1 /*- 2 * Copyright (c) 2000 Michael Smith 3 * Copyright (c) 2001 Scott Long 4 * Copyright (c) 2000 BSDi 5 * Copyright (c) 2001 Adaptec, Inc. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $FreeBSD$ 30 */ 31 32 /* 33 * Driver for the Adaptec 'FSA' family of PCI/SCSI RAID adapters. 34 */ 35 36 #include "opt_aac.h" 37 38 /* #include <stddef.h> */ 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/malloc.h> 42 #include <sys/kernel.h> 43 #include <sys/kthread.h> 44 #include <sys/lock.h> 45 #include <sys/mutex.h> 46 #include <sys/sysctl.h> 47 #include <sys/poll.h> 48 #if __FreeBSD_version >= 500005 49 #include <sys/selinfo.h> 50 #else 51 #include <sys/select.h> 52 #endif 53 54 #include <dev/aac/aac_compat.h> 55 56 #include <sys/bus.h> 57 #include <sys/conf.h> 58 #include <sys/devicestat.h> 59 #include <sys/disk.h> 60 #include <sys/file.h> 61 #include <sys/signalvar.h> 62 #include <sys/time.h> 63 #include <sys/eventhandler.h> 64 65 #include <machine/bus_memio.h> 66 #include <machine/bus.h> 67 #include <machine/resource.h> 68 69 #include <dev/aac/aacreg.h> 70 #include <dev/aac/aac_ioctl.h> 71 #include <dev/aac/aacvar.h> 72 #include <dev/aac/aac_tables.h> 73 #include <dev/aac/aac_cam.h> 74 75 static void aac_startup(void *arg); 76 static void aac_add_container(struct aac_softc *sc, 77 struct aac_mntinforesp *mir, int f); 78 static void aac_get_bus_info(struct aac_softc *sc); 79 80 /* Command Processing */ 81 static void aac_timeout(struct aac_softc *sc); 82 static int aac_start(struct aac_command *cm); 83 static void aac_complete(void *context, int pending); 84 static int aac_bio_command(struct aac_softc *sc, struct aac_command **cmp); 85 static void aac_bio_complete(struct aac_command *cm); 86 static int aac_wait_command(struct aac_command *cm, int timeout); 87 static void aac_host_command(struct aac_softc *sc); 88 static void aac_host_response(struct aac_softc *sc); 89 90 /* Command Buffer Management */ 91 static void aac_map_command_helper(void *arg, bus_dma_segment_t *segs, 92 int nseg, int error); 93 static int aac_alloc_commands(struct aac_softc *sc); 94 static void aac_free_commands(struct aac_softc *sc); 95 static void aac_map_command(struct aac_command *cm); 96 static void aac_unmap_command(struct aac_command *cm); 97 98 /* Hardware Interface */ 99 static void aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, 100 int error); 101 static int aac_check_firmware(struct aac_softc *sc); 102 static int aac_init(struct aac_softc *sc); 103 static int aac_sync_command(struct aac_softc *sc, u_int32_t command, 104 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, 105 u_int32_t arg3, u_int32_t *sp); 106 static int aac_enqueue_fib(struct aac_softc *sc, int queue, 107 struct aac_command *cm); 108 static int aac_dequeue_fib(struct aac_softc *sc, int queue, 109 u_int32_t *fib_size, struct aac_fib **fib_addr); 110 static int aac_enqueue_response(struct aac_softc *sc, int queue, 111 struct aac_fib *fib); 112 113 /* Falcon/PPC interface */ 114 static int aac_fa_get_fwstatus(struct aac_softc *sc); 115 static void aac_fa_qnotify(struct aac_softc *sc, int qbit); 116 static int aac_fa_get_istatus(struct aac_softc *sc); 117 static void aac_fa_clear_istatus(struct aac_softc *sc, int mask); 118 static void aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command, 119 u_int32_t arg0, u_int32_t arg1, 120 u_int32_t arg2, u_int32_t arg3); 121 static int aac_fa_get_mailboxstatus(struct aac_softc *sc); 122 static void aac_fa_set_interrupts(struct aac_softc *sc, int enable); 123 124 struct aac_interface aac_fa_interface = { 125 aac_fa_get_fwstatus, 126 aac_fa_qnotify, 127 aac_fa_get_istatus, 128 aac_fa_clear_istatus, 129 aac_fa_set_mailbox, 130 aac_fa_get_mailboxstatus, 131 aac_fa_set_interrupts 132 }; 133 134 /* StrongARM interface */ 135 static int aac_sa_get_fwstatus(struct aac_softc *sc); 136 static void aac_sa_qnotify(struct aac_softc *sc, int qbit); 137 static int aac_sa_get_istatus(struct aac_softc *sc); 138 static void aac_sa_clear_istatus(struct aac_softc *sc, int mask); 139 static void aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command, 140 u_int32_t arg0, u_int32_t arg1, 141 u_int32_t arg2, u_int32_t arg3); 142 static int aac_sa_get_mailboxstatus(struct aac_softc *sc); 143 static void aac_sa_set_interrupts(struct aac_softc *sc, int enable); 144 145 struct aac_interface aac_sa_interface = { 146 aac_sa_get_fwstatus, 147 aac_sa_qnotify, 148 aac_sa_get_istatus, 149 aac_sa_clear_istatus, 150 aac_sa_set_mailbox, 151 aac_sa_get_mailboxstatus, 152 aac_sa_set_interrupts 153 }; 154 155 /* i960Rx interface */ 156 static int aac_rx_get_fwstatus(struct aac_softc *sc); 157 static void aac_rx_qnotify(struct aac_softc *sc, int qbit); 158 static int aac_rx_get_istatus(struct aac_softc *sc); 159 static void aac_rx_clear_istatus(struct aac_softc *sc, int mask); 160 static void aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command, 161 u_int32_t arg0, u_int32_t arg1, 162 u_int32_t arg2, u_int32_t arg3); 163 static int aac_rx_get_mailboxstatus(struct aac_softc *sc); 164 static void aac_rx_set_interrupts(struct aac_softc *sc, int enable); 165 166 struct aac_interface aac_rx_interface = { 167 aac_rx_get_fwstatus, 168 aac_rx_qnotify, 169 aac_rx_get_istatus, 170 aac_rx_clear_istatus, 171 aac_rx_set_mailbox, 172 aac_rx_get_mailboxstatus, 173 aac_rx_set_interrupts 174 }; 175 176 /* Debugging and Diagnostics */ 177 static void aac_describe_controller(struct aac_softc *sc); 178 static char *aac_describe_code(struct aac_code_lookup *table, 179 u_int32_t code); 180 181 /* Management Interface */ 182 static d_open_t aac_open; 183 static d_close_t aac_close; 184 static d_ioctl_t aac_ioctl; 185 static d_poll_t aac_poll; 186 static int aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib); 187 static void aac_handle_aif(struct aac_softc *sc, 188 struct aac_fib *fib); 189 static int aac_rev_check(struct aac_softc *sc, caddr_t udata); 190 static int aac_getnext_aif(struct aac_softc *sc, caddr_t arg); 191 static int aac_return_aif(struct aac_softc *sc, caddr_t uptr); 192 static int aac_query_disk(struct aac_softc *sc, caddr_t uptr); 193 194 #define AAC_CDEV_MAJOR 150 195 196 static struct cdevsw aac_cdevsw = { 197 aac_open, /* open */ 198 aac_close, /* close */ 199 noread, /* read */ 200 nowrite, /* write */ 201 aac_ioctl, /* ioctl */ 202 aac_poll, /* poll */ 203 nommap, /* mmap */ 204 nostrategy, /* strategy */ 205 "aac", /* name */ 206 AAC_CDEV_MAJOR, /* major */ 207 nodump, /* dump */ 208 nopsize, /* psize */ 209 0, /* flags */ 210 #if __FreeBSD_version < 500005 211 -1, /* bmaj */ 212 #endif 213 }; 214 215 MALLOC_DEFINE(M_AACBUF, "aacbuf", "Buffers for the AAC driver"); 216 217 /* sysctl node */ 218 SYSCTL_NODE(_hw, OID_AUTO, aac, CTLFLAG_RD, 0, "AAC driver parameters"); 219 220 /* 221 * Device Interface 222 */ 223 224 /* 225 * Initialise the controller and softc 226 */ 227 int 228 aac_attach(struct aac_softc *sc) 229 { 230 int error, unit; 231 232 debug_called(1); 233 234 /* 235 * Initialise per-controller queues. 236 */ 237 aac_initq_free(sc); 238 aac_initq_ready(sc); 239 aac_initq_busy(sc); 240 aac_initq_complete(sc); 241 aac_initq_bio(sc); 242 243 #if __FreeBSD_version >= 500005 244 /* 245 * Initialise command-completion task. 246 */ 247 TASK_INIT(&sc->aac_task_complete, 0, aac_complete, sc); 248 #endif 249 250 /* disable interrupts before we enable anything */ 251 AAC_MASK_INTERRUPTS(sc); 252 253 /* mark controller as suspended until we get ourselves organised */ 254 sc->aac_state |= AAC_STATE_SUSPEND; 255 256 /* 257 * Check that the firmware on the card is supported. 258 */ 259 if ((error = aac_check_firmware(sc)) != 0) 260 return(error); 261 262 /* 263 * Allocate command structures. 264 */ 265 if ((error = aac_alloc_commands(sc)) != 0) 266 return(error); 267 268 /* Init the sync fib lock */ 269 AAC_LOCK_INIT(&sc->aac_sync_lock, "AAC sync FIB lock"); 270 271 /* 272 * Initialise the adapter. 273 */ 274 if ((error = aac_init(sc)) != 0) 275 return(error); 276 277 /* 278 * Print a little information about the controller. 279 */ 280 aac_describe_controller(sc); 281 282 /* 283 * Register to probe our containers later. 284 */ 285 TAILQ_INIT(&sc->aac_container_tqh); 286 AAC_LOCK_INIT(&sc->aac_container_lock, "AAC container lock"); 287 288 /* 289 * Lock for the AIF queue 290 */ 291 AAC_LOCK_INIT(&sc->aac_aifq_lock, "AAC AIF lock"); 292 293 sc->aac_ich.ich_func = aac_startup; 294 sc->aac_ich.ich_arg = sc; 295 if (config_intrhook_establish(&sc->aac_ich) != 0) { 296 device_printf(sc->aac_dev, 297 "can't establish configuration hook\n"); 298 return(ENXIO); 299 } 300 301 /* 302 * Make the control device. 303 */ 304 unit = device_get_unit(sc->aac_dev); 305 sc->aac_dev_t = make_dev(&aac_cdevsw, unit, UID_ROOT, GID_WHEEL, 0644, 306 "aac%d", unit); 307 #if __FreeBSD_version > 500005 308 (void)make_dev_alias(sc->aac_dev_t, "afa%d", unit); 309 (void)make_dev_alias(sc->aac_dev_t, "hpn%d", unit); 310 #endif 311 sc->aac_dev_t->si_drv1 = sc; 312 313 /* Create the AIF thread */ 314 #if __FreeBSD_version > 500005 315 if (kthread_create((void(*)(void *))aac_host_command, sc, 316 &sc->aifthread, 0, "aac%daif", unit)) 317 #else 318 if (kthread_create((void(*)(void *))aac_host_command, sc, 319 &sc->aifthread, "aac%daif", unit)) 320 #endif 321 panic("Could not create AIF thread\n"); 322 323 /* Register the shutdown method to only be called post-dump */ 324 if ((EVENTHANDLER_REGISTER(shutdown_final, aac_shutdown, sc->aac_dev, 325 SHUTDOWN_PRI_DEFAULT)) == NULL) 326 device_printf(sc->aac_dev, "shutdown event registration failed\n"); 327 328 /* Register with CAM for the non-DASD devices */ 329 if (!(sc->quirks & AAC_QUIRK_NOCAM)) 330 aac_get_bus_info(sc); 331 332 return(0); 333 } 334 335 /* 336 * Probe for containers, create disks. 337 */ 338 static void 339 aac_startup(void *arg) 340 { 341 struct aac_softc *sc; 342 struct aac_fib *fib; 343 struct aac_mntinfo *mi; 344 struct aac_mntinforesp *mir = NULL; 345 int i = 0; 346 347 debug_called(1); 348 349 sc = (struct aac_softc *)arg; 350 351 /* disconnect ourselves from the intrhook chain */ 352 config_intrhook_disestablish(&sc->aac_ich); 353 354 aac_alloc_sync_fib(sc, &fib, 0); 355 mi = (struct aac_mntinfo *)&fib->data[0]; 356 357 /* loop over possible containers */ 358 mi->Command = VM_NameServe; 359 mi->MntType = FT_FILESYS; 360 do { 361 /* request information on this container */ 362 mi->MntCount = i; 363 if (aac_sync_fib(sc, ContainerCommand, 0, fib, 364 sizeof(struct aac_mntinfo))) { 365 debug(2, "error probing container %d", i); 366 continue; 367 } 368 /* check response size */ 369 370 mir = (struct aac_mntinforesp *)&fib->data[0]; 371 aac_add_container(sc, mir, 0); 372 i++; 373 } while ((i < mir->MntRespCount) && (i < AAC_MAX_CONTAINERS)); 374 375 aac_release_sync_fib(sc); 376 377 /* poke the bus to actually attach the child devices */ 378 if (bus_generic_attach(sc->aac_dev)) 379 device_printf(sc->aac_dev, "bus_generic_attach failed\n"); 380 381 /* mark the controller up */ 382 sc->aac_state &= ~AAC_STATE_SUSPEND; 383 384 /* enable interrupts now */ 385 AAC_UNMASK_INTERRUPTS(sc); 386 387 /* enable the timeout watchdog */ 388 timeout((timeout_t*)aac_timeout, sc, AAC_PERIODIC_INTERVAL * hz); 389 } 390 391 /* 392 * Create a device to respresent a new container 393 */ 394 static void 395 aac_add_container(struct aac_softc *sc, struct aac_mntinforesp *mir, int f) 396 { 397 struct aac_container *co; 398 device_t child; 399 400 /* 401 * Check container volume type for validity. Note that many of 402 * the possible types may never show up. 403 */ 404 if ((mir->Status == ST_OK) && (mir->MntTable[0].VolType != CT_NONE)) { 405 MALLOC(co, struct aac_container *, sizeof *co, M_AACBUF, 406 M_NOWAIT); 407 if (co == NULL) 408 panic("Out of memory?!\n"); 409 debug(1, "id %x name '%.16s' size %u type %d", 410 mir->MntTable[0].ObjectId, 411 mir->MntTable[0].FileSystemName, 412 mir->MntTable[0].Capacity, mir->MntTable[0].VolType); 413 414 if ((child = device_add_child(sc->aac_dev, "aacd", -1)) == NULL) 415 device_printf(sc->aac_dev, "device_add_child failed\n"); 416 else 417 device_set_ivars(child, co); 418 device_set_desc(child, aac_describe_code(aac_container_types, 419 mir->MntTable[0].VolType)); 420 co->co_disk = child; 421 co->co_found = f; 422 bcopy(&mir->MntTable[0], &co->co_mntobj, 423 sizeof(struct aac_mntobj)); 424 AAC_LOCK_ACQUIRE(&sc->aac_container_lock); 425 TAILQ_INSERT_TAIL(&sc->aac_container_tqh, co, co_link); 426 AAC_LOCK_RELEASE(&sc->aac_container_lock); 427 } 428 } 429 430 /* 431 * Free all of the resources associated with (sc) 432 * 433 * Should not be called if the controller is active. 434 */ 435 void 436 aac_free(struct aac_softc *sc) 437 { 438 debug_called(1); 439 440 /* remove the control device */ 441 if (sc->aac_dev_t != NULL) 442 destroy_dev(sc->aac_dev_t); 443 444 /* throw away any FIB buffers, discard the FIB DMA tag */ 445 if (sc->aac_fibs != NULL) 446 aac_free_commands(sc); 447 if (sc->aac_fib_dmat) 448 bus_dma_tag_destroy(sc->aac_fib_dmat); 449 450 /* destroy the common area */ 451 if (sc->aac_common) { 452 bus_dmamap_unload(sc->aac_common_dmat, sc->aac_common_dmamap); 453 bus_dmamem_free(sc->aac_common_dmat, sc->aac_common, 454 sc->aac_common_dmamap); 455 } 456 if (sc->aac_common_dmat) 457 bus_dma_tag_destroy(sc->aac_common_dmat); 458 459 /* disconnect the interrupt handler */ 460 if (sc->aac_intr) 461 bus_teardown_intr(sc->aac_dev, sc->aac_irq, sc->aac_intr); 462 if (sc->aac_irq != NULL) 463 bus_release_resource(sc->aac_dev, SYS_RES_IRQ, sc->aac_irq_rid, 464 sc->aac_irq); 465 466 /* destroy data-transfer DMA tag */ 467 if (sc->aac_buffer_dmat) 468 bus_dma_tag_destroy(sc->aac_buffer_dmat); 469 470 /* destroy the parent DMA tag */ 471 if (sc->aac_parent_dmat) 472 bus_dma_tag_destroy(sc->aac_parent_dmat); 473 474 /* release the register window mapping */ 475 if (sc->aac_regs_resource != NULL) 476 bus_release_resource(sc->aac_dev, SYS_RES_MEMORY, 477 sc->aac_regs_rid, sc->aac_regs_resource); 478 } 479 480 /* 481 * Disconnect from the controller completely, in preparation for unload. 482 */ 483 int 484 aac_detach(device_t dev) 485 { 486 struct aac_softc *sc; 487 #if AAC_BROKEN 488 int error; 489 #endif 490 491 debug_called(1); 492 493 sc = device_get_softc(dev); 494 495 if (sc->aac_state & AAC_STATE_OPEN) 496 return(EBUSY); 497 498 #if AAC_BROKEN 499 if (sc->aifflags & AAC_AIFFLAGS_RUNNING) { 500 sc->aifflags |= AAC_AIFFLAGS_EXIT; 501 wakeup(sc->aifthread); 502 tsleep(sc->aac_dev, PUSER | PCATCH, "aacdch", 30 * hz); 503 } 504 505 if (sc->aifflags & AAC_AIFFLAGS_RUNNING) 506 panic("Cannot shutdown AIF thread\n"); 507 508 if ((error = aac_shutdown(dev))) 509 return(error); 510 511 aac_free(sc); 512 513 return(0); 514 #else 515 return (EBUSY); 516 #endif 517 } 518 519 /* 520 * Bring the controller down to a dormant state and detach all child devices. 521 * 522 * This function is called before detach or system shutdown. 523 * 524 * Note that we can assume that the bioq on the controller is empty, as we won't 525 * allow shutdown if any device is open. 526 */ 527 int 528 aac_shutdown(device_t dev) 529 { 530 struct aac_softc *sc; 531 struct aac_fib *fib; 532 struct aac_close_command *cc; 533 int s; 534 535 debug_called(1); 536 537 sc = device_get_softc(dev); 538 539 s = splbio(); 540 541 sc->aac_state |= AAC_STATE_SUSPEND; 542 543 /* 544 * Send a Container shutdown followed by a HostShutdown FIB to the 545 * controller to convince it that we don't want to talk to it anymore. 546 * We've been closed and all I/O completed already 547 */ 548 device_printf(sc->aac_dev, "shutting down controller..."); 549 550 aac_alloc_sync_fib(sc, &fib, AAC_SYNC_LOCK_FORCE); 551 cc = (struct aac_close_command *)&fib->data[0]; 552 553 cc->Command = VM_CloseAll; 554 cc->ContainerId = 0xffffffff; 555 if (aac_sync_fib(sc, ContainerCommand, 0, fib, 556 sizeof(struct aac_close_command))) 557 printf("FAILED.\n"); 558 else { 559 fib->data[0] = 0; 560 /* 561 * XXX Issuing this command to the controller makes it shut down 562 * but also keeps it from coming back up without a reset of the 563 * PCI bus. This is not desirable if you are just unloading the 564 * driver module with the intent to reload it later. 565 */ 566 if (aac_sync_fib(sc, FsaHostShutdown, AAC_FIBSTATE_SHUTDOWN, 567 fib, 1)) { 568 printf("FAILED.\n"); 569 } else { 570 printf("done.\n"); 571 } 572 } 573 574 AAC_MASK_INTERRUPTS(sc); 575 576 splx(s); 577 return(0); 578 } 579 580 /* 581 * Bring the controller to a quiescent state, ready for system suspend. 582 */ 583 int 584 aac_suspend(device_t dev) 585 { 586 struct aac_softc *sc; 587 int s; 588 589 debug_called(1); 590 591 sc = device_get_softc(dev); 592 593 s = splbio(); 594 595 sc->aac_state |= AAC_STATE_SUSPEND; 596 597 AAC_MASK_INTERRUPTS(sc); 598 splx(s); 599 return(0); 600 } 601 602 /* 603 * Bring the controller back to a state ready for operation. 604 */ 605 int 606 aac_resume(device_t dev) 607 { 608 struct aac_softc *sc; 609 610 debug_called(1); 611 612 sc = device_get_softc(dev); 613 614 sc->aac_state &= ~AAC_STATE_SUSPEND; 615 AAC_UNMASK_INTERRUPTS(sc); 616 return(0); 617 } 618 619 /* 620 * Take an interrupt. 621 */ 622 void 623 aac_intr(void *arg) 624 { 625 struct aac_softc *sc; 626 u_int16_t reason; 627 628 debug_called(2); 629 630 sc = (struct aac_softc *)arg; 631 632 reason = AAC_GET_ISTATUS(sc); 633 634 /* controller wants to talk to the log */ 635 if (reason & AAC_DB_PRINTF) { 636 AAC_CLEAR_ISTATUS(sc, AAC_DB_PRINTF); 637 aac_print_printf(sc); 638 } 639 640 /* controller has a message for us? */ 641 if (reason & AAC_DB_COMMAND_READY) { 642 AAC_CLEAR_ISTATUS(sc, AAC_DB_COMMAND_READY); 643 /* XXX What happens if the thread is already awake? */ 644 if (sc->aifflags & AAC_AIFFLAGS_RUNNING) { 645 sc->aifflags |= AAC_AIFFLAGS_PENDING; 646 wakeup(sc->aifthread); 647 } 648 } 649 650 /* controller has a response for us? */ 651 if (reason & AAC_DB_RESPONSE_READY) { 652 AAC_CLEAR_ISTATUS(sc, AAC_DB_RESPONSE_READY); 653 aac_host_response(sc); 654 } 655 656 /* 657 * spurious interrupts that we don't use - reset the mask and clear the 658 * interrupts 659 */ 660 if (reason & (AAC_DB_COMMAND_NOT_FULL | AAC_DB_RESPONSE_NOT_FULL)) { 661 AAC_UNMASK_INTERRUPTS(sc); 662 AAC_CLEAR_ISTATUS(sc, AAC_DB_COMMAND_NOT_FULL | 663 AAC_DB_RESPONSE_NOT_FULL); 664 } 665 }; 666 667 /* 668 * Command Processing 669 */ 670 671 /* 672 * Start as much queued I/O as possible on the controller 673 */ 674 void 675 aac_startio(struct aac_softc *sc) 676 { 677 struct aac_command *cm; 678 679 debug_called(2); 680 681 for (;;) { 682 /* 683 * Try to get a command that's been put off for lack of 684 * resources 685 */ 686 cm = aac_dequeue_ready(sc); 687 688 /* 689 * Try to build a command off the bio queue (ignore error 690 * return) 691 */ 692 if (cm == NULL) 693 aac_bio_command(sc, &cm); 694 695 /* nothing to do? */ 696 if (cm == NULL) 697 break; 698 699 /* try to give the command to the controller */ 700 if (aac_start(cm) == EBUSY) { 701 /* put it on the ready queue for later */ 702 aac_requeue_ready(cm); 703 break; 704 } 705 } 706 } 707 708 /* 709 * Deliver a command to the controller; allocate controller resources at the 710 * last moment when possible. 711 */ 712 static int 713 aac_start(struct aac_command *cm) 714 { 715 struct aac_softc *sc; 716 int error; 717 718 debug_called(2); 719 720 sc = cm->cm_sc; 721 722 /* get the command mapped */ 723 aac_map_command(cm); 724 725 /* fix up the address values in the FIB */ 726 cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib; 727 cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys; 728 729 /* save a pointer to the command for speedy reverse-lookup */ 730 cm->cm_fib->Header.SenderData = (u_int32_t)cm; /* XXX 64-bit physical 731 * address issue */ 732 733 /* put the FIB on the outbound queue */ 734 error = aac_enqueue_fib(sc, cm->cm_queue, cm); 735 return(error); 736 } 737 738 /* 739 * Handle notification of one or more FIBs coming from the controller. 740 */ 741 static void 742 aac_host_command(struct aac_softc *sc) 743 { 744 struct aac_fib *fib; 745 u_int32_t fib_size; 746 int size; 747 748 debug_called(2); 749 750 sc->aifflags |= AAC_AIFFLAGS_RUNNING; 751 752 while (!(sc->aifflags & AAC_AIFFLAGS_EXIT)) { 753 if (!(sc->aifflags & AAC_AIFFLAGS_PENDING)) 754 tsleep(sc->aifthread, PRIBIO, "aifthd", 15 * hz); 755 756 sc->aifflags &= ~AAC_AIFFLAGS_PENDING; 757 for (;;) { 758 if (aac_dequeue_fib(sc, AAC_HOST_NORM_CMD_QUEUE, 759 &fib_size, &fib)) 760 break; /* nothing to do */ 761 762 AAC_PRINT_FIB(sc, fib); 763 764 switch (fib->Header.Command) { 765 case AifRequest: 766 aac_handle_aif(sc, fib); 767 break; 768 default: 769 device_printf(sc->aac_dev, "unknown command " 770 "from controller\n"); 771 break; 772 } 773 774 /* Return the AIF to the controller. */ 775 if ((fib->Header.XferState == 0) || 776 (fib->Header.StructType != AAC_FIBTYPE_TFIB)) 777 break; 778 779 if (fib->Header.XferState & AAC_FIBSTATE_FROMADAP) { 780 fib->Header.XferState |= AAC_FIBSTATE_DONEHOST; 781 *(AAC_FSAStatus*)fib->data = ST_OK; 782 783 /* XXX Compute the Size field? */ 784 size = fib->Header.Size; 785 if (size > sizeof(struct aac_fib)) { 786 size = sizeof(struct aac_fib); 787 fib->Header.Size = size; 788 } 789 /* 790 * Since we did not generate this command, it 791 * cannot go through the normal 792 * enqueue->startio chain. 793 */ 794 aac_enqueue_response(sc, 795 AAC_ADAP_NORM_RESP_QUEUE, 796 fib); 797 } 798 } 799 } 800 sc->aifflags &= ~AAC_AIFFLAGS_RUNNING; 801 wakeup(sc->aac_dev); 802 803 #if __FreeBSD_version > 500005 804 mtx_lock(&Giant); 805 #endif 806 kthread_exit(0); 807 } 808 809 /* 810 * Handle notification of one or more FIBs completed by the controller 811 */ 812 static void 813 aac_host_response(struct aac_softc *sc) 814 { 815 struct aac_command *cm; 816 struct aac_fib *fib; 817 u_int32_t fib_size; 818 819 debug_called(2); 820 821 for (;;) { 822 /* look for completed FIBs on our queue */ 823 if (aac_dequeue_fib(sc, AAC_HOST_NORM_RESP_QUEUE, &fib_size, 824 &fib)) 825 break; /* nothing to do */ 826 827 /* get the command, unmap and queue for later processing */ 828 cm = (struct aac_command *)fib->Header.SenderData; 829 if (cm == NULL) { 830 AAC_PRINT_FIB(sc, fib); 831 } else { 832 aac_remove_busy(cm); 833 aac_unmap_command(cm); /* XXX defer? */ 834 aac_enqueue_complete(cm); 835 } 836 } 837 838 /* handle completion processing */ 839 #if __FreeBSD_version >= 500005 840 taskqueue_enqueue(taskqueue_swi, &sc->aac_task_complete); 841 #else 842 aac_complete(sc, 0); 843 #endif 844 } 845 846 /* 847 * Process completed commands. 848 */ 849 static void 850 aac_complete(void *context, int pending) 851 { 852 struct aac_softc *sc; 853 struct aac_command *cm; 854 855 debug_called(2); 856 857 sc = (struct aac_softc *)context; 858 859 /* pull completed commands off the queue */ 860 for (;;) { 861 cm = aac_dequeue_complete(sc); 862 if (cm == NULL) 863 break; 864 cm->cm_flags |= AAC_CMD_COMPLETED; 865 866 /* is there a completion handler? */ 867 if (cm->cm_complete != NULL) { 868 cm->cm_complete(cm); 869 } else { 870 /* assume that someone is sleeping on this command */ 871 wakeup(cm); 872 } 873 } 874 875 /* see if we can start some more I/O */ 876 aac_startio(sc); 877 } 878 879 /* 880 * Handle a bio submitted from a disk device. 881 */ 882 void 883 aac_submit_bio(struct bio *bp) 884 { 885 struct aac_disk *ad; 886 struct aac_softc *sc; 887 888 debug_called(2); 889 890 ad = (struct aac_disk *)bp->bio_dev->si_drv1; 891 sc = ad->ad_controller; 892 893 /* queue the BIO and try to get some work done */ 894 aac_enqueue_bio(sc, bp); 895 aac_startio(sc); 896 } 897 898 /* 899 * Get a bio and build a command to go with it. 900 */ 901 static int 902 aac_bio_command(struct aac_softc *sc, struct aac_command **cmp) 903 { 904 struct aac_command *cm; 905 struct aac_fib *fib; 906 struct aac_blockread *br; 907 struct aac_blockwrite *bw; 908 struct aac_disk *ad; 909 struct bio *bp; 910 911 debug_called(2); 912 913 /* get the resources we will need */ 914 cm = NULL; 915 if ((bp = aac_dequeue_bio(sc)) == NULL) 916 goto fail; 917 if (aac_alloc_command(sc, &cm)) /* get a command */ 918 goto fail; 919 920 /* fill out the command */ 921 cm->cm_data = (void *)bp->bio_data; 922 cm->cm_datalen = bp->bio_bcount; 923 cm->cm_complete = aac_bio_complete; 924 cm->cm_private = bp; 925 cm->cm_timestamp = time_second; 926 cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE; 927 928 /* build the FIB */ 929 fib = cm->cm_fib; 930 fib->Header.XferState = 931 AAC_FIBSTATE_HOSTOWNED | 932 AAC_FIBSTATE_INITIALISED | 933 AAC_FIBSTATE_FROMHOST | 934 AAC_FIBSTATE_REXPECTED | 935 AAC_FIBSTATE_NORM; 936 fib->Header.Command = ContainerCommand; 937 fib->Header.Size = sizeof(struct aac_fib_header); 938 939 /* build the read/write request */ 940 ad = (struct aac_disk *)bp->bio_dev->si_drv1; 941 if (BIO_IS_READ(bp)) { 942 br = (struct aac_blockread *)&fib->data[0]; 943 br->Command = VM_CtBlockRead; 944 br->ContainerId = ad->ad_container->co_mntobj.ObjectId; 945 br->BlockNumber = bp->bio_pblkno; 946 br->ByteCount = bp->bio_bcount; 947 fib->Header.Size += sizeof(struct aac_blockread); 948 cm->cm_sgtable = &br->SgMap; 949 cm->cm_flags |= AAC_CMD_DATAIN; 950 } else { 951 bw = (struct aac_blockwrite *)&fib->data[0]; 952 bw->Command = VM_CtBlockWrite; 953 bw->ContainerId = ad->ad_container->co_mntobj.ObjectId; 954 bw->BlockNumber = bp->bio_pblkno; 955 bw->ByteCount = bp->bio_bcount; 956 bw->Stable = CUNSTABLE; /* XXX what's appropriate here? */ 957 fib->Header.Size += sizeof(struct aac_blockwrite); 958 cm->cm_flags |= AAC_CMD_DATAOUT; 959 cm->cm_sgtable = &bw->SgMap; 960 } 961 962 *cmp = cm; 963 return(0); 964 965 fail: 966 if (bp != NULL) 967 aac_enqueue_bio(sc, bp); 968 if (cm != NULL) 969 aac_release_command(cm); 970 return(ENOMEM); 971 } 972 973 /* 974 * Handle a bio-instigated command that has been completed. 975 */ 976 static void 977 aac_bio_complete(struct aac_command *cm) 978 { 979 struct aac_blockread_response *brr; 980 struct aac_blockwrite_response *bwr; 981 struct bio *bp; 982 AAC_FSAStatus status; 983 984 /* fetch relevant status and then release the command */ 985 bp = (struct bio *)cm->cm_private; 986 if (BIO_IS_READ(bp)) { 987 brr = (struct aac_blockread_response *)&cm->cm_fib->data[0]; 988 status = brr->Status; 989 } else { 990 bwr = (struct aac_blockwrite_response *)&cm->cm_fib->data[0]; 991 status = bwr->Status; 992 } 993 aac_release_command(cm); 994 995 /* fix up the bio based on status */ 996 if (status == ST_OK) { 997 bp->bio_resid = 0; 998 } else { 999 bp->bio_error = EIO; 1000 bp->bio_flags |= BIO_ERROR; 1001 /* pass an error string out to the disk layer */ 1002 bp->bio_driver1 = aac_describe_code(aac_command_status_table, 1003 status); 1004 } 1005 aac_biodone(bp); 1006 } 1007 1008 /* 1009 * Submit a command to the controller, return when it completes. 1010 * XXX This is very dangerous! If the card has gone out to lunch, we could 1011 * be stuck here forever. At the same time, signals are not caught 1012 * because there is a risk that a signal could wakeup the tsleep before 1013 * the card has a chance to complete the command. The passed in timeout 1014 * is ignored for the same reason. Since there is no way to cancel a 1015 * command in progress, we should probably create a 'dead' queue where 1016 * commands go that have been interrupted/timed-out/etc, that keeps them 1017 * out of the free pool. That way, if the card is just slow, it won't 1018 * spam the memory of a command that has been recycled. 1019 */ 1020 static int 1021 aac_wait_command(struct aac_command *cm, int timeout) 1022 { 1023 int s, error = 0; 1024 1025 debug_called(2); 1026 1027 /* Put the command on the ready queue and get things going */ 1028 cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE; 1029 aac_enqueue_ready(cm); 1030 aac_startio(cm->cm_sc); 1031 s = splbio(); 1032 while (!(cm->cm_flags & AAC_CMD_COMPLETED) && (error != EWOULDBLOCK)) { 1033 error = tsleep(cm, PRIBIO, "aacwait", 0); 1034 } 1035 splx(s); 1036 return(error); 1037 } 1038 1039 /* 1040 *Command Buffer Management 1041 */ 1042 1043 /* 1044 * Allocate a command. 1045 */ 1046 int 1047 aac_alloc_command(struct aac_softc *sc, struct aac_command **cmp) 1048 { 1049 struct aac_command *cm; 1050 1051 debug_called(3); 1052 1053 if ((cm = aac_dequeue_free(sc)) == NULL) 1054 return(ENOMEM); 1055 1056 *cmp = cm; 1057 return(0); 1058 } 1059 1060 /* 1061 * Release a command back to the freelist. 1062 */ 1063 void 1064 aac_release_command(struct aac_command *cm) 1065 { 1066 debug_called(3); 1067 1068 /* (re)initialise the command/FIB */ 1069 cm->cm_sgtable = NULL; 1070 cm->cm_flags = 0; 1071 cm->cm_complete = NULL; 1072 cm->cm_private = NULL; 1073 cm->cm_fib->Header.XferState = AAC_FIBSTATE_EMPTY; 1074 cm->cm_fib->Header.StructType = AAC_FIBTYPE_TFIB; 1075 cm->cm_fib->Header.Flags = 0; 1076 cm->cm_fib->Header.SenderSize = sizeof(struct aac_fib); 1077 1078 /* 1079 * These are duplicated in aac_start to cover the case where an 1080 * intermediate stage may have destroyed them. They're left 1081 * initialised here for debugging purposes only. 1082 */ 1083 cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib; 1084 cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys; 1085 1086 aac_enqueue_free(cm); 1087 } 1088 1089 /* 1090 * Map helper for command/FIB allocation. 1091 */ 1092 static void 1093 aac_map_command_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error) 1094 { 1095 struct aac_softc *sc; 1096 1097 sc = (struct aac_softc *)arg; 1098 1099 debug_called(3); 1100 1101 sc->aac_fibphys = segs[0].ds_addr; 1102 } 1103 1104 /* 1105 * Allocate and initialise commands/FIBs for this adapter. 1106 */ 1107 static int 1108 aac_alloc_commands(struct aac_softc *sc) 1109 { 1110 struct aac_command *cm; 1111 int i; 1112 1113 debug_called(1); 1114 1115 /* allocate the FIBs in DMAable memory and load them */ 1116 if (bus_dmamem_alloc(sc->aac_fib_dmat, (void **)&sc->aac_fibs, 1117 BUS_DMA_NOWAIT, &sc->aac_fibmap)) { 1118 return(ENOMEM); 1119 } 1120 bus_dmamap_load(sc->aac_fib_dmat, sc->aac_fibmap, sc->aac_fibs, 1121 AAC_FIB_COUNT * sizeof(struct aac_fib), 1122 aac_map_command_helper, sc, 0); 1123 1124 /* initialise constant fields in the command structure */ 1125 for (i = 0; i < AAC_FIB_COUNT; i++) { 1126 cm = &sc->aac_command[i]; 1127 cm->cm_sc = sc; 1128 cm->cm_fib = sc->aac_fibs + i; 1129 cm->cm_fibphys = sc->aac_fibphys + (i * sizeof(struct aac_fib)); 1130 1131 if (!bus_dmamap_create(sc->aac_buffer_dmat, 0, &cm->cm_datamap)) 1132 aac_release_command(cm); 1133 } 1134 return(0); 1135 } 1136 1137 /* 1138 * Free FIBs owned by this adapter. 1139 */ 1140 static void 1141 aac_free_commands(struct aac_softc *sc) 1142 { 1143 int i; 1144 1145 debug_called(1); 1146 1147 for (i = 0; i < AAC_FIB_COUNT; i++) 1148 bus_dmamap_destroy(sc->aac_buffer_dmat, 1149 sc->aac_command[i].cm_datamap); 1150 1151 bus_dmamap_unload(sc->aac_fib_dmat, sc->aac_fibmap); 1152 bus_dmamem_free(sc->aac_fib_dmat, sc->aac_fibs, sc->aac_fibmap); 1153 } 1154 1155 /* 1156 * Command-mapping helper function - populate this command's s/g table. 1157 */ 1158 static void 1159 aac_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error) 1160 { 1161 struct aac_command *cm; 1162 struct aac_fib *fib; 1163 struct aac_sg_table *sg; 1164 int i; 1165 1166 debug_called(3); 1167 1168 cm = (struct aac_command *)arg; 1169 fib = cm->cm_fib; 1170 1171 /* find the s/g table */ 1172 sg = cm->cm_sgtable; 1173 1174 /* copy into the FIB */ 1175 if (sg != NULL) { 1176 sg->SgCount = nseg; 1177 for (i = 0; i < nseg; i++) { 1178 sg->SgEntry[i].SgAddress = segs[i].ds_addr; 1179 sg->SgEntry[i].SgByteCount = segs[i].ds_len; 1180 } 1181 /* update the FIB size for the s/g count */ 1182 fib->Header.Size += nseg * sizeof(struct aac_sg_entry); 1183 } 1184 1185 } 1186 1187 /* 1188 * Map a command into controller-visible space. 1189 */ 1190 static void 1191 aac_map_command(struct aac_command *cm) 1192 { 1193 struct aac_softc *sc; 1194 1195 debug_called(2); 1196 1197 sc = cm->cm_sc; 1198 1199 /* don't map more than once */ 1200 if (cm->cm_flags & AAC_CMD_MAPPED) 1201 return; 1202 1203 if (cm->cm_datalen != 0) { 1204 bus_dmamap_load(sc->aac_buffer_dmat, cm->cm_datamap, 1205 cm->cm_data, cm->cm_datalen, 1206 aac_map_command_sg, cm, 0); 1207 1208 if (cm->cm_flags & AAC_CMD_DATAIN) 1209 bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap, 1210 BUS_DMASYNC_PREREAD); 1211 if (cm->cm_flags & AAC_CMD_DATAOUT) 1212 bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap, 1213 BUS_DMASYNC_PREWRITE); 1214 } 1215 cm->cm_flags |= AAC_CMD_MAPPED; 1216 } 1217 1218 /* 1219 * Unmap a command from controller-visible space. 1220 */ 1221 static void 1222 aac_unmap_command(struct aac_command *cm) 1223 { 1224 struct aac_softc *sc; 1225 1226 debug_called(2); 1227 1228 sc = cm->cm_sc; 1229 1230 if (!(cm->cm_flags & AAC_CMD_MAPPED)) 1231 return; 1232 1233 if (cm->cm_datalen != 0) { 1234 if (cm->cm_flags & AAC_CMD_DATAIN) 1235 bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap, 1236 BUS_DMASYNC_POSTREAD); 1237 if (cm->cm_flags & AAC_CMD_DATAOUT) 1238 bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap, 1239 BUS_DMASYNC_POSTWRITE); 1240 1241 bus_dmamap_unload(sc->aac_buffer_dmat, cm->cm_datamap); 1242 } 1243 cm->cm_flags &= ~AAC_CMD_MAPPED; 1244 } 1245 1246 /* 1247 * Hardware Interface 1248 */ 1249 1250 /* 1251 * Initialise the adapter. 1252 */ 1253 static void 1254 aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, int error) 1255 { 1256 struct aac_softc *sc; 1257 1258 debug_called(1); 1259 1260 sc = (struct aac_softc *)arg; 1261 1262 sc->aac_common_busaddr = segs[0].ds_addr; 1263 } 1264 1265 /* 1266 * Retrieve the firmware version numbers. Dell PERC2/QC cards with 1267 * firmware version 1.x are not compatible with this driver. 1268 */ 1269 static int 1270 aac_check_firmware(struct aac_softc *sc) 1271 { 1272 u_int32_t major, minor; 1273 1274 debug_called(1); 1275 1276 if (sc->quirks & AAC_QUIRK_PERC2QC) { 1277 if (aac_sync_command(sc, AAC_MONKER_GETKERNVER, 0, 0, 0, 0, 1278 NULL)) { 1279 device_printf(sc->aac_dev, 1280 "Error reading firmware version\n"); 1281 return (EIO); 1282 } 1283 1284 /* These numbers are stored as ASCII! */ 1285 major = (AAC_GETREG4(sc, AAC_SA_MAILBOX + 4) & 0xff) - 0x30; 1286 minor = (AAC_GETREG4(sc, AAC_SA_MAILBOX + 8) & 0xff) - 0x30; 1287 if (major == 1) { 1288 device_printf(sc->aac_dev, 1289 "Firmware version %d.%d is not supported.\n", 1290 major, minor); 1291 return (EINVAL); 1292 } 1293 } 1294 1295 return (0); 1296 } 1297 1298 static int 1299 aac_init(struct aac_softc *sc) 1300 { 1301 struct aac_adapter_init *ip; 1302 time_t then; 1303 u_int32_t code; 1304 u_int8_t *qaddr; 1305 1306 debug_called(1); 1307 1308 /* 1309 * First wait for the adapter to come ready. 1310 */ 1311 then = time_second; 1312 do { 1313 code = AAC_GET_FWSTATUS(sc); 1314 if (code & AAC_SELF_TEST_FAILED) { 1315 device_printf(sc->aac_dev, "FATAL: selftest failed\n"); 1316 return(ENXIO); 1317 } 1318 if (code & AAC_KERNEL_PANIC) { 1319 device_printf(sc->aac_dev, 1320 "FATAL: controller kernel panic\n"); 1321 return(ENXIO); 1322 } 1323 if (time_second > (then + AAC_BOOT_TIMEOUT)) { 1324 device_printf(sc->aac_dev, 1325 "FATAL: controller not coming ready, " 1326 "status %x\n", code); 1327 return(ENXIO); 1328 } 1329 } while (!(code & AAC_UP_AND_RUNNING)); 1330 1331 /* 1332 * Create DMA tag for the common structure and allocate it. 1333 */ 1334 if (bus_dma_tag_create(sc->aac_parent_dmat, /* parent */ 1335 1, 0, /* algnmnt, boundary */ 1336 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 1337 BUS_SPACE_MAXADDR, /* highaddr */ 1338 NULL, NULL, /* filter, filterarg */ 1339 sizeof(struct aac_common), /* maxsize */ 1340 1, /* nsegments */ 1341 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 1342 0, /* flags */ 1343 &sc->aac_common_dmat)) { 1344 device_printf(sc->aac_dev, 1345 "can't allocate common structure DMA tag\n"); 1346 return(ENOMEM); 1347 } 1348 if (bus_dmamem_alloc(sc->aac_common_dmat, (void **)&sc->aac_common, 1349 BUS_DMA_NOWAIT, &sc->aac_common_dmamap)) { 1350 device_printf(sc->aac_dev, "can't allocate common structure\n"); 1351 return(ENOMEM); 1352 } 1353 bus_dmamap_load(sc->aac_common_dmat, sc->aac_common_dmamap, 1354 sc->aac_common, sizeof(*sc->aac_common), aac_common_map, 1355 sc, 0); 1356 bzero(sc->aac_common, sizeof(*sc->aac_common)); 1357 1358 /* 1359 * Fill in the init structure. This tells the adapter about the 1360 * physical location of various important shared data structures. 1361 */ 1362 ip = &sc->aac_common->ac_init; 1363 ip->InitStructRevision = AAC_INIT_STRUCT_REVISION; 1364 1365 ip->AdapterFibsPhysicalAddress = sc->aac_common_busaddr + 1366 offsetof(struct aac_common, ac_fibs); 1367 ip->AdapterFibsVirtualAddress = &sc->aac_common->ac_fibs[0]; 1368 ip->AdapterFibsSize = AAC_ADAPTER_FIBS * sizeof(struct aac_fib); 1369 ip->AdapterFibAlign = sizeof(struct aac_fib); 1370 1371 ip->PrintfBufferAddress = sc->aac_common_busaddr + 1372 offsetof(struct aac_common, ac_printf); 1373 ip->PrintfBufferSize = AAC_PRINTF_BUFSIZE; 1374 1375 ip->HostPhysMemPages = 0; /* not used? */ 1376 ip->HostElapsedSeconds = time_second; /* reset later if invalid */ 1377 1378 /* 1379 * Initialise FIB queues. Note that it appears that the layout of the 1380 * indexes and the segmentation of the entries may be mandated by the 1381 * adapter, which is only told about the base of the queue index fields. 1382 * 1383 * The initial values of the indices are assumed to inform the adapter 1384 * of the sizes of the respective queues, and theoretically it could 1385 * work out the entire layout of the queue structures from this. We 1386 * take the easy route and just lay this area out like everyone else 1387 * does. 1388 * 1389 * The Linux driver uses a much more complex scheme whereby several 1390 * header records are kept for each queue. We use a couple of generic 1391 * list manipulation functions which 'know' the size of each list by 1392 * virtue of a table. 1393 */ 1394 qaddr = &sc->aac_common->ac_qbuf[0] + AAC_QUEUE_ALIGN; 1395 qaddr -= (u_int32_t)qaddr % AAC_QUEUE_ALIGN; 1396 sc->aac_queues = (struct aac_queue_table *)qaddr; 1397 ip->CommHeaderAddress = sc->aac_common_busaddr + 1398 ((u_int32_t)sc->aac_queues - 1399 (u_int32_t)sc->aac_common); 1400 bzero(sc->aac_queues, sizeof(struct aac_queue_table)); 1401 1402 sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] = 1403 AAC_HOST_NORM_CMD_ENTRIES; 1404 sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] = 1405 AAC_HOST_NORM_CMD_ENTRIES; 1406 sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] = 1407 AAC_HOST_HIGH_CMD_ENTRIES; 1408 sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] = 1409 AAC_HOST_HIGH_CMD_ENTRIES; 1410 sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] = 1411 AAC_ADAP_NORM_CMD_ENTRIES; 1412 sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] = 1413 AAC_ADAP_NORM_CMD_ENTRIES; 1414 sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] = 1415 AAC_ADAP_HIGH_CMD_ENTRIES; 1416 sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] = 1417 AAC_ADAP_HIGH_CMD_ENTRIES; 1418 sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]= 1419 AAC_HOST_NORM_RESP_ENTRIES; 1420 sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]= 1421 AAC_HOST_NORM_RESP_ENTRIES; 1422 sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]= 1423 AAC_HOST_HIGH_RESP_ENTRIES; 1424 sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]= 1425 AAC_HOST_HIGH_RESP_ENTRIES; 1426 sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]= 1427 AAC_ADAP_NORM_RESP_ENTRIES; 1428 sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]= 1429 AAC_ADAP_NORM_RESP_ENTRIES; 1430 sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]= 1431 AAC_ADAP_HIGH_RESP_ENTRIES; 1432 sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]= 1433 AAC_ADAP_HIGH_RESP_ENTRIES; 1434 sc->aac_qentries[AAC_HOST_NORM_CMD_QUEUE] = 1435 &sc->aac_queues->qt_HostNormCmdQueue[0]; 1436 sc->aac_qentries[AAC_HOST_HIGH_CMD_QUEUE] = 1437 &sc->aac_queues->qt_HostHighCmdQueue[0]; 1438 sc->aac_qentries[AAC_ADAP_NORM_CMD_QUEUE] = 1439 &sc->aac_queues->qt_AdapNormCmdQueue[0]; 1440 sc->aac_qentries[AAC_ADAP_HIGH_CMD_QUEUE] = 1441 &sc->aac_queues->qt_AdapHighCmdQueue[0]; 1442 sc->aac_qentries[AAC_HOST_NORM_RESP_QUEUE] = 1443 &sc->aac_queues->qt_HostNormRespQueue[0]; 1444 sc->aac_qentries[AAC_HOST_HIGH_RESP_QUEUE] = 1445 &sc->aac_queues->qt_HostHighRespQueue[0]; 1446 sc->aac_qentries[AAC_ADAP_NORM_RESP_QUEUE] = 1447 &sc->aac_queues->qt_AdapNormRespQueue[0]; 1448 sc->aac_qentries[AAC_ADAP_HIGH_RESP_QUEUE] = 1449 &sc->aac_queues->qt_AdapHighRespQueue[0]; 1450 1451 /* 1452 * Do controller-type-specific initialisation 1453 */ 1454 switch (sc->aac_hwif) { 1455 case AAC_HWIF_I960RX: 1456 AAC_SETREG4(sc, AAC_RX_ODBR, ~0); 1457 break; 1458 } 1459 1460 /* 1461 * Give the init structure to the controller. 1462 */ 1463 if (aac_sync_command(sc, AAC_MONKER_INITSTRUCT, 1464 sc->aac_common_busaddr + 1465 offsetof(struct aac_common, ac_init), 0, 0, 0, 1466 NULL)) { 1467 device_printf(sc->aac_dev, 1468 "error establishing init structure\n"); 1469 return(EIO); 1470 } 1471 1472 return(0); 1473 } 1474 1475 /* 1476 * Send a synchronous command to the controller and wait for a result. 1477 */ 1478 static int 1479 aac_sync_command(struct aac_softc *sc, u_int32_t command, 1480 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3, 1481 u_int32_t *sp) 1482 { 1483 time_t then; 1484 u_int32_t status; 1485 1486 debug_called(3); 1487 1488 /* populate the mailbox */ 1489 AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3); 1490 1491 /* ensure the sync command doorbell flag is cleared */ 1492 AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND); 1493 1494 /* then set it to signal the adapter */ 1495 AAC_QNOTIFY(sc, AAC_DB_SYNC_COMMAND); 1496 1497 /* spin waiting for the command to complete */ 1498 then = time_second; 1499 do { 1500 if (time_second > (then + AAC_IMMEDIATE_TIMEOUT)) { 1501 debug(2, "timed out"); 1502 return(EIO); 1503 } 1504 } while (!(AAC_GET_ISTATUS(sc) & AAC_DB_SYNC_COMMAND)); 1505 1506 /* clear the completion flag */ 1507 AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND); 1508 1509 /* get the command status */ 1510 status = AAC_GET_MAILBOXSTATUS(sc); 1511 if (sp != NULL) 1512 *sp = status; 1513 return(0); 1514 } 1515 1516 /* 1517 * Grab the sync fib area. 1518 */ 1519 int 1520 aac_alloc_sync_fib(struct aac_softc *sc, struct aac_fib **fib, int flags) 1521 { 1522 1523 /* 1524 * If the force flag is set, the system is shutting down, or in 1525 * trouble. Ignore the mutex. 1526 */ 1527 if (!(flags & AAC_SYNC_LOCK_FORCE)) 1528 AAC_LOCK_ACQUIRE(&sc->aac_sync_lock); 1529 1530 *fib = &sc->aac_common->ac_sync_fib; 1531 1532 return (1); 1533 } 1534 1535 /* 1536 * Release the sync fib area. 1537 */ 1538 void 1539 aac_release_sync_fib(struct aac_softc *sc) 1540 { 1541 1542 AAC_LOCK_RELEASE(&sc->aac_sync_lock); 1543 } 1544 1545 /* 1546 * Send a synchronous FIB to the controller and wait for a result. 1547 */ 1548 int 1549 aac_sync_fib(struct aac_softc *sc, u_int32_t command, u_int32_t xferstate, 1550 struct aac_fib *fib, u_int16_t datasize) 1551 { 1552 debug_called(3); 1553 1554 if (datasize > AAC_FIB_DATASIZE) 1555 return(EINVAL); 1556 1557 /* 1558 * Set up the sync FIB 1559 */ 1560 fib->Header.XferState = AAC_FIBSTATE_HOSTOWNED | 1561 AAC_FIBSTATE_INITIALISED | 1562 AAC_FIBSTATE_EMPTY; 1563 fib->Header.XferState |= xferstate; 1564 fib->Header.Command = command; 1565 fib->Header.StructType = AAC_FIBTYPE_TFIB; 1566 fib->Header.Size = sizeof(struct aac_fib) + datasize; 1567 fib->Header.SenderSize = sizeof(struct aac_fib); 1568 fib->Header.SenderFibAddress = (u_int32_t)fib; 1569 fib->Header.ReceiverFibAddress = sc->aac_common_busaddr + 1570 offsetof(struct aac_common, 1571 ac_sync_fib); 1572 1573 /* 1574 * Give the FIB to the controller, wait for a response. 1575 */ 1576 if (aac_sync_command(sc, AAC_MONKER_SYNCFIB, 1577 fib->Header.ReceiverFibAddress, 0, 0, 0, NULL)) { 1578 debug(2, "IO error"); 1579 return(EIO); 1580 } 1581 1582 return (0); 1583 } 1584 1585 /* 1586 * Adapter-space FIB queue manipulation 1587 * 1588 * Note that the queue implementation here is a little funky; neither the PI or 1589 * CI will ever be zero. This behaviour is a controller feature. 1590 */ 1591 static struct { 1592 int size; 1593 int notify; 1594 } aac_qinfo[] = { 1595 {AAC_HOST_NORM_CMD_ENTRIES, AAC_DB_COMMAND_NOT_FULL}, 1596 {AAC_HOST_HIGH_CMD_ENTRIES, 0}, 1597 {AAC_ADAP_NORM_CMD_ENTRIES, AAC_DB_COMMAND_READY}, 1598 {AAC_ADAP_HIGH_CMD_ENTRIES, 0}, 1599 {AAC_HOST_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_NOT_FULL}, 1600 {AAC_HOST_HIGH_RESP_ENTRIES, 0}, 1601 {AAC_ADAP_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_READY}, 1602 {AAC_ADAP_HIGH_RESP_ENTRIES, 0} 1603 }; 1604 1605 /* 1606 * Atomically insert an entry into the nominated queue, returns 0 on success or 1607 * EBUSY if the queue is full. 1608 * 1609 * Note: it would be more efficient to defer notifying the controller in 1610 * the case where we may be inserting several entries in rapid succession, 1611 * but implementing this usefully may be difficult (it would involve a 1612 * separate queue/notify interface). 1613 */ 1614 static int 1615 aac_enqueue_fib(struct aac_softc *sc, int queue, struct aac_command *cm) 1616 { 1617 u_int32_t pi, ci; 1618 int s, error; 1619 u_int32_t fib_size; 1620 u_int32_t fib_addr; 1621 1622 debug_called(3); 1623 1624 fib_size = cm->cm_fib->Header.Size; 1625 fib_addr = cm->cm_fib->Header.ReceiverFibAddress; 1626 1627 s = splbio(); 1628 1629 /* get the producer/consumer indices */ 1630 pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX]; 1631 ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX]; 1632 1633 /* wrap the queue? */ 1634 if (pi >= aac_qinfo[queue].size) 1635 pi = 0; 1636 1637 /* check for queue full */ 1638 if ((pi + 1) == ci) { 1639 error = EBUSY; 1640 goto out; 1641 } 1642 1643 /* populate queue entry */ 1644 (sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size; 1645 (sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr; 1646 1647 /* update producer index */ 1648 sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1; 1649 1650 /* 1651 * To avoid a race with its completion interrupt, place this command on 1652 * the busy queue prior to advertising it to the controller. 1653 */ 1654 aac_enqueue_busy(cm); 1655 1656 /* notify the adapter if we know how */ 1657 if (aac_qinfo[queue].notify != 0) 1658 AAC_QNOTIFY(sc, aac_qinfo[queue].notify); 1659 1660 error = 0; 1661 1662 out: 1663 splx(s); 1664 return(error); 1665 } 1666 1667 /* 1668 * Atomically remove one entry from the nominated queue, returns 0 on 1669 * success or ENOENT if the queue is empty. 1670 */ 1671 static int 1672 aac_dequeue_fib(struct aac_softc *sc, int queue, u_int32_t *fib_size, 1673 struct aac_fib **fib_addr) 1674 { 1675 u_int32_t pi, ci; 1676 int s, error; 1677 int notify; 1678 1679 debug_called(3); 1680 1681 s = splbio(); 1682 1683 /* get the producer/consumer indices */ 1684 pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX]; 1685 ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX]; 1686 1687 /* check for queue empty */ 1688 if (ci == pi) { 1689 error = ENOENT; 1690 goto out; 1691 } 1692 1693 notify = 0; 1694 if (ci == pi + 1) 1695 notify++; 1696 1697 /* wrap the queue? */ 1698 if (ci >= aac_qinfo[queue].size) 1699 ci = 0; 1700 1701 /* fetch the entry */ 1702 *fib_size = (sc->aac_qentries[queue] + ci)->aq_fib_size; 1703 *fib_addr = (struct aac_fib *)(sc->aac_qentries[queue] + 1704 ci)->aq_fib_addr; 1705 1706 /* update consumer index */ 1707 sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX] = ci + 1; 1708 1709 /* if we have made the queue un-full, notify the adapter */ 1710 if (notify && (aac_qinfo[queue].notify != 0)) 1711 AAC_QNOTIFY(sc, aac_qinfo[queue].notify); 1712 error = 0; 1713 1714 out: 1715 splx(s); 1716 return(error); 1717 } 1718 1719 /* 1720 * Put our response to an Adapter Initialed Fib on the response queue 1721 */ 1722 static int 1723 aac_enqueue_response(struct aac_softc *sc, int queue, struct aac_fib *fib) 1724 { 1725 u_int32_t pi, ci; 1726 int s, error; 1727 u_int32_t fib_size; 1728 u_int32_t fib_addr; 1729 1730 debug_called(1); 1731 1732 /* Tell the adapter where the FIB is */ 1733 fib_size = fib->Header.Size; 1734 fib_addr = fib->Header.SenderFibAddress; 1735 fib->Header.ReceiverFibAddress = fib_addr; 1736 1737 s = splbio(); 1738 1739 /* get the producer/consumer indices */ 1740 pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX]; 1741 ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX]; 1742 1743 /* wrap the queue? */ 1744 if (pi >= aac_qinfo[queue].size) 1745 pi = 0; 1746 1747 /* check for queue full */ 1748 if ((pi + 1) == ci) { 1749 error = EBUSY; 1750 goto out; 1751 } 1752 1753 /* populate queue entry */ 1754 (sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size; 1755 (sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr; 1756 1757 /* update producer index */ 1758 sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1; 1759 1760 /* notify the adapter if we know how */ 1761 if (aac_qinfo[queue].notify != 0) 1762 AAC_QNOTIFY(sc, aac_qinfo[queue].notify); 1763 1764 error = 0; 1765 1766 out: 1767 splx(s); 1768 return(error); 1769 } 1770 1771 /* 1772 * Check for commands that have been outstanding for a suspiciously long time, 1773 * and complain about them. 1774 */ 1775 static void 1776 aac_timeout(struct aac_softc *sc) 1777 { 1778 int s; 1779 struct aac_command *cm; 1780 time_t deadline; 1781 1782 #if 0 1783 /* simulate an interrupt to handle possibly-missed interrupts */ 1784 /* 1785 * XXX This was done to work around another bug which has since been 1786 * fixed. It is dangerous anyways because you don't want multiple 1787 * threads in the interrupt handler at the same time! If calling 1788 * is deamed neccesary in the future, proper mutexes must be used. 1789 */ 1790 s = splbio(); 1791 aac_intr(sc); 1792 splx(s); 1793 1794 /* kick the I/O queue to restart it in the case of deadlock */ 1795 aac_startio(sc); 1796 #endif 1797 1798 /* 1799 * traverse the busy command list, bitch about late commands once 1800 * only. 1801 */ 1802 deadline = time_second - AAC_CMD_TIMEOUT; 1803 s = splbio(); 1804 TAILQ_FOREACH(cm, &sc->aac_busy, cm_link) { 1805 if ((cm->cm_timestamp < deadline) 1806 /* && !(cm->cm_flags & AAC_CMD_TIMEDOUT) */) { 1807 cm->cm_flags |= AAC_CMD_TIMEDOUT; 1808 device_printf(sc->aac_dev, 1809 "COMMAND %p TIMEOUT AFTER %d SECONDS\n", 1810 cm, (int)(time_second-cm->cm_timestamp)); 1811 AAC_PRINT_FIB(sc, cm->cm_fib); 1812 } 1813 } 1814 splx(s); 1815 1816 /* reset the timer for next time */ 1817 timeout((timeout_t*)aac_timeout, sc, AAC_PERIODIC_INTERVAL * hz); 1818 return; 1819 } 1820 1821 /* 1822 * Interface Function Vectors 1823 */ 1824 1825 /* 1826 * Read the current firmware status word. 1827 */ 1828 static int 1829 aac_sa_get_fwstatus(struct aac_softc *sc) 1830 { 1831 debug_called(3); 1832 1833 return(AAC_GETREG4(sc, AAC_SA_FWSTATUS)); 1834 } 1835 1836 static int 1837 aac_rx_get_fwstatus(struct aac_softc *sc) 1838 { 1839 debug_called(3); 1840 1841 return(AAC_GETREG4(sc, AAC_RX_FWSTATUS)); 1842 } 1843 1844 static int 1845 aac_fa_get_fwstatus(struct aac_softc *sc) 1846 { 1847 int val; 1848 1849 debug_called(3); 1850 1851 val = AAC_GETREG4(sc, AAC_FA_FWSTATUS); 1852 return (val); 1853 } 1854 1855 /* 1856 * Notify the controller of a change in a given queue 1857 */ 1858 1859 static void 1860 aac_sa_qnotify(struct aac_softc *sc, int qbit) 1861 { 1862 debug_called(3); 1863 1864 AAC_SETREG2(sc, AAC_SA_DOORBELL1_SET, qbit); 1865 } 1866 1867 static void 1868 aac_rx_qnotify(struct aac_softc *sc, int qbit) 1869 { 1870 debug_called(3); 1871 1872 AAC_SETREG4(sc, AAC_RX_IDBR, qbit); 1873 } 1874 1875 static void 1876 aac_fa_qnotify(struct aac_softc *sc, int qbit) 1877 { 1878 debug_called(3); 1879 1880 AAC_SETREG2(sc, AAC_FA_DOORBELL1, qbit); 1881 AAC_FA_HACK(sc); 1882 } 1883 1884 /* 1885 * Get the interrupt reason bits 1886 */ 1887 static int 1888 aac_sa_get_istatus(struct aac_softc *sc) 1889 { 1890 debug_called(3); 1891 1892 return(AAC_GETREG2(sc, AAC_SA_DOORBELL0)); 1893 } 1894 1895 static int 1896 aac_rx_get_istatus(struct aac_softc *sc) 1897 { 1898 debug_called(3); 1899 1900 return(AAC_GETREG4(sc, AAC_RX_ODBR)); 1901 } 1902 1903 static int 1904 aac_fa_get_istatus(struct aac_softc *sc) 1905 { 1906 int val; 1907 1908 debug_called(3); 1909 1910 val = AAC_GETREG2(sc, AAC_FA_DOORBELL0); 1911 return (val); 1912 } 1913 1914 /* 1915 * Clear some interrupt reason bits 1916 */ 1917 static void 1918 aac_sa_clear_istatus(struct aac_softc *sc, int mask) 1919 { 1920 debug_called(3); 1921 1922 AAC_SETREG2(sc, AAC_SA_DOORBELL0_CLEAR, mask); 1923 } 1924 1925 static void 1926 aac_rx_clear_istatus(struct aac_softc *sc, int mask) 1927 { 1928 debug_called(3); 1929 1930 AAC_SETREG4(sc, AAC_RX_ODBR, mask); 1931 } 1932 1933 static void 1934 aac_fa_clear_istatus(struct aac_softc *sc, int mask) 1935 { 1936 debug_called(3); 1937 1938 AAC_SETREG2(sc, AAC_FA_DOORBELL0_CLEAR, mask); 1939 AAC_FA_HACK(sc); 1940 } 1941 1942 /* 1943 * Populate the mailbox and set the command word 1944 */ 1945 static void 1946 aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command, 1947 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3) 1948 { 1949 debug_called(4); 1950 1951 AAC_SETREG4(sc, AAC_SA_MAILBOX, command); 1952 AAC_SETREG4(sc, AAC_SA_MAILBOX + 4, arg0); 1953 AAC_SETREG4(sc, AAC_SA_MAILBOX + 8, arg1); 1954 AAC_SETREG4(sc, AAC_SA_MAILBOX + 12, arg2); 1955 AAC_SETREG4(sc, AAC_SA_MAILBOX + 16, arg3); 1956 } 1957 1958 static void 1959 aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command, 1960 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3) 1961 { 1962 debug_called(4); 1963 1964 AAC_SETREG4(sc, AAC_RX_MAILBOX, command); 1965 AAC_SETREG4(sc, AAC_RX_MAILBOX + 4, arg0); 1966 AAC_SETREG4(sc, AAC_RX_MAILBOX + 8, arg1); 1967 AAC_SETREG4(sc, AAC_RX_MAILBOX + 12, arg2); 1968 AAC_SETREG4(sc, AAC_RX_MAILBOX + 16, arg3); 1969 } 1970 1971 static void 1972 aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command, 1973 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3) 1974 { 1975 debug_called(4); 1976 1977 AAC_SETREG4(sc, AAC_FA_MAILBOX, command); 1978 AAC_FA_HACK(sc); 1979 AAC_SETREG4(sc, AAC_FA_MAILBOX + 4, arg0); 1980 AAC_FA_HACK(sc); 1981 AAC_SETREG4(sc, AAC_FA_MAILBOX + 8, arg1); 1982 AAC_FA_HACK(sc); 1983 AAC_SETREG4(sc, AAC_FA_MAILBOX + 12, arg2); 1984 AAC_FA_HACK(sc); 1985 AAC_SETREG4(sc, AAC_FA_MAILBOX + 16, arg3); 1986 AAC_FA_HACK(sc); 1987 } 1988 1989 /* 1990 * Fetch the immediate command status word 1991 */ 1992 static int 1993 aac_sa_get_mailboxstatus(struct aac_softc *sc) 1994 { 1995 debug_called(4); 1996 1997 return(AAC_GETREG4(sc, AAC_SA_MAILBOX)); 1998 } 1999 2000 static int 2001 aac_rx_get_mailboxstatus(struct aac_softc *sc) 2002 { 2003 debug_called(4); 2004 2005 return(AAC_GETREG4(sc, AAC_RX_MAILBOX)); 2006 } 2007 2008 static int 2009 aac_fa_get_mailboxstatus(struct aac_softc *sc) 2010 { 2011 int val; 2012 2013 debug_called(4); 2014 2015 val = AAC_GETREG4(sc, AAC_FA_MAILBOX); 2016 return (val); 2017 } 2018 2019 /* 2020 * Set/clear interrupt masks 2021 */ 2022 static void 2023 aac_sa_set_interrupts(struct aac_softc *sc, int enable) 2024 { 2025 debug(2, "%sable interrupts", enable ? "en" : "dis"); 2026 2027 if (enable) { 2028 AAC_SETREG2((sc), AAC_SA_MASK0_CLEAR, AAC_DB_INTERRUPTS); 2029 } else { 2030 AAC_SETREG2((sc), AAC_SA_MASK0_SET, ~0); 2031 } 2032 } 2033 2034 static void 2035 aac_rx_set_interrupts(struct aac_softc *sc, int enable) 2036 { 2037 debug(2, "%sable interrupts", enable ? "en" : "dis"); 2038 2039 if (enable) { 2040 AAC_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INTERRUPTS); 2041 } else { 2042 AAC_SETREG4(sc, AAC_RX_OIMR, ~0); 2043 } 2044 } 2045 2046 static void 2047 aac_fa_set_interrupts(struct aac_softc *sc, int enable) 2048 { 2049 debug(2, "%sable interrupts", enable ? "en" : "dis"); 2050 2051 if (enable) { 2052 AAC_SETREG2((sc), AAC_FA_MASK0_CLEAR, AAC_DB_INTERRUPTS); 2053 AAC_FA_HACK(sc); 2054 } else { 2055 AAC_SETREG2((sc), AAC_FA_MASK0, ~0); 2056 AAC_FA_HACK(sc); 2057 } 2058 } 2059 2060 /* 2061 * Debugging and Diagnostics 2062 */ 2063 2064 /* 2065 * Print some information about the controller. 2066 */ 2067 static void 2068 aac_describe_controller(struct aac_softc *sc) 2069 { 2070 struct aac_fib *fib; 2071 struct aac_adapter_info *info; 2072 2073 debug_called(2); 2074 2075 aac_alloc_sync_fib(sc, &fib, 0); 2076 2077 fib->data[0] = 0; 2078 if (aac_sync_fib(sc, RequestAdapterInfo, 0, fib, 1)) { 2079 device_printf(sc->aac_dev, "RequestAdapterInfo failed\n"); 2080 aac_release_sync_fib(sc); 2081 return; 2082 } 2083 info = (struct aac_adapter_info *)&fib->data[0]; 2084 2085 device_printf(sc->aac_dev, "%s %dMHz, %dMB cache memory, %s\n", 2086 aac_describe_code(aac_cpu_variant, info->CpuVariant), 2087 info->ClockSpeed, info->BufferMem / (1024 * 1024), 2088 aac_describe_code(aac_battery_platform, 2089 info->batteryPlatform)); 2090 2091 /* save the kernel revision structure for later use */ 2092 sc->aac_revision = info->KernelRevision; 2093 device_printf(sc->aac_dev, "Kernel %d.%d-%d, Build %d, S/N %6X\n", 2094 info->KernelRevision.external.comp.major, 2095 info->KernelRevision.external.comp.minor, 2096 info->KernelRevision.external.comp.dash, 2097 info->KernelRevision.buildNumber, 2098 (u_int32_t)(info->SerialNumber & 0xffffff)); 2099 2100 aac_release_sync_fib(sc); 2101 } 2102 2103 /* 2104 * Look up a text description of a numeric error code and return a pointer to 2105 * same. 2106 */ 2107 static char * 2108 aac_describe_code(struct aac_code_lookup *table, u_int32_t code) 2109 { 2110 int i; 2111 2112 for (i = 0; table[i].string != NULL; i++) 2113 if (table[i].code == code) 2114 return(table[i].string); 2115 return(table[i + 1].string); 2116 } 2117 2118 /* 2119 * Management Interface 2120 */ 2121 2122 static int 2123 aac_open(dev_t dev, int flags, int fmt, d_thread_t *td) 2124 { 2125 struct aac_softc *sc; 2126 2127 debug_called(2); 2128 2129 sc = dev->si_drv1; 2130 2131 /* Check to make sure the device isn't already open */ 2132 if (sc->aac_state & AAC_STATE_OPEN) { 2133 return EBUSY; 2134 } 2135 sc->aac_state |= AAC_STATE_OPEN; 2136 2137 return 0; 2138 } 2139 2140 static int 2141 aac_close(dev_t dev, int flags, int fmt, d_thread_t *td) 2142 { 2143 struct aac_softc *sc; 2144 2145 debug_called(2); 2146 2147 sc = dev->si_drv1; 2148 2149 /* Mark this unit as no longer open */ 2150 sc->aac_state &= ~AAC_STATE_OPEN; 2151 2152 return 0; 2153 } 2154 2155 static int 2156 aac_ioctl(dev_t dev, u_long cmd, caddr_t arg, int flag, d_thread_t *td) 2157 { 2158 union aac_statrequest *as; 2159 struct aac_softc *sc; 2160 int error = 0; 2161 int i; 2162 2163 debug_called(2); 2164 2165 as = (union aac_statrequest *)arg; 2166 sc = dev->si_drv1; 2167 2168 switch (cmd) { 2169 case AACIO_STATS: 2170 switch (as->as_item) { 2171 case AACQ_FREE: 2172 case AACQ_BIO: 2173 case AACQ_READY: 2174 case AACQ_BUSY: 2175 case AACQ_COMPLETE: 2176 bcopy(&sc->aac_qstat[as->as_item], &as->as_qstat, 2177 sizeof(struct aac_qstat)); 2178 break; 2179 default: 2180 error = ENOENT; 2181 break; 2182 } 2183 break; 2184 2185 case FSACTL_SENDFIB: 2186 arg = *(caddr_t*)arg; 2187 case FSACTL_LNX_SENDFIB: 2188 debug(1, "FSACTL_SENDFIB"); 2189 error = aac_ioctl_sendfib(sc, arg); 2190 break; 2191 case FSACTL_AIF_THREAD: 2192 case FSACTL_LNX_AIF_THREAD: 2193 debug(1, "FSACTL_AIF_THREAD"); 2194 error = EINVAL; 2195 break; 2196 case FSACTL_OPEN_GET_ADAPTER_FIB: 2197 arg = *(caddr_t*)arg; 2198 case FSACTL_LNX_OPEN_GET_ADAPTER_FIB: 2199 debug(1, "FSACTL_OPEN_GET_ADAPTER_FIB"); 2200 /* 2201 * Pass the caller out an AdapterFibContext. 2202 * 2203 * Note that because we only support one opener, we 2204 * basically ignore this. Set the caller's context to a magic 2205 * number just in case. 2206 * 2207 * The Linux code hands the driver a pointer into kernel space, 2208 * and then trusts it when the caller hands it back. Aiee! 2209 * Here, we give it the proc pointer of the per-adapter aif 2210 * thread. It's only used as a sanity check in other calls. 2211 */ 2212 i = (int)sc->aifthread; 2213 error = copyout(&i, arg, sizeof(i)); 2214 break; 2215 case FSACTL_GET_NEXT_ADAPTER_FIB: 2216 arg = *(caddr_t*)arg; 2217 case FSACTL_LNX_GET_NEXT_ADAPTER_FIB: 2218 debug(1, "FSACTL_GET_NEXT_ADAPTER_FIB"); 2219 error = aac_getnext_aif(sc, arg); 2220 break; 2221 case FSACTL_CLOSE_GET_ADAPTER_FIB: 2222 case FSACTL_LNX_CLOSE_GET_ADAPTER_FIB: 2223 debug(1, "FSACTL_CLOSE_GET_ADAPTER_FIB"); 2224 /* don't do anything here */ 2225 break; 2226 case FSACTL_MINIPORT_REV_CHECK: 2227 arg = *(caddr_t*)arg; 2228 case FSACTL_LNX_MINIPORT_REV_CHECK: 2229 debug(1, "FSACTL_MINIPORT_REV_CHECK"); 2230 error = aac_rev_check(sc, arg); 2231 break; 2232 case FSACTL_QUERY_DISK: 2233 arg = *(caddr_t*)arg; 2234 case FSACTL_LNX_QUERY_DISK: 2235 debug(1, "FSACTL_QUERY_DISK"); 2236 error = aac_query_disk(sc, arg); 2237 break; 2238 case FSACTL_DELETE_DISK: 2239 case FSACTL_LNX_DELETE_DISK: 2240 /* 2241 * We don't trust the underland to tell us when to delete a 2242 * container, rather we rely on an AIF coming from the 2243 * controller 2244 */ 2245 error = 0; 2246 break; 2247 default: 2248 debug(1, "unsupported cmd 0x%lx\n", cmd); 2249 error = EINVAL; 2250 break; 2251 } 2252 return(error); 2253 } 2254 2255 static int 2256 aac_poll(dev_t dev, int poll_events, d_thread_t *td) 2257 { 2258 struct aac_softc *sc; 2259 int revents; 2260 2261 sc = dev->si_drv1; 2262 revents = 0; 2263 2264 AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock); 2265 if ((poll_events & (POLLRDNORM | POLLIN)) != 0) { 2266 if (sc->aac_aifq_tail != sc->aac_aifq_head) 2267 revents |= poll_events & (POLLIN | POLLRDNORM); 2268 } 2269 AAC_LOCK_RELEASE(&sc->aac_aifq_lock); 2270 2271 if (revents == 0) { 2272 if (poll_events & (POLLIN | POLLRDNORM)) 2273 selrecord(td, &sc->rcv_select); 2274 } 2275 2276 return (revents); 2277 } 2278 2279 /* 2280 * Send a FIB supplied from userspace 2281 */ 2282 static int 2283 aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib) 2284 { 2285 struct aac_command *cm; 2286 int size, error; 2287 2288 debug_called(2); 2289 2290 cm = NULL; 2291 2292 /* 2293 * Get a command 2294 */ 2295 if (aac_alloc_command(sc, &cm)) { 2296 error = EBUSY; 2297 goto out; 2298 } 2299 2300 /* 2301 * Fetch the FIB header, then re-copy to get data as well. 2302 */ 2303 if ((error = copyin(ufib, cm->cm_fib, 2304 sizeof(struct aac_fib_header))) != 0) 2305 goto out; 2306 size = cm->cm_fib->Header.Size + sizeof(struct aac_fib_header); 2307 if (size > sizeof(struct aac_fib)) { 2308 device_printf(sc->aac_dev, "incoming FIB oversized (%d > %d)\n", 2309 size, sizeof(struct aac_fib)); 2310 size = sizeof(struct aac_fib); 2311 } 2312 if ((error = copyin(ufib, cm->cm_fib, size)) != 0) 2313 goto out; 2314 cm->cm_fib->Header.Size = size; 2315 cm->cm_timestamp = time_second; 2316 2317 /* 2318 * Pass the FIB to the controller, wait for it to complete. 2319 */ 2320 if ((error = aac_wait_command(cm, 30)) != 0) { /* XXX user timeout? */ 2321 printf("aac_wait_command return %d\n", error); 2322 goto out; 2323 } 2324 2325 /* 2326 * Copy the FIB and data back out to the caller. 2327 */ 2328 size = cm->cm_fib->Header.Size; 2329 if (size > sizeof(struct aac_fib)) { 2330 device_printf(sc->aac_dev, "outbound FIB oversized (%d > %d)\n", 2331 size, sizeof(struct aac_fib)); 2332 size = sizeof(struct aac_fib); 2333 } 2334 error = copyout(cm->cm_fib, ufib, size); 2335 2336 out: 2337 if (cm != NULL) { 2338 aac_release_command(cm); 2339 } 2340 return(error); 2341 } 2342 2343 /* 2344 * Handle an AIF sent to us by the controller; queue it for later reference. 2345 * If the queue fills up, then drop the older entries. 2346 */ 2347 static void 2348 aac_handle_aif(struct aac_softc *sc, struct aac_fib *fib) 2349 { 2350 struct aac_aif_command *aif; 2351 struct aac_container *co, *co_next; 2352 struct aac_mntinfo *mi; 2353 struct aac_mntinforesp *mir = NULL; 2354 u_int16_t rsize; 2355 int next, found; 2356 int added = 0, i = 0; 2357 2358 debug_called(2); 2359 2360 aif = (struct aac_aif_command*)&fib->data[0]; 2361 aac_print_aif(sc, aif); 2362 2363 /* Is it an event that we should care about? */ 2364 switch (aif->command) { 2365 case AifCmdEventNotify: 2366 switch (aif->data.EN.type) { 2367 case AifEnAddContainer: 2368 case AifEnDeleteContainer: 2369 /* 2370 * A container was added or deleted, but the message 2371 * doesn't tell us anything else! Re-enumerate the 2372 * containers and sort things out. 2373 */ 2374 aac_alloc_sync_fib(sc, &fib, 0); 2375 mi = (struct aac_mntinfo *)&fib->data[0]; 2376 mi->Command = VM_NameServe; 2377 mi->MntType = FT_FILESYS; 2378 do { 2379 /* 2380 * Ask the controller for its containers one at 2381 * a time. 2382 * XXX What if the controller's list changes 2383 * midway through this enumaration? 2384 * XXX This should be done async. 2385 */ 2386 mi->MntCount = i; 2387 rsize = sizeof(mir); 2388 if (aac_sync_fib(sc, ContainerCommand, 0, fib, 2389 sizeof(struct aac_mntinfo))) { 2390 debug(2, "Error probing container %d\n", 2391 i); 2392 continue; 2393 } 2394 mir = (struct aac_mntinforesp *)&fib->data[0]; 2395 /* 2396 * Check the container against our list. 2397 * co->co_found was already set to 0 in a 2398 * previous run. 2399 */ 2400 if ((mir->Status == ST_OK) && 2401 (mir->MntTable[0].VolType != CT_NONE)) { 2402 found = 0; 2403 TAILQ_FOREACH(co, 2404 &sc->aac_container_tqh, 2405 co_link) { 2406 if (co->co_mntobj.ObjectId == 2407 mir->MntTable[0].ObjectId) { 2408 co->co_found = 1; 2409 found = 1; 2410 break; 2411 } 2412 } 2413 /* 2414 * If the container matched, continue 2415 * in the list. 2416 */ 2417 if (found) { 2418 i++; 2419 continue; 2420 } 2421 2422 /* 2423 * This is a new container. Do all the 2424 * appropriate things to set it up. */ 2425 aac_add_container(sc, mir, 1); 2426 added = 1; 2427 } 2428 i++; 2429 } while ((i < mir->MntRespCount) && 2430 (i < AAC_MAX_CONTAINERS)); 2431 aac_release_sync_fib(sc); 2432 2433 /* 2434 * Go through our list of containers and see which ones 2435 * were not marked 'found'. Since the controller didn't 2436 * list them they must have been deleted. Do the 2437 * appropriate steps to destroy the device. Also reset 2438 * the co->co_found field. 2439 */ 2440 co = TAILQ_FIRST(&sc->aac_container_tqh); 2441 while (co != NULL) { 2442 if (co->co_found == 0) { 2443 device_delete_child(sc->aac_dev, 2444 co->co_disk); 2445 co_next = TAILQ_NEXT(co, co_link); 2446 AAC_LOCK_ACQUIRE(&sc-> 2447 aac_container_lock); 2448 TAILQ_REMOVE(&sc->aac_container_tqh, co, 2449 co_link); 2450 AAC_LOCK_RELEASE(&sc-> 2451 aac_container_lock); 2452 FREE(co, M_AACBUF); 2453 co = co_next; 2454 } else { 2455 co->co_found = 0; 2456 co = TAILQ_NEXT(co, co_link); 2457 } 2458 } 2459 2460 /* Attach the newly created containers */ 2461 if (added) 2462 bus_generic_attach(sc->aac_dev); 2463 2464 break; 2465 2466 default: 2467 break; 2468 } 2469 2470 default: 2471 break; 2472 } 2473 2474 /* Copy the AIF data to the AIF queue for ioctl retrieval */ 2475 AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock); 2476 next = (sc->aac_aifq_head + 1) % AAC_AIFQ_LENGTH; 2477 if (next != sc->aac_aifq_tail) { 2478 bcopy(aif, &sc->aac_aifq[next], sizeof(struct aac_aif_command)); 2479 sc->aac_aifq_head = next; 2480 2481 /* On the off chance that someone is sleeping for an aif... */ 2482 if (sc->aac_state & AAC_STATE_AIF_SLEEPER) 2483 wakeup(sc->aac_aifq); 2484 /* Wakeup any poll()ers */ 2485 selwakeup(&sc->rcv_select); 2486 } 2487 AAC_LOCK_RELEASE(&sc->aac_aifq_lock); 2488 2489 return; 2490 } 2491 2492 /* 2493 * Linux Management Interface 2494 * This is soon to be removed! 2495 */ 2496 2497 #ifdef AAC_COMPAT_LINUX 2498 2499 #include <sys/proc.h> 2500 #include <machine/../linux/linux.h> 2501 #include <machine/../linux/linux_proto.h> 2502 #include <compat/linux/linux_ioctl.h> 2503 2504 /* There are multiple ioctl number ranges that need to be handled */ 2505 #define AAC_LINUX_IOCTL_MIN 0x0000 2506 #define AAC_LINUX_IOCTL_MAX 0x21ff 2507 2508 static linux_ioctl_function_t aac_linux_ioctl; 2509 static struct linux_ioctl_handler aac_handler = {aac_linux_ioctl, 2510 AAC_LINUX_IOCTL_MIN, 2511 AAC_LINUX_IOCTL_MAX}; 2512 2513 SYSINIT (aac_register, SI_SUB_KLD, SI_ORDER_MIDDLE, 2514 linux_ioctl_register_handler, &aac_handler); 2515 SYSUNINIT(aac_unregister, SI_SUB_KLD, SI_ORDER_MIDDLE, 2516 linux_ioctl_unregister_handler, &aac_handler); 2517 2518 MODULE_DEPEND(aac, linux, 1, 1, 1); 2519 2520 static int 2521 aac_linux_ioctl(struct thread *td, struct linux_ioctl_args *args) 2522 { 2523 struct file *fp; 2524 u_long cmd; 2525 int error; 2526 2527 debug_called(2); 2528 2529 if ((error = fget(td, args->fd, &fp)) != 0) 2530 return (error); 2531 cmd = args->cmd; 2532 2533 /* 2534 * Pass the ioctl off to our standard handler. 2535 */ 2536 error = (fo_ioctl(fp, cmd, (caddr_t)args->arg, td)); 2537 fdrop(fp, td); 2538 return (error); 2539 } 2540 2541 #endif 2542 2543 /* 2544 * Return the Revision of the driver to userspace and check to see if the 2545 * userspace app is possibly compatible. This is extremely bogus since 2546 * our driver doesn't follow Adaptec's versioning system. Cheat by just 2547 * returning what the card reported. 2548 */ 2549 static int 2550 aac_rev_check(struct aac_softc *sc, caddr_t udata) 2551 { 2552 struct aac_rev_check rev_check; 2553 struct aac_rev_check_resp rev_check_resp; 2554 int error = 0; 2555 2556 debug_called(2); 2557 2558 /* 2559 * Copyin the revision struct from userspace 2560 */ 2561 if ((error = copyin(udata, (caddr_t)&rev_check, 2562 sizeof(struct aac_rev_check))) != 0) { 2563 return error; 2564 } 2565 2566 debug(2, "Userland revision= %d\n", 2567 rev_check.callingRevision.buildNumber); 2568 2569 /* 2570 * Doctor up the response struct. 2571 */ 2572 rev_check_resp.possiblyCompatible = 1; 2573 rev_check_resp.adapterSWRevision.external.ul = 2574 sc->aac_revision.external.ul; 2575 rev_check_resp.adapterSWRevision.buildNumber = 2576 sc->aac_revision.buildNumber; 2577 2578 return(copyout((caddr_t)&rev_check_resp, udata, 2579 sizeof(struct aac_rev_check_resp))); 2580 } 2581 2582 /* 2583 * Pass the caller the next AIF in their queue 2584 */ 2585 static int 2586 aac_getnext_aif(struct aac_softc *sc, caddr_t arg) 2587 { 2588 struct get_adapter_fib_ioctl agf; 2589 int error, s; 2590 2591 debug_called(2); 2592 2593 if ((error = copyin(arg, &agf, sizeof(agf))) == 0) { 2594 2595 /* 2596 * Check the magic number that we gave the caller. 2597 */ 2598 if (agf.AdapterFibContext != (int)sc->aifthread) { 2599 error = EFAULT; 2600 } else { 2601 2602 s = splbio(); 2603 error = aac_return_aif(sc, agf.AifFib); 2604 2605 if ((error == EAGAIN) && (agf.Wait)) { 2606 sc->aac_state |= AAC_STATE_AIF_SLEEPER; 2607 while (error == EAGAIN) { 2608 error = tsleep(sc->aac_aifq, PRIBIO | 2609 PCATCH, "aacaif", 0); 2610 if (error == 0) 2611 error = aac_return_aif(sc, 2612 agf.AifFib); 2613 } 2614 sc->aac_state &= ~AAC_STATE_AIF_SLEEPER; 2615 } 2616 splx(s); 2617 } 2618 } 2619 return(error); 2620 } 2621 2622 /* 2623 * Hand the next AIF off the top of the queue out to userspace. 2624 */ 2625 static int 2626 aac_return_aif(struct aac_softc *sc, caddr_t uptr) 2627 { 2628 int error; 2629 2630 debug_called(2); 2631 2632 AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock); 2633 if (sc->aac_aifq_tail == sc->aac_aifq_head) { 2634 error = EAGAIN; 2635 } else { 2636 error = copyout(&sc->aac_aifq[sc->aac_aifq_tail], uptr, 2637 sizeof(struct aac_aif_command)); 2638 if (error) 2639 printf("aac_return_aif: copyout returned %d\n", error); 2640 if (!error) 2641 sc->aac_aifq_tail = (sc->aac_aifq_tail + 1) % 2642 AAC_AIFQ_LENGTH; 2643 } 2644 AAC_LOCK_RELEASE(&sc->aac_aifq_lock); 2645 return(error); 2646 } 2647 2648 /* 2649 * Give the userland some information about the container. The AAC arch 2650 * expects the driver to be a SCSI passthrough type driver, so it expects 2651 * the containers to have b:t:l numbers. Fake it. 2652 */ 2653 static int 2654 aac_query_disk(struct aac_softc *sc, caddr_t uptr) 2655 { 2656 struct aac_query_disk query_disk; 2657 struct aac_container *co; 2658 struct aac_disk *disk; 2659 int error, id; 2660 2661 debug_called(2); 2662 2663 disk = NULL; 2664 2665 error = copyin(uptr, (caddr_t)&query_disk, 2666 sizeof(struct aac_query_disk)); 2667 if (error) 2668 return (error); 2669 2670 id = query_disk.ContainerNumber; 2671 if (id == -1) 2672 return (EINVAL); 2673 2674 AAC_LOCK_ACQUIRE(&sc->aac_container_lock); 2675 TAILQ_FOREACH(co, &sc->aac_container_tqh, co_link) { 2676 if (co->co_mntobj.ObjectId == id) 2677 break; 2678 } 2679 2680 if (co == NULL) { 2681 query_disk.Valid = 0; 2682 query_disk.Locked = 0; 2683 query_disk.Deleted = 1; /* XXX is this right? */ 2684 } else { 2685 disk = device_get_softc(co->co_disk); 2686 query_disk.Valid = 1; 2687 query_disk.Locked = 2688 (disk->ad_flags & AAC_DISK_OPEN) ? 1 : 0; 2689 query_disk.Deleted = 0; 2690 query_disk.Bus = device_get_unit(sc->aac_dev); 2691 query_disk.Target = disk->unit; 2692 query_disk.Lun = 0; 2693 query_disk.UnMapped = 0; 2694 bcopy(disk->ad_dev_t->si_name, 2695 &query_disk.diskDeviceName[0], 10); 2696 } 2697 AAC_LOCK_RELEASE(&sc->aac_container_lock); 2698 2699 error = copyout((caddr_t)&query_disk, uptr, 2700 sizeof(struct aac_query_disk)); 2701 2702 return (error); 2703 } 2704 2705 static void 2706 aac_get_bus_info(struct aac_softc *sc) 2707 { 2708 struct aac_fib *fib; 2709 struct aac_ctcfg *c_cmd; 2710 struct aac_ctcfg_resp *c_resp; 2711 struct aac_vmioctl *vmi; 2712 struct aac_vmi_businf_resp *vmi_resp; 2713 struct aac_getbusinf businfo; 2714 struct aac_cam_inf *caminf; 2715 device_t child; 2716 int i, found, error; 2717 2718 aac_alloc_sync_fib(sc, &fib, 0); 2719 c_cmd = (struct aac_ctcfg *)&fib->data[0]; 2720 2721 c_cmd->Command = VM_ContainerConfig; 2722 c_cmd->cmd = CT_GET_SCSI_METHOD; 2723 c_cmd->param = 0; 2724 2725 error = aac_sync_fib(sc, ContainerCommand, 0, fib, 2726 sizeof(struct aac_ctcfg)); 2727 if (error) { 2728 device_printf(sc->aac_dev, "Error %d sending " 2729 "VM_ContainerConfig command\n", error); 2730 aac_release_sync_fib(sc); 2731 return; 2732 } 2733 2734 c_resp = (struct aac_ctcfg_resp *)&fib->data[0]; 2735 if (c_resp->Status != ST_OK) { 2736 device_printf(sc->aac_dev, "VM_ContainerConfig returned 0x%x\n", 2737 c_resp->Status); 2738 aac_release_sync_fib(sc); 2739 return; 2740 } 2741 2742 sc->scsi_method_id = c_resp->param; 2743 2744 vmi = (struct aac_vmioctl *)&fib->data[0]; 2745 vmi->Command = VM_Ioctl; 2746 vmi->ObjType = FT_DRIVE; 2747 vmi->MethId = sc->scsi_method_id; 2748 vmi->ObjId = 0; 2749 vmi->IoctlCmd = GetBusInfo; 2750 2751 error = aac_sync_fib(sc, ContainerCommand, 0, fib, 2752 sizeof(struct aac_vmioctl)); 2753 if (error) { 2754 device_printf(sc->aac_dev, "Error %d sending VMIoctl command\n", 2755 error); 2756 aac_release_sync_fib(sc); 2757 return; 2758 } 2759 2760 vmi_resp = (struct aac_vmi_businf_resp *)&fib->data[0]; 2761 if (vmi_resp->Status != ST_OK) { 2762 device_printf(sc->aac_dev, "VM_Ioctl returned %d\n", 2763 vmi_resp->Status); 2764 aac_release_sync_fib(sc); 2765 return; 2766 } 2767 2768 bcopy(&vmi_resp->BusInf, &businfo, sizeof(struct aac_getbusinf)); 2769 aac_release_sync_fib(sc); 2770 2771 found = 0; 2772 for (i = 0; i < businfo.BusCount; i++) { 2773 if (businfo.BusValid[i] != AAC_BUS_VALID) 2774 continue; 2775 2776 MALLOC(caminf, struct aac_cam_inf *, 2777 sizeof(struct aac_cam_inf), M_AACBUF, M_NOWAIT | M_ZERO); 2778 if (caminf == NULL) 2779 continue; 2780 2781 child = device_add_child(sc->aac_dev, "aacp", -1); 2782 if (child == NULL) { 2783 device_printf(sc->aac_dev, "device_add_child failed\n"); 2784 continue; 2785 } 2786 2787 caminf->TargetsPerBus = businfo.TargetsPerBus; 2788 caminf->BusNumber = i; 2789 caminf->InitiatorBusId = businfo.InitiatorBusId[i]; 2790 caminf->aac_sc = sc; 2791 2792 device_set_ivars(child, caminf); 2793 device_set_desc(child, "SCSI Passthrough Bus"); 2794 2795 found = 1; 2796 } 2797 2798 if (found) 2799 bus_generic_attach(sc->aac_dev); 2800 2801 return; 2802 } 2803