xref: /freebsd/sys/dev/acpica/acpi.c (revision 36639c3942f587e652d2aba6a71ad45b64c2ce47)
1 /*-
2  * Copyright (c) 2000 Takanori Watanabe <takawata@jp.freebsd.org>
3  * Copyright (c) 2000 Mitsuru IWASAKI <iwasaki@jp.freebsd.org>
4  * Copyright (c) 2000, 2001 Michael Smith
5  * Copyright (c) 2000 BSDi
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include "opt_acpi.h"
34 
35 #include <sys/param.h>
36 #include <sys/eventhandler.h>
37 #include <sys/kernel.h>
38 #include <sys/proc.h>
39 #include <sys/fcntl.h>
40 #include <sys/malloc.h>
41 #include <sys/module.h>
42 #include <sys/bus.h>
43 #include <sys/conf.h>
44 #include <sys/ioccom.h>
45 #include <sys/reboot.h>
46 #include <sys/sysctl.h>
47 #include <sys/ctype.h>
48 #include <sys/linker.h>
49 #include <sys/power.h>
50 #include <sys/sbuf.h>
51 #include <sys/sched.h>
52 #include <sys/smp.h>
53 #include <sys/timetc.h>
54 
55 #if defined(__i386__) || defined(__amd64__)
56 #include <machine/clock.h>
57 #include <machine/pci_cfgreg.h>
58 #endif
59 #include <machine/resource.h>
60 #include <machine/bus.h>
61 #include <sys/rman.h>
62 #include <isa/isavar.h>
63 #include <isa/pnpvar.h>
64 
65 #include <contrib/dev/acpica/include/acpi.h>
66 #include <contrib/dev/acpica/include/accommon.h>
67 #include <contrib/dev/acpica/include/acnamesp.h>
68 
69 #include <dev/acpica/acpivar.h>
70 #include <dev/acpica/acpiio.h>
71 
72 #include <dev/pci/pcivar.h>
73 
74 #include <vm/vm_param.h>
75 
76 static MALLOC_DEFINE(M_ACPIDEV, "acpidev", "ACPI devices");
77 
78 /* Hooks for the ACPI CA debugging infrastructure */
79 #define _COMPONENT	ACPI_BUS
80 ACPI_MODULE_NAME("ACPI")
81 
82 static d_open_t		acpiopen;
83 static d_close_t	acpiclose;
84 static d_ioctl_t	acpiioctl;
85 
86 static struct cdevsw acpi_cdevsw = {
87 	.d_version =	D_VERSION,
88 	.d_open =	acpiopen,
89 	.d_close =	acpiclose,
90 	.d_ioctl =	acpiioctl,
91 	.d_name =	"acpi",
92 };
93 
94 struct acpi_interface {
95 	ACPI_STRING	*data;
96 	int		num;
97 };
98 
99 static char *sysres_ids[] = { "PNP0C01", "PNP0C02", NULL };
100 static char *pcilink_ids[] = { "PNP0C0F", NULL };
101 
102 /* Global mutex for locking access to the ACPI subsystem. */
103 struct mtx	acpi_mutex;
104 struct callout	acpi_sleep_timer;
105 
106 /* Bitmap of device quirks. */
107 int		acpi_quirks;
108 
109 /* Supported sleep states. */
110 static BOOLEAN	acpi_sleep_states[ACPI_S_STATE_COUNT];
111 
112 static void	acpi_lookup(void *arg, const char *name, device_t *dev);
113 static int	acpi_modevent(struct module *mod, int event, void *junk);
114 static int	acpi_probe(device_t dev);
115 static int	acpi_attach(device_t dev);
116 static int	acpi_suspend(device_t dev);
117 static int	acpi_resume(device_t dev);
118 static int	acpi_shutdown(device_t dev);
119 static device_t	acpi_add_child(device_t bus, u_int order, const char *name,
120 			int unit);
121 static int	acpi_print_child(device_t bus, device_t child);
122 static void	acpi_probe_nomatch(device_t bus, device_t child);
123 static void	acpi_driver_added(device_t dev, driver_t *driver);
124 static void	acpi_child_deleted(device_t dev, device_t child);
125 static int	acpi_read_ivar(device_t dev, device_t child, int index,
126 			uintptr_t *result);
127 static int	acpi_write_ivar(device_t dev, device_t child, int index,
128 			uintptr_t value);
129 static struct resource_list *acpi_get_rlist(device_t dev, device_t child);
130 static void	acpi_reserve_resources(device_t dev);
131 static int	acpi_sysres_alloc(device_t dev);
132 static int	acpi_set_resource(device_t dev, device_t child, int type,
133 			int rid, rman_res_t start, rman_res_t count);
134 static struct resource *acpi_alloc_resource(device_t bus, device_t child,
135 			int type, int *rid, rman_res_t start, rman_res_t end,
136 			rman_res_t count, u_int flags);
137 static int	acpi_adjust_resource(device_t bus, device_t child, int type,
138 			struct resource *r, rman_res_t start, rman_res_t end);
139 static int	acpi_release_resource(device_t bus, device_t child, int type,
140 			int rid, struct resource *r);
141 static void	acpi_delete_resource(device_t bus, device_t child, int type,
142 		    int rid);
143 static uint32_t	acpi_isa_get_logicalid(device_t dev);
144 static int	acpi_isa_get_compatid(device_t dev, uint32_t *cids, int count);
145 static int	acpi_device_id_probe(device_t bus, device_t dev, char **ids, char **match);
146 static ACPI_STATUS acpi_device_eval_obj(device_t bus, device_t dev,
147 		    ACPI_STRING pathname, ACPI_OBJECT_LIST *parameters,
148 		    ACPI_BUFFER *ret);
149 static ACPI_STATUS acpi_device_scan_cb(ACPI_HANDLE h, UINT32 level,
150 		    void *context, void **retval);
151 static ACPI_STATUS acpi_device_scan_children(device_t bus, device_t dev,
152 		    int max_depth, acpi_scan_cb_t user_fn, void *arg);
153 static int	acpi_isa_pnp_probe(device_t bus, device_t child,
154 		    struct isa_pnp_id *ids);
155 static void	acpi_platform_osc(device_t dev);
156 static void	acpi_probe_children(device_t bus);
157 static void	acpi_probe_order(ACPI_HANDLE handle, int *order);
158 static ACPI_STATUS acpi_probe_child(ACPI_HANDLE handle, UINT32 level,
159 		    void *context, void **status);
160 static void	acpi_sleep_enable(void *arg);
161 static ACPI_STATUS acpi_sleep_disable(struct acpi_softc *sc);
162 static ACPI_STATUS acpi_EnterSleepState(struct acpi_softc *sc, int state);
163 static void	acpi_shutdown_final(void *arg, int howto);
164 static void	acpi_enable_fixed_events(struct acpi_softc *sc);
165 static void	acpi_resync_clock(struct acpi_softc *sc);
166 static int	acpi_wake_sleep_prep(ACPI_HANDLE handle, int sstate);
167 static int	acpi_wake_run_prep(ACPI_HANDLE handle, int sstate);
168 static int	acpi_wake_prep_walk(int sstate);
169 static int	acpi_wake_sysctl_walk(device_t dev);
170 static int	acpi_wake_set_sysctl(SYSCTL_HANDLER_ARGS);
171 static void	acpi_system_eventhandler_sleep(void *arg, int state);
172 static void	acpi_system_eventhandler_wakeup(void *arg, int state);
173 static int	acpi_sname2sstate(const char *sname);
174 static const char *acpi_sstate2sname(int sstate);
175 static int	acpi_supported_sleep_state_sysctl(SYSCTL_HANDLER_ARGS);
176 static int	acpi_sleep_state_sysctl(SYSCTL_HANDLER_ARGS);
177 static int	acpi_debug_objects_sysctl(SYSCTL_HANDLER_ARGS);
178 static int	acpi_pm_func(u_long cmd, void *arg, ...);
179 static int	acpi_child_location_str_method(device_t acdev, device_t child,
180 					       char *buf, size_t buflen);
181 static int	acpi_child_pnpinfo_str_method(device_t acdev, device_t child,
182 					      char *buf, size_t buflen);
183 static void	acpi_enable_pcie(void);
184 static void	acpi_hint_device_unit(device_t acdev, device_t child,
185 		    const char *name, int *unitp);
186 static void	acpi_reset_interfaces(device_t dev);
187 
188 static device_method_t acpi_methods[] = {
189     /* Device interface */
190     DEVMETHOD(device_probe,		acpi_probe),
191     DEVMETHOD(device_attach,		acpi_attach),
192     DEVMETHOD(device_shutdown,		acpi_shutdown),
193     DEVMETHOD(device_detach,		bus_generic_detach),
194     DEVMETHOD(device_suspend,		acpi_suspend),
195     DEVMETHOD(device_resume,		acpi_resume),
196 
197     /* Bus interface */
198     DEVMETHOD(bus_add_child,		acpi_add_child),
199     DEVMETHOD(bus_print_child,		acpi_print_child),
200     DEVMETHOD(bus_probe_nomatch,	acpi_probe_nomatch),
201     DEVMETHOD(bus_driver_added,		acpi_driver_added),
202     DEVMETHOD(bus_child_deleted,	acpi_child_deleted),
203     DEVMETHOD(bus_read_ivar,		acpi_read_ivar),
204     DEVMETHOD(bus_write_ivar,		acpi_write_ivar),
205     DEVMETHOD(bus_get_resource_list,	acpi_get_rlist),
206     DEVMETHOD(bus_set_resource,		acpi_set_resource),
207     DEVMETHOD(bus_get_resource,		bus_generic_rl_get_resource),
208     DEVMETHOD(bus_alloc_resource,	acpi_alloc_resource),
209     DEVMETHOD(bus_adjust_resource,	acpi_adjust_resource),
210     DEVMETHOD(bus_release_resource,	acpi_release_resource),
211     DEVMETHOD(bus_delete_resource,	acpi_delete_resource),
212     DEVMETHOD(bus_child_pnpinfo_str,	acpi_child_pnpinfo_str_method),
213     DEVMETHOD(bus_child_location_str,	acpi_child_location_str_method),
214     DEVMETHOD(bus_activate_resource,	bus_generic_activate_resource),
215     DEVMETHOD(bus_deactivate_resource,	bus_generic_deactivate_resource),
216     DEVMETHOD(bus_setup_intr,		bus_generic_setup_intr),
217     DEVMETHOD(bus_teardown_intr,	bus_generic_teardown_intr),
218     DEVMETHOD(bus_hint_device_unit,	acpi_hint_device_unit),
219     DEVMETHOD(bus_get_cpus,		acpi_get_cpus),
220     DEVMETHOD(bus_get_domain,		acpi_get_domain),
221 
222     /* ACPI bus */
223     DEVMETHOD(acpi_id_probe,		acpi_device_id_probe),
224     DEVMETHOD(acpi_evaluate_object,	acpi_device_eval_obj),
225     DEVMETHOD(acpi_pwr_for_sleep,	acpi_device_pwr_for_sleep),
226     DEVMETHOD(acpi_scan_children,	acpi_device_scan_children),
227 
228     /* ISA emulation */
229     DEVMETHOD(isa_pnp_probe,		acpi_isa_pnp_probe),
230 
231     DEVMETHOD_END
232 };
233 
234 static driver_t acpi_driver = {
235     "acpi",
236     acpi_methods,
237     sizeof(struct acpi_softc),
238 };
239 
240 static devclass_t acpi_devclass;
241 EARLY_DRIVER_MODULE(acpi, nexus, acpi_driver, acpi_devclass, acpi_modevent, 0,
242     BUS_PASS_BUS + BUS_PASS_ORDER_MIDDLE);
243 MODULE_VERSION(acpi, 1);
244 
245 ACPI_SERIAL_DECL(acpi, "ACPI root bus");
246 
247 /* Local pools for managing system resources for ACPI child devices. */
248 static struct rman acpi_rman_io, acpi_rman_mem;
249 
250 #define ACPI_MINIMUM_AWAKETIME	5
251 
252 /* Holds the description of the acpi0 device. */
253 static char acpi_desc[ACPI_OEM_ID_SIZE + ACPI_OEM_TABLE_ID_SIZE + 2];
254 
255 SYSCTL_NODE(_debug, OID_AUTO, acpi, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
256     "ACPI debugging");
257 static char acpi_ca_version[12];
258 SYSCTL_STRING(_debug_acpi, OID_AUTO, acpi_ca_version, CTLFLAG_RD,
259 	      acpi_ca_version, 0, "Version of Intel ACPI-CA");
260 
261 /*
262  * Allow overriding _OSI methods.
263  */
264 static char acpi_install_interface[256];
265 TUNABLE_STR("hw.acpi.install_interface", acpi_install_interface,
266     sizeof(acpi_install_interface));
267 static char acpi_remove_interface[256];
268 TUNABLE_STR("hw.acpi.remove_interface", acpi_remove_interface,
269     sizeof(acpi_remove_interface));
270 
271 /* Allow users to dump Debug objects without ACPI debugger. */
272 static int acpi_debug_objects;
273 TUNABLE_INT("debug.acpi.enable_debug_objects", &acpi_debug_objects);
274 SYSCTL_PROC(_debug_acpi, OID_AUTO, enable_debug_objects,
275     CTLFLAG_RW | CTLTYPE_INT | CTLFLAG_NEEDGIANT, NULL, 0,
276     acpi_debug_objects_sysctl, "I",
277     "Enable Debug objects");
278 
279 /* Allow the interpreter to ignore common mistakes in BIOS. */
280 static int acpi_interpreter_slack = 1;
281 TUNABLE_INT("debug.acpi.interpreter_slack", &acpi_interpreter_slack);
282 SYSCTL_INT(_debug_acpi, OID_AUTO, interpreter_slack, CTLFLAG_RDTUN,
283     &acpi_interpreter_slack, 1, "Turn on interpreter slack mode.");
284 
285 /* Ignore register widths set by FADT and use default widths instead. */
286 static int acpi_ignore_reg_width = 1;
287 TUNABLE_INT("debug.acpi.default_register_width", &acpi_ignore_reg_width);
288 SYSCTL_INT(_debug_acpi, OID_AUTO, default_register_width, CTLFLAG_RDTUN,
289     &acpi_ignore_reg_width, 1, "Ignore register widths set by FADT");
290 
291 /* Allow users to override quirks. */
292 TUNABLE_INT("debug.acpi.quirks", &acpi_quirks);
293 
294 int acpi_susp_bounce;
295 SYSCTL_INT(_debug_acpi, OID_AUTO, suspend_bounce, CTLFLAG_RW,
296     &acpi_susp_bounce, 0, "Don't actually suspend, just test devices.");
297 
298 /*
299  * ACPI can only be loaded as a module by the loader; activating it after
300  * system bootstrap time is not useful, and can be fatal to the system.
301  * It also cannot be unloaded, since the entire system bus hierarchy hangs
302  * off it.
303  */
304 static int
305 acpi_modevent(struct module *mod, int event, void *junk)
306 {
307     switch (event) {
308     case MOD_LOAD:
309 	if (!cold) {
310 	    printf("The ACPI driver cannot be loaded after boot.\n");
311 	    return (EPERM);
312 	}
313 	break;
314     case MOD_UNLOAD:
315 	if (!cold && power_pm_get_type() == POWER_PM_TYPE_ACPI)
316 	    return (EBUSY);
317 	break;
318     default:
319 	break;
320     }
321     return (0);
322 }
323 
324 /*
325  * Perform early initialization.
326  */
327 ACPI_STATUS
328 acpi_Startup(void)
329 {
330     static int started = 0;
331     ACPI_STATUS status;
332     int val;
333 
334     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
335 
336     /* Only run the startup code once.  The MADT driver also calls this. */
337     if (started)
338 	return_VALUE (AE_OK);
339     started = 1;
340 
341     /*
342      * Initialize the ACPICA subsystem.
343      */
344     if (ACPI_FAILURE(status = AcpiInitializeSubsystem())) {
345 	printf("ACPI: Could not initialize Subsystem: %s\n",
346 	    AcpiFormatException(status));
347 	return_VALUE (status);
348     }
349 
350     /*
351      * Pre-allocate space for RSDT/XSDT and DSDT tables and allow resizing
352      * if more tables exist.
353      */
354     if (ACPI_FAILURE(status = AcpiInitializeTables(NULL, 2, TRUE))) {
355 	printf("ACPI: Table initialisation failed: %s\n",
356 	    AcpiFormatException(status));
357 	return_VALUE (status);
358     }
359 
360     /* Set up any quirks we have for this system. */
361     if (acpi_quirks == ACPI_Q_OK)
362 	acpi_table_quirks(&acpi_quirks);
363 
364     /* If the user manually set the disabled hint to 0, force-enable ACPI. */
365     if (resource_int_value("acpi", 0, "disabled", &val) == 0 && val == 0)
366 	acpi_quirks &= ~ACPI_Q_BROKEN;
367     if (acpi_quirks & ACPI_Q_BROKEN) {
368 	printf("ACPI disabled by blacklist.  Contact your BIOS vendor.\n");
369 	status = AE_SUPPORT;
370     }
371 
372     return_VALUE (status);
373 }
374 
375 /*
376  * Detect ACPI and perform early initialisation.
377  */
378 int
379 acpi_identify(void)
380 {
381     ACPI_TABLE_RSDP	*rsdp;
382     ACPI_TABLE_HEADER	*rsdt;
383     ACPI_PHYSICAL_ADDRESS paddr;
384     struct sbuf		sb;
385 
386     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
387 
388     if (!cold)
389 	return (ENXIO);
390 
391     /* Check that we haven't been disabled with a hint. */
392     if (resource_disabled("acpi", 0))
393 	return (ENXIO);
394 
395     /* Check for other PM systems. */
396     if (power_pm_get_type() != POWER_PM_TYPE_NONE &&
397 	power_pm_get_type() != POWER_PM_TYPE_ACPI) {
398 	printf("ACPI identify failed, other PM system enabled.\n");
399 	return (ENXIO);
400     }
401 
402     /* Initialize root tables. */
403     if (ACPI_FAILURE(acpi_Startup())) {
404 	printf("ACPI: Try disabling either ACPI or apic support.\n");
405 	return (ENXIO);
406     }
407 
408     if ((paddr = AcpiOsGetRootPointer()) == 0 ||
409 	(rsdp = AcpiOsMapMemory(paddr, sizeof(ACPI_TABLE_RSDP))) == NULL)
410 	return (ENXIO);
411     if (rsdp->Revision > 1 && rsdp->XsdtPhysicalAddress != 0)
412 	paddr = (ACPI_PHYSICAL_ADDRESS)rsdp->XsdtPhysicalAddress;
413     else
414 	paddr = (ACPI_PHYSICAL_ADDRESS)rsdp->RsdtPhysicalAddress;
415     AcpiOsUnmapMemory(rsdp, sizeof(ACPI_TABLE_RSDP));
416 
417     if ((rsdt = AcpiOsMapMemory(paddr, sizeof(ACPI_TABLE_HEADER))) == NULL)
418 	return (ENXIO);
419     sbuf_new(&sb, acpi_desc, sizeof(acpi_desc), SBUF_FIXEDLEN);
420     sbuf_bcat(&sb, rsdt->OemId, ACPI_OEM_ID_SIZE);
421     sbuf_trim(&sb);
422     sbuf_putc(&sb, ' ');
423     sbuf_bcat(&sb, rsdt->OemTableId, ACPI_OEM_TABLE_ID_SIZE);
424     sbuf_trim(&sb);
425     sbuf_finish(&sb);
426     sbuf_delete(&sb);
427     AcpiOsUnmapMemory(rsdt, sizeof(ACPI_TABLE_HEADER));
428 
429     snprintf(acpi_ca_version, sizeof(acpi_ca_version), "%x", ACPI_CA_VERSION);
430 
431     return (0);
432 }
433 
434 /*
435  * Fetch some descriptive data from ACPI to put in our attach message.
436  */
437 static int
438 acpi_probe(device_t dev)
439 {
440 
441     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
442 
443     device_set_desc(dev, acpi_desc);
444 
445     return_VALUE (BUS_PROBE_NOWILDCARD);
446 }
447 
448 static int
449 acpi_attach(device_t dev)
450 {
451     struct acpi_softc	*sc;
452     ACPI_STATUS		status;
453     int			error, state;
454     UINT32		flags;
455     UINT8		TypeA, TypeB;
456     char		*env;
457 
458     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
459 
460     sc = device_get_softc(dev);
461     sc->acpi_dev = dev;
462     callout_init(&sc->susp_force_to, 1);
463 
464     error = ENXIO;
465 
466     /* Initialize resource manager. */
467     acpi_rman_io.rm_type = RMAN_ARRAY;
468     acpi_rman_io.rm_start = 0;
469     acpi_rman_io.rm_end = 0xffff;
470     acpi_rman_io.rm_descr = "ACPI I/O ports";
471     if (rman_init(&acpi_rman_io) != 0)
472 	panic("acpi rman_init IO ports failed");
473     acpi_rman_mem.rm_type = RMAN_ARRAY;
474     acpi_rman_mem.rm_descr = "ACPI I/O memory addresses";
475     if (rman_init(&acpi_rman_mem) != 0)
476 	panic("acpi rman_init memory failed");
477 
478     /* Initialise the ACPI mutex */
479     mtx_init(&acpi_mutex, "ACPI global lock", NULL, MTX_DEF);
480 
481     /*
482      * Set the globals from our tunables.  This is needed because ACPI-CA
483      * uses UINT8 for some values and we have no tunable_byte.
484      */
485     AcpiGbl_EnableInterpreterSlack = acpi_interpreter_slack ? TRUE : FALSE;
486     AcpiGbl_EnableAmlDebugObject = acpi_debug_objects ? TRUE : FALSE;
487     AcpiGbl_UseDefaultRegisterWidths = acpi_ignore_reg_width ? TRUE : FALSE;
488 
489 #ifndef ACPI_DEBUG
490     /*
491      * Disable all debugging layers and levels.
492      */
493     AcpiDbgLayer = 0;
494     AcpiDbgLevel = 0;
495 #endif
496 
497     /* Override OS interfaces if the user requested. */
498     acpi_reset_interfaces(dev);
499 
500     /* Load ACPI name space. */
501     status = AcpiLoadTables();
502     if (ACPI_FAILURE(status)) {
503 	device_printf(dev, "Could not load Namespace: %s\n",
504 		      AcpiFormatException(status));
505 	goto out;
506     }
507 
508     /* Handle MCFG table if present. */
509     acpi_enable_pcie();
510 
511     /*
512      * Note that some systems (specifically, those with namespace evaluation
513      * issues that require the avoidance of parts of the namespace) must
514      * avoid running _INI and _STA on everything, as well as dodging the final
515      * object init pass.
516      *
517      * For these devices, we set ACPI_NO_DEVICE_INIT and ACPI_NO_OBJECT_INIT).
518      *
519      * XXX We should arrange for the object init pass after we have attached
520      *     all our child devices, but on many systems it works here.
521      */
522     flags = 0;
523     if (testenv("debug.acpi.avoid"))
524 	flags = ACPI_NO_DEVICE_INIT | ACPI_NO_OBJECT_INIT;
525 
526     /* Bring the hardware and basic handlers online. */
527     if (ACPI_FAILURE(status = AcpiEnableSubsystem(flags))) {
528 	device_printf(dev, "Could not enable ACPI: %s\n",
529 		      AcpiFormatException(status));
530 	goto out;
531     }
532 
533     /*
534      * Call the ECDT probe function to provide EC functionality before
535      * the namespace has been evaluated.
536      *
537      * XXX This happens before the sysresource devices have been probed and
538      * attached so its resources come from nexus0.  In practice, this isn't
539      * a problem but should be addressed eventually.
540      */
541     acpi_ec_ecdt_probe(dev);
542 
543     /* Bring device objects and regions online. */
544     if (ACPI_FAILURE(status = AcpiInitializeObjects(flags))) {
545 	device_printf(dev, "Could not initialize ACPI objects: %s\n",
546 		      AcpiFormatException(status));
547 	goto out;
548     }
549 
550     /*
551      * Setup our sysctl tree.
552      *
553      * XXX: This doesn't check to make sure that none of these fail.
554      */
555     sysctl_ctx_init(&sc->acpi_sysctl_ctx);
556     sc->acpi_sysctl_tree = SYSCTL_ADD_NODE(&sc->acpi_sysctl_ctx,
557         SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO, device_get_name(dev),
558 	CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "");
559     SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
560 	OID_AUTO, "supported_sleep_state",
561 	CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
562 	0, 0, acpi_supported_sleep_state_sysctl, "A",
563 	"List supported ACPI sleep states.");
564     SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
565 	OID_AUTO, "power_button_state",
566 	CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
567 	&sc->acpi_power_button_sx, 0, acpi_sleep_state_sysctl, "A",
568 	"Power button ACPI sleep state.");
569     SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
570 	OID_AUTO, "sleep_button_state",
571 	CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
572 	&sc->acpi_sleep_button_sx, 0, acpi_sleep_state_sysctl, "A",
573 	"Sleep button ACPI sleep state.");
574     SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
575 	OID_AUTO, "lid_switch_state",
576 	CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
577 	&sc->acpi_lid_switch_sx, 0, acpi_sleep_state_sysctl, "A",
578 	"Lid ACPI sleep state. Set to S3 if you want to suspend your laptop when close the Lid.");
579     SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
580 	OID_AUTO, "standby_state",
581 	CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
582 	&sc->acpi_standby_sx, 0, acpi_sleep_state_sysctl, "A", "");
583     SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
584 	OID_AUTO, "suspend_state",
585 	CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
586 	&sc->acpi_suspend_sx, 0, acpi_sleep_state_sysctl, "A", "");
587     SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
588 	OID_AUTO, "sleep_delay", CTLFLAG_RW, &sc->acpi_sleep_delay, 0,
589 	"sleep delay in seconds");
590     SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
591 	OID_AUTO, "s4bios", CTLFLAG_RW, &sc->acpi_s4bios, 0, "S4BIOS mode");
592     SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
593 	OID_AUTO, "verbose", CTLFLAG_RW, &sc->acpi_verbose, 0, "verbose mode");
594     SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
595 	OID_AUTO, "disable_on_reboot", CTLFLAG_RW,
596 	&sc->acpi_do_disable, 0, "Disable ACPI when rebooting/halting system");
597     SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
598 	OID_AUTO, "handle_reboot", CTLFLAG_RW,
599 	&sc->acpi_handle_reboot, 0, "Use ACPI Reset Register to reboot");
600 
601     /*
602      * Default to 1 second before sleeping to give some machines time to
603      * stabilize.
604      */
605     sc->acpi_sleep_delay = 1;
606     if (bootverbose)
607 	sc->acpi_verbose = 1;
608     if ((env = kern_getenv("hw.acpi.verbose")) != NULL) {
609 	if (strcmp(env, "0") != 0)
610 	    sc->acpi_verbose = 1;
611 	freeenv(env);
612     }
613 
614     /* Only enable reboot by default if the FADT says it is available. */
615     if (AcpiGbl_FADT.Flags & ACPI_FADT_RESET_REGISTER)
616 	sc->acpi_handle_reboot = 1;
617 
618 #if !ACPI_REDUCED_HARDWARE
619     /* Only enable S4BIOS by default if the FACS says it is available. */
620     if (AcpiGbl_FACS != NULL && AcpiGbl_FACS->Flags & ACPI_FACS_S4_BIOS_PRESENT)
621 	sc->acpi_s4bios = 1;
622 #endif
623 
624     /* Probe all supported sleep states. */
625     acpi_sleep_states[ACPI_STATE_S0] = TRUE;
626     for (state = ACPI_STATE_S1; state < ACPI_S_STATE_COUNT; state++)
627 	if (ACPI_SUCCESS(AcpiEvaluateObject(ACPI_ROOT_OBJECT,
628 	    __DECONST(char *, AcpiGbl_SleepStateNames[state]), NULL, NULL)) &&
629 	    ACPI_SUCCESS(AcpiGetSleepTypeData(state, &TypeA, &TypeB)))
630 	    acpi_sleep_states[state] = TRUE;
631 
632     /*
633      * Dispatch the default sleep state to devices.  The lid switch is set
634      * to UNKNOWN by default to avoid surprising users.
635      */
636     sc->acpi_power_button_sx = acpi_sleep_states[ACPI_STATE_S5] ?
637 	ACPI_STATE_S5 : ACPI_STATE_UNKNOWN;
638     sc->acpi_lid_switch_sx = ACPI_STATE_UNKNOWN;
639     sc->acpi_standby_sx = acpi_sleep_states[ACPI_STATE_S1] ?
640 	ACPI_STATE_S1 : ACPI_STATE_UNKNOWN;
641     sc->acpi_suspend_sx = acpi_sleep_states[ACPI_STATE_S3] ?
642 	ACPI_STATE_S3 : ACPI_STATE_UNKNOWN;
643 
644     /* Pick the first valid sleep state for the sleep button default. */
645     sc->acpi_sleep_button_sx = ACPI_STATE_UNKNOWN;
646     for (state = ACPI_STATE_S1; state <= ACPI_STATE_S4; state++)
647 	if (acpi_sleep_states[state]) {
648 	    sc->acpi_sleep_button_sx = state;
649 	    break;
650 	}
651 
652     acpi_enable_fixed_events(sc);
653 
654     /*
655      * Scan the namespace and attach/initialise children.
656      */
657 
658     /* Register our shutdown handler. */
659     EVENTHANDLER_REGISTER(shutdown_final, acpi_shutdown_final, sc,
660 	SHUTDOWN_PRI_LAST);
661 
662     /*
663      * Register our acpi event handlers.
664      * XXX should be configurable eg. via userland policy manager.
665      */
666     EVENTHANDLER_REGISTER(acpi_sleep_event, acpi_system_eventhandler_sleep,
667 	sc, ACPI_EVENT_PRI_LAST);
668     EVENTHANDLER_REGISTER(acpi_wakeup_event, acpi_system_eventhandler_wakeup,
669 	sc, ACPI_EVENT_PRI_LAST);
670 
671     /* Flag our initial states. */
672     sc->acpi_enabled = TRUE;
673     sc->acpi_sstate = ACPI_STATE_S0;
674     sc->acpi_sleep_disabled = TRUE;
675 
676     /* Create the control device */
677     sc->acpi_dev_t = make_dev(&acpi_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0664,
678 			      "acpi");
679     sc->acpi_dev_t->si_drv1 = sc;
680 
681     if ((error = acpi_machdep_init(dev)))
682 	goto out;
683 
684     /* Register ACPI again to pass the correct argument of pm_func. */
685     power_pm_register(POWER_PM_TYPE_ACPI, acpi_pm_func, sc);
686 
687     acpi_platform_osc(dev);
688 
689     if (!acpi_disabled("bus")) {
690 	EVENTHANDLER_REGISTER(dev_lookup, acpi_lookup, NULL, 1000);
691 	acpi_probe_children(dev);
692     }
693 
694     /* Update all GPEs and enable runtime GPEs. */
695     status = AcpiUpdateAllGpes();
696     if (ACPI_FAILURE(status))
697 	device_printf(dev, "Could not update all GPEs: %s\n",
698 	    AcpiFormatException(status));
699 
700     /* Allow sleep request after a while. */
701     callout_init_mtx(&acpi_sleep_timer, &acpi_mutex, 0);
702     callout_reset(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME,
703 	acpi_sleep_enable, sc);
704 
705     error = 0;
706 
707  out:
708     return_VALUE (error);
709 }
710 
711 static void
712 acpi_set_power_children(device_t dev, int state)
713 {
714 	device_t child;
715 	device_t *devlist;
716 	int dstate, i, numdevs;
717 
718 	if (device_get_children(dev, &devlist, &numdevs) != 0)
719 		return;
720 
721 	/*
722 	 * Retrieve and set D-state for the sleep state if _SxD is present.
723 	 * Skip children who aren't attached since they are handled separately.
724 	 */
725 	for (i = 0; i < numdevs; i++) {
726 		child = devlist[i];
727 		dstate = state;
728 		if (device_is_attached(child) &&
729 		    acpi_device_pwr_for_sleep(dev, child, &dstate) == 0)
730 			acpi_set_powerstate(child, dstate);
731 	}
732 	free(devlist, M_TEMP);
733 }
734 
735 static int
736 acpi_suspend(device_t dev)
737 {
738     int error;
739 
740     GIANT_REQUIRED;
741 
742     error = bus_generic_suspend(dev);
743     if (error == 0)
744 	acpi_set_power_children(dev, ACPI_STATE_D3);
745 
746     return (error);
747 }
748 
749 static int
750 acpi_resume(device_t dev)
751 {
752 
753     GIANT_REQUIRED;
754 
755     acpi_set_power_children(dev, ACPI_STATE_D0);
756 
757     return (bus_generic_resume(dev));
758 }
759 
760 static int
761 acpi_shutdown(device_t dev)
762 {
763 
764     GIANT_REQUIRED;
765 
766     /* Allow children to shutdown first. */
767     bus_generic_shutdown(dev);
768 
769     /*
770      * Enable any GPEs that are able to power-on the system (i.e., RTC).
771      * Also, disable any that are not valid for this state (most).
772      */
773     acpi_wake_prep_walk(ACPI_STATE_S5);
774 
775     return (0);
776 }
777 
778 /*
779  * Handle a new device being added
780  */
781 static device_t
782 acpi_add_child(device_t bus, u_int order, const char *name, int unit)
783 {
784     struct acpi_device	*ad;
785     device_t		child;
786 
787     if ((ad = malloc(sizeof(*ad), M_ACPIDEV, M_NOWAIT | M_ZERO)) == NULL)
788 	return (NULL);
789 
790     resource_list_init(&ad->ad_rl);
791 
792     child = device_add_child_ordered(bus, order, name, unit);
793     if (child != NULL)
794 	device_set_ivars(child, ad);
795     else
796 	free(ad, M_ACPIDEV);
797     return (child);
798 }
799 
800 static int
801 acpi_print_child(device_t bus, device_t child)
802 {
803     struct acpi_device	 *adev = device_get_ivars(child);
804     struct resource_list *rl = &adev->ad_rl;
805     int retval = 0;
806 
807     retval += bus_print_child_header(bus, child);
808     retval += resource_list_print_type(rl, "port",  SYS_RES_IOPORT, "%#jx");
809     retval += resource_list_print_type(rl, "iomem", SYS_RES_MEMORY, "%#jx");
810     retval += resource_list_print_type(rl, "irq",   SYS_RES_IRQ,    "%jd");
811     retval += resource_list_print_type(rl, "drq",   SYS_RES_DRQ,    "%jd");
812     if (device_get_flags(child))
813 	retval += printf(" flags %#x", device_get_flags(child));
814     retval += bus_print_child_domain(bus, child);
815     retval += bus_print_child_footer(bus, child);
816 
817     return (retval);
818 }
819 
820 /*
821  * If this device is an ACPI child but no one claimed it, attempt
822  * to power it off.  We'll power it back up when a driver is added.
823  *
824  * XXX Disabled for now since many necessary devices (like fdc and
825  * ATA) don't claim the devices we created for them but still expect
826  * them to be powered up.
827  */
828 static void
829 acpi_probe_nomatch(device_t bus, device_t child)
830 {
831 #ifdef ACPI_ENABLE_POWERDOWN_NODRIVER
832     acpi_set_powerstate(child, ACPI_STATE_D3);
833 #endif
834 }
835 
836 /*
837  * If a new driver has a chance to probe a child, first power it up.
838  *
839  * XXX Disabled for now (see acpi_probe_nomatch for details).
840  */
841 static void
842 acpi_driver_added(device_t dev, driver_t *driver)
843 {
844     device_t child, *devlist;
845     int i, numdevs;
846 
847     DEVICE_IDENTIFY(driver, dev);
848     if (device_get_children(dev, &devlist, &numdevs))
849 	    return;
850     for (i = 0; i < numdevs; i++) {
851 	child = devlist[i];
852 	if (device_get_state(child) == DS_NOTPRESENT) {
853 #ifdef ACPI_ENABLE_POWERDOWN_NODRIVER
854 	    acpi_set_powerstate(child, ACPI_STATE_D0);
855 	    if (device_probe_and_attach(child) != 0)
856 		acpi_set_powerstate(child, ACPI_STATE_D3);
857 #else
858 	    device_probe_and_attach(child);
859 #endif
860 	}
861     }
862     free(devlist, M_TEMP);
863 }
864 
865 /* Location hint for devctl(8) */
866 static int
867 acpi_child_location_str_method(device_t cbdev, device_t child, char *buf,
868     size_t buflen)
869 {
870     struct acpi_device *dinfo = device_get_ivars(child);
871     char buf2[32];
872     int pxm;
873 
874     if (dinfo->ad_handle) {
875         snprintf(buf, buflen, "handle=%s", acpi_name(dinfo->ad_handle));
876         if (ACPI_SUCCESS(acpi_GetInteger(dinfo->ad_handle, "_PXM", &pxm))) {
877                 snprintf(buf2, 32, " _PXM=%d", pxm);
878                 strlcat(buf, buf2, buflen);
879         }
880     } else {
881         snprintf(buf, buflen, "");
882     }
883     return (0);
884 }
885 
886 /* PnP information for devctl(8) */
887 int
888 acpi_pnpinfo_str(ACPI_HANDLE handle, char *buf, size_t buflen)
889 {
890     ACPI_DEVICE_INFO *adinfo;
891 
892     if (ACPI_FAILURE(AcpiGetObjectInfo(handle, &adinfo))) {
893 	snprintf(buf, buflen, "unknown");
894 	return (0);
895     }
896 
897     snprintf(buf, buflen, "_HID=%s _UID=%lu _CID=%s",
898 	(adinfo->Valid & ACPI_VALID_HID) ?
899 	adinfo->HardwareId.String : "none",
900 	(adinfo->Valid & ACPI_VALID_UID) ?
901 	strtoul(adinfo->UniqueId.String, NULL, 10) : 0UL,
902 	((adinfo->Valid & ACPI_VALID_CID) &&
903 	 adinfo->CompatibleIdList.Count > 0) ?
904 	adinfo->CompatibleIdList.Ids[0].String : "none");
905     AcpiOsFree(adinfo);
906 
907     return (0);
908 }
909 
910 static int
911 acpi_child_pnpinfo_str_method(device_t cbdev, device_t child, char *buf,
912     size_t buflen)
913 {
914     struct acpi_device *dinfo = device_get_ivars(child);
915 
916     return (acpi_pnpinfo_str(dinfo->ad_handle, buf, buflen));
917 }
918 
919 /*
920  * Handle device deletion.
921  */
922 static void
923 acpi_child_deleted(device_t dev, device_t child)
924 {
925     struct acpi_device *dinfo = device_get_ivars(child);
926 
927     if (acpi_get_device(dinfo->ad_handle) == child)
928 	AcpiDetachData(dinfo->ad_handle, acpi_fake_objhandler);
929 }
930 
931 /*
932  * Handle per-device ivars
933  */
934 static int
935 acpi_read_ivar(device_t dev, device_t child, int index, uintptr_t *result)
936 {
937     struct acpi_device	*ad;
938 
939     if ((ad = device_get_ivars(child)) == NULL) {
940 	device_printf(child, "device has no ivars\n");
941 	return (ENOENT);
942     }
943 
944     /* ACPI and ISA compatibility ivars */
945     switch(index) {
946     case ACPI_IVAR_HANDLE:
947 	*(ACPI_HANDLE *)result = ad->ad_handle;
948 	break;
949     case ACPI_IVAR_PRIVATE:
950 	*(void **)result = ad->ad_private;
951 	break;
952     case ACPI_IVAR_FLAGS:
953 	*(int *)result = ad->ad_flags;
954 	break;
955     case ISA_IVAR_VENDORID:
956     case ISA_IVAR_SERIAL:
957     case ISA_IVAR_COMPATID:
958 	*(int *)result = -1;
959 	break;
960     case ISA_IVAR_LOGICALID:
961 	*(int *)result = acpi_isa_get_logicalid(child);
962 	break;
963     case PCI_IVAR_CLASS:
964 	*(uint8_t*)result = (ad->ad_cls_class >> 16) & 0xff;
965 	break;
966     case PCI_IVAR_SUBCLASS:
967 	*(uint8_t*)result = (ad->ad_cls_class >> 8) & 0xff;
968 	break;
969     case PCI_IVAR_PROGIF:
970 	*(uint8_t*)result = (ad->ad_cls_class >> 0) & 0xff;
971 	break;
972     default:
973 	return (ENOENT);
974     }
975 
976     return (0);
977 }
978 
979 static int
980 acpi_write_ivar(device_t dev, device_t child, int index, uintptr_t value)
981 {
982     struct acpi_device	*ad;
983 
984     if ((ad = device_get_ivars(child)) == NULL) {
985 	device_printf(child, "device has no ivars\n");
986 	return (ENOENT);
987     }
988 
989     switch(index) {
990     case ACPI_IVAR_HANDLE:
991 	ad->ad_handle = (ACPI_HANDLE)value;
992 	break;
993     case ACPI_IVAR_PRIVATE:
994 	ad->ad_private = (void *)value;
995 	break;
996     case ACPI_IVAR_FLAGS:
997 	ad->ad_flags = (int)value;
998 	break;
999     default:
1000 	panic("bad ivar write request (%d)", index);
1001 	return (ENOENT);
1002     }
1003 
1004     return (0);
1005 }
1006 
1007 /*
1008  * Handle child resource allocation/removal
1009  */
1010 static struct resource_list *
1011 acpi_get_rlist(device_t dev, device_t child)
1012 {
1013     struct acpi_device		*ad;
1014 
1015     ad = device_get_ivars(child);
1016     return (&ad->ad_rl);
1017 }
1018 
1019 static int
1020 acpi_match_resource_hint(device_t dev, int type, long value)
1021 {
1022     struct acpi_device *ad = device_get_ivars(dev);
1023     struct resource_list *rl = &ad->ad_rl;
1024     struct resource_list_entry *rle;
1025 
1026     STAILQ_FOREACH(rle, rl, link) {
1027 	if (rle->type != type)
1028 	    continue;
1029 	if (rle->start <= value && rle->end >= value)
1030 	    return (1);
1031     }
1032     return (0);
1033 }
1034 
1035 /*
1036  * Wire device unit numbers based on resource matches in hints.
1037  */
1038 static void
1039 acpi_hint_device_unit(device_t acdev, device_t child, const char *name,
1040     int *unitp)
1041 {
1042     const char *s;
1043     long value;
1044     int line, matches, unit;
1045 
1046     /*
1047      * Iterate over all the hints for the devices with the specified
1048      * name to see if one's resources are a subset of this device.
1049      */
1050     line = 0;
1051     while (resource_find_dev(&line, name, &unit, "at", NULL) == 0) {
1052 	/* Must have an "at" for acpi or isa. */
1053 	resource_string_value(name, unit, "at", &s);
1054 	if (!(strcmp(s, "acpi0") == 0 || strcmp(s, "acpi") == 0 ||
1055 	    strcmp(s, "isa0") == 0 || strcmp(s, "isa") == 0))
1056 	    continue;
1057 
1058 	/*
1059 	 * Check for matching resources.  We must have at least one match.
1060 	 * Since I/O and memory resources cannot be shared, if we get a
1061 	 * match on either of those, ignore any mismatches in IRQs or DRQs.
1062 	 *
1063 	 * XXX: We may want to revisit this to be more lenient and wire
1064 	 * as long as it gets one match.
1065 	 */
1066 	matches = 0;
1067 	if (resource_long_value(name, unit, "port", &value) == 0) {
1068 	    /*
1069 	     * Floppy drive controllers are notorious for having a
1070 	     * wide variety of resources not all of which include the
1071 	     * first port that is specified by the hint (typically
1072 	     * 0x3f0) (see the comment above fdc_isa_alloc_resources()
1073 	     * in fdc_isa.c).  However, they do all seem to include
1074 	     * port + 2 (e.g. 0x3f2) so for a floppy device, look for
1075 	     * 'value + 2' in the port resources instead of the hint
1076 	     * value.
1077 	     */
1078 	    if (strcmp(name, "fdc") == 0)
1079 		value += 2;
1080 	    if (acpi_match_resource_hint(child, SYS_RES_IOPORT, value))
1081 		matches++;
1082 	    else
1083 		continue;
1084 	}
1085 	if (resource_long_value(name, unit, "maddr", &value) == 0) {
1086 	    if (acpi_match_resource_hint(child, SYS_RES_MEMORY, value))
1087 		matches++;
1088 	    else
1089 		continue;
1090 	}
1091 	if (matches > 0)
1092 	    goto matched;
1093 	if (resource_long_value(name, unit, "irq", &value) == 0) {
1094 	    if (acpi_match_resource_hint(child, SYS_RES_IRQ, value))
1095 		matches++;
1096 	    else
1097 		continue;
1098 	}
1099 	if (resource_long_value(name, unit, "drq", &value) == 0) {
1100 	    if (acpi_match_resource_hint(child, SYS_RES_DRQ, value))
1101 		matches++;
1102 	    else
1103 		continue;
1104 	}
1105 
1106     matched:
1107 	if (matches > 0) {
1108 	    /* We have a winner! */
1109 	    *unitp = unit;
1110 	    break;
1111 	}
1112     }
1113 }
1114 
1115 /*
1116  * Fetch the NUMA domain for a device by mapping the value returned by
1117  * _PXM to a NUMA domain.  If the device does not have a _PXM method,
1118  * -2 is returned.  If any other error occurs, -1 is returned.
1119  */
1120 static int
1121 acpi_parse_pxm(device_t dev)
1122 {
1123 #ifdef NUMA
1124 #if defined(__i386__) || defined(__amd64__)
1125 	ACPI_HANDLE handle;
1126 	ACPI_STATUS status;
1127 	int pxm;
1128 
1129 	handle = acpi_get_handle(dev);
1130 	if (handle == NULL)
1131 		return (-2);
1132 	status = acpi_GetInteger(handle, "_PXM", &pxm);
1133 	if (ACPI_SUCCESS(status))
1134 		return (acpi_map_pxm_to_vm_domainid(pxm));
1135 	if (status == AE_NOT_FOUND)
1136 		return (-2);
1137 #endif
1138 #endif
1139 	return (-1);
1140 }
1141 
1142 int
1143 acpi_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize,
1144     cpuset_t *cpuset)
1145 {
1146 	int d, error;
1147 
1148 	d = acpi_parse_pxm(child);
1149 	if (d < 0)
1150 		return (bus_generic_get_cpus(dev, child, op, setsize, cpuset));
1151 
1152 	switch (op) {
1153 	case LOCAL_CPUS:
1154 		if (setsize != sizeof(cpuset_t))
1155 			return (EINVAL);
1156 		*cpuset = cpuset_domain[d];
1157 		return (0);
1158 	case INTR_CPUS:
1159 		error = bus_generic_get_cpus(dev, child, op, setsize, cpuset);
1160 		if (error != 0)
1161 			return (error);
1162 		if (setsize != sizeof(cpuset_t))
1163 			return (EINVAL);
1164 		CPU_AND(cpuset, &cpuset_domain[d]);
1165 		return (0);
1166 	default:
1167 		return (bus_generic_get_cpus(dev, child, op, setsize, cpuset));
1168 	}
1169 }
1170 
1171 /*
1172  * Fetch the NUMA domain for the given device 'dev'.
1173  *
1174  * If a device has a _PXM method, map that to a NUMA domain.
1175  * Otherwise, pass the request up to the parent.
1176  * If there's no matching domain or the domain cannot be
1177  * determined, return ENOENT.
1178  */
1179 int
1180 acpi_get_domain(device_t dev, device_t child, int *domain)
1181 {
1182 	int d;
1183 
1184 	d = acpi_parse_pxm(child);
1185 	if (d >= 0) {
1186 		*domain = d;
1187 		return (0);
1188 	}
1189 	if (d == -1)
1190 		return (ENOENT);
1191 
1192 	/* No _PXM node; go up a level */
1193 	return (bus_generic_get_domain(dev, child, domain));
1194 }
1195 
1196 /*
1197  * Pre-allocate/manage all memory and IO resources.  Since rman can't handle
1198  * duplicates, we merge any in the sysresource attach routine.
1199  */
1200 static int
1201 acpi_sysres_alloc(device_t dev)
1202 {
1203     struct resource *res;
1204     struct resource_list *rl;
1205     struct resource_list_entry *rle;
1206     struct rman *rm;
1207     device_t *children;
1208     int child_count, i;
1209 
1210     /*
1211      * Probe/attach any sysresource devices.  This would be unnecessary if we
1212      * had multi-pass probe/attach.
1213      */
1214     if (device_get_children(dev, &children, &child_count) != 0)
1215 	return (ENXIO);
1216     for (i = 0; i < child_count; i++) {
1217 	if (ACPI_ID_PROBE(dev, children[i], sysres_ids, NULL) <= 0)
1218 	    device_probe_and_attach(children[i]);
1219     }
1220     free(children, M_TEMP);
1221 
1222     rl = BUS_GET_RESOURCE_LIST(device_get_parent(dev), dev);
1223     STAILQ_FOREACH(rle, rl, link) {
1224 	if (rle->res != NULL) {
1225 	    device_printf(dev, "duplicate resource for %jx\n", rle->start);
1226 	    continue;
1227 	}
1228 
1229 	/* Only memory and IO resources are valid here. */
1230 	switch (rle->type) {
1231 	case SYS_RES_IOPORT:
1232 	    rm = &acpi_rman_io;
1233 	    break;
1234 	case SYS_RES_MEMORY:
1235 	    rm = &acpi_rman_mem;
1236 	    break;
1237 	default:
1238 	    continue;
1239 	}
1240 
1241 	/* Pre-allocate resource and add to our rman pool. */
1242 	res = BUS_ALLOC_RESOURCE(device_get_parent(dev), dev, rle->type,
1243 	    &rle->rid, rle->start, rle->start + rle->count - 1, rle->count, 0);
1244 	if (res != NULL) {
1245 	    rman_manage_region(rm, rman_get_start(res), rman_get_end(res));
1246 	    rle->res = res;
1247 	} else if (bootverbose)
1248 	    device_printf(dev, "reservation of %jx, %jx (%d) failed\n",
1249 		rle->start, rle->count, rle->type);
1250     }
1251     return (0);
1252 }
1253 
1254 /*
1255  * Reserve declared resources for devices found during attach once system
1256  * resources have been allocated.
1257  */
1258 static void
1259 acpi_reserve_resources(device_t dev)
1260 {
1261     struct resource_list_entry *rle;
1262     struct resource_list *rl;
1263     struct acpi_device *ad;
1264     struct acpi_softc *sc;
1265     device_t *children;
1266     int child_count, i;
1267 
1268     sc = device_get_softc(dev);
1269     if (device_get_children(dev, &children, &child_count) != 0)
1270 	return;
1271     for (i = 0; i < child_count; i++) {
1272 	ad = device_get_ivars(children[i]);
1273 	rl = &ad->ad_rl;
1274 
1275 	/* Don't reserve system resources. */
1276 	if (ACPI_ID_PROBE(dev, children[i], sysres_ids, NULL) <= 0)
1277 	    continue;
1278 
1279 	STAILQ_FOREACH(rle, rl, link) {
1280 	    /*
1281 	     * Don't reserve IRQ resources.  There are many sticky things
1282 	     * to get right otherwise (e.g. IRQs for psm, atkbd, and HPET
1283 	     * when using legacy routing).
1284 	     */
1285 	    if (rle->type == SYS_RES_IRQ)
1286 		continue;
1287 
1288 	    /*
1289 	     * Don't reserve the resource if it is already allocated.
1290 	     * The acpi_ec(4) driver can allocate its resources early
1291 	     * if ECDT is present.
1292 	     */
1293 	    if (rle->res != NULL)
1294 		continue;
1295 
1296 	    /*
1297 	     * Try to reserve the resource from our parent.  If this
1298 	     * fails because the resource is a system resource, just
1299 	     * let it be.  The resource range is already reserved so
1300 	     * that other devices will not use it.  If the driver
1301 	     * needs to allocate the resource, then
1302 	     * acpi_alloc_resource() will sub-alloc from the system
1303 	     * resource.
1304 	     */
1305 	    resource_list_reserve(rl, dev, children[i], rle->type, &rle->rid,
1306 		rle->start, rle->end, rle->count, 0);
1307 	}
1308     }
1309     free(children, M_TEMP);
1310     sc->acpi_resources_reserved = 1;
1311 }
1312 
1313 static int
1314 acpi_set_resource(device_t dev, device_t child, int type, int rid,
1315     rman_res_t start, rman_res_t count)
1316 {
1317     struct acpi_softc *sc = device_get_softc(dev);
1318     struct acpi_device *ad = device_get_ivars(child);
1319     struct resource_list *rl = &ad->ad_rl;
1320     ACPI_DEVICE_INFO *devinfo;
1321     rman_res_t end;
1322     int allow;
1323 
1324     /* Ignore IRQ resources for PCI link devices. */
1325     if (type == SYS_RES_IRQ &&
1326 	ACPI_ID_PROBE(dev, child, pcilink_ids, NULL) <= 0)
1327 	return (0);
1328 
1329     /*
1330      * Ignore most resources for PCI root bridges.  Some BIOSes
1331      * incorrectly enumerate the memory ranges they decode as plain
1332      * memory resources instead of as ResourceProducer ranges.  Other
1333      * BIOSes incorrectly list system resource entries for I/O ranges
1334      * under the PCI bridge.  Do allow the one known-correct case on
1335      * x86 of a PCI bridge claiming the I/O ports used for PCI config
1336      * access.
1337      */
1338     if (type == SYS_RES_MEMORY || type == SYS_RES_IOPORT) {
1339 	if (ACPI_SUCCESS(AcpiGetObjectInfo(ad->ad_handle, &devinfo))) {
1340 	    if ((devinfo->Flags & ACPI_PCI_ROOT_BRIDGE) != 0) {
1341 #if defined(__i386__) || defined(__amd64__)
1342 		allow = (type == SYS_RES_IOPORT && start == CONF1_ADDR_PORT);
1343 #else
1344 		allow = 0;
1345 #endif
1346 		if (!allow) {
1347 		    AcpiOsFree(devinfo);
1348 		    return (0);
1349 		}
1350 	    }
1351 	    AcpiOsFree(devinfo);
1352 	}
1353     }
1354 
1355 #ifdef INTRNG
1356     /* map with default for now */
1357     if (type == SYS_RES_IRQ)
1358 	start = (rman_res_t)acpi_map_intr(child, (u_int)start,
1359 			acpi_get_handle(child));
1360 #endif
1361 
1362     /* If the resource is already allocated, fail. */
1363     if (resource_list_busy(rl, type, rid))
1364 	return (EBUSY);
1365 
1366     /* If the resource is already reserved, release it. */
1367     if (resource_list_reserved(rl, type, rid))
1368 	resource_list_unreserve(rl, dev, child, type, rid);
1369 
1370     /* Add the resource. */
1371     end = (start + count - 1);
1372     resource_list_add(rl, type, rid, start, end, count);
1373 
1374     /* Don't reserve resources until the system resources are allocated. */
1375     if (!sc->acpi_resources_reserved)
1376 	return (0);
1377 
1378     /* Don't reserve system resources. */
1379     if (ACPI_ID_PROBE(dev, child, sysres_ids, NULL) <= 0)
1380 	return (0);
1381 
1382     /*
1383      * Don't reserve IRQ resources.  There are many sticky things to
1384      * get right otherwise (e.g. IRQs for psm, atkbd, and HPET when
1385      * using legacy routing).
1386      */
1387     if (type == SYS_RES_IRQ)
1388 	return (0);
1389 
1390     /*
1391      * Don't reserve resources for CPU devices.  Some of these
1392      * resources need to be allocated as shareable, but reservations
1393      * are always non-shareable.
1394      */
1395     if (device_get_devclass(child) == devclass_find("cpu"))
1396 	return (0);
1397 
1398     /*
1399      * Reserve the resource.
1400      *
1401      * XXX: Ignores failure for now.  Failure here is probably a
1402      * BIOS/firmware bug?
1403      */
1404     resource_list_reserve(rl, dev, child, type, &rid, start, end, count, 0);
1405     return (0);
1406 }
1407 
1408 static struct resource *
1409 acpi_alloc_resource(device_t bus, device_t child, int type, int *rid,
1410     rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
1411 {
1412 #ifndef INTRNG
1413     ACPI_RESOURCE ares;
1414 #endif
1415     struct acpi_device *ad;
1416     struct resource_list_entry *rle;
1417     struct resource_list *rl;
1418     struct resource *res;
1419     int isdefault = RMAN_IS_DEFAULT_RANGE(start, end);
1420 
1421     /*
1422      * First attempt at allocating the resource.  For direct children,
1423      * use resource_list_alloc() to handle reserved resources.  For
1424      * other devices, pass the request up to our parent.
1425      */
1426     if (bus == device_get_parent(child)) {
1427 	ad = device_get_ivars(child);
1428 	rl = &ad->ad_rl;
1429 
1430 	/*
1431 	 * Simulate the behavior of the ISA bus for direct children
1432 	 * devices.  That is, if a non-default range is specified for
1433 	 * a resource that doesn't exist, use bus_set_resource() to
1434 	 * add the resource before allocating it.  Note that these
1435 	 * resources will not be reserved.
1436 	 */
1437 	if (!isdefault && resource_list_find(rl, type, *rid) == NULL)
1438 		resource_list_add(rl, type, *rid, start, end, count);
1439 	res = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
1440 	    flags);
1441 #ifndef INTRNG
1442 	if (res != NULL && type == SYS_RES_IRQ) {
1443 	    /*
1444 	     * Since bus_config_intr() takes immediate effect, we cannot
1445 	     * configure the interrupt associated with a device when we
1446 	     * parse the resources but have to defer it until a driver
1447 	     * actually allocates the interrupt via bus_alloc_resource().
1448 	     *
1449 	     * XXX: Should we handle the lookup failing?
1450 	     */
1451 	    if (ACPI_SUCCESS(acpi_lookup_irq_resource(child, *rid, res, &ares)))
1452 		acpi_config_intr(child, &ares);
1453 	}
1454 #endif
1455 
1456 	/*
1457 	 * If this is an allocation of the "default" range for a given
1458 	 * RID, fetch the exact bounds for this resource from the
1459 	 * resource list entry to try to allocate the range from the
1460 	 * system resource regions.
1461 	 */
1462 	if (res == NULL && isdefault) {
1463 	    rle = resource_list_find(rl, type, *rid);
1464 	    if (rle != NULL) {
1465 		start = rle->start;
1466 		end = rle->end;
1467 		count = rle->count;
1468 	    }
1469 	}
1470     } else
1471 	res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, type, rid,
1472 	    start, end, count, flags);
1473 
1474     /*
1475      * If the first attempt failed and this is an allocation of a
1476      * specific range, try to satisfy the request via a suballocation
1477      * from our system resource regions.
1478      */
1479     if (res == NULL && start + count - 1 == end)
1480 	res = acpi_alloc_sysres(child, type, rid, start, end, count, flags);
1481     return (res);
1482 }
1483 
1484 /*
1485  * Attempt to allocate a specific resource range from the system
1486  * resource ranges.  Note that we only handle memory and I/O port
1487  * system resources.
1488  */
1489 struct resource *
1490 acpi_alloc_sysres(device_t child, int type, int *rid, rman_res_t start,
1491     rman_res_t end, rman_res_t count, u_int flags)
1492 {
1493     struct rman *rm;
1494     struct resource *res;
1495 
1496     switch (type) {
1497     case SYS_RES_IOPORT:
1498 	rm = &acpi_rman_io;
1499 	break;
1500     case SYS_RES_MEMORY:
1501 	rm = &acpi_rman_mem;
1502 	break;
1503     default:
1504 	return (NULL);
1505     }
1506 
1507     KASSERT(start + count - 1 == end, ("wildcard resource range"));
1508     res = rman_reserve_resource(rm, start, end, count, flags & ~RF_ACTIVE,
1509 	child);
1510     if (res == NULL)
1511 	return (NULL);
1512 
1513     rman_set_rid(res, *rid);
1514 
1515     /* If requested, activate the resource using the parent's method. */
1516     if (flags & RF_ACTIVE)
1517 	if (bus_activate_resource(child, type, *rid, res) != 0) {
1518 	    rman_release_resource(res);
1519 	    return (NULL);
1520 	}
1521 
1522     return (res);
1523 }
1524 
1525 static int
1526 acpi_is_resource_managed(int type, struct resource *r)
1527 {
1528 
1529     /* We only handle memory and IO resources through rman. */
1530     switch (type) {
1531     case SYS_RES_IOPORT:
1532 	return (rman_is_region_manager(r, &acpi_rman_io));
1533     case SYS_RES_MEMORY:
1534 	return (rman_is_region_manager(r, &acpi_rman_mem));
1535     }
1536     return (0);
1537 }
1538 
1539 static int
1540 acpi_adjust_resource(device_t bus, device_t child, int type, struct resource *r,
1541     rman_res_t start, rman_res_t end)
1542 {
1543 
1544     if (acpi_is_resource_managed(type, r))
1545 	return (rman_adjust_resource(r, start, end));
1546     return (bus_generic_adjust_resource(bus, child, type, r, start, end));
1547 }
1548 
1549 static int
1550 acpi_release_resource(device_t bus, device_t child, int type, int rid,
1551     struct resource *r)
1552 {
1553     int ret;
1554 
1555     /*
1556      * If this resource belongs to one of our internal managers,
1557      * deactivate it and release it to the local pool.
1558      */
1559     if (acpi_is_resource_managed(type, r)) {
1560 	if (rman_get_flags(r) & RF_ACTIVE) {
1561 	    ret = bus_deactivate_resource(child, type, rid, r);
1562 	    if (ret != 0)
1563 		return (ret);
1564 	}
1565 	return (rman_release_resource(r));
1566     }
1567 
1568     return (bus_generic_rl_release_resource(bus, child, type, rid, r));
1569 }
1570 
1571 static void
1572 acpi_delete_resource(device_t bus, device_t child, int type, int rid)
1573 {
1574     struct resource_list *rl;
1575 
1576     rl = acpi_get_rlist(bus, child);
1577     if (resource_list_busy(rl, type, rid)) {
1578 	device_printf(bus, "delete_resource: Resource still owned by child"
1579 	    " (type=%d, rid=%d)\n", type, rid);
1580 	return;
1581     }
1582     resource_list_unreserve(rl, bus, child, type, rid);
1583     resource_list_delete(rl, type, rid);
1584 }
1585 
1586 /* Allocate an IO port or memory resource, given its GAS. */
1587 int
1588 acpi_bus_alloc_gas(device_t dev, int *type, int *rid, ACPI_GENERIC_ADDRESS *gas,
1589     struct resource **res, u_int flags)
1590 {
1591     int error, res_type;
1592 
1593     error = ENOMEM;
1594     if (type == NULL || rid == NULL || gas == NULL || res == NULL)
1595 	return (EINVAL);
1596 
1597     /* We only support memory and IO spaces. */
1598     switch (gas->SpaceId) {
1599     case ACPI_ADR_SPACE_SYSTEM_MEMORY:
1600 	res_type = SYS_RES_MEMORY;
1601 	break;
1602     case ACPI_ADR_SPACE_SYSTEM_IO:
1603 	res_type = SYS_RES_IOPORT;
1604 	break;
1605     default:
1606 	return (EOPNOTSUPP);
1607     }
1608 
1609     /*
1610      * If the register width is less than 8, assume the BIOS author means
1611      * it is a bit field and just allocate a byte.
1612      */
1613     if (gas->BitWidth && gas->BitWidth < 8)
1614 	gas->BitWidth = 8;
1615 
1616     /* Validate the address after we're sure we support the space. */
1617     if (gas->Address == 0 || gas->BitWidth == 0)
1618 	return (EINVAL);
1619 
1620     bus_set_resource(dev, res_type, *rid, gas->Address,
1621 	gas->BitWidth / 8);
1622     *res = bus_alloc_resource_any(dev, res_type, rid, RF_ACTIVE | flags);
1623     if (*res != NULL) {
1624 	*type = res_type;
1625 	error = 0;
1626     } else
1627 	bus_delete_resource(dev, res_type, *rid);
1628 
1629     return (error);
1630 }
1631 
1632 /* Probe _HID and _CID for compatible ISA PNP ids. */
1633 static uint32_t
1634 acpi_isa_get_logicalid(device_t dev)
1635 {
1636     ACPI_DEVICE_INFO	*devinfo;
1637     ACPI_HANDLE		h;
1638     uint32_t		pnpid;
1639 
1640     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
1641 
1642     /* Fetch and validate the HID. */
1643     if ((h = acpi_get_handle(dev)) == NULL ||
1644 	ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo)))
1645 	return_VALUE (0);
1646 
1647     pnpid = (devinfo->Valid & ACPI_VALID_HID) != 0 &&
1648 	devinfo->HardwareId.Length >= ACPI_EISAID_STRING_SIZE ?
1649 	PNP_EISAID(devinfo->HardwareId.String) : 0;
1650     AcpiOsFree(devinfo);
1651 
1652     return_VALUE (pnpid);
1653 }
1654 
1655 static int
1656 acpi_isa_get_compatid(device_t dev, uint32_t *cids, int count)
1657 {
1658     ACPI_DEVICE_INFO	*devinfo;
1659     ACPI_PNP_DEVICE_ID	*ids;
1660     ACPI_HANDLE		h;
1661     uint32_t		*pnpid;
1662     int			i, valid;
1663 
1664     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
1665 
1666     pnpid = cids;
1667 
1668     /* Fetch and validate the CID */
1669     if ((h = acpi_get_handle(dev)) == NULL ||
1670 	ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo)))
1671 	return_VALUE (0);
1672 
1673     if ((devinfo->Valid & ACPI_VALID_CID) == 0) {
1674 	AcpiOsFree(devinfo);
1675 	return_VALUE (0);
1676     }
1677 
1678     if (devinfo->CompatibleIdList.Count < count)
1679 	count = devinfo->CompatibleIdList.Count;
1680     ids = devinfo->CompatibleIdList.Ids;
1681     for (i = 0, valid = 0; i < count; i++)
1682 	if (ids[i].Length >= ACPI_EISAID_STRING_SIZE &&
1683 	    strncmp(ids[i].String, "PNP", 3) == 0) {
1684 	    *pnpid++ = PNP_EISAID(ids[i].String);
1685 	    valid++;
1686 	}
1687     AcpiOsFree(devinfo);
1688 
1689     return_VALUE (valid);
1690 }
1691 
1692 static int
1693 acpi_device_id_probe(device_t bus, device_t dev, char **ids, char **match)
1694 {
1695     ACPI_HANDLE h;
1696     ACPI_OBJECT_TYPE t;
1697     int rv;
1698     int i;
1699 
1700     h = acpi_get_handle(dev);
1701     if (ids == NULL || h == NULL)
1702 	return (ENXIO);
1703     t = acpi_get_type(dev);
1704     if (t != ACPI_TYPE_DEVICE && t != ACPI_TYPE_PROCESSOR)
1705 	return (ENXIO);
1706 
1707     /* Try to match one of the array of IDs with a HID or CID. */
1708     for (i = 0; ids[i] != NULL; i++) {
1709 	rv = acpi_MatchHid(h, ids[i]);
1710 	if (rv == ACPI_MATCHHID_NOMATCH)
1711 	    continue;
1712 
1713 	if (match != NULL) {
1714 	    *match = ids[i];
1715 	}
1716 	return ((rv == ACPI_MATCHHID_HID)?
1717 		    BUS_PROBE_DEFAULT : BUS_PROBE_LOW_PRIORITY);
1718     }
1719     return (ENXIO);
1720 }
1721 
1722 static ACPI_STATUS
1723 acpi_device_eval_obj(device_t bus, device_t dev, ACPI_STRING pathname,
1724     ACPI_OBJECT_LIST *parameters, ACPI_BUFFER *ret)
1725 {
1726     ACPI_HANDLE h;
1727 
1728     if (dev == NULL)
1729 	h = ACPI_ROOT_OBJECT;
1730     else if ((h = acpi_get_handle(dev)) == NULL)
1731 	return (AE_BAD_PARAMETER);
1732     return (AcpiEvaluateObject(h, pathname, parameters, ret));
1733 }
1734 
1735 int
1736 acpi_device_pwr_for_sleep(device_t bus, device_t dev, int *dstate)
1737 {
1738     struct acpi_softc *sc;
1739     ACPI_HANDLE handle;
1740     ACPI_STATUS status;
1741     char sxd[8];
1742 
1743     handle = acpi_get_handle(dev);
1744 
1745     /*
1746      * XXX If we find these devices, don't try to power them down.
1747      * The serial and IRDA ports on my T23 hang the system when
1748      * set to D3 and it appears that such legacy devices may
1749      * need special handling in their drivers.
1750      */
1751     if (dstate == NULL || handle == NULL ||
1752 	acpi_MatchHid(handle, "PNP0500") ||
1753 	acpi_MatchHid(handle, "PNP0501") ||
1754 	acpi_MatchHid(handle, "PNP0502") ||
1755 	acpi_MatchHid(handle, "PNP0510") ||
1756 	acpi_MatchHid(handle, "PNP0511"))
1757 	return (ENXIO);
1758 
1759     /*
1760      * Override next state with the value from _SxD, if present.
1761      * Note illegal _S0D is evaluated because some systems expect this.
1762      */
1763     sc = device_get_softc(bus);
1764     snprintf(sxd, sizeof(sxd), "_S%dD", sc->acpi_sstate);
1765     status = acpi_GetInteger(handle, sxd, dstate);
1766     if (ACPI_FAILURE(status) && status != AE_NOT_FOUND) {
1767 	    device_printf(dev, "failed to get %s on %s: %s\n", sxd,
1768 		acpi_name(handle), AcpiFormatException(status));
1769 	    return (ENXIO);
1770     }
1771 
1772     return (0);
1773 }
1774 
1775 /* Callback arg for our implementation of walking the namespace. */
1776 struct acpi_device_scan_ctx {
1777     acpi_scan_cb_t	user_fn;
1778     void		*arg;
1779     ACPI_HANDLE		parent;
1780 };
1781 
1782 static ACPI_STATUS
1783 acpi_device_scan_cb(ACPI_HANDLE h, UINT32 level, void *arg, void **retval)
1784 {
1785     struct acpi_device_scan_ctx *ctx;
1786     device_t dev, old_dev;
1787     ACPI_STATUS status;
1788     ACPI_OBJECT_TYPE type;
1789 
1790     /*
1791      * Skip this device if we think we'll have trouble with it or it is
1792      * the parent where the scan began.
1793      */
1794     ctx = (struct acpi_device_scan_ctx *)arg;
1795     if (acpi_avoid(h) || h == ctx->parent)
1796 	return (AE_OK);
1797 
1798     /* If this is not a valid device type (e.g., a method), skip it. */
1799     if (ACPI_FAILURE(AcpiGetType(h, &type)))
1800 	return (AE_OK);
1801     if (type != ACPI_TYPE_DEVICE && type != ACPI_TYPE_PROCESSOR &&
1802 	type != ACPI_TYPE_THERMAL && type != ACPI_TYPE_POWER)
1803 	return (AE_OK);
1804 
1805     /*
1806      * Call the user function with the current device.  If it is unchanged
1807      * afterwards, return.  Otherwise, we update the handle to the new dev.
1808      */
1809     old_dev = acpi_get_device(h);
1810     dev = old_dev;
1811     status = ctx->user_fn(h, &dev, level, ctx->arg);
1812     if (ACPI_FAILURE(status) || old_dev == dev)
1813 	return (status);
1814 
1815     /* Remove the old child and its connection to the handle. */
1816     if (old_dev != NULL)
1817 	device_delete_child(device_get_parent(old_dev), old_dev);
1818 
1819     /* Recreate the handle association if the user created a device. */
1820     if (dev != NULL)
1821 	AcpiAttachData(h, acpi_fake_objhandler, dev);
1822 
1823     return (AE_OK);
1824 }
1825 
1826 static ACPI_STATUS
1827 acpi_device_scan_children(device_t bus, device_t dev, int max_depth,
1828     acpi_scan_cb_t user_fn, void *arg)
1829 {
1830     ACPI_HANDLE h;
1831     struct acpi_device_scan_ctx ctx;
1832 
1833     if (acpi_disabled("children"))
1834 	return (AE_OK);
1835 
1836     if (dev == NULL)
1837 	h = ACPI_ROOT_OBJECT;
1838     else if ((h = acpi_get_handle(dev)) == NULL)
1839 	return (AE_BAD_PARAMETER);
1840     ctx.user_fn = user_fn;
1841     ctx.arg = arg;
1842     ctx.parent = h;
1843     return (AcpiWalkNamespace(ACPI_TYPE_ANY, h, max_depth,
1844 	acpi_device_scan_cb, NULL, &ctx, NULL));
1845 }
1846 
1847 /*
1848  * Even though ACPI devices are not PCI, we use the PCI approach for setting
1849  * device power states since it's close enough to ACPI.
1850  */
1851 int
1852 acpi_set_powerstate(device_t child, int state)
1853 {
1854     ACPI_HANDLE h;
1855     ACPI_STATUS status;
1856 
1857     h = acpi_get_handle(child);
1858     if (state < ACPI_STATE_D0 || state > ACPI_D_STATES_MAX)
1859 	return (EINVAL);
1860     if (h == NULL)
1861 	return (0);
1862 
1863     /* Ignore errors if the power methods aren't present. */
1864     status = acpi_pwr_switch_consumer(h, state);
1865     if (ACPI_SUCCESS(status)) {
1866 	if (bootverbose)
1867 	    device_printf(child, "set ACPI power state D%d on %s\n",
1868 		state, acpi_name(h));
1869     } else if (status != AE_NOT_FOUND)
1870 	device_printf(child,
1871 	    "failed to set ACPI power state D%d on %s: %s\n", state,
1872 	    acpi_name(h), AcpiFormatException(status));
1873 
1874     return (0);
1875 }
1876 
1877 static int
1878 acpi_isa_pnp_probe(device_t bus, device_t child, struct isa_pnp_id *ids)
1879 {
1880     int			result, cid_count, i;
1881     uint32_t		lid, cids[8];
1882 
1883     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
1884 
1885     /*
1886      * ISA-style drivers attached to ACPI may persist and
1887      * probe manually if we return ENOENT.  We never want
1888      * that to happen, so don't ever return it.
1889      */
1890     result = ENXIO;
1891 
1892     /* Scan the supplied IDs for a match */
1893     lid = acpi_isa_get_logicalid(child);
1894     cid_count = acpi_isa_get_compatid(child, cids, 8);
1895     while (ids && ids->ip_id) {
1896 	if (lid == ids->ip_id) {
1897 	    result = 0;
1898 	    goto out;
1899 	}
1900 	for (i = 0; i < cid_count; i++) {
1901 	    if (cids[i] == ids->ip_id) {
1902 		result = 0;
1903 		goto out;
1904 	    }
1905 	}
1906 	ids++;
1907     }
1908 
1909  out:
1910     if (result == 0 && ids->ip_desc)
1911 	device_set_desc(child, ids->ip_desc);
1912 
1913     return_VALUE (result);
1914 }
1915 
1916 /*
1917  * Look for a MCFG table.  If it is present, use the settings for
1918  * domain (segment) 0 to setup PCI config space access via the memory
1919  * map.
1920  *
1921  * On non-x86 architectures (arm64 for now), this will be done from the
1922  * PCI host bridge driver.
1923  */
1924 static void
1925 acpi_enable_pcie(void)
1926 {
1927 #if defined(__i386__) || defined(__amd64__)
1928 	ACPI_TABLE_HEADER *hdr;
1929 	ACPI_MCFG_ALLOCATION *alloc, *end;
1930 	ACPI_STATUS status;
1931 
1932 	status = AcpiGetTable(ACPI_SIG_MCFG, 1, &hdr);
1933 	if (ACPI_FAILURE(status))
1934 		return;
1935 
1936 	end = (ACPI_MCFG_ALLOCATION *)((char *)hdr + hdr->Length);
1937 	alloc = (ACPI_MCFG_ALLOCATION *)((ACPI_TABLE_MCFG *)hdr + 1);
1938 	while (alloc < end) {
1939 		if (alloc->PciSegment == 0) {
1940 			pcie_cfgregopen(alloc->Address, alloc->StartBusNumber,
1941 			    alloc->EndBusNumber);
1942 			return;
1943 		}
1944 		alloc++;
1945 	}
1946 #endif
1947 }
1948 
1949 static void
1950 acpi_platform_osc(device_t dev)
1951 {
1952 	ACPI_HANDLE sb_handle;
1953 	ACPI_STATUS status;
1954 	uint32_t cap_set[2];
1955 
1956 	/* 0811B06E-4A27-44F9-8D60-3CBBC22E7B48 */
1957 	static uint8_t acpi_platform_uuid[ACPI_UUID_LENGTH] = {
1958 		0x6e, 0xb0, 0x11, 0x08, 0x27, 0x4a, 0xf9, 0x44,
1959 		0x8d, 0x60, 0x3c, 0xbb, 0xc2, 0x2e, 0x7b, 0x48
1960 	};
1961 
1962 	if (ACPI_FAILURE(AcpiGetHandle(ACPI_ROOT_OBJECT, "\\_SB_", &sb_handle)))
1963 		return;
1964 
1965 	cap_set[1] = 0x10;	/* APEI Support */
1966 	status = acpi_EvaluateOSC(sb_handle, acpi_platform_uuid, 1,
1967 	    nitems(cap_set), cap_set, cap_set, false);
1968 	if (ACPI_FAILURE(status)) {
1969 		if (status == AE_NOT_FOUND)
1970 			return;
1971 		device_printf(dev, "_OSC failed: %s\n",
1972 		    AcpiFormatException(status));
1973 		return;
1974 	}
1975 }
1976 
1977 /*
1978  * Scan all of the ACPI namespace and attach child devices.
1979  *
1980  * We should only expect to find devices in the \_PR, \_TZ, \_SI, and
1981  * \_SB scopes, and \_PR and \_TZ became obsolete in the ACPI 2.0 spec.
1982  * However, in violation of the spec, some systems place their PCI link
1983  * devices in \, so we have to walk the whole namespace.  We check the
1984  * type of namespace nodes, so this should be ok.
1985  */
1986 static void
1987 acpi_probe_children(device_t bus)
1988 {
1989 
1990     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
1991 
1992     /*
1993      * Scan the namespace and insert placeholders for all the devices that
1994      * we find.  We also probe/attach any early devices.
1995      *
1996      * Note that we use AcpiWalkNamespace rather than AcpiGetDevices because
1997      * we want to create nodes for all devices, not just those that are
1998      * currently present. (This assumes that we don't want to create/remove
1999      * devices as they appear, which might be smarter.)
2000      */
2001     ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "namespace scan\n"));
2002     AcpiWalkNamespace(ACPI_TYPE_ANY, ACPI_ROOT_OBJECT, 100, acpi_probe_child,
2003 	NULL, bus, NULL);
2004 
2005     /* Pre-allocate resources for our rman from any sysresource devices. */
2006     acpi_sysres_alloc(bus);
2007 
2008     /* Reserve resources already allocated to children. */
2009     acpi_reserve_resources(bus);
2010 
2011     /* Create any static children by calling device identify methods. */
2012     ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "device identify routines\n"));
2013     bus_generic_probe(bus);
2014 
2015     /* Probe/attach all children, created statically and from the namespace. */
2016     ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "acpi bus_generic_attach\n"));
2017     bus_generic_attach(bus);
2018 
2019     /* Attach wake sysctls. */
2020     acpi_wake_sysctl_walk(bus);
2021 
2022     ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "done attaching children\n"));
2023     return_VOID;
2024 }
2025 
2026 /*
2027  * Determine the probe order for a given device.
2028  */
2029 static void
2030 acpi_probe_order(ACPI_HANDLE handle, int *order)
2031 {
2032 	ACPI_OBJECT_TYPE type;
2033 
2034 	/*
2035 	 * 0. CPUs
2036 	 * 1. I/O port and memory system resource holders
2037 	 * 2. Clocks and timers (to handle early accesses)
2038 	 * 3. Embedded controllers (to handle early accesses)
2039 	 * 4. PCI Link Devices
2040 	 */
2041 	AcpiGetType(handle, &type);
2042 	if (type == ACPI_TYPE_PROCESSOR)
2043 		*order = 0;
2044 	else if (acpi_MatchHid(handle, "PNP0C01") ||
2045 	    acpi_MatchHid(handle, "PNP0C02"))
2046 		*order = 1;
2047 	else if (acpi_MatchHid(handle, "PNP0100") ||
2048 	    acpi_MatchHid(handle, "PNP0103") ||
2049 	    acpi_MatchHid(handle, "PNP0B00"))
2050 		*order = 2;
2051 	else if (acpi_MatchHid(handle, "PNP0C09"))
2052 		*order = 3;
2053 	else if (acpi_MatchHid(handle, "PNP0C0F"))
2054 		*order = 4;
2055 }
2056 
2057 /*
2058  * Evaluate a child device and determine whether we might attach a device to
2059  * it.
2060  */
2061 static ACPI_STATUS
2062 acpi_probe_child(ACPI_HANDLE handle, UINT32 level, void *context, void **status)
2063 {
2064     ACPI_DEVICE_INFO *devinfo;
2065     struct acpi_device	*ad;
2066     struct acpi_prw_data prw;
2067     ACPI_OBJECT_TYPE type;
2068     ACPI_HANDLE h;
2069     device_t bus, child;
2070     char *handle_str;
2071     int order;
2072 
2073     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
2074 
2075     if (acpi_disabled("children"))
2076 	return_ACPI_STATUS (AE_OK);
2077 
2078     /* Skip this device if we think we'll have trouble with it. */
2079     if (acpi_avoid(handle))
2080 	return_ACPI_STATUS (AE_OK);
2081 
2082     bus = (device_t)context;
2083     if (ACPI_SUCCESS(AcpiGetType(handle, &type))) {
2084 	handle_str = acpi_name(handle);
2085 	switch (type) {
2086 	case ACPI_TYPE_DEVICE:
2087 	    /*
2088 	     * Since we scan from \, be sure to skip system scope objects.
2089 	     * \_SB_ and \_TZ_ are defined in ACPICA as devices to work around
2090 	     * BIOS bugs.  For example, \_SB_ is to allow \_SB_._INI to be run
2091 	     * during the initialization and \_TZ_ is to support Notify() on it.
2092 	     */
2093 	    if (strcmp(handle_str, "\\_SB_") == 0 ||
2094 		strcmp(handle_str, "\\_TZ_") == 0)
2095 		break;
2096 	    if (acpi_parse_prw(handle, &prw) == 0)
2097 		AcpiSetupGpeForWake(handle, prw.gpe_handle, prw.gpe_bit);
2098 
2099 	    /*
2100 	     * Ignore devices that do not have a _HID or _CID.  They should
2101 	     * be discovered by other buses (e.g. the PCI bus driver).
2102 	     */
2103 	    if (!acpi_has_hid(handle))
2104 		break;
2105 	    /* FALLTHROUGH */
2106 	case ACPI_TYPE_PROCESSOR:
2107 	case ACPI_TYPE_THERMAL:
2108 	case ACPI_TYPE_POWER:
2109 	    /*
2110 	     * Create a placeholder device for this node.  Sort the
2111 	     * placeholder so that the probe/attach passes will run
2112 	     * breadth-first.  Orders less than ACPI_DEV_BASE_ORDER
2113 	     * are reserved for special objects (i.e., system
2114 	     * resources).
2115 	     */
2116 	    ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "scanning '%s'\n", handle_str));
2117 	    order = level * 10 + ACPI_DEV_BASE_ORDER;
2118 	    acpi_probe_order(handle, &order);
2119 	    child = BUS_ADD_CHILD(bus, order, NULL, -1);
2120 	    if (child == NULL)
2121 		break;
2122 
2123 	    /* Associate the handle with the device_t and vice versa. */
2124 	    acpi_set_handle(child, handle);
2125 	    AcpiAttachData(handle, acpi_fake_objhandler, child);
2126 
2127 	    /*
2128 	     * Check that the device is present.  If it's not present,
2129 	     * leave it disabled (so that we have a device_t attached to
2130 	     * the handle, but we don't probe it).
2131 	     *
2132 	     * XXX PCI link devices sometimes report "present" but not
2133 	     * "functional" (i.e. if disabled).  Go ahead and probe them
2134 	     * anyway since we may enable them later.
2135 	     */
2136 	    if (type == ACPI_TYPE_DEVICE && !acpi_DeviceIsPresent(child)) {
2137 		/* Never disable PCI link devices. */
2138 		if (acpi_MatchHid(handle, "PNP0C0F"))
2139 		    break;
2140 		/*
2141 		 * Docking stations should remain enabled since the system
2142 		 * may be undocked at boot.
2143 		 */
2144 		if (ACPI_SUCCESS(AcpiGetHandle(handle, "_DCK", &h)))
2145 		    break;
2146 
2147 		device_disable(child);
2148 		break;
2149 	    }
2150 
2151 	    /*
2152 	     * Get the device's resource settings and attach them.
2153 	     * Note that if the device has _PRS but no _CRS, we need
2154 	     * to decide when it's appropriate to try to configure the
2155 	     * device.  Ignore the return value here; it's OK for the
2156 	     * device not to have any resources.
2157 	     */
2158 	    acpi_parse_resources(child, handle, &acpi_res_parse_set, NULL);
2159 
2160 	    ad = device_get_ivars(child);
2161 	    ad->ad_cls_class = 0xffffff;
2162 	    if (ACPI_SUCCESS(AcpiGetObjectInfo(handle, &devinfo))) {
2163 		if ((devinfo->Valid & ACPI_VALID_CLS) != 0 &&
2164 		    devinfo->ClassCode.Length >= ACPI_PCICLS_STRING_SIZE) {
2165 		    ad->ad_cls_class = strtoul(devinfo->ClassCode.String,
2166 			NULL, 16);
2167 		}
2168 		AcpiOsFree(devinfo);
2169 	    }
2170 	    break;
2171 	}
2172     }
2173 
2174     return_ACPI_STATUS (AE_OK);
2175 }
2176 
2177 /*
2178  * AcpiAttachData() requires an object handler but never uses it.  This is a
2179  * placeholder object handler so we can store a device_t in an ACPI_HANDLE.
2180  */
2181 void
2182 acpi_fake_objhandler(ACPI_HANDLE h, void *data)
2183 {
2184 }
2185 
2186 static void
2187 acpi_shutdown_final(void *arg, int howto)
2188 {
2189     struct acpi_softc *sc = (struct acpi_softc *)arg;
2190     register_t intr;
2191     ACPI_STATUS status;
2192 
2193     /*
2194      * XXX Shutdown code should only run on the BSP (cpuid 0).
2195      * Some chipsets do not power off the system correctly if called from
2196      * an AP.
2197      */
2198     if ((howto & RB_POWEROFF) != 0) {
2199 	status = AcpiEnterSleepStatePrep(ACPI_STATE_S5);
2200 	if (ACPI_FAILURE(status)) {
2201 	    device_printf(sc->acpi_dev, "AcpiEnterSleepStatePrep failed - %s\n",
2202 		AcpiFormatException(status));
2203 	    return;
2204 	}
2205 	device_printf(sc->acpi_dev, "Powering system off\n");
2206 	intr = intr_disable();
2207 	status = AcpiEnterSleepState(ACPI_STATE_S5);
2208 	if (ACPI_FAILURE(status)) {
2209 	    intr_restore(intr);
2210 	    device_printf(sc->acpi_dev, "power-off failed - %s\n",
2211 		AcpiFormatException(status));
2212 	} else {
2213 	    DELAY(1000000);
2214 	    intr_restore(intr);
2215 	    device_printf(sc->acpi_dev, "power-off failed - timeout\n");
2216 	}
2217     } else if ((howto & RB_HALT) == 0 && sc->acpi_handle_reboot) {
2218 	/* Reboot using the reset register. */
2219 	status = AcpiReset();
2220 	if (ACPI_SUCCESS(status)) {
2221 	    DELAY(1000000);
2222 	    device_printf(sc->acpi_dev, "reset failed - timeout\n");
2223 	} else if (status != AE_NOT_EXIST)
2224 	    device_printf(sc->acpi_dev, "reset failed - %s\n",
2225 		AcpiFormatException(status));
2226     } else if (sc->acpi_do_disable && !KERNEL_PANICKED()) {
2227 	/*
2228 	 * Only disable ACPI if the user requested.  On some systems, writing
2229 	 * the disable value to SMI_CMD hangs the system.
2230 	 */
2231 	device_printf(sc->acpi_dev, "Shutting down\n");
2232 	AcpiTerminate();
2233     }
2234 }
2235 
2236 static void
2237 acpi_enable_fixed_events(struct acpi_softc *sc)
2238 {
2239     static int	first_time = 1;
2240 
2241     /* Enable and clear fixed events and install handlers. */
2242     if ((AcpiGbl_FADT.Flags & ACPI_FADT_POWER_BUTTON) == 0) {
2243 	AcpiClearEvent(ACPI_EVENT_POWER_BUTTON);
2244 	AcpiInstallFixedEventHandler(ACPI_EVENT_POWER_BUTTON,
2245 				     acpi_event_power_button_sleep, sc);
2246 	if (first_time)
2247 	    device_printf(sc->acpi_dev, "Power Button (fixed)\n");
2248     }
2249     if ((AcpiGbl_FADT.Flags & ACPI_FADT_SLEEP_BUTTON) == 0) {
2250 	AcpiClearEvent(ACPI_EVENT_SLEEP_BUTTON);
2251 	AcpiInstallFixedEventHandler(ACPI_EVENT_SLEEP_BUTTON,
2252 				     acpi_event_sleep_button_sleep, sc);
2253 	if (first_time)
2254 	    device_printf(sc->acpi_dev, "Sleep Button (fixed)\n");
2255     }
2256 
2257     first_time = 0;
2258 }
2259 
2260 /*
2261  * Returns true if the device is actually present and should
2262  * be attached to.  This requires the present, enabled, UI-visible
2263  * and diagnostics-passed bits to be set.
2264  */
2265 BOOLEAN
2266 acpi_DeviceIsPresent(device_t dev)
2267 {
2268 	ACPI_HANDLE h;
2269 	UINT32 s;
2270 	ACPI_STATUS status;
2271 
2272 	h = acpi_get_handle(dev);
2273 	if (h == NULL)
2274 		return (FALSE);
2275 	/*
2276 	 * Certain Treadripper boards always returns 0 for FreeBSD because it
2277 	 * only returns non-zero for the OS string "Windows 2015". Otherwise it
2278 	 * will return zero. Force them to always be treated as present.
2279 	 * Beata versions were worse: they always returned 0.
2280 	 */
2281 	if (acpi_MatchHid(h, "AMDI0020") || acpi_MatchHid(h, "AMDI0010"))
2282 		return (TRUE);
2283 
2284 	status = acpi_GetInteger(h, "_STA", &s);
2285 
2286 	/*
2287 	 * If no _STA method or if it failed, then assume that
2288 	 * the device is present.
2289 	 */
2290 	if (ACPI_FAILURE(status))
2291 		return (TRUE);
2292 
2293 	return (ACPI_DEVICE_PRESENT(s) ? TRUE : FALSE);
2294 }
2295 
2296 /*
2297  * Returns true if the battery is actually present and inserted.
2298  */
2299 BOOLEAN
2300 acpi_BatteryIsPresent(device_t dev)
2301 {
2302 	ACPI_HANDLE h;
2303 	UINT32 s;
2304 	ACPI_STATUS status;
2305 
2306 	h = acpi_get_handle(dev);
2307 	if (h == NULL)
2308 		return (FALSE);
2309 	status = acpi_GetInteger(h, "_STA", &s);
2310 
2311 	/*
2312 	 * If no _STA method or if it failed, then assume that
2313 	 * the device is present.
2314 	 */
2315 	if (ACPI_FAILURE(status))
2316 		return (TRUE);
2317 
2318 	return (ACPI_BATTERY_PRESENT(s) ? TRUE : FALSE);
2319 }
2320 
2321 /*
2322  * Returns true if a device has at least one valid device ID.
2323  */
2324 BOOLEAN
2325 acpi_has_hid(ACPI_HANDLE h)
2326 {
2327     ACPI_DEVICE_INFO	*devinfo;
2328     BOOLEAN		ret;
2329 
2330     if (h == NULL ||
2331 	ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo)))
2332 	return (FALSE);
2333 
2334     ret = FALSE;
2335     if ((devinfo->Valid & ACPI_VALID_HID) != 0)
2336 	ret = TRUE;
2337     else if ((devinfo->Valid & ACPI_VALID_CID) != 0)
2338 	if (devinfo->CompatibleIdList.Count > 0)
2339 	    ret = TRUE;
2340 
2341     AcpiOsFree(devinfo);
2342     return (ret);
2343 }
2344 
2345 /*
2346  * Match a HID string against a handle
2347  * returns ACPI_MATCHHID_HID if _HID match
2348  *         ACPI_MATCHHID_CID if _CID match and not _HID match.
2349  *         ACPI_MATCHHID_NOMATCH=0 if no match.
2350  */
2351 int
2352 acpi_MatchHid(ACPI_HANDLE h, const char *hid)
2353 {
2354     ACPI_DEVICE_INFO	*devinfo;
2355     BOOLEAN		ret;
2356     int			i;
2357 
2358     if (hid == NULL || h == NULL ||
2359 	ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo)))
2360 	return (ACPI_MATCHHID_NOMATCH);
2361 
2362     ret = ACPI_MATCHHID_NOMATCH;
2363     if ((devinfo->Valid & ACPI_VALID_HID) != 0 &&
2364 	strcmp(hid, devinfo->HardwareId.String) == 0)
2365 	    ret = ACPI_MATCHHID_HID;
2366     else if ((devinfo->Valid & ACPI_VALID_CID) != 0)
2367 	for (i = 0; i < devinfo->CompatibleIdList.Count; i++) {
2368 	    if (strcmp(hid, devinfo->CompatibleIdList.Ids[i].String) == 0) {
2369 		ret = ACPI_MATCHHID_CID;
2370 		break;
2371 	    }
2372 	}
2373 
2374     AcpiOsFree(devinfo);
2375     return (ret);
2376 }
2377 
2378 /*
2379  * Return the handle of a named object within our scope, ie. that of (parent)
2380  * or one if its parents.
2381  */
2382 ACPI_STATUS
2383 acpi_GetHandleInScope(ACPI_HANDLE parent, char *path, ACPI_HANDLE *result)
2384 {
2385     ACPI_HANDLE		r;
2386     ACPI_STATUS		status;
2387 
2388     /* Walk back up the tree to the root */
2389     for (;;) {
2390 	status = AcpiGetHandle(parent, path, &r);
2391 	if (ACPI_SUCCESS(status)) {
2392 	    *result = r;
2393 	    return (AE_OK);
2394 	}
2395 	/* XXX Return error here? */
2396 	if (status != AE_NOT_FOUND)
2397 	    return (AE_OK);
2398 	if (ACPI_FAILURE(AcpiGetParent(parent, &r)))
2399 	    return (AE_NOT_FOUND);
2400 	parent = r;
2401     }
2402 }
2403 
2404 /*
2405  * Allocate a buffer with a preset data size.
2406  */
2407 ACPI_BUFFER *
2408 acpi_AllocBuffer(int size)
2409 {
2410     ACPI_BUFFER	*buf;
2411 
2412     if ((buf = malloc(size + sizeof(*buf), M_ACPIDEV, M_NOWAIT)) == NULL)
2413 	return (NULL);
2414     buf->Length = size;
2415     buf->Pointer = (void *)(buf + 1);
2416     return (buf);
2417 }
2418 
2419 ACPI_STATUS
2420 acpi_SetInteger(ACPI_HANDLE handle, char *path, UINT32 number)
2421 {
2422     ACPI_OBJECT arg1;
2423     ACPI_OBJECT_LIST args;
2424 
2425     arg1.Type = ACPI_TYPE_INTEGER;
2426     arg1.Integer.Value = number;
2427     args.Count = 1;
2428     args.Pointer = &arg1;
2429 
2430     return (AcpiEvaluateObject(handle, path, &args, NULL));
2431 }
2432 
2433 /*
2434  * Evaluate a path that should return an integer.
2435  */
2436 ACPI_STATUS
2437 acpi_GetInteger(ACPI_HANDLE handle, char *path, UINT32 *number)
2438 {
2439     ACPI_STATUS	status;
2440     ACPI_BUFFER	buf;
2441     ACPI_OBJECT	param;
2442 
2443     if (handle == NULL)
2444 	handle = ACPI_ROOT_OBJECT;
2445 
2446     /*
2447      * Assume that what we've been pointed at is an Integer object, or
2448      * a method that will return an Integer.
2449      */
2450     buf.Pointer = &param;
2451     buf.Length = sizeof(param);
2452     status = AcpiEvaluateObject(handle, path, NULL, &buf);
2453     if (ACPI_SUCCESS(status)) {
2454 	if (param.Type == ACPI_TYPE_INTEGER)
2455 	    *number = param.Integer.Value;
2456 	else
2457 	    status = AE_TYPE;
2458     }
2459 
2460     /*
2461      * In some applications, a method that's expected to return an Integer
2462      * may instead return a Buffer (probably to simplify some internal
2463      * arithmetic).  We'll try to fetch whatever it is, and if it's a Buffer,
2464      * convert it into an Integer as best we can.
2465      *
2466      * This is a hack.
2467      */
2468     if (status == AE_BUFFER_OVERFLOW) {
2469 	if ((buf.Pointer = AcpiOsAllocate(buf.Length)) == NULL) {
2470 	    status = AE_NO_MEMORY;
2471 	} else {
2472 	    status = AcpiEvaluateObject(handle, path, NULL, &buf);
2473 	    if (ACPI_SUCCESS(status))
2474 		status = acpi_ConvertBufferToInteger(&buf, number);
2475 	    AcpiOsFree(buf.Pointer);
2476 	}
2477     }
2478     return (status);
2479 }
2480 
2481 ACPI_STATUS
2482 acpi_ConvertBufferToInteger(ACPI_BUFFER *bufp, UINT32 *number)
2483 {
2484     ACPI_OBJECT	*p;
2485     UINT8	*val;
2486     int		i;
2487 
2488     p = (ACPI_OBJECT *)bufp->Pointer;
2489     if (p->Type == ACPI_TYPE_INTEGER) {
2490 	*number = p->Integer.Value;
2491 	return (AE_OK);
2492     }
2493     if (p->Type != ACPI_TYPE_BUFFER)
2494 	return (AE_TYPE);
2495     if (p->Buffer.Length > sizeof(int))
2496 	return (AE_BAD_DATA);
2497 
2498     *number = 0;
2499     val = p->Buffer.Pointer;
2500     for (i = 0; i < p->Buffer.Length; i++)
2501 	*number += val[i] << (i * 8);
2502     return (AE_OK);
2503 }
2504 
2505 /*
2506  * Iterate over the elements of an a package object, calling the supplied
2507  * function for each element.
2508  *
2509  * XXX possible enhancement might be to abort traversal on error.
2510  */
2511 ACPI_STATUS
2512 acpi_ForeachPackageObject(ACPI_OBJECT *pkg,
2513 	void (*func)(ACPI_OBJECT *comp, void *arg), void *arg)
2514 {
2515     ACPI_OBJECT	*comp;
2516     int		i;
2517 
2518     if (pkg == NULL || pkg->Type != ACPI_TYPE_PACKAGE)
2519 	return (AE_BAD_PARAMETER);
2520 
2521     /* Iterate over components */
2522     i = 0;
2523     comp = pkg->Package.Elements;
2524     for (; i < pkg->Package.Count; i++, comp++)
2525 	func(comp, arg);
2526 
2527     return (AE_OK);
2528 }
2529 
2530 /*
2531  * Find the (index)th resource object in a set.
2532  */
2533 ACPI_STATUS
2534 acpi_FindIndexedResource(ACPI_BUFFER *buf, int index, ACPI_RESOURCE **resp)
2535 {
2536     ACPI_RESOURCE	*rp;
2537     int			i;
2538 
2539     rp = (ACPI_RESOURCE *)buf->Pointer;
2540     i = index;
2541     while (i-- > 0) {
2542 	/* Range check */
2543 	if (rp > (ACPI_RESOURCE *)((u_int8_t *)buf->Pointer + buf->Length))
2544 	    return (AE_BAD_PARAMETER);
2545 
2546 	/* Check for terminator */
2547 	if (rp->Type == ACPI_RESOURCE_TYPE_END_TAG || rp->Length == 0)
2548 	    return (AE_NOT_FOUND);
2549 	rp = ACPI_NEXT_RESOURCE(rp);
2550     }
2551     if (resp != NULL)
2552 	*resp = rp;
2553 
2554     return (AE_OK);
2555 }
2556 
2557 /*
2558  * Append an ACPI_RESOURCE to an ACPI_BUFFER.
2559  *
2560  * Given a pointer to an ACPI_RESOURCE structure, expand the ACPI_BUFFER
2561  * provided to contain it.  If the ACPI_BUFFER is empty, allocate a sensible
2562  * backing block.  If the ACPI_RESOURCE is NULL, return an empty set of
2563  * resources.
2564  */
2565 #define ACPI_INITIAL_RESOURCE_BUFFER_SIZE	512
2566 
2567 ACPI_STATUS
2568 acpi_AppendBufferResource(ACPI_BUFFER *buf, ACPI_RESOURCE *res)
2569 {
2570     ACPI_RESOURCE	*rp;
2571     void		*newp;
2572 
2573     /* Initialise the buffer if necessary. */
2574     if (buf->Pointer == NULL) {
2575 	buf->Length = ACPI_INITIAL_RESOURCE_BUFFER_SIZE;
2576 	if ((buf->Pointer = AcpiOsAllocate(buf->Length)) == NULL)
2577 	    return (AE_NO_MEMORY);
2578 	rp = (ACPI_RESOURCE *)buf->Pointer;
2579 	rp->Type = ACPI_RESOURCE_TYPE_END_TAG;
2580 	rp->Length = ACPI_RS_SIZE_MIN;
2581     }
2582     if (res == NULL)
2583 	return (AE_OK);
2584 
2585     /*
2586      * Scan the current buffer looking for the terminator.
2587      * This will either find the terminator or hit the end
2588      * of the buffer and return an error.
2589      */
2590     rp = (ACPI_RESOURCE *)buf->Pointer;
2591     for (;;) {
2592 	/* Range check, don't go outside the buffer */
2593 	if (rp >= (ACPI_RESOURCE *)((u_int8_t *)buf->Pointer + buf->Length))
2594 	    return (AE_BAD_PARAMETER);
2595 	if (rp->Type == ACPI_RESOURCE_TYPE_END_TAG || rp->Length == 0)
2596 	    break;
2597 	rp = ACPI_NEXT_RESOURCE(rp);
2598     }
2599 
2600     /*
2601      * Check the size of the buffer and expand if required.
2602      *
2603      * Required size is:
2604      *	size of existing resources before terminator +
2605      *	size of new resource and header +
2606      * 	size of terminator.
2607      *
2608      * Note that this loop should really only run once, unless
2609      * for some reason we are stuffing a *really* huge resource.
2610      */
2611     while ((((u_int8_t *)rp - (u_int8_t *)buf->Pointer) +
2612 	    res->Length + ACPI_RS_SIZE_NO_DATA +
2613 	    ACPI_RS_SIZE_MIN) >= buf->Length) {
2614 	if ((newp = AcpiOsAllocate(buf->Length * 2)) == NULL)
2615 	    return (AE_NO_MEMORY);
2616 	bcopy(buf->Pointer, newp, buf->Length);
2617 	rp = (ACPI_RESOURCE *)((u_int8_t *)newp +
2618 			       ((u_int8_t *)rp - (u_int8_t *)buf->Pointer));
2619 	AcpiOsFree(buf->Pointer);
2620 	buf->Pointer = newp;
2621 	buf->Length += buf->Length;
2622     }
2623 
2624     /* Insert the new resource. */
2625     bcopy(res, rp, res->Length + ACPI_RS_SIZE_NO_DATA);
2626 
2627     /* And add the terminator. */
2628     rp = ACPI_NEXT_RESOURCE(rp);
2629     rp->Type = ACPI_RESOURCE_TYPE_END_TAG;
2630     rp->Length = ACPI_RS_SIZE_MIN;
2631 
2632     return (AE_OK);
2633 }
2634 
2635 UINT64
2636 acpi_DSMQuery(ACPI_HANDLE h, const uint8_t *uuid, int revision)
2637 {
2638     /*
2639      * ACPI spec 9.1.1 defines this.
2640      *
2641      * "Arg2: Function Index Represents a specific function whose meaning is
2642      * specific to the UUID and Revision ID. Function indices should start
2643      * with 1. Function number zero is a query function (see the special
2644      * return code defined below)."
2645      */
2646     ACPI_BUFFER buf;
2647     ACPI_OBJECT *obj;
2648     UINT64 ret = 0;
2649     int i;
2650 
2651     if (!ACPI_SUCCESS(acpi_EvaluateDSM(h, uuid, revision, 0, NULL, &buf))) {
2652 	ACPI_INFO(("Failed to enumerate DSM functions\n"));
2653 	return (0);
2654     }
2655 
2656     obj = (ACPI_OBJECT *)buf.Pointer;
2657     KASSERT(obj, ("Object not allowed to be NULL\n"));
2658 
2659     /*
2660      * From ACPI 6.2 spec 9.1.1:
2661      * If Function Index = 0, a Buffer containing a function index bitfield.
2662      * Otherwise, the return value and type depends on the UUID and revision
2663      * ID (see below).
2664      */
2665     switch (obj->Type) {
2666     case ACPI_TYPE_BUFFER:
2667 	for (i = 0; i < MIN(obj->Buffer.Length, sizeof(ret)); i++)
2668 	    ret |= (((uint64_t)obj->Buffer.Pointer[i]) << (i * 8));
2669 	break;
2670     case ACPI_TYPE_INTEGER:
2671 	ACPI_BIOS_WARNING((AE_INFO,
2672 	    "Possibly buggy BIOS with ACPI_TYPE_INTEGER for function enumeration\n"));
2673 	ret = obj->Integer.Value;
2674 	break;
2675     default:
2676 	ACPI_WARNING((AE_INFO, "Unexpected return type %u\n", obj->Type));
2677     };
2678 
2679     AcpiOsFree(obj);
2680     return ret;
2681 }
2682 
2683 /*
2684  * DSM may return multiple types depending on the function. It is therefore
2685  * unsafe to use the typed evaluation. It is highly recommended that the caller
2686  * check the type of the returned object.
2687  */
2688 ACPI_STATUS
2689 acpi_EvaluateDSM(ACPI_HANDLE handle, const uint8_t *uuid, int revision,
2690     UINT64 function, ACPI_OBJECT *package, ACPI_BUFFER *out_buf)
2691 {
2692 	return (acpi_EvaluateDSMTyped(handle, uuid, revision, function,
2693 	    package, out_buf, ACPI_TYPE_ANY));
2694 }
2695 
2696 ACPI_STATUS
2697 acpi_EvaluateDSMTyped(ACPI_HANDLE handle, const uint8_t *uuid, int revision,
2698     UINT64 function, ACPI_OBJECT *package, ACPI_BUFFER *out_buf,
2699     ACPI_OBJECT_TYPE type)
2700 {
2701     ACPI_OBJECT arg[4];
2702     ACPI_OBJECT_LIST arglist;
2703     ACPI_BUFFER buf;
2704     ACPI_STATUS status;
2705 
2706     if (out_buf == NULL)
2707 	return (AE_NO_MEMORY);
2708 
2709     arg[0].Type = ACPI_TYPE_BUFFER;
2710     arg[0].Buffer.Length = ACPI_UUID_LENGTH;
2711     arg[0].Buffer.Pointer = __DECONST(uint8_t *, uuid);
2712     arg[1].Type = ACPI_TYPE_INTEGER;
2713     arg[1].Integer.Value = revision;
2714     arg[2].Type = ACPI_TYPE_INTEGER;
2715     arg[2].Integer.Value = function;
2716     if (package) {
2717 	arg[3] = *package;
2718     } else {
2719 	arg[3].Type = ACPI_TYPE_PACKAGE;
2720 	arg[3].Package.Count = 0;
2721 	arg[3].Package.Elements = NULL;
2722     }
2723 
2724     arglist.Pointer = arg;
2725     arglist.Count = 4;
2726     buf.Pointer = NULL;
2727     buf.Length = ACPI_ALLOCATE_BUFFER;
2728     status = AcpiEvaluateObjectTyped(handle, "_DSM", &arglist, &buf, type);
2729     if (ACPI_FAILURE(status))
2730 	return (status);
2731 
2732     KASSERT(ACPI_SUCCESS(status), ("Unexpected status"));
2733 
2734     *out_buf = buf;
2735     return (status);
2736 }
2737 
2738 ACPI_STATUS
2739 acpi_EvaluateOSC(ACPI_HANDLE handle, uint8_t *uuid, int revision, int count,
2740     uint32_t *caps_in, uint32_t *caps_out, bool query)
2741 {
2742 	ACPI_OBJECT arg[4], *ret;
2743 	ACPI_OBJECT_LIST arglist;
2744 	ACPI_BUFFER buf;
2745 	ACPI_STATUS status;
2746 
2747 	arglist.Pointer = arg;
2748 	arglist.Count = 4;
2749 	arg[0].Type = ACPI_TYPE_BUFFER;
2750 	arg[0].Buffer.Length = ACPI_UUID_LENGTH;
2751 	arg[0].Buffer.Pointer = uuid;
2752 	arg[1].Type = ACPI_TYPE_INTEGER;
2753 	arg[1].Integer.Value = revision;
2754 	arg[2].Type = ACPI_TYPE_INTEGER;
2755 	arg[2].Integer.Value = count;
2756 	arg[3].Type = ACPI_TYPE_BUFFER;
2757 	arg[3].Buffer.Length = count * sizeof(*caps_in);
2758 	arg[3].Buffer.Pointer = (uint8_t *)caps_in;
2759 	caps_in[0] = query ? 1 : 0;
2760 	buf.Pointer = NULL;
2761 	buf.Length = ACPI_ALLOCATE_BUFFER;
2762 	status = AcpiEvaluateObjectTyped(handle, "_OSC", &arglist, &buf,
2763 	    ACPI_TYPE_BUFFER);
2764 	if (ACPI_FAILURE(status))
2765 		return (status);
2766 	if (caps_out != NULL) {
2767 		ret = buf.Pointer;
2768 		if (ret->Buffer.Length != count * sizeof(*caps_out)) {
2769 			AcpiOsFree(buf.Pointer);
2770 			return (AE_BUFFER_OVERFLOW);
2771 		}
2772 		bcopy(ret->Buffer.Pointer, caps_out, ret->Buffer.Length);
2773 	}
2774 	AcpiOsFree(buf.Pointer);
2775 	return (status);
2776 }
2777 
2778 /*
2779  * Set interrupt model.
2780  */
2781 ACPI_STATUS
2782 acpi_SetIntrModel(int model)
2783 {
2784 
2785     return (acpi_SetInteger(ACPI_ROOT_OBJECT, "_PIC", model));
2786 }
2787 
2788 /*
2789  * Walk subtables of a table and call a callback routine for each
2790  * subtable.  The caller should provide the first subtable and a
2791  * pointer to the end of the table.  This can be used to walk tables
2792  * such as MADT and SRAT that use subtable entries.
2793  */
2794 void
2795 acpi_walk_subtables(void *first, void *end, acpi_subtable_handler *handler,
2796     void *arg)
2797 {
2798     ACPI_SUBTABLE_HEADER *entry;
2799 
2800     for (entry = first; (void *)entry < end; ) {
2801 	/* Avoid an infinite loop if we hit a bogus entry. */
2802 	if (entry->Length < sizeof(ACPI_SUBTABLE_HEADER))
2803 	    return;
2804 
2805 	handler(entry, arg);
2806 	entry = ACPI_ADD_PTR(ACPI_SUBTABLE_HEADER, entry, entry->Length);
2807     }
2808 }
2809 
2810 /*
2811  * DEPRECATED.  This interface has serious deficiencies and will be
2812  * removed.
2813  *
2814  * Immediately enter the sleep state.  In the old model, acpiconf(8) ran
2815  * rc.suspend and rc.resume so we don't have to notify devd(8) to do this.
2816  */
2817 ACPI_STATUS
2818 acpi_SetSleepState(struct acpi_softc *sc, int state)
2819 {
2820     static int once;
2821 
2822     if (!once) {
2823 	device_printf(sc->acpi_dev,
2824 "warning: acpi_SetSleepState() deprecated, need to update your software\n");
2825 	once = 1;
2826     }
2827     return (acpi_EnterSleepState(sc, state));
2828 }
2829 
2830 #if defined(__amd64__) || defined(__i386__)
2831 static void
2832 acpi_sleep_force_task(void *context)
2833 {
2834     struct acpi_softc *sc = (struct acpi_softc *)context;
2835 
2836     if (ACPI_FAILURE(acpi_EnterSleepState(sc, sc->acpi_next_sstate)))
2837 	device_printf(sc->acpi_dev, "force sleep state S%d failed\n",
2838 	    sc->acpi_next_sstate);
2839 }
2840 
2841 static void
2842 acpi_sleep_force(void *arg)
2843 {
2844     struct acpi_softc *sc = (struct acpi_softc *)arg;
2845 
2846     device_printf(sc->acpi_dev,
2847 	"suspend request timed out, forcing sleep now\n");
2848     /*
2849      * XXX Suspending from callout causes freezes in DEVICE_SUSPEND().
2850      * Suspend from acpi_task thread instead.
2851      */
2852     if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER,
2853 	acpi_sleep_force_task, sc)))
2854 	device_printf(sc->acpi_dev, "AcpiOsExecute() for sleeping failed\n");
2855 }
2856 #endif
2857 
2858 /*
2859  * Request that the system enter the given suspend state.  All /dev/apm
2860  * devices and devd(8) will be notified.  Userland then has a chance to
2861  * save state and acknowledge the request.  The system sleeps once all
2862  * acks are in.
2863  */
2864 int
2865 acpi_ReqSleepState(struct acpi_softc *sc, int state)
2866 {
2867 #if defined(__amd64__) || defined(__i386__)
2868     struct apm_clone_data *clone;
2869     ACPI_STATUS status;
2870 
2871     if (state < ACPI_STATE_S1 || state > ACPI_S_STATES_MAX)
2872 	return (EINVAL);
2873     if (!acpi_sleep_states[state])
2874 	return (EOPNOTSUPP);
2875 
2876     /*
2877      * If a reboot/shutdown/suspend request is already in progress or
2878      * suspend is blocked due to an upcoming shutdown, just return.
2879      */
2880     if (rebooting || sc->acpi_next_sstate != 0 || suspend_blocked) {
2881 	return (0);
2882     }
2883 
2884     /* Wait until sleep is enabled. */
2885     while (sc->acpi_sleep_disabled) {
2886 	AcpiOsSleep(1000);
2887     }
2888 
2889     ACPI_LOCK(acpi);
2890 
2891     sc->acpi_next_sstate = state;
2892 
2893     /* S5 (soft-off) should be entered directly with no waiting. */
2894     if (state == ACPI_STATE_S5) {
2895     	ACPI_UNLOCK(acpi);
2896 	status = acpi_EnterSleepState(sc, state);
2897 	return (ACPI_SUCCESS(status) ? 0 : ENXIO);
2898     }
2899 
2900     /* Record the pending state and notify all apm devices. */
2901     STAILQ_FOREACH(clone, &sc->apm_cdevs, entries) {
2902 	clone->notify_status = APM_EV_NONE;
2903 	if ((clone->flags & ACPI_EVF_DEVD) == 0) {
2904 	    selwakeuppri(&clone->sel_read, PZERO);
2905 	    KNOTE_LOCKED(&clone->sel_read.si_note, 0);
2906 	}
2907     }
2908 
2909     /* If devd(8) is not running, immediately enter the sleep state. */
2910     if (!devctl_process_running()) {
2911 	ACPI_UNLOCK(acpi);
2912 	status = acpi_EnterSleepState(sc, state);
2913 	return (ACPI_SUCCESS(status) ? 0 : ENXIO);
2914     }
2915 
2916     /*
2917      * Set a timeout to fire if userland doesn't ack the suspend request
2918      * in time.  This way we still eventually go to sleep if we were
2919      * overheating or running low on battery, even if userland is hung.
2920      * We cancel this timeout once all userland acks are in or the
2921      * suspend request is aborted.
2922      */
2923     callout_reset(&sc->susp_force_to, 10 * hz, acpi_sleep_force, sc);
2924     ACPI_UNLOCK(acpi);
2925 
2926     /* Now notify devd(8) also. */
2927     acpi_UserNotify("Suspend", ACPI_ROOT_OBJECT, state);
2928 
2929     return (0);
2930 #else
2931     /* This platform does not support acpi suspend/resume. */
2932     return (EOPNOTSUPP);
2933 #endif
2934 }
2935 
2936 /*
2937  * Acknowledge (or reject) a pending sleep state.  The caller has
2938  * prepared for suspend and is now ready for it to proceed.  If the
2939  * error argument is non-zero, it indicates suspend should be cancelled
2940  * and gives an errno value describing why.  Once all votes are in,
2941  * we suspend the system.
2942  */
2943 int
2944 acpi_AckSleepState(struct apm_clone_data *clone, int error)
2945 {
2946 #if defined(__amd64__) || defined(__i386__)
2947     struct acpi_softc *sc;
2948     int ret, sleeping;
2949 
2950     /* If no pending sleep state, return an error. */
2951     ACPI_LOCK(acpi);
2952     sc = clone->acpi_sc;
2953     if (sc->acpi_next_sstate == 0) {
2954     	ACPI_UNLOCK(acpi);
2955 	return (ENXIO);
2956     }
2957 
2958     /* Caller wants to abort suspend process. */
2959     if (error) {
2960 	sc->acpi_next_sstate = 0;
2961 	callout_stop(&sc->susp_force_to);
2962 	device_printf(sc->acpi_dev,
2963 	    "listener on %s cancelled the pending suspend\n",
2964 	    devtoname(clone->cdev));
2965     	ACPI_UNLOCK(acpi);
2966 	return (0);
2967     }
2968 
2969     /*
2970      * Mark this device as acking the suspend request.  Then, walk through
2971      * all devices, seeing if they agree yet.  We only count devices that
2972      * are writable since read-only devices couldn't ack the request.
2973      */
2974     sleeping = TRUE;
2975     clone->notify_status = APM_EV_ACKED;
2976     STAILQ_FOREACH(clone, &sc->apm_cdevs, entries) {
2977 	if ((clone->flags & ACPI_EVF_WRITE) != 0 &&
2978 	    clone->notify_status != APM_EV_ACKED) {
2979 	    sleeping = FALSE;
2980 	    break;
2981 	}
2982     }
2983 
2984     /* If all devices have voted "yes", we will suspend now. */
2985     if (sleeping)
2986 	callout_stop(&sc->susp_force_to);
2987     ACPI_UNLOCK(acpi);
2988     ret = 0;
2989     if (sleeping) {
2990 	if (ACPI_FAILURE(acpi_EnterSleepState(sc, sc->acpi_next_sstate)))
2991 		ret = ENODEV;
2992     }
2993     return (ret);
2994 #else
2995     /* This platform does not support acpi suspend/resume. */
2996     return (EOPNOTSUPP);
2997 #endif
2998 }
2999 
3000 static void
3001 acpi_sleep_enable(void *arg)
3002 {
3003     struct acpi_softc	*sc = (struct acpi_softc *)arg;
3004 
3005     ACPI_LOCK_ASSERT(acpi);
3006 
3007     /* Reschedule if the system is not fully up and running. */
3008     if (!AcpiGbl_SystemAwakeAndRunning) {
3009 	callout_schedule(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME);
3010 	return;
3011     }
3012 
3013     sc->acpi_sleep_disabled = FALSE;
3014 }
3015 
3016 static ACPI_STATUS
3017 acpi_sleep_disable(struct acpi_softc *sc)
3018 {
3019     ACPI_STATUS		status;
3020 
3021     /* Fail if the system is not fully up and running. */
3022     if (!AcpiGbl_SystemAwakeAndRunning)
3023 	return (AE_ERROR);
3024 
3025     ACPI_LOCK(acpi);
3026     status = sc->acpi_sleep_disabled ? AE_ERROR : AE_OK;
3027     sc->acpi_sleep_disabled = TRUE;
3028     ACPI_UNLOCK(acpi);
3029 
3030     return (status);
3031 }
3032 
3033 enum acpi_sleep_state {
3034     ACPI_SS_NONE,
3035     ACPI_SS_GPE_SET,
3036     ACPI_SS_DEV_SUSPEND,
3037     ACPI_SS_SLP_PREP,
3038     ACPI_SS_SLEPT,
3039 };
3040 
3041 /*
3042  * Enter the desired system sleep state.
3043  *
3044  * Currently we support S1-S5 but S4 is only S4BIOS
3045  */
3046 static ACPI_STATUS
3047 acpi_EnterSleepState(struct acpi_softc *sc, int state)
3048 {
3049     register_t intr;
3050     ACPI_STATUS status;
3051     ACPI_EVENT_STATUS power_button_status;
3052     enum acpi_sleep_state slp_state;
3053     int sleep_result;
3054 
3055     ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state);
3056 
3057     if (state < ACPI_STATE_S1 || state > ACPI_S_STATES_MAX)
3058 	return_ACPI_STATUS (AE_BAD_PARAMETER);
3059     if (!acpi_sleep_states[state]) {
3060 	device_printf(sc->acpi_dev, "Sleep state S%d not supported by BIOS\n",
3061 	    state);
3062 	return (AE_SUPPORT);
3063     }
3064 
3065     /* Re-entry once we're suspending is not allowed. */
3066     status = acpi_sleep_disable(sc);
3067     if (ACPI_FAILURE(status)) {
3068 	device_printf(sc->acpi_dev,
3069 	    "suspend request ignored (not ready yet)\n");
3070 	return (status);
3071     }
3072 
3073     if (state == ACPI_STATE_S5) {
3074 	/*
3075 	 * Shut down cleanly and power off.  This will call us back through the
3076 	 * shutdown handlers.
3077 	 */
3078 	shutdown_nice(RB_POWEROFF);
3079 	return_ACPI_STATUS (AE_OK);
3080     }
3081 
3082     EVENTHANDLER_INVOKE(power_suspend_early);
3083     stop_all_proc();
3084     EVENTHANDLER_INVOKE(power_suspend);
3085 
3086 #ifdef EARLY_AP_STARTUP
3087     MPASS(mp_ncpus == 1 || smp_started);
3088     thread_lock(curthread);
3089     sched_bind(curthread, 0);
3090     thread_unlock(curthread);
3091 #else
3092     if (smp_started) {
3093 	thread_lock(curthread);
3094 	sched_bind(curthread, 0);
3095 	thread_unlock(curthread);
3096     }
3097 #endif
3098 
3099     /*
3100      * Be sure to hold Giant across DEVICE_SUSPEND/RESUME since non-MPSAFE
3101      * drivers need this.
3102      */
3103     mtx_lock(&Giant);
3104 
3105     slp_state = ACPI_SS_NONE;
3106 
3107     sc->acpi_sstate = state;
3108 
3109     /* Enable any GPEs as appropriate and requested by the user. */
3110     acpi_wake_prep_walk(state);
3111     slp_state = ACPI_SS_GPE_SET;
3112 
3113     /*
3114      * Inform all devices that we are going to sleep.  If at least one
3115      * device fails, DEVICE_SUSPEND() automatically resumes the tree.
3116      *
3117      * XXX Note that a better two-pass approach with a 'veto' pass
3118      * followed by a "real thing" pass would be better, but the current
3119      * bus interface does not provide for this.
3120      */
3121     if (DEVICE_SUSPEND(root_bus) != 0) {
3122 	device_printf(sc->acpi_dev, "device_suspend failed\n");
3123 	goto backout;
3124     }
3125     slp_state = ACPI_SS_DEV_SUSPEND;
3126 
3127     status = AcpiEnterSleepStatePrep(state);
3128     if (ACPI_FAILURE(status)) {
3129 	device_printf(sc->acpi_dev, "AcpiEnterSleepStatePrep failed - %s\n",
3130 		      AcpiFormatException(status));
3131 	goto backout;
3132     }
3133     slp_state = ACPI_SS_SLP_PREP;
3134 
3135     if (sc->acpi_sleep_delay > 0)
3136 	DELAY(sc->acpi_sleep_delay * 1000000);
3137 
3138     suspendclock();
3139     intr = intr_disable();
3140     if (state != ACPI_STATE_S1) {
3141 	sleep_result = acpi_sleep_machdep(sc, state);
3142 	acpi_wakeup_machdep(sc, state, sleep_result, 0);
3143 
3144 	/*
3145 	 * XXX According to ACPI specification SCI_EN bit should be restored
3146 	 * by ACPI platform (BIOS, firmware) to its pre-sleep state.
3147 	 * Unfortunately some BIOSes fail to do that and that leads to
3148 	 * unexpected and serious consequences during wake up like a system
3149 	 * getting stuck in SMI handlers.
3150 	 * This hack is picked up from Linux, which claims that it follows
3151 	 * Windows behavior.
3152 	 */
3153 	if (sleep_result == 1 && state != ACPI_STATE_S4)
3154 	    AcpiWriteBitRegister(ACPI_BITREG_SCI_ENABLE, ACPI_ENABLE_EVENT);
3155 
3156 	if (sleep_result == 1 && state == ACPI_STATE_S3) {
3157 	    /*
3158 	     * Prevent mis-interpretation of the wakeup by power button
3159 	     * as a request for power off.
3160 	     * Ideally we should post an appropriate wakeup event,
3161 	     * perhaps using acpi_event_power_button_wake or alike.
3162 	     *
3163 	     * Clearing of power button status after wakeup is mandated
3164 	     * by ACPI specification in section "Fixed Power Button".
3165 	     *
3166 	     * XXX As of ACPICA 20121114 AcpiGetEventStatus provides
3167 	     * status as 0/1 corressponding to inactive/active despite
3168 	     * its type being ACPI_EVENT_STATUS.  In other words,
3169 	     * we should not test for ACPI_EVENT_FLAG_SET for time being.
3170 	     */
3171 	    if (ACPI_SUCCESS(AcpiGetEventStatus(ACPI_EVENT_POWER_BUTTON,
3172 		&power_button_status)) && power_button_status != 0) {
3173 		AcpiClearEvent(ACPI_EVENT_POWER_BUTTON);
3174 		device_printf(sc->acpi_dev,
3175 		    "cleared fixed power button status\n");
3176 	    }
3177 	}
3178 
3179 	intr_restore(intr);
3180 
3181 	/* call acpi_wakeup_machdep() again with interrupt enabled */
3182 	acpi_wakeup_machdep(sc, state, sleep_result, 1);
3183 
3184 	AcpiLeaveSleepStatePrep(state);
3185 
3186 	if (sleep_result == -1)
3187 		goto backout;
3188 
3189 	/* Re-enable ACPI hardware on wakeup from sleep state 4. */
3190 	if (state == ACPI_STATE_S4)
3191 	    AcpiEnable();
3192     } else {
3193 	status = AcpiEnterSleepState(state);
3194 	intr_restore(intr);
3195 	AcpiLeaveSleepStatePrep(state);
3196 	if (ACPI_FAILURE(status)) {
3197 	    device_printf(sc->acpi_dev, "AcpiEnterSleepState failed - %s\n",
3198 			  AcpiFormatException(status));
3199 	    goto backout;
3200 	}
3201     }
3202     slp_state = ACPI_SS_SLEPT;
3203 
3204     /*
3205      * Back out state according to how far along we got in the suspend
3206      * process.  This handles both the error and success cases.
3207      */
3208 backout:
3209     if (slp_state >= ACPI_SS_SLP_PREP)
3210 	resumeclock();
3211     if (slp_state >= ACPI_SS_GPE_SET) {
3212 	acpi_wake_prep_walk(state);
3213 	sc->acpi_sstate = ACPI_STATE_S0;
3214     }
3215     if (slp_state >= ACPI_SS_DEV_SUSPEND)
3216 	DEVICE_RESUME(root_bus);
3217     if (slp_state >= ACPI_SS_SLP_PREP)
3218 	AcpiLeaveSleepState(state);
3219     if (slp_state >= ACPI_SS_SLEPT) {
3220 #if defined(__i386__) || defined(__amd64__)
3221 	/* NB: we are still using ACPI timecounter at this point. */
3222 	resume_TSC();
3223 #endif
3224 	acpi_resync_clock(sc);
3225 	acpi_enable_fixed_events(sc);
3226     }
3227     sc->acpi_next_sstate = 0;
3228 
3229     mtx_unlock(&Giant);
3230 
3231 #ifdef EARLY_AP_STARTUP
3232     thread_lock(curthread);
3233     sched_unbind(curthread);
3234     thread_unlock(curthread);
3235 #else
3236     if (smp_started) {
3237 	thread_lock(curthread);
3238 	sched_unbind(curthread);
3239 	thread_unlock(curthread);
3240     }
3241 #endif
3242 
3243     resume_all_proc();
3244 
3245     EVENTHANDLER_INVOKE(power_resume);
3246 
3247     /* Allow another sleep request after a while. */
3248     callout_schedule(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME);
3249 
3250     /* Run /etc/rc.resume after we are back. */
3251     if (devctl_process_running())
3252 	acpi_UserNotify("Resume", ACPI_ROOT_OBJECT, state);
3253 
3254     return_ACPI_STATUS (status);
3255 }
3256 
3257 static void
3258 acpi_resync_clock(struct acpi_softc *sc)
3259 {
3260 
3261     /*
3262      * Warm up timecounter again and reset system clock.
3263      */
3264     (void)timecounter->tc_get_timecount(timecounter);
3265     inittodr(time_second + sc->acpi_sleep_delay);
3266 }
3267 
3268 /* Enable or disable the device's wake GPE. */
3269 int
3270 acpi_wake_set_enable(device_t dev, int enable)
3271 {
3272     struct acpi_prw_data prw;
3273     ACPI_STATUS status;
3274     int flags;
3275 
3276     /* Make sure the device supports waking the system and get the GPE. */
3277     if (acpi_parse_prw(acpi_get_handle(dev), &prw) != 0)
3278 	return (ENXIO);
3279 
3280     flags = acpi_get_flags(dev);
3281     if (enable) {
3282 	status = AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit,
3283 	    ACPI_GPE_ENABLE);
3284 	if (ACPI_FAILURE(status)) {
3285 	    device_printf(dev, "enable wake failed\n");
3286 	    return (ENXIO);
3287 	}
3288 	acpi_set_flags(dev, flags | ACPI_FLAG_WAKE_ENABLED);
3289     } else {
3290 	status = AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit,
3291 	    ACPI_GPE_DISABLE);
3292 	if (ACPI_FAILURE(status)) {
3293 	    device_printf(dev, "disable wake failed\n");
3294 	    return (ENXIO);
3295 	}
3296 	acpi_set_flags(dev, flags & ~ACPI_FLAG_WAKE_ENABLED);
3297     }
3298 
3299     return (0);
3300 }
3301 
3302 static int
3303 acpi_wake_sleep_prep(ACPI_HANDLE handle, int sstate)
3304 {
3305     struct acpi_prw_data prw;
3306     device_t dev;
3307 
3308     /* Check that this is a wake-capable device and get its GPE. */
3309     if (acpi_parse_prw(handle, &prw) != 0)
3310 	return (ENXIO);
3311     dev = acpi_get_device(handle);
3312 
3313     /*
3314      * The destination sleep state must be less than (i.e., higher power)
3315      * or equal to the value specified by _PRW.  If this GPE cannot be
3316      * enabled for the next sleep state, then disable it.  If it can and
3317      * the user requested it be enabled, turn on any required power resources
3318      * and set _PSW.
3319      */
3320     if (sstate > prw.lowest_wake) {
3321 	AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, ACPI_GPE_DISABLE);
3322 	if (bootverbose)
3323 	    device_printf(dev, "wake_prep disabled wake for %s (S%d)\n",
3324 		acpi_name(handle), sstate);
3325     } else if (dev && (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) != 0) {
3326 	acpi_pwr_wake_enable(handle, 1);
3327 	acpi_SetInteger(handle, "_PSW", 1);
3328 	if (bootverbose)
3329 	    device_printf(dev, "wake_prep enabled for %s (S%d)\n",
3330 		acpi_name(handle), sstate);
3331     }
3332 
3333     return (0);
3334 }
3335 
3336 static int
3337 acpi_wake_run_prep(ACPI_HANDLE handle, int sstate)
3338 {
3339     struct acpi_prw_data prw;
3340     device_t dev;
3341 
3342     /*
3343      * Check that this is a wake-capable device and get its GPE.  Return
3344      * now if the user didn't enable this device for wake.
3345      */
3346     if (acpi_parse_prw(handle, &prw) != 0)
3347 	return (ENXIO);
3348     dev = acpi_get_device(handle);
3349     if (dev == NULL || (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) == 0)
3350 	return (0);
3351 
3352     /*
3353      * If this GPE couldn't be enabled for the previous sleep state, it was
3354      * disabled before going to sleep so re-enable it.  If it was enabled,
3355      * clear _PSW and turn off any power resources it used.
3356      */
3357     if (sstate > prw.lowest_wake) {
3358 	AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, ACPI_GPE_ENABLE);
3359 	if (bootverbose)
3360 	    device_printf(dev, "run_prep re-enabled %s\n", acpi_name(handle));
3361     } else {
3362 	acpi_SetInteger(handle, "_PSW", 0);
3363 	acpi_pwr_wake_enable(handle, 0);
3364 	if (bootverbose)
3365 	    device_printf(dev, "run_prep cleaned up for %s\n",
3366 		acpi_name(handle));
3367     }
3368 
3369     return (0);
3370 }
3371 
3372 static ACPI_STATUS
3373 acpi_wake_prep(ACPI_HANDLE handle, UINT32 level, void *context, void **status)
3374 {
3375     int sstate;
3376 
3377     /* If suspending, run the sleep prep function, otherwise wake. */
3378     sstate = *(int *)context;
3379     if (AcpiGbl_SystemAwakeAndRunning)
3380 	acpi_wake_sleep_prep(handle, sstate);
3381     else
3382 	acpi_wake_run_prep(handle, sstate);
3383     return (AE_OK);
3384 }
3385 
3386 /* Walk the tree rooted at acpi0 to prep devices for suspend/resume. */
3387 static int
3388 acpi_wake_prep_walk(int sstate)
3389 {
3390     ACPI_HANDLE sb_handle;
3391 
3392     if (ACPI_SUCCESS(AcpiGetHandle(ACPI_ROOT_OBJECT, "\\_SB_", &sb_handle)))
3393 	AcpiWalkNamespace(ACPI_TYPE_DEVICE, sb_handle, 100,
3394 	    acpi_wake_prep, NULL, &sstate, NULL);
3395     return (0);
3396 }
3397 
3398 /* Walk the tree rooted at acpi0 to attach per-device wake sysctls. */
3399 static int
3400 acpi_wake_sysctl_walk(device_t dev)
3401 {
3402     int error, i, numdevs;
3403     device_t *devlist;
3404     device_t child;
3405     ACPI_STATUS status;
3406 
3407     error = device_get_children(dev, &devlist, &numdevs);
3408     if (error != 0 || numdevs == 0) {
3409 	if (numdevs == 0)
3410 	    free(devlist, M_TEMP);
3411 	return (error);
3412     }
3413     for (i = 0; i < numdevs; i++) {
3414 	child = devlist[i];
3415 	acpi_wake_sysctl_walk(child);
3416 	if (!device_is_attached(child))
3417 	    continue;
3418 	status = AcpiEvaluateObject(acpi_get_handle(child), "_PRW", NULL, NULL);
3419 	if (ACPI_SUCCESS(status)) {
3420 	    SYSCTL_ADD_PROC(device_get_sysctl_ctx(child),
3421 		SYSCTL_CHILDREN(device_get_sysctl_tree(child)), OID_AUTO,
3422 		"wake", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, child, 0,
3423 		acpi_wake_set_sysctl, "I", "Device set to wake the system");
3424 	}
3425     }
3426     free(devlist, M_TEMP);
3427 
3428     return (0);
3429 }
3430 
3431 /* Enable or disable wake from userland. */
3432 static int
3433 acpi_wake_set_sysctl(SYSCTL_HANDLER_ARGS)
3434 {
3435     int enable, error;
3436     device_t dev;
3437 
3438     dev = (device_t)arg1;
3439     enable = (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) ? 1 : 0;
3440 
3441     error = sysctl_handle_int(oidp, &enable, 0, req);
3442     if (error != 0 || req->newptr == NULL)
3443 	return (error);
3444     if (enable != 0 && enable != 1)
3445 	return (EINVAL);
3446 
3447     return (acpi_wake_set_enable(dev, enable));
3448 }
3449 
3450 /* Parse a device's _PRW into a structure. */
3451 int
3452 acpi_parse_prw(ACPI_HANDLE h, struct acpi_prw_data *prw)
3453 {
3454     ACPI_STATUS			status;
3455     ACPI_BUFFER			prw_buffer;
3456     ACPI_OBJECT			*res, *res2;
3457     int				error, i, power_count;
3458 
3459     if (h == NULL || prw == NULL)
3460 	return (EINVAL);
3461 
3462     /*
3463      * The _PRW object (7.2.9) is only required for devices that have the
3464      * ability to wake the system from a sleeping state.
3465      */
3466     error = EINVAL;
3467     prw_buffer.Pointer = NULL;
3468     prw_buffer.Length = ACPI_ALLOCATE_BUFFER;
3469     status = AcpiEvaluateObject(h, "_PRW", NULL, &prw_buffer);
3470     if (ACPI_FAILURE(status))
3471 	return (ENOENT);
3472     res = (ACPI_OBJECT *)prw_buffer.Pointer;
3473     if (res == NULL)
3474 	return (ENOENT);
3475     if (!ACPI_PKG_VALID(res, 2))
3476 	goto out;
3477 
3478     /*
3479      * Element 1 of the _PRW object:
3480      * The lowest power system sleeping state that can be entered while still
3481      * providing wake functionality.  The sleeping state being entered must
3482      * be less than (i.e., higher power) or equal to this value.
3483      */
3484     if (acpi_PkgInt32(res, 1, &prw->lowest_wake) != 0)
3485 	goto out;
3486 
3487     /*
3488      * Element 0 of the _PRW object:
3489      */
3490     switch (res->Package.Elements[0].Type) {
3491     case ACPI_TYPE_INTEGER:
3492 	/*
3493 	 * If the data type of this package element is numeric, then this
3494 	 * _PRW package element is the bit index in the GPEx_EN, in the
3495 	 * GPE blocks described in the FADT, of the enable bit that is
3496 	 * enabled for the wake event.
3497 	 */
3498 	prw->gpe_handle = NULL;
3499 	prw->gpe_bit = res->Package.Elements[0].Integer.Value;
3500 	error = 0;
3501 	break;
3502     case ACPI_TYPE_PACKAGE:
3503 	/*
3504 	 * If the data type of this package element is a package, then this
3505 	 * _PRW package element is itself a package containing two
3506 	 * elements.  The first is an object reference to the GPE Block
3507 	 * device that contains the GPE that will be triggered by the wake
3508 	 * event.  The second element is numeric and it contains the bit
3509 	 * index in the GPEx_EN, in the GPE Block referenced by the
3510 	 * first element in the package, of the enable bit that is enabled for
3511 	 * the wake event.
3512 	 *
3513 	 * For example, if this field is a package then it is of the form:
3514 	 * Package() {\_SB.PCI0.ISA.GPE, 2}
3515 	 */
3516 	res2 = &res->Package.Elements[0];
3517 	if (!ACPI_PKG_VALID(res2, 2))
3518 	    goto out;
3519 	prw->gpe_handle = acpi_GetReference(NULL, &res2->Package.Elements[0]);
3520 	if (prw->gpe_handle == NULL)
3521 	    goto out;
3522 	if (acpi_PkgInt32(res2, 1, &prw->gpe_bit) != 0)
3523 	    goto out;
3524 	error = 0;
3525 	break;
3526     default:
3527 	goto out;
3528     }
3529 
3530     /* Elements 2 to N of the _PRW object are power resources. */
3531     power_count = res->Package.Count - 2;
3532     if (power_count > ACPI_PRW_MAX_POWERRES) {
3533 	printf("ACPI device %s has too many power resources\n", acpi_name(h));
3534 	power_count = 0;
3535     }
3536     prw->power_res_count = power_count;
3537     for (i = 0; i < power_count; i++)
3538 	prw->power_res[i] = res->Package.Elements[i];
3539 
3540 out:
3541     if (prw_buffer.Pointer != NULL)
3542 	AcpiOsFree(prw_buffer.Pointer);
3543     return (error);
3544 }
3545 
3546 /*
3547  * ACPI Event Handlers
3548  */
3549 
3550 /* System Event Handlers (registered by EVENTHANDLER_REGISTER) */
3551 
3552 static void
3553 acpi_system_eventhandler_sleep(void *arg, int state)
3554 {
3555     struct acpi_softc *sc = (struct acpi_softc *)arg;
3556     int ret;
3557 
3558     ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state);
3559 
3560     /* Check if button action is disabled or unknown. */
3561     if (state == ACPI_STATE_UNKNOWN)
3562 	return;
3563 
3564     /* Request that the system prepare to enter the given suspend state. */
3565     ret = acpi_ReqSleepState(sc, state);
3566     if (ret != 0)
3567 	device_printf(sc->acpi_dev,
3568 	    "request to enter state S%d failed (err %d)\n", state, ret);
3569 
3570     return_VOID;
3571 }
3572 
3573 static void
3574 acpi_system_eventhandler_wakeup(void *arg, int state)
3575 {
3576 
3577     ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state);
3578 
3579     /* Currently, nothing to do for wakeup. */
3580 
3581     return_VOID;
3582 }
3583 
3584 /*
3585  * ACPICA Event Handlers (FixedEvent, also called from button notify handler)
3586  */
3587 static void
3588 acpi_invoke_sleep_eventhandler(void *context)
3589 {
3590 
3591     EVENTHANDLER_INVOKE(acpi_sleep_event, *(int *)context);
3592 }
3593 
3594 static void
3595 acpi_invoke_wake_eventhandler(void *context)
3596 {
3597 
3598     EVENTHANDLER_INVOKE(acpi_wakeup_event, *(int *)context);
3599 }
3600 
3601 UINT32
3602 acpi_event_power_button_sleep(void *context)
3603 {
3604     struct acpi_softc	*sc = (struct acpi_softc *)context;
3605 
3606     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
3607 
3608     if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER,
3609 	acpi_invoke_sleep_eventhandler, &sc->acpi_power_button_sx)))
3610 	return_VALUE (ACPI_INTERRUPT_NOT_HANDLED);
3611     return_VALUE (ACPI_INTERRUPT_HANDLED);
3612 }
3613 
3614 UINT32
3615 acpi_event_power_button_wake(void *context)
3616 {
3617     struct acpi_softc	*sc = (struct acpi_softc *)context;
3618 
3619     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
3620 
3621     if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER,
3622 	acpi_invoke_wake_eventhandler, &sc->acpi_power_button_sx)))
3623 	return_VALUE (ACPI_INTERRUPT_NOT_HANDLED);
3624     return_VALUE (ACPI_INTERRUPT_HANDLED);
3625 }
3626 
3627 UINT32
3628 acpi_event_sleep_button_sleep(void *context)
3629 {
3630     struct acpi_softc	*sc = (struct acpi_softc *)context;
3631 
3632     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
3633 
3634     if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER,
3635 	acpi_invoke_sleep_eventhandler, &sc->acpi_sleep_button_sx)))
3636 	return_VALUE (ACPI_INTERRUPT_NOT_HANDLED);
3637     return_VALUE (ACPI_INTERRUPT_HANDLED);
3638 }
3639 
3640 UINT32
3641 acpi_event_sleep_button_wake(void *context)
3642 {
3643     struct acpi_softc	*sc = (struct acpi_softc *)context;
3644 
3645     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
3646 
3647     if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER,
3648 	acpi_invoke_wake_eventhandler, &sc->acpi_sleep_button_sx)))
3649 	return_VALUE (ACPI_INTERRUPT_NOT_HANDLED);
3650     return_VALUE (ACPI_INTERRUPT_HANDLED);
3651 }
3652 
3653 /*
3654  * XXX This static buffer is suboptimal.  There is no locking so only
3655  * use this for single-threaded callers.
3656  */
3657 char *
3658 acpi_name(ACPI_HANDLE handle)
3659 {
3660     ACPI_BUFFER buf;
3661     static char data[256];
3662 
3663     buf.Length = sizeof(data);
3664     buf.Pointer = data;
3665 
3666     if (handle && ACPI_SUCCESS(AcpiGetName(handle, ACPI_FULL_PATHNAME, &buf)))
3667 	return (data);
3668     return ("(unknown)");
3669 }
3670 
3671 /*
3672  * Debugging/bug-avoidance.  Avoid trying to fetch info on various
3673  * parts of the namespace.
3674  */
3675 int
3676 acpi_avoid(ACPI_HANDLE handle)
3677 {
3678     char	*cp, *env, *np;
3679     int		len;
3680 
3681     np = acpi_name(handle);
3682     if (*np == '\\')
3683 	np++;
3684     if ((env = kern_getenv("debug.acpi.avoid")) == NULL)
3685 	return (0);
3686 
3687     /* Scan the avoid list checking for a match */
3688     cp = env;
3689     for (;;) {
3690 	while (*cp != 0 && isspace(*cp))
3691 	    cp++;
3692 	if (*cp == 0)
3693 	    break;
3694 	len = 0;
3695 	while (cp[len] != 0 && !isspace(cp[len]))
3696 	    len++;
3697 	if (!strncmp(cp, np, len)) {
3698 	    freeenv(env);
3699 	    return(1);
3700 	}
3701 	cp += len;
3702     }
3703     freeenv(env);
3704 
3705     return (0);
3706 }
3707 
3708 /*
3709  * Debugging/bug-avoidance.  Disable ACPI subsystem components.
3710  */
3711 int
3712 acpi_disabled(char *subsys)
3713 {
3714     char	*cp, *env;
3715     int		len;
3716 
3717     if ((env = kern_getenv("debug.acpi.disabled")) == NULL)
3718 	return (0);
3719     if (strcmp(env, "all") == 0) {
3720 	freeenv(env);
3721 	return (1);
3722     }
3723 
3724     /* Scan the disable list, checking for a match. */
3725     cp = env;
3726     for (;;) {
3727 	while (*cp != '\0' && isspace(*cp))
3728 	    cp++;
3729 	if (*cp == '\0')
3730 	    break;
3731 	len = 0;
3732 	while (cp[len] != '\0' && !isspace(cp[len]))
3733 	    len++;
3734 	if (strncmp(cp, subsys, len) == 0) {
3735 	    freeenv(env);
3736 	    return (1);
3737 	}
3738 	cp += len;
3739     }
3740     freeenv(env);
3741 
3742     return (0);
3743 }
3744 
3745 static void
3746 acpi_lookup(void *arg, const char *name, device_t *dev)
3747 {
3748     ACPI_HANDLE handle;
3749 
3750     if (*dev != NULL)
3751 	return;
3752 
3753     /*
3754      * Allow any handle name that is specified as an absolute path and
3755      * starts with '\'.  We could restrict this to \_SB and friends,
3756      * but see acpi_probe_children() for notes on why we scan the entire
3757      * namespace for devices.
3758      *
3759      * XXX: The pathname argument to AcpiGetHandle() should be fixed to
3760      * be const.
3761      */
3762     if (name[0] != '\\')
3763 	return;
3764     if (ACPI_FAILURE(AcpiGetHandle(ACPI_ROOT_OBJECT, __DECONST(char *, name),
3765 	&handle)))
3766 	return;
3767     *dev = acpi_get_device(handle);
3768 }
3769 
3770 /*
3771  * Control interface.
3772  *
3773  * We multiplex ioctls for all participating ACPI devices here.  Individual
3774  * drivers wanting to be accessible via /dev/acpi should use the
3775  * register/deregister interface to make their handlers visible.
3776  */
3777 struct acpi_ioctl_hook
3778 {
3779     TAILQ_ENTRY(acpi_ioctl_hook) link;
3780     u_long			 cmd;
3781     acpi_ioctl_fn		 fn;
3782     void			 *arg;
3783 };
3784 
3785 static TAILQ_HEAD(,acpi_ioctl_hook)	acpi_ioctl_hooks;
3786 static int				acpi_ioctl_hooks_initted;
3787 
3788 int
3789 acpi_register_ioctl(u_long cmd, acpi_ioctl_fn fn, void *arg)
3790 {
3791     struct acpi_ioctl_hook	*hp;
3792 
3793     if ((hp = malloc(sizeof(*hp), M_ACPIDEV, M_NOWAIT)) == NULL)
3794 	return (ENOMEM);
3795     hp->cmd = cmd;
3796     hp->fn = fn;
3797     hp->arg = arg;
3798 
3799     ACPI_LOCK(acpi);
3800     if (acpi_ioctl_hooks_initted == 0) {
3801 	TAILQ_INIT(&acpi_ioctl_hooks);
3802 	acpi_ioctl_hooks_initted = 1;
3803     }
3804     TAILQ_INSERT_TAIL(&acpi_ioctl_hooks, hp, link);
3805     ACPI_UNLOCK(acpi);
3806 
3807     return (0);
3808 }
3809 
3810 void
3811 acpi_deregister_ioctl(u_long cmd, acpi_ioctl_fn fn)
3812 {
3813     struct acpi_ioctl_hook	*hp;
3814 
3815     ACPI_LOCK(acpi);
3816     TAILQ_FOREACH(hp, &acpi_ioctl_hooks, link)
3817 	if (hp->cmd == cmd && hp->fn == fn)
3818 	    break;
3819 
3820     if (hp != NULL) {
3821 	TAILQ_REMOVE(&acpi_ioctl_hooks, hp, link);
3822 	free(hp, M_ACPIDEV);
3823     }
3824     ACPI_UNLOCK(acpi);
3825 }
3826 
3827 static int
3828 acpiopen(struct cdev *dev, int flag, int fmt, struct thread *td)
3829 {
3830     return (0);
3831 }
3832 
3833 static int
3834 acpiclose(struct cdev *dev, int flag, int fmt, struct thread *td)
3835 {
3836     return (0);
3837 }
3838 
3839 static int
3840 acpiioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
3841 {
3842     struct acpi_softc		*sc;
3843     struct acpi_ioctl_hook	*hp;
3844     int				error, state;
3845 
3846     error = 0;
3847     hp = NULL;
3848     sc = dev->si_drv1;
3849 
3850     /*
3851      * Scan the list of registered ioctls, looking for handlers.
3852      */
3853     ACPI_LOCK(acpi);
3854     if (acpi_ioctl_hooks_initted)
3855 	TAILQ_FOREACH(hp, &acpi_ioctl_hooks, link) {
3856 	    if (hp->cmd == cmd)
3857 		break;
3858 	}
3859     ACPI_UNLOCK(acpi);
3860     if (hp)
3861 	return (hp->fn(cmd, addr, hp->arg));
3862 
3863     /*
3864      * Core ioctls are not permitted for non-writable user.
3865      * Currently, other ioctls just fetch information.
3866      * Not changing system behavior.
3867      */
3868     if ((flag & FWRITE) == 0)
3869 	return (EPERM);
3870 
3871     /* Core system ioctls. */
3872     switch (cmd) {
3873     case ACPIIO_REQSLPSTATE:
3874 	state = *(int *)addr;
3875 	if (state != ACPI_STATE_S5)
3876 	    return (acpi_ReqSleepState(sc, state));
3877 	device_printf(sc->acpi_dev, "power off via acpi ioctl not supported\n");
3878 	error = EOPNOTSUPP;
3879 	break;
3880     case ACPIIO_ACKSLPSTATE:
3881 	error = *(int *)addr;
3882 	error = acpi_AckSleepState(sc->acpi_clone, error);
3883 	break;
3884     case ACPIIO_SETSLPSTATE:	/* DEPRECATED */
3885 	state = *(int *)addr;
3886 	if (state < ACPI_STATE_S0 || state > ACPI_S_STATES_MAX)
3887 	    return (EINVAL);
3888 	if (!acpi_sleep_states[state])
3889 	    return (EOPNOTSUPP);
3890 	if (ACPI_FAILURE(acpi_SetSleepState(sc, state)))
3891 	    error = ENXIO;
3892 	break;
3893     default:
3894 	error = ENXIO;
3895 	break;
3896     }
3897 
3898     return (error);
3899 }
3900 
3901 static int
3902 acpi_sname2sstate(const char *sname)
3903 {
3904     int sstate;
3905 
3906     if (toupper(sname[0]) == 'S') {
3907 	sstate = sname[1] - '0';
3908 	if (sstate >= ACPI_STATE_S0 && sstate <= ACPI_STATE_S5 &&
3909 	    sname[2] == '\0')
3910 	    return (sstate);
3911     } else if (strcasecmp(sname, "NONE") == 0)
3912 	return (ACPI_STATE_UNKNOWN);
3913     return (-1);
3914 }
3915 
3916 static const char *
3917 acpi_sstate2sname(int sstate)
3918 {
3919     static const char *snames[] = { "S0", "S1", "S2", "S3", "S4", "S5" };
3920 
3921     if (sstate >= ACPI_STATE_S0 && sstate <= ACPI_STATE_S5)
3922 	return (snames[sstate]);
3923     else if (sstate == ACPI_STATE_UNKNOWN)
3924 	return ("NONE");
3925     return (NULL);
3926 }
3927 
3928 static int
3929 acpi_supported_sleep_state_sysctl(SYSCTL_HANDLER_ARGS)
3930 {
3931     int error;
3932     struct sbuf sb;
3933     UINT8 state;
3934 
3935     sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND);
3936     for (state = ACPI_STATE_S1; state < ACPI_S_STATE_COUNT; state++)
3937 	if (acpi_sleep_states[state])
3938 	    sbuf_printf(&sb, "%s ", acpi_sstate2sname(state));
3939     sbuf_trim(&sb);
3940     sbuf_finish(&sb);
3941     error = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
3942     sbuf_delete(&sb);
3943     return (error);
3944 }
3945 
3946 static int
3947 acpi_sleep_state_sysctl(SYSCTL_HANDLER_ARGS)
3948 {
3949     char sleep_state[10];
3950     int error, new_state, old_state;
3951 
3952     old_state = *(int *)oidp->oid_arg1;
3953     strlcpy(sleep_state, acpi_sstate2sname(old_state), sizeof(sleep_state));
3954     error = sysctl_handle_string(oidp, sleep_state, sizeof(sleep_state), req);
3955     if (error == 0 && req->newptr != NULL) {
3956 	new_state = acpi_sname2sstate(sleep_state);
3957 	if (new_state < ACPI_STATE_S1)
3958 	    return (EINVAL);
3959 	if (new_state < ACPI_S_STATE_COUNT && !acpi_sleep_states[new_state])
3960 	    return (EOPNOTSUPP);
3961 	if (new_state != old_state)
3962 	    *(int *)oidp->oid_arg1 = new_state;
3963     }
3964     return (error);
3965 }
3966 
3967 /* Inform devctl(4) when we receive a Notify. */
3968 void
3969 acpi_UserNotify(const char *subsystem, ACPI_HANDLE h, uint8_t notify)
3970 {
3971     char		notify_buf[16];
3972     ACPI_BUFFER		handle_buf;
3973     ACPI_STATUS		status;
3974 
3975     if (subsystem == NULL)
3976 	return;
3977 
3978     handle_buf.Pointer = NULL;
3979     handle_buf.Length = ACPI_ALLOCATE_BUFFER;
3980     status = AcpiNsHandleToPathname(h, &handle_buf, FALSE);
3981     if (ACPI_FAILURE(status))
3982 	return;
3983     snprintf(notify_buf, sizeof(notify_buf), "notify=0x%02x", notify);
3984     devctl_notify("ACPI", subsystem, handle_buf.Pointer, notify_buf);
3985     AcpiOsFree(handle_buf.Pointer);
3986 }
3987 
3988 #ifdef ACPI_DEBUG
3989 /*
3990  * Support for parsing debug options from the kernel environment.
3991  *
3992  * Bits may be set in the AcpiDbgLayer and AcpiDbgLevel debug registers
3993  * by specifying the names of the bits in the debug.acpi.layer and
3994  * debug.acpi.level environment variables.  Bits may be unset by
3995  * prefixing the bit name with !.
3996  */
3997 struct debugtag
3998 {
3999     char	*name;
4000     UINT32	value;
4001 };
4002 
4003 static struct debugtag	dbg_layer[] = {
4004     {"ACPI_UTILITIES",		ACPI_UTILITIES},
4005     {"ACPI_HARDWARE",		ACPI_HARDWARE},
4006     {"ACPI_EVENTS",		ACPI_EVENTS},
4007     {"ACPI_TABLES",		ACPI_TABLES},
4008     {"ACPI_NAMESPACE",		ACPI_NAMESPACE},
4009     {"ACPI_PARSER",		ACPI_PARSER},
4010     {"ACPI_DISPATCHER",		ACPI_DISPATCHER},
4011     {"ACPI_EXECUTER",		ACPI_EXECUTER},
4012     {"ACPI_RESOURCES",		ACPI_RESOURCES},
4013     {"ACPI_CA_DEBUGGER",	ACPI_CA_DEBUGGER},
4014     {"ACPI_OS_SERVICES",	ACPI_OS_SERVICES},
4015     {"ACPI_CA_DISASSEMBLER",	ACPI_CA_DISASSEMBLER},
4016     {"ACPI_ALL_COMPONENTS",	ACPI_ALL_COMPONENTS},
4017 
4018     {"ACPI_AC_ADAPTER",		ACPI_AC_ADAPTER},
4019     {"ACPI_BATTERY",		ACPI_BATTERY},
4020     {"ACPI_BUS",		ACPI_BUS},
4021     {"ACPI_BUTTON",		ACPI_BUTTON},
4022     {"ACPI_EC", 		ACPI_EC},
4023     {"ACPI_FAN",		ACPI_FAN},
4024     {"ACPI_POWERRES",		ACPI_POWERRES},
4025     {"ACPI_PROCESSOR",		ACPI_PROCESSOR},
4026     {"ACPI_THERMAL",		ACPI_THERMAL},
4027     {"ACPI_TIMER",		ACPI_TIMER},
4028     {"ACPI_ALL_DRIVERS",	ACPI_ALL_DRIVERS},
4029     {NULL, 0}
4030 };
4031 
4032 static struct debugtag dbg_level[] = {
4033     {"ACPI_LV_INIT",		ACPI_LV_INIT},
4034     {"ACPI_LV_DEBUG_OBJECT",	ACPI_LV_DEBUG_OBJECT},
4035     {"ACPI_LV_INFO",		ACPI_LV_INFO},
4036     {"ACPI_LV_REPAIR",		ACPI_LV_REPAIR},
4037     {"ACPI_LV_ALL_EXCEPTIONS",	ACPI_LV_ALL_EXCEPTIONS},
4038 
4039     /* Trace verbosity level 1 [Standard Trace Level] */
4040     {"ACPI_LV_INIT_NAMES",	ACPI_LV_INIT_NAMES},
4041     {"ACPI_LV_PARSE",		ACPI_LV_PARSE},
4042     {"ACPI_LV_LOAD",		ACPI_LV_LOAD},
4043     {"ACPI_LV_DISPATCH",	ACPI_LV_DISPATCH},
4044     {"ACPI_LV_EXEC",		ACPI_LV_EXEC},
4045     {"ACPI_LV_NAMES",		ACPI_LV_NAMES},
4046     {"ACPI_LV_OPREGION",	ACPI_LV_OPREGION},
4047     {"ACPI_LV_BFIELD",		ACPI_LV_BFIELD},
4048     {"ACPI_LV_TABLES",		ACPI_LV_TABLES},
4049     {"ACPI_LV_VALUES",		ACPI_LV_VALUES},
4050     {"ACPI_LV_OBJECTS",		ACPI_LV_OBJECTS},
4051     {"ACPI_LV_RESOURCES",	ACPI_LV_RESOURCES},
4052     {"ACPI_LV_USER_REQUESTS",	ACPI_LV_USER_REQUESTS},
4053     {"ACPI_LV_PACKAGE",		ACPI_LV_PACKAGE},
4054     {"ACPI_LV_VERBOSITY1",	ACPI_LV_VERBOSITY1},
4055 
4056     /* Trace verbosity level 2 [Function tracing and memory allocation] */
4057     {"ACPI_LV_ALLOCATIONS",	ACPI_LV_ALLOCATIONS},
4058     {"ACPI_LV_FUNCTIONS",	ACPI_LV_FUNCTIONS},
4059     {"ACPI_LV_OPTIMIZATIONS",	ACPI_LV_OPTIMIZATIONS},
4060     {"ACPI_LV_VERBOSITY2",	ACPI_LV_VERBOSITY2},
4061     {"ACPI_LV_ALL",		ACPI_LV_ALL},
4062 
4063     /* Trace verbosity level 3 [Threading, I/O, and Interrupts] */
4064     {"ACPI_LV_MUTEX",		ACPI_LV_MUTEX},
4065     {"ACPI_LV_THREADS",		ACPI_LV_THREADS},
4066     {"ACPI_LV_IO",		ACPI_LV_IO},
4067     {"ACPI_LV_INTERRUPTS",	ACPI_LV_INTERRUPTS},
4068     {"ACPI_LV_VERBOSITY3",	ACPI_LV_VERBOSITY3},
4069 
4070     /* Exceptionally verbose output -- also used in the global "DebugLevel"  */
4071     {"ACPI_LV_AML_DISASSEMBLE",	ACPI_LV_AML_DISASSEMBLE},
4072     {"ACPI_LV_VERBOSE_INFO",	ACPI_LV_VERBOSE_INFO},
4073     {"ACPI_LV_FULL_TABLES",	ACPI_LV_FULL_TABLES},
4074     {"ACPI_LV_EVENTS",		ACPI_LV_EVENTS},
4075     {"ACPI_LV_VERBOSE",		ACPI_LV_VERBOSE},
4076     {NULL, 0}
4077 };
4078 
4079 static void
4080 acpi_parse_debug(char *cp, struct debugtag *tag, UINT32 *flag)
4081 {
4082     char	*ep;
4083     int		i, l;
4084     int		set;
4085 
4086     while (*cp) {
4087 	if (isspace(*cp)) {
4088 	    cp++;
4089 	    continue;
4090 	}
4091 	ep = cp;
4092 	while (*ep && !isspace(*ep))
4093 	    ep++;
4094 	if (*cp == '!') {
4095 	    set = 0;
4096 	    cp++;
4097 	    if (cp == ep)
4098 		continue;
4099 	} else {
4100 	    set = 1;
4101 	}
4102 	l = ep - cp;
4103 	for (i = 0; tag[i].name != NULL; i++) {
4104 	    if (!strncmp(cp, tag[i].name, l)) {
4105 		if (set)
4106 		    *flag |= tag[i].value;
4107 		else
4108 		    *flag &= ~tag[i].value;
4109 	    }
4110 	}
4111 	cp = ep;
4112     }
4113 }
4114 
4115 static void
4116 acpi_set_debugging(void *junk)
4117 {
4118     char	*layer, *level;
4119 
4120     if (cold) {
4121 	AcpiDbgLayer = 0;
4122 	AcpiDbgLevel = 0;
4123     }
4124 
4125     layer = kern_getenv("debug.acpi.layer");
4126     level = kern_getenv("debug.acpi.level");
4127     if (layer == NULL && level == NULL)
4128 	return;
4129 
4130     printf("ACPI set debug");
4131     if (layer != NULL) {
4132 	if (strcmp("NONE", layer) != 0)
4133 	    printf(" layer '%s'", layer);
4134 	acpi_parse_debug(layer, &dbg_layer[0], &AcpiDbgLayer);
4135 	freeenv(layer);
4136     }
4137     if (level != NULL) {
4138 	if (strcmp("NONE", level) != 0)
4139 	    printf(" level '%s'", level);
4140 	acpi_parse_debug(level, &dbg_level[0], &AcpiDbgLevel);
4141 	freeenv(level);
4142     }
4143     printf("\n");
4144 }
4145 
4146 SYSINIT(acpi_debugging, SI_SUB_TUNABLES, SI_ORDER_ANY, acpi_set_debugging,
4147 	NULL);
4148 
4149 static int
4150 acpi_debug_sysctl(SYSCTL_HANDLER_ARGS)
4151 {
4152     int		 error, *dbg;
4153     struct	 debugtag *tag;
4154     struct	 sbuf sb;
4155     char	 temp[128];
4156 
4157     if (sbuf_new(&sb, NULL, 128, SBUF_AUTOEXTEND) == NULL)
4158 	return (ENOMEM);
4159     if (strcmp(oidp->oid_arg1, "debug.acpi.layer") == 0) {
4160 	tag = &dbg_layer[0];
4161 	dbg = &AcpiDbgLayer;
4162     } else {
4163 	tag = &dbg_level[0];
4164 	dbg = &AcpiDbgLevel;
4165     }
4166 
4167     /* Get old values if this is a get request. */
4168     ACPI_SERIAL_BEGIN(acpi);
4169     if (*dbg == 0) {
4170 	sbuf_cpy(&sb, "NONE");
4171     } else if (req->newptr == NULL) {
4172 	for (; tag->name != NULL; tag++) {
4173 	    if ((*dbg & tag->value) == tag->value)
4174 		sbuf_printf(&sb, "%s ", tag->name);
4175 	}
4176     }
4177     sbuf_trim(&sb);
4178     sbuf_finish(&sb);
4179     strlcpy(temp, sbuf_data(&sb), sizeof(temp));
4180     sbuf_delete(&sb);
4181 
4182     error = sysctl_handle_string(oidp, temp, sizeof(temp), req);
4183 
4184     /* Check for error or no change */
4185     if (error == 0 && req->newptr != NULL) {
4186 	*dbg = 0;
4187 	kern_setenv((char *)oidp->oid_arg1, temp);
4188 	acpi_set_debugging(NULL);
4189     }
4190     ACPI_SERIAL_END(acpi);
4191 
4192     return (error);
4193 }
4194 
4195 SYSCTL_PROC(_debug_acpi, OID_AUTO, layer,
4196     CTLFLAG_RW | CTLTYPE_STRING | CTLFLAG_NEEDGIANT, "debug.acpi.layer", 0,
4197     acpi_debug_sysctl, "A",
4198     "");
4199 SYSCTL_PROC(_debug_acpi, OID_AUTO, level,
4200     CTLFLAG_RW | CTLTYPE_STRING | CTLFLAG_NEEDGIANT, "debug.acpi.level", 0,
4201     acpi_debug_sysctl, "A",
4202     "");
4203 #endif /* ACPI_DEBUG */
4204 
4205 static int
4206 acpi_debug_objects_sysctl(SYSCTL_HANDLER_ARGS)
4207 {
4208 	int	error;
4209 	int	old;
4210 
4211 	old = acpi_debug_objects;
4212 	error = sysctl_handle_int(oidp, &acpi_debug_objects, 0, req);
4213 	if (error != 0 || req->newptr == NULL)
4214 		return (error);
4215 	if (old == acpi_debug_objects || (old && acpi_debug_objects))
4216 		return (0);
4217 
4218 	ACPI_SERIAL_BEGIN(acpi);
4219 	AcpiGbl_EnableAmlDebugObject = acpi_debug_objects ? TRUE : FALSE;
4220 	ACPI_SERIAL_END(acpi);
4221 
4222 	return (0);
4223 }
4224 
4225 static int
4226 acpi_parse_interfaces(char *str, struct acpi_interface *iface)
4227 {
4228 	char *p;
4229 	size_t len;
4230 	int i, j;
4231 
4232 	p = str;
4233 	while (isspace(*p) || *p == ',')
4234 		p++;
4235 	len = strlen(p);
4236 	if (len == 0)
4237 		return (0);
4238 	p = strdup(p, M_TEMP);
4239 	for (i = 0; i < len; i++)
4240 		if (p[i] == ',')
4241 			p[i] = '\0';
4242 	i = j = 0;
4243 	while (i < len)
4244 		if (isspace(p[i]) || p[i] == '\0')
4245 			i++;
4246 		else {
4247 			i += strlen(p + i) + 1;
4248 			j++;
4249 		}
4250 	if (j == 0) {
4251 		free(p, M_TEMP);
4252 		return (0);
4253 	}
4254 	iface->data = malloc(sizeof(*iface->data) * j, M_TEMP, M_WAITOK);
4255 	iface->num = j;
4256 	i = j = 0;
4257 	while (i < len)
4258 		if (isspace(p[i]) || p[i] == '\0')
4259 			i++;
4260 		else {
4261 			iface->data[j] = p + i;
4262 			i += strlen(p + i) + 1;
4263 			j++;
4264 		}
4265 
4266 	return (j);
4267 }
4268 
4269 static void
4270 acpi_free_interfaces(struct acpi_interface *iface)
4271 {
4272 
4273 	free(iface->data[0], M_TEMP);
4274 	free(iface->data, M_TEMP);
4275 }
4276 
4277 static void
4278 acpi_reset_interfaces(device_t dev)
4279 {
4280 	struct acpi_interface list;
4281 	ACPI_STATUS status;
4282 	int i;
4283 
4284 	if (acpi_parse_interfaces(acpi_install_interface, &list) > 0) {
4285 		for (i = 0; i < list.num; i++) {
4286 			status = AcpiInstallInterface(list.data[i]);
4287 			if (ACPI_FAILURE(status))
4288 				device_printf(dev,
4289 				    "failed to install _OSI(\"%s\"): %s\n",
4290 				    list.data[i], AcpiFormatException(status));
4291 			else if (bootverbose)
4292 				device_printf(dev, "installed _OSI(\"%s\")\n",
4293 				    list.data[i]);
4294 		}
4295 		acpi_free_interfaces(&list);
4296 	}
4297 	if (acpi_parse_interfaces(acpi_remove_interface, &list) > 0) {
4298 		for (i = 0; i < list.num; i++) {
4299 			status = AcpiRemoveInterface(list.data[i]);
4300 			if (ACPI_FAILURE(status))
4301 				device_printf(dev,
4302 				    "failed to remove _OSI(\"%s\"): %s\n",
4303 				    list.data[i], AcpiFormatException(status));
4304 			else if (bootverbose)
4305 				device_printf(dev, "removed _OSI(\"%s\")\n",
4306 				    list.data[i]);
4307 		}
4308 		acpi_free_interfaces(&list);
4309 	}
4310 }
4311 
4312 static int
4313 acpi_pm_func(u_long cmd, void *arg, ...)
4314 {
4315 	int	state, acpi_state;
4316 	int	error;
4317 	struct	acpi_softc *sc;
4318 	va_list	ap;
4319 
4320 	error = 0;
4321 	switch (cmd) {
4322 	case POWER_CMD_SUSPEND:
4323 		sc = (struct acpi_softc *)arg;
4324 		if (sc == NULL) {
4325 			error = EINVAL;
4326 			goto out;
4327 		}
4328 
4329 		va_start(ap, arg);
4330 		state = va_arg(ap, int);
4331 		va_end(ap);
4332 
4333 		switch (state) {
4334 		case POWER_SLEEP_STATE_STANDBY:
4335 			acpi_state = sc->acpi_standby_sx;
4336 			break;
4337 		case POWER_SLEEP_STATE_SUSPEND:
4338 			acpi_state = sc->acpi_suspend_sx;
4339 			break;
4340 		case POWER_SLEEP_STATE_HIBERNATE:
4341 			acpi_state = ACPI_STATE_S4;
4342 			break;
4343 		default:
4344 			error = EINVAL;
4345 			goto out;
4346 		}
4347 
4348 		if (ACPI_FAILURE(acpi_EnterSleepState(sc, acpi_state)))
4349 			error = ENXIO;
4350 		break;
4351 	default:
4352 		error = EINVAL;
4353 		goto out;
4354 	}
4355 
4356 out:
4357 	return (error);
4358 }
4359 
4360 static void
4361 acpi_pm_register(void *arg)
4362 {
4363     if (!cold || resource_disabled("acpi", 0))
4364 	return;
4365 
4366     power_pm_register(POWER_PM_TYPE_ACPI, acpi_pm_func, NULL);
4367 }
4368 
4369 SYSINIT(power, SI_SUB_KLD, SI_ORDER_ANY, acpi_pm_register, NULL);
4370