1 /*- 2 * Copyright (c) 2000 Takanori Watanabe <takawata@jp.freebsd.org> 3 * Copyright (c) 2000 Mitsuru IWASAKI <iwasaki@jp.freebsd.org> 4 * Copyright (c) 2000, 2001 Michael Smith 5 * Copyright (c) 2000 BSDi 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include "opt_acpi.h" 34 #include "opt_device_numa.h" 35 36 #include <sys/param.h> 37 #include <sys/kernel.h> 38 #include <sys/proc.h> 39 #include <sys/fcntl.h> 40 #include <sys/malloc.h> 41 #include <sys/module.h> 42 #include <sys/bus.h> 43 #include <sys/conf.h> 44 #include <sys/ioccom.h> 45 #include <sys/reboot.h> 46 #include <sys/sysctl.h> 47 #include <sys/ctype.h> 48 #include <sys/linker.h> 49 #include <sys/power.h> 50 #include <sys/sbuf.h> 51 #include <sys/sched.h> 52 #include <sys/smp.h> 53 #include <sys/timetc.h> 54 55 #if defined(__i386__) || defined(__amd64__) 56 #include <machine/pci_cfgreg.h> 57 #endif 58 #include <machine/resource.h> 59 #include <machine/bus.h> 60 #include <sys/rman.h> 61 #include <isa/isavar.h> 62 #include <isa/pnpvar.h> 63 64 #include <contrib/dev/acpica/include/acpi.h> 65 #include <contrib/dev/acpica/include/accommon.h> 66 #include <contrib/dev/acpica/include/acnamesp.h> 67 68 #include <dev/acpica/acpivar.h> 69 #include <dev/acpica/acpiio.h> 70 71 #include <dev/pci/pcivar.h> 72 73 #include <vm/vm_param.h> 74 75 static MALLOC_DEFINE(M_ACPIDEV, "acpidev", "ACPI devices"); 76 77 /* Hooks for the ACPI CA debugging infrastructure */ 78 #define _COMPONENT ACPI_BUS 79 ACPI_MODULE_NAME("ACPI") 80 81 static d_open_t acpiopen; 82 static d_close_t acpiclose; 83 static d_ioctl_t acpiioctl; 84 85 static struct cdevsw acpi_cdevsw = { 86 .d_version = D_VERSION, 87 .d_open = acpiopen, 88 .d_close = acpiclose, 89 .d_ioctl = acpiioctl, 90 .d_name = "acpi", 91 }; 92 93 struct acpi_interface { 94 ACPI_STRING *data; 95 int num; 96 }; 97 98 /* Global mutex for locking access to the ACPI subsystem. */ 99 struct mtx acpi_mutex; 100 struct callout acpi_sleep_timer; 101 102 /* Bitmap of device quirks. */ 103 int acpi_quirks; 104 105 /* Supported sleep states. */ 106 static BOOLEAN acpi_sleep_states[ACPI_S_STATE_COUNT]; 107 108 static void acpi_lookup(void *arg, const char *name, device_t *dev); 109 static int acpi_modevent(struct module *mod, int event, void *junk); 110 static int acpi_probe(device_t dev); 111 static int acpi_attach(device_t dev); 112 static int acpi_suspend(device_t dev); 113 static int acpi_resume(device_t dev); 114 static int acpi_shutdown(device_t dev); 115 static device_t acpi_add_child(device_t bus, u_int order, const char *name, 116 int unit); 117 static int acpi_print_child(device_t bus, device_t child); 118 static void acpi_probe_nomatch(device_t bus, device_t child); 119 static void acpi_driver_added(device_t dev, driver_t *driver); 120 static int acpi_read_ivar(device_t dev, device_t child, int index, 121 uintptr_t *result); 122 static int acpi_write_ivar(device_t dev, device_t child, int index, 123 uintptr_t value); 124 static struct resource_list *acpi_get_rlist(device_t dev, device_t child); 125 static void acpi_reserve_resources(device_t dev); 126 static int acpi_sysres_alloc(device_t dev); 127 static int acpi_set_resource(device_t dev, device_t child, int type, 128 int rid, rman_res_t start, rman_res_t count); 129 static struct resource *acpi_alloc_resource(device_t bus, device_t child, 130 int type, int *rid, rman_res_t start, rman_res_t end, 131 rman_res_t count, u_int flags); 132 static int acpi_adjust_resource(device_t bus, device_t child, int type, 133 struct resource *r, rman_res_t start, rman_res_t end); 134 static int acpi_release_resource(device_t bus, device_t child, int type, 135 int rid, struct resource *r); 136 static void acpi_delete_resource(device_t bus, device_t child, int type, 137 int rid); 138 static uint32_t acpi_isa_get_logicalid(device_t dev); 139 static int acpi_isa_get_compatid(device_t dev, uint32_t *cids, int count); 140 static char *acpi_device_id_probe(device_t bus, device_t dev, char **ids); 141 static ACPI_STATUS acpi_device_eval_obj(device_t bus, device_t dev, 142 ACPI_STRING pathname, ACPI_OBJECT_LIST *parameters, 143 ACPI_BUFFER *ret); 144 static ACPI_STATUS acpi_device_scan_cb(ACPI_HANDLE h, UINT32 level, 145 void *context, void **retval); 146 static ACPI_STATUS acpi_device_scan_children(device_t bus, device_t dev, 147 int max_depth, acpi_scan_cb_t user_fn, void *arg); 148 static int acpi_set_powerstate(device_t child, int state); 149 static int acpi_isa_pnp_probe(device_t bus, device_t child, 150 struct isa_pnp_id *ids); 151 static void acpi_probe_children(device_t bus); 152 static void acpi_probe_order(ACPI_HANDLE handle, int *order); 153 static ACPI_STATUS acpi_probe_child(ACPI_HANDLE handle, UINT32 level, 154 void *context, void **status); 155 static void acpi_sleep_enable(void *arg); 156 static ACPI_STATUS acpi_sleep_disable(struct acpi_softc *sc); 157 static ACPI_STATUS acpi_EnterSleepState(struct acpi_softc *sc, int state); 158 static void acpi_shutdown_final(void *arg, int howto); 159 static void acpi_enable_fixed_events(struct acpi_softc *sc); 160 static BOOLEAN acpi_has_hid(ACPI_HANDLE handle); 161 static void acpi_resync_clock(struct acpi_softc *sc); 162 static int acpi_wake_sleep_prep(ACPI_HANDLE handle, int sstate); 163 static int acpi_wake_run_prep(ACPI_HANDLE handle, int sstate); 164 static int acpi_wake_prep_walk(int sstate); 165 static int acpi_wake_sysctl_walk(device_t dev); 166 static int acpi_wake_set_sysctl(SYSCTL_HANDLER_ARGS); 167 static void acpi_system_eventhandler_sleep(void *arg, int state); 168 static void acpi_system_eventhandler_wakeup(void *arg, int state); 169 static int acpi_sname2sstate(const char *sname); 170 static const char *acpi_sstate2sname(int sstate); 171 static int acpi_supported_sleep_state_sysctl(SYSCTL_HANDLER_ARGS); 172 static int acpi_sleep_state_sysctl(SYSCTL_HANDLER_ARGS); 173 static int acpi_debug_objects_sysctl(SYSCTL_HANDLER_ARGS); 174 static int acpi_pm_func(u_long cmd, void *arg, ...); 175 static int acpi_child_location_str_method(device_t acdev, device_t child, 176 char *buf, size_t buflen); 177 static int acpi_child_pnpinfo_str_method(device_t acdev, device_t child, 178 char *buf, size_t buflen); 179 #if defined(__i386__) || defined(__amd64__) 180 static void acpi_enable_pcie(void); 181 #endif 182 static void acpi_hint_device_unit(device_t acdev, device_t child, 183 const char *name, int *unitp); 184 static void acpi_reset_interfaces(device_t dev); 185 186 static device_method_t acpi_methods[] = { 187 /* Device interface */ 188 DEVMETHOD(device_probe, acpi_probe), 189 DEVMETHOD(device_attach, acpi_attach), 190 DEVMETHOD(device_shutdown, acpi_shutdown), 191 DEVMETHOD(device_detach, bus_generic_detach), 192 DEVMETHOD(device_suspend, acpi_suspend), 193 DEVMETHOD(device_resume, acpi_resume), 194 195 /* Bus interface */ 196 DEVMETHOD(bus_add_child, acpi_add_child), 197 DEVMETHOD(bus_print_child, acpi_print_child), 198 DEVMETHOD(bus_probe_nomatch, acpi_probe_nomatch), 199 DEVMETHOD(bus_driver_added, acpi_driver_added), 200 DEVMETHOD(bus_read_ivar, acpi_read_ivar), 201 DEVMETHOD(bus_write_ivar, acpi_write_ivar), 202 DEVMETHOD(bus_get_resource_list, acpi_get_rlist), 203 DEVMETHOD(bus_set_resource, acpi_set_resource), 204 DEVMETHOD(bus_get_resource, bus_generic_rl_get_resource), 205 DEVMETHOD(bus_alloc_resource, acpi_alloc_resource), 206 DEVMETHOD(bus_adjust_resource, acpi_adjust_resource), 207 DEVMETHOD(bus_release_resource, acpi_release_resource), 208 DEVMETHOD(bus_delete_resource, acpi_delete_resource), 209 DEVMETHOD(bus_child_pnpinfo_str, acpi_child_pnpinfo_str_method), 210 DEVMETHOD(bus_child_location_str, acpi_child_location_str_method), 211 DEVMETHOD(bus_activate_resource, bus_generic_activate_resource), 212 DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource), 213 DEVMETHOD(bus_setup_intr, bus_generic_setup_intr), 214 DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr), 215 DEVMETHOD(bus_hint_device_unit, acpi_hint_device_unit), 216 DEVMETHOD(bus_get_cpus, acpi_get_cpus), 217 DEVMETHOD(bus_get_domain, acpi_get_domain), 218 219 /* ACPI bus */ 220 DEVMETHOD(acpi_id_probe, acpi_device_id_probe), 221 DEVMETHOD(acpi_evaluate_object, acpi_device_eval_obj), 222 DEVMETHOD(acpi_pwr_for_sleep, acpi_device_pwr_for_sleep), 223 DEVMETHOD(acpi_scan_children, acpi_device_scan_children), 224 225 /* ISA emulation */ 226 DEVMETHOD(isa_pnp_probe, acpi_isa_pnp_probe), 227 228 DEVMETHOD_END 229 }; 230 231 static driver_t acpi_driver = { 232 "acpi", 233 acpi_methods, 234 sizeof(struct acpi_softc), 235 }; 236 237 static devclass_t acpi_devclass; 238 DRIVER_MODULE(acpi, nexus, acpi_driver, acpi_devclass, acpi_modevent, 0); 239 MODULE_VERSION(acpi, 1); 240 241 ACPI_SERIAL_DECL(acpi, "ACPI root bus"); 242 243 /* Local pools for managing system resources for ACPI child devices. */ 244 static struct rman acpi_rman_io, acpi_rman_mem; 245 246 #define ACPI_MINIMUM_AWAKETIME 5 247 248 /* Holds the description of the acpi0 device. */ 249 static char acpi_desc[ACPI_OEM_ID_SIZE + ACPI_OEM_TABLE_ID_SIZE + 2]; 250 251 SYSCTL_NODE(_debug, OID_AUTO, acpi, CTLFLAG_RD, NULL, "ACPI debugging"); 252 static char acpi_ca_version[12]; 253 SYSCTL_STRING(_debug_acpi, OID_AUTO, acpi_ca_version, CTLFLAG_RD, 254 acpi_ca_version, 0, "Version of Intel ACPI-CA"); 255 256 /* 257 * Allow overriding _OSI methods. 258 */ 259 static char acpi_install_interface[256]; 260 TUNABLE_STR("hw.acpi.install_interface", acpi_install_interface, 261 sizeof(acpi_install_interface)); 262 static char acpi_remove_interface[256]; 263 TUNABLE_STR("hw.acpi.remove_interface", acpi_remove_interface, 264 sizeof(acpi_remove_interface)); 265 266 /* Allow users to dump Debug objects without ACPI debugger. */ 267 static int acpi_debug_objects; 268 TUNABLE_INT("debug.acpi.enable_debug_objects", &acpi_debug_objects); 269 SYSCTL_PROC(_debug_acpi, OID_AUTO, enable_debug_objects, 270 CTLFLAG_RW | CTLTYPE_INT, NULL, 0, acpi_debug_objects_sysctl, "I", 271 "Enable Debug objects"); 272 273 /* Allow the interpreter to ignore common mistakes in BIOS. */ 274 static int acpi_interpreter_slack = 1; 275 TUNABLE_INT("debug.acpi.interpreter_slack", &acpi_interpreter_slack); 276 SYSCTL_INT(_debug_acpi, OID_AUTO, interpreter_slack, CTLFLAG_RDTUN, 277 &acpi_interpreter_slack, 1, "Turn on interpreter slack mode."); 278 279 /* Ignore register widths set by FADT and use default widths instead. */ 280 static int acpi_ignore_reg_width = 1; 281 TUNABLE_INT("debug.acpi.default_register_width", &acpi_ignore_reg_width); 282 SYSCTL_INT(_debug_acpi, OID_AUTO, default_register_width, CTLFLAG_RDTUN, 283 &acpi_ignore_reg_width, 1, "Ignore register widths set by FADT"); 284 285 /* Allow users to override quirks. */ 286 TUNABLE_INT("debug.acpi.quirks", &acpi_quirks); 287 288 static int acpi_susp_bounce; 289 SYSCTL_INT(_debug_acpi, OID_AUTO, suspend_bounce, CTLFLAG_RW, 290 &acpi_susp_bounce, 0, "Don't actually suspend, just test devices."); 291 292 /* 293 * ACPI can only be loaded as a module by the loader; activating it after 294 * system bootstrap time is not useful, and can be fatal to the system. 295 * It also cannot be unloaded, since the entire system bus hierarchy hangs 296 * off it. 297 */ 298 static int 299 acpi_modevent(struct module *mod, int event, void *junk) 300 { 301 switch (event) { 302 case MOD_LOAD: 303 if (!cold) { 304 printf("The ACPI driver cannot be loaded after boot.\n"); 305 return (EPERM); 306 } 307 break; 308 case MOD_UNLOAD: 309 if (!cold && power_pm_get_type() == POWER_PM_TYPE_ACPI) 310 return (EBUSY); 311 break; 312 default: 313 break; 314 } 315 return (0); 316 } 317 318 /* 319 * Perform early initialization. 320 */ 321 ACPI_STATUS 322 acpi_Startup(void) 323 { 324 static int started = 0; 325 ACPI_STATUS status; 326 int val; 327 328 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 329 330 /* Only run the startup code once. The MADT driver also calls this. */ 331 if (started) 332 return_VALUE (AE_OK); 333 started = 1; 334 335 /* 336 * Initialize the ACPICA subsystem. 337 */ 338 if (ACPI_FAILURE(status = AcpiInitializeSubsystem())) { 339 printf("ACPI: Could not initialize Subsystem: %s\n", 340 AcpiFormatException(status)); 341 return_VALUE (status); 342 } 343 344 /* 345 * Pre-allocate space for RSDT/XSDT and DSDT tables and allow resizing 346 * if more tables exist. 347 */ 348 if (ACPI_FAILURE(status = AcpiInitializeTables(NULL, 2, TRUE))) { 349 printf("ACPI: Table initialisation failed: %s\n", 350 AcpiFormatException(status)); 351 return_VALUE (status); 352 } 353 354 /* Set up any quirks we have for this system. */ 355 if (acpi_quirks == ACPI_Q_OK) 356 acpi_table_quirks(&acpi_quirks); 357 358 /* If the user manually set the disabled hint to 0, force-enable ACPI. */ 359 if (resource_int_value("acpi", 0, "disabled", &val) == 0 && val == 0) 360 acpi_quirks &= ~ACPI_Q_BROKEN; 361 if (acpi_quirks & ACPI_Q_BROKEN) { 362 printf("ACPI disabled by blacklist. Contact your BIOS vendor.\n"); 363 status = AE_SUPPORT; 364 } 365 366 return_VALUE (status); 367 } 368 369 /* 370 * Detect ACPI and perform early initialisation. 371 */ 372 int 373 acpi_identify(void) 374 { 375 ACPI_TABLE_RSDP *rsdp; 376 ACPI_TABLE_HEADER *rsdt; 377 ACPI_PHYSICAL_ADDRESS paddr; 378 struct sbuf sb; 379 380 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 381 382 if (!cold) 383 return (ENXIO); 384 385 /* Check that we haven't been disabled with a hint. */ 386 if (resource_disabled("acpi", 0)) 387 return (ENXIO); 388 389 /* Check for other PM systems. */ 390 if (power_pm_get_type() != POWER_PM_TYPE_NONE && 391 power_pm_get_type() != POWER_PM_TYPE_ACPI) { 392 printf("ACPI identify failed, other PM system enabled.\n"); 393 return (ENXIO); 394 } 395 396 /* Initialize root tables. */ 397 if (ACPI_FAILURE(acpi_Startup())) { 398 printf("ACPI: Try disabling either ACPI or apic support.\n"); 399 return (ENXIO); 400 } 401 402 if ((paddr = AcpiOsGetRootPointer()) == 0 || 403 (rsdp = AcpiOsMapMemory(paddr, sizeof(ACPI_TABLE_RSDP))) == NULL) 404 return (ENXIO); 405 if (rsdp->Revision > 1 && rsdp->XsdtPhysicalAddress != 0) 406 paddr = (ACPI_PHYSICAL_ADDRESS)rsdp->XsdtPhysicalAddress; 407 else 408 paddr = (ACPI_PHYSICAL_ADDRESS)rsdp->RsdtPhysicalAddress; 409 AcpiOsUnmapMemory(rsdp, sizeof(ACPI_TABLE_RSDP)); 410 411 if ((rsdt = AcpiOsMapMemory(paddr, sizeof(ACPI_TABLE_HEADER))) == NULL) 412 return (ENXIO); 413 sbuf_new(&sb, acpi_desc, sizeof(acpi_desc), SBUF_FIXEDLEN); 414 sbuf_bcat(&sb, rsdt->OemId, ACPI_OEM_ID_SIZE); 415 sbuf_trim(&sb); 416 sbuf_putc(&sb, ' '); 417 sbuf_bcat(&sb, rsdt->OemTableId, ACPI_OEM_TABLE_ID_SIZE); 418 sbuf_trim(&sb); 419 sbuf_finish(&sb); 420 sbuf_delete(&sb); 421 AcpiOsUnmapMemory(rsdt, sizeof(ACPI_TABLE_HEADER)); 422 423 snprintf(acpi_ca_version, sizeof(acpi_ca_version), "%x", ACPI_CA_VERSION); 424 425 return (0); 426 } 427 428 /* 429 * Fetch some descriptive data from ACPI to put in our attach message. 430 */ 431 static int 432 acpi_probe(device_t dev) 433 { 434 435 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 436 437 device_set_desc(dev, acpi_desc); 438 439 return_VALUE (BUS_PROBE_NOWILDCARD); 440 } 441 442 static int 443 acpi_attach(device_t dev) 444 { 445 struct acpi_softc *sc; 446 ACPI_STATUS status; 447 int error, state; 448 UINT32 flags; 449 UINT8 TypeA, TypeB; 450 char *env; 451 452 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 453 454 sc = device_get_softc(dev); 455 sc->acpi_dev = dev; 456 callout_init(&sc->susp_force_to, 1); 457 458 error = ENXIO; 459 460 /* Initialize resource manager. */ 461 acpi_rman_io.rm_type = RMAN_ARRAY; 462 acpi_rman_io.rm_start = 0; 463 acpi_rman_io.rm_end = 0xffff; 464 acpi_rman_io.rm_descr = "ACPI I/O ports"; 465 if (rman_init(&acpi_rman_io) != 0) 466 panic("acpi rman_init IO ports failed"); 467 acpi_rman_mem.rm_type = RMAN_ARRAY; 468 acpi_rman_mem.rm_descr = "ACPI I/O memory addresses"; 469 if (rman_init(&acpi_rman_mem) != 0) 470 panic("acpi rman_init memory failed"); 471 472 /* Initialise the ACPI mutex */ 473 mtx_init(&acpi_mutex, "ACPI global lock", NULL, MTX_DEF); 474 475 /* 476 * Set the globals from our tunables. This is needed because ACPI-CA 477 * uses UINT8 for some values and we have no tunable_byte. 478 */ 479 AcpiGbl_EnableInterpreterSlack = acpi_interpreter_slack ? TRUE : FALSE; 480 AcpiGbl_EnableAmlDebugObject = acpi_debug_objects ? TRUE : FALSE; 481 AcpiGbl_UseDefaultRegisterWidths = acpi_ignore_reg_width ? TRUE : FALSE; 482 483 #ifndef ACPI_DEBUG 484 /* 485 * Disable all debugging layers and levels. 486 */ 487 AcpiDbgLayer = 0; 488 AcpiDbgLevel = 0; 489 #endif 490 491 /* Override OS interfaces if the user requested. */ 492 acpi_reset_interfaces(dev); 493 494 /* Load ACPI name space. */ 495 status = AcpiLoadTables(); 496 if (ACPI_FAILURE(status)) { 497 device_printf(dev, "Could not load Namespace: %s\n", 498 AcpiFormatException(status)); 499 goto out; 500 } 501 502 #if defined(__i386__) || defined(__amd64__) 503 /* Handle MCFG table if present. */ 504 acpi_enable_pcie(); 505 #endif 506 507 /* 508 * Note that some systems (specifically, those with namespace evaluation 509 * issues that require the avoidance of parts of the namespace) must 510 * avoid running _INI and _STA on everything, as well as dodging the final 511 * object init pass. 512 * 513 * For these devices, we set ACPI_NO_DEVICE_INIT and ACPI_NO_OBJECT_INIT). 514 * 515 * XXX We should arrange for the object init pass after we have attached 516 * all our child devices, but on many systems it works here. 517 */ 518 flags = 0; 519 if (testenv("debug.acpi.avoid")) 520 flags = ACPI_NO_DEVICE_INIT | ACPI_NO_OBJECT_INIT; 521 522 /* Bring the hardware and basic handlers online. */ 523 if (ACPI_FAILURE(status = AcpiEnableSubsystem(flags))) { 524 device_printf(dev, "Could not enable ACPI: %s\n", 525 AcpiFormatException(status)); 526 goto out; 527 } 528 529 /* 530 * Call the ECDT probe function to provide EC functionality before 531 * the namespace has been evaluated. 532 * 533 * XXX This happens before the sysresource devices have been probed and 534 * attached so its resources come from nexus0. In practice, this isn't 535 * a problem but should be addressed eventually. 536 */ 537 acpi_ec_ecdt_probe(dev); 538 539 /* Bring device objects and regions online. */ 540 if (ACPI_FAILURE(status = AcpiInitializeObjects(flags))) { 541 device_printf(dev, "Could not initialize ACPI objects: %s\n", 542 AcpiFormatException(status)); 543 goto out; 544 } 545 546 /* 547 * Setup our sysctl tree. 548 * 549 * XXX: This doesn't check to make sure that none of these fail. 550 */ 551 sysctl_ctx_init(&sc->acpi_sysctl_ctx); 552 sc->acpi_sysctl_tree = SYSCTL_ADD_NODE(&sc->acpi_sysctl_ctx, 553 SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO, 554 device_get_name(dev), CTLFLAG_RD, 0, ""); 555 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 556 OID_AUTO, "supported_sleep_state", CTLTYPE_STRING | CTLFLAG_RD, 557 0, 0, acpi_supported_sleep_state_sysctl, "A", 558 "List supported ACPI sleep states."); 559 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 560 OID_AUTO, "power_button_state", CTLTYPE_STRING | CTLFLAG_RW, 561 &sc->acpi_power_button_sx, 0, acpi_sleep_state_sysctl, "A", 562 "Power button ACPI sleep state."); 563 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 564 OID_AUTO, "sleep_button_state", CTLTYPE_STRING | CTLFLAG_RW, 565 &sc->acpi_sleep_button_sx, 0, acpi_sleep_state_sysctl, "A", 566 "Sleep button ACPI sleep state."); 567 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 568 OID_AUTO, "lid_switch_state", CTLTYPE_STRING | CTLFLAG_RW, 569 &sc->acpi_lid_switch_sx, 0, acpi_sleep_state_sysctl, "A", 570 "Lid ACPI sleep state. Set to S3 if you want to suspend your laptop when close the Lid."); 571 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 572 OID_AUTO, "standby_state", CTLTYPE_STRING | CTLFLAG_RW, 573 &sc->acpi_standby_sx, 0, acpi_sleep_state_sysctl, "A", ""); 574 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 575 OID_AUTO, "suspend_state", CTLTYPE_STRING | CTLFLAG_RW, 576 &sc->acpi_suspend_sx, 0, acpi_sleep_state_sysctl, "A", ""); 577 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 578 OID_AUTO, "sleep_delay", CTLFLAG_RW, &sc->acpi_sleep_delay, 0, 579 "sleep delay in seconds"); 580 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 581 OID_AUTO, "s4bios", CTLFLAG_RW, &sc->acpi_s4bios, 0, "S4BIOS mode"); 582 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 583 OID_AUTO, "verbose", CTLFLAG_RW, &sc->acpi_verbose, 0, "verbose mode"); 584 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 585 OID_AUTO, "disable_on_reboot", CTLFLAG_RW, 586 &sc->acpi_do_disable, 0, "Disable ACPI when rebooting/halting system"); 587 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 588 OID_AUTO, "handle_reboot", CTLFLAG_RW, 589 &sc->acpi_handle_reboot, 0, "Use ACPI Reset Register to reboot"); 590 591 /* 592 * Default to 1 second before sleeping to give some machines time to 593 * stabilize. 594 */ 595 sc->acpi_sleep_delay = 1; 596 if (bootverbose) 597 sc->acpi_verbose = 1; 598 if ((env = kern_getenv("hw.acpi.verbose")) != NULL) { 599 if (strcmp(env, "0") != 0) 600 sc->acpi_verbose = 1; 601 freeenv(env); 602 } 603 604 /* Only enable reboot by default if the FADT says it is available. */ 605 if (AcpiGbl_FADT.Flags & ACPI_FADT_RESET_REGISTER) 606 sc->acpi_handle_reboot = 1; 607 608 #if !ACPI_REDUCED_HARDWARE 609 /* Only enable S4BIOS by default if the FACS says it is available. */ 610 if (AcpiGbl_FACS != NULL && AcpiGbl_FACS->Flags & ACPI_FACS_S4_BIOS_PRESENT) 611 sc->acpi_s4bios = 1; 612 #endif 613 614 /* Probe all supported sleep states. */ 615 acpi_sleep_states[ACPI_STATE_S0] = TRUE; 616 for (state = ACPI_STATE_S1; state < ACPI_S_STATE_COUNT; state++) 617 if (ACPI_SUCCESS(AcpiEvaluateObject(ACPI_ROOT_OBJECT, 618 __DECONST(char *, AcpiGbl_SleepStateNames[state]), NULL, NULL)) && 619 ACPI_SUCCESS(AcpiGetSleepTypeData(state, &TypeA, &TypeB))) 620 acpi_sleep_states[state] = TRUE; 621 622 /* 623 * Dispatch the default sleep state to devices. The lid switch is set 624 * to UNKNOWN by default to avoid surprising users. 625 */ 626 sc->acpi_power_button_sx = acpi_sleep_states[ACPI_STATE_S5] ? 627 ACPI_STATE_S5 : ACPI_STATE_UNKNOWN; 628 sc->acpi_lid_switch_sx = ACPI_STATE_UNKNOWN; 629 sc->acpi_standby_sx = acpi_sleep_states[ACPI_STATE_S1] ? 630 ACPI_STATE_S1 : ACPI_STATE_UNKNOWN; 631 sc->acpi_suspend_sx = acpi_sleep_states[ACPI_STATE_S3] ? 632 ACPI_STATE_S3 : ACPI_STATE_UNKNOWN; 633 634 /* Pick the first valid sleep state for the sleep button default. */ 635 sc->acpi_sleep_button_sx = ACPI_STATE_UNKNOWN; 636 for (state = ACPI_STATE_S1; state <= ACPI_STATE_S4; state++) 637 if (acpi_sleep_states[state]) { 638 sc->acpi_sleep_button_sx = state; 639 break; 640 } 641 642 acpi_enable_fixed_events(sc); 643 644 /* 645 * Scan the namespace and attach/initialise children. 646 */ 647 648 /* Register our shutdown handler. */ 649 EVENTHANDLER_REGISTER(shutdown_final, acpi_shutdown_final, sc, 650 SHUTDOWN_PRI_LAST); 651 652 /* 653 * Register our acpi event handlers. 654 * XXX should be configurable eg. via userland policy manager. 655 */ 656 EVENTHANDLER_REGISTER(acpi_sleep_event, acpi_system_eventhandler_sleep, 657 sc, ACPI_EVENT_PRI_LAST); 658 EVENTHANDLER_REGISTER(acpi_wakeup_event, acpi_system_eventhandler_wakeup, 659 sc, ACPI_EVENT_PRI_LAST); 660 661 /* Flag our initial states. */ 662 sc->acpi_enabled = TRUE; 663 sc->acpi_sstate = ACPI_STATE_S0; 664 sc->acpi_sleep_disabled = TRUE; 665 666 /* Create the control device */ 667 sc->acpi_dev_t = make_dev(&acpi_cdevsw, 0, UID_ROOT, GID_WHEEL, 0644, 668 "acpi"); 669 sc->acpi_dev_t->si_drv1 = sc; 670 671 if ((error = acpi_machdep_init(dev))) 672 goto out; 673 674 /* Register ACPI again to pass the correct argument of pm_func. */ 675 power_pm_register(POWER_PM_TYPE_ACPI, acpi_pm_func, sc); 676 677 if (!acpi_disabled("bus")) { 678 EVENTHANDLER_REGISTER(dev_lookup, acpi_lookup, NULL, 1000); 679 acpi_probe_children(dev); 680 } 681 682 /* Update all GPEs and enable runtime GPEs. */ 683 status = AcpiUpdateAllGpes(); 684 if (ACPI_FAILURE(status)) 685 device_printf(dev, "Could not update all GPEs: %s\n", 686 AcpiFormatException(status)); 687 688 /* Allow sleep request after a while. */ 689 callout_init_mtx(&acpi_sleep_timer, &acpi_mutex, 0); 690 callout_reset(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME, 691 acpi_sleep_enable, sc); 692 693 error = 0; 694 695 out: 696 return_VALUE (error); 697 } 698 699 static void 700 acpi_set_power_children(device_t dev, int state) 701 { 702 device_t child; 703 device_t *devlist; 704 int dstate, i, numdevs; 705 706 if (device_get_children(dev, &devlist, &numdevs) != 0) 707 return; 708 709 /* 710 * Retrieve and set D-state for the sleep state if _SxD is present. 711 * Skip children who aren't attached since they are handled separately. 712 */ 713 for (i = 0; i < numdevs; i++) { 714 child = devlist[i]; 715 dstate = state; 716 if (device_is_attached(child) && 717 acpi_device_pwr_for_sleep(dev, child, &dstate) == 0) 718 acpi_set_powerstate(child, dstate); 719 } 720 free(devlist, M_TEMP); 721 } 722 723 static int 724 acpi_suspend(device_t dev) 725 { 726 int error; 727 728 GIANT_REQUIRED; 729 730 error = bus_generic_suspend(dev); 731 if (error == 0) 732 acpi_set_power_children(dev, ACPI_STATE_D3); 733 734 return (error); 735 } 736 737 static int 738 acpi_resume(device_t dev) 739 { 740 741 GIANT_REQUIRED; 742 743 acpi_set_power_children(dev, ACPI_STATE_D0); 744 745 return (bus_generic_resume(dev)); 746 } 747 748 static int 749 acpi_shutdown(device_t dev) 750 { 751 752 GIANT_REQUIRED; 753 754 /* Allow children to shutdown first. */ 755 bus_generic_shutdown(dev); 756 757 /* 758 * Enable any GPEs that are able to power-on the system (i.e., RTC). 759 * Also, disable any that are not valid for this state (most). 760 */ 761 acpi_wake_prep_walk(ACPI_STATE_S5); 762 763 return (0); 764 } 765 766 /* 767 * Handle a new device being added 768 */ 769 static device_t 770 acpi_add_child(device_t bus, u_int order, const char *name, int unit) 771 { 772 struct acpi_device *ad; 773 device_t child; 774 775 if ((ad = malloc(sizeof(*ad), M_ACPIDEV, M_NOWAIT | M_ZERO)) == NULL) 776 return (NULL); 777 778 resource_list_init(&ad->ad_rl); 779 780 child = device_add_child_ordered(bus, order, name, unit); 781 if (child != NULL) 782 device_set_ivars(child, ad); 783 else 784 free(ad, M_ACPIDEV); 785 return (child); 786 } 787 788 static int 789 acpi_print_child(device_t bus, device_t child) 790 { 791 struct acpi_device *adev = device_get_ivars(child); 792 struct resource_list *rl = &adev->ad_rl; 793 int retval = 0; 794 795 retval += bus_print_child_header(bus, child); 796 retval += resource_list_print_type(rl, "port", SYS_RES_IOPORT, "%#jx"); 797 retval += resource_list_print_type(rl, "iomem", SYS_RES_MEMORY, "%#jx"); 798 retval += resource_list_print_type(rl, "irq", SYS_RES_IRQ, "%jd"); 799 retval += resource_list_print_type(rl, "drq", SYS_RES_DRQ, "%jd"); 800 if (device_get_flags(child)) 801 retval += printf(" flags %#x", device_get_flags(child)); 802 retval += bus_print_child_domain(bus, child); 803 retval += bus_print_child_footer(bus, child); 804 805 return (retval); 806 } 807 808 /* 809 * If this device is an ACPI child but no one claimed it, attempt 810 * to power it off. We'll power it back up when a driver is added. 811 * 812 * XXX Disabled for now since many necessary devices (like fdc and 813 * ATA) don't claim the devices we created for them but still expect 814 * them to be powered up. 815 */ 816 static void 817 acpi_probe_nomatch(device_t bus, device_t child) 818 { 819 #ifdef ACPI_ENABLE_POWERDOWN_NODRIVER 820 acpi_set_powerstate(child, ACPI_STATE_D3); 821 #endif 822 } 823 824 /* 825 * If a new driver has a chance to probe a child, first power it up. 826 * 827 * XXX Disabled for now (see acpi_probe_nomatch for details). 828 */ 829 static void 830 acpi_driver_added(device_t dev, driver_t *driver) 831 { 832 device_t child, *devlist; 833 int i, numdevs; 834 835 DEVICE_IDENTIFY(driver, dev); 836 if (device_get_children(dev, &devlist, &numdevs)) 837 return; 838 for (i = 0; i < numdevs; i++) { 839 child = devlist[i]; 840 if (device_get_state(child) == DS_NOTPRESENT) { 841 #ifdef ACPI_ENABLE_POWERDOWN_NODRIVER 842 acpi_set_powerstate(child, ACPI_STATE_D0); 843 if (device_probe_and_attach(child) != 0) 844 acpi_set_powerstate(child, ACPI_STATE_D3); 845 #else 846 device_probe_and_attach(child); 847 #endif 848 } 849 } 850 free(devlist, M_TEMP); 851 } 852 853 /* Location hint for devctl(8) */ 854 static int 855 acpi_child_location_str_method(device_t cbdev, device_t child, char *buf, 856 size_t buflen) 857 { 858 struct acpi_device *dinfo = device_get_ivars(child); 859 char buf2[32]; 860 int pxm; 861 862 if (dinfo->ad_handle) { 863 snprintf(buf, buflen, "handle=%s", acpi_name(dinfo->ad_handle)); 864 if (ACPI_SUCCESS(acpi_GetInteger(dinfo->ad_handle, "_PXM", &pxm))) { 865 snprintf(buf2, 32, " _PXM=%d", pxm); 866 strlcat(buf, buf2, buflen); 867 } 868 } else { 869 snprintf(buf, buflen, "unknown"); 870 } 871 return (0); 872 } 873 874 /* PnP information for devctl(8) */ 875 static int 876 acpi_child_pnpinfo_str_method(device_t cbdev, device_t child, char *buf, 877 size_t buflen) 878 { 879 struct acpi_device *dinfo = device_get_ivars(child); 880 ACPI_DEVICE_INFO *adinfo; 881 882 if (ACPI_FAILURE(AcpiGetObjectInfo(dinfo->ad_handle, &adinfo))) { 883 snprintf(buf, buflen, "unknown"); 884 return (0); 885 } 886 887 snprintf(buf, buflen, "_HID=%s _UID=%lu", 888 (adinfo->Valid & ACPI_VALID_HID) ? 889 adinfo->HardwareId.String : "none", 890 (adinfo->Valid & ACPI_VALID_UID) ? 891 strtoul(adinfo->UniqueId.String, NULL, 10) : 0UL); 892 AcpiOsFree(adinfo); 893 894 return (0); 895 } 896 897 /* 898 * Handle per-device ivars 899 */ 900 static int 901 acpi_read_ivar(device_t dev, device_t child, int index, uintptr_t *result) 902 { 903 struct acpi_device *ad; 904 905 if ((ad = device_get_ivars(child)) == NULL) { 906 device_printf(child, "device has no ivars\n"); 907 return (ENOENT); 908 } 909 910 /* ACPI and ISA compatibility ivars */ 911 switch(index) { 912 case ACPI_IVAR_HANDLE: 913 *(ACPI_HANDLE *)result = ad->ad_handle; 914 break; 915 case ACPI_IVAR_PRIVATE: 916 *(void **)result = ad->ad_private; 917 break; 918 case ACPI_IVAR_FLAGS: 919 *(int *)result = ad->ad_flags; 920 break; 921 case ISA_IVAR_VENDORID: 922 case ISA_IVAR_SERIAL: 923 case ISA_IVAR_COMPATID: 924 *(int *)result = -1; 925 break; 926 case ISA_IVAR_LOGICALID: 927 *(int *)result = acpi_isa_get_logicalid(child); 928 break; 929 case PCI_IVAR_CLASS: 930 *(uint8_t*)result = (ad->ad_cls_class >> 16) & 0xff; 931 break; 932 case PCI_IVAR_SUBCLASS: 933 *(uint8_t*)result = (ad->ad_cls_class >> 8) & 0xff; 934 break; 935 case PCI_IVAR_PROGIF: 936 *(uint8_t*)result = (ad->ad_cls_class >> 0) & 0xff; 937 break; 938 default: 939 return (ENOENT); 940 } 941 942 return (0); 943 } 944 945 static int 946 acpi_write_ivar(device_t dev, device_t child, int index, uintptr_t value) 947 { 948 struct acpi_device *ad; 949 950 if ((ad = device_get_ivars(child)) == NULL) { 951 device_printf(child, "device has no ivars\n"); 952 return (ENOENT); 953 } 954 955 switch(index) { 956 case ACPI_IVAR_HANDLE: 957 ad->ad_handle = (ACPI_HANDLE)value; 958 break; 959 case ACPI_IVAR_PRIVATE: 960 ad->ad_private = (void *)value; 961 break; 962 case ACPI_IVAR_FLAGS: 963 ad->ad_flags = (int)value; 964 break; 965 default: 966 panic("bad ivar write request (%d)", index); 967 return (ENOENT); 968 } 969 970 return (0); 971 } 972 973 /* 974 * Handle child resource allocation/removal 975 */ 976 static struct resource_list * 977 acpi_get_rlist(device_t dev, device_t child) 978 { 979 struct acpi_device *ad; 980 981 ad = device_get_ivars(child); 982 return (&ad->ad_rl); 983 } 984 985 static int 986 acpi_match_resource_hint(device_t dev, int type, long value) 987 { 988 struct acpi_device *ad = device_get_ivars(dev); 989 struct resource_list *rl = &ad->ad_rl; 990 struct resource_list_entry *rle; 991 992 STAILQ_FOREACH(rle, rl, link) { 993 if (rle->type != type) 994 continue; 995 if (rle->start <= value && rle->end >= value) 996 return (1); 997 } 998 return (0); 999 } 1000 1001 /* 1002 * Wire device unit numbers based on resource matches in hints. 1003 */ 1004 static void 1005 acpi_hint_device_unit(device_t acdev, device_t child, const char *name, 1006 int *unitp) 1007 { 1008 const char *s; 1009 long value; 1010 int line, matches, unit; 1011 1012 /* 1013 * Iterate over all the hints for the devices with the specified 1014 * name to see if one's resources are a subset of this device. 1015 */ 1016 line = 0; 1017 for (;;) { 1018 if (resource_find_dev(&line, name, &unit, "at", NULL) != 0) 1019 break; 1020 1021 /* Must have an "at" for acpi or isa. */ 1022 resource_string_value(name, unit, "at", &s); 1023 if (!(strcmp(s, "acpi0") == 0 || strcmp(s, "acpi") == 0 || 1024 strcmp(s, "isa0") == 0 || strcmp(s, "isa") == 0)) 1025 continue; 1026 1027 /* 1028 * Check for matching resources. We must have at least one match. 1029 * Since I/O and memory resources cannot be shared, if we get a 1030 * match on either of those, ignore any mismatches in IRQs or DRQs. 1031 * 1032 * XXX: We may want to revisit this to be more lenient and wire 1033 * as long as it gets one match. 1034 */ 1035 matches = 0; 1036 if (resource_long_value(name, unit, "port", &value) == 0) { 1037 /* 1038 * Floppy drive controllers are notorious for having a 1039 * wide variety of resources not all of which include the 1040 * first port that is specified by the hint (typically 1041 * 0x3f0) (see the comment above fdc_isa_alloc_resources() 1042 * in fdc_isa.c). However, they do all seem to include 1043 * port + 2 (e.g. 0x3f2) so for a floppy device, look for 1044 * 'value + 2' in the port resources instead of the hint 1045 * value. 1046 */ 1047 if (strcmp(name, "fdc") == 0) 1048 value += 2; 1049 if (acpi_match_resource_hint(child, SYS_RES_IOPORT, value)) 1050 matches++; 1051 else 1052 continue; 1053 } 1054 if (resource_long_value(name, unit, "maddr", &value) == 0) { 1055 if (acpi_match_resource_hint(child, SYS_RES_MEMORY, value)) 1056 matches++; 1057 else 1058 continue; 1059 } 1060 if (matches > 0) 1061 goto matched; 1062 if (resource_long_value(name, unit, "irq", &value) == 0) { 1063 if (acpi_match_resource_hint(child, SYS_RES_IRQ, value)) 1064 matches++; 1065 else 1066 continue; 1067 } 1068 if (resource_long_value(name, unit, "drq", &value) == 0) { 1069 if (acpi_match_resource_hint(child, SYS_RES_DRQ, value)) 1070 matches++; 1071 else 1072 continue; 1073 } 1074 1075 matched: 1076 if (matches > 0) { 1077 /* We have a winner! */ 1078 *unitp = unit; 1079 break; 1080 } 1081 } 1082 } 1083 1084 /* 1085 * Fetch the NUMA domain for a device by mapping the value returned by 1086 * _PXM to a NUMA domain. If the device does not have a _PXM method, 1087 * -2 is returned. If any other error occurs, -1 is returned. 1088 */ 1089 static int 1090 acpi_parse_pxm(device_t dev) 1091 { 1092 #ifdef DEVICE_NUMA 1093 ACPI_HANDLE handle; 1094 ACPI_STATUS status; 1095 int pxm; 1096 1097 handle = acpi_get_handle(dev); 1098 if (handle == NULL) 1099 return (-2); 1100 status = acpi_GetInteger(handle, "_PXM", &pxm); 1101 if (ACPI_SUCCESS(status)) 1102 return (acpi_map_pxm_to_vm_domainid(pxm)); 1103 if (status == AE_NOT_FOUND) 1104 return (-2); 1105 #endif 1106 return (-1); 1107 } 1108 1109 int 1110 acpi_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize, 1111 cpuset_t *cpuset) 1112 { 1113 int d, error; 1114 1115 d = acpi_parse_pxm(child); 1116 if (d < 0) 1117 return (bus_generic_get_cpus(dev, child, op, setsize, cpuset)); 1118 1119 switch (op) { 1120 case LOCAL_CPUS: 1121 if (setsize != sizeof(cpuset_t)) 1122 return (EINVAL); 1123 *cpuset = cpuset_domain[d]; 1124 return (0); 1125 case INTR_CPUS: 1126 error = bus_generic_get_cpus(dev, child, op, setsize, cpuset); 1127 if (error != 0) 1128 return (error); 1129 if (setsize != sizeof(cpuset_t)) 1130 return (EINVAL); 1131 CPU_AND(cpuset, &cpuset_domain[d]); 1132 return (0); 1133 default: 1134 return (bus_generic_get_cpus(dev, child, op, setsize, cpuset)); 1135 } 1136 } 1137 1138 /* 1139 * Fetch the NUMA domain for the given device 'dev'. 1140 * 1141 * If a device has a _PXM method, map that to a NUMA domain. 1142 * Otherwise, pass the request up to the parent. 1143 * If there's no matching domain or the domain cannot be 1144 * determined, return ENOENT. 1145 */ 1146 int 1147 acpi_get_domain(device_t dev, device_t child, int *domain) 1148 { 1149 int d; 1150 1151 d = acpi_parse_pxm(child); 1152 if (d >= 0) { 1153 *domain = d; 1154 return (0); 1155 } 1156 if (d == -1) 1157 return (ENOENT); 1158 1159 /* No _PXM node; go up a level */ 1160 return (bus_generic_get_domain(dev, child, domain)); 1161 } 1162 1163 /* 1164 * Pre-allocate/manage all memory and IO resources. Since rman can't handle 1165 * duplicates, we merge any in the sysresource attach routine. 1166 */ 1167 static int 1168 acpi_sysres_alloc(device_t dev) 1169 { 1170 struct resource *res; 1171 struct resource_list *rl; 1172 struct resource_list_entry *rle; 1173 struct rman *rm; 1174 char *sysres_ids[] = { "PNP0C01", "PNP0C02", NULL }; 1175 device_t *children; 1176 int child_count, i; 1177 1178 /* 1179 * Probe/attach any sysresource devices. This would be unnecessary if we 1180 * had multi-pass probe/attach. 1181 */ 1182 if (device_get_children(dev, &children, &child_count) != 0) 1183 return (ENXIO); 1184 for (i = 0; i < child_count; i++) { 1185 if (ACPI_ID_PROBE(dev, children[i], sysres_ids) != NULL) 1186 device_probe_and_attach(children[i]); 1187 } 1188 free(children, M_TEMP); 1189 1190 rl = BUS_GET_RESOURCE_LIST(device_get_parent(dev), dev); 1191 STAILQ_FOREACH(rle, rl, link) { 1192 if (rle->res != NULL) { 1193 device_printf(dev, "duplicate resource for %jx\n", rle->start); 1194 continue; 1195 } 1196 1197 /* Only memory and IO resources are valid here. */ 1198 switch (rle->type) { 1199 case SYS_RES_IOPORT: 1200 rm = &acpi_rman_io; 1201 break; 1202 case SYS_RES_MEMORY: 1203 rm = &acpi_rman_mem; 1204 break; 1205 default: 1206 continue; 1207 } 1208 1209 /* Pre-allocate resource and add to our rman pool. */ 1210 res = BUS_ALLOC_RESOURCE(device_get_parent(dev), dev, rle->type, 1211 &rle->rid, rle->start, rle->start + rle->count - 1, rle->count, 0); 1212 if (res != NULL) { 1213 rman_manage_region(rm, rman_get_start(res), rman_get_end(res)); 1214 rle->res = res; 1215 } else if (bootverbose) 1216 device_printf(dev, "reservation of %jx, %jx (%d) failed\n", 1217 rle->start, rle->count, rle->type); 1218 } 1219 return (0); 1220 } 1221 1222 static char *pcilink_ids[] = { "PNP0C0F", NULL }; 1223 static char *sysres_ids[] = { "PNP0C01", "PNP0C02", NULL }; 1224 1225 /* 1226 * Reserve declared resources for devices found during attach once system 1227 * resources have been allocated. 1228 */ 1229 static void 1230 acpi_reserve_resources(device_t dev) 1231 { 1232 struct resource_list_entry *rle; 1233 struct resource_list *rl; 1234 struct acpi_device *ad; 1235 struct acpi_softc *sc; 1236 device_t *children; 1237 int child_count, i; 1238 1239 sc = device_get_softc(dev); 1240 if (device_get_children(dev, &children, &child_count) != 0) 1241 return; 1242 for (i = 0; i < child_count; i++) { 1243 ad = device_get_ivars(children[i]); 1244 rl = &ad->ad_rl; 1245 1246 /* Don't reserve system resources. */ 1247 if (ACPI_ID_PROBE(dev, children[i], sysres_ids) != NULL) 1248 continue; 1249 1250 STAILQ_FOREACH(rle, rl, link) { 1251 /* 1252 * Don't reserve IRQ resources. There are many sticky things 1253 * to get right otherwise (e.g. IRQs for psm, atkbd, and HPET 1254 * when using legacy routing). 1255 */ 1256 if (rle->type == SYS_RES_IRQ) 1257 continue; 1258 1259 /* 1260 * Don't reserve the resource if it is already allocated. 1261 * The acpi_ec(4) driver can allocate its resources early 1262 * if ECDT is present. 1263 */ 1264 if (rle->res != NULL) 1265 continue; 1266 1267 /* 1268 * Try to reserve the resource from our parent. If this 1269 * fails because the resource is a system resource, just 1270 * let it be. The resource range is already reserved so 1271 * that other devices will not use it. If the driver 1272 * needs to allocate the resource, then 1273 * acpi_alloc_resource() will sub-alloc from the system 1274 * resource. 1275 */ 1276 resource_list_reserve(rl, dev, children[i], rle->type, &rle->rid, 1277 rle->start, rle->end, rle->count, 0); 1278 } 1279 } 1280 free(children, M_TEMP); 1281 sc->acpi_resources_reserved = 1; 1282 } 1283 1284 static int 1285 acpi_set_resource(device_t dev, device_t child, int type, int rid, 1286 rman_res_t start, rman_res_t count) 1287 { 1288 struct acpi_softc *sc = device_get_softc(dev); 1289 struct acpi_device *ad = device_get_ivars(child); 1290 struct resource_list *rl = &ad->ad_rl; 1291 #if defined(__i386__) || defined(__amd64__) 1292 ACPI_DEVICE_INFO *devinfo; 1293 #endif 1294 rman_res_t end; 1295 1296 /* Ignore IRQ resources for PCI link devices. */ 1297 if (type == SYS_RES_IRQ && ACPI_ID_PROBE(dev, child, pcilink_ids) != NULL) 1298 return (0); 1299 1300 /* 1301 * Ignore most resources for PCI root bridges. Some BIOSes 1302 * incorrectly enumerate the memory ranges they decode as plain 1303 * memory resources instead of as ResourceProducer ranges. Other 1304 * BIOSes incorrectly list system resource entries for I/O ranges 1305 * under the PCI bridge. Do allow the one known-correct case on 1306 * x86 of a PCI bridge claiming the I/O ports used for PCI config 1307 * access. 1308 */ 1309 #if defined(__i386__) || defined(__amd64__) 1310 if (type == SYS_RES_MEMORY || type == SYS_RES_IOPORT) { 1311 if (ACPI_SUCCESS(AcpiGetObjectInfo(ad->ad_handle, &devinfo))) { 1312 if ((devinfo->Flags & ACPI_PCI_ROOT_BRIDGE) != 0) { 1313 if (!(type == SYS_RES_IOPORT && start == CONF1_ADDR_PORT)) { 1314 AcpiOsFree(devinfo); 1315 return (0); 1316 } 1317 } 1318 AcpiOsFree(devinfo); 1319 } 1320 } 1321 #endif 1322 1323 /* If the resource is already allocated, fail. */ 1324 if (resource_list_busy(rl, type, rid)) 1325 return (EBUSY); 1326 1327 /* If the resource is already reserved, release it. */ 1328 if (resource_list_reserved(rl, type, rid)) 1329 resource_list_unreserve(rl, dev, child, type, rid); 1330 1331 /* Add the resource. */ 1332 end = (start + count - 1); 1333 resource_list_add(rl, type, rid, start, end, count); 1334 1335 /* Don't reserve resources until the system resources are allocated. */ 1336 if (!sc->acpi_resources_reserved) 1337 return (0); 1338 1339 /* Don't reserve system resources. */ 1340 if (ACPI_ID_PROBE(dev, child, sysres_ids) != NULL) 1341 return (0); 1342 1343 /* 1344 * Don't reserve IRQ resources. There are many sticky things to 1345 * get right otherwise (e.g. IRQs for psm, atkbd, and HPET when 1346 * using legacy routing). 1347 */ 1348 if (type == SYS_RES_IRQ) 1349 return (0); 1350 1351 /* 1352 * Reserve the resource. 1353 * 1354 * XXX: Ignores failure for now. Failure here is probably a 1355 * BIOS/firmware bug? 1356 */ 1357 resource_list_reserve(rl, dev, child, type, &rid, start, end, count, 0); 1358 return (0); 1359 } 1360 1361 static struct resource * 1362 acpi_alloc_resource(device_t bus, device_t child, int type, int *rid, 1363 rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 1364 { 1365 ACPI_RESOURCE ares; 1366 struct acpi_device *ad; 1367 struct resource_list_entry *rle; 1368 struct resource_list *rl; 1369 struct resource *res; 1370 int isdefault = RMAN_IS_DEFAULT_RANGE(start, end); 1371 1372 /* 1373 * First attempt at allocating the resource. For direct children, 1374 * use resource_list_alloc() to handle reserved resources. For 1375 * other devices, pass the request up to our parent. 1376 */ 1377 if (bus == device_get_parent(child)) { 1378 ad = device_get_ivars(child); 1379 rl = &ad->ad_rl; 1380 1381 /* 1382 * Simulate the behavior of the ISA bus for direct children 1383 * devices. That is, if a non-default range is specified for 1384 * a resource that doesn't exist, use bus_set_resource() to 1385 * add the resource before allocating it. Note that these 1386 * resources will not be reserved. 1387 */ 1388 if (!isdefault && resource_list_find(rl, type, *rid) == NULL) 1389 resource_list_add(rl, type, *rid, start, end, count); 1390 res = resource_list_alloc(rl, bus, child, type, rid, start, end, count, 1391 flags); 1392 if (res != NULL && type == SYS_RES_IRQ) { 1393 /* 1394 * Since bus_config_intr() takes immediate effect, we cannot 1395 * configure the interrupt associated with a device when we 1396 * parse the resources but have to defer it until a driver 1397 * actually allocates the interrupt via bus_alloc_resource(). 1398 * 1399 * XXX: Should we handle the lookup failing? 1400 */ 1401 if (ACPI_SUCCESS(acpi_lookup_irq_resource(child, *rid, res, &ares))) 1402 acpi_config_intr(child, &ares); 1403 } 1404 1405 /* 1406 * If this is an allocation of the "default" range for a given 1407 * RID, fetch the exact bounds for this resource from the 1408 * resource list entry to try to allocate the range from the 1409 * system resource regions. 1410 */ 1411 if (res == NULL && isdefault) { 1412 rle = resource_list_find(rl, type, *rid); 1413 if (rle != NULL) { 1414 start = rle->start; 1415 end = rle->end; 1416 count = rle->count; 1417 } 1418 } 1419 } else 1420 res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, type, rid, 1421 start, end, count, flags); 1422 1423 /* 1424 * If the first attempt failed and this is an allocation of a 1425 * specific range, try to satisfy the request via a suballocation 1426 * from our system resource regions. 1427 */ 1428 if (res == NULL && start + count - 1 == end) 1429 res = acpi_alloc_sysres(child, type, rid, start, end, count, flags); 1430 return (res); 1431 } 1432 1433 /* 1434 * Attempt to allocate a specific resource range from the system 1435 * resource ranges. Note that we only handle memory and I/O port 1436 * system resources. 1437 */ 1438 struct resource * 1439 acpi_alloc_sysres(device_t child, int type, int *rid, rman_res_t start, 1440 rman_res_t end, rman_res_t count, u_int flags) 1441 { 1442 struct rman *rm; 1443 struct resource *res; 1444 1445 switch (type) { 1446 case SYS_RES_IOPORT: 1447 rm = &acpi_rman_io; 1448 break; 1449 case SYS_RES_MEMORY: 1450 rm = &acpi_rman_mem; 1451 break; 1452 default: 1453 return (NULL); 1454 } 1455 1456 KASSERT(start + count - 1 == end, ("wildcard resource range")); 1457 res = rman_reserve_resource(rm, start, end, count, flags & ~RF_ACTIVE, 1458 child); 1459 if (res == NULL) 1460 return (NULL); 1461 1462 rman_set_rid(res, *rid); 1463 1464 /* If requested, activate the resource using the parent's method. */ 1465 if (flags & RF_ACTIVE) 1466 if (bus_activate_resource(child, type, *rid, res) != 0) { 1467 rman_release_resource(res); 1468 return (NULL); 1469 } 1470 1471 return (res); 1472 } 1473 1474 static int 1475 acpi_is_resource_managed(int type, struct resource *r) 1476 { 1477 1478 /* We only handle memory and IO resources through rman. */ 1479 switch (type) { 1480 case SYS_RES_IOPORT: 1481 return (rman_is_region_manager(r, &acpi_rman_io)); 1482 case SYS_RES_MEMORY: 1483 return (rman_is_region_manager(r, &acpi_rman_mem)); 1484 } 1485 return (0); 1486 } 1487 1488 static int 1489 acpi_adjust_resource(device_t bus, device_t child, int type, struct resource *r, 1490 rman_res_t start, rman_res_t end) 1491 { 1492 1493 if (acpi_is_resource_managed(type, r)) 1494 return (rman_adjust_resource(r, start, end)); 1495 return (bus_generic_adjust_resource(bus, child, type, r, start, end)); 1496 } 1497 1498 static int 1499 acpi_release_resource(device_t bus, device_t child, int type, int rid, 1500 struct resource *r) 1501 { 1502 int ret; 1503 1504 /* 1505 * If this resource belongs to one of our internal managers, 1506 * deactivate it and release it to the local pool. 1507 */ 1508 if (acpi_is_resource_managed(type, r)) { 1509 if (rman_get_flags(r) & RF_ACTIVE) { 1510 ret = bus_deactivate_resource(child, type, rid, r); 1511 if (ret != 0) 1512 return (ret); 1513 } 1514 return (rman_release_resource(r)); 1515 } 1516 1517 return (bus_generic_rl_release_resource(bus, child, type, rid, r)); 1518 } 1519 1520 static void 1521 acpi_delete_resource(device_t bus, device_t child, int type, int rid) 1522 { 1523 struct resource_list *rl; 1524 1525 rl = acpi_get_rlist(bus, child); 1526 if (resource_list_busy(rl, type, rid)) { 1527 device_printf(bus, "delete_resource: Resource still owned by child" 1528 " (type=%d, rid=%d)\n", type, rid); 1529 return; 1530 } 1531 resource_list_unreserve(rl, bus, child, type, rid); 1532 resource_list_delete(rl, type, rid); 1533 } 1534 1535 /* Allocate an IO port or memory resource, given its GAS. */ 1536 int 1537 acpi_bus_alloc_gas(device_t dev, int *type, int *rid, ACPI_GENERIC_ADDRESS *gas, 1538 struct resource **res, u_int flags) 1539 { 1540 int error, res_type; 1541 1542 error = ENOMEM; 1543 if (type == NULL || rid == NULL || gas == NULL || res == NULL) 1544 return (EINVAL); 1545 1546 /* We only support memory and IO spaces. */ 1547 switch (gas->SpaceId) { 1548 case ACPI_ADR_SPACE_SYSTEM_MEMORY: 1549 res_type = SYS_RES_MEMORY; 1550 break; 1551 case ACPI_ADR_SPACE_SYSTEM_IO: 1552 res_type = SYS_RES_IOPORT; 1553 break; 1554 default: 1555 return (EOPNOTSUPP); 1556 } 1557 1558 /* 1559 * If the register width is less than 8, assume the BIOS author means 1560 * it is a bit field and just allocate a byte. 1561 */ 1562 if (gas->BitWidth && gas->BitWidth < 8) 1563 gas->BitWidth = 8; 1564 1565 /* Validate the address after we're sure we support the space. */ 1566 if (gas->Address == 0 || gas->BitWidth == 0) 1567 return (EINVAL); 1568 1569 bus_set_resource(dev, res_type, *rid, gas->Address, 1570 gas->BitWidth / 8); 1571 *res = bus_alloc_resource_any(dev, res_type, rid, RF_ACTIVE | flags); 1572 if (*res != NULL) { 1573 *type = res_type; 1574 error = 0; 1575 } else 1576 bus_delete_resource(dev, res_type, *rid); 1577 1578 return (error); 1579 } 1580 1581 /* Probe _HID and _CID for compatible ISA PNP ids. */ 1582 static uint32_t 1583 acpi_isa_get_logicalid(device_t dev) 1584 { 1585 ACPI_DEVICE_INFO *devinfo; 1586 ACPI_HANDLE h; 1587 uint32_t pnpid; 1588 1589 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1590 1591 /* Fetch and validate the HID. */ 1592 if ((h = acpi_get_handle(dev)) == NULL || 1593 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 1594 return_VALUE (0); 1595 1596 pnpid = (devinfo->Valid & ACPI_VALID_HID) != 0 && 1597 devinfo->HardwareId.Length >= ACPI_EISAID_STRING_SIZE ? 1598 PNP_EISAID(devinfo->HardwareId.String) : 0; 1599 AcpiOsFree(devinfo); 1600 1601 return_VALUE (pnpid); 1602 } 1603 1604 static int 1605 acpi_isa_get_compatid(device_t dev, uint32_t *cids, int count) 1606 { 1607 ACPI_DEVICE_INFO *devinfo; 1608 ACPI_PNP_DEVICE_ID *ids; 1609 ACPI_HANDLE h; 1610 uint32_t *pnpid; 1611 int i, valid; 1612 1613 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1614 1615 pnpid = cids; 1616 1617 /* Fetch and validate the CID */ 1618 if ((h = acpi_get_handle(dev)) == NULL || 1619 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 1620 return_VALUE (0); 1621 1622 if ((devinfo->Valid & ACPI_VALID_CID) == 0) { 1623 AcpiOsFree(devinfo); 1624 return_VALUE (0); 1625 } 1626 1627 if (devinfo->CompatibleIdList.Count < count) 1628 count = devinfo->CompatibleIdList.Count; 1629 ids = devinfo->CompatibleIdList.Ids; 1630 for (i = 0, valid = 0; i < count; i++) 1631 if (ids[i].Length >= ACPI_EISAID_STRING_SIZE && 1632 strncmp(ids[i].String, "PNP", 3) == 0) { 1633 *pnpid++ = PNP_EISAID(ids[i].String); 1634 valid++; 1635 } 1636 AcpiOsFree(devinfo); 1637 1638 return_VALUE (valid); 1639 } 1640 1641 static char * 1642 acpi_device_id_probe(device_t bus, device_t dev, char **ids) 1643 { 1644 ACPI_HANDLE h; 1645 ACPI_OBJECT_TYPE t; 1646 int i; 1647 1648 h = acpi_get_handle(dev); 1649 if (ids == NULL || h == NULL) 1650 return (NULL); 1651 t = acpi_get_type(dev); 1652 if (t != ACPI_TYPE_DEVICE && t != ACPI_TYPE_PROCESSOR) 1653 return (NULL); 1654 1655 /* Try to match one of the array of IDs with a HID or CID. */ 1656 for (i = 0; ids[i] != NULL; i++) { 1657 if (acpi_MatchHid(h, ids[i])) 1658 return (ids[i]); 1659 } 1660 return (NULL); 1661 } 1662 1663 static ACPI_STATUS 1664 acpi_device_eval_obj(device_t bus, device_t dev, ACPI_STRING pathname, 1665 ACPI_OBJECT_LIST *parameters, ACPI_BUFFER *ret) 1666 { 1667 ACPI_HANDLE h; 1668 1669 if (dev == NULL) 1670 h = ACPI_ROOT_OBJECT; 1671 else if ((h = acpi_get_handle(dev)) == NULL) 1672 return (AE_BAD_PARAMETER); 1673 return (AcpiEvaluateObject(h, pathname, parameters, ret)); 1674 } 1675 1676 int 1677 acpi_device_pwr_for_sleep(device_t bus, device_t dev, int *dstate) 1678 { 1679 struct acpi_softc *sc; 1680 ACPI_HANDLE handle; 1681 ACPI_STATUS status; 1682 char sxd[8]; 1683 1684 handle = acpi_get_handle(dev); 1685 1686 /* 1687 * XXX If we find these devices, don't try to power them down. 1688 * The serial and IRDA ports on my T23 hang the system when 1689 * set to D3 and it appears that such legacy devices may 1690 * need special handling in their drivers. 1691 */ 1692 if (dstate == NULL || handle == NULL || 1693 acpi_MatchHid(handle, "PNP0500") || 1694 acpi_MatchHid(handle, "PNP0501") || 1695 acpi_MatchHid(handle, "PNP0502") || 1696 acpi_MatchHid(handle, "PNP0510") || 1697 acpi_MatchHid(handle, "PNP0511")) 1698 return (ENXIO); 1699 1700 /* 1701 * Override next state with the value from _SxD, if present. 1702 * Note illegal _S0D is evaluated because some systems expect this. 1703 */ 1704 sc = device_get_softc(bus); 1705 snprintf(sxd, sizeof(sxd), "_S%dD", sc->acpi_sstate); 1706 status = acpi_GetInteger(handle, sxd, dstate); 1707 if (ACPI_FAILURE(status) && status != AE_NOT_FOUND) { 1708 device_printf(dev, "failed to get %s on %s: %s\n", sxd, 1709 acpi_name(handle), AcpiFormatException(status)); 1710 return (ENXIO); 1711 } 1712 1713 return (0); 1714 } 1715 1716 /* Callback arg for our implementation of walking the namespace. */ 1717 struct acpi_device_scan_ctx { 1718 acpi_scan_cb_t user_fn; 1719 void *arg; 1720 ACPI_HANDLE parent; 1721 }; 1722 1723 static ACPI_STATUS 1724 acpi_device_scan_cb(ACPI_HANDLE h, UINT32 level, void *arg, void **retval) 1725 { 1726 struct acpi_device_scan_ctx *ctx; 1727 device_t dev, old_dev; 1728 ACPI_STATUS status; 1729 ACPI_OBJECT_TYPE type; 1730 1731 /* 1732 * Skip this device if we think we'll have trouble with it or it is 1733 * the parent where the scan began. 1734 */ 1735 ctx = (struct acpi_device_scan_ctx *)arg; 1736 if (acpi_avoid(h) || h == ctx->parent) 1737 return (AE_OK); 1738 1739 /* If this is not a valid device type (e.g., a method), skip it. */ 1740 if (ACPI_FAILURE(AcpiGetType(h, &type))) 1741 return (AE_OK); 1742 if (type != ACPI_TYPE_DEVICE && type != ACPI_TYPE_PROCESSOR && 1743 type != ACPI_TYPE_THERMAL && type != ACPI_TYPE_POWER) 1744 return (AE_OK); 1745 1746 /* 1747 * Call the user function with the current device. If it is unchanged 1748 * afterwards, return. Otherwise, we update the handle to the new dev. 1749 */ 1750 old_dev = acpi_get_device(h); 1751 dev = old_dev; 1752 status = ctx->user_fn(h, &dev, level, ctx->arg); 1753 if (ACPI_FAILURE(status) || old_dev == dev) 1754 return (status); 1755 1756 /* Remove the old child and its connection to the handle. */ 1757 if (old_dev != NULL) { 1758 device_delete_child(device_get_parent(old_dev), old_dev); 1759 AcpiDetachData(h, acpi_fake_objhandler); 1760 } 1761 1762 /* Recreate the handle association if the user created a device. */ 1763 if (dev != NULL) 1764 AcpiAttachData(h, acpi_fake_objhandler, dev); 1765 1766 return (AE_OK); 1767 } 1768 1769 static ACPI_STATUS 1770 acpi_device_scan_children(device_t bus, device_t dev, int max_depth, 1771 acpi_scan_cb_t user_fn, void *arg) 1772 { 1773 ACPI_HANDLE h; 1774 struct acpi_device_scan_ctx ctx; 1775 1776 if (acpi_disabled("children")) 1777 return (AE_OK); 1778 1779 if (dev == NULL) 1780 h = ACPI_ROOT_OBJECT; 1781 else if ((h = acpi_get_handle(dev)) == NULL) 1782 return (AE_BAD_PARAMETER); 1783 ctx.user_fn = user_fn; 1784 ctx.arg = arg; 1785 ctx.parent = h; 1786 return (AcpiWalkNamespace(ACPI_TYPE_ANY, h, max_depth, 1787 acpi_device_scan_cb, NULL, &ctx, NULL)); 1788 } 1789 1790 /* 1791 * Even though ACPI devices are not PCI, we use the PCI approach for setting 1792 * device power states since it's close enough to ACPI. 1793 */ 1794 static int 1795 acpi_set_powerstate(device_t child, int state) 1796 { 1797 ACPI_HANDLE h; 1798 ACPI_STATUS status; 1799 1800 h = acpi_get_handle(child); 1801 if (state < ACPI_STATE_D0 || state > ACPI_D_STATES_MAX) 1802 return (EINVAL); 1803 if (h == NULL) 1804 return (0); 1805 1806 /* Ignore errors if the power methods aren't present. */ 1807 status = acpi_pwr_switch_consumer(h, state); 1808 if (ACPI_SUCCESS(status)) { 1809 if (bootverbose) 1810 device_printf(child, "set ACPI power state D%d on %s\n", 1811 state, acpi_name(h)); 1812 } else if (status != AE_NOT_FOUND) 1813 device_printf(child, 1814 "failed to set ACPI power state D%d on %s: %s\n", state, 1815 acpi_name(h), AcpiFormatException(status)); 1816 1817 return (0); 1818 } 1819 1820 static int 1821 acpi_isa_pnp_probe(device_t bus, device_t child, struct isa_pnp_id *ids) 1822 { 1823 int result, cid_count, i; 1824 uint32_t lid, cids[8]; 1825 1826 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1827 1828 /* 1829 * ISA-style drivers attached to ACPI may persist and 1830 * probe manually if we return ENOENT. We never want 1831 * that to happen, so don't ever return it. 1832 */ 1833 result = ENXIO; 1834 1835 /* Scan the supplied IDs for a match */ 1836 lid = acpi_isa_get_logicalid(child); 1837 cid_count = acpi_isa_get_compatid(child, cids, 8); 1838 while (ids && ids->ip_id) { 1839 if (lid == ids->ip_id) { 1840 result = 0; 1841 goto out; 1842 } 1843 for (i = 0; i < cid_count; i++) { 1844 if (cids[i] == ids->ip_id) { 1845 result = 0; 1846 goto out; 1847 } 1848 } 1849 ids++; 1850 } 1851 1852 out: 1853 if (result == 0 && ids->ip_desc) 1854 device_set_desc(child, ids->ip_desc); 1855 1856 return_VALUE (result); 1857 } 1858 1859 #if defined(__i386__) || defined(__amd64__) 1860 /* 1861 * Look for a MCFG table. If it is present, use the settings for 1862 * domain (segment) 0 to setup PCI config space access via the memory 1863 * map. 1864 */ 1865 static void 1866 acpi_enable_pcie(void) 1867 { 1868 ACPI_TABLE_HEADER *hdr; 1869 ACPI_MCFG_ALLOCATION *alloc, *end; 1870 ACPI_STATUS status; 1871 1872 status = AcpiGetTable(ACPI_SIG_MCFG, 1, &hdr); 1873 if (ACPI_FAILURE(status)) 1874 return; 1875 1876 end = (ACPI_MCFG_ALLOCATION *)((char *)hdr + hdr->Length); 1877 alloc = (ACPI_MCFG_ALLOCATION *)((ACPI_TABLE_MCFG *)hdr + 1); 1878 while (alloc < end) { 1879 if (alloc->PciSegment == 0) { 1880 pcie_cfgregopen(alloc->Address, alloc->StartBusNumber, 1881 alloc->EndBusNumber); 1882 return; 1883 } 1884 alloc++; 1885 } 1886 } 1887 #endif 1888 1889 /* 1890 * Scan all of the ACPI namespace and attach child devices. 1891 * 1892 * We should only expect to find devices in the \_PR, \_TZ, \_SI, and 1893 * \_SB scopes, and \_PR and \_TZ became obsolete in the ACPI 2.0 spec. 1894 * However, in violation of the spec, some systems place their PCI link 1895 * devices in \, so we have to walk the whole namespace. We check the 1896 * type of namespace nodes, so this should be ok. 1897 */ 1898 static void 1899 acpi_probe_children(device_t bus) 1900 { 1901 1902 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1903 1904 /* 1905 * Scan the namespace and insert placeholders for all the devices that 1906 * we find. We also probe/attach any early devices. 1907 * 1908 * Note that we use AcpiWalkNamespace rather than AcpiGetDevices because 1909 * we want to create nodes for all devices, not just those that are 1910 * currently present. (This assumes that we don't want to create/remove 1911 * devices as they appear, which might be smarter.) 1912 */ 1913 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "namespace scan\n")); 1914 AcpiWalkNamespace(ACPI_TYPE_ANY, ACPI_ROOT_OBJECT, 100, acpi_probe_child, 1915 NULL, bus, NULL); 1916 1917 /* Pre-allocate resources for our rman from any sysresource devices. */ 1918 acpi_sysres_alloc(bus); 1919 1920 /* Reserve resources already allocated to children. */ 1921 acpi_reserve_resources(bus); 1922 1923 /* Create any static children by calling device identify methods. */ 1924 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "device identify routines\n")); 1925 bus_generic_probe(bus); 1926 1927 /* Probe/attach all children, created statically and from the namespace. */ 1928 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "acpi bus_generic_attach\n")); 1929 bus_generic_attach(bus); 1930 1931 /* Attach wake sysctls. */ 1932 acpi_wake_sysctl_walk(bus); 1933 1934 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "done attaching children\n")); 1935 return_VOID; 1936 } 1937 1938 /* 1939 * Determine the probe order for a given device. 1940 */ 1941 static void 1942 acpi_probe_order(ACPI_HANDLE handle, int *order) 1943 { 1944 ACPI_OBJECT_TYPE type; 1945 1946 /* 1947 * 0. CPUs 1948 * 1. I/O port and memory system resource holders 1949 * 2. Clocks and timers (to handle early accesses) 1950 * 3. Embedded controllers (to handle early accesses) 1951 * 4. PCI Link Devices 1952 */ 1953 AcpiGetType(handle, &type); 1954 if (type == ACPI_TYPE_PROCESSOR) 1955 *order = 0; 1956 else if (acpi_MatchHid(handle, "PNP0C01") || 1957 acpi_MatchHid(handle, "PNP0C02")) 1958 *order = 1; 1959 else if (acpi_MatchHid(handle, "PNP0100") || 1960 acpi_MatchHid(handle, "PNP0103") || 1961 acpi_MatchHid(handle, "PNP0B00")) 1962 *order = 2; 1963 else if (acpi_MatchHid(handle, "PNP0C09")) 1964 *order = 3; 1965 else if (acpi_MatchHid(handle, "PNP0C0F")) 1966 *order = 4; 1967 } 1968 1969 /* 1970 * Evaluate a child device and determine whether we might attach a device to 1971 * it. 1972 */ 1973 static ACPI_STATUS 1974 acpi_probe_child(ACPI_HANDLE handle, UINT32 level, void *context, void **status) 1975 { 1976 ACPI_DEVICE_INFO *devinfo; 1977 struct acpi_device *ad; 1978 struct acpi_prw_data prw; 1979 ACPI_OBJECT_TYPE type; 1980 ACPI_HANDLE h; 1981 device_t bus, child; 1982 char *handle_str; 1983 int order; 1984 1985 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1986 1987 if (acpi_disabled("children")) 1988 return_ACPI_STATUS (AE_OK); 1989 1990 /* Skip this device if we think we'll have trouble with it. */ 1991 if (acpi_avoid(handle)) 1992 return_ACPI_STATUS (AE_OK); 1993 1994 bus = (device_t)context; 1995 if (ACPI_SUCCESS(AcpiGetType(handle, &type))) { 1996 handle_str = acpi_name(handle); 1997 switch (type) { 1998 case ACPI_TYPE_DEVICE: 1999 /* 2000 * Since we scan from \, be sure to skip system scope objects. 2001 * \_SB_ and \_TZ_ are defined in ACPICA as devices to work around 2002 * BIOS bugs. For example, \_SB_ is to allow \_SB_._INI to be run 2003 * during the initialization and \_TZ_ is to support Notify() on it. 2004 */ 2005 if (strcmp(handle_str, "\\_SB_") == 0 || 2006 strcmp(handle_str, "\\_TZ_") == 0) 2007 break; 2008 if (acpi_parse_prw(handle, &prw) == 0) 2009 AcpiSetupGpeForWake(handle, prw.gpe_handle, prw.gpe_bit); 2010 2011 /* 2012 * Ignore devices that do not have a _HID or _CID. They should 2013 * be discovered by other buses (e.g. the PCI bus driver). 2014 */ 2015 if (!acpi_has_hid(handle)) 2016 break; 2017 /* FALLTHROUGH */ 2018 case ACPI_TYPE_PROCESSOR: 2019 case ACPI_TYPE_THERMAL: 2020 case ACPI_TYPE_POWER: 2021 /* 2022 * Create a placeholder device for this node. Sort the 2023 * placeholder so that the probe/attach passes will run 2024 * breadth-first. Orders less than ACPI_DEV_BASE_ORDER 2025 * are reserved for special objects (i.e., system 2026 * resources). 2027 */ 2028 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "scanning '%s'\n", handle_str)); 2029 order = level * 10 + ACPI_DEV_BASE_ORDER; 2030 acpi_probe_order(handle, &order); 2031 child = BUS_ADD_CHILD(bus, order, NULL, -1); 2032 if (child == NULL) 2033 break; 2034 2035 /* Associate the handle with the device_t and vice versa. */ 2036 acpi_set_handle(child, handle); 2037 AcpiAttachData(handle, acpi_fake_objhandler, child); 2038 2039 /* 2040 * Check that the device is present. If it's not present, 2041 * leave it disabled (so that we have a device_t attached to 2042 * the handle, but we don't probe it). 2043 * 2044 * XXX PCI link devices sometimes report "present" but not 2045 * "functional" (i.e. if disabled). Go ahead and probe them 2046 * anyway since we may enable them later. 2047 */ 2048 if (type == ACPI_TYPE_DEVICE && !acpi_DeviceIsPresent(child)) { 2049 /* Never disable PCI link devices. */ 2050 if (acpi_MatchHid(handle, "PNP0C0F")) 2051 break; 2052 /* 2053 * Docking stations should remain enabled since the system 2054 * may be undocked at boot. 2055 */ 2056 if (ACPI_SUCCESS(AcpiGetHandle(handle, "_DCK", &h))) 2057 break; 2058 2059 device_disable(child); 2060 break; 2061 } 2062 2063 /* 2064 * Get the device's resource settings and attach them. 2065 * Note that if the device has _PRS but no _CRS, we need 2066 * to decide when it's appropriate to try to configure the 2067 * device. Ignore the return value here; it's OK for the 2068 * device not to have any resources. 2069 */ 2070 acpi_parse_resources(child, handle, &acpi_res_parse_set, NULL); 2071 2072 ad = device_get_ivars(child); 2073 ad->ad_cls_class = 0xffffff; 2074 if (ACPI_SUCCESS(AcpiGetObjectInfo(handle, &devinfo))) { 2075 if ((devinfo->Valid & ACPI_VALID_CLS) != 0 && 2076 devinfo->ClassCode.Length >= ACPI_PCICLS_STRING_SIZE) { 2077 ad->ad_cls_class = strtoul(devinfo->ClassCode.String, 2078 NULL, 16); 2079 } 2080 AcpiOsFree(devinfo); 2081 } 2082 break; 2083 } 2084 } 2085 2086 return_ACPI_STATUS (AE_OK); 2087 } 2088 2089 /* 2090 * AcpiAttachData() requires an object handler but never uses it. This is a 2091 * placeholder object handler so we can store a device_t in an ACPI_HANDLE. 2092 */ 2093 void 2094 acpi_fake_objhandler(ACPI_HANDLE h, void *data) 2095 { 2096 } 2097 2098 static void 2099 acpi_shutdown_final(void *arg, int howto) 2100 { 2101 struct acpi_softc *sc = (struct acpi_softc *)arg; 2102 register_t intr; 2103 ACPI_STATUS status; 2104 2105 /* 2106 * XXX Shutdown code should only run on the BSP (cpuid 0). 2107 * Some chipsets do not power off the system correctly if called from 2108 * an AP. 2109 */ 2110 if ((howto & RB_POWEROFF) != 0) { 2111 status = AcpiEnterSleepStatePrep(ACPI_STATE_S5); 2112 if (ACPI_FAILURE(status)) { 2113 device_printf(sc->acpi_dev, "AcpiEnterSleepStatePrep failed - %s\n", 2114 AcpiFormatException(status)); 2115 return; 2116 } 2117 device_printf(sc->acpi_dev, "Powering system off\n"); 2118 intr = intr_disable(); 2119 status = AcpiEnterSleepState(ACPI_STATE_S5); 2120 if (ACPI_FAILURE(status)) { 2121 intr_restore(intr); 2122 device_printf(sc->acpi_dev, "power-off failed - %s\n", 2123 AcpiFormatException(status)); 2124 } else { 2125 DELAY(1000000); 2126 intr_restore(intr); 2127 device_printf(sc->acpi_dev, "power-off failed - timeout\n"); 2128 } 2129 } else if ((howto & RB_HALT) == 0 && sc->acpi_handle_reboot) { 2130 /* Reboot using the reset register. */ 2131 status = AcpiReset(); 2132 if (ACPI_SUCCESS(status)) { 2133 DELAY(1000000); 2134 device_printf(sc->acpi_dev, "reset failed - timeout\n"); 2135 } else if (status != AE_NOT_EXIST) 2136 device_printf(sc->acpi_dev, "reset failed - %s\n", 2137 AcpiFormatException(status)); 2138 } else if (sc->acpi_do_disable && panicstr == NULL) { 2139 /* 2140 * Only disable ACPI if the user requested. On some systems, writing 2141 * the disable value to SMI_CMD hangs the system. 2142 */ 2143 device_printf(sc->acpi_dev, "Shutting down\n"); 2144 AcpiTerminate(); 2145 } 2146 } 2147 2148 static void 2149 acpi_enable_fixed_events(struct acpi_softc *sc) 2150 { 2151 static int first_time = 1; 2152 2153 /* Enable and clear fixed events and install handlers. */ 2154 if ((AcpiGbl_FADT.Flags & ACPI_FADT_POWER_BUTTON) == 0) { 2155 AcpiClearEvent(ACPI_EVENT_POWER_BUTTON); 2156 AcpiInstallFixedEventHandler(ACPI_EVENT_POWER_BUTTON, 2157 acpi_event_power_button_sleep, sc); 2158 if (first_time) 2159 device_printf(sc->acpi_dev, "Power Button (fixed)\n"); 2160 } 2161 if ((AcpiGbl_FADT.Flags & ACPI_FADT_SLEEP_BUTTON) == 0) { 2162 AcpiClearEvent(ACPI_EVENT_SLEEP_BUTTON); 2163 AcpiInstallFixedEventHandler(ACPI_EVENT_SLEEP_BUTTON, 2164 acpi_event_sleep_button_sleep, sc); 2165 if (first_time) 2166 device_printf(sc->acpi_dev, "Sleep Button (fixed)\n"); 2167 } 2168 2169 first_time = 0; 2170 } 2171 2172 /* 2173 * Returns true if the device is actually present and should 2174 * be attached to. This requires the present, enabled, UI-visible 2175 * and diagnostics-passed bits to be set. 2176 */ 2177 BOOLEAN 2178 acpi_DeviceIsPresent(device_t dev) 2179 { 2180 ACPI_DEVICE_INFO *devinfo; 2181 ACPI_HANDLE h; 2182 BOOLEAN present; 2183 2184 if ((h = acpi_get_handle(dev)) == NULL || 2185 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 2186 return (FALSE); 2187 2188 /* If no _STA method, must be present */ 2189 present = (devinfo->Valid & ACPI_VALID_STA) == 0 || 2190 ACPI_DEVICE_PRESENT(devinfo->CurrentStatus) ? TRUE : FALSE; 2191 2192 AcpiOsFree(devinfo); 2193 return (present); 2194 } 2195 2196 /* 2197 * Returns true if the battery is actually present and inserted. 2198 */ 2199 BOOLEAN 2200 acpi_BatteryIsPresent(device_t dev) 2201 { 2202 ACPI_DEVICE_INFO *devinfo; 2203 ACPI_HANDLE h; 2204 BOOLEAN present; 2205 2206 if ((h = acpi_get_handle(dev)) == NULL || 2207 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 2208 return (FALSE); 2209 2210 /* If no _STA method, must be present */ 2211 present = (devinfo->Valid & ACPI_VALID_STA) == 0 || 2212 ACPI_BATTERY_PRESENT(devinfo->CurrentStatus) ? TRUE : FALSE; 2213 2214 AcpiOsFree(devinfo); 2215 return (present); 2216 } 2217 2218 /* 2219 * Returns true if a device has at least one valid device ID. 2220 */ 2221 static BOOLEAN 2222 acpi_has_hid(ACPI_HANDLE h) 2223 { 2224 ACPI_DEVICE_INFO *devinfo; 2225 BOOLEAN ret; 2226 2227 if (h == NULL || 2228 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 2229 return (FALSE); 2230 2231 ret = FALSE; 2232 if ((devinfo->Valid & ACPI_VALID_HID) != 0) 2233 ret = TRUE; 2234 else if ((devinfo->Valid & ACPI_VALID_CID) != 0) 2235 if (devinfo->CompatibleIdList.Count > 0) 2236 ret = TRUE; 2237 2238 AcpiOsFree(devinfo); 2239 return (ret); 2240 } 2241 2242 /* 2243 * Match a HID string against a handle 2244 */ 2245 BOOLEAN 2246 acpi_MatchHid(ACPI_HANDLE h, const char *hid) 2247 { 2248 ACPI_DEVICE_INFO *devinfo; 2249 BOOLEAN ret; 2250 int i; 2251 2252 if (hid == NULL || h == NULL || 2253 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 2254 return (FALSE); 2255 2256 ret = FALSE; 2257 if ((devinfo->Valid & ACPI_VALID_HID) != 0 && 2258 strcmp(hid, devinfo->HardwareId.String) == 0) 2259 ret = TRUE; 2260 else if ((devinfo->Valid & ACPI_VALID_CID) != 0) 2261 for (i = 0; i < devinfo->CompatibleIdList.Count; i++) { 2262 if (strcmp(hid, devinfo->CompatibleIdList.Ids[i].String) == 0) { 2263 ret = TRUE; 2264 break; 2265 } 2266 } 2267 2268 AcpiOsFree(devinfo); 2269 return (ret); 2270 } 2271 2272 /* 2273 * Return the handle of a named object within our scope, ie. that of (parent) 2274 * or one if its parents. 2275 */ 2276 ACPI_STATUS 2277 acpi_GetHandleInScope(ACPI_HANDLE parent, char *path, ACPI_HANDLE *result) 2278 { 2279 ACPI_HANDLE r; 2280 ACPI_STATUS status; 2281 2282 /* Walk back up the tree to the root */ 2283 for (;;) { 2284 status = AcpiGetHandle(parent, path, &r); 2285 if (ACPI_SUCCESS(status)) { 2286 *result = r; 2287 return (AE_OK); 2288 } 2289 /* XXX Return error here? */ 2290 if (status != AE_NOT_FOUND) 2291 return (AE_OK); 2292 if (ACPI_FAILURE(AcpiGetParent(parent, &r))) 2293 return (AE_NOT_FOUND); 2294 parent = r; 2295 } 2296 } 2297 2298 /* 2299 * Allocate a buffer with a preset data size. 2300 */ 2301 ACPI_BUFFER * 2302 acpi_AllocBuffer(int size) 2303 { 2304 ACPI_BUFFER *buf; 2305 2306 if ((buf = malloc(size + sizeof(*buf), M_ACPIDEV, M_NOWAIT)) == NULL) 2307 return (NULL); 2308 buf->Length = size; 2309 buf->Pointer = (void *)(buf + 1); 2310 return (buf); 2311 } 2312 2313 ACPI_STATUS 2314 acpi_SetInteger(ACPI_HANDLE handle, char *path, UINT32 number) 2315 { 2316 ACPI_OBJECT arg1; 2317 ACPI_OBJECT_LIST args; 2318 2319 arg1.Type = ACPI_TYPE_INTEGER; 2320 arg1.Integer.Value = number; 2321 args.Count = 1; 2322 args.Pointer = &arg1; 2323 2324 return (AcpiEvaluateObject(handle, path, &args, NULL)); 2325 } 2326 2327 /* 2328 * Evaluate a path that should return an integer. 2329 */ 2330 ACPI_STATUS 2331 acpi_GetInteger(ACPI_HANDLE handle, char *path, UINT32 *number) 2332 { 2333 ACPI_STATUS status; 2334 ACPI_BUFFER buf; 2335 ACPI_OBJECT param; 2336 2337 if (handle == NULL) 2338 handle = ACPI_ROOT_OBJECT; 2339 2340 /* 2341 * Assume that what we've been pointed at is an Integer object, or 2342 * a method that will return an Integer. 2343 */ 2344 buf.Pointer = ¶m; 2345 buf.Length = sizeof(param); 2346 status = AcpiEvaluateObject(handle, path, NULL, &buf); 2347 if (ACPI_SUCCESS(status)) { 2348 if (param.Type == ACPI_TYPE_INTEGER) 2349 *number = param.Integer.Value; 2350 else 2351 status = AE_TYPE; 2352 } 2353 2354 /* 2355 * In some applications, a method that's expected to return an Integer 2356 * may instead return a Buffer (probably to simplify some internal 2357 * arithmetic). We'll try to fetch whatever it is, and if it's a Buffer, 2358 * convert it into an Integer as best we can. 2359 * 2360 * This is a hack. 2361 */ 2362 if (status == AE_BUFFER_OVERFLOW) { 2363 if ((buf.Pointer = AcpiOsAllocate(buf.Length)) == NULL) { 2364 status = AE_NO_MEMORY; 2365 } else { 2366 status = AcpiEvaluateObject(handle, path, NULL, &buf); 2367 if (ACPI_SUCCESS(status)) 2368 status = acpi_ConvertBufferToInteger(&buf, number); 2369 AcpiOsFree(buf.Pointer); 2370 } 2371 } 2372 return (status); 2373 } 2374 2375 ACPI_STATUS 2376 acpi_ConvertBufferToInteger(ACPI_BUFFER *bufp, UINT32 *number) 2377 { 2378 ACPI_OBJECT *p; 2379 UINT8 *val; 2380 int i; 2381 2382 p = (ACPI_OBJECT *)bufp->Pointer; 2383 if (p->Type == ACPI_TYPE_INTEGER) { 2384 *number = p->Integer.Value; 2385 return (AE_OK); 2386 } 2387 if (p->Type != ACPI_TYPE_BUFFER) 2388 return (AE_TYPE); 2389 if (p->Buffer.Length > sizeof(int)) 2390 return (AE_BAD_DATA); 2391 2392 *number = 0; 2393 val = p->Buffer.Pointer; 2394 for (i = 0; i < p->Buffer.Length; i++) 2395 *number += val[i] << (i * 8); 2396 return (AE_OK); 2397 } 2398 2399 /* 2400 * Iterate over the elements of an a package object, calling the supplied 2401 * function for each element. 2402 * 2403 * XXX possible enhancement might be to abort traversal on error. 2404 */ 2405 ACPI_STATUS 2406 acpi_ForeachPackageObject(ACPI_OBJECT *pkg, 2407 void (*func)(ACPI_OBJECT *comp, void *arg), void *arg) 2408 { 2409 ACPI_OBJECT *comp; 2410 int i; 2411 2412 if (pkg == NULL || pkg->Type != ACPI_TYPE_PACKAGE) 2413 return (AE_BAD_PARAMETER); 2414 2415 /* Iterate over components */ 2416 i = 0; 2417 comp = pkg->Package.Elements; 2418 for (; i < pkg->Package.Count; i++, comp++) 2419 func(comp, arg); 2420 2421 return (AE_OK); 2422 } 2423 2424 /* 2425 * Find the (index)th resource object in a set. 2426 */ 2427 ACPI_STATUS 2428 acpi_FindIndexedResource(ACPI_BUFFER *buf, int index, ACPI_RESOURCE **resp) 2429 { 2430 ACPI_RESOURCE *rp; 2431 int i; 2432 2433 rp = (ACPI_RESOURCE *)buf->Pointer; 2434 i = index; 2435 while (i-- > 0) { 2436 /* Range check */ 2437 if (rp > (ACPI_RESOURCE *)((u_int8_t *)buf->Pointer + buf->Length)) 2438 return (AE_BAD_PARAMETER); 2439 2440 /* Check for terminator */ 2441 if (rp->Type == ACPI_RESOURCE_TYPE_END_TAG || rp->Length == 0) 2442 return (AE_NOT_FOUND); 2443 rp = ACPI_NEXT_RESOURCE(rp); 2444 } 2445 if (resp != NULL) 2446 *resp = rp; 2447 2448 return (AE_OK); 2449 } 2450 2451 /* 2452 * Append an ACPI_RESOURCE to an ACPI_BUFFER. 2453 * 2454 * Given a pointer to an ACPI_RESOURCE structure, expand the ACPI_BUFFER 2455 * provided to contain it. If the ACPI_BUFFER is empty, allocate a sensible 2456 * backing block. If the ACPI_RESOURCE is NULL, return an empty set of 2457 * resources. 2458 */ 2459 #define ACPI_INITIAL_RESOURCE_BUFFER_SIZE 512 2460 2461 ACPI_STATUS 2462 acpi_AppendBufferResource(ACPI_BUFFER *buf, ACPI_RESOURCE *res) 2463 { 2464 ACPI_RESOURCE *rp; 2465 void *newp; 2466 2467 /* Initialise the buffer if necessary. */ 2468 if (buf->Pointer == NULL) { 2469 buf->Length = ACPI_INITIAL_RESOURCE_BUFFER_SIZE; 2470 if ((buf->Pointer = AcpiOsAllocate(buf->Length)) == NULL) 2471 return (AE_NO_MEMORY); 2472 rp = (ACPI_RESOURCE *)buf->Pointer; 2473 rp->Type = ACPI_RESOURCE_TYPE_END_TAG; 2474 rp->Length = ACPI_RS_SIZE_MIN; 2475 } 2476 if (res == NULL) 2477 return (AE_OK); 2478 2479 /* 2480 * Scan the current buffer looking for the terminator. 2481 * This will either find the terminator or hit the end 2482 * of the buffer and return an error. 2483 */ 2484 rp = (ACPI_RESOURCE *)buf->Pointer; 2485 for (;;) { 2486 /* Range check, don't go outside the buffer */ 2487 if (rp >= (ACPI_RESOURCE *)((u_int8_t *)buf->Pointer + buf->Length)) 2488 return (AE_BAD_PARAMETER); 2489 if (rp->Type == ACPI_RESOURCE_TYPE_END_TAG || rp->Length == 0) 2490 break; 2491 rp = ACPI_NEXT_RESOURCE(rp); 2492 } 2493 2494 /* 2495 * Check the size of the buffer and expand if required. 2496 * 2497 * Required size is: 2498 * size of existing resources before terminator + 2499 * size of new resource and header + 2500 * size of terminator. 2501 * 2502 * Note that this loop should really only run once, unless 2503 * for some reason we are stuffing a *really* huge resource. 2504 */ 2505 while ((((u_int8_t *)rp - (u_int8_t *)buf->Pointer) + 2506 res->Length + ACPI_RS_SIZE_NO_DATA + 2507 ACPI_RS_SIZE_MIN) >= buf->Length) { 2508 if ((newp = AcpiOsAllocate(buf->Length * 2)) == NULL) 2509 return (AE_NO_MEMORY); 2510 bcopy(buf->Pointer, newp, buf->Length); 2511 rp = (ACPI_RESOURCE *)((u_int8_t *)newp + 2512 ((u_int8_t *)rp - (u_int8_t *)buf->Pointer)); 2513 AcpiOsFree(buf->Pointer); 2514 buf->Pointer = newp; 2515 buf->Length += buf->Length; 2516 } 2517 2518 /* Insert the new resource. */ 2519 bcopy(res, rp, res->Length + ACPI_RS_SIZE_NO_DATA); 2520 2521 /* And add the terminator. */ 2522 rp = ACPI_NEXT_RESOURCE(rp); 2523 rp->Type = ACPI_RESOURCE_TYPE_END_TAG; 2524 rp->Length = ACPI_RS_SIZE_MIN; 2525 2526 return (AE_OK); 2527 } 2528 2529 ACPI_STATUS 2530 acpi_EvaluateOSC(ACPI_HANDLE handle, uint8_t *uuid, int revision, int count, 2531 uint32_t *caps_in, uint32_t *caps_out, bool query) 2532 { 2533 ACPI_OBJECT arg[4], *ret; 2534 ACPI_OBJECT_LIST arglist; 2535 ACPI_BUFFER buf; 2536 ACPI_STATUS status; 2537 2538 arglist.Pointer = arg; 2539 arglist.Count = 4; 2540 arg[0].Type = ACPI_TYPE_BUFFER; 2541 arg[0].Buffer.Length = ACPI_UUID_LENGTH; 2542 arg[0].Buffer.Pointer = uuid; 2543 arg[1].Type = ACPI_TYPE_INTEGER; 2544 arg[1].Integer.Value = revision; 2545 arg[2].Type = ACPI_TYPE_INTEGER; 2546 arg[2].Integer.Value = count; 2547 arg[3].Type = ACPI_TYPE_BUFFER; 2548 arg[3].Buffer.Length = count * sizeof(*caps_in); 2549 arg[3].Buffer.Pointer = (uint8_t *)caps_in; 2550 caps_in[0] = query ? 1 : 0; 2551 buf.Pointer = NULL; 2552 buf.Length = ACPI_ALLOCATE_BUFFER; 2553 status = AcpiEvaluateObjectTyped(handle, "_OSC", &arglist, &buf, 2554 ACPI_TYPE_BUFFER); 2555 if (ACPI_FAILURE(status)) 2556 return (status); 2557 if (caps_out != NULL) { 2558 ret = buf.Pointer; 2559 if (ret->Buffer.Length != count * sizeof(*caps_out)) { 2560 AcpiOsFree(buf.Pointer); 2561 return (AE_BUFFER_OVERFLOW); 2562 } 2563 bcopy(ret->Buffer.Pointer, caps_out, ret->Buffer.Length); 2564 } 2565 AcpiOsFree(buf.Pointer); 2566 return (status); 2567 } 2568 2569 /* 2570 * Set interrupt model. 2571 */ 2572 ACPI_STATUS 2573 acpi_SetIntrModel(int model) 2574 { 2575 2576 return (acpi_SetInteger(ACPI_ROOT_OBJECT, "_PIC", model)); 2577 } 2578 2579 /* 2580 * Walk subtables of a table and call a callback routine for each 2581 * subtable. The caller should provide the first subtable and a 2582 * pointer to the end of the table. This can be used to walk tables 2583 * such as MADT and SRAT that use subtable entries. 2584 */ 2585 void 2586 acpi_walk_subtables(void *first, void *end, acpi_subtable_handler *handler, 2587 void *arg) 2588 { 2589 ACPI_SUBTABLE_HEADER *entry; 2590 2591 for (entry = first; (void *)entry < end; ) { 2592 /* Avoid an infinite loop if we hit a bogus entry. */ 2593 if (entry->Length < sizeof(ACPI_SUBTABLE_HEADER)) 2594 return; 2595 2596 handler(entry, arg); 2597 entry = ACPI_ADD_PTR(ACPI_SUBTABLE_HEADER, entry, entry->Length); 2598 } 2599 } 2600 2601 /* 2602 * DEPRECATED. This interface has serious deficiencies and will be 2603 * removed. 2604 * 2605 * Immediately enter the sleep state. In the old model, acpiconf(8) ran 2606 * rc.suspend and rc.resume so we don't have to notify devd(8) to do this. 2607 */ 2608 ACPI_STATUS 2609 acpi_SetSleepState(struct acpi_softc *sc, int state) 2610 { 2611 static int once; 2612 2613 if (!once) { 2614 device_printf(sc->acpi_dev, 2615 "warning: acpi_SetSleepState() deprecated, need to update your software\n"); 2616 once = 1; 2617 } 2618 return (acpi_EnterSleepState(sc, state)); 2619 } 2620 2621 #if defined(__amd64__) || defined(__i386__) 2622 static void 2623 acpi_sleep_force_task(void *context) 2624 { 2625 struct acpi_softc *sc = (struct acpi_softc *)context; 2626 2627 if (ACPI_FAILURE(acpi_EnterSleepState(sc, sc->acpi_next_sstate))) 2628 device_printf(sc->acpi_dev, "force sleep state S%d failed\n", 2629 sc->acpi_next_sstate); 2630 } 2631 2632 static void 2633 acpi_sleep_force(void *arg) 2634 { 2635 struct acpi_softc *sc = (struct acpi_softc *)arg; 2636 2637 device_printf(sc->acpi_dev, 2638 "suspend request timed out, forcing sleep now\n"); 2639 /* 2640 * XXX Suspending from callout causes freezes in DEVICE_SUSPEND(). 2641 * Suspend from acpi_task thread instead. 2642 */ 2643 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 2644 acpi_sleep_force_task, sc))) 2645 device_printf(sc->acpi_dev, "AcpiOsExecute() for sleeping failed\n"); 2646 } 2647 #endif 2648 2649 /* 2650 * Request that the system enter the given suspend state. All /dev/apm 2651 * devices and devd(8) will be notified. Userland then has a chance to 2652 * save state and acknowledge the request. The system sleeps once all 2653 * acks are in. 2654 */ 2655 int 2656 acpi_ReqSleepState(struct acpi_softc *sc, int state) 2657 { 2658 #if defined(__amd64__) || defined(__i386__) 2659 struct apm_clone_data *clone; 2660 ACPI_STATUS status; 2661 2662 if (state < ACPI_STATE_S1 || state > ACPI_S_STATES_MAX) 2663 return (EINVAL); 2664 if (!acpi_sleep_states[state]) 2665 return (EOPNOTSUPP); 2666 2667 /* 2668 * If a reboot/shutdown/suspend request is already in progress or 2669 * suspend is blocked due to an upcoming shutdown, just return. 2670 */ 2671 if (rebooting || sc->acpi_next_sstate != 0 || suspend_blocked) { 2672 return (0); 2673 } 2674 2675 /* Wait until sleep is enabled. */ 2676 while (sc->acpi_sleep_disabled) { 2677 AcpiOsSleep(1000); 2678 } 2679 2680 ACPI_LOCK(acpi); 2681 2682 sc->acpi_next_sstate = state; 2683 2684 /* S5 (soft-off) should be entered directly with no waiting. */ 2685 if (state == ACPI_STATE_S5) { 2686 ACPI_UNLOCK(acpi); 2687 status = acpi_EnterSleepState(sc, state); 2688 return (ACPI_SUCCESS(status) ? 0 : ENXIO); 2689 } 2690 2691 /* Record the pending state and notify all apm devices. */ 2692 STAILQ_FOREACH(clone, &sc->apm_cdevs, entries) { 2693 clone->notify_status = APM_EV_NONE; 2694 if ((clone->flags & ACPI_EVF_DEVD) == 0) { 2695 selwakeuppri(&clone->sel_read, PZERO); 2696 KNOTE_LOCKED(&clone->sel_read.si_note, 0); 2697 } 2698 } 2699 2700 /* If devd(8) is not running, immediately enter the sleep state. */ 2701 if (!devctl_process_running()) { 2702 ACPI_UNLOCK(acpi); 2703 status = acpi_EnterSleepState(sc, state); 2704 return (ACPI_SUCCESS(status) ? 0 : ENXIO); 2705 } 2706 2707 /* 2708 * Set a timeout to fire if userland doesn't ack the suspend request 2709 * in time. This way we still eventually go to sleep if we were 2710 * overheating or running low on battery, even if userland is hung. 2711 * We cancel this timeout once all userland acks are in or the 2712 * suspend request is aborted. 2713 */ 2714 callout_reset(&sc->susp_force_to, 10 * hz, acpi_sleep_force, sc); 2715 ACPI_UNLOCK(acpi); 2716 2717 /* Now notify devd(8) also. */ 2718 acpi_UserNotify("Suspend", ACPI_ROOT_OBJECT, state); 2719 2720 return (0); 2721 #else 2722 /* This platform does not support acpi suspend/resume. */ 2723 return (EOPNOTSUPP); 2724 #endif 2725 } 2726 2727 /* 2728 * Acknowledge (or reject) a pending sleep state. The caller has 2729 * prepared for suspend and is now ready for it to proceed. If the 2730 * error argument is non-zero, it indicates suspend should be cancelled 2731 * and gives an errno value describing why. Once all votes are in, 2732 * we suspend the system. 2733 */ 2734 int 2735 acpi_AckSleepState(struct apm_clone_data *clone, int error) 2736 { 2737 #if defined(__amd64__) || defined(__i386__) 2738 struct acpi_softc *sc; 2739 int ret, sleeping; 2740 2741 /* If no pending sleep state, return an error. */ 2742 ACPI_LOCK(acpi); 2743 sc = clone->acpi_sc; 2744 if (sc->acpi_next_sstate == 0) { 2745 ACPI_UNLOCK(acpi); 2746 return (ENXIO); 2747 } 2748 2749 /* Caller wants to abort suspend process. */ 2750 if (error) { 2751 sc->acpi_next_sstate = 0; 2752 callout_stop(&sc->susp_force_to); 2753 device_printf(sc->acpi_dev, 2754 "listener on %s cancelled the pending suspend\n", 2755 devtoname(clone->cdev)); 2756 ACPI_UNLOCK(acpi); 2757 return (0); 2758 } 2759 2760 /* 2761 * Mark this device as acking the suspend request. Then, walk through 2762 * all devices, seeing if they agree yet. We only count devices that 2763 * are writable since read-only devices couldn't ack the request. 2764 */ 2765 sleeping = TRUE; 2766 clone->notify_status = APM_EV_ACKED; 2767 STAILQ_FOREACH(clone, &sc->apm_cdevs, entries) { 2768 if ((clone->flags & ACPI_EVF_WRITE) != 0 && 2769 clone->notify_status != APM_EV_ACKED) { 2770 sleeping = FALSE; 2771 break; 2772 } 2773 } 2774 2775 /* If all devices have voted "yes", we will suspend now. */ 2776 if (sleeping) 2777 callout_stop(&sc->susp_force_to); 2778 ACPI_UNLOCK(acpi); 2779 ret = 0; 2780 if (sleeping) { 2781 if (ACPI_FAILURE(acpi_EnterSleepState(sc, sc->acpi_next_sstate))) 2782 ret = ENODEV; 2783 } 2784 return (ret); 2785 #else 2786 /* This platform does not support acpi suspend/resume. */ 2787 return (EOPNOTSUPP); 2788 #endif 2789 } 2790 2791 static void 2792 acpi_sleep_enable(void *arg) 2793 { 2794 struct acpi_softc *sc = (struct acpi_softc *)arg; 2795 2796 ACPI_LOCK_ASSERT(acpi); 2797 2798 /* Reschedule if the system is not fully up and running. */ 2799 if (!AcpiGbl_SystemAwakeAndRunning) { 2800 callout_schedule(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME); 2801 return; 2802 } 2803 2804 sc->acpi_sleep_disabled = FALSE; 2805 } 2806 2807 static ACPI_STATUS 2808 acpi_sleep_disable(struct acpi_softc *sc) 2809 { 2810 ACPI_STATUS status; 2811 2812 /* Fail if the system is not fully up and running. */ 2813 if (!AcpiGbl_SystemAwakeAndRunning) 2814 return (AE_ERROR); 2815 2816 ACPI_LOCK(acpi); 2817 status = sc->acpi_sleep_disabled ? AE_ERROR : AE_OK; 2818 sc->acpi_sleep_disabled = TRUE; 2819 ACPI_UNLOCK(acpi); 2820 2821 return (status); 2822 } 2823 2824 enum acpi_sleep_state { 2825 ACPI_SS_NONE, 2826 ACPI_SS_GPE_SET, 2827 ACPI_SS_DEV_SUSPEND, 2828 ACPI_SS_SLP_PREP, 2829 ACPI_SS_SLEPT, 2830 }; 2831 2832 /* 2833 * Enter the desired system sleep state. 2834 * 2835 * Currently we support S1-S5 but S4 is only S4BIOS 2836 */ 2837 static ACPI_STATUS 2838 acpi_EnterSleepState(struct acpi_softc *sc, int state) 2839 { 2840 register_t intr; 2841 ACPI_STATUS status; 2842 ACPI_EVENT_STATUS power_button_status; 2843 enum acpi_sleep_state slp_state; 2844 int sleep_result; 2845 2846 ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state); 2847 2848 if (state < ACPI_STATE_S1 || state > ACPI_S_STATES_MAX) 2849 return_ACPI_STATUS (AE_BAD_PARAMETER); 2850 if (!acpi_sleep_states[state]) { 2851 device_printf(sc->acpi_dev, "Sleep state S%d not supported by BIOS\n", 2852 state); 2853 return (AE_SUPPORT); 2854 } 2855 2856 /* Re-entry once we're suspending is not allowed. */ 2857 status = acpi_sleep_disable(sc); 2858 if (ACPI_FAILURE(status)) { 2859 device_printf(sc->acpi_dev, 2860 "suspend request ignored (not ready yet)\n"); 2861 return (status); 2862 } 2863 2864 if (state == ACPI_STATE_S5) { 2865 /* 2866 * Shut down cleanly and power off. This will call us back through the 2867 * shutdown handlers. 2868 */ 2869 shutdown_nice(RB_POWEROFF); 2870 return_ACPI_STATUS (AE_OK); 2871 } 2872 2873 EVENTHANDLER_INVOKE(power_suspend_early); 2874 stop_all_proc(); 2875 EVENTHANDLER_INVOKE(power_suspend); 2876 2877 #ifdef EARLY_AP_STARTUP 2878 MPASS(mp_ncpus == 1 || smp_started); 2879 thread_lock(curthread); 2880 sched_bind(curthread, 0); 2881 thread_unlock(curthread); 2882 #else 2883 if (smp_started) { 2884 thread_lock(curthread); 2885 sched_bind(curthread, 0); 2886 thread_unlock(curthread); 2887 } 2888 #endif 2889 2890 /* 2891 * Be sure to hold Giant across DEVICE_SUSPEND/RESUME since non-MPSAFE 2892 * drivers need this. 2893 */ 2894 mtx_lock(&Giant); 2895 2896 slp_state = ACPI_SS_NONE; 2897 2898 sc->acpi_sstate = state; 2899 2900 /* Enable any GPEs as appropriate and requested by the user. */ 2901 acpi_wake_prep_walk(state); 2902 slp_state = ACPI_SS_GPE_SET; 2903 2904 /* 2905 * Inform all devices that we are going to sleep. If at least one 2906 * device fails, DEVICE_SUSPEND() automatically resumes the tree. 2907 * 2908 * XXX Note that a better two-pass approach with a 'veto' pass 2909 * followed by a "real thing" pass would be better, but the current 2910 * bus interface does not provide for this. 2911 */ 2912 if (DEVICE_SUSPEND(root_bus) != 0) { 2913 device_printf(sc->acpi_dev, "device_suspend failed\n"); 2914 goto backout; 2915 } 2916 slp_state = ACPI_SS_DEV_SUSPEND; 2917 2918 /* If testing device suspend only, back out of everything here. */ 2919 if (acpi_susp_bounce) 2920 goto backout; 2921 2922 status = AcpiEnterSleepStatePrep(state); 2923 if (ACPI_FAILURE(status)) { 2924 device_printf(sc->acpi_dev, "AcpiEnterSleepStatePrep failed - %s\n", 2925 AcpiFormatException(status)); 2926 goto backout; 2927 } 2928 slp_state = ACPI_SS_SLP_PREP; 2929 2930 if (sc->acpi_sleep_delay > 0) 2931 DELAY(sc->acpi_sleep_delay * 1000000); 2932 2933 intr = intr_disable(); 2934 if (state != ACPI_STATE_S1) { 2935 sleep_result = acpi_sleep_machdep(sc, state); 2936 acpi_wakeup_machdep(sc, state, sleep_result, 0); 2937 2938 /* 2939 * XXX According to ACPI specification SCI_EN bit should be restored 2940 * by ACPI platform (BIOS, firmware) to its pre-sleep state. 2941 * Unfortunately some BIOSes fail to do that and that leads to 2942 * unexpected and serious consequences during wake up like a system 2943 * getting stuck in SMI handlers. 2944 * This hack is picked up from Linux, which claims that it follows 2945 * Windows behavior. 2946 */ 2947 if (sleep_result == 1 && state != ACPI_STATE_S4) 2948 AcpiWriteBitRegister(ACPI_BITREG_SCI_ENABLE, ACPI_ENABLE_EVENT); 2949 2950 AcpiLeaveSleepStatePrep(state); 2951 2952 if (sleep_result == 1 && state == ACPI_STATE_S3) { 2953 /* 2954 * Prevent mis-interpretation of the wakeup by power button 2955 * as a request for power off. 2956 * Ideally we should post an appropriate wakeup event, 2957 * perhaps using acpi_event_power_button_wake or alike. 2958 * 2959 * Clearing of power button status after wakeup is mandated 2960 * by ACPI specification in section "Fixed Power Button". 2961 * 2962 * XXX As of ACPICA 20121114 AcpiGetEventStatus provides 2963 * status as 0/1 corressponding to inactive/active despite 2964 * its type being ACPI_EVENT_STATUS. In other words, 2965 * we should not test for ACPI_EVENT_FLAG_SET for time being. 2966 */ 2967 if (ACPI_SUCCESS(AcpiGetEventStatus(ACPI_EVENT_POWER_BUTTON, 2968 &power_button_status)) && power_button_status != 0) { 2969 AcpiClearEvent(ACPI_EVENT_POWER_BUTTON); 2970 device_printf(sc->acpi_dev, 2971 "cleared fixed power button status\n"); 2972 } 2973 } 2974 2975 intr_restore(intr); 2976 2977 /* call acpi_wakeup_machdep() again with interrupt enabled */ 2978 acpi_wakeup_machdep(sc, state, sleep_result, 1); 2979 2980 if (sleep_result == -1) 2981 goto backout; 2982 2983 /* Re-enable ACPI hardware on wakeup from sleep state 4. */ 2984 if (state == ACPI_STATE_S4) 2985 AcpiEnable(); 2986 } else { 2987 status = AcpiEnterSleepState(state); 2988 AcpiLeaveSleepStatePrep(state); 2989 intr_restore(intr); 2990 if (ACPI_FAILURE(status)) { 2991 device_printf(sc->acpi_dev, "AcpiEnterSleepState failed - %s\n", 2992 AcpiFormatException(status)); 2993 goto backout; 2994 } 2995 } 2996 slp_state = ACPI_SS_SLEPT; 2997 2998 /* 2999 * Back out state according to how far along we got in the suspend 3000 * process. This handles both the error and success cases. 3001 */ 3002 backout: 3003 if (slp_state >= ACPI_SS_GPE_SET) { 3004 acpi_wake_prep_walk(state); 3005 sc->acpi_sstate = ACPI_STATE_S0; 3006 } 3007 if (slp_state >= ACPI_SS_DEV_SUSPEND) 3008 DEVICE_RESUME(root_bus); 3009 if (slp_state >= ACPI_SS_SLP_PREP) 3010 AcpiLeaveSleepState(state); 3011 if (slp_state >= ACPI_SS_SLEPT) { 3012 acpi_resync_clock(sc); 3013 acpi_enable_fixed_events(sc); 3014 } 3015 sc->acpi_next_sstate = 0; 3016 3017 mtx_unlock(&Giant); 3018 3019 #ifdef EARLY_AP_STARTUP 3020 thread_lock(curthread); 3021 sched_unbind(curthread); 3022 thread_unlock(curthread); 3023 #else 3024 if (smp_started) { 3025 thread_lock(curthread); 3026 sched_unbind(curthread); 3027 thread_unlock(curthread); 3028 } 3029 #endif 3030 3031 resume_all_proc(); 3032 3033 EVENTHANDLER_INVOKE(power_resume); 3034 3035 /* Allow another sleep request after a while. */ 3036 callout_schedule(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME); 3037 3038 /* Run /etc/rc.resume after we are back. */ 3039 if (devctl_process_running()) 3040 acpi_UserNotify("Resume", ACPI_ROOT_OBJECT, state); 3041 3042 return_ACPI_STATUS (status); 3043 } 3044 3045 static void 3046 acpi_resync_clock(struct acpi_softc *sc) 3047 { 3048 3049 /* 3050 * Warm up timecounter again and reset system clock. 3051 */ 3052 (void)timecounter->tc_get_timecount(timecounter); 3053 (void)timecounter->tc_get_timecount(timecounter); 3054 inittodr(time_second + sc->acpi_sleep_delay); 3055 } 3056 3057 /* Enable or disable the device's wake GPE. */ 3058 int 3059 acpi_wake_set_enable(device_t dev, int enable) 3060 { 3061 struct acpi_prw_data prw; 3062 ACPI_STATUS status; 3063 int flags; 3064 3065 /* Make sure the device supports waking the system and get the GPE. */ 3066 if (acpi_parse_prw(acpi_get_handle(dev), &prw) != 0) 3067 return (ENXIO); 3068 3069 flags = acpi_get_flags(dev); 3070 if (enable) { 3071 status = AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, 3072 ACPI_GPE_ENABLE); 3073 if (ACPI_FAILURE(status)) { 3074 device_printf(dev, "enable wake failed\n"); 3075 return (ENXIO); 3076 } 3077 acpi_set_flags(dev, flags | ACPI_FLAG_WAKE_ENABLED); 3078 } else { 3079 status = AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, 3080 ACPI_GPE_DISABLE); 3081 if (ACPI_FAILURE(status)) { 3082 device_printf(dev, "disable wake failed\n"); 3083 return (ENXIO); 3084 } 3085 acpi_set_flags(dev, flags & ~ACPI_FLAG_WAKE_ENABLED); 3086 } 3087 3088 return (0); 3089 } 3090 3091 static int 3092 acpi_wake_sleep_prep(ACPI_HANDLE handle, int sstate) 3093 { 3094 struct acpi_prw_data prw; 3095 device_t dev; 3096 3097 /* Check that this is a wake-capable device and get its GPE. */ 3098 if (acpi_parse_prw(handle, &prw) != 0) 3099 return (ENXIO); 3100 dev = acpi_get_device(handle); 3101 3102 /* 3103 * The destination sleep state must be less than (i.e., higher power) 3104 * or equal to the value specified by _PRW. If this GPE cannot be 3105 * enabled for the next sleep state, then disable it. If it can and 3106 * the user requested it be enabled, turn on any required power resources 3107 * and set _PSW. 3108 */ 3109 if (sstate > prw.lowest_wake) { 3110 AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, ACPI_GPE_DISABLE); 3111 if (bootverbose) 3112 device_printf(dev, "wake_prep disabled wake for %s (S%d)\n", 3113 acpi_name(handle), sstate); 3114 } else if (dev && (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) != 0) { 3115 acpi_pwr_wake_enable(handle, 1); 3116 acpi_SetInteger(handle, "_PSW", 1); 3117 if (bootverbose) 3118 device_printf(dev, "wake_prep enabled for %s (S%d)\n", 3119 acpi_name(handle), sstate); 3120 } 3121 3122 return (0); 3123 } 3124 3125 static int 3126 acpi_wake_run_prep(ACPI_HANDLE handle, int sstate) 3127 { 3128 struct acpi_prw_data prw; 3129 device_t dev; 3130 3131 /* 3132 * Check that this is a wake-capable device and get its GPE. Return 3133 * now if the user didn't enable this device for wake. 3134 */ 3135 if (acpi_parse_prw(handle, &prw) != 0) 3136 return (ENXIO); 3137 dev = acpi_get_device(handle); 3138 if (dev == NULL || (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) == 0) 3139 return (0); 3140 3141 /* 3142 * If this GPE couldn't be enabled for the previous sleep state, it was 3143 * disabled before going to sleep so re-enable it. If it was enabled, 3144 * clear _PSW and turn off any power resources it used. 3145 */ 3146 if (sstate > prw.lowest_wake) { 3147 AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, ACPI_GPE_ENABLE); 3148 if (bootverbose) 3149 device_printf(dev, "run_prep re-enabled %s\n", acpi_name(handle)); 3150 } else { 3151 acpi_SetInteger(handle, "_PSW", 0); 3152 acpi_pwr_wake_enable(handle, 0); 3153 if (bootverbose) 3154 device_printf(dev, "run_prep cleaned up for %s\n", 3155 acpi_name(handle)); 3156 } 3157 3158 return (0); 3159 } 3160 3161 static ACPI_STATUS 3162 acpi_wake_prep(ACPI_HANDLE handle, UINT32 level, void *context, void **status) 3163 { 3164 int sstate; 3165 3166 /* If suspending, run the sleep prep function, otherwise wake. */ 3167 sstate = *(int *)context; 3168 if (AcpiGbl_SystemAwakeAndRunning) 3169 acpi_wake_sleep_prep(handle, sstate); 3170 else 3171 acpi_wake_run_prep(handle, sstate); 3172 return (AE_OK); 3173 } 3174 3175 /* Walk the tree rooted at acpi0 to prep devices for suspend/resume. */ 3176 static int 3177 acpi_wake_prep_walk(int sstate) 3178 { 3179 ACPI_HANDLE sb_handle; 3180 3181 if (ACPI_SUCCESS(AcpiGetHandle(ACPI_ROOT_OBJECT, "\\_SB_", &sb_handle))) 3182 AcpiWalkNamespace(ACPI_TYPE_DEVICE, sb_handle, 100, 3183 acpi_wake_prep, NULL, &sstate, NULL); 3184 return (0); 3185 } 3186 3187 /* Walk the tree rooted at acpi0 to attach per-device wake sysctls. */ 3188 static int 3189 acpi_wake_sysctl_walk(device_t dev) 3190 { 3191 int error, i, numdevs; 3192 device_t *devlist; 3193 device_t child; 3194 ACPI_STATUS status; 3195 3196 error = device_get_children(dev, &devlist, &numdevs); 3197 if (error != 0 || numdevs == 0) { 3198 if (numdevs == 0) 3199 free(devlist, M_TEMP); 3200 return (error); 3201 } 3202 for (i = 0; i < numdevs; i++) { 3203 child = devlist[i]; 3204 acpi_wake_sysctl_walk(child); 3205 if (!device_is_attached(child)) 3206 continue; 3207 status = AcpiEvaluateObject(acpi_get_handle(child), "_PRW", NULL, NULL); 3208 if (ACPI_SUCCESS(status)) { 3209 SYSCTL_ADD_PROC(device_get_sysctl_ctx(child), 3210 SYSCTL_CHILDREN(device_get_sysctl_tree(child)), OID_AUTO, 3211 "wake", CTLTYPE_INT | CTLFLAG_RW, child, 0, 3212 acpi_wake_set_sysctl, "I", "Device set to wake the system"); 3213 } 3214 } 3215 free(devlist, M_TEMP); 3216 3217 return (0); 3218 } 3219 3220 /* Enable or disable wake from userland. */ 3221 static int 3222 acpi_wake_set_sysctl(SYSCTL_HANDLER_ARGS) 3223 { 3224 int enable, error; 3225 device_t dev; 3226 3227 dev = (device_t)arg1; 3228 enable = (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) ? 1 : 0; 3229 3230 error = sysctl_handle_int(oidp, &enable, 0, req); 3231 if (error != 0 || req->newptr == NULL) 3232 return (error); 3233 if (enable != 0 && enable != 1) 3234 return (EINVAL); 3235 3236 return (acpi_wake_set_enable(dev, enable)); 3237 } 3238 3239 /* Parse a device's _PRW into a structure. */ 3240 int 3241 acpi_parse_prw(ACPI_HANDLE h, struct acpi_prw_data *prw) 3242 { 3243 ACPI_STATUS status; 3244 ACPI_BUFFER prw_buffer; 3245 ACPI_OBJECT *res, *res2; 3246 int error, i, power_count; 3247 3248 if (h == NULL || prw == NULL) 3249 return (EINVAL); 3250 3251 /* 3252 * The _PRW object (7.2.9) is only required for devices that have the 3253 * ability to wake the system from a sleeping state. 3254 */ 3255 error = EINVAL; 3256 prw_buffer.Pointer = NULL; 3257 prw_buffer.Length = ACPI_ALLOCATE_BUFFER; 3258 status = AcpiEvaluateObject(h, "_PRW", NULL, &prw_buffer); 3259 if (ACPI_FAILURE(status)) 3260 return (ENOENT); 3261 res = (ACPI_OBJECT *)prw_buffer.Pointer; 3262 if (res == NULL) 3263 return (ENOENT); 3264 if (!ACPI_PKG_VALID(res, 2)) 3265 goto out; 3266 3267 /* 3268 * Element 1 of the _PRW object: 3269 * The lowest power system sleeping state that can be entered while still 3270 * providing wake functionality. The sleeping state being entered must 3271 * be less than (i.e., higher power) or equal to this value. 3272 */ 3273 if (acpi_PkgInt32(res, 1, &prw->lowest_wake) != 0) 3274 goto out; 3275 3276 /* 3277 * Element 0 of the _PRW object: 3278 */ 3279 switch (res->Package.Elements[0].Type) { 3280 case ACPI_TYPE_INTEGER: 3281 /* 3282 * If the data type of this package element is numeric, then this 3283 * _PRW package element is the bit index in the GPEx_EN, in the 3284 * GPE blocks described in the FADT, of the enable bit that is 3285 * enabled for the wake event. 3286 */ 3287 prw->gpe_handle = NULL; 3288 prw->gpe_bit = res->Package.Elements[0].Integer.Value; 3289 error = 0; 3290 break; 3291 case ACPI_TYPE_PACKAGE: 3292 /* 3293 * If the data type of this package element is a package, then this 3294 * _PRW package element is itself a package containing two 3295 * elements. The first is an object reference to the GPE Block 3296 * device that contains the GPE that will be triggered by the wake 3297 * event. The second element is numeric and it contains the bit 3298 * index in the GPEx_EN, in the GPE Block referenced by the 3299 * first element in the package, of the enable bit that is enabled for 3300 * the wake event. 3301 * 3302 * For example, if this field is a package then it is of the form: 3303 * Package() {\_SB.PCI0.ISA.GPE, 2} 3304 */ 3305 res2 = &res->Package.Elements[0]; 3306 if (!ACPI_PKG_VALID(res2, 2)) 3307 goto out; 3308 prw->gpe_handle = acpi_GetReference(NULL, &res2->Package.Elements[0]); 3309 if (prw->gpe_handle == NULL) 3310 goto out; 3311 if (acpi_PkgInt32(res2, 1, &prw->gpe_bit) != 0) 3312 goto out; 3313 error = 0; 3314 break; 3315 default: 3316 goto out; 3317 } 3318 3319 /* Elements 2 to N of the _PRW object are power resources. */ 3320 power_count = res->Package.Count - 2; 3321 if (power_count > ACPI_PRW_MAX_POWERRES) { 3322 printf("ACPI device %s has too many power resources\n", acpi_name(h)); 3323 power_count = 0; 3324 } 3325 prw->power_res_count = power_count; 3326 for (i = 0; i < power_count; i++) 3327 prw->power_res[i] = res->Package.Elements[i]; 3328 3329 out: 3330 if (prw_buffer.Pointer != NULL) 3331 AcpiOsFree(prw_buffer.Pointer); 3332 return (error); 3333 } 3334 3335 /* 3336 * ACPI Event Handlers 3337 */ 3338 3339 /* System Event Handlers (registered by EVENTHANDLER_REGISTER) */ 3340 3341 static void 3342 acpi_system_eventhandler_sleep(void *arg, int state) 3343 { 3344 struct acpi_softc *sc = (struct acpi_softc *)arg; 3345 int ret; 3346 3347 ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state); 3348 3349 /* Check if button action is disabled or unknown. */ 3350 if (state == ACPI_STATE_UNKNOWN) 3351 return; 3352 3353 /* Request that the system prepare to enter the given suspend state. */ 3354 ret = acpi_ReqSleepState(sc, state); 3355 if (ret != 0) 3356 device_printf(sc->acpi_dev, 3357 "request to enter state S%d failed (err %d)\n", state, ret); 3358 3359 return_VOID; 3360 } 3361 3362 static void 3363 acpi_system_eventhandler_wakeup(void *arg, int state) 3364 { 3365 3366 ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state); 3367 3368 /* Currently, nothing to do for wakeup. */ 3369 3370 return_VOID; 3371 } 3372 3373 /* 3374 * ACPICA Event Handlers (FixedEvent, also called from button notify handler) 3375 */ 3376 static void 3377 acpi_invoke_sleep_eventhandler(void *context) 3378 { 3379 3380 EVENTHANDLER_INVOKE(acpi_sleep_event, *(int *)context); 3381 } 3382 3383 static void 3384 acpi_invoke_wake_eventhandler(void *context) 3385 { 3386 3387 EVENTHANDLER_INVOKE(acpi_wakeup_event, *(int *)context); 3388 } 3389 3390 UINT32 3391 acpi_event_power_button_sleep(void *context) 3392 { 3393 struct acpi_softc *sc = (struct acpi_softc *)context; 3394 3395 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3396 3397 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3398 acpi_invoke_sleep_eventhandler, &sc->acpi_power_button_sx))) 3399 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); 3400 return_VALUE (ACPI_INTERRUPT_HANDLED); 3401 } 3402 3403 UINT32 3404 acpi_event_power_button_wake(void *context) 3405 { 3406 struct acpi_softc *sc = (struct acpi_softc *)context; 3407 3408 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3409 3410 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3411 acpi_invoke_wake_eventhandler, &sc->acpi_power_button_sx))) 3412 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); 3413 return_VALUE (ACPI_INTERRUPT_HANDLED); 3414 } 3415 3416 UINT32 3417 acpi_event_sleep_button_sleep(void *context) 3418 { 3419 struct acpi_softc *sc = (struct acpi_softc *)context; 3420 3421 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3422 3423 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3424 acpi_invoke_sleep_eventhandler, &sc->acpi_sleep_button_sx))) 3425 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); 3426 return_VALUE (ACPI_INTERRUPT_HANDLED); 3427 } 3428 3429 UINT32 3430 acpi_event_sleep_button_wake(void *context) 3431 { 3432 struct acpi_softc *sc = (struct acpi_softc *)context; 3433 3434 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3435 3436 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3437 acpi_invoke_wake_eventhandler, &sc->acpi_sleep_button_sx))) 3438 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); 3439 return_VALUE (ACPI_INTERRUPT_HANDLED); 3440 } 3441 3442 /* 3443 * XXX This static buffer is suboptimal. There is no locking so only 3444 * use this for single-threaded callers. 3445 */ 3446 char * 3447 acpi_name(ACPI_HANDLE handle) 3448 { 3449 ACPI_BUFFER buf; 3450 static char data[256]; 3451 3452 buf.Length = sizeof(data); 3453 buf.Pointer = data; 3454 3455 if (handle && ACPI_SUCCESS(AcpiGetName(handle, ACPI_FULL_PATHNAME, &buf))) 3456 return (data); 3457 return ("(unknown)"); 3458 } 3459 3460 /* 3461 * Debugging/bug-avoidance. Avoid trying to fetch info on various 3462 * parts of the namespace. 3463 */ 3464 int 3465 acpi_avoid(ACPI_HANDLE handle) 3466 { 3467 char *cp, *env, *np; 3468 int len; 3469 3470 np = acpi_name(handle); 3471 if (*np == '\\') 3472 np++; 3473 if ((env = kern_getenv("debug.acpi.avoid")) == NULL) 3474 return (0); 3475 3476 /* Scan the avoid list checking for a match */ 3477 cp = env; 3478 for (;;) { 3479 while (*cp != 0 && isspace(*cp)) 3480 cp++; 3481 if (*cp == 0) 3482 break; 3483 len = 0; 3484 while (cp[len] != 0 && !isspace(cp[len])) 3485 len++; 3486 if (!strncmp(cp, np, len)) { 3487 freeenv(env); 3488 return(1); 3489 } 3490 cp += len; 3491 } 3492 freeenv(env); 3493 3494 return (0); 3495 } 3496 3497 /* 3498 * Debugging/bug-avoidance. Disable ACPI subsystem components. 3499 */ 3500 int 3501 acpi_disabled(char *subsys) 3502 { 3503 char *cp, *env; 3504 int len; 3505 3506 if ((env = kern_getenv("debug.acpi.disabled")) == NULL) 3507 return (0); 3508 if (strcmp(env, "all") == 0) { 3509 freeenv(env); 3510 return (1); 3511 } 3512 3513 /* Scan the disable list, checking for a match. */ 3514 cp = env; 3515 for (;;) { 3516 while (*cp != '\0' && isspace(*cp)) 3517 cp++; 3518 if (*cp == '\0') 3519 break; 3520 len = 0; 3521 while (cp[len] != '\0' && !isspace(cp[len])) 3522 len++; 3523 if (strncmp(cp, subsys, len) == 0) { 3524 freeenv(env); 3525 return (1); 3526 } 3527 cp += len; 3528 } 3529 freeenv(env); 3530 3531 return (0); 3532 } 3533 3534 static void 3535 acpi_lookup(void *arg, const char *name, device_t *dev) 3536 { 3537 ACPI_HANDLE handle; 3538 3539 if (*dev != NULL) 3540 return; 3541 3542 /* 3543 * Allow any handle name that is specified as an absolute path and 3544 * starts with '\'. We could restrict this to \_SB and friends, 3545 * but see acpi_probe_children() for notes on why we scan the entire 3546 * namespace for devices. 3547 * 3548 * XXX: The pathname argument to AcpiGetHandle() should be fixed to 3549 * be const. 3550 */ 3551 if (name[0] != '\\') 3552 return; 3553 if (ACPI_FAILURE(AcpiGetHandle(ACPI_ROOT_OBJECT, __DECONST(char *, name), 3554 &handle))) 3555 return; 3556 *dev = acpi_get_device(handle); 3557 } 3558 3559 /* 3560 * Control interface. 3561 * 3562 * We multiplex ioctls for all participating ACPI devices here. Individual 3563 * drivers wanting to be accessible via /dev/acpi should use the 3564 * register/deregister interface to make their handlers visible. 3565 */ 3566 struct acpi_ioctl_hook 3567 { 3568 TAILQ_ENTRY(acpi_ioctl_hook) link; 3569 u_long cmd; 3570 acpi_ioctl_fn fn; 3571 void *arg; 3572 }; 3573 3574 static TAILQ_HEAD(,acpi_ioctl_hook) acpi_ioctl_hooks; 3575 static int acpi_ioctl_hooks_initted; 3576 3577 int 3578 acpi_register_ioctl(u_long cmd, acpi_ioctl_fn fn, void *arg) 3579 { 3580 struct acpi_ioctl_hook *hp; 3581 3582 if ((hp = malloc(sizeof(*hp), M_ACPIDEV, M_NOWAIT)) == NULL) 3583 return (ENOMEM); 3584 hp->cmd = cmd; 3585 hp->fn = fn; 3586 hp->arg = arg; 3587 3588 ACPI_LOCK(acpi); 3589 if (acpi_ioctl_hooks_initted == 0) { 3590 TAILQ_INIT(&acpi_ioctl_hooks); 3591 acpi_ioctl_hooks_initted = 1; 3592 } 3593 TAILQ_INSERT_TAIL(&acpi_ioctl_hooks, hp, link); 3594 ACPI_UNLOCK(acpi); 3595 3596 return (0); 3597 } 3598 3599 void 3600 acpi_deregister_ioctl(u_long cmd, acpi_ioctl_fn fn) 3601 { 3602 struct acpi_ioctl_hook *hp; 3603 3604 ACPI_LOCK(acpi); 3605 TAILQ_FOREACH(hp, &acpi_ioctl_hooks, link) 3606 if (hp->cmd == cmd && hp->fn == fn) 3607 break; 3608 3609 if (hp != NULL) { 3610 TAILQ_REMOVE(&acpi_ioctl_hooks, hp, link); 3611 free(hp, M_ACPIDEV); 3612 } 3613 ACPI_UNLOCK(acpi); 3614 } 3615 3616 static int 3617 acpiopen(struct cdev *dev, int flag, int fmt, struct thread *td) 3618 { 3619 return (0); 3620 } 3621 3622 static int 3623 acpiclose(struct cdev *dev, int flag, int fmt, struct thread *td) 3624 { 3625 return (0); 3626 } 3627 3628 static int 3629 acpiioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 3630 { 3631 struct acpi_softc *sc; 3632 struct acpi_ioctl_hook *hp; 3633 int error, state; 3634 3635 error = 0; 3636 hp = NULL; 3637 sc = dev->si_drv1; 3638 3639 /* 3640 * Scan the list of registered ioctls, looking for handlers. 3641 */ 3642 ACPI_LOCK(acpi); 3643 if (acpi_ioctl_hooks_initted) 3644 TAILQ_FOREACH(hp, &acpi_ioctl_hooks, link) { 3645 if (hp->cmd == cmd) 3646 break; 3647 } 3648 ACPI_UNLOCK(acpi); 3649 if (hp) 3650 return (hp->fn(cmd, addr, hp->arg)); 3651 3652 /* 3653 * Core ioctls are not permitted for non-writable user. 3654 * Currently, other ioctls just fetch information. 3655 * Not changing system behavior. 3656 */ 3657 if ((flag & FWRITE) == 0) 3658 return (EPERM); 3659 3660 /* Core system ioctls. */ 3661 switch (cmd) { 3662 case ACPIIO_REQSLPSTATE: 3663 state = *(int *)addr; 3664 if (state != ACPI_STATE_S5) 3665 return (acpi_ReqSleepState(sc, state)); 3666 device_printf(sc->acpi_dev, "power off via acpi ioctl not supported\n"); 3667 error = EOPNOTSUPP; 3668 break; 3669 case ACPIIO_ACKSLPSTATE: 3670 error = *(int *)addr; 3671 error = acpi_AckSleepState(sc->acpi_clone, error); 3672 break; 3673 case ACPIIO_SETSLPSTATE: /* DEPRECATED */ 3674 state = *(int *)addr; 3675 if (state < ACPI_STATE_S0 || state > ACPI_S_STATES_MAX) 3676 return (EINVAL); 3677 if (!acpi_sleep_states[state]) 3678 return (EOPNOTSUPP); 3679 if (ACPI_FAILURE(acpi_SetSleepState(sc, state))) 3680 error = ENXIO; 3681 break; 3682 default: 3683 error = ENXIO; 3684 break; 3685 } 3686 3687 return (error); 3688 } 3689 3690 static int 3691 acpi_sname2sstate(const char *sname) 3692 { 3693 int sstate; 3694 3695 if (toupper(sname[0]) == 'S') { 3696 sstate = sname[1] - '0'; 3697 if (sstate >= ACPI_STATE_S0 && sstate <= ACPI_STATE_S5 && 3698 sname[2] == '\0') 3699 return (sstate); 3700 } else if (strcasecmp(sname, "NONE") == 0) 3701 return (ACPI_STATE_UNKNOWN); 3702 return (-1); 3703 } 3704 3705 static const char * 3706 acpi_sstate2sname(int sstate) 3707 { 3708 static const char *snames[] = { "S0", "S1", "S2", "S3", "S4", "S5" }; 3709 3710 if (sstate >= ACPI_STATE_S0 && sstate <= ACPI_STATE_S5) 3711 return (snames[sstate]); 3712 else if (sstate == ACPI_STATE_UNKNOWN) 3713 return ("NONE"); 3714 return (NULL); 3715 } 3716 3717 static int 3718 acpi_supported_sleep_state_sysctl(SYSCTL_HANDLER_ARGS) 3719 { 3720 int error; 3721 struct sbuf sb; 3722 UINT8 state; 3723 3724 sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND); 3725 for (state = ACPI_STATE_S1; state < ACPI_S_STATE_COUNT; state++) 3726 if (acpi_sleep_states[state]) 3727 sbuf_printf(&sb, "%s ", acpi_sstate2sname(state)); 3728 sbuf_trim(&sb); 3729 sbuf_finish(&sb); 3730 error = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req); 3731 sbuf_delete(&sb); 3732 return (error); 3733 } 3734 3735 static int 3736 acpi_sleep_state_sysctl(SYSCTL_HANDLER_ARGS) 3737 { 3738 char sleep_state[10]; 3739 int error, new_state, old_state; 3740 3741 old_state = *(int *)oidp->oid_arg1; 3742 strlcpy(sleep_state, acpi_sstate2sname(old_state), sizeof(sleep_state)); 3743 error = sysctl_handle_string(oidp, sleep_state, sizeof(sleep_state), req); 3744 if (error == 0 && req->newptr != NULL) { 3745 new_state = acpi_sname2sstate(sleep_state); 3746 if (new_state < ACPI_STATE_S1) 3747 return (EINVAL); 3748 if (new_state < ACPI_S_STATE_COUNT && !acpi_sleep_states[new_state]) 3749 return (EOPNOTSUPP); 3750 if (new_state != old_state) 3751 *(int *)oidp->oid_arg1 = new_state; 3752 } 3753 return (error); 3754 } 3755 3756 /* Inform devctl(4) when we receive a Notify. */ 3757 void 3758 acpi_UserNotify(const char *subsystem, ACPI_HANDLE h, uint8_t notify) 3759 { 3760 char notify_buf[16]; 3761 ACPI_BUFFER handle_buf; 3762 ACPI_STATUS status; 3763 3764 if (subsystem == NULL) 3765 return; 3766 3767 handle_buf.Pointer = NULL; 3768 handle_buf.Length = ACPI_ALLOCATE_BUFFER; 3769 status = AcpiNsHandleToPathname(h, &handle_buf, FALSE); 3770 if (ACPI_FAILURE(status)) 3771 return; 3772 snprintf(notify_buf, sizeof(notify_buf), "notify=0x%02x", notify); 3773 devctl_notify("ACPI", subsystem, handle_buf.Pointer, notify_buf); 3774 AcpiOsFree(handle_buf.Pointer); 3775 } 3776 3777 #ifdef ACPI_DEBUG 3778 /* 3779 * Support for parsing debug options from the kernel environment. 3780 * 3781 * Bits may be set in the AcpiDbgLayer and AcpiDbgLevel debug registers 3782 * by specifying the names of the bits in the debug.acpi.layer and 3783 * debug.acpi.level environment variables. Bits may be unset by 3784 * prefixing the bit name with !. 3785 */ 3786 struct debugtag 3787 { 3788 char *name; 3789 UINT32 value; 3790 }; 3791 3792 static struct debugtag dbg_layer[] = { 3793 {"ACPI_UTILITIES", ACPI_UTILITIES}, 3794 {"ACPI_HARDWARE", ACPI_HARDWARE}, 3795 {"ACPI_EVENTS", ACPI_EVENTS}, 3796 {"ACPI_TABLES", ACPI_TABLES}, 3797 {"ACPI_NAMESPACE", ACPI_NAMESPACE}, 3798 {"ACPI_PARSER", ACPI_PARSER}, 3799 {"ACPI_DISPATCHER", ACPI_DISPATCHER}, 3800 {"ACPI_EXECUTER", ACPI_EXECUTER}, 3801 {"ACPI_RESOURCES", ACPI_RESOURCES}, 3802 {"ACPI_CA_DEBUGGER", ACPI_CA_DEBUGGER}, 3803 {"ACPI_OS_SERVICES", ACPI_OS_SERVICES}, 3804 {"ACPI_CA_DISASSEMBLER", ACPI_CA_DISASSEMBLER}, 3805 {"ACPI_ALL_COMPONENTS", ACPI_ALL_COMPONENTS}, 3806 3807 {"ACPI_AC_ADAPTER", ACPI_AC_ADAPTER}, 3808 {"ACPI_BATTERY", ACPI_BATTERY}, 3809 {"ACPI_BUS", ACPI_BUS}, 3810 {"ACPI_BUTTON", ACPI_BUTTON}, 3811 {"ACPI_EC", ACPI_EC}, 3812 {"ACPI_FAN", ACPI_FAN}, 3813 {"ACPI_POWERRES", ACPI_POWERRES}, 3814 {"ACPI_PROCESSOR", ACPI_PROCESSOR}, 3815 {"ACPI_THERMAL", ACPI_THERMAL}, 3816 {"ACPI_TIMER", ACPI_TIMER}, 3817 {"ACPI_ALL_DRIVERS", ACPI_ALL_DRIVERS}, 3818 {NULL, 0} 3819 }; 3820 3821 static struct debugtag dbg_level[] = { 3822 {"ACPI_LV_INIT", ACPI_LV_INIT}, 3823 {"ACPI_LV_DEBUG_OBJECT", ACPI_LV_DEBUG_OBJECT}, 3824 {"ACPI_LV_INFO", ACPI_LV_INFO}, 3825 {"ACPI_LV_REPAIR", ACPI_LV_REPAIR}, 3826 {"ACPI_LV_ALL_EXCEPTIONS", ACPI_LV_ALL_EXCEPTIONS}, 3827 3828 /* Trace verbosity level 1 [Standard Trace Level] */ 3829 {"ACPI_LV_INIT_NAMES", ACPI_LV_INIT_NAMES}, 3830 {"ACPI_LV_PARSE", ACPI_LV_PARSE}, 3831 {"ACPI_LV_LOAD", ACPI_LV_LOAD}, 3832 {"ACPI_LV_DISPATCH", ACPI_LV_DISPATCH}, 3833 {"ACPI_LV_EXEC", ACPI_LV_EXEC}, 3834 {"ACPI_LV_NAMES", ACPI_LV_NAMES}, 3835 {"ACPI_LV_OPREGION", ACPI_LV_OPREGION}, 3836 {"ACPI_LV_BFIELD", ACPI_LV_BFIELD}, 3837 {"ACPI_LV_TABLES", ACPI_LV_TABLES}, 3838 {"ACPI_LV_VALUES", ACPI_LV_VALUES}, 3839 {"ACPI_LV_OBJECTS", ACPI_LV_OBJECTS}, 3840 {"ACPI_LV_RESOURCES", ACPI_LV_RESOURCES}, 3841 {"ACPI_LV_USER_REQUESTS", ACPI_LV_USER_REQUESTS}, 3842 {"ACPI_LV_PACKAGE", ACPI_LV_PACKAGE}, 3843 {"ACPI_LV_VERBOSITY1", ACPI_LV_VERBOSITY1}, 3844 3845 /* Trace verbosity level 2 [Function tracing and memory allocation] */ 3846 {"ACPI_LV_ALLOCATIONS", ACPI_LV_ALLOCATIONS}, 3847 {"ACPI_LV_FUNCTIONS", ACPI_LV_FUNCTIONS}, 3848 {"ACPI_LV_OPTIMIZATIONS", ACPI_LV_OPTIMIZATIONS}, 3849 {"ACPI_LV_VERBOSITY2", ACPI_LV_VERBOSITY2}, 3850 {"ACPI_LV_ALL", ACPI_LV_ALL}, 3851 3852 /* Trace verbosity level 3 [Threading, I/O, and Interrupts] */ 3853 {"ACPI_LV_MUTEX", ACPI_LV_MUTEX}, 3854 {"ACPI_LV_THREADS", ACPI_LV_THREADS}, 3855 {"ACPI_LV_IO", ACPI_LV_IO}, 3856 {"ACPI_LV_INTERRUPTS", ACPI_LV_INTERRUPTS}, 3857 {"ACPI_LV_VERBOSITY3", ACPI_LV_VERBOSITY3}, 3858 3859 /* Exceptionally verbose output -- also used in the global "DebugLevel" */ 3860 {"ACPI_LV_AML_DISASSEMBLE", ACPI_LV_AML_DISASSEMBLE}, 3861 {"ACPI_LV_VERBOSE_INFO", ACPI_LV_VERBOSE_INFO}, 3862 {"ACPI_LV_FULL_TABLES", ACPI_LV_FULL_TABLES}, 3863 {"ACPI_LV_EVENTS", ACPI_LV_EVENTS}, 3864 {"ACPI_LV_VERBOSE", ACPI_LV_VERBOSE}, 3865 {NULL, 0} 3866 }; 3867 3868 static void 3869 acpi_parse_debug(char *cp, struct debugtag *tag, UINT32 *flag) 3870 { 3871 char *ep; 3872 int i, l; 3873 int set; 3874 3875 while (*cp) { 3876 if (isspace(*cp)) { 3877 cp++; 3878 continue; 3879 } 3880 ep = cp; 3881 while (*ep && !isspace(*ep)) 3882 ep++; 3883 if (*cp == '!') { 3884 set = 0; 3885 cp++; 3886 if (cp == ep) 3887 continue; 3888 } else { 3889 set = 1; 3890 } 3891 l = ep - cp; 3892 for (i = 0; tag[i].name != NULL; i++) { 3893 if (!strncmp(cp, tag[i].name, l)) { 3894 if (set) 3895 *flag |= tag[i].value; 3896 else 3897 *flag &= ~tag[i].value; 3898 } 3899 } 3900 cp = ep; 3901 } 3902 } 3903 3904 static void 3905 acpi_set_debugging(void *junk) 3906 { 3907 char *layer, *level; 3908 3909 if (cold) { 3910 AcpiDbgLayer = 0; 3911 AcpiDbgLevel = 0; 3912 } 3913 3914 layer = kern_getenv("debug.acpi.layer"); 3915 level = kern_getenv("debug.acpi.level"); 3916 if (layer == NULL && level == NULL) 3917 return; 3918 3919 printf("ACPI set debug"); 3920 if (layer != NULL) { 3921 if (strcmp("NONE", layer) != 0) 3922 printf(" layer '%s'", layer); 3923 acpi_parse_debug(layer, &dbg_layer[0], &AcpiDbgLayer); 3924 freeenv(layer); 3925 } 3926 if (level != NULL) { 3927 if (strcmp("NONE", level) != 0) 3928 printf(" level '%s'", level); 3929 acpi_parse_debug(level, &dbg_level[0], &AcpiDbgLevel); 3930 freeenv(level); 3931 } 3932 printf("\n"); 3933 } 3934 3935 SYSINIT(acpi_debugging, SI_SUB_TUNABLES, SI_ORDER_ANY, acpi_set_debugging, 3936 NULL); 3937 3938 static int 3939 acpi_debug_sysctl(SYSCTL_HANDLER_ARGS) 3940 { 3941 int error, *dbg; 3942 struct debugtag *tag; 3943 struct sbuf sb; 3944 char temp[128]; 3945 3946 if (sbuf_new(&sb, NULL, 128, SBUF_AUTOEXTEND) == NULL) 3947 return (ENOMEM); 3948 if (strcmp(oidp->oid_arg1, "debug.acpi.layer") == 0) { 3949 tag = &dbg_layer[0]; 3950 dbg = &AcpiDbgLayer; 3951 } else { 3952 tag = &dbg_level[0]; 3953 dbg = &AcpiDbgLevel; 3954 } 3955 3956 /* Get old values if this is a get request. */ 3957 ACPI_SERIAL_BEGIN(acpi); 3958 if (*dbg == 0) { 3959 sbuf_cpy(&sb, "NONE"); 3960 } else if (req->newptr == NULL) { 3961 for (; tag->name != NULL; tag++) { 3962 if ((*dbg & tag->value) == tag->value) 3963 sbuf_printf(&sb, "%s ", tag->name); 3964 } 3965 } 3966 sbuf_trim(&sb); 3967 sbuf_finish(&sb); 3968 strlcpy(temp, sbuf_data(&sb), sizeof(temp)); 3969 sbuf_delete(&sb); 3970 3971 error = sysctl_handle_string(oidp, temp, sizeof(temp), req); 3972 3973 /* Check for error or no change */ 3974 if (error == 0 && req->newptr != NULL) { 3975 *dbg = 0; 3976 kern_setenv((char *)oidp->oid_arg1, temp); 3977 acpi_set_debugging(NULL); 3978 } 3979 ACPI_SERIAL_END(acpi); 3980 3981 return (error); 3982 } 3983 3984 SYSCTL_PROC(_debug_acpi, OID_AUTO, layer, CTLFLAG_RW | CTLTYPE_STRING, 3985 "debug.acpi.layer", 0, acpi_debug_sysctl, "A", ""); 3986 SYSCTL_PROC(_debug_acpi, OID_AUTO, level, CTLFLAG_RW | CTLTYPE_STRING, 3987 "debug.acpi.level", 0, acpi_debug_sysctl, "A", ""); 3988 #endif /* ACPI_DEBUG */ 3989 3990 static int 3991 acpi_debug_objects_sysctl(SYSCTL_HANDLER_ARGS) 3992 { 3993 int error; 3994 int old; 3995 3996 old = acpi_debug_objects; 3997 error = sysctl_handle_int(oidp, &acpi_debug_objects, 0, req); 3998 if (error != 0 || req->newptr == NULL) 3999 return (error); 4000 if (old == acpi_debug_objects || (old && acpi_debug_objects)) 4001 return (0); 4002 4003 ACPI_SERIAL_BEGIN(acpi); 4004 AcpiGbl_EnableAmlDebugObject = acpi_debug_objects ? TRUE : FALSE; 4005 ACPI_SERIAL_END(acpi); 4006 4007 return (0); 4008 } 4009 4010 static int 4011 acpi_parse_interfaces(char *str, struct acpi_interface *iface) 4012 { 4013 char *p; 4014 size_t len; 4015 int i, j; 4016 4017 p = str; 4018 while (isspace(*p) || *p == ',') 4019 p++; 4020 len = strlen(p); 4021 if (len == 0) 4022 return (0); 4023 p = strdup(p, M_TEMP); 4024 for (i = 0; i < len; i++) 4025 if (p[i] == ',') 4026 p[i] = '\0'; 4027 i = j = 0; 4028 while (i < len) 4029 if (isspace(p[i]) || p[i] == '\0') 4030 i++; 4031 else { 4032 i += strlen(p + i) + 1; 4033 j++; 4034 } 4035 if (j == 0) { 4036 free(p, M_TEMP); 4037 return (0); 4038 } 4039 iface->data = malloc(sizeof(*iface->data) * j, M_TEMP, M_WAITOK); 4040 iface->num = j; 4041 i = j = 0; 4042 while (i < len) 4043 if (isspace(p[i]) || p[i] == '\0') 4044 i++; 4045 else { 4046 iface->data[j] = p + i; 4047 i += strlen(p + i) + 1; 4048 j++; 4049 } 4050 4051 return (j); 4052 } 4053 4054 static void 4055 acpi_free_interfaces(struct acpi_interface *iface) 4056 { 4057 4058 free(iface->data[0], M_TEMP); 4059 free(iface->data, M_TEMP); 4060 } 4061 4062 static void 4063 acpi_reset_interfaces(device_t dev) 4064 { 4065 struct acpi_interface list; 4066 ACPI_STATUS status; 4067 int i; 4068 4069 if (acpi_parse_interfaces(acpi_install_interface, &list) > 0) { 4070 for (i = 0; i < list.num; i++) { 4071 status = AcpiInstallInterface(list.data[i]); 4072 if (ACPI_FAILURE(status)) 4073 device_printf(dev, 4074 "failed to install _OSI(\"%s\"): %s\n", 4075 list.data[i], AcpiFormatException(status)); 4076 else if (bootverbose) 4077 device_printf(dev, "installed _OSI(\"%s\")\n", 4078 list.data[i]); 4079 } 4080 acpi_free_interfaces(&list); 4081 } 4082 if (acpi_parse_interfaces(acpi_remove_interface, &list) > 0) { 4083 for (i = 0; i < list.num; i++) { 4084 status = AcpiRemoveInterface(list.data[i]); 4085 if (ACPI_FAILURE(status)) 4086 device_printf(dev, 4087 "failed to remove _OSI(\"%s\"): %s\n", 4088 list.data[i], AcpiFormatException(status)); 4089 else if (bootverbose) 4090 device_printf(dev, "removed _OSI(\"%s\")\n", 4091 list.data[i]); 4092 } 4093 acpi_free_interfaces(&list); 4094 } 4095 } 4096 4097 static int 4098 acpi_pm_func(u_long cmd, void *arg, ...) 4099 { 4100 int state, acpi_state; 4101 int error; 4102 struct acpi_softc *sc; 4103 va_list ap; 4104 4105 error = 0; 4106 switch (cmd) { 4107 case POWER_CMD_SUSPEND: 4108 sc = (struct acpi_softc *)arg; 4109 if (sc == NULL) { 4110 error = EINVAL; 4111 goto out; 4112 } 4113 4114 va_start(ap, arg); 4115 state = va_arg(ap, int); 4116 va_end(ap); 4117 4118 switch (state) { 4119 case POWER_SLEEP_STATE_STANDBY: 4120 acpi_state = sc->acpi_standby_sx; 4121 break; 4122 case POWER_SLEEP_STATE_SUSPEND: 4123 acpi_state = sc->acpi_suspend_sx; 4124 break; 4125 case POWER_SLEEP_STATE_HIBERNATE: 4126 acpi_state = ACPI_STATE_S4; 4127 break; 4128 default: 4129 error = EINVAL; 4130 goto out; 4131 } 4132 4133 if (ACPI_FAILURE(acpi_EnterSleepState(sc, acpi_state))) 4134 error = ENXIO; 4135 break; 4136 default: 4137 error = EINVAL; 4138 goto out; 4139 } 4140 4141 out: 4142 return (error); 4143 } 4144 4145 static void 4146 acpi_pm_register(void *arg) 4147 { 4148 if (!cold || resource_disabled("acpi", 0)) 4149 return; 4150 4151 power_pm_register(POWER_PM_TYPE_ACPI, acpi_pm_func, NULL); 4152 } 4153 4154 SYSINIT(power, SI_SUB_KLD, SI_ORDER_ANY, acpi_pm_register, 0); 4155