) is only required for devices that have the 3464 * ability to wake the system from a sleeping state. 3465 */ 3466 error = EINVAL; 3467 prw_buffer.Pointer = NULL; 3468 prw_buffer.Length = ACPI_ALLOCATE_BUFFER; 3469 status = AcpiEvaluateObject(h, "_PRW", NULL, &prw_buffer); 3470 if (ACPI_FAILURE(status)) 3471 return (ENOENT); 3472 res = (ACPI_OBJECT *)prw_buffer.Pointer; 3473 if (res == NULL) 3474 return (ENOENT); 3475 if (!ACPI_PKG_VALID(res, 2)) 3476 goto out; 3477 3478 /* 3479 * Element 1 of the _PRW object: 3480 * The lowest power system sleeping state that can be entered while still 3481 * providing wake functionality. The sleeping state being entered must 3482 * be less than (i.e., higher power) or equal to this value. 3483 */ 3484 if (acpi_PkgInt32(res, 1, &prw->lowest_wake) != 0) 3485 goto out; 3486 3487 /* 3488 * Element 0 of the _PRW object: 3489 */ 3490 switch (res->Package.Elements[0].Type) { 3491 case ACPI_TYPE_INTEGER: 3492 /* 3493 * If the data type of this package element is numeric, then this 3494 * _PRW package element is the bit index in the GPEx_EN, in the 3495 * GPE blocks described in the FADT, of the enable bit that is 3496 * enabled for the wake event. 3497 */ 3498 prw->gpe_handle = NULL; 3499 prw->gpe_bit = res->Package.Elements[0].Integer.Value; 3500 error = 0; 3501 break; 3502 case ACPI_TYPE_PACKAGE: 3503 /* 3504 * If the data type of this package element is a package, then this 3505 * _PRW package element is itself a package containing two 3506 * elements. The first is an object reference to the GPE Block 3507 * device that contains the GPE that will be triggered by the wake 3508 * event. The second element is numeric and it contains the bit 3509 * index in the GPEx_EN, in the GPE Block referenced by the 3510 * first element in the package, of the enable bit that is enabled for 3511 * the wake event. 3512 * 3513 * For example, if this field is a package then it is of the form: 3514 * Package() {\_SB.PCI0.ISA.GPE, 2} 3515 */ 3516 res2 = &res->Package.Elements[0]; 3517 if (!ACPI_PKG_VALID(res2, 2)) 3518 goto out; 3519 prw->gpe_handle = acpi_GetReference(NULL, &res2->Package.Elements[0]); 3520 if (prw->gpe_handle == NULL) 3521 goto out; 3522 if (acpi_PkgInt32(res2, 1, &prw->gpe_bit) != 0) 3523 goto out; 3524 error = 0; 3525 break; 3526 default: 3527 goto out; 3528 } 3529 3530 /* Elements 2 to N of the _PRW object are power resources. */ 3531 power_count = res->Package.Count - 2; 3532 if (power_count > ACPI_PRW_MAX_POWERRES) { 3533 printf("ACPI device %s has too many power resources\n", acpi_name(h)); 3534 power_count = 0; 3535 } 3536 prw->power_res_count = power_count; 3537 for (i = 0; i < power_count; i++) 3538 prw->power_res[i] = res->Package.Elements[i]; 3539 3540 out: 3541 if (prw_buffer.Pointer != NULL) 3542 AcpiOsFree(prw_buffer.Pointer); 3543 return (error); 3544 } 3545 3546 /* 3547 * ACPI Event Handlers 3548 */ 3549 3550 /* System Event Handlers (registered by EVENTHANDLER_REGISTER) */ 3551 3552 static void 3553 acpi_system_eventhandler_sleep(void *arg, int state) 3554 { 3555 struct acpi_softc *sc = (struct acpi_softc *)arg; 3556 int ret; 3557 3558 ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state); 3559 3560 /* Check if button action is disabled or unknown. */ 3561 if (state == ACPI_STATE_UNKNOWN) 3562 return; 3563 3564 /* Request that the system prepare to enter the given suspend state. */ 3565 ret = acpi_ReqSleepState(sc, state); 3566 if (ret != 0) 3567 device_printf(sc->acpi_dev, 3568 "request to enter state S%d failed (err %d)\n", state, ret); 3569 3570 return_VOID; 3571 } 3572 3573 static void 3574 acpi_system_eventhandler_wakeup(void *arg, int state) 3575 { 3576 3577 ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state); 3578 3579 /* Currently, nothing to do for wakeup. */ 3580 3581 return_VOID; 3582 } 3583 3584 /* 3585 * ACPICA Event Handlers (FixedEvent, also called from button notify handler) 3586 */ 3587 static void 3588 acpi_invoke_sleep_eventhandler(void *context) 3589 { 3590 3591 EVENTHANDLER_INVOKE(acpi_sleep_event, *(int *)context); 3592 } 3593 3594 static void 3595 acpi_invoke_wake_eventhandler(void *context) 3596 { 3597 3598 EVENTHANDLER_INVOKE(acpi_wakeup_event, *(int *)context); 3599 } 3600 3601 UINT32 3602 acpi_event_power_button_sleep(void *context) 3603 { 3604 struct acpi_softc *sc = (struct acpi_softc *)context; 3605 3606 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3607 3608 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3609 acpi_invoke_sleep_eventhandler, &sc->acpi_power_button_sx))) 3610 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); 3611 return_VALUE (ACPI_INTERRUPT_HANDLED); 3612 } 3613 3614 UINT32 3615 acpi_event_power_button_wake(void *context) 3616 { 3617 struct acpi_softc *sc = (struct acpi_softc *)context; 3618 3619 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3620 3621 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3622 acpi_invoke_wake_eventhandler, &sc->acpi_power_button_sx))) 3623 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); 3624 return_VALUE (ACPI_INTERRUPT_HANDLED); 3625 } 3626 3627 UINT32 3628 acpi_event_sleep_button_sleep(void *context) 3629 { 3630 struct acpi_softc *sc = (struct acpi_softc *)context; 3631 3632 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3633 3634 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3635 acpi_invoke_sleep_eventhandler, &sc->acpi_sleep_button_sx))) 3636 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); 3637 return_VALUE (ACPI_INTERRUPT_HANDLED); 3638 } 3639 3640 UINT32 3641 acpi_event_sleep_button_wake(void *context) 3642 { 3643 struct acpi_softc *sc = (struct acpi_softc *)context; 3644 3645 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3646 3647 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3648 acpi_invoke_wake_eventhandler, &sc->acpi_sleep_button_sx))) 3649 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); 3650 return_VALUE (ACPI_INTERRUPT_HANDLED); 3651 } 3652 3653 /* 3654 * XXX This static buffer is suboptimal. There is no locking so only 3655 * use this for single-threaded callers. 3656 */ 3657 char * 3658 acpi_name(ACPI_HANDLE handle) 3659 { 3660 ACPI_BUFFER buf; 3661 static char data[256]; 3662 3663 buf.Length = sizeof(data); 3664 buf.Pointer = data; 3665 3666 if (handle && ACPI_SUCCESS(AcpiGetName(handle, ACPI_FULL_PATHNAME, &buf))) 3667 return (data); 3668 return ("(unknown)"); 3669 } 3670 3671 /* 3672 * Debugging/bug-avoidance. Avoid trying to fetch info on various 3673 * parts of the namespace. 3674 */ 3675 int 3676 acpi_avoid(ACPI_HANDLE handle) 3677 { 3678 char *cp, *env, *np; 3679 int len; 3680 3681 np = acpi_name(handle); 3682 if (*np == '\\') 3683 np++; 3684 if ((env = kern_getenv("debug.acpi.avoid")) == NULL) 3685 return (0); 3686 3687 /* Scan the avoid list checking for a match */ 3688 cp = env; 3689 for (;;) { 3690 while (*cp != 0 && isspace(*cp)) 3691 cp++; 3692 if (*cp == 0) 3693 break; 3694 len = 0; 3695 while (cp[len] != 0 && !isspace(cp[len])) 3696 len++; 3697 if (!strncmp(cp, np, len)) { 3698 freeenv(env); 3699 return(1); 3700 } 3701 cp += len; 3702 } 3703 freeenv(env); 3704 3705 return (0); 3706 } 3707 3708 /* 3709 * Debugging/bug-avoidance. Disable ACPI subsystem components. 3710 */ 3711 int 3712 acpi_disabled(char *subsys) 3713 { 3714 char *cp, *env; 3715 int len; 3716 3717 if ((env = kern_getenv("debug.acpi.disabled")) == NULL) 3718 return (0); 3719 if (strcmp(env, "all") == 0) { 3720 freeenv(env); 3721 return (1); 3722 } 3723 3724 /* Scan the disable list, checking for a match. */ 3725 cp = env; 3726 for (;;) { 3727 while (*cp != '\0' && isspace(*cp)) 3728 cp++; 3729 if (*cp == '\0') 3730 break; 3731 len = 0; 3732 while (cp[len] != '\0' && !isspace(cp[len])) 3733 len++; 3734 if (strncmp(cp, subsys, len) == 0) { 3735 freeenv(env); 3736 return (1); 3737 } 3738 cp += len; 3739 } 3740 freeenv(env); 3741 3742 return (0); 3743 } 3744 3745 static void 3746 acpi_lookup(void *arg, const char *name, device_t *dev) 3747 { 3748 ACPI_HANDLE handle; 3749 3750 if (*dev != NULL) 3751 return; 3752 3753 /* 3754 * Allow any handle name that is specified as an absolute path and 3755 * starts with '\'. We could restrict this to \_SB and friends, 3756 * but see acpi_probe_children() for notes on why we scan the entire 3757 * namespace for devices. 3758 * 3759 * XXX: The pathname argument to AcpiGetHandle() should be fixed to 3760 * be const. 3761 */ 3762 if (name[0] != '\\') 3763 return; 3764 if (ACPI_FAILURE(AcpiGetHandle(ACPI_ROOT_OBJECT, __DECONST(char *, name), 3765 &handle))) 3766 return; 3767 *dev = acpi_get_device(handle); 3768 } 3769 3770 /* 3771 * Control interface. 3772 * 3773 * We multiplex ioctls for all participating ACPI devices here. Individual 3774 * drivers wanting to be accessible via /dev/acpi should use the 3775 * register/deregister interface to make their handlers visible. 3776 */ 3777 struct acpi_ioctl_hook 3778 { 3779 TAILQ_ENTRY(acpi_ioctl_hook) link; 3780 u_long cmd; 3781 acpi_ioctl_fn fn; 3782 void *arg; 3783 }; 3784 3785 static TAILQ_HEAD(,acpi_ioctl_hook) acpi_ioctl_hooks; 3786 static int acpi_ioctl_hooks_initted; 3787 3788 int 3789 acpi_register_ioctl(u_long cmd, acpi_ioctl_fn fn, void *arg) 3790 { 3791 struct acpi_ioctl_hook *hp; 3792 3793 if ((hp = malloc(sizeof(*hp), M_ACPIDEV, M_NOWAIT)) == NULL) 3794 return (ENOMEM); 3795 hp->cmd = cmd; 3796 hp->fn = fn; 3797 hp->arg = arg; 3798 3799 ACPI_LOCK(acpi); 3800 if (acpi_ioctl_hooks_initted == 0) { 3801 TAILQ_INIT(&acpi_ioctl_hooks); 3802 acpi_ioctl_hooks_initted = 1; 3803 } 3804 TAILQ_INSERT_TAIL(&acpi_ioctl_hooks, hp, link); 3805 ACPI_UNLOCK(acpi); 3806 3807 return (0); 3808 } 3809 3810 void 3811 acpi_deregister_ioctl(u_long cmd, acpi_ioctl_fn fn) 3812 { 3813 struct acpi_ioctl_hook *hp; 3814 3815 ACPI_LOCK(acpi); 3816 TAILQ_FOREACH(hp, &acpi_ioctl_hooks, link) 3817 if (hp->cmd == cmd && hp->fn == fn) 3818 break; 3819 3820 if (hp != NULL) { 3821 TAILQ_REMOVE(&acpi_ioctl_hooks, hp, link); 3822 free(hp, M_ACPIDEV); 3823 } 3824 ACPI_UNLOCK(acpi); 3825 } 3826 3827 static int 3828 acpiopen(struct cdev *dev, int flag, int fmt, struct thread *td) 3829 { 3830 return (0); 3831 } 3832 3833 static int 3834 acpiclose(struct cdev *dev, int flag, int fmt, struct thread *td) 3835 { 3836 return (0); 3837 } 3838 3839 static int 3840 acpiioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 3841 { 3842 struct acpi_softc *sc; 3843 struct acpi_ioctl_hook *hp; 3844 int error, state; 3845 3846 error = 0; 3847 hp = NULL; 3848 sc = dev->si_drv1; 3849 3850 /* 3851 * Scan the list of registered ioctls, looking for handlers. 3852 */ 3853 ACPI_LOCK(acpi); 3854 if (acpi_ioctl_hooks_initted) 3855 TAILQ_FOREACH(hp, &acpi_ioctl_hooks, link) { 3856 if (hp->cmd == cmd) 3857 break; 3858 } 3859 ACPI_UNLOCK(acpi); 3860 if (hp) 3861 return (hp->fn(cmd, addr, hp->arg)); 3862 3863 /* 3864 * Core ioctls are not permitted for non-writable user. 3865 * Currently, other ioctls just fetch information. 3866 * Not changing system behavior. 3867 */ 3868 if ((flag & FWRITE) == 0) 3869 return (EPERM); 3870 3871 /* Core system ioctls. */ 3872 switch (cmd) { 3873 case ACPIIO_REQSLPSTATE: 3874 state = *(int *)addr; 3875 if (state != ACPI_STATE_S5) 3876 return (acpi_ReqSleepState(sc, state)); 3877 device_printf(sc->acpi_dev, "power off via acpi ioctl not supported\n"); 3878 error = EOPNOTSUPP; 3879 break; 3880 case ACPIIO_ACKSLPSTATE: 3881 error = *(int *)addr; 3882 error = acpi_AckSleepState(sc->acpi_clone, error); 3883 break; 3884 case ACPIIO_SETSLPSTATE: /* DEPRECATED */ 3885 state = *(int *)addr; 3886 if (state < ACPI_STATE_S0 || state > ACPI_S_STATES_MAX) 3887 return (EINVAL); 3888 if (!acpi_sleep_states[state]) 3889 return (EOPNOTSUPP); 3890 if (ACPI_FAILURE(acpi_SetSleepState(sc, state))) 3891 error = ENXIO; 3892 break; 3893 default: 3894 error = ENXIO; 3895 break; 3896 } 3897 3898 return (error); 3899 } 3900 3901 static int 3902 acpi_sname2sstate(const char *sname) 3903 { 3904 int sstate; 3905 3906 if (toupper(sname[0]) == 'S') { 3907 sstate = sname[1] - '0'; 3908 if (sstate >= ACPI_STATE_S0 && sstate <= ACPI_STATE_S5 && 3909 sname[2] == '\0') 3910 return (sstate); 3911 } else if (strcasecmp(sname, "NONE") == 0) 3912 return (ACPI_STATE_UNKNOWN); 3913 return (-1); 3914 } 3915 3916 static const char * 3917 acpi_sstate2sname(int sstate) 3918 { 3919 static const char *snames[] = { "S0", "S1", "S2", "S3", "S4", "S5" }; 3920 3921 if (sstate >= ACPI_STATE_S0 && sstate <= ACPI_STATE_S5) 3922 return (snames[sstate]); 3923 else if (sstate == ACPI_STATE_UNKNOWN) 3924 return ("NONE"); 3925 return (NULL); 3926 } 3927 3928 static int 3929 acpi_supported_sleep_state_sysctl(SYSCTL_HANDLER_ARGS) 3930 { 3931 int error; 3932 struct sbuf sb; 3933 UINT8 state; 3934 3935 sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND); 3936 for (state = ACPI_STATE_S1; state < ACPI_S_STATE_COUNT; state++) 3937 if (acpi_sleep_states[state]) 3938 sbuf_printf(&sb, "%s ", acpi_sstate2sname(state)); 3939 sbuf_trim(&sb); 3940 sbuf_finish(&sb); 3941 error = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req); 3942 sbuf_delete(&sb); 3943 return (error); 3944 } 3945 3946 static int 3947 acpi_sleep_state_sysctl(SYSCTL_HANDLER_ARGS) 3948 { 3949 char sleep_state[10]; 3950 int error, new_state, old_state; 3951 3952 old_state = *(int *)oidp->oid_arg1; 3953 strlcpy(sleep_state, acpi_sstate2sname(old_state), sizeof(sleep_state)); 3954 error = sysctl_handle_string(oidp, sleep_state, sizeof(sleep_state), req); 3955 if (error == 0 && req->newptr != NULL) { 3956 new_state = acpi_sname2sstate(sleep_state); 3957 if (new_state < ACPI_STATE_S1) 3958 return (EINVAL); 3959 if (new_state < ACPI_S_STATE_COUNT && !acpi_sleep_states[new_state]) 3960 return (EOPNOTSUPP); 3961 if (new_state != old_state) 3962 *(int *)oidp->oid_arg1 = new_state; 3963 } 3964 return (error); 3965 } 3966 3967 /* Inform devctl(4) when we receive a Notify. */ 3968 void 3969 acpi_UserNotify(const char *subsystem, ACPI_HANDLE h, uint8_t notify) 3970 { 3971 char notify_buf[16]; 3972 ACPI_BUFFER handle_buf; 3973 ACPI_STATUS status; 3974 3975 if (subsystem == NULL) 3976 return; 3977 3978 handle_buf.Pointer = NULL; 3979 handle_buf.Length = ACPI_ALLOCATE_BUFFER; 3980 status = AcpiNsHandleToPathname(h, &handle_buf, FALSE); 3981 if (ACPI_FAILURE(status)) 3982 return; 3983 snprintf(notify_buf, sizeof(notify_buf), "notify=0x%02x", notify); 3984 devctl_notify("ACPI", subsystem, handle_buf.Pointer, notify_buf); 3985 AcpiOsFree(handle_buf.Pointer); 3986 } 3987 3988 #ifdef ACPI_DEBUG 3989 /* 3990 * Support for parsing debug options from the kernel environment. 3991 * 3992 * Bits may be set in the AcpiDbgLayer and AcpiDbgLevel debug registers 3993 * by specifying the names of the bits in the debug.acpi.layer and 3994 * debug.acpi.level environment variables. Bits may be unset by 3995 * prefixing the bit name with !. 3996 */ 3997 struct debugtag 3998 { 3999 char *name; 4000 UINT32 value; 4001 }; 4002 4003 static struct debugtag dbg_layer[] = { 4004 {"ACPI_UTILITIES", ACPI_UTILITIES}, 4005 {"ACPI_HARDWARE", ACPI_HARDWARE}, 4006 {"ACPI_EVENTS", ACPI_EVENTS}, 4007 {"ACPI_TABLES", ACPI_TABLES}, 4008 {"ACPI_NAMESPACE", ACPI_NAMESPACE}, 4009 {"ACPI_PARSER", ACPI_PARSER}, 4010 {"ACPI_DISPATCHER", ACPI_DISPATCHER}, 4011 {"ACPI_EXECUTER", ACPI_EXECUTER}, 4012 {"ACPI_RESOURCES", ACPI_RESOURCES}, 4013 {"ACPI_CA_DEBUGGER", ACPI_CA_DEBUGGER}, 4014 {"ACPI_OS_SERVICES", ACPI_OS_SERVICES}, 4015 {"ACPI_CA_DISASSEMBLER", ACPI_CA_DISASSEMBLER}, 4016 {"ACPI_ALL_COMPONENTS", ACPI_ALL_COMPONENTS}, 4017 4018 {"ACPI_AC_ADAPTER", ACPI_AC_ADAPTER}, 4019 {"ACPI_BATTERY", ACPI_BATTERY}, 4020 {"ACPI_BUS", ACPI_BUS}, 4021 {"ACPI_BUTTON", ACPI_BUTTON}, 4022 {"ACPI_EC", ACPI_EC}, 4023 {"ACPI_FAN", ACPI_FAN}, 4024 {"ACPI_POWERRES", ACPI_POWERRES}, 4025 {"ACPI_PROCESSOR", ACPI_PROCESSOR}, 4026 {"ACPI_THERMAL", ACPI_THERMAL}, 4027 {"ACPI_TIMER", ACPI_TIMER}, 4028 {"ACPI_ALL_DRIVERS", ACPI_ALL_DRIVERS}, 4029 {NULL, 0} 4030 }; 4031 4032 static struct debugtag dbg_level[] = { 4033 {"ACPI_LV_INIT", ACPI_LV_INIT}, 4034 {"ACPI_LV_DEBUG_OBJECT", ACPI_LV_DEBUG_OBJECT}, 4035 {"ACPI_LV_INFO", ACPI_LV_INFO}, 4036 {"ACPI_LV_REPAIR", ACPI_LV_REPAIR}, 4037 {"ACPI_LV_ALL_EXCEPTIONS", ACPI_LV_ALL_EXCEPTIONS}, 4038 4039 /* Trace verbosity level 1 [Standard Trace Level] */ 4040 {"ACPI_LV_INIT_NAMES", ACPI_LV_INIT_NAMES}, 4041 {"ACPI_LV_PARSE", ACPI_LV_PARSE}, 4042 {"ACPI_LV_LOAD", ACPI_LV_LOAD}, 4043 {"ACPI_LV_DISPATCH", ACPI_LV_DISPATCH}, 4044 {"ACPI_LV_EXEC", ACPI_LV_EXEC}, 4045 {"ACPI_LV_NAMES", ACPI_LV_NAMES}, 4046 {"ACPI_LV_OPREGION", ACPI_LV_OPREGION}, 4047 {"ACPI_LV_BFIELD", ACPI_LV_BFIELD}, 4048 {"ACPI_LV_TABLES", ACPI_LV_TABLES}, 4049 {"ACPI_LV_VALUES", ACPI_LV_VALUES}, 4050 {"ACPI_LV_OBJECTS", ACPI_LV_OBJECTS}, 4051 {"ACPI_LV_RESOURCES", ACPI_LV_RESOURCES}, 4052 {"ACPI_LV_USER_REQUESTS", ACPI_LV_USER_REQUESTS}, 4053 {"ACPI_LV_PACKAGE", ACPI_LV_PACKAGE}, 4054 {"ACPI_LV_VERBOSITY1", ACPI_LV_VERBOSITY1}, 4055 4056 /* Trace verbosity level 2 [Function tracing and memory allocation] */ 4057 {"ACPI_LV_ALLOCATIONS", ACPI_LV_ALLOCATIONS}, 4058 {"ACPI_LV_FUNCTIONS", ACPI_LV_FUNCTIONS}, 4059 {"ACPI_LV_OPTIMIZATIONS", ACPI_LV_OPTIMIZATIONS}, 4060 {"ACPI_LV_VERBOSITY2", ACPI_LV_VERBOSITY2}, 4061 {"ACPI_LV_ALL", ACPI_LV_ALL}, 4062 4063 /* Trace verbosity level 3 [Threading, I/O, and Interrupts] */ 4064 {"ACPI_LV_MUTEX", ACPI_LV_MUTEX}, 4065 {"ACPI_LV_THREADS", ACPI_LV_THREADS}, 4066 {"ACPI_LV_IO", ACPI_LV_IO}, 4067 {"ACPI_LV_INTERRUPTS", ACPI_LV_INTERRUPTS}, 4068 {"ACPI_LV_VERBOSITY3", ACPI_LV_VERBOSITY3}, 4069 4070 /* Exceptionally verbose output -- also used in the global "DebugLevel" */ 4071 {"ACPI_LV_AML_DISASSEMBLE", ACPI_LV_AML_DISASSEMBLE}, 4072 {"ACPI_LV_VERBOSE_INFO", ACPI_LV_VERBOSE_INFO}, 4073 {"ACPI_LV_FULL_TABLES", ACPI_LV_FULL_TABLES}, 4074 {"ACPI_LV_EVENTS", ACPI_LV_EVENTS}, 4075 {"ACPI_LV_VERBOSE", ACPI_LV_VERBOSE}, 4076 {NULL, 0} 4077 }; 4078 4079 static void 4080 acpi_parse_debug(char *cp, struct debugtag *tag, UINT32 *flag) 4081 { 4082 char *ep; 4083 int i, l; 4084 int set; 4085 4086 while (*cp) { 4087 if (isspace(*cp)) { 4088 cp++; 4089 continue; 4090 } 4091 ep = cp; 4092 while (*ep && !isspace(*ep)) 4093 ep++; 4094 if (*cp == '!') { 4095 set = 0; 4096 cp++; 4097 if (cp == ep) 4098 continue; 4099 } else { 4100 set = 1; 4101 } 4102 l = ep - cp; 4103 for (i = 0; tag[i].name != NULL; i++) { 4104 if (!strncmp(cp, tag[i].name, l)) { 4105 if (set) 4106 *flag |= tag[i].value; 4107 else 4108 *flag &= ~tag[i].value; 4109 } 4110 } 4111 cp = ep; 4112 } 4113 } 4114 4115 static void 4116 acpi_set_debugging(void *junk) 4117 { 4118 char *layer, *level; 4119 4120 if (cold) { 4121 AcpiDbgLayer = 0; 4122 AcpiDbgLevel = 0; 4123 } 4124 4125 layer = kern_getenv("debug.acpi.layer"); 4126 level = kern_getenv("debug.acpi.level"); 4127 if (layer == NULL && level == NULL) 4128 return; 4129 4130 printf("ACPI set debug"); 4131 if (layer != NULL) { 4132 if (strcmp("NONE", layer) != 0) 4133 printf(" layer '%s'", layer); 4134 acpi_parse_debug(layer, &dbg_layer[0], &AcpiDbgLayer); 4135 freeenv(layer); 4136 } 4137 if (level != NULL) { 4138 if (strcmp("NONE", level) != 0) 4139 printf(" level '%s'", level); 4140 acpi_parse_debug(level, &dbg_level[0], &AcpiDbgLevel); 4141 freeenv(level); 4142 } 4143 printf("\n"); 4144 } 4145 4146 SYSINIT(acpi_debugging, SI_SUB_TUNABLES, SI_ORDER_ANY, acpi_set_debugging, 4147 NULL); 4148 4149 static int 4150 acpi_debug_sysctl(SYSCTL_HANDLER_ARGS) 4151 { 4152 int error, *dbg; 4153 struct debugtag *tag; 4154 struct sbuf sb; 4155 char temp[128]; 4156 4157 if (sbuf_new(&sb, NULL, 128, SBUF_AUTOEXTEND) == NULL) 4158 return (ENOMEM); 4159 if (strcmp(oidp->oid_arg1, "debug.acpi.layer") == 0) { 4160 tag = &dbg_layer[0]; 4161 dbg = &AcpiDbgLayer; 4162 } else { 4163 tag = &dbg_level[0]; 4164 dbg = &AcpiDbgLevel; 4165 } 4166 4167 /* Get old values if this is a get request. */ 4168 ACPI_SERIAL_BEGIN(acpi); 4169 if (*dbg == 0) { 4170 sbuf_cpy(&sb, "NONE"); 4171 } else if (req->newptr == NULL) { 4172 for (; tag->name != NULL; tag++) { 4173 if ((*dbg & tag->value) == tag->value) 4174 sbuf_printf(&sb, "%s ", tag->name); 4175 } 4176 } 4177 sbuf_trim(&sb); 4178 sbuf_finish(&sb); 4179 strlcpy(temp, sbuf_data(&sb), sizeof(temp)); 4180 sbuf_delete(&sb); 4181 4182 error = sysctl_handle_string(oidp, temp, sizeof(temp), req); 4183 4184 /* Check for error or no change */ 4185 if (error == 0 && req->newptr != NULL) { 4186 *dbg = 0; 4187 kern_setenv((char *)oidp->oid_arg1, temp); 4188 acpi_set_debugging(NULL); 4189 } 4190 ACPI_SERIAL_END(acpi); 4191 4192 return (error); 4193 } 4194 4195 SYSCTL_PROC(_debug_acpi, OID_AUTO, layer, 4196 CTLFLAG_RW | CTLTYPE_STRING | CTLFLAG_NEEDGIANT, "debug.acpi.layer", 0, 4197 acpi_debug_sysctl, "A", 4198 ""); 4199 SYSCTL_PROC(_debug_acpi, OID_AUTO, level, 4200 CTLFLAG_RW | CTLTYPE_STRING | CTLFLAG_NEEDGIANT, "debug.acpi.level", 0, 4201 acpi_debug_sysctl, "A", 4202 ""); 4203 #endif /* ACPI_DEBUG */ 4204 4205 static int 4206 acpi_debug_objects_sysctl(SYSCTL_HANDLER_ARGS) 4207 { 4208 int error; 4209 int old; 4210 4211 old = acpi_debug_objects; 4212 error = sysctl_handle_int(oidp, &acpi_debug_objects, 0, req); 4213 if (error != 0 || req->newptr == NULL) 4214 return (error); 4215 if (old == acpi_debug_objects || (old && acpi_debug_objects)) 4216 return (0); 4217 4218 ACPI_SERIAL_BEGIN(acpi); 4219 AcpiGbl_EnableAmlDebugObject = acpi_debug_objects ? TRUE : FALSE; 4220 ACPI_SERIAL_END(acpi); 4221 4222 return (0); 4223 } 4224 4225 static int 4226 acpi_parse_interfaces(char *str, struct acpi_interface *iface) 4227 { 4228 char *p; 4229 size_t len; 4230 int i, j; 4231 4232 p = str; 4233 while (isspace(*p) || *p == ',') 4234 p++; 4235 len = strlen(p); 4236 if (len == 0) 4237 return (0); 4238 p = strdup(p, M_TEMP); 4239 for (i = 0; i < len; i++) 4240 if (p[i] == ',') 4241 p[i] = '\0'; 4242 i = j = 0; 4243 while (i < len) 4244 if (isspace(p[i]) || p[i] == '\0') 4245 i++; 4246 else { 4247 i += strlen(p + i) + 1; 4248 j++; 4249 } 4250 if (j == 0) { 4251 free(p, M_TEMP); 4252 return (0); 4253 } 4254 iface->data = malloc(sizeof(*iface->data) * j, M_TEMP, M_WAITOK); 4255 iface->num = j; 4256 i = j = 0; 4257 while (i < len) 4258 if (isspace(p[i]) || p[i] == '\0') 4259 i++; 4260 else { 4261 iface->data[j] = p + i; 4262 i += strlen(p + i) + 1; 4263 j++; 4264 } 4265 4266 return (j); 4267 } 4268 4269 static void 4270 acpi_free_interfaces(struct acpi_interface *iface) 4271 { 4272 4273 free(iface->data[0], M_TEMP); 4274 free(iface->data, M_TEMP); 4275 } 4276 4277 static void 4278 acpi_reset_interfaces(device_t dev) 4279 { 4280 struct acpi_interface list; 4281 ACPI_STATUS status; 4282 int i; 4283 4284 if (acpi_parse_interfaces(acpi_install_interface, &list) > 0) { 4285 for (i = 0; i < list.num; i++) { 4286 status = AcpiInstallInterface(list.data[i]); 4287 if (ACPI_FAILURE(status)) 4288 device_printf(dev, 4289 "failed to install _OSI(\"%s\"): %s\n", 4290 list.data[i], AcpiFormatException(status)); 4291 else if (bootverbose) 4292 device_printf(dev, "installed _OSI(\"%s\")\n", 4293 list.data[i]); 4294 } 4295 acpi_free_interfaces(&list); 4296 } 4297 if (acpi_parse_interfaces(acpi_remove_interface, &list) > 0) { 4298 for (i = 0; i < list.num; i++) { 4299 status = AcpiRemoveInterface(list.data[i]); 4300 if (ACPI_FAILURE(status)) 4301 device_printf(dev, 4302 "failed to remove _OSI(\"%s\"): %s\n", 4303 list.data[i], AcpiFormatException(status)); 4304 else if (bootverbose) 4305 device_printf(dev, "removed _OSI(\"%s\")\n", 4306 list.data[i]); 4307 } 4308 acpi_free_interfaces(&list); 4309 } 4310 } 4311 4312 static int 4313 acpi_pm_func(u_long cmd, void *arg, ...) 4314 { 4315 int state, acpi_state; 4316 int error; 4317 struct acpi_softc *sc; 4318 va_list ap; 4319 4320 error = 0; 4321 switch (cmd) { 4322 case POWER_CMD_SUSPEND: 4323 sc = (struct acpi_softc *)arg; 4324 if (sc == NULL) { 4325 error = EINVAL; 4326 goto out; 4327 } 4328 4329 va_start(ap, arg); 4330 state = va_arg(ap, int); 4331 va_end(ap); 4332 4333 switch (state) { 4334 case POWER_SLEEP_STATE_STANDBY: 4335 acpi_state = sc->acpi_standby_sx; 4336 break; 4337 case POWER_SLEEP_STATE_SUSPEND: 4338 acpi_state = sc->acpi_suspend_sx; 4339 break; 4340 case POWER_SLEEP_STATE_HIBERNATE: 4341 acpi_state = ACPI_STATE_S4; 4342 break; 4343 default: 4344 error = EINVAL; 4345 goto out; 4346 } 4347 4348 if (ACPI_FAILURE(acpi_EnterSleepState(sc, acpi_state))) 4349 error = ENXIO; 4350 break; 4351 default: 4352 error = EINVAL; 4353 goto out; 4354 } 4355 4356 out: 4357 return (error); 4358 } 4359 4360 static void 4361 acpi_pm_register(void *arg) 4362 { 4363 if (!cold || resource_disabled("acpi", 0)) 4364 return; 4365 4366 power_pm_register(POWER_PM_TYPE_ACPI, acpi_pm_func, NULL); 4367 } 4368 4369 SYSINIT(power, SI_SUB_KLD, SI_ORDER_ANY, acpi_pm_register, NULL); 4370