1 /*- 2 * Copyright (c) 2000 Takanori Watanabe <takawata@jp.freebsd.org> 3 * Copyright (c) 2000 Mitsuru IWASAKI <iwasaki@jp.freebsd.org> 4 * Copyright (c) 2000, 2001 Michael Smith 5 * Copyright (c) 2000 BSDi 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include "opt_acpi.h" 34 35 #include <sys/param.h> 36 #include <sys/kernel.h> 37 #include <sys/proc.h> 38 #include <sys/fcntl.h> 39 #include <sys/malloc.h> 40 #include <sys/module.h> 41 #include <sys/bus.h> 42 #include <sys/conf.h> 43 #include <sys/ioccom.h> 44 #include <sys/reboot.h> 45 #include <sys/sysctl.h> 46 #include <sys/ctype.h> 47 #include <sys/linker.h> 48 #include <sys/power.h> 49 #include <sys/sbuf.h> 50 #include <sys/sched.h> 51 #include <sys/smp.h> 52 #include <sys/timetc.h> 53 54 #if defined(__i386__) || defined(__amd64__) 55 #include <machine/clock.h> 56 #include <machine/pci_cfgreg.h> 57 #endif 58 #include <machine/resource.h> 59 #include <machine/bus.h> 60 #include <sys/rman.h> 61 #include <isa/isavar.h> 62 #include <isa/pnpvar.h> 63 64 #include <contrib/dev/acpica/include/acpi.h> 65 #include <contrib/dev/acpica/include/accommon.h> 66 #include <contrib/dev/acpica/include/acnamesp.h> 67 68 #include <dev/acpica/acpivar.h> 69 #include <dev/acpica/acpiio.h> 70 71 #include <dev/pci/pcivar.h> 72 73 #include <vm/vm_param.h> 74 75 static MALLOC_DEFINE(M_ACPIDEV, "acpidev", "ACPI devices"); 76 77 /* Hooks for the ACPI CA debugging infrastructure */ 78 #define _COMPONENT ACPI_BUS 79 ACPI_MODULE_NAME("ACPI") 80 81 static d_open_t acpiopen; 82 static d_close_t acpiclose; 83 static d_ioctl_t acpiioctl; 84 85 static struct cdevsw acpi_cdevsw = { 86 .d_version = D_VERSION, 87 .d_open = acpiopen, 88 .d_close = acpiclose, 89 .d_ioctl = acpiioctl, 90 .d_name = "acpi", 91 }; 92 93 struct acpi_interface { 94 ACPI_STRING *data; 95 int num; 96 }; 97 98 static char *sysres_ids[] = { "PNP0C01", "PNP0C02", NULL }; 99 static char *pcilink_ids[] = { "PNP0C0F", NULL }; 100 101 /* Global mutex for locking access to the ACPI subsystem. */ 102 struct mtx acpi_mutex; 103 struct callout acpi_sleep_timer; 104 105 /* Bitmap of device quirks. */ 106 int acpi_quirks; 107 108 /* Supported sleep states. */ 109 static BOOLEAN acpi_sleep_states[ACPI_S_STATE_COUNT]; 110 111 static void acpi_lookup(void *arg, const char *name, device_t *dev); 112 static int acpi_modevent(struct module *mod, int event, void *junk); 113 static int acpi_probe(device_t dev); 114 static int acpi_attach(device_t dev); 115 static int acpi_suspend(device_t dev); 116 static int acpi_resume(device_t dev); 117 static int acpi_shutdown(device_t dev); 118 static device_t acpi_add_child(device_t bus, u_int order, const char *name, 119 int unit); 120 static int acpi_print_child(device_t bus, device_t child); 121 static void acpi_probe_nomatch(device_t bus, device_t child); 122 static void acpi_driver_added(device_t dev, driver_t *driver); 123 static int acpi_read_ivar(device_t dev, device_t child, int index, 124 uintptr_t *result); 125 static int acpi_write_ivar(device_t dev, device_t child, int index, 126 uintptr_t value); 127 static struct resource_list *acpi_get_rlist(device_t dev, device_t child); 128 static void acpi_reserve_resources(device_t dev); 129 static int acpi_sysres_alloc(device_t dev); 130 static int acpi_set_resource(device_t dev, device_t child, int type, 131 int rid, rman_res_t start, rman_res_t count); 132 static struct resource *acpi_alloc_resource(device_t bus, device_t child, 133 int type, int *rid, rman_res_t start, rman_res_t end, 134 rman_res_t count, u_int flags); 135 static int acpi_adjust_resource(device_t bus, device_t child, int type, 136 struct resource *r, rman_res_t start, rman_res_t end); 137 static int acpi_release_resource(device_t bus, device_t child, int type, 138 int rid, struct resource *r); 139 static void acpi_delete_resource(device_t bus, device_t child, int type, 140 int rid); 141 static uint32_t acpi_isa_get_logicalid(device_t dev); 142 static int acpi_isa_get_compatid(device_t dev, uint32_t *cids, int count); 143 static int acpi_device_id_probe(device_t bus, device_t dev, char **ids, char **match); 144 static ACPI_STATUS acpi_device_eval_obj(device_t bus, device_t dev, 145 ACPI_STRING pathname, ACPI_OBJECT_LIST *parameters, 146 ACPI_BUFFER *ret); 147 static ACPI_STATUS acpi_device_scan_cb(ACPI_HANDLE h, UINT32 level, 148 void *context, void **retval); 149 static ACPI_STATUS acpi_device_scan_children(device_t bus, device_t dev, 150 int max_depth, acpi_scan_cb_t user_fn, void *arg); 151 static int acpi_set_powerstate(device_t child, int state); 152 static int acpi_isa_pnp_probe(device_t bus, device_t child, 153 struct isa_pnp_id *ids); 154 static void acpi_probe_children(device_t bus); 155 static void acpi_probe_order(ACPI_HANDLE handle, int *order); 156 static ACPI_STATUS acpi_probe_child(ACPI_HANDLE handle, UINT32 level, 157 void *context, void **status); 158 static void acpi_sleep_enable(void *arg); 159 static ACPI_STATUS acpi_sleep_disable(struct acpi_softc *sc); 160 static ACPI_STATUS acpi_EnterSleepState(struct acpi_softc *sc, int state); 161 static void acpi_shutdown_final(void *arg, int howto); 162 static void acpi_enable_fixed_events(struct acpi_softc *sc); 163 static BOOLEAN acpi_has_hid(ACPI_HANDLE handle); 164 static void acpi_resync_clock(struct acpi_softc *sc); 165 static int acpi_wake_sleep_prep(ACPI_HANDLE handle, int sstate); 166 static int acpi_wake_run_prep(ACPI_HANDLE handle, int sstate); 167 static int acpi_wake_prep_walk(int sstate); 168 static int acpi_wake_sysctl_walk(device_t dev); 169 static int acpi_wake_set_sysctl(SYSCTL_HANDLER_ARGS); 170 static void acpi_system_eventhandler_sleep(void *arg, int state); 171 static void acpi_system_eventhandler_wakeup(void *arg, int state); 172 static int acpi_sname2sstate(const char *sname); 173 static const char *acpi_sstate2sname(int sstate); 174 static int acpi_supported_sleep_state_sysctl(SYSCTL_HANDLER_ARGS); 175 static int acpi_sleep_state_sysctl(SYSCTL_HANDLER_ARGS); 176 static int acpi_debug_objects_sysctl(SYSCTL_HANDLER_ARGS); 177 static int acpi_pm_func(u_long cmd, void *arg, ...); 178 static int acpi_child_location_str_method(device_t acdev, device_t child, 179 char *buf, size_t buflen); 180 static int acpi_child_pnpinfo_str_method(device_t acdev, device_t child, 181 char *buf, size_t buflen); 182 static void acpi_enable_pcie(void); 183 static void acpi_hint_device_unit(device_t acdev, device_t child, 184 const char *name, int *unitp); 185 static void acpi_reset_interfaces(device_t dev); 186 187 static device_method_t acpi_methods[] = { 188 /* Device interface */ 189 DEVMETHOD(device_probe, acpi_probe), 190 DEVMETHOD(device_attach, acpi_attach), 191 DEVMETHOD(device_shutdown, acpi_shutdown), 192 DEVMETHOD(device_detach, bus_generic_detach), 193 DEVMETHOD(device_suspend, acpi_suspend), 194 DEVMETHOD(device_resume, acpi_resume), 195 196 /* Bus interface */ 197 DEVMETHOD(bus_add_child, acpi_add_child), 198 DEVMETHOD(bus_print_child, acpi_print_child), 199 DEVMETHOD(bus_probe_nomatch, acpi_probe_nomatch), 200 DEVMETHOD(bus_driver_added, acpi_driver_added), 201 DEVMETHOD(bus_read_ivar, acpi_read_ivar), 202 DEVMETHOD(bus_write_ivar, acpi_write_ivar), 203 DEVMETHOD(bus_get_resource_list, acpi_get_rlist), 204 DEVMETHOD(bus_set_resource, acpi_set_resource), 205 DEVMETHOD(bus_get_resource, bus_generic_rl_get_resource), 206 DEVMETHOD(bus_alloc_resource, acpi_alloc_resource), 207 DEVMETHOD(bus_adjust_resource, acpi_adjust_resource), 208 DEVMETHOD(bus_release_resource, acpi_release_resource), 209 DEVMETHOD(bus_delete_resource, acpi_delete_resource), 210 DEVMETHOD(bus_child_pnpinfo_str, acpi_child_pnpinfo_str_method), 211 DEVMETHOD(bus_child_location_str, acpi_child_location_str_method), 212 DEVMETHOD(bus_activate_resource, bus_generic_activate_resource), 213 DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource), 214 DEVMETHOD(bus_setup_intr, bus_generic_setup_intr), 215 DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr), 216 DEVMETHOD(bus_hint_device_unit, acpi_hint_device_unit), 217 DEVMETHOD(bus_get_cpus, acpi_get_cpus), 218 DEVMETHOD(bus_get_domain, acpi_get_domain), 219 220 /* ACPI bus */ 221 DEVMETHOD(acpi_id_probe, acpi_device_id_probe), 222 DEVMETHOD(acpi_evaluate_object, acpi_device_eval_obj), 223 DEVMETHOD(acpi_pwr_for_sleep, acpi_device_pwr_for_sleep), 224 DEVMETHOD(acpi_scan_children, acpi_device_scan_children), 225 226 /* ISA emulation */ 227 DEVMETHOD(isa_pnp_probe, acpi_isa_pnp_probe), 228 229 DEVMETHOD_END 230 }; 231 232 static driver_t acpi_driver = { 233 "acpi", 234 acpi_methods, 235 sizeof(struct acpi_softc), 236 }; 237 238 static devclass_t acpi_devclass; 239 DRIVER_MODULE(acpi, nexus, acpi_driver, acpi_devclass, acpi_modevent, 0); 240 MODULE_VERSION(acpi, 1); 241 242 ACPI_SERIAL_DECL(acpi, "ACPI root bus"); 243 244 /* Local pools for managing system resources for ACPI child devices. */ 245 static struct rman acpi_rman_io, acpi_rman_mem; 246 247 #define ACPI_MINIMUM_AWAKETIME 5 248 249 /* Holds the description of the acpi0 device. */ 250 static char acpi_desc[ACPI_OEM_ID_SIZE + ACPI_OEM_TABLE_ID_SIZE + 2]; 251 252 SYSCTL_NODE(_debug, OID_AUTO, acpi, CTLFLAG_RD, NULL, "ACPI debugging"); 253 static char acpi_ca_version[12]; 254 SYSCTL_STRING(_debug_acpi, OID_AUTO, acpi_ca_version, CTLFLAG_RD, 255 acpi_ca_version, 0, "Version of Intel ACPI-CA"); 256 257 /* 258 * Allow overriding _OSI methods. 259 */ 260 static char acpi_install_interface[256]; 261 TUNABLE_STR("hw.acpi.install_interface", acpi_install_interface, 262 sizeof(acpi_install_interface)); 263 static char acpi_remove_interface[256]; 264 TUNABLE_STR("hw.acpi.remove_interface", acpi_remove_interface, 265 sizeof(acpi_remove_interface)); 266 267 /* Allow users to dump Debug objects without ACPI debugger. */ 268 static int acpi_debug_objects; 269 TUNABLE_INT("debug.acpi.enable_debug_objects", &acpi_debug_objects); 270 SYSCTL_PROC(_debug_acpi, OID_AUTO, enable_debug_objects, 271 CTLFLAG_RW | CTLTYPE_INT, NULL, 0, acpi_debug_objects_sysctl, "I", 272 "Enable Debug objects"); 273 274 /* Allow the interpreter to ignore common mistakes in BIOS. */ 275 static int acpi_interpreter_slack = 1; 276 TUNABLE_INT("debug.acpi.interpreter_slack", &acpi_interpreter_slack); 277 SYSCTL_INT(_debug_acpi, OID_AUTO, interpreter_slack, CTLFLAG_RDTUN, 278 &acpi_interpreter_slack, 1, "Turn on interpreter slack mode."); 279 280 /* Ignore register widths set by FADT and use default widths instead. */ 281 static int acpi_ignore_reg_width = 1; 282 TUNABLE_INT("debug.acpi.default_register_width", &acpi_ignore_reg_width); 283 SYSCTL_INT(_debug_acpi, OID_AUTO, default_register_width, CTLFLAG_RDTUN, 284 &acpi_ignore_reg_width, 1, "Ignore register widths set by FADT"); 285 286 /* Allow users to override quirks. */ 287 TUNABLE_INT("debug.acpi.quirks", &acpi_quirks); 288 289 int acpi_susp_bounce; 290 SYSCTL_INT(_debug_acpi, OID_AUTO, suspend_bounce, CTLFLAG_RW, 291 &acpi_susp_bounce, 0, "Don't actually suspend, just test devices."); 292 293 /* 294 * ACPI can only be loaded as a module by the loader; activating it after 295 * system bootstrap time is not useful, and can be fatal to the system. 296 * It also cannot be unloaded, since the entire system bus hierarchy hangs 297 * off it. 298 */ 299 static int 300 acpi_modevent(struct module *mod, int event, void *junk) 301 { 302 switch (event) { 303 case MOD_LOAD: 304 if (!cold) { 305 printf("The ACPI driver cannot be loaded after boot.\n"); 306 return (EPERM); 307 } 308 break; 309 case MOD_UNLOAD: 310 if (!cold && power_pm_get_type() == POWER_PM_TYPE_ACPI) 311 return (EBUSY); 312 break; 313 default: 314 break; 315 } 316 return (0); 317 } 318 319 /* 320 * Perform early initialization. 321 */ 322 ACPI_STATUS 323 acpi_Startup(void) 324 { 325 static int started = 0; 326 ACPI_STATUS status; 327 int val; 328 329 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 330 331 /* Only run the startup code once. The MADT driver also calls this. */ 332 if (started) 333 return_VALUE (AE_OK); 334 started = 1; 335 336 /* 337 * Initialize the ACPICA subsystem. 338 */ 339 if (ACPI_FAILURE(status = AcpiInitializeSubsystem())) { 340 printf("ACPI: Could not initialize Subsystem: %s\n", 341 AcpiFormatException(status)); 342 return_VALUE (status); 343 } 344 345 /* 346 * Pre-allocate space for RSDT/XSDT and DSDT tables and allow resizing 347 * if more tables exist. 348 */ 349 if (ACPI_FAILURE(status = AcpiInitializeTables(NULL, 2, TRUE))) { 350 printf("ACPI: Table initialisation failed: %s\n", 351 AcpiFormatException(status)); 352 return_VALUE (status); 353 } 354 355 /* Set up any quirks we have for this system. */ 356 if (acpi_quirks == ACPI_Q_OK) 357 acpi_table_quirks(&acpi_quirks); 358 359 /* If the user manually set the disabled hint to 0, force-enable ACPI. */ 360 if (resource_int_value("acpi", 0, "disabled", &val) == 0 && val == 0) 361 acpi_quirks &= ~ACPI_Q_BROKEN; 362 if (acpi_quirks & ACPI_Q_BROKEN) { 363 printf("ACPI disabled by blacklist. Contact your BIOS vendor.\n"); 364 status = AE_SUPPORT; 365 } 366 367 return_VALUE (status); 368 } 369 370 /* 371 * Detect ACPI and perform early initialisation. 372 */ 373 int 374 acpi_identify(void) 375 { 376 ACPI_TABLE_RSDP *rsdp; 377 ACPI_TABLE_HEADER *rsdt; 378 ACPI_PHYSICAL_ADDRESS paddr; 379 struct sbuf sb; 380 381 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 382 383 if (!cold) 384 return (ENXIO); 385 386 /* Check that we haven't been disabled with a hint. */ 387 if (resource_disabled("acpi", 0)) 388 return (ENXIO); 389 390 /* Check for other PM systems. */ 391 if (power_pm_get_type() != POWER_PM_TYPE_NONE && 392 power_pm_get_type() != POWER_PM_TYPE_ACPI) { 393 printf("ACPI identify failed, other PM system enabled.\n"); 394 return (ENXIO); 395 } 396 397 /* Initialize root tables. */ 398 if (ACPI_FAILURE(acpi_Startup())) { 399 printf("ACPI: Try disabling either ACPI or apic support.\n"); 400 return (ENXIO); 401 } 402 403 if ((paddr = AcpiOsGetRootPointer()) == 0 || 404 (rsdp = AcpiOsMapMemory(paddr, sizeof(ACPI_TABLE_RSDP))) == NULL) 405 return (ENXIO); 406 if (rsdp->Revision > 1 && rsdp->XsdtPhysicalAddress != 0) 407 paddr = (ACPI_PHYSICAL_ADDRESS)rsdp->XsdtPhysicalAddress; 408 else 409 paddr = (ACPI_PHYSICAL_ADDRESS)rsdp->RsdtPhysicalAddress; 410 AcpiOsUnmapMemory(rsdp, sizeof(ACPI_TABLE_RSDP)); 411 412 if ((rsdt = AcpiOsMapMemory(paddr, sizeof(ACPI_TABLE_HEADER))) == NULL) 413 return (ENXIO); 414 sbuf_new(&sb, acpi_desc, sizeof(acpi_desc), SBUF_FIXEDLEN); 415 sbuf_bcat(&sb, rsdt->OemId, ACPI_OEM_ID_SIZE); 416 sbuf_trim(&sb); 417 sbuf_putc(&sb, ' '); 418 sbuf_bcat(&sb, rsdt->OemTableId, ACPI_OEM_TABLE_ID_SIZE); 419 sbuf_trim(&sb); 420 sbuf_finish(&sb); 421 sbuf_delete(&sb); 422 AcpiOsUnmapMemory(rsdt, sizeof(ACPI_TABLE_HEADER)); 423 424 snprintf(acpi_ca_version, sizeof(acpi_ca_version), "%x", ACPI_CA_VERSION); 425 426 return (0); 427 } 428 429 /* 430 * Fetch some descriptive data from ACPI to put in our attach message. 431 */ 432 static int 433 acpi_probe(device_t dev) 434 { 435 436 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 437 438 device_set_desc(dev, acpi_desc); 439 440 return_VALUE (BUS_PROBE_NOWILDCARD); 441 } 442 443 static int 444 acpi_attach(device_t dev) 445 { 446 struct acpi_softc *sc; 447 ACPI_STATUS status; 448 int error, state; 449 UINT32 flags; 450 UINT8 TypeA, TypeB; 451 char *env; 452 453 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 454 455 sc = device_get_softc(dev); 456 sc->acpi_dev = dev; 457 callout_init(&sc->susp_force_to, 1); 458 459 error = ENXIO; 460 461 /* Initialize resource manager. */ 462 acpi_rman_io.rm_type = RMAN_ARRAY; 463 acpi_rman_io.rm_start = 0; 464 acpi_rman_io.rm_end = 0xffff; 465 acpi_rman_io.rm_descr = "ACPI I/O ports"; 466 if (rman_init(&acpi_rman_io) != 0) 467 panic("acpi rman_init IO ports failed"); 468 acpi_rman_mem.rm_type = RMAN_ARRAY; 469 acpi_rman_mem.rm_descr = "ACPI I/O memory addresses"; 470 if (rman_init(&acpi_rman_mem) != 0) 471 panic("acpi rman_init memory failed"); 472 473 /* Initialise the ACPI mutex */ 474 mtx_init(&acpi_mutex, "ACPI global lock", NULL, MTX_DEF); 475 476 /* 477 * Set the globals from our tunables. This is needed because ACPI-CA 478 * uses UINT8 for some values and we have no tunable_byte. 479 */ 480 AcpiGbl_EnableInterpreterSlack = acpi_interpreter_slack ? TRUE : FALSE; 481 AcpiGbl_EnableAmlDebugObject = acpi_debug_objects ? TRUE : FALSE; 482 AcpiGbl_UseDefaultRegisterWidths = acpi_ignore_reg_width ? TRUE : FALSE; 483 484 #ifndef ACPI_DEBUG 485 /* 486 * Disable all debugging layers and levels. 487 */ 488 AcpiDbgLayer = 0; 489 AcpiDbgLevel = 0; 490 #endif 491 492 /* Override OS interfaces if the user requested. */ 493 acpi_reset_interfaces(dev); 494 495 /* Load ACPI name space. */ 496 status = AcpiLoadTables(); 497 if (ACPI_FAILURE(status)) { 498 device_printf(dev, "Could not load Namespace: %s\n", 499 AcpiFormatException(status)); 500 goto out; 501 } 502 503 /* Handle MCFG table if present. */ 504 acpi_enable_pcie(); 505 506 /* 507 * Note that some systems (specifically, those with namespace evaluation 508 * issues that require the avoidance of parts of the namespace) must 509 * avoid running _INI and _STA on everything, as well as dodging the final 510 * object init pass. 511 * 512 * For these devices, we set ACPI_NO_DEVICE_INIT and ACPI_NO_OBJECT_INIT). 513 * 514 * XXX We should arrange for the object init pass after we have attached 515 * all our child devices, but on many systems it works here. 516 */ 517 flags = 0; 518 if (testenv("debug.acpi.avoid")) 519 flags = ACPI_NO_DEVICE_INIT | ACPI_NO_OBJECT_INIT; 520 521 /* Bring the hardware and basic handlers online. */ 522 if (ACPI_FAILURE(status = AcpiEnableSubsystem(flags))) { 523 device_printf(dev, "Could not enable ACPI: %s\n", 524 AcpiFormatException(status)); 525 goto out; 526 } 527 528 /* 529 * Call the ECDT probe function to provide EC functionality before 530 * the namespace has been evaluated. 531 * 532 * XXX This happens before the sysresource devices have been probed and 533 * attached so its resources come from nexus0. In practice, this isn't 534 * a problem but should be addressed eventually. 535 */ 536 acpi_ec_ecdt_probe(dev); 537 538 /* Bring device objects and regions online. */ 539 if (ACPI_FAILURE(status = AcpiInitializeObjects(flags))) { 540 device_printf(dev, "Could not initialize ACPI objects: %s\n", 541 AcpiFormatException(status)); 542 goto out; 543 } 544 545 /* 546 * Setup our sysctl tree. 547 * 548 * XXX: This doesn't check to make sure that none of these fail. 549 */ 550 sysctl_ctx_init(&sc->acpi_sysctl_ctx); 551 sc->acpi_sysctl_tree = SYSCTL_ADD_NODE(&sc->acpi_sysctl_ctx, 552 SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO, 553 device_get_name(dev), CTLFLAG_RD, 0, ""); 554 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 555 OID_AUTO, "supported_sleep_state", CTLTYPE_STRING | CTLFLAG_RD, 556 0, 0, acpi_supported_sleep_state_sysctl, "A", 557 "List supported ACPI sleep states."); 558 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 559 OID_AUTO, "power_button_state", CTLTYPE_STRING | CTLFLAG_RW, 560 &sc->acpi_power_button_sx, 0, acpi_sleep_state_sysctl, "A", 561 "Power button ACPI sleep state."); 562 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 563 OID_AUTO, "sleep_button_state", CTLTYPE_STRING | CTLFLAG_RW, 564 &sc->acpi_sleep_button_sx, 0, acpi_sleep_state_sysctl, "A", 565 "Sleep button ACPI sleep state."); 566 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 567 OID_AUTO, "lid_switch_state", CTLTYPE_STRING | CTLFLAG_RW, 568 &sc->acpi_lid_switch_sx, 0, acpi_sleep_state_sysctl, "A", 569 "Lid ACPI sleep state. Set to S3 if you want to suspend your laptop when close the Lid."); 570 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 571 OID_AUTO, "standby_state", CTLTYPE_STRING | CTLFLAG_RW, 572 &sc->acpi_standby_sx, 0, acpi_sleep_state_sysctl, "A", ""); 573 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 574 OID_AUTO, "suspend_state", CTLTYPE_STRING | CTLFLAG_RW, 575 &sc->acpi_suspend_sx, 0, acpi_sleep_state_sysctl, "A", ""); 576 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 577 OID_AUTO, "sleep_delay", CTLFLAG_RW, &sc->acpi_sleep_delay, 0, 578 "sleep delay in seconds"); 579 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 580 OID_AUTO, "s4bios", CTLFLAG_RW, &sc->acpi_s4bios, 0, "S4BIOS mode"); 581 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 582 OID_AUTO, "verbose", CTLFLAG_RW, &sc->acpi_verbose, 0, "verbose mode"); 583 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 584 OID_AUTO, "disable_on_reboot", CTLFLAG_RW, 585 &sc->acpi_do_disable, 0, "Disable ACPI when rebooting/halting system"); 586 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), 587 OID_AUTO, "handle_reboot", CTLFLAG_RW, 588 &sc->acpi_handle_reboot, 0, "Use ACPI Reset Register to reboot"); 589 590 /* 591 * Default to 1 second before sleeping to give some machines time to 592 * stabilize. 593 */ 594 sc->acpi_sleep_delay = 1; 595 if (bootverbose) 596 sc->acpi_verbose = 1; 597 if ((env = kern_getenv("hw.acpi.verbose")) != NULL) { 598 if (strcmp(env, "0") != 0) 599 sc->acpi_verbose = 1; 600 freeenv(env); 601 } 602 603 /* Only enable reboot by default if the FADT says it is available. */ 604 if (AcpiGbl_FADT.Flags & ACPI_FADT_RESET_REGISTER) 605 sc->acpi_handle_reboot = 1; 606 607 #if !ACPI_REDUCED_HARDWARE 608 /* Only enable S4BIOS by default if the FACS says it is available. */ 609 if (AcpiGbl_FACS != NULL && AcpiGbl_FACS->Flags & ACPI_FACS_S4_BIOS_PRESENT) 610 sc->acpi_s4bios = 1; 611 #endif 612 613 /* Probe all supported sleep states. */ 614 acpi_sleep_states[ACPI_STATE_S0] = TRUE; 615 for (state = ACPI_STATE_S1; state < ACPI_S_STATE_COUNT; state++) 616 if (ACPI_SUCCESS(AcpiEvaluateObject(ACPI_ROOT_OBJECT, 617 __DECONST(char *, AcpiGbl_SleepStateNames[state]), NULL, NULL)) && 618 ACPI_SUCCESS(AcpiGetSleepTypeData(state, &TypeA, &TypeB))) 619 acpi_sleep_states[state] = TRUE; 620 621 /* 622 * Dispatch the default sleep state to devices. The lid switch is set 623 * to UNKNOWN by default to avoid surprising users. 624 */ 625 sc->acpi_power_button_sx = acpi_sleep_states[ACPI_STATE_S5] ? 626 ACPI_STATE_S5 : ACPI_STATE_UNKNOWN; 627 sc->acpi_lid_switch_sx = ACPI_STATE_UNKNOWN; 628 sc->acpi_standby_sx = acpi_sleep_states[ACPI_STATE_S1] ? 629 ACPI_STATE_S1 : ACPI_STATE_UNKNOWN; 630 sc->acpi_suspend_sx = acpi_sleep_states[ACPI_STATE_S3] ? 631 ACPI_STATE_S3 : ACPI_STATE_UNKNOWN; 632 633 /* Pick the first valid sleep state for the sleep button default. */ 634 sc->acpi_sleep_button_sx = ACPI_STATE_UNKNOWN; 635 for (state = ACPI_STATE_S1; state <= ACPI_STATE_S4; state++) 636 if (acpi_sleep_states[state]) { 637 sc->acpi_sleep_button_sx = state; 638 break; 639 } 640 641 acpi_enable_fixed_events(sc); 642 643 /* 644 * Scan the namespace and attach/initialise children. 645 */ 646 647 /* Register our shutdown handler. */ 648 EVENTHANDLER_REGISTER(shutdown_final, acpi_shutdown_final, sc, 649 SHUTDOWN_PRI_LAST); 650 651 /* 652 * Register our acpi event handlers. 653 * XXX should be configurable eg. via userland policy manager. 654 */ 655 EVENTHANDLER_REGISTER(acpi_sleep_event, acpi_system_eventhandler_sleep, 656 sc, ACPI_EVENT_PRI_LAST); 657 EVENTHANDLER_REGISTER(acpi_wakeup_event, acpi_system_eventhandler_wakeup, 658 sc, ACPI_EVENT_PRI_LAST); 659 660 /* Flag our initial states. */ 661 sc->acpi_enabled = TRUE; 662 sc->acpi_sstate = ACPI_STATE_S0; 663 sc->acpi_sleep_disabled = TRUE; 664 665 /* Create the control device */ 666 sc->acpi_dev_t = make_dev(&acpi_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0664, 667 "acpi"); 668 sc->acpi_dev_t->si_drv1 = sc; 669 670 if ((error = acpi_machdep_init(dev))) 671 goto out; 672 673 /* Register ACPI again to pass the correct argument of pm_func. */ 674 power_pm_register(POWER_PM_TYPE_ACPI, acpi_pm_func, sc); 675 676 if (!acpi_disabled("bus")) { 677 EVENTHANDLER_REGISTER(dev_lookup, acpi_lookup, NULL, 1000); 678 acpi_probe_children(dev); 679 } 680 681 /* Update all GPEs and enable runtime GPEs. */ 682 status = AcpiUpdateAllGpes(); 683 if (ACPI_FAILURE(status)) 684 device_printf(dev, "Could not update all GPEs: %s\n", 685 AcpiFormatException(status)); 686 687 /* Allow sleep request after a while. */ 688 callout_init_mtx(&acpi_sleep_timer, &acpi_mutex, 0); 689 callout_reset(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME, 690 acpi_sleep_enable, sc); 691 692 error = 0; 693 694 out: 695 return_VALUE (error); 696 } 697 698 static void 699 acpi_set_power_children(device_t dev, int state) 700 { 701 device_t child; 702 device_t *devlist; 703 int dstate, i, numdevs; 704 705 if (device_get_children(dev, &devlist, &numdevs) != 0) 706 return; 707 708 /* 709 * Retrieve and set D-state for the sleep state if _SxD is present. 710 * Skip children who aren't attached since they are handled separately. 711 */ 712 for (i = 0; i < numdevs; i++) { 713 child = devlist[i]; 714 dstate = state; 715 if (device_is_attached(child) && 716 acpi_device_pwr_for_sleep(dev, child, &dstate) == 0) 717 acpi_set_powerstate(child, dstate); 718 } 719 free(devlist, M_TEMP); 720 } 721 722 static int 723 acpi_suspend(device_t dev) 724 { 725 int error; 726 727 GIANT_REQUIRED; 728 729 error = bus_generic_suspend(dev); 730 if (error == 0) 731 acpi_set_power_children(dev, ACPI_STATE_D3); 732 733 return (error); 734 } 735 736 static int 737 acpi_resume(device_t dev) 738 { 739 740 GIANT_REQUIRED; 741 742 acpi_set_power_children(dev, ACPI_STATE_D0); 743 744 return (bus_generic_resume(dev)); 745 } 746 747 static int 748 acpi_shutdown(device_t dev) 749 { 750 751 GIANT_REQUIRED; 752 753 /* Allow children to shutdown first. */ 754 bus_generic_shutdown(dev); 755 756 /* 757 * Enable any GPEs that are able to power-on the system (i.e., RTC). 758 * Also, disable any that are not valid for this state (most). 759 */ 760 acpi_wake_prep_walk(ACPI_STATE_S5); 761 762 return (0); 763 } 764 765 /* 766 * Handle a new device being added 767 */ 768 static device_t 769 acpi_add_child(device_t bus, u_int order, const char *name, int unit) 770 { 771 struct acpi_device *ad; 772 device_t child; 773 774 if ((ad = malloc(sizeof(*ad), M_ACPIDEV, M_NOWAIT | M_ZERO)) == NULL) 775 return (NULL); 776 777 resource_list_init(&ad->ad_rl); 778 779 child = device_add_child_ordered(bus, order, name, unit); 780 if (child != NULL) 781 device_set_ivars(child, ad); 782 else 783 free(ad, M_ACPIDEV); 784 return (child); 785 } 786 787 static int 788 acpi_print_child(device_t bus, device_t child) 789 { 790 struct acpi_device *adev = device_get_ivars(child); 791 struct resource_list *rl = &adev->ad_rl; 792 int retval = 0; 793 794 retval += bus_print_child_header(bus, child); 795 retval += resource_list_print_type(rl, "port", SYS_RES_IOPORT, "%#jx"); 796 retval += resource_list_print_type(rl, "iomem", SYS_RES_MEMORY, "%#jx"); 797 retval += resource_list_print_type(rl, "irq", SYS_RES_IRQ, "%jd"); 798 retval += resource_list_print_type(rl, "drq", SYS_RES_DRQ, "%jd"); 799 if (device_get_flags(child)) 800 retval += printf(" flags %#x", device_get_flags(child)); 801 retval += bus_print_child_domain(bus, child); 802 retval += bus_print_child_footer(bus, child); 803 804 return (retval); 805 } 806 807 /* 808 * If this device is an ACPI child but no one claimed it, attempt 809 * to power it off. We'll power it back up when a driver is added. 810 * 811 * XXX Disabled for now since many necessary devices (like fdc and 812 * ATA) don't claim the devices we created for them but still expect 813 * them to be powered up. 814 */ 815 static void 816 acpi_probe_nomatch(device_t bus, device_t child) 817 { 818 #ifdef ACPI_ENABLE_POWERDOWN_NODRIVER 819 acpi_set_powerstate(child, ACPI_STATE_D3); 820 #endif 821 } 822 823 /* 824 * If a new driver has a chance to probe a child, first power it up. 825 * 826 * XXX Disabled for now (see acpi_probe_nomatch for details). 827 */ 828 static void 829 acpi_driver_added(device_t dev, driver_t *driver) 830 { 831 device_t child, *devlist; 832 int i, numdevs; 833 834 DEVICE_IDENTIFY(driver, dev); 835 if (device_get_children(dev, &devlist, &numdevs)) 836 return; 837 for (i = 0; i < numdevs; i++) { 838 child = devlist[i]; 839 if (device_get_state(child) == DS_NOTPRESENT) { 840 #ifdef ACPI_ENABLE_POWERDOWN_NODRIVER 841 acpi_set_powerstate(child, ACPI_STATE_D0); 842 if (device_probe_and_attach(child) != 0) 843 acpi_set_powerstate(child, ACPI_STATE_D3); 844 #else 845 device_probe_and_attach(child); 846 #endif 847 } 848 } 849 free(devlist, M_TEMP); 850 } 851 852 /* Location hint for devctl(8) */ 853 static int 854 acpi_child_location_str_method(device_t cbdev, device_t child, char *buf, 855 size_t buflen) 856 { 857 struct acpi_device *dinfo = device_get_ivars(child); 858 char buf2[32]; 859 int pxm; 860 861 if (dinfo->ad_handle) { 862 snprintf(buf, buflen, "handle=%s", acpi_name(dinfo->ad_handle)); 863 if (ACPI_SUCCESS(acpi_GetInteger(dinfo->ad_handle, "_PXM", &pxm))) { 864 snprintf(buf2, 32, " _PXM=%d", pxm); 865 strlcat(buf, buf2, buflen); 866 } 867 } else { 868 snprintf(buf, buflen, "unknown"); 869 } 870 return (0); 871 } 872 873 /* PnP information for devctl(8) */ 874 static int 875 acpi_child_pnpinfo_str_method(device_t cbdev, device_t child, char *buf, 876 size_t buflen) 877 { 878 struct acpi_device *dinfo = device_get_ivars(child); 879 ACPI_DEVICE_INFO *adinfo; 880 881 if (ACPI_FAILURE(AcpiGetObjectInfo(dinfo->ad_handle, &adinfo))) { 882 snprintf(buf, buflen, "unknown"); 883 return (0); 884 } 885 886 snprintf(buf, buflen, "_HID=%s _UID=%lu", 887 (adinfo->Valid & ACPI_VALID_HID) ? 888 adinfo->HardwareId.String : "none", 889 (adinfo->Valid & ACPI_VALID_UID) ? 890 strtoul(adinfo->UniqueId.String, NULL, 10) : 0UL); 891 AcpiOsFree(adinfo); 892 893 return (0); 894 } 895 896 /* 897 * Handle per-device ivars 898 */ 899 static int 900 acpi_read_ivar(device_t dev, device_t child, int index, uintptr_t *result) 901 { 902 struct acpi_device *ad; 903 904 if ((ad = device_get_ivars(child)) == NULL) { 905 device_printf(child, "device has no ivars\n"); 906 return (ENOENT); 907 } 908 909 /* ACPI and ISA compatibility ivars */ 910 switch(index) { 911 case ACPI_IVAR_HANDLE: 912 *(ACPI_HANDLE *)result = ad->ad_handle; 913 break; 914 case ACPI_IVAR_PRIVATE: 915 *(void **)result = ad->ad_private; 916 break; 917 case ACPI_IVAR_FLAGS: 918 *(int *)result = ad->ad_flags; 919 break; 920 case ISA_IVAR_VENDORID: 921 case ISA_IVAR_SERIAL: 922 case ISA_IVAR_COMPATID: 923 *(int *)result = -1; 924 break; 925 case ISA_IVAR_LOGICALID: 926 *(int *)result = acpi_isa_get_logicalid(child); 927 break; 928 case PCI_IVAR_CLASS: 929 *(uint8_t*)result = (ad->ad_cls_class >> 16) & 0xff; 930 break; 931 case PCI_IVAR_SUBCLASS: 932 *(uint8_t*)result = (ad->ad_cls_class >> 8) & 0xff; 933 break; 934 case PCI_IVAR_PROGIF: 935 *(uint8_t*)result = (ad->ad_cls_class >> 0) & 0xff; 936 break; 937 default: 938 return (ENOENT); 939 } 940 941 return (0); 942 } 943 944 static int 945 acpi_write_ivar(device_t dev, device_t child, int index, uintptr_t value) 946 { 947 struct acpi_device *ad; 948 949 if ((ad = device_get_ivars(child)) == NULL) { 950 device_printf(child, "device has no ivars\n"); 951 return (ENOENT); 952 } 953 954 switch(index) { 955 case ACPI_IVAR_HANDLE: 956 ad->ad_handle = (ACPI_HANDLE)value; 957 break; 958 case ACPI_IVAR_PRIVATE: 959 ad->ad_private = (void *)value; 960 break; 961 case ACPI_IVAR_FLAGS: 962 ad->ad_flags = (int)value; 963 break; 964 default: 965 panic("bad ivar write request (%d)", index); 966 return (ENOENT); 967 } 968 969 return (0); 970 } 971 972 /* 973 * Handle child resource allocation/removal 974 */ 975 static struct resource_list * 976 acpi_get_rlist(device_t dev, device_t child) 977 { 978 struct acpi_device *ad; 979 980 ad = device_get_ivars(child); 981 return (&ad->ad_rl); 982 } 983 984 static int 985 acpi_match_resource_hint(device_t dev, int type, long value) 986 { 987 struct acpi_device *ad = device_get_ivars(dev); 988 struct resource_list *rl = &ad->ad_rl; 989 struct resource_list_entry *rle; 990 991 STAILQ_FOREACH(rle, rl, link) { 992 if (rle->type != type) 993 continue; 994 if (rle->start <= value && rle->end >= value) 995 return (1); 996 } 997 return (0); 998 } 999 1000 /* 1001 * Wire device unit numbers based on resource matches in hints. 1002 */ 1003 static void 1004 acpi_hint_device_unit(device_t acdev, device_t child, const char *name, 1005 int *unitp) 1006 { 1007 const char *s; 1008 long value; 1009 int line, matches, unit; 1010 1011 /* 1012 * Iterate over all the hints for the devices with the specified 1013 * name to see if one's resources are a subset of this device. 1014 */ 1015 line = 0; 1016 while (resource_find_dev(&line, name, &unit, "at", NULL) == 0) { 1017 /* Must have an "at" for acpi or isa. */ 1018 resource_string_value(name, unit, "at", &s); 1019 if (!(strcmp(s, "acpi0") == 0 || strcmp(s, "acpi") == 0 || 1020 strcmp(s, "isa0") == 0 || strcmp(s, "isa") == 0)) 1021 continue; 1022 1023 /* 1024 * Check for matching resources. We must have at least one match. 1025 * Since I/O and memory resources cannot be shared, if we get a 1026 * match on either of those, ignore any mismatches in IRQs or DRQs. 1027 * 1028 * XXX: We may want to revisit this to be more lenient and wire 1029 * as long as it gets one match. 1030 */ 1031 matches = 0; 1032 if (resource_long_value(name, unit, "port", &value) == 0) { 1033 /* 1034 * Floppy drive controllers are notorious for having a 1035 * wide variety of resources not all of which include the 1036 * first port that is specified by the hint (typically 1037 * 0x3f0) (see the comment above fdc_isa_alloc_resources() 1038 * in fdc_isa.c). However, they do all seem to include 1039 * port + 2 (e.g. 0x3f2) so for a floppy device, look for 1040 * 'value + 2' in the port resources instead of the hint 1041 * value. 1042 */ 1043 if (strcmp(name, "fdc") == 0) 1044 value += 2; 1045 if (acpi_match_resource_hint(child, SYS_RES_IOPORT, value)) 1046 matches++; 1047 else 1048 continue; 1049 } 1050 if (resource_long_value(name, unit, "maddr", &value) == 0) { 1051 if (acpi_match_resource_hint(child, SYS_RES_MEMORY, value)) 1052 matches++; 1053 else 1054 continue; 1055 } 1056 if (matches > 0) 1057 goto matched; 1058 if (resource_long_value(name, unit, "irq", &value) == 0) { 1059 if (acpi_match_resource_hint(child, SYS_RES_IRQ, value)) 1060 matches++; 1061 else 1062 continue; 1063 } 1064 if (resource_long_value(name, unit, "drq", &value) == 0) { 1065 if (acpi_match_resource_hint(child, SYS_RES_DRQ, value)) 1066 matches++; 1067 else 1068 continue; 1069 } 1070 1071 matched: 1072 if (matches > 0) { 1073 /* We have a winner! */ 1074 *unitp = unit; 1075 break; 1076 } 1077 } 1078 } 1079 1080 /* 1081 * Fetch the NUMA domain for a device by mapping the value returned by 1082 * _PXM to a NUMA domain. If the device does not have a _PXM method, 1083 * -2 is returned. If any other error occurs, -1 is returned. 1084 */ 1085 static int 1086 acpi_parse_pxm(device_t dev) 1087 { 1088 #ifdef NUMA 1089 #if defined(__i386__) || defined(__amd64__) 1090 ACPI_HANDLE handle; 1091 ACPI_STATUS status; 1092 int pxm; 1093 1094 handle = acpi_get_handle(dev); 1095 if (handle == NULL) 1096 return (-2); 1097 status = acpi_GetInteger(handle, "_PXM", &pxm); 1098 if (ACPI_SUCCESS(status)) 1099 return (acpi_map_pxm_to_vm_domainid(pxm)); 1100 if (status == AE_NOT_FOUND) 1101 return (-2); 1102 #endif 1103 #endif 1104 return (-1); 1105 } 1106 1107 int 1108 acpi_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize, 1109 cpuset_t *cpuset) 1110 { 1111 int d, error; 1112 1113 d = acpi_parse_pxm(child); 1114 if (d < 0) 1115 return (bus_generic_get_cpus(dev, child, op, setsize, cpuset)); 1116 1117 switch (op) { 1118 case LOCAL_CPUS: 1119 if (setsize != sizeof(cpuset_t)) 1120 return (EINVAL); 1121 *cpuset = cpuset_domain[d]; 1122 return (0); 1123 case INTR_CPUS: 1124 error = bus_generic_get_cpus(dev, child, op, setsize, cpuset); 1125 if (error != 0) 1126 return (error); 1127 if (setsize != sizeof(cpuset_t)) 1128 return (EINVAL); 1129 CPU_AND(cpuset, &cpuset_domain[d]); 1130 return (0); 1131 default: 1132 return (bus_generic_get_cpus(dev, child, op, setsize, cpuset)); 1133 } 1134 } 1135 1136 /* 1137 * Fetch the NUMA domain for the given device 'dev'. 1138 * 1139 * If a device has a _PXM method, map that to a NUMA domain. 1140 * Otherwise, pass the request up to the parent. 1141 * If there's no matching domain or the domain cannot be 1142 * determined, return ENOENT. 1143 */ 1144 int 1145 acpi_get_domain(device_t dev, device_t child, int *domain) 1146 { 1147 int d; 1148 1149 d = acpi_parse_pxm(child); 1150 if (d >= 0) { 1151 *domain = d; 1152 return (0); 1153 } 1154 if (d == -1) 1155 return (ENOENT); 1156 1157 /* No _PXM node; go up a level */ 1158 return (bus_generic_get_domain(dev, child, domain)); 1159 } 1160 1161 /* 1162 * Pre-allocate/manage all memory and IO resources. Since rman can't handle 1163 * duplicates, we merge any in the sysresource attach routine. 1164 */ 1165 static int 1166 acpi_sysres_alloc(device_t dev) 1167 { 1168 struct resource *res; 1169 struct resource_list *rl; 1170 struct resource_list_entry *rle; 1171 struct rman *rm; 1172 device_t *children; 1173 int child_count, i; 1174 1175 /* 1176 * Probe/attach any sysresource devices. This would be unnecessary if we 1177 * had multi-pass probe/attach. 1178 */ 1179 if (device_get_children(dev, &children, &child_count) != 0) 1180 return (ENXIO); 1181 for (i = 0; i < child_count; i++) { 1182 if (ACPI_ID_PROBE(dev, children[i], sysres_ids, NULL) <= 0) 1183 device_probe_and_attach(children[i]); 1184 } 1185 free(children, M_TEMP); 1186 1187 rl = BUS_GET_RESOURCE_LIST(device_get_parent(dev), dev); 1188 STAILQ_FOREACH(rle, rl, link) { 1189 if (rle->res != NULL) { 1190 device_printf(dev, "duplicate resource for %jx\n", rle->start); 1191 continue; 1192 } 1193 1194 /* Only memory and IO resources are valid here. */ 1195 switch (rle->type) { 1196 case SYS_RES_IOPORT: 1197 rm = &acpi_rman_io; 1198 break; 1199 case SYS_RES_MEMORY: 1200 rm = &acpi_rman_mem; 1201 break; 1202 default: 1203 continue; 1204 } 1205 1206 /* Pre-allocate resource and add to our rman pool. */ 1207 res = BUS_ALLOC_RESOURCE(device_get_parent(dev), dev, rle->type, 1208 &rle->rid, rle->start, rle->start + rle->count - 1, rle->count, 0); 1209 if (res != NULL) { 1210 rman_manage_region(rm, rman_get_start(res), rman_get_end(res)); 1211 rle->res = res; 1212 } else if (bootverbose) 1213 device_printf(dev, "reservation of %jx, %jx (%d) failed\n", 1214 rle->start, rle->count, rle->type); 1215 } 1216 return (0); 1217 } 1218 1219 /* 1220 * Reserve declared resources for devices found during attach once system 1221 * resources have been allocated. 1222 */ 1223 static void 1224 acpi_reserve_resources(device_t dev) 1225 { 1226 struct resource_list_entry *rle; 1227 struct resource_list *rl; 1228 struct acpi_device *ad; 1229 struct acpi_softc *sc; 1230 device_t *children; 1231 int child_count, i; 1232 1233 sc = device_get_softc(dev); 1234 if (device_get_children(dev, &children, &child_count) != 0) 1235 return; 1236 for (i = 0; i < child_count; i++) { 1237 ad = device_get_ivars(children[i]); 1238 rl = &ad->ad_rl; 1239 1240 /* Don't reserve system resources. */ 1241 if (ACPI_ID_PROBE(dev, children[i], sysres_ids, NULL) <= 0) 1242 continue; 1243 1244 STAILQ_FOREACH(rle, rl, link) { 1245 /* 1246 * Don't reserve IRQ resources. There are many sticky things 1247 * to get right otherwise (e.g. IRQs for psm, atkbd, and HPET 1248 * when using legacy routing). 1249 */ 1250 if (rle->type == SYS_RES_IRQ) 1251 continue; 1252 1253 /* 1254 * Don't reserve the resource if it is already allocated. 1255 * The acpi_ec(4) driver can allocate its resources early 1256 * if ECDT is present. 1257 */ 1258 if (rle->res != NULL) 1259 continue; 1260 1261 /* 1262 * Try to reserve the resource from our parent. If this 1263 * fails because the resource is a system resource, just 1264 * let it be. The resource range is already reserved so 1265 * that other devices will not use it. If the driver 1266 * needs to allocate the resource, then 1267 * acpi_alloc_resource() will sub-alloc from the system 1268 * resource. 1269 */ 1270 resource_list_reserve(rl, dev, children[i], rle->type, &rle->rid, 1271 rle->start, rle->end, rle->count, 0); 1272 } 1273 } 1274 free(children, M_TEMP); 1275 sc->acpi_resources_reserved = 1; 1276 } 1277 1278 static int 1279 acpi_set_resource(device_t dev, device_t child, int type, int rid, 1280 rman_res_t start, rman_res_t count) 1281 { 1282 struct acpi_softc *sc = device_get_softc(dev); 1283 struct acpi_device *ad = device_get_ivars(child); 1284 struct resource_list *rl = &ad->ad_rl; 1285 ACPI_DEVICE_INFO *devinfo; 1286 rman_res_t end; 1287 int allow; 1288 1289 /* Ignore IRQ resources for PCI link devices. */ 1290 if (type == SYS_RES_IRQ && 1291 ACPI_ID_PROBE(dev, child, pcilink_ids, NULL) <= 0) 1292 return (0); 1293 1294 /* 1295 * Ignore most resources for PCI root bridges. Some BIOSes 1296 * incorrectly enumerate the memory ranges they decode as plain 1297 * memory resources instead of as ResourceProducer ranges. Other 1298 * BIOSes incorrectly list system resource entries for I/O ranges 1299 * under the PCI bridge. Do allow the one known-correct case on 1300 * x86 of a PCI bridge claiming the I/O ports used for PCI config 1301 * access. 1302 */ 1303 if (type == SYS_RES_MEMORY || type == SYS_RES_IOPORT) { 1304 if (ACPI_SUCCESS(AcpiGetObjectInfo(ad->ad_handle, &devinfo))) { 1305 if ((devinfo->Flags & ACPI_PCI_ROOT_BRIDGE) != 0) { 1306 #if defined(__i386__) || defined(__amd64__) 1307 allow = (type == SYS_RES_IOPORT && start == CONF1_ADDR_PORT); 1308 #else 1309 allow = 0; 1310 #endif 1311 if (!allow) { 1312 AcpiOsFree(devinfo); 1313 return (0); 1314 } 1315 } 1316 AcpiOsFree(devinfo); 1317 } 1318 } 1319 1320 #ifdef INTRNG 1321 /* map with default for now */ 1322 if (type == SYS_RES_IRQ) 1323 start = (rman_res_t)acpi_map_intr(child, (u_int)start, 1324 acpi_get_handle(child)); 1325 #endif 1326 1327 /* If the resource is already allocated, fail. */ 1328 if (resource_list_busy(rl, type, rid)) 1329 return (EBUSY); 1330 1331 /* If the resource is already reserved, release it. */ 1332 if (resource_list_reserved(rl, type, rid)) 1333 resource_list_unreserve(rl, dev, child, type, rid); 1334 1335 /* Add the resource. */ 1336 end = (start + count - 1); 1337 resource_list_add(rl, type, rid, start, end, count); 1338 1339 /* Don't reserve resources until the system resources are allocated. */ 1340 if (!sc->acpi_resources_reserved) 1341 return (0); 1342 1343 /* Don't reserve system resources. */ 1344 if (ACPI_ID_PROBE(dev, child, sysres_ids, NULL) <= 0) 1345 return (0); 1346 1347 /* 1348 * Don't reserve IRQ resources. There are many sticky things to 1349 * get right otherwise (e.g. IRQs for psm, atkbd, and HPET when 1350 * using legacy routing). 1351 */ 1352 if (type == SYS_RES_IRQ) 1353 return (0); 1354 1355 /* 1356 * Reserve the resource. 1357 * 1358 * XXX: Ignores failure for now. Failure here is probably a 1359 * BIOS/firmware bug? 1360 */ 1361 resource_list_reserve(rl, dev, child, type, &rid, start, end, count, 0); 1362 return (0); 1363 } 1364 1365 static struct resource * 1366 acpi_alloc_resource(device_t bus, device_t child, int type, int *rid, 1367 rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 1368 { 1369 #ifndef INTRNG 1370 ACPI_RESOURCE ares; 1371 #endif 1372 struct acpi_device *ad; 1373 struct resource_list_entry *rle; 1374 struct resource_list *rl; 1375 struct resource *res; 1376 int isdefault = RMAN_IS_DEFAULT_RANGE(start, end); 1377 1378 /* 1379 * First attempt at allocating the resource. For direct children, 1380 * use resource_list_alloc() to handle reserved resources. For 1381 * other devices, pass the request up to our parent. 1382 */ 1383 if (bus == device_get_parent(child)) { 1384 ad = device_get_ivars(child); 1385 rl = &ad->ad_rl; 1386 1387 /* 1388 * Simulate the behavior of the ISA bus for direct children 1389 * devices. That is, if a non-default range is specified for 1390 * a resource that doesn't exist, use bus_set_resource() to 1391 * add the resource before allocating it. Note that these 1392 * resources will not be reserved. 1393 */ 1394 if (!isdefault && resource_list_find(rl, type, *rid) == NULL) 1395 resource_list_add(rl, type, *rid, start, end, count); 1396 res = resource_list_alloc(rl, bus, child, type, rid, start, end, count, 1397 flags); 1398 #ifndef INTRNG 1399 if (res != NULL && type == SYS_RES_IRQ) { 1400 /* 1401 * Since bus_config_intr() takes immediate effect, we cannot 1402 * configure the interrupt associated with a device when we 1403 * parse the resources but have to defer it until a driver 1404 * actually allocates the interrupt via bus_alloc_resource(). 1405 * 1406 * XXX: Should we handle the lookup failing? 1407 */ 1408 if (ACPI_SUCCESS(acpi_lookup_irq_resource(child, *rid, res, &ares))) 1409 acpi_config_intr(child, &ares); 1410 } 1411 #endif 1412 1413 /* 1414 * If this is an allocation of the "default" range for a given 1415 * RID, fetch the exact bounds for this resource from the 1416 * resource list entry to try to allocate the range from the 1417 * system resource regions. 1418 */ 1419 if (res == NULL && isdefault) { 1420 rle = resource_list_find(rl, type, *rid); 1421 if (rle != NULL) { 1422 start = rle->start; 1423 end = rle->end; 1424 count = rle->count; 1425 } 1426 } 1427 } else 1428 res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, type, rid, 1429 start, end, count, flags); 1430 1431 /* 1432 * If the first attempt failed and this is an allocation of a 1433 * specific range, try to satisfy the request via a suballocation 1434 * from our system resource regions. 1435 */ 1436 if (res == NULL && start + count - 1 == end) 1437 res = acpi_alloc_sysres(child, type, rid, start, end, count, flags); 1438 return (res); 1439 } 1440 1441 /* 1442 * Attempt to allocate a specific resource range from the system 1443 * resource ranges. Note that we only handle memory and I/O port 1444 * system resources. 1445 */ 1446 struct resource * 1447 acpi_alloc_sysres(device_t child, int type, int *rid, rman_res_t start, 1448 rman_res_t end, rman_res_t count, u_int flags) 1449 { 1450 struct rman *rm; 1451 struct resource *res; 1452 1453 switch (type) { 1454 case SYS_RES_IOPORT: 1455 rm = &acpi_rman_io; 1456 break; 1457 case SYS_RES_MEMORY: 1458 rm = &acpi_rman_mem; 1459 break; 1460 default: 1461 return (NULL); 1462 } 1463 1464 KASSERT(start + count - 1 == end, ("wildcard resource range")); 1465 res = rman_reserve_resource(rm, start, end, count, flags & ~RF_ACTIVE, 1466 child); 1467 if (res == NULL) 1468 return (NULL); 1469 1470 rman_set_rid(res, *rid); 1471 1472 /* If requested, activate the resource using the parent's method. */ 1473 if (flags & RF_ACTIVE) 1474 if (bus_activate_resource(child, type, *rid, res) != 0) { 1475 rman_release_resource(res); 1476 return (NULL); 1477 } 1478 1479 return (res); 1480 } 1481 1482 static int 1483 acpi_is_resource_managed(int type, struct resource *r) 1484 { 1485 1486 /* We only handle memory and IO resources through rman. */ 1487 switch (type) { 1488 case SYS_RES_IOPORT: 1489 return (rman_is_region_manager(r, &acpi_rman_io)); 1490 case SYS_RES_MEMORY: 1491 return (rman_is_region_manager(r, &acpi_rman_mem)); 1492 } 1493 return (0); 1494 } 1495 1496 static int 1497 acpi_adjust_resource(device_t bus, device_t child, int type, struct resource *r, 1498 rman_res_t start, rman_res_t end) 1499 { 1500 1501 if (acpi_is_resource_managed(type, r)) 1502 return (rman_adjust_resource(r, start, end)); 1503 return (bus_generic_adjust_resource(bus, child, type, r, start, end)); 1504 } 1505 1506 static int 1507 acpi_release_resource(device_t bus, device_t child, int type, int rid, 1508 struct resource *r) 1509 { 1510 int ret; 1511 1512 /* 1513 * If this resource belongs to one of our internal managers, 1514 * deactivate it and release it to the local pool. 1515 */ 1516 if (acpi_is_resource_managed(type, r)) { 1517 if (rman_get_flags(r) & RF_ACTIVE) { 1518 ret = bus_deactivate_resource(child, type, rid, r); 1519 if (ret != 0) 1520 return (ret); 1521 } 1522 return (rman_release_resource(r)); 1523 } 1524 1525 return (bus_generic_rl_release_resource(bus, child, type, rid, r)); 1526 } 1527 1528 static void 1529 acpi_delete_resource(device_t bus, device_t child, int type, int rid) 1530 { 1531 struct resource_list *rl; 1532 1533 rl = acpi_get_rlist(bus, child); 1534 if (resource_list_busy(rl, type, rid)) { 1535 device_printf(bus, "delete_resource: Resource still owned by child" 1536 " (type=%d, rid=%d)\n", type, rid); 1537 return; 1538 } 1539 resource_list_unreserve(rl, bus, child, type, rid); 1540 resource_list_delete(rl, type, rid); 1541 } 1542 1543 /* Allocate an IO port or memory resource, given its GAS. */ 1544 int 1545 acpi_bus_alloc_gas(device_t dev, int *type, int *rid, ACPI_GENERIC_ADDRESS *gas, 1546 struct resource **res, u_int flags) 1547 { 1548 int error, res_type; 1549 1550 error = ENOMEM; 1551 if (type == NULL || rid == NULL || gas == NULL || res == NULL) 1552 return (EINVAL); 1553 1554 /* We only support memory and IO spaces. */ 1555 switch (gas->SpaceId) { 1556 case ACPI_ADR_SPACE_SYSTEM_MEMORY: 1557 res_type = SYS_RES_MEMORY; 1558 break; 1559 case ACPI_ADR_SPACE_SYSTEM_IO: 1560 res_type = SYS_RES_IOPORT; 1561 break; 1562 default: 1563 return (EOPNOTSUPP); 1564 } 1565 1566 /* 1567 * If the register width is less than 8, assume the BIOS author means 1568 * it is a bit field and just allocate a byte. 1569 */ 1570 if (gas->BitWidth && gas->BitWidth < 8) 1571 gas->BitWidth = 8; 1572 1573 /* Validate the address after we're sure we support the space. */ 1574 if (gas->Address == 0 || gas->BitWidth == 0) 1575 return (EINVAL); 1576 1577 bus_set_resource(dev, res_type, *rid, gas->Address, 1578 gas->BitWidth / 8); 1579 *res = bus_alloc_resource_any(dev, res_type, rid, RF_ACTIVE | flags); 1580 if (*res != NULL) { 1581 *type = res_type; 1582 error = 0; 1583 } else 1584 bus_delete_resource(dev, res_type, *rid); 1585 1586 return (error); 1587 } 1588 1589 /* Probe _HID and _CID for compatible ISA PNP ids. */ 1590 static uint32_t 1591 acpi_isa_get_logicalid(device_t dev) 1592 { 1593 ACPI_DEVICE_INFO *devinfo; 1594 ACPI_HANDLE h; 1595 uint32_t pnpid; 1596 1597 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1598 1599 /* Fetch and validate the HID. */ 1600 if ((h = acpi_get_handle(dev)) == NULL || 1601 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 1602 return_VALUE (0); 1603 1604 pnpid = (devinfo->Valid & ACPI_VALID_HID) != 0 && 1605 devinfo->HardwareId.Length >= ACPI_EISAID_STRING_SIZE ? 1606 PNP_EISAID(devinfo->HardwareId.String) : 0; 1607 AcpiOsFree(devinfo); 1608 1609 return_VALUE (pnpid); 1610 } 1611 1612 static int 1613 acpi_isa_get_compatid(device_t dev, uint32_t *cids, int count) 1614 { 1615 ACPI_DEVICE_INFO *devinfo; 1616 ACPI_PNP_DEVICE_ID *ids; 1617 ACPI_HANDLE h; 1618 uint32_t *pnpid; 1619 int i, valid; 1620 1621 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1622 1623 pnpid = cids; 1624 1625 /* Fetch and validate the CID */ 1626 if ((h = acpi_get_handle(dev)) == NULL || 1627 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 1628 return_VALUE (0); 1629 1630 if ((devinfo->Valid & ACPI_VALID_CID) == 0) { 1631 AcpiOsFree(devinfo); 1632 return_VALUE (0); 1633 } 1634 1635 if (devinfo->CompatibleIdList.Count < count) 1636 count = devinfo->CompatibleIdList.Count; 1637 ids = devinfo->CompatibleIdList.Ids; 1638 for (i = 0, valid = 0; i < count; i++) 1639 if (ids[i].Length >= ACPI_EISAID_STRING_SIZE && 1640 strncmp(ids[i].String, "PNP", 3) == 0) { 1641 *pnpid++ = PNP_EISAID(ids[i].String); 1642 valid++; 1643 } 1644 AcpiOsFree(devinfo); 1645 1646 return_VALUE (valid); 1647 } 1648 1649 static int 1650 acpi_device_id_probe(device_t bus, device_t dev, char **ids, char **match) 1651 { 1652 ACPI_HANDLE h; 1653 ACPI_OBJECT_TYPE t; 1654 int rv; 1655 int i; 1656 1657 h = acpi_get_handle(dev); 1658 if (ids == NULL || h == NULL) 1659 return (ENXIO); 1660 t = acpi_get_type(dev); 1661 if (t != ACPI_TYPE_DEVICE && t != ACPI_TYPE_PROCESSOR) 1662 return (ENXIO); 1663 1664 /* Try to match one of the array of IDs with a HID or CID. */ 1665 for (i = 0; ids[i] != NULL; i++) { 1666 rv = acpi_MatchHid(h, ids[i]); 1667 if (rv == ACPI_MATCHHID_NOMATCH) 1668 continue; 1669 1670 if (match != NULL) { 1671 *match = ids[i]; 1672 } 1673 return ((rv == ACPI_MATCHHID_HID)? 1674 BUS_PROBE_DEFAULT : BUS_PROBE_LOW_PRIORITY); 1675 } 1676 return (ENXIO); 1677 } 1678 1679 static ACPI_STATUS 1680 acpi_device_eval_obj(device_t bus, device_t dev, ACPI_STRING pathname, 1681 ACPI_OBJECT_LIST *parameters, ACPI_BUFFER *ret) 1682 { 1683 ACPI_HANDLE h; 1684 1685 if (dev == NULL) 1686 h = ACPI_ROOT_OBJECT; 1687 else if ((h = acpi_get_handle(dev)) == NULL) 1688 return (AE_BAD_PARAMETER); 1689 return (AcpiEvaluateObject(h, pathname, parameters, ret)); 1690 } 1691 1692 int 1693 acpi_device_pwr_for_sleep(device_t bus, device_t dev, int *dstate) 1694 { 1695 struct acpi_softc *sc; 1696 ACPI_HANDLE handle; 1697 ACPI_STATUS status; 1698 char sxd[8]; 1699 1700 handle = acpi_get_handle(dev); 1701 1702 /* 1703 * XXX If we find these devices, don't try to power them down. 1704 * The serial and IRDA ports on my T23 hang the system when 1705 * set to D3 and it appears that such legacy devices may 1706 * need special handling in their drivers. 1707 */ 1708 if (dstate == NULL || handle == NULL || 1709 acpi_MatchHid(handle, "PNP0500") || 1710 acpi_MatchHid(handle, "PNP0501") || 1711 acpi_MatchHid(handle, "PNP0502") || 1712 acpi_MatchHid(handle, "PNP0510") || 1713 acpi_MatchHid(handle, "PNP0511")) 1714 return (ENXIO); 1715 1716 /* 1717 * Override next state with the value from _SxD, if present. 1718 * Note illegal _S0D is evaluated because some systems expect this. 1719 */ 1720 sc = device_get_softc(bus); 1721 snprintf(sxd, sizeof(sxd), "_S%dD", sc->acpi_sstate); 1722 status = acpi_GetInteger(handle, sxd, dstate); 1723 if (ACPI_FAILURE(status) && status != AE_NOT_FOUND) { 1724 device_printf(dev, "failed to get %s on %s: %s\n", sxd, 1725 acpi_name(handle), AcpiFormatException(status)); 1726 return (ENXIO); 1727 } 1728 1729 return (0); 1730 } 1731 1732 /* Callback arg for our implementation of walking the namespace. */ 1733 struct acpi_device_scan_ctx { 1734 acpi_scan_cb_t user_fn; 1735 void *arg; 1736 ACPI_HANDLE parent; 1737 }; 1738 1739 static ACPI_STATUS 1740 acpi_device_scan_cb(ACPI_HANDLE h, UINT32 level, void *arg, void **retval) 1741 { 1742 struct acpi_device_scan_ctx *ctx; 1743 device_t dev, old_dev; 1744 ACPI_STATUS status; 1745 ACPI_OBJECT_TYPE type; 1746 1747 /* 1748 * Skip this device if we think we'll have trouble with it or it is 1749 * the parent where the scan began. 1750 */ 1751 ctx = (struct acpi_device_scan_ctx *)arg; 1752 if (acpi_avoid(h) || h == ctx->parent) 1753 return (AE_OK); 1754 1755 /* If this is not a valid device type (e.g., a method), skip it. */ 1756 if (ACPI_FAILURE(AcpiGetType(h, &type))) 1757 return (AE_OK); 1758 if (type != ACPI_TYPE_DEVICE && type != ACPI_TYPE_PROCESSOR && 1759 type != ACPI_TYPE_THERMAL && type != ACPI_TYPE_POWER) 1760 return (AE_OK); 1761 1762 /* 1763 * Call the user function with the current device. If it is unchanged 1764 * afterwards, return. Otherwise, we update the handle to the new dev. 1765 */ 1766 old_dev = acpi_get_device(h); 1767 dev = old_dev; 1768 status = ctx->user_fn(h, &dev, level, ctx->arg); 1769 if (ACPI_FAILURE(status) || old_dev == dev) 1770 return (status); 1771 1772 /* Remove the old child and its connection to the handle. */ 1773 if (old_dev != NULL) { 1774 device_delete_child(device_get_parent(old_dev), old_dev); 1775 AcpiDetachData(h, acpi_fake_objhandler); 1776 } 1777 1778 /* Recreate the handle association if the user created a device. */ 1779 if (dev != NULL) 1780 AcpiAttachData(h, acpi_fake_objhandler, dev); 1781 1782 return (AE_OK); 1783 } 1784 1785 static ACPI_STATUS 1786 acpi_device_scan_children(device_t bus, device_t dev, int max_depth, 1787 acpi_scan_cb_t user_fn, void *arg) 1788 { 1789 ACPI_HANDLE h; 1790 struct acpi_device_scan_ctx ctx; 1791 1792 if (acpi_disabled("children")) 1793 return (AE_OK); 1794 1795 if (dev == NULL) 1796 h = ACPI_ROOT_OBJECT; 1797 else if ((h = acpi_get_handle(dev)) == NULL) 1798 return (AE_BAD_PARAMETER); 1799 ctx.user_fn = user_fn; 1800 ctx.arg = arg; 1801 ctx.parent = h; 1802 return (AcpiWalkNamespace(ACPI_TYPE_ANY, h, max_depth, 1803 acpi_device_scan_cb, NULL, &ctx, NULL)); 1804 } 1805 1806 /* 1807 * Even though ACPI devices are not PCI, we use the PCI approach for setting 1808 * device power states since it's close enough to ACPI. 1809 */ 1810 static int 1811 acpi_set_powerstate(device_t child, int state) 1812 { 1813 ACPI_HANDLE h; 1814 ACPI_STATUS status; 1815 1816 h = acpi_get_handle(child); 1817 if (state < ACPI_STATE_D0 || state > ACPI_D_STATES_MAX) 1818 return (EINVAL); 1819 if (h == NULL) 1820 return (0); 1821 1822 /* Ignore errors if the power methods aren't present. */ 1823 status = acpi_pwr_switch_consumer(h, state); 1824 if (ACPI_SUCCESS(status)) { 1825 if (bootverbose) 1826 device_printf(child, "set ACPI power state D%d on %s\n", 1827 state, acpi_name(h)); 1828 } else if (status != AE_NOT_FOUND) 1829 device_printf(child, 1830 "failed to set ACPI power state D%d on %s: %s\n", state, 1831 acpi_name(h), AcpiFormatException(status)); 1832 1833 return (0); 1834 } 1835 1836 static int 1837 acpi_isa_pnp_probe(device_t bus, device_t child, struct isa_pnp_id *ids) 1838 { 1839 int result, cid_count, i; 1840 uint32_t lid, cids[8]; 1841 1842 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1843 1844 /* 1845 * ISA-style drivers attached to ACPI may persist and 1846 * probe manually if we return ENOENT. We never want 1847 * that to happen, so don't ever return it. 1848 */ 1849 result = ENXIO; 1850 1851 /* Scan the supplied IDs for a match */ 1852 lid = acpi_isa_get_logicalid(child); 1853 cid_count = acpi_isa_get_compatid(child, cids, 8); 1854 while (ids && ids->ip_id) { 1855 if (lid == ids->ip_id) { 1856 result = 0; 1857 goto out; 1858 } 1859 for (i = 0; i < cid_count; i++) { 1860 if (cids[i] == ids->ip_id) { 1861 result = 0; 1862 goto out; 1863 } 1864 } 1865 ids++; 1866 } 1867 1868 out: 1869 if (result == 0 && ids->ip_desc) 1870 device_set_desc(child, ids->ip_desc); 1871 1872 return_VALUE (result); 1873 } 1874 1875 /* 1876 * Look for a MCFG table. If it is present, use the settings for 1877 * domain (segment) 0 to setup PCI config space access via the memory 1878 * map. 1879 * 1880 * On non-x86 architectures (arm64 for now), this will be done from the 1881 * PCI host bridge driver. 1882 */ 1883 static void 1884 acpi_enable_pcie(void) 1885 { 1886 #if defined(__i386__) || defined(__amd64__) 1887 ACPI_TABLE_HEADER *hdr; 1888 ACPI_MCFG_ALLOCATION *alloc, *end; 1889 ACPI_STATUS status; 1890 1891 status = AcpiGetTable(ACPI_SIG_MCFG, 1, &hdr); 1892 if (ACPI_FAILURE(status)) 1893 return; 1894 1895 end = (ACPI_MCFG_ALLOCATION *)((char *)hdr + hdr->Length); 1896 alloc = (ACPI_MCFG_ALLOCATION *)((ACPI_TABLE_MCFG *)hdr + 1); 1897 while (alloc < end) { 1898 if (alloc->PciSegment == 0) { 1899 pcie_cfgregopen(alloc->Address, alloc->StartBusNumber, 1900 alloc->EndBusNumber); 1901 return; 1902 } 1903 alloc++; 1904 } 1905 #endif 1906 } 1907 1908 /* 1909 * Scan all of the ACPI namespace and attach child devices. 1910 * 1911 * We should only expect to find devices in the \_PR, \_TZ, \_SI, and 1912 * \_SB scopes, and \_PR and \_TZ became obsolete in the ACPI 2.0 spec. 1913 * However, in violation of the spec, some systems place their PCI link 1914 * devices in \, so we have to walk the whole namespace. We check the 1915 * type of namespace nodes, so this should be ok. 1916 */ 1917 static void 1918 acpi_probe_children(device_t bus) 1919 { 1920 1921 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 1922 1923 /* 1924 * Scan the namespace and insert placeholders for all the devices that 1925 * we find. We also probe/attach any early devices. 1926 * 1927 * Note that we use AcpiWalkNamespace rather than AcpiGetDevices because 1928 * we want to create nodes for all devices, not just those that are 1929 * currently present. (This assumes that we don't want to create/remove 1930 * devices as they appear, which might be smarter.) 1931 */ 1932 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "namespace scan\n")); 1933 AcpiWalkNamespace(ACPI_TYPE_ANY, ACPI_ROOT_OBJECT, 100, acpi_probe_child, 1934 NULL, bus, NULL); 1935 1936 /* Pre-allocate resources for our rman from any sysresource devices. */ 1937 acpi_sysres_alloc(bus); 1938 1939 /* Reserve resources already allocated to children. */ 1940 acpi_reserve_resources(bus); 1941 1942 /* Create any static children by calling device identify methods. */ 1943 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "device identify routines\n")); 1944 bus_generic_probe(bus); 1945 1946 /* Probe/attach all children, created statically and from the namespace. */ 1947 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "acpi bus_generic_attach\n")); 1948 bus_generic_attach(bus); 1949 1950 /* Attach wake sysctls. */ 1951 acpi_wake_sysctl_walk(bus); 1952 1953 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "done attaching children\n")); 1954 return_VOID; 1955 } 1956 1957 /* 1958 * Determine the probe order for a given device. 1959 */ 1960 static void 1961 acpi_probe_order(ACPI_HANDLE handle, int *order) 1962 { 1963 ACPI_OBJECT_TYPE type; 1964 1965 /* 1966 * 0. CPUs 1967 * 1. I/O port and memory system resource holders 1968 * 2. Clocks and timers (to handle early accesses) 1969 * 3. Embedded controllers (to handle early accesses) 1970 * 4. PCI Link Devices 1971 */ 1972 AcpiGetType(handle, &type); 1973 if (type == ACPI_TYPE_PROCESSOR) 1974 *order = 0; 1975 else if (acpi_MatchHid(handle, "PNP0C01") || 1976 acpi_MatchHid(handle, "PNP0C02")) 1977 *order = 1; 1978 else if (acpi_MatchHid(handle, "PNP0100") || 1979 acpi_MatchHid(handle, "PNP0103") || 1980 acpi_MatchHid(handle, "PNP0B00")) 1981 *order = 2; 1982 else if (acpi_MatchHid(handle, "PNP0C09")) 1983 *order = 3; 1984 else if (acpi_MatchHid(handle, "PNP0C0F")) 1985 *order = 4; 1986 } 1987 1988 /* 1989 * Evaluate a child device and determine whether we might attach a device to 1990 * it. 1991 */ 1992 static ACPI_STATUS 1993 acpi_probe_child(ACPI_HANDLE handle, UINT32 level, void *context, void **status) 1994 { 1995 ACPI_DEVICE_INFO *devinfo; 1996 struct acpi_device *ad; 1997 struct acpi_prw_data prw; 1998 ACPI_OBJECT_TYPE type; 1999 ACPI_HANDLE h; 2000 device_t bus, child; 2001 char *handle_str; 2002 int order; 2003 2004 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 2005 2006 if (acpi_disabled("children")) 2007 return_ACPI_STATUS (AE_OK); 2008 2009 /* Skip this device if we think we'll have trouble with it. */ 2010 if (acpi_avoid(handle)) 2011 return_ACPI_STATUS (AE_OK); 2012 2013 bus = (device_t)context; 2014 if (ACPI_SUCCESS(AcpiGetType(handle, &type))) { 2015 handle_str = acpi_name(handle); 2016 switch (type) { 2017 case ACPI_TYPE_DEVICE: 2018 /* 2019 * Since we scan from \, be sure to skip system scope objects. 2020 * \_SB_ and \_TZ_ are defined in ACPICA as devices to work around 2021 * BIOS bugs. For example, \_SB_ is to allow \_SB_._INI to be run 2022 * during the initialization and \_TZ_ is to support Notify() on it. 2023 */ 2024 if (strcmp(handle_str, "\\_SB_") == 0 || 2025 strcmp(handle_str, "\\_TZ_") == 0) 2026 break; 2027 if (acpi_parse_prw(handle, &prw) == 0) 2028 AcpiSetupGpeForWake(handle, prw.gpe_handle, prw.gpe_bit); 2029 2030 /* 2031 * Ignore devices that do not have a _HID or _CID. They should 2032 * be discovered by other buses (e.g. the PCI bus driver). 2033 */ 2034 if (!acpi_has_hid(handle)) 2035 break; 2036 /* FALLTHROUGH */ 2037 case ACPI_TYPE_PROCESSOR: 2038 case ACPI_TYPE_THERMAL: 2039 case ACPI_TYPE_POWER: 2040 /* 2041 * Create a placeholder device for this node. Sort the 2042 * placeholder so that the probe/attach passes will run 2043 * breadth-first. Orders less than ACPI_DEV_BASE_ORDER 2044 * are reserved for special objects (i.e., system 2045 * resources). 2046 */ 2047 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "scanning '%s'\n", handle_str)); 2048 order = level * 10 + ACPI_DEV_BASE_ORDER; 2049 acpi_probe_order(handle, &order); 2050 child = BUS_ADD_CHILD(bus, order, NULL, -1); 2051 if (child == NULL) 2052 break; 2053 2054 /* Associate the handle with the device_t and vice versa. */ 2055 acpi_set_handle(child, handle); 2056 AcpiAttachData(handle, acpi_fake_objhandler, child); 2057 2058 /* 2059 * Check that the device is present. If it's not present, 2060 * leave it disabled (so that we have a device_t attached to 2061 * the handle, but we don't probe it). 2062 * 2063 * XXX PCI link devices sometimes report "present" but not 2064 * "functional" (i.e. if disabled). Go ahead and probe them 2065 * anyway since we may enable them later. 2066 */ 2067 if (type == ACPI_TYPE_DEVICE && !acpi_DeviceIsPresent(child)) { 2068 /* Never disable PCI link devices. */ 2069 if (acpi_MatchHid(handle, "PNP0C0F")) 2070 break; 2071 /* 2072 * Docking stations should remain enabled since the system 2073 * may be undocked at boot. 2074 */ 2075 if (ACPI_SUCCESS(AcpiGetHandle(handle, "_DCK", &h))) 2076 break; 2077 2078 device_disable(child); 2079 break; 2080 } 2081 2082 /* 2083 * Get the device's resource settings and attach them. 2084 * Note that if the device has _PRS but no _CRS, we need 2085 * to decide when it's appropriate to try to configure the 2086 * device. Ignore the return value here; it's OK for the 2087 * device not to have any resources. 2088 */ 2089 acpi_parse_resources(child, handle, &acpi_res_parse_set, NULL); 2090 2091 ad = device_get_ivars(child); 2092 ad->ad_cls_class = 0xffffff; 2093 if (ACPI_SUCCESS(AcpiGetObjectInfo(handle, &devinfo))) { 2094 if ((devinfo->Valid & ACPI_VALID_CLS) != 0 && 2095 devinfo->ClassCode.Length >= ACPI_PCICLS_STRING_SIZE) { 2096 ad->ad_cls_class = strtoul(devinfo->ClassCode.String, 2097 NULL, 16); 2098 } 2099 AcpiOsFree(devinfo); 2100 } 2101 break; 2102 } 2103 } 2104 2105 return_ACPI_STATUS (AE_OK); 2106 } 2107 2108 /* 2109 * AcpiAttachData() requires an object handler but never uses it. This is a 2110 * placeholder object handler so we can store a device_t in an ACPI_HANDLE. 2111 */ 2112 void 2113 acpi_fake_objhandler(ACPI_HANDLE h, void *data) 2114 { 2115 } 2116 2117 static void 2118 acpi_shutdown_final(void *arg, int howto) 2119 { 2120 struct acpi_softc *sc = (struct acpi_softc *)arg; 2121 register_t intr; 2122 ACPI_STATUS status; 2123 2124 /* 2125 * XXX Shutdown code should only run on the BSP (cpuid 0). 2126 * Some chipsets do not power off the system correctly if called from 2127 * an AP. 2128 */ 2129 if ((howto & RB_POWEROFF) != 0) { 2130 status = AcpiEnterSleepStatePrep(ACPI_STATE_S5); 2131 if (ACPI_FAILURE(status)) { 2132 device_printf(sc->acpi_dev, "AcpiEnterSleepStatePrep failed - %s\n", 2133 AcpiFormatException(status)); 2134 return; 2135 } 2136 device_printf(sc->acpi_dev, "Powering system off\n"); 2137 intr = intr_disable(); 2138 status = AcpiEnterSleepState(ACPI_STATE_S5); 2139 if (ACPI_FAILURE(status)) { 2140 intr_restore(intr); 2141 device_printf(sc->acpi_dev, "power-off failed - %s\n", 2142 AcpiFormatException(status)); 2143 } else { 2144 DELAY(1000000); 2145 intr_restore(intr); 2146 device_printf(sc->acpi_dev, "power-off failed - timeout\n"); 2147 } 2148 } else if ((howto & RB_HALT) == 0 && sc->acpi_handle_reboot) { 2149 /* Reboot using the reset register. */ 2150 status = AcpiReset(); 2151 if (ACPI_SUCCESS(status)) { 2152 DELAY(1000000); 2153 device_printf(sc->acpi_dev, "reset failed - timeout\n"); 2154 } else if (status != AE_NOT_EXIST) 2155 device_printf(sc->acpi_dev, "reset failed - %s\n", 2156 AcpiFormatException(status)); 2157 } else if (sc->acpi_do_disable && panicstr == NULL) { 2158 /* 2159 * Only disable ACPI if the user requested. On some systems, writing 2160 * the disable value to SMI_CMD hangs the system. 2161 */ 2162 device_printf(sc->acpi_dev, "Shutting down\n"); 2163 AcpiTerminate(); 2164 } 2165 } 2166 2167 static void 2168 acpi_enable_fixed_events(struct acpi_softc *sc) 2169 { 2170 static int first_time = 1; 2171 2172 /* Enable and clear fixed events and install handlers. */ 2173 if ((AcpiGbl_FADT.Flags & ACPI_FADT_POWER_BUTTON) == 0) { 2174 AcpiClearEvent(ACPI_EVENT_POWER_BUTTON); 2175 AcpiInstallFixedEventHandler(ACPI_EVENT_POWER_BUTTON, 2176 acpi_event_power_button_sleep, sc); 2177 if (first_time) 2178 device_printf(sc->acpi_dev, "Power Button (fixed)\n"); 2179 } 2180 if ((AcpiGbl_FADT.Flags & ACPI_FADT_SLEEP_BUTTON) == 0) { 2181 AcpiClearEvent(ACPI_EVENT_SLEEP_BUTTON); 2182 AcpiInstallFixedEventHandler(ACPI_EVENT_SLEEP_BUTTON, 2183 acpi_event_sleep_button_sleep, sc); 2184 if (first_time) 2185 device_printf(sc->acpi_dev, "Sleep Button (fixed)\n"); 2186 } 2187 2188 first_time = 0; 2189 } 2190 2191 /* 2192 * Returns true if the device is actually present and should 2193 * be attached to. This requires the present, enabled, UI-visible 2194 * and diagnostics-passed bits to be set. 2195 */ 2196 BOOLEAN 2197 acpi_DeviceIsPresent(device_t dev) 2198 { 2199 ACPI_HANDLE h; 2200 UINT32 s; 2201 ACPI_STATUS status; 2202 2203 h = acpi_get_handle(dev); 2204 if (h == NULL) 2205 return (FALSE); 2206 /* 2207 * Certain Treadripper boards always returns 0 for FreeBSD because it 2208 * only returns non-zero for the OS string "Windows 2015". Otherwise it 2209 * will return zero. Force them to always be treated as present. 2210 * Beata versions were worse: they always returned 0. 2211 */ 2212 if (acpi_MatchHid(h, "AMDI0020") || acpi_MatchHid(h, "AMDI0010")) 2213 return (TRUE); 2214 2215 status = acpi_GetInteger(h, "_STA", &s); 2216 2217 /* 2218 * If no _STA method or if it failed, then assume that 2219 * the device is present. 2220 */ 2221 if (ACPI_FAILURE(status)) 2222 return (TRUE); 2223 2224 return (ACPI_DEVICE_PRESENT(s) ? TRUE : FALSE); 2225 } 2226 2227 /* 2228 * Returns true if the battery is actually present and inserted. 2229 */ 2230 BOOLEAN 2231 acpi_BatteryIsPresent(device_t dev) 2232 { 2233 ACPI_HANDLE h; 2234 UINT32 s; 2235 ACPI_STATUS status; 2236 2237 h = acpi_get_handle(dev); 2238 if (h == NULL) 2239 return (FALSE); 2240 status = acpi_GetInteger(h, "_STA", &s); 2241 2242 /* 2243 * If no _STA method or if it failed, then assume that 2244 * the device is present. 2245 */ 2246 if (ACPI_FAILURE(status)) 2247 return (TRUE); 2248 2249 return (ACPI_BATTERY_PRESENT(s) ? TRUE : FALSE); 2250 } 2251 2252 /* 2253 * Returns true if a device has at least one valid device ID. 2254 */ 2255 static BOOLEAN 2256 acpi_has_hid(ACPI_HANDLE h) 2257 { 2258 ACPI_DEVICE_INFO *devinfo; 2259 BOOLEAN ret; 2260 2261 if (h == NULL || 2262 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 2263 return (FALSE); 2264 2265 ret = FALSE; 2266 if ((devinfo->Valid & ACPI_VALID_HID) != 0) 2267 ret = TRUE; 2268 else if ((devinfo->Valid & ACPI_VALID_CID) != 0) 2269 if (devinfo->CompatibleIdList.Count > 0) 2270 ret = TRUE; 2271 2272 AcpiOsFree(devinfo); 2273 return (ret); 2274 } 2275 2276 /* 2277 * Match a HID string against a handle 2278 * returns ACPI_MATCHHID_HID if _HID match 2279 * ACPI_MATCHHID_CID if _CID match and not _HID match. 2280 * ACPI_MATCHHID_NOMATCH=0 if no match. 2281 */ 2282 int 2283 acpi_MatchHid(ACPI_HANDLE h, const char *hid) 2284 { 2285 ACPI_DEVICE_INFO *devinfo; 2286 BOOLEAN ret; 2287 int i; 2288 2289 if (hid == NULL || h == NULL || 2290 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) 2291 return (ACPI_MATCHHID_NOMATCH); 2292 2293 ret = FALSE; 2294 if ((devinfo->Valid & ACPI_VALID_HID) != 0 && 2295 strcmp(hid, devinfo->HardwareId.String) == 0) 2296 ret = ACPI_MATCHHID_HID; 2297 else if ((devinfo->Valid & ACPI_VALID_CID) != 0) 2298 for (i = 0; i < devinfo->CompatibleIdList.Count; i++) { 2299 if (strcmp(hid, devinfo->CompatibleIdList.Ids[i].String) == 0) { 2300 ret = ACPI_MATCHHID_CID; 2301 break; 2302 } 2303 } 2304 2305 AcpiOsFree(devinfo); 2306 return (ret); 2307 } 2308 2309 /* 2310 * Return the handle of a named object within our scope, ie. that of (parent) 2311 * or one if its parents. 2312 */ 2313 ACPI_STATUS 2314 acpi_GetHandleInScope(ACPI_HANDLE parent, char *path, ACPI_HANDLE *result) 2315 { 2316 ACPI_HANDLE r; 2317 ACPI_STATUS status; 2318 2319 /* Walk back up the tree to the root */ 2320 for (;;) { 2321 status = AcpiGetHandle(parent, path, &r); 2322 if (ACPI_SUCCESS(status)) { 2323 *result = r; 2324 return (AE_OK); 2325 } 2326 /* XXX Return error here? */ 2327 if (status != AE_NOT_FOUND) 2328 return (AE_OK); 2329 if (ACPI_FAILURE(AcpiGetParent(parent, &r))) 2330 return (AE_NOT_FOUND); 2331 parent = r; 2332 } 2333 } 2334 2335 /* 2336 * Allocate a buffer with a preset data size. 2337 */ 2338 ACPI_BUFFER * 2339 acpi_AllocBuffer(int size) 2340 { 2341 ACPI_BUFFER *buf; 2342 2343 if ((buf = malloc(size + sizeof(*buf), M_ACPIDEV, M_NOWAIT)) == NULL) 2344 return (NULL); 2345 buf->Length = size; 2346 buf->Pointer = (void *)(buf + 1); 2347 return (buf); 2348 } 2349 2350 ACPI_STATUS 2351 acpi_SetInteger(ACPI_HANDLE handle, char *path, UINT32 number) 2352 { 2353 ACPI_OBJECT arg1; 2354 ACPI_OBJECT_LIST args; 2355 2356 arg1.Type = ACPI_TYPE_INTEGER; 2357 arg1.Integer.Value = number; 2358 args.Count = 1; 2359 args.Pointer = &arg1; 2360 2361 return (AcpiEvaluateObject(handle, path, &args, NULL)); 2362 } 2363 2364 /* 2365 * Evaluate a path that should return an integer. 2366 */ 2367 ACPI_STATUS 2368 acpi_GetInteger(ACPI_HANDLE handle, char *path, UINT32 *number) 2369 { 2370 ACPI_STATUS status; 2371 ACPI_BUFFER buf; 2372 ACPI_OBJECT param; 2373 2374 if (handle == NULL) 2375 handle = ACPI_ROOT_OBJECT; 2376 2377 /* 2378 * Assume that what we've been pointed at is an Integer object, or 2379 * a method that will return an Integer. 2380 */ 2381 buf.Pointer = ¶m; 2382 buf.Length = sizeof(param); 2383 status = AcpiEvaluateObject(handle, path, NULL, &buf); 2384 if (ACPI_SUCCESS(status)) { 2385 if (param.Type == ACPI_TYPE_INTEGER) 2386 *number = param.Integer.Value; 2387 else 2388 status = AE_TYPE; 2389 } 2390 2391 /* 2392 * In some applications, a method that's expected to return an Integer 2393 * may instead return a Buffer (probably to simplify some internal 2394 * arithmetic). We'll try to fetch whatever it is, and if it's a Buffer, 2395 * convert it into an Integer as best we can. 2396 * 2397 * This is a hack. 2398 */ 2399 if (status == AE_BUFFER_OVERFLOW) { 2400 if ((buf.Pointer = AcpiOsAllocate(buf.Length)) == NULL) { 2401 status = AE_NO_MEMORY; 2402 } else { 2403 status = AcpiEvaluateObject(handle, path, NULL, &buf); 2404 if (ACPI_SUCCESS(status)) 2405 status = acpi_ConvertBufferToInteger(&buf, number); 2406 AcpiOsFree(buf.Pointer); 2407 } 2408 } 2409 return (status); 2410 } 2411 2412 ACPI_STATUS 2413 acpi_ConvertBufferToInteger(ACPI_BUFFER *bufp, UINT32 *number) 2414 { 2415 ACPI_OBJECT *p; 2416 UINT8 *val; 2417 int i; 2418 2419 p = (ACPI_OBJECT *)bufp->Pointer; 2420 if (p->Type == ACPI_TYPE_INTEGER) { 2421 *number = p->Integer.Value; 2422 return (AE_OK); 2423 } 2424 if (p->Type != ACPI_TYPE_BUFFER) 2425 return (AE_TYPE); 2426 if (p->Buffer.Length > sizeof(int)) 2427 return (AE_BAD_DATA); 2428 2429 *number = 0; 2430 val = p->Buffer.Pointer; 2431 for (i = 0; i < p->Buffer.Length; i++) 2432 *number += val[i] << (i * 8); 2433 return (AE_OK); 2434 } 2435 2436 /* 2437 * Iterate over the elements of an a package object, calling the supplied 2438 * function for each element. 2439 * 2440 * XXX possible enhancement might be to abort traversal on error. 2441 */ 2442 ACPI_STATUS 2443 acpi_ForeachPackageObject(ACPI_OBJECT *pkg, 2444 void (*func)(ACPI_OBJECT *comp, void *arg), void *arg) 2445 { 2446 ACPI_OBJECT *comp; 2447 int i; 2448 2449 if (pkg == NULL || pkg->Type != ACPI_TYPE_PACKAGE) 2450 return (AE_BAD_PARAMETER); 2451 2452 /* Iterate over components */ 2453 i = 0; 2454 comp = pkg->Package.Elements; 2455 for (; i < pkg->Package.Count; i++, comp++) 2456 func(comp, arg); 2457 2458 return (AE_OK); 2459 } 2460 2461 /* 2462 * Find the (index)th resource object in a set. 2463 */ 2464 ACPI_STATUS 2465 acpi_FindIndexedResource(ACPI_BUFFER *buf, int index, ACPI_RESOURCE **resp) 2466 { 2467 ACPI_RESOURCE *rp; 2468 int i; 2469 2470 rp = (ACPI_RESOURCE *)buf->Pointer; 2471 i = index; 2472 while (i-- > 0) { 2473 /* Range check */ 2474 if (rp > (ACPI_RESOURCE *)((u_int8_t *)buf->Pointer + buf->Length)) 2475 return (AE_BAD_PARAMETER); 2476 2477 /* Check for terminator */ 2478 if (rp->Type == ACPI_RESOURCE_TYPE_END_TAG || rp->Length == 0) 2479 return (AE_NOT_FOUND); 2480 rp = ACPI_NEXT_RESOURCE(rp); 2481 } 2482 if (resp != NULL) 2483 *resp = rp; 2484 2485 return (AE_OK); 2486 } 2487 2488 /* 2489 * Append an ACPI_RESOURCE to an ACPI_BUFFER. 2490 * 2491 * Given a pointer to an ACPI_RESOURCE structure, expand the ACPI_BUFFER 2492 * provided to contain it. If the ACPI_BUFFER is empty, allocate a sensible 2493 * backing block. If the ACPI_RESOURCE is NULL, return an empty set of 2494 * resources. 2495 */ 2496 #define ACPI_INITIAL_RESOURCE_BUFFER_SIZE 512 2497 2498 ACPI_STATUS 2499 acpi_AppendBufferResource(ACPI_BUFFER *buf, ACPI_RESOURCE *res) 2500 { 2501 ACPI_RESOURCE *rp; 2502 void *newp; 2503 2504 /* Initialise the buffer if necessary. */ 2505 if (buf->Pointer == NULL) { 2506 buf->Length = ACPI_INITIAL_RESOURCE_BUFFER_SIZE; 2507 if ((buf->Pointer = AcpiOsAllocate(buf->Length)) == NULL) 2508 return (AE_NO_MEMORY); 2509 rp = (ACPI_RESOURCE *)buf->Pointer; 2510 rp->Type = ACPI_RESOURCE_TYPE_END_TAG; 2511 rp->Length = ACPI_RS_SIZE_MIN; 2512 } 2513 if (res == NULL) 2514 return (AE_OK); 2515 2516 /* 2517 * Scan the current buffer looking for the terminator. 2518 * This will either find the terminator or hit the end 2519 * of the buffer and return an error. 2520 */ 2521 rp = (ACPI_RESOURCE *)buf->Pointer; 2522 for (;;) { 2523 /* Range check, don't go outside the buffer */ 2524 if (rp >= (ACPI_RESOURCE *)((u_int8_t *)buf->Pointer + buf->Length)) 2525 return (AE_BAD_PARAMETER); 2526 if (rp->Type == ACPI_RESOURCE_TYPE_END_TAG || rp->Length == 0) 2527 break; 2528 rp = ACPI_NEXT_RESOURCE(rp); 2529 } 2530 2531 /* 2532 * Check the size of the buffer and expand if required. 2533 * 2534 * Required size is: 2535 * size of existing resources before terminator + 2536 * size of new resource and header + 2537 * size of terminator. 2538 * 2539 * Note that this loop should really only run once, unless 2540 * for some reason we are stuffing a *really* huge resource. 2541 */ 2542 while ((((u_int8_t *)rp - (u_int8_t *)buf->Pointer) + 2543 res->Length + ACPI_RS_SIZE_NO_DATA + 2544 ACPI_RS_SIZE_MIN) >= buf->Length) { 2545 if ((newp = AcpiOsAllocate(buf->Length * 2)) == NULL) 2546 return (AE_NO_MEMORY); 2547 bcopy(buf->Pointer, newp, buf->Length); 2548 rp = (ACPI_RESOURCE *)((u_int8_t *)newp + 2549 ((u_int8_t *)rp - (u_int8_t *)buf->Pointer)); 2550 AcpiOsFree(buf->Pointer); 2551 buf->Pointer = newp; 2552 buf->Length += buf->Length; 2553 } 2554 2555 /* Insert the new resource. */ 2556 bcopy(res, rp, res->Length + ACPI_RS_SIZE_NO_DATA); 2557 2558 /* And add the terminator. */ 2559 rp = ACPI_NEXT_RESOURCE(rp); 2560 rp->Type = ACPI_RESOURCE_TYPE_END_TAG; 2561 rp->Length = ACPI_RS_SIZE_MIN; 2562 2563 return (AE_OK); 2564 } 2565 2566 UINT8 2567 acpi_DSMQuery(ACPI_HANDLE h, uint8_t *uuid, int revision) 2568 { 2569 /* 2570 * ACPI spec 9.1.1 defines this. 2571 * 2572 * "Arg2: Function Index Represents a specific function whose meaning is 2573 * specific to the UUID and Revision ID. Function indices should start 2574 * with 1. Function number zero is a query function (see the special 2575 * return code defined below)." 2576 */ 2577 ACPI_BUFFER buf; 2578 ACPI_OBJECT *obj; 2579 UINT8 ret = 0; 2580 2581 if (!ACPI_SUCCESS(acpi_EvaluateDSM(h, uuid, revision, 0, NULL, &buf))) { 2582 ACPI_INFO(("Failed to enumerate DSM functions\n")); 2583 return (0); 2584 } 2585 2586 obj = (ACPI_OBJECT *)buf.Pointer; 2587 KASSERT(obj, ("Object not allowed to be NULL\n")); 2588 2589 /* 2590 * From ACPI 6.2 spec 9.1.1: 2591 * If Function Index = 0, a Buffer containing a function index bitfield. 2592 * Otherwise, the return value and type depends on the UUID and revision 2593 * ID (see below). 2594 */ 2595 switch (obj->Type) { 2596 case ACPI_TYPE_BUFFER: 2597 ret = *(uint8_t *)obj->Buffer.Pointer; 2598 break; 2599 case ACPI_TYPE_INTEGER: 2600 ACPI_BIOS_WARNING((AE_INFO, 2601 "Possibly buggy BIOS with ACPI_TYPE_INTEGER for function enumeration\n")); 2602 ret = obj->Integer.Value & 0xFF; 2603 break; 2604 default: 2605 ACPI_WARNING((AE_INFO, "Unexpected return type %u\n", obj->Type)); 2606 }; 2607 2608 AcpiOsFree(obj); 2609 return ret; 2610 } 2611 2612 /* 2613 * DSM may return multiple types depending on the function. It is therefore 2614 * unsafe to use the typed evaluation. It is highly recommended that the caller 2615 * check the type of the returned object. 2616 */ 2617 ACPI_STATUS 2618 acpi_EvaluateDSM(ACPI_HANDLE handle, uint8_t *uuid, int revision, 2619 uint64_t function, union acpi_object *package, ACPI_BUFFER *out_buf) 2620 { 2621 ACPI_OBJECT arg[4]; 2622 ACPI_OBJECT_LIST arglist; 2623 ACPI_BUFFER buf; 2624 ACPI_STATUS status; 2625 2626 if (out_buf == NULL) 2627 return (AE_NO_MEMORY); 2628 2629 arg[0].Type = ACPI_TYPE_BUFFER; 2630 arg[0].Buffer.Length = ACPI_UUID_LENGTH; 2631 arg[0].Buffer.Pointer = uuid; 2632 arg[1].Type = ACPI_TYPE_INTEGER; 2633 arg[1].Integer.Value = revision; 2634 arg[2].Type = ACPI_TYPE_INTEGER; 2635 arg[2].Integer.Value = function; 2636 if (package) { 2637 arg[3] = *package; 2638 } else { 2639 arg[3].Type = ACPI_TYPE_PACKAGE; 2640 arg[3].Package.Count = 0; 2641 arg[3].Package.Elements = NULL; 2642 } 2643 2644 arglist.Pointer = arg; 2645 arglist.Count = 4; 2646 buf.Pointer = NULL; 2647 buf.Length = ACPI_ALLOCATE_BUFFER; 2648 status = AcpiEvaluateObject(handle, "_DSM", &arglist, &buf); 2649 if (ACPI_FAILURE(status)) 2650 return (status); 2651 2652 KASSERT(ACPI_SUCCESS(status), ("Unexpected status")); 2653 2654 *out_buf = buf; 2655 return (status); 2656 } 2657 2658 ACPI_STATUS 2659 acpi_EvaluateOSC(ACPI_HANDLE handle, uint8_t *uuid, int revision, int count, 2660 uint32_t *caps_in, uint32_t *caps_out, bool query) 2661 { 2662 ACPI_OBJECT arg[4], *ret; 2663 ACPI_OBJECT_LIST arglist; 2664 ACPI_BUFFER buf; 2665 ACPI_STATUS status; 2666 2667 arglist.Pointer = arg; 2668 arglist.Count = 4; 2669 arg[0].Type = ACPI_TYPE_BUFFER; 2670 arg[0].Buffer.Length = ACPI_UUID_LENGTH; 2671 arg[0].Buffer.Pointer = uuid; 2672 arg[1].Type = ACPI_TYPE_INTEGER; 2673 arg[1].Integer.Value = revision; 2674 arg[2].Type = ACPI_TYPE_INTEGER; 2675 arg[2].Integer.Value = count; 2676 arg[3].Type = ACPI_TYPE_BUFFER; 2677 arg[3].Buffer.Length = count * sizeof(*caps_in); 2678 arg[3].Buffer.Pointer = (uint8_t *)caps_in; 2679 caps_in[0] = query ? 1 : 0; 2680 buf.Pointer = NULL; 2681 buf.Length = ACPI_ALLOCATE_BUFFER; 2682 status = AcpiEvaluateObjectTyped(handle, "_OSC", &arglist, &buf, 2683 ACPI_TYPE_BUFFER); 2684 if (ACPI_FAILURE(status)) 2685 return (status); 2686 if (caps_out != NULL) { 2687 ret = buf.Pointer; 2688 if (ret->Buffer.Length != count * sizeof(*caps_out)) { 2689 AcpiOsFree(buf.Pointer); 2690 return (AE_BUFFER_OVERFLOW); 2691 } 2692 bcopy(ret->Buffer.Pointer, caps_out, ret->Buffer.Length); 2693 } 2694 AcpiOsFree(buf.Pointer); 2695 return (status); 2696 } 2697 2698 /* 2699 * Set interrupt model. 2700 */ 2701 ACPI_STATUS 2702 acpi_SetIntrModel(int model) 2703 { 2704 2705 return (acpi_SetInteger(ACPI_ROOT_OBJECT, "_PIC", model)); 2706 } 2707 2708 /* 2709 * Walk subtables of a table and call a callback routine for each 2710 * subtable. The caller should provide the first subtable and a 2711 * pointer to the end of the table. This can be used to walk tables 2712 * such as MADT and SRAT that use subtable entries. 2713 */ 2714 void 2715 acpi_walk_subtables(void *first, void *end, acpi_subtable_handler *handler, 2716 void *arg) 2717 { 2718 ACPI_SUBTABLE_HEADER *entry; 2719 2720 for (entry = first; (void *)entry < end; ) { 2721 /* Avoid an infinite loop if we hit a bogus entry. */ 2722 if (entry->Length < sizeof(ACPI_SUBTABLE_HEADER)) 2723 return; 2724 2725 handler(entry, arg); 2726 entry = ACPI_ADD_PTR(ACPI_SUBTABLE_HEADER, entry, entry->Length); 2727 } 2728 } 2729 2730 /* 2731 * DEPRECATED. This interface has serious deficiencies and will be 2732 * removed. 2733 * 2734 * Immediately enter the sleep state. In the old model, acpiconf(8) ran 2735 * rc.suspend and rc.resume so we don't have to notify devd(8) to do this. 2736 */ 2737 ACPI_STATUS 2738 acpi_SetSleepState(struct acpi_softc *sc, int state) 2739 { 2740 static int once; 2741 2742 if (!once) { 2743 device_printf(sc->acpi_dev, 2744 "warning: acpi_SetSleepState() deprecated, need to update your software\n"); 2745 once = 1; 2746 } 2747 return (acpi_EnterSleepState(sc, state)); 2748 } 2749 2750 #if defined(__amd64__) || defined(__i386__) 2751 static void 2752 acpi_sleep_force_task(void *context) 2753 { 2754 struct acpi_softc *sc = (struct acpi_softc *)context; 2755 2756 if (ACPI_FAILURE(acpi_EnterSleepState(sc, sc->acpi_next_sstate))) 2757 device_printf(sc->acpi_dev, "force sleep state S%d failed\n", 2758 sc->acpi_next_sstate); 2759 } 2760 2761 static void 2762 acpi_sleep_force(void *arg) 2763 { 2764 struct acpi_softc *sc = (struct acpi_softc *)arg; 2765 2766 device_printf(sc->acpi_dev, 2767 "suspend request timed out, forcing sleep now\n"); 2768 /* 2769 * XXX Suspending from callout causes freezes in DEVICE_SUSPEND(). 2770 * Suspend from acpi_task thread instead. 2771 */ 2772 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 2773 acpi_sleep_force_task, sc))) 2774 device_printf(sc->acpi_dev, "AcpiOsExecute() for sleeping failed\n"); 2775 } 2776 #endif 2777 2778 /* 2779 * Request that the system enter the given suspend state. All /dev/apm 2780 * devices and devd(8) will be notified. Userland then has a chance to 2781 * save state and acknowledge the request. The system sleeps once all 2782 * acks are in. 2783 */ 2784 int 2785 acpi_ReqSleepState(struct acpi_softc *sc, int state) 2786 { 2787 #if defined(__amd64__) || defined(__i386__) 2788 struct apm_clone_data *clone; 2789 ACPI_STATUS status; 2790 2791 if (state < ACPI_STATE_S1 || state > ACPI_S_STATES_MAX) 2792 return (EINVAL); 2793 if (!acpi_sleep_states[state]) 2794 return (EOPNOTSUPP); 2795 2796 /* 2797 * If a reboot/shutdown/suspend request is already in progress or 2798 * suspend is blocked due to an upcoming shutdown, just return. 2799 */ 2800 if (rebooting || sc->acpi_next_sstate != 0 || suspend_blocked) { 2801 return (0); 2802 } 2803 2804 /* Wait until sleep is enabled. */ 2805 while (sc->acpi_sleep_disabled) { 2806 AcpiOsSleep(1000); 2807 } 2808 2809 ACPI_LOCK(acpi); 2810 2811 sc->acpi_next_sstate = state; 2812 2813 /* S5 (soft-off) should be entered directly with no waiting. */ 2814 if (state == ACPI_STATE_S5) { 2815 ACPI_UNLOCK(acpi); 2816 status = acpi_EnterSleepState(sc, state); 2817 return (ACPI_SUCCESS(status) ? 0 : ENXIO); 2818 } 2819 2820 /* Record the pending state and notify all apm devices. */ 2821 STAILQ_FOREACH(clone, &sc->apm_cdevs, entries) { 2822 clone->notify_status = APM_EV_NONE; 2823 if ((clone->flags & ACPI_EVF_DEVD) == 0) { 2824 selwakeuppri(&clone->sel_read, PZERO); 2825 KNOTE_LOCKED(&clone->sel_read.si_note, 0); 2826 } 2827 } 2828 2829 /* If devd(8) is not running, immediately enter the sleep state. */ 2830 if (!devctl_process_running()) { 2831 ACPI_UNLOCK(acpi); 2832 status = acpi_EnterSleepState(sc, state); 2833 return (ACPI_SUCCESS(status) ? 0 : ENXIO); 2834 } 2835 2836 /* 2837 * Set a timeout to fire if userland doesn't ack the suspend request 2838 * in time. This way we still eventually go to sleep if we were 2839 * overheating or running low on battery, even if userland is hung. 2840 * We cancel this timeout once all userland acks are in or the 2841 * suspend request is aborted. 2842 */ 2843 callout_reset(&sc->susp_force_to, 10 * hz, acpi_sleep_force, sc); 2844 ACPI_UNLOCK(acpi); 2845 2846 /* Now notify devd(8) also. */ 2847 acpi_UserNotify("Suspend", ACPI_ROOT_OBJECT, state); 2848 2849 return (0); 2850 #else 2851 /* This platform does not support acpi suspend/resume. */ 2852 return (EOPNOTSUPP); 2853 #endif 2854 } 2855 2856 /* 2857 * Acknowledge (or reject) a pending sleep state. The caller has 2858 * prepared for suspend and is now ready for it to proceed. If the 2859 * error argument is non-zero, it indicates suspend should be cancelled 2860 * and gives an errno value describing why. Once all votes are in, 2861 * we suspend the system. 2862 */ 2863 int 2864 acpi_AckSleepState(struct apm_clone_data *clone, int error) 2865 { 2866 #if defined(__amd64__) || defined(__i386__) 2867 struct acpi_softc *sc; 2868 int ret, sleeping; 2869 2870 /* If no pending sleep state, return an error. */ 2871 ACPI_LOCK(acpi); 2872 sc = clone->acpi_sc; 2873 if (sc->acpi_next_sstate == 0) { 2874 ACPI_UNLOCK(acpi); 2875 return (ENXIO); 2876 } 2877 2878 /* Caller wants to abort suspend process. */ 2879 if (error) { 2880 sc->acpi_next_sstate = 0; 2881 callout_stop(&sc->susp_force_to); 2882 device_printf(sc->acpi_dev, 2883 "listener on %s cancelled the pending suspend\n", 2884 devtoname(clone->cdev)); 2885 ACPI_UNLOCK(acpi); 2886 return (0); 2887 } 2888 2889 /* 2890 * Mark this device as acking the suspend request. Then, walk through 2891 * all devices, seeing if they agree yet. We only count devices that 2892 * are writable since read-only devices couldn't ack the request. 2893 */ 2894 sleeping = TRUE; 2895 clone->notify_status = APM_EV_ACKED; 2896 STAILQ_FOREACH(clone, &sc->apm_cdevs, entries) { 2897 if ((clone->flags & ACPI_EVF_WRITE) != 0 && 2898 clone->notify_status != APM_EV_ACKED) { 2899 sleeping = FALSE; 2900 break; 2901 } 2902 } 2903 2904 /* If all devices have voted "yes", we will suspend now. */ 2905 if (sleeping) 2906 callout_stop(&sc->susp_force_to); 2907 ACPI_UNLOCK(acpi); 2908 ret = 0; 2909 if (sleeping) { 2910 if (ACPI_FAILURE(acpi_EnterSleepState(sc, sc->acpi_next_sstate))) 2911 ret = ENODEV; 2912 } 2913 return (ret); 2914 #else 2915 /* This platform does not support acpi suspend/resume. */ 2916 return (EOPNOTSUPP); 2917 #endif 2918 } 2919 2920 static void 2921 acpi_sleep_enable(void *arg) 2922 { 2923 struct acpi_softc *sc = (struct acpi_softc *)arg; 2924 2925 ACPI_LOCK_ASSERT(acpi); 2926 2927 /* Reschedule if the system is not fully up and running. */ 2928 if (!AcpiGbl_SystemAwakeAndRunning) { 2929 callout_schedule(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME); 2930 return; 2931 } 2932 2933 sc->acpi_sleep_disabled = FALSE; 2934 } 2935 2936 static ACPI_STATUS 2937 acpi_sleep_disable(struct acpi_softc *sc) 2938 { 2939 ACPI_STATUS status; 2940 2941 /* Fail if the system is not fully up and running. */ 2942 if (!AcpiGbl_SystemAwakeAndRunning) 2943 return (AE_ERROR); 2944 2945 ACPI_LOCK(acpi); 2946 status = sc->acpi_sleep_disabled ? AE_ERROR : AE_OK; 2947 sc->acpi_sleep_disabled = TRUE; 2948 ACPI_UNLOCK(acpi); 2949 2950 return (status); 2951 } 2952 2953 enum acpi_sleep_state { 2954 ACPI_SS_NONE, 2955 ACPI_SS_GPE_SET, 2956 ACPI_SS_DEV_SUSPEND, 2957 ACPI_SS_SLP_PREP, 2958 ACPI_SS_SLEPT, 2959 }; 2960 2961 /* 2962 * Enter the desired system sleep state. 2963 * 2964 * Currently we support S1-S5 but S4 is only S4BIOS 2965 */ 2966 static ACPI_STATUS 2967 acpi_EnterSleepState(struct acpi_softc *sc, int state) 2968 { 2969 register_t intr; 2970 ACPI_STATUS status; 2971 ACPI_EVENT_STATUS power_button_status; 2972 enum acpi_sleep_state slp_state; 2973 int sleep_result; 2974 2975 ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state); 2976 2977 if (state < ACPI_STATE_S1 || state > ACPI_S_STATES_MAX) 2978 return_ACPI_STATUS (AE_BAD_PARAMETER); 2979 if (!acpi_sleep_states[state]) { 2980 device_printf(sc->acpi_dev, "Sleep state S%d not supported by BIOS\n", 2981 state); 2982 return (AE_SUPPORT); 2983 } 2984 2985 /* Re-entry once we're suspending is not allowed. */ 2986 status = acpi_sleep_disable(sc); 2987 if (ACPI_FAILURE(status)) { 2988 device_printf(sc->acpi_dev, 2989 "suspend request ignored (not ready yet)\n"); 2990 return (status); 2991 } 2992 2993 if (state == ACPI_STATE_S5) { 2994 /* 2995 * Shut down cleanly and power off. This will call us back through the 2996 * shutdown handlers. 2997 */ 2998 shutdown_nice(RB_POWEROFF); 2999 return_ACPI_STATUS (AE_OK); 3000 } 3001 3002 EVENTHANDLER_INVOKE(power_suspend_early); 3003 stop_all_proc(); 3004 EVENTHANDLER_INVOKE(power_suspend); 3005 3006 #ifdef EARLY_AP_STARTUP 3007 MPASS(mp_ncpus == 1 || smp_started); 3008 thread_lock(curthread); 3009 sched_bind(curthread, 0); 3010 thread_unlock(curthread); 3011 #else 3012 if (smp_started) { 3013 thread_lock(curthread); 3014 sched_bind(curthread, 0); 3015 thread_unlock(curthread); 3016 } 3017 #endif 3018 3019 /* 3020 * Be sure to hold Giant across DEVICE_SUSPEND/RESUME since non-MPSAFE 3021 * drivers need this. 3022 */ 3023 mtx_lock(&Giant); 3024 3025 slp_state = ACPI_SS_NONE; 3026 3027 sc->acpi_sstate = state; 3028 3029 /* Enable any GPEs as appropriate and requested by the user. */ 3030 acpi_wake_prep_walk(state); 3031 slp_state = ACPI_SS_GPE_SET; 3032 3033 /* 3034 * Inform all devices that we are going to sleep. If at least one 3035 * device fails, DEVICE_SUSPEND() automatically resumes the tree. 3036 * 3037 * XXX Note that a better two-pass approach with a 'veto' pass 3038 * followed by a "real thing" pass would be better, but the current 3039 * bus interface does not provide for this. 3040 */ 3041 if (DEVICE_SUSPEND(root_bus) != 0) { 3042 device_printf(sc->acpi_dev, "device_suspend failed\n"); 3043 goto backout; 3044 } 3045 slp_state = ACPI_SS_DEV_SUSPEND; 3046 3047 status = AcpiEnterSleepStatePrep(state); 3048 if (ACPI_FAILURE(status)) { 3049 device_printf(sc->acpi_dev, "AcpiEnterSleepStatePrep failed - %s\n", 3050 AcpiFormatException(status)); 3051 goto backout; 3052 } 3053 slp_state = ACPI_SS_SLP_PREP; 3054 3055 if (sc->acpi_sleep_delay > 0) 3056 DELAY(sc->acpi_sleep_delay * 1000000); 3057 3058 suspendclock(); 3059 intr = intr_disable(); 3060 if (state != ACPI_STATE_S1) { 3061 sleep_result = acpi_sleep_machdep(sc, state); 3062 acpi_wakeup_machdep(sc, state, sleep_result, 0); 3063 3064 /* 3065 * XXX According to ACPI specification SCI_EN bit should be restored 3066 * by ACPI platform (BIOS, firmware) to its pre-sleep state. 3067 * Unfortunately some BIOSes fail to do that and that leads to 3068 * unexpected and serious consequences during wake up like a system 3069 * getting stuck in SMI handlers. 3070 * This hack is picked up from Linux, which claims that it follows 3071 * Windows behavior. 3072 */ 3073 if (sleep_result == 1 && state != ACPI_STATE_S4) 3074 AcpiWriteBitRegister(ACPI_BITREG_SCI_ENABLE, ACPI_ENABLE_EVENT); 3075 3076 if (sleep_result == 1 && state == ACPI_STATE_S3) { 3077 /* 3078 * Prevent mis-interpretation of the wakeup by power button 3079 * as a request for power off. 3080 * Ideally we should post an appropriate wakeup event, 3081 * perhaps using acpi_event_power_button_wake or alike. 3082 * 3083 * Clearing of power button status after wakeup is mandated 3084 * by ACPI specification in section "Fixed Power Button". 3085 * 3086 * XXX As of ACPICA 20121114 AcpiGetEventStatus provides 3087 * status as 0/1 corressponding to inactive/active despite 3088 * its type being ACPI_EVENT_STATUS. In other words, 3089 * we should not test for ACPI_EVENT_FLAG_SET for time being. 3090 */ 3091 if (ACPI_SUCCESS(AcpiGetEventStatus(ACPI_EVENT_POWER_BUTTON, 3092 &power_button_status)) && power_button_status != 0) { 3093 AcpiClearEvent(ACPI_EVENT_POWER_BUTTON); 3094 device_printf(sc->acpi_dev, 3095 "cleared fixed power button status\n"); 3096 } 3097 } 3098 3099 intr_restore(intr); 3100 3101 /* call acpi_wakeup_machdep() again with interrupt enabled */ 3102 acpi_wakeup_machdep(sc, state, sleep_result, 1); 3103 3104 AcpiLeaveSleepStatePrep(state); 3105 3106 if (sleep_result == -1) 3107 goto backout; 3108 3109 /* Re-enable ACPI hardware on wakeup from sleep state 4. */ 3110 if (state == ACPI_STATE_S4) 3111 AcpiEnable(); 3112 } else { 3113 status = AcpiEnterSleepState(state); 3114 intr_restore(intr); 3115 AcpiLeaveSleepStatePrep(state); 3116 if (ACPI_FAILURE(status)) { 3117 device_printf(sc->acpi_dev, "AcpiEnterSleepState failed - %s\n", 3118 AcpiFormatException(status)); 3119 goto backout; 3120 } 3121 } 3122 slp_state = ACPI_SS_SLEPT; 3123 3124 /* 3125 * Back out state according to how far along we got in the suspend 3126 * process. This handles both the error and success cases. 3127 */ 3128 backout: 3129 if (slp_state >= ACPI_SS_SLP_PREP) 3130 resumeclock(); 3131 if (slp_state >= ACPI_SS_GPE_SET) { 3132 acpi_wake_prep_walk(state); 3133 sc->acpi_sstate = ACPI_STATE_S0; 3134 } 3135 if (slp_state >= ACPI_SS_DEV_SUSPEND) 3136 DEVICE_RESUME(root_bus); 3137 if (slp_state >= ACPI_SS_SLP_PREP) 3138 AcpiLeaveSleepState(state); 3139 if (slp_state >= ACPI_SS_SLEPT) { 3140 #if defined(__i386__) || defined(__amd64__) 3141 /* NB: we are still using ACPI timecounter at this point. */ 3142 resume_TSC(); 3143 #endif 3144 acpi_resync_clock(sc); 3145 acpi_enable_fixed_events(sc); 3146 } 3147 sc->acpi_next_sstate = 0; 3148 3149 mtx_unlock(&Giant); 3150 3151 #ifdef EARLY_AP_STARTUP 3152 thread_lock(curthread); 3153 sched_unbind(curthread); 3154 thread_unlock(curthread); 3155 #else 3156 if (smp_started) { 3157 thread_lock(curthread); 3158 sched_unbind(curthread); 3159 thread_unlock(curthread); 3160 } 3161 #endif 3162 3163 resume_all_proc(); 3164 3165 EVENTHANDLER_INVOKE(power_resume); 3166 3167 /* Allow another sleep request after a while. */ 3168 callout_schedule(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME); 3169 3170 /* Run /etc/rc.resume after we are back. */ 3171 if (devctl_process_running()) 3172 acpi_UserNotify("Resume", ACPI_ROOT_OBJECT, state); 3173 3174 return_ACPI_STATUS (status); 3175 } 3176 3177 static void 3178 acpi_resync_clock(struct acpi_softc *sc) 3179 { 3180 3181 /* 3182 * Warm up timecounter again and reset system clock. 3183 */ 3184 (void)timecounter->tc_get_timecount(timecounter); 3185 (void)timecounter->tc_get_timecount(timecounter); 3186 inittodr(time_second + sc->acpi_sleep_delay); 3187 } 3188 3189 /* Enable or disable the device's wake GPE. */ 3190 int 3191 acpi_wake_set_enable(device_t dev, int enable) 3192 { 3193 struct acpi_prw_data prw; 3194 ACPI_STATUS status; 3195 int flags; 3196 3197 /* Make sure the device supports waking the system and get the GPE. */ 3198 if (acpi_parse_prw(acpi_get_handle(dev), &prw) != 0) 3199 return (ENXIO); 3200 3201 flags = acpi_get_flags(dev); 3202 if (enable) { 3203 status = AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, 3204 ACPI_GPE_ENABLE); 3205 if (ACPI_FAILURE(status)) { 3206 device_printf(dev, "enable wake failed\n"); 3207 return (ENXIO); 3208 } 3209 acpi_set_flags(dev, flags | ACPI_FLAG_WAKE_ENABLED); 3210 } else { 3211 status = AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, 3212 ACPI_GPE_DISABLE); 3213 if (ACPI_FAILURE(status)) { 3214 device_printf(dev, "disable wake failed\n"); 3215 return (ENXIO); 3216 } 3217 acpi_set_flags(dev, flags & ~ACPI_FLAG_WAKE_ENABLED); 3218 } 3219 3220 return (0); 3221 } 3222 3223 static int 3224 acpi_wake_sleep_prep(ACPI_HANDLE handle, int sstate) 3225 { 3226 struct acpi_prw_data prw; 3227 device_t dev; 3228 3229 /* Check that this is a wake-capable device and get its GPE. */ 3230 if (acpi_parse_prw(handle, &prw) != 0) 3231 return (ENXIO); 3232 dev = acpi_get_device(handle); 3233 3234 /* 3235 * The destination sleep state must be less than (i.e., higher power) 3236 * or equal to the value specified by _PRW. If this GPE cannot be 3237 * enabled for the next sleep state, then disable it. If it can and 3238 * the user requested it be enabled, turn on any required power resources 3239 * and set _PSW. 3240 */ 3241 if (sstate > prw.lowest_wake) { 3242 AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, ACPI_GPE_DISABLE); 3243 if (bootverbose) 3244 device_printf(dev, "wake_prep disabled wake for %s (S%d)\n", 3245 acpi_name(handle), sstate); 3246 } else if (dev && (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) != 0) { 3247 acpi_pwr_wake_enable(handle, 1); 3248 acpi_SetInteger(handle, "_PSW", 1); 3249 if (bootverbose) 3250 device_printf(dev, "wake_prep enabled for %s (S%d)\n", 3251 acpi_name(handle), sstate); 3252 } 3253 3254 return (0); 3255 } 3256 3257 static int 3258 acpi_wake_run_prep(ACPI_HANDLE handle, int sstate) 3259 { 3260 struct acpi_prw_data prw; 3261 device_t dev; 3262 3263 /* 3264 * Check that this is a wake-capable device and get its GPE. Return 3265 * now if the user didn't enable this device for wake. 3266 */ 3267 if (acpi_parse_prw(handle, &prw) != 0) 3268 return (ENXIO); 3269 dev = acpi_get_device(handle); 3270 if (dev == NULL || (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) == 0) 3271 return (0); 3272 3273 /* 3274 * If this GPE couldn't be enabled for the previous sleep state, it was 3275 * disabled before going to sleep so re-enable it. If it was enabled, 3276 * clear _PSW and turn off any power resources it used. 3277 */ 3278 if (sstate > prw.lowest_wake) { 3279 AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, ACPI_GPE_ENABLE); 3280 if (bootverbose) 3281 device_printf(dev, "run_prep re-enabled %s\n", acpi_name(handle)); 3282 } else { 3283 acpi_SetInteger(handle, "_PSW", 0); 3284 acpi_pwr_wake_enable(handle, 0); 3285 if (bootverbose) 3286 device_printf(dev, "run_prep cleaned up for %s\n", 3287 acpi_name(handle)); 3288 } 3289 3290 return (0); 3291 } 3292 3293 static ACPI_STATUS 3294 acpi_wake_prep(ACPI_HANDLE handle, UINT32 level, void *context, void **status) 3295 { 3296 int sstate; 3297 3298 /* If suspending, run the sleep prep function, otherwise wake. */ 3299 sstate = *(int *)context; 3300 if (AcpiGbl_SystemAwakeAndRunning) 3301 acpi_wake_sleep_prep(handle, sstate); 3302 else 3303 acpi_wake_run_prep(handle, sstate); 3304 return (AE_OK); 3305 } 3306 3307 /* Walk the tree rooted at acpi0 to prep devices for suspend/resume. */ 3308 static int 3309 acpi_wake_prep_walk(int sstate) 3310 { 3311 ACPI_HANDLE sb_handle; 3312 3313 if (ACPI_SUCCESS(AcpiGetHandle(ACPI_ROOT_OBJECT, "\\_SB_", &sb_handle))) 3314 AcpiWalkNamespace(ACPI_TYPE_DEVICE, sb_handle, 100, 3315 acpi_wake_prep, NULL, &sstate, NULL); 3316 return (0); 3317 } 3318 3319 /* Walk the tree rooted at acpi0 to attach per-device wake sysctls. */ 3320 static int 3321 acpi_wake_sysctl_walk(device_t dev) 3322 { 3323 int error, i, numdevs; 3324 device_t *devlist; 3325 device_t child; 3326 ACPI_STATUS status; 3327 3328 error = device_get_children(dev, &devlist, &numdevs); 3329 if (error != 0 || numdevs == 0) { 3330 if (numdevs == 0) 3331 free(devlist, M_TEMP); 3332 return (error); 3333 } 3334 for (i = 0; i < numdevs; i++) { 3335 child = devlist[i]; 3336 acpi_wake_sysctl_walk(child); 3337 if (!device_is_attached(child)) 3338 continue; 3339 status = AcpiEvaluateObject(acpi_get_handle(child), "_PRW", NULL, NULL); 3340 if (ACPI_SUCCESS(status)) { 3341 SYSCTL_ADD_PROC(device_get_sysctl_ctx(child), 3342 SYSCTL_CHILDREN(device_get_sysctl_tree(child)), OID_AUTO, 3343 "wake", CTLTYPE_INT | CTLFLAG_RW, child, 0, 3344 acpi_wake_set_sysctl, "I", "Device set to wake the system"); 3345 } 3346 } 3347 free(devlist, M_TEMP); 3348 3349 return (0); 3350 } 3351 3352 /* Enable or disable wake from userland. */ 3353 static int 3354 acpi_wake_set_sysctl(SYSCTL_HANDLER_ARGS) 3355 { 3356 int enable, error; 3357 device_t dev; 3358 3359 dev = (device_t)arg1; 3360 enable = (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) ? 1 : 0; 3361 3362 error = sysctl_handle_int(oidp, &enable, 0, req); 3363 if (error != 0 || req->newptr == NULL) 3364 return (error); 3365 if (enable != 0 && enable != 1) 3366 return (EINVAL); 3367 3368 return (acpi_wake_set_enable(dev, enable)); 3369 } 3370 3371 /* Parse a device's _PRW into a structure. */ 3372 int 3373 acpi_parse_prw(ACPI_HANDLE h, struct acpi_prw_data *prw) 3374 { 3375 ACPI_STATUS status; 3376 ACPI_BUFFER prw_buffer; 3377 ACPI_OBJECT *res, *res2; 3378 int error, i, power_count; 3379 3380 if (h == NULL || prw == NULL) 3381 return (EINVAL); 3382 3383 /* 3384 * The _PRW object (7.2.9) is only required for devices that have the 3385 * ability to wake the system from a sleeping state. 3386 */ 3387 error = EINVAL; 3388 prw_buffer.Pointer = NULL; 3389 prw_buffer.Length = ACPI_ALLOCATE_BUFFER; 3390 status = AcpiEvaluateObject(h, "_PRW", NULL, &prw_buffer); 3391 if (ACPI_FAILURE(status)) 3392 return (ENOENT); 3393 res = (ACPI_OBJECT *)prw_buffer.Pointer; 3394 if (res == NULL) 3395 return (ENOENT); 3396 if (!ACPI_PKG_VALID(res, 2)) 3397 goto out; 3398 3399 /* 3400 * Element 1 of the _PRW object: 3401 * The lowest power system sleeping state that can be entered while still 3402 * providing wake functionality. The sleeping state being entered must 3403 * be less than (i.e., higher power) or equal to this value. 3404 */ 3405 if (acpi_PkgInt32(res, 1, &prw->lowest_wake) != 0) 3406 goto out; 3407 3408 /* 3409 * Element 0 of the _PRW object: 3410 */ 3411 switch (res->Package.Elements[0].Type) { 3412 case ACPI_TYPE_INTEGER: 3413 /* 3414 * If the data type of this package element is numeric, then this 3415 * _PRW package element is the bit index in the GPEx_EN, in the 3416 * GPE blocks described in the FADT, of the enable bit that is 3417 * enabled for the wake event. 3418 */ 3419 prw->gpe_handle = NULL; 3420 prw->gpe_bit = res->Package.Elements[0].Integer.Value; 3421 error = 0; 3422 break; 3423 case ACPI_TYPE_PACKAGE: 3424 /* 3425 * If the data type of this package element is a package, then this 3426 * _PRW package element is itself a package containing two 3427 * elements. The first is an object reference to the GPE Block 3428 * device that contains the GPE that will be triggered by the wake 3429 * event. The second element is numeric and it contains the bit 3430 * index in the GPEx_EN, in the GPE Block referenced by the 3431 * first element in the package, of the enable bit that is enabled for 3432 * the wake event. 3433 * 3434 * For example, if this field is a package then it is of the form: 3435 * Package() {\_SB.PCI0.ISA.GPE, 2} 3436 */ 3437 res2 = &res->Package.Elements[0]; 3438 if (!ACPI_PKG_VALID(res2, 2)) 3439 goto out; 3440 prw->gpe_handle = acpi_GetReference(NULL, &res2->Package.Elements[0]); 3441 if (prw->gpe_handle == NULL) 3442 goto out; 3443 if (acpi_PkgInt32(res2, 1, &prw->gpe_bit) != 0) 3444 goto out; 3445 error = 0; 3446 break; 3447 default: 3448 goto out; 3449 } 3450 3451 /* Elements 2 to N of the _PRW object are power resources. */ 3452 power_count = res->Package.Count - 2; 3453 if (power_count > ACPI_PRW_MAX_POWERRES) { 3454 printf("ACPI device %s has too many power resources\n", acpi_name(h)); 3455 power_count = 0; 3456 } 3457 prw->power_res_count = power_count; 3458 for (i = 0; i < power_count; i++) 3459 prw->power_res[i] = res->Package.Elements[i]; 3460 3461 out: 3462 if (prw_buffer.Pointer != NULL) 3463 AcpiOsFree(prw_buffer.Pointer); 3464 return (error); 3465 } 3466 3467 /* 3468 * ACPI Event Handlers 3469 */ 3470 3471 /* System Event Handlers (registered by EVENTHANDLER_REGISTER) */ 3472 3473 static void 3474 acpi_system_eventhandler_sleep(void *arg, int state) 3475 { 3476 struct acpi_softc *sc = (struct acpi_softc *)arg; 3477 int ret; 3478 3479 ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state); 3480 3481 /* Check if button action is disabled or unknown. */ 3482 if (state == ACPI_STATE_UNKNOWN) 3483 return; 3484 3485 /* Request that the system prepare to enter the given suspend state. */ 3486 ret = acpi_ReqSleepState(sc, state); 3487 if (ret != 0) 3488 device_printf(sc->acpi_dev, 3489 "request to enter state S%d failed (err %d)\n", state, ret); 3490 3491 return_VOID; 3492 } 3493 3494 static void 3495 acpi_system_eventhandler_wakeup(void *arg, int state) 3496 { 3497 3498 ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state); 3499 3500 /* Currently, nothing to do for wakeup. */ 3501 3502 return_VOID; 3503 } 3504 3505 /* 3506 * ACPICA Event Handlers (FixedEvent, also called from button notify handler) 3507 */ 3508 static void 3509 acpi_invoke_sleep_eventhandler(void *context) 3510 { 3511 3512 EVENTHANDLER_INVOKE(acpi_sleep_event, *(int *)context); 3513 } 3514 3515 static void 3516 acpi_invoke_wake_eventhandler(void *context) 3517 { 3518 3519 EVENTHANDLER_INVOKE(acpi_wakeup_event, *(int *)context); 3520 } 3521 3522 UINT32 3523 acpi_event_power_button_sleep(void *context) 3524 { 3525 struct acpi_softc *sc = (struct acpi_softc *)context; 3526 3527 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3528 3529 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3530 acpi_invoke_sleep_eventhandler, &sc->acpi_power_button_sx))) 3531 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); 3532 return_VALUE (ACPI_INTERRUPT_HANDLED); 3533 } 3534 3535 UINT32 3536 acpi_event_power_button_wake(void *context) 3537 { 3538 struct acpi_softc *sc = (struct acpi_softc *)context; 3539 3540 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3541 3542 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3543 acpi_invoke_wake_eventhandler, &sc->acpi_power_button_sx))) 3544 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); 3545 return_VALUE (ACPI_INTERRUPT_HANDLED); 3546 } 3547 3548 UINT32 3549 acpi_event_sleep_button_sleep(void *context) 3550 { 3551 struct acpi_softc *sc = (struct acpi_softc *)context; 3552 3553 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3554 3555 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3556 acpi_invoke_sleep_eventhandler, &sc->acpi_sleep_button_sx))) 3557 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); 3558 return_VALUE (ACPI_INTERRUPT_HANDLED); 3559 } 3560 3561 UINT32 3562 acpi_event_sleep_button_wake(void *context) 3563 { 3564 struct acpi_softc *sc = (struct acpi_softc *)context; 3565 3566 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); 3567 3568 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, 3569 acpi_invoke_wake_eventhandler, &sc->acpi_sleep_button_sx))) 3570 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); 3571 return_VALUE (ACPI_INTERRUPT_HANDLED); 3572 } 3573 3574 /* 3575 * XXX This static buffer is suboptimal. There is no locking so only 3576 * use this for single-threaded callers. 3577 */ 3578 char * 3579 acpi_name(ACPI_HANDLE handle) 3580 { 3581 ACPI_BUFFER buf; 3582 static char data[256]; 3583 3584 buf.Length = sizeof(data); 3585 buf.Pointer = data; 3586 3587 if (handle && ACPI_SUCCESS(AcpiGetName(handle, ACPI_FULL_PATHNAME, &buf))) 3588 return (data); 3589 return ("(unknown)"); 3590 } 3591 3592 /* 3593 * Debugging/bug-avoidance. Avoid trying to fetch info on various 3594 * parts of the namespace. 3595 */ 3596 int 3597 acpi_avoid(ACPI_HANDLE handle) 3598 { 3599 char *cp, *env, *np; 3600 int len; 3601 3602 np = acpi_name(handle); 3603 if (*np == '\\') 3604 np++; 3605 if ((env = kern_getenv("debug.acpi.avoid")) == NULL) 3606 return (0); 3607 3608 /* Scan the avoid list checking for a match */ 3609 cp = env; 3610 for (;;) { 3611 while (*cp != 0 && isspace(*cp)) 3612 cp++; 3613 if (*cp == 0) 3614 break; 3615 len = 0; 3616 while (cp[len] != 0 && !isspace(cp[len])) 3617 len++; 3618 if (!strncmp(cp, np, len)) { 3619 freeenv(env); 3620 return(1); 3621 } 3622 cp += len; 3623 } 3624 freeenv(env); 3625 3626 return (0); 3627 } 3628 3629 /* 3630 * Debugging/bug-avoidance. Disable ACPI subsystem components. 3631 */ 3632 int 3633 acpi_disabled(char *subsys) 3634 { 3635 char *cp, *env; 3636 int len; 3637 3638 if ((env = kern_getenv("debug.acpi.disabled")) == NULL) 3639 return (0); 3640 if (strcmp(env, "all") == 0) { 3641 freeenv(env); 3642 return (1); 3643 } 3644 3645 /* Scan the disable list, checking for a match. */ 3646 cp = env; 3647 for (;;) { 3648 while (*cp != '\0' && isspace(*cp)) 3649 cp++; 3650 if (*cp == '\0') 3651 break; 3652 len = 0; 3653 while (cp[len] != '\0' && !isspace(cp[len])) 3654 len++; 3655 if (strncmp(cp, subsys, len) == 0) { 3656 freeenv(env); 3657 return (1); 3658 } 3659 cp += len; 3660 } 3661 freeenv(env); 3662 3663 return (0); 3664 } 3665 3666 static void 3667 acpi_lookup(void *arg, const char *name, device_t *dev) 3668 { 3669 ACPI_HANDLE handle; 3670 3671 if (*dev != NULL) 3672 return; 3673 3674 /* 3675 * Allow any handle name that is specified as an absolute path and 3676 * starts with '\'. We could restrict this to \_SB and friends, 3677 * but see acpi_probe_children() for notes on why we scan the entire 3678 * namespace for devices. 3679 * 3680 * XXX: The pathname argument to AcpiGetHandle() should be fixed to 3681 * be const. 3682 */ 3683 if (name[0] != '\\') 3684 return; 3685 if (ACPI_FAILURE(AcpiGetHandle(ACPI_ROOT_OBJECT, __DECONST(char *, name), 3686 &handle))) 3687 return; 3688 *dev = acpi_get_device(handle); 3689 } 3690 3691 /* 3692 * Control interface. 3693 * 3694 * We multiplex ioctls for all participating ACPI devices here. Individual 3695 * drivers wanting to be accessible via /dev/acpi should use the 3696 * register/deregister interface to make their handlers visible. 3697 */ 3698 struct acpi_ioctl_hook 3699 { 3700 TAILQ_ENTRY(acpi_ioctl_hook) link; 3701 u_long cmd; 3702 acpi_ioctl_fn fn; 3703 void *arg; 3704 }; 3705 3706 static TAILQ_HEAD(,acpi_ioctl_hook) acpi_ioctl_hooks; 3707 static int acpi_ioctl_hooks_initted; 3708 3709 int 3710 acpi_register_ioctl(u_long cmd, acpi_ioctl_fn fn, void *arg) 3711 { 3712 struct acpi_ioctl_hook *hp; 3713 3714 if ((hp = malloc(sizeof(*hp), M_ACPIDEV, M_NOWAIT)) == NULL) 3715 return (ENOMEM); 3716 hp->cmd = cmd; 3717 hp->fn = fn; 3718 hp->arg = arg; 3719 3720 ACPI_LOCK(acpi); 3721 if (acpi_ioctl_hooks_initted == 0) { 3722 TAILQ_INIT(&acpi_ioctl_hooks); 3723 acpi_ioctl_hooks_initted = 1; 3724 } 3725 TAILQ_INSERT_TAIL(&acpi_ioctl_hooks, hp, link); 3726 ACPI_UNLOCK(acpi); 3727 3728 return (0); 3729 } 3730 3731 void 3732 acpi_deregister_ioctl(u_long cmd, acpi_ioctl_fn fn) 3733 { 3734 struct acpi_ioctl_hook *hp; 3735 3736 ACPI_LOCK(acpi); 3737 TAILQ_FOREACH(hp, &acpi_ioctl_hooks, link) 3738 if (hp->cmd == cmd && hp->fn == fn) 3739 break; 3740 3741 if (hp != NULL) { 3742 TAILQ_REMOVE(&acpi_ioctl_hooks, hp, link); 3743 free(hp, M_ACPIDEV); 3744 } 3745 ACPI_UNLOCK(acpi); 3746 } 3747 3748 static int 3749 acpiopen(struct cdev *dev, int flag, int fmt, struct thread *td) 3750 { 3751 return (0); 3752 } 3753 3754 static int 3755 acpiclose(struct cdev *dev, int flag, int fmt, struct thread *td) 3756 { 3757 return (0); 3758 } 3759 3760 static int 3761 acpiioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 3762 { 3763 struct acpi_softc *sc; 3764 struct acpi_ioctl_hook *hp; 3765 int error, state; 3766 3767 error = 0; 3768 hp = NULL; 3769 sc = dev->si_drv1; 3770 3771 /* 3772 * Scan the list of registered ioctls, looking for handlers. 3773 */ 3774 ACPI_LOCK(acpi); 3775 if (acpi_ioctl_hooks_initted) 3776 TAILQ_FOREACH(hp, &acpi_ioctl_hooks, link) { 3777 if (hp->cmd == cmd) 3778 break; 3779 } 3780 ACPI_UNLOCK(acpi); 3781 if (hp) 3782 return (hp->fn(cmd, addr, hp->arg)); 3783 3784 /* 3785 * Core ioctls are not permitted for non-writable user. 3786 * Currently, other ioctls just fetch information. 3787 * Not changing system behavior. 3788 */ 3789 if ((flag & FWRITE) == 0) 3790 return (EPERM); 3791 3792 /* Core system ioctls. */ 3793 switch (cmd) { 3794 case ACPIIO_REQSLPSTATE: 3795 state = *(int *)addr; 3796 if (state != ACPI_STATE_S5) 3797 return (acpi_ReqSleepState(sc, state)); 3798 device_printf(sc->acpi_dev, "power off via acpi ioctl not supported\n"); 3799 error = EOPNOTSUPP; 3800 break; 3801 case ACPIIO_ACKSLPSTATE: 3802 error = *(int *)addr; 3803 error = acpi_AckSleepState(sc->acpi_clone, error); 3804 break; 3805 case ACPIIO_SETSLPSTATE: /* DEPRECATED */ 3806 state = *(int *)addr; 3807 if (state < ACPI_STATE_S0 || state > ACPI_S_STATES_MAX) 3808 return (EINVAL); 3809 if (!acpi_sleep_states[state]) 3810 return (EOPNOTSUPP); 3811 if (ACPI_FAILURE(acpi_SetSleepState(sc, state))) 3812 error = ENXIO; 3813 break; 3814 default: 3815 error = ENXIO; 3816 break; 3817 } 3818 3819 return (error); 3820 } 3821 3822 static int 3823 acpi_sname2sstate(const char *sname) 3824 { 3825 int sstate; 3826 3827 if (toupper(sname[0]) == 'S') { 3828 sstate = sname[1] - '0'; 3829 if (sstate >= ACPI_STATE_S0 && sstate <= ACPI_STATE_S5 && 3830 sname[2] == '\0') 3831 return (sstate); 3832 } else if (strcasecmp(sname, "NONE") == 0) 3833 return (ACPI_STATE_UNKNOWN); 3834 return (-1); 3835 } 3836 3837 static const char * 3838 acpi_sstate2sname(int sstate) 3839 { 3840 static const char *snames[] = { "S0", "S1", "S2", "S3", "S4", "S5" }; 3841 3842 if (sstate >= ACPI_STATE_S0 && sstate <= ACPI_STATE_S5) 3843 return (snames[sstate]); 3844 else if (sstate == ACPI_STATE_UNKNOWN) 3845 return ("NONE"); 3846 return (NULL); 3847 } 3848 3849 static int 3850 acpi_supported_sleep_state_sysctl(SYSCTL_HANDLER_ARGS) 3851 { 3852 int error; 3853 struct sbuf sb; 3854 UINT8 state; 3855 3856 sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND); 3857 for (state = ACPI_STATE_S1; state < ACPI_S_STATE_COUNT; state++) 3858 if (acpi_sleep_states[state]) 3859 sbuf_printf(&sb, "%s ", acpi_sstate2sname(state)); 3860 sbuf_trim(&sb); 3861 sbuf_finish(&sb); 3862 error = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req); 3863 sbuf_delete(&sb); 3864 return (error); 3865 } 3866 3867 static int 3868 acpi_sleep_state_sysctl(SYSCTL_HANDLER_ARGS) 3869 { 3870 char sleep_state[10]; 3871 int error, new_state, old_state; 3872 3873 old_state = *(int *)oidp->oid_arg1; 3874 strlcpy(sleep_state, acpi_sstate2sname(old_state), sizeof(sleep_state)); 3875 error = sysctl_handle_string(oidp, sleep_state, sizeof(sleep_state), req); 3876 if (error == 0 && req->newptr != NULL) { 3877 new_state = acpi_sname2sstate(sleep_state); 3878 if (new_state < ACPI_STATE_S1) 3879 return (EINVAL); 3880 if (new_state < ACPI_S_STATE_COUNT && !acpi_sleep_states[new_state]) 3881 return (EOPNOTSUPP); 3882 if (new_state != old_state) 3883 *(int *)oidp->oid_arg1 = new_state; 3884 } 3885 return (error); 3886 } 3887 3888 /* Inform devctl(4) when we receive a Notify. */ 3889 void 3890 acpi_UserNotify(const char *subsystem, ACPI_HANDLE h, uint8_t notify) 3891 { 3892 char notify_buf[16]; 3893 ACPI_BUFFER handle_buf; 3894 ACPI_STATUS status; 3895 3896 if (subsystem == NULL) 3897 return; 3898 3899 handle_buf.Pointer = NULL; 3900 handle_buf.Length = ACPI_ALLOCATE_BUFFER; 3901 status = AcpiNsHandleToPathname(h, &handle_buf, FALSE); 3902 if (ACPI_FAILURE(status)) 3903 return; 3904 snprintf(notify_buf, sizeof(notify_buf), "notify=0x%02x", notify); 3905 devctl_notify("ACPI", subsystem, handle_buf.Pointer, notify_buf); 3906 AcpiOsFree(handle_buf.Pointer); 3907 } 3908 3909 #ifdef ACPI_DEBUG 3910 /* 3911 * Support for parsing debug options from the kernel environment. 3912 * 3913 * Bits may be set in the AcpiDbgLayer and AcpiDbgLevel debug registers 3914 * by specifying the names of the bits in the debug.acpi.layer and 3915 * debug.acpi.level environment variables. Bits may be unset by 3916 * prefixing the bit name with !. 3917 */ 3918 struct debugtag 3919 { 3920 char *name; 3921 UINT32 value; 3922 }; 3923 3924 static struct debugtag dbg_layer[] = { 3925 {"ACPI_UTILITIES", ACPI_UTILITIES}, 3926 {"ACPI_HARDWARE", ACPI_HARDWARE}, 3927 {"ACPI_EVENTS", ACPI_EVENTS}, 3928 {"ACPI_TABLES", ACPI_TABLES}, 3929 {"ACPI_NAMESPACE", ACPI_NAMESPACE}, 3930 {"ACPI_PARSER", ACPI_PARSER}, 3931 {"ACPI_DISPATCHER", ACPI_DISPATCHER}, 3932 {"ACPI_EXECUTER", ACPI_EXECUTER}, 3933 {"ACPI_RESOURCES", ACPI_RESOURCES}, 3934 {"ACPI_CA_DEBUGGER", ACPI_CA_DEBUGGER}, 3935 {"ACPI_OS_SERVICES", ACPI_OS_SERVICES}, 3936 {"ACPI_CA_DISASSEMBLER", ACPI_CA_DISASSEMBLER}, 3937 {"ACPI_ALL_COMPONENTS", ACPI_ALL_COMPONENTS}, 3938 3939 {"ACPI_AC_ADAPTER", ACPI_AC_ADAPTER}, 3940 {"ACPI_BATTERY", ACPI_BATTERY}, 3941 {"ACPI_BUS", ACPI_BUS}, 3942 {"ACPI_BUTTON", ACPI_BUTTON}, 3943 {"ACPI_EC", ACPI_EC}, 3944 {"ACPI_FAN", ACPI_FAN}, 3945 {"ACPI_POWERRES", ACPI_POWERRES}, 3946 {"ACPI_PROCESSOR", ACPI_PROCESSOR}, 3947 {"ACPI_THERMAL", ACPI_THERMAL}, 3948 {"ACPI_TIMER", ACPI_TIMER}, 3949 {"ACPI_ALL_DRIVERS", ACPI_ALL_DRIVERS}, 3950 {NULL, 0} 3951 }; 3952 3953 static struct debugtag dbg_level[] = { 3954 {"ACPI_LV_INIT", ACPI_LV_INIT}, 3955 {"ACPI_LV_DEBUG_OBJECT", ACPI_LV_DEBUG_OBJECT}, 3956 {"ACPI_LV_INFO", ACPI_LV_INFO}, 3957 {"ACPI_LV_REPAIR", ACPI_LV_REPAIR}, 3958 {"ACPI_LV_ALL_EXCEPTIONS", ACPI_LV_ALL_EXCEPTIONS}, 3959 3960 /* Trace verbosity level 1 [Standard Trace Level] */ 3961 {"ACPI_LV_INIT_NAMES", ACPI_LV_INIT_NAMES}, 3962 {"ACPI_LV_PARSE", ACPI_LV_PARSE}, 3963 {"ACPI_LV_LOAD", ACPI_LV_LOAD}, 3964 {"ACPI_LV_DISPATCH", ACPI_LV_DISPATCH}, 3965 {"ACPI_LV_EXEC", ACPI_LV_EXEC}, 3966 {"ACPI_LV_NAMES", ACPI_LV_NAMES}, 3967 {"ACPI_LV_OPREGION", ACPI_LV_OPREGION}, 3968 {"ACPI_LV_BFIELD", ACPI_LV_BFIELD}, 3969 {"ACPI_LV_TABLES", ACPI_LV_TABLES}, 3970 {"ACPI_LV_VALUES", ACPI_LV_VALUES}, 3971 {"ACPI_LV_OBJECTS", ACPI_LV_OBJECTS}, 3972 {"ACPI_LV_RESOURCES", ACPI_LV_RESOURCES}, 3973 {"ACPI_LV_USER_REQUESTS", ACPI_LV_USER_REQUESTS}, 3974 {"ACPI_LV_PACKAGE", ACPI_LV_PACKAGE}, 3975 {"ACPI_LV_VERBOSITY1", ACPI_LV_VERBOSITY1}, 3976 3977 /* Trace verbosity level 2 [Function tracing and memory allocation] */ 3978 {"ACPI_LV_ALLOCATIONS", ACPI_LV_ALLOCATIONS}, 3979 {"ACPI_LV_FUNCTIONS", ACPI_LV_FUNCTIONS}, 3980 {"ACPI_LV_OPTIMIZATIONS", ACPI_LV_OPTIMIZATIONS}, 3981 {"ACPI_LV_VERBOSITY2", ACPI_LV_VERBOSITY2}, 3982 {"ACPI_LV_ALL", ACPI_LV_ALL}, 3983 3984 /* Trace verbosity level 3 [Threading, I/O, and Interrupts] */ 3985 {"ACPI_LV_MUTEX", ACPI_LV_MUTEX}, 3986 {"ACPI_LV_THREADS", ACPI_LV_THREADS}, 3987 {"ACPI_LV_IO", ACPI_LV_IO}, 3988 {"ACPI_LV_INTERRUPTS", ACPI_LV_INTERRUPTS}, 3989 {"ACPI_LV_VERBOSITY3", ACPI_LV_VERBOSITY3}, 3990 3991 /* Exceptionally verbose output -- also used in the global "DebugLevel" */ 3992 {"ACPI_LV_AML_DISASSEMBLE", ACPI_LV_AML_DISASSEMBLE}, 3993 {"ACPI_LV_VERBOSE_INFO", ACPI_LV_VERBOSE_INFO}, 3994 {"ACPI_LV_FULL_TABLES", ACPI_LV_FULL_TABLES}, 3995 {"ACPI_LV_EVENTS", ACPI_LV_EVENTS}, 3996 {"ACPI_LV_VERBOSE", ACPI_LV_VERBOSE}, 3997 {NULL, 0} 3998 }; 3999 4000 static void 4001 acpi_parse_debug(char *cp, struct debugtag *tag, UINT32 *flag) 4002 { 4003 char *ep; 4004 int i, l; 4005 int set; 4006 4007 while (*cp) { 4008 if (isspace(*cp)) { 4009 cp++; 4010 continue; 4011 } 4012 ep = cp; 4013 while (*ep && !isspace(*ep)) 4014 ep++; 4015 if (*cp == '!') { 4016 set = 0; 4017 cp++; 4018 if (cp == ep) 4019 continue; 4020 } else { 4021 set = 1; 4022 } 4023 l = ep - cp; 4024 for (i = 0; tag[i].name != NULL; i++) { 4025 if (!strncmp(cp, tag[i].name, l)) { 4026 if (set) 4027 *flag |= tag[i].value; 4028 else 4029 *flag &= ~tag[i].value; 4030 } 4031 } 4032 cp = ep; 4033 } 4034 } 4035 4036 static void 4037 acpi_set_debugging(void *junk) 4038 { 4039 char *layer, *level; 4040 4041 if (cold) { 4042 AcpiDbgLayer = 0; 4043 AcpiDbgLevel = 0; 4044 } 4045 4046 layer = kern_getenv("debug.acpi.layer"); 4047 level = kern_getenv("debug.acpi.level"); 4048 if (layer == NULL && level == NULL) 4049 return; 4050 4051 printf("ACPI set debug"); 4052 if (layer != NULL) { 4053 if (strcmp("NONE", layer) != 0) 4054 printf(" layer '%s'", layer); 4055 acpi_parse_debug(layer, &dbg_layer[0], &AcpiDbgLayer); 4056 freeenv(layer); 4057 } 4058 if (level != NULL) { 4059 if (strcmp("NONE", level) != 0) 4060 printf(" level '%s'", level); 4061 acpi_parse_debug(level, &dbg_level[0], &AcpiDbgLevel); 4062 freeenv(level); 4063 } 4064 printf("\n"); 4065 } 4066 4067 SYSINIT(acpi_debugging, SI_SUB_TUNABLES, SI_ORDER_ANY, acpi_set_debugging, 4068 NULL); 4069 4070 static int 4071 acpi_debug_sysctl(SYSCTL_HANDLER_ARGS) 4072 { 4073 int error, *dbg; 4074 struct debugtag *tag; 4075 struct sbuf sb; 4076 char temp[128]; 4077 4078 if (sbuf_new(&sb, NULL, 128, SBUF_AUTOEXTEND) == NULL) 4079 return (ENOMEM); 4080 if (strcmp(oidp->oid_arg1, "debug.acpi.layer") == 0) { 4081 tag = &dbg_layer[0]; 4082 dbg = &AcpiDbgLayer; 4083 } else { 4084 tag = &dbg_level[0]; 4085 dbg = &AcpiDbgLevel; 4086 } 4087 4088 /* Get old values if this is a get request. */ 4089 ACPI_SERIAL_BEGIN(acpi); 4090 if (*dbg == 0) { 4091 sbuf_cpy(&sb, "NONE"); 4092 } else if (req->newptr == NULL) { 4093 for (; tag->name != NULL; tag++) { 4094 if ((*dbg & tag->value) == tag->value) 4095 sbuf_printf(&sb, "%s ", tag->name); 4096 } 4097 } 4098 sbuf_trim(&sb); 4099 sbuf_finish(&sb); 4100 strlcpy(temp, sbuf_data(&sb), sizeof(temp)); 4101 sbuf_delete(&sb); 4102 4103 error = sysctl_handle_string(oidp, temp, sizeof(temp), req); 4104 4105 /* Check for error or no change */ 4106 if (error == 0 && req->newptr != NULL) { 4107 *dbg = 0; 4108 kern_setenv((char *)oidp->oid_arg1, temp); 4109 acpi_set_debugging(NULL); 4110 } 4111 ACPI_SERIAL_END(acpi); 4112 4113 return (error); 4114 } 4115 4116 SYSCTL_PROC(_debug_acpi, OID_AUTO, layer, CTLFLAG_RW | CTLTYPE_STRING, 4117 "debug.acpi.layer", 0, acpi_debug_sysctl, "A", ""); 4118 SYSCTL_PROC(_debug_acpi, OID_AUTO, level, CTLFLAG_RW | CTLTYPE_STRING, 4119 "debug.acpi.level", 0, acpi_debug_sysctl, "A", ""); 4120 #endif /* ACPI_DEBUG */ 4121 4122 static int 4123 acpi_debug_objects_sysctl(SYSCTL_HANDLER_ARGS) 4124 { 4125 int error; 4126 int old; 4127 4128 old = acpi_debug_objects; 4129 error = sysctl_handle_int(oidp, &acpi_debug_objects, 0, req); 4130 if (error != 0 || req->newptr == NULL) 4131 return (error); 4132 if (old == acpi_debug_objects || (old && acpi_debug_objects)) 4133 return (0); 4134 4135 ACPI_SERIAL_BEGIN(acpi); 4136 AcpiGbl_EnableAmlDebugObject = acpi_debug_objects ? TRUE : FALSE; 4137 ACPI_SERIAL_END(acpi); 4138 4139 return (0); 4140 } 4141 4142 static int 4143 acpi_parse_interfaces(char *str, struct acpi_interface *iface) 4144 { 4145 char *p; 4146 size_t len; 4147 int i, j; 4148 4149 p = str; 4150 while (isspace(*p) || *p == ',') 4151 p++; 4152 len = strlen(p); 4153 if (len == 0) 4154 return (0); 4155 p = strdup(p, M_TEMP); 4156 for (i = 0; i < len; i++) 4157 if (p[i] == ',') 4158 p[i] = '\0'; 4159 i = j = 0; 4160 while (i < len) 4161 if (isspace(p[i]) || p[i] == '\0') 4162 i++; 4163 else { 4164 i += strlen(p + i) + 1; 4165 j++; 4166 } 4167 if (j == 0) { 4168 free(p, M_TEMP); 4169 return (0); 4170 } 4171 iface->data = malloc(sizeof(*iface->data) * j, M_TEMP, M_WAITOK); 4172 iface->num = j; 4173 i = j = 0; 4174 while (i < len) 4175 if (isspace(p[i]) || p[i] == '\0') 4176 i++; 4177 else { 4178 iface->data[j] = p + i; 4179 i += strlen(p + i) + 1; 4180 j++; 4181 } 4182 4183 return (j); 4184 } 4185 4186 static void 4187 acpi_free_interfaces(struct acpi_interface *iface) 4188 { 4189 4190 free(iface->data[0], M_TEMP); 4191 free(iface->data, M_TEMP); 4192 } 4193 4194 static void 4195 acpi_reset_interfaces(device_t dev) 4196 { 4197 struct acpi_interface list; 4198 ACPI_STATUS status; 4199 int i; 4200 4201 if (acpi_parse_interfaces(acpi_install_interface, &list) > 0) { 4202 for (i = 0; i < list.num; i++) { 4203 status = AcpiInstallInterface(list.data[i]); 4204 if (ACPI_FAILURE(status)) 4205 device_printf(dev, 4206 "failed to install _OSI(\"%s\"): %s\n", 4207 list.data[i], AcpiFormatException(status)); 4208 else if (bootverbose) 4209 device_printf(dev, "installed _OSI(\"%s\")\n", 4210 list.data[i]); 4211 } 4212 acpi_free_interfaces(&list); 4213 } 4214 if (acpi_parse_interfaces(acpi_remove_interface, &list) > 0) { 4215 for (i = 0; i < list.num; i++) { 4216 status = AcpiRemoveInterface(list.data[i]); 4217 if (ACPI_FAILURE(status)) 4218 device_printf(dev, 4219 "failed to remove _OSI(\"%s\"): %s\n", 4220 list.data[i], AcpiFormatException(status)); 4221 else if (bootverbose) 4222 device_printf(dev, "removed _OSI(\"%s\")\n", 4223 list.data[i]); 4224 } 4225 acpi_free_interfaces(&list); 4226 } 4227 } 4228 4229 static int 4230 acpi_pm_func(u_long cmd, void *arg, ...) 4231 { 4232 int state, acpi_state; 4233 int error; 4234 struct acpi_softc *sc; 4235 va_list ap; 4236 4237 error = 0; 4238 switch (cmd) { 4239 case POWER_CMD_SUSPEND: 4240 sc = (struct acpi_softc *)arg; 4241 if (sc == NULL) { 4242 error = EINVAL; 4243 goto out; 4244 } 4245 4246 va_start(ap, arg); 4247 state = va_arg(ap, int); 4248 va_end(ap); 4249 4250 switch (state) { 4251 case POWER_SLEEP_STATE_STANDBY: 4252 acpi_state = sc->acpi_standby_sx; 4253 break; 4254 case POWER_SLEEP_STATE_SUSPEND: 4255 acpi_state = sc->acpi_suspend_sx; 4256 break; 4257 case POWER_SLEEP_STATE_HIBERNATE: 4258 acpi_state = ACPI_STATE_S4; 4259 break; 4260 default: 4261 error = EINVAL; 4262 goto out; 4263 } 4264 4265 if (ACPI_FAILURE(acpi_EnterSleepState(sc, acpi_state))) 4266 error = ENXIO; 4267 break; 4268 default: 4269 error = EINVAL; 4270 goto out; 4271 } 4272 4273 out: 4274 return (error); 4275 } 4276 4277 static void 4278 acpi_pm_register(void *arg) 4279 { 4280 if (!cold || resource_disabled("acpi", 0)) 4281 return; 4282 4283 power_pm_register(POWER_PM_TYPE_ACPI, acpi_pm_func, NULL); 4284 } 4285 4286 SYSINIT(power, SI_SUB_KLD, SI_ORDER_ANY, acpi_pm_register, NULL); 4287