xref: /freebsd/sys/dev/aac/aac.c (revision f9218d3d4fd34f082473b3a021c6d4d109fb47cf)
1 /*-
2  * Copyright (c) 2000 Michael Smith
3  * Copyright (c) 2001 Scott Long
4  * Copyright (c) 2000 BSDi
5  * Copyright (c) 2001 Adaptec, Inc.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	$FreeBSD$
30  */
31 
32 /*
33  * Driver for the Adaptec 'FSA' family of PCI/SCSI RAID adapters.
34  */
35 
36 #include "opt_aac.h"
37 
38 /* #include <stddef.h> */
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/malloc.h>
42 #include <sys/kernel.h>
43 #include <sys/kthread.h>
44 #include <sys/sysctl.h>
45 #include <sys/poll.h>
46 
47 #include <sys/bus.h>
48 #include <sys/conf.h>
49 #include <sys/devicestat.h>
50 #include <sys/disk.h>
51 #include <sys/signalvar.h>
52 #include <sys/time.h>
53 #include <sys/eventhandler.h>
54 
55 #include <machine/bus_memio.h>
56 #include <machine/bus.h>
57 #include <machine/resource.h>
58 
59 #include <dev/aac/aacreg.h>
60 #include <dev/aac/aac_ioctl.h>
61 #include <dev/aac/aacvar.h>
62 #include <dev/aac/aac_tables.h>
63 
64 static void	aac_startup(void *arg);
65 static void	aac_add_container(struct aac_softc *sc,
66 				  struct aac_mntinforesp *mir, int f);
67 static void	aac_get_bus_info(struct aac_softc *sc);
68 
69 /* Command Processing */
70 static void	aac_timeout(struct aac_softc *sc);
71 static int	aac_start(struct aac_command *cm);
72 static void	aac_complete(void *context, int pending);
73 static int	aac_bio_command(struct aac_softc *sc, struct aac_command **cmp);
74 static void	aac_bio_complete(struct aac_command *cm);
75 static int	aac_wait_command(struct aac_command *cm, int timeout);
76 static void	aac_command_thread(struct aac_softc *sc);
77 
78 /* Command Buffer Management */
79 static void	aac_map_command_helper(void *arg, bus_dma_segment_t *segs,
80 				       int nseg, int error);
81 static int	aac_alloc_commands(struct aac_softc *sc);
82 static void	aac_free_commands(struct aac_softc *sc);
83 static void	aac_map_command(struct aac_command *cm);
84 static void	aac_unmap_command(struct aac_command *cm);
85 
86 /* Hardware Interface */
87 static void	aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg,
88 			       int error);
89 static int	aac_check_firmware(struct aac_softc *sc);
90 static int	aac_init(struct aac_softc *sc);
91 static int	aac_sync_command(struct aac_softc *sc, u_int32_t command,
92 				 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2,
93 				 u_int32_t arg3, u_int32_t *sp);
94 static int	aac_enqueue_fib(struct aac_softc *sc, int queue,
95 				struct aac_command *cm);
96 static int	aac_dequeue_fib(struct aac_softc *sc, int queue,
97 				u_int32_t *fib_size, struct aac_fib **fib_addr);
98 static int	aac_enqueue_response(struct aac_softc *sc, int queue,
99 				     struct aac_fib *fib);
100 
101 /* Falcon/PPC interface */
102 static int	aac_fa_get_fwstatus(struct aac_softc *sc);
103 static void	aac_fa_qnotify(struct aac_softc *sc, int qbit);
104 static int	aac_fa_get_istatus(struct aac_softc *sc);
105 static void	aac_fa_clear_istatus(struct aac_softc *sc, int mask);
106 static void	aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
107 				   u_int32_t arg0, u_int32_t arg1,
108 				   u_int32_t arg2, u_int32_t arg3);
109 static int	aac_fa_get_mailboxstatus(struct aac_softc *sc);
110 static void	aac_fa_set_interrupts(struct aac_softc *sc, int enable);
111 
112 struct aac_interface aac_fa_interface = {
113 	aac_fa_get_fwstatus,
114 	aac_fa_qnotify,
115 	aac_fa_get_istatus,
116 	aac_fa_clear_istatus,
117 	aac_fa_set_mailbox,
118 	aac_fa_get_mailboxstatus,
119 	aac_fa_set_interrupts
120 };
121 
122 /* StrongARM interface */
123 static int	aac_sa_get_fwstatus(struct aac_softc *sc);
124 static void	aac_sa_qnotify(struct aac_softc *sc, int qbit);
125 static int	aac_sa_get_istatus(struct aac_softc *sc);
126 static void	aac_sa_clear_istatus(struct aac_softc *sc, int mask);
127 static void	aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
128 				   u_int32_t arg0, u_int32_t arg1,
129 				   u_int32_t arg2, u_int32_t arg3);
130 static int	aac_sa_get_mailboxstatus(struct aac_softc *sc);
131 static void	aac_sa_set_interrupts(struct aac_softc *sc, int enable);
132 
133 struct aac_interface aac_sa_interface = {
134 	aac_sa_get_fwstatus,
135 	aac_sa_qnotify,
136 	aac_sa_get_istatus,
137 	aac_sa_clear_istatus,
138 	aac_sa_set_mailbox,
139 	aac_sa_get_mailboxstatus,
140 	aac_sa_set_interrupts
141 };
142 
143 /* i960Rx interface */
144 static int	aac_rx_get_fwstatus(struct aac_softc *sc);
145 static void	aac_rx_qnotify(struct aac_softc *sc, int qbit);
146 static int	aac_rx_get_istatus(struct aac_softc *sc);
147 static void	aac_rx_clear_istatus(struct aac_softc *sc, int mask);
148 static void	aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
149 				   u_int32_t arg0, u_int32_t arg1,
150 				   u_int32_t arg2, u_int32_t arg3);
151 static int	aac_rx_get_mailboxstatus(struct aac_softc *sc);
152 static void	aac_rx_set_interrupts(struct aac_softc *sc, int enable);
153 
154 struct aac_interface aac_rx_interface = {
155 	aac_rx_get_fwstatus,
156 	aac_rx_qnotify,
157 	aac_rx_get_istatus,
158 	aac_rx_clear_istatus,
159 	aac_rx_set_mailbox,
160 	aac_rx_get_mailboxstatus,
161 	aac_rx_set_interrupts
162 };
163 
164 /* Debugging and Diagnostics */
165 static void	aac_describe_controller(struct aac_softc *sc);
166 static char	*aac_describe_code(struct aac_code_lookup *table,
167 				   u_int32_t code);
168 
169 /* Management Interface */
170 static d_open_t		aac_open;
171 static d_close_t	aac_close;
172 static d_ioctl_t	aac_ioctl;
173 static d_poll_t		aac_poll;
174 static int		aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib);
175 static void		aac_handle_aif(struct aac_softc *sc,
176 					   struct aac_fib *fib);
177 static int		aac_rev_check(struct aac_softc *sc, caddr_t udata);
178 static int		aac_getnext_aif(struct aac_softc *sc, caddr_t arg);
179 static int		aac_return_aif(struct aac_softc *sc, caddr_t uptr);
180 static int		aac_query_disk(struct aac_softc *sc, caddr_t uptr);
181 
182 #define AAC_CDEV_MAJOR	150
183 
184 static struct cdevsw aac_cdevsw = {
185 	.d_open =	aac_open,
186 	.d_close =	aac_close,
187 	.d_ioctl =	aac_ioctl,
188 	.d_poll =	aac_poll,
189 	.d_name =	"aac",
190 	.d_maj =	AAC_CDEV_MAJOR,
191 };
192 
193 MALLOC_DEFINE(M_AACBUF, "aacbuf", "Buffers for the AAC driver");
194 
195 /* sysctl node */
196 SYSCTL_NODE(_hw, OID_AUTO, aac, CTLFLAG_RD, 0, "AAC driver parameters");
197 
198 /*
199  * Device Interface
200  */
201 
202 /*
203  * Initialise the controller and softc
204  */
205 int
206 aac_attach(struct aac_softc *sc)
207 {
208 	int error, unit;
209 
210 	debug_called(1);
211 
212 	/*
213 	 * Initialise per-controller queues.
214 	 */
215 	aac_initq_free(sc);
216 	aac_initq_ready(sc);
217 	aac_initq_busy(sc);
218 	aac_initq_bio(sc);
219 
220 	/*
221 	 * Initialise command-completion task.
222 	 */
223 	TASK_INIT(&sc->aac_task_complete, 0, aac_complete, sc);
224 
225 	/* disable interrupts before we enable anything */
226 	AAC_MASK_INTERRUPTS(sc);
227 
228 	/* mark controller as suspended until we get ourselves organised */
229 	sc->aac_state |= AAC_STATE_SUSPEND;
230 
231 	/*
232 	 * Check that the firmware on the card is supported.
233 	 */
234 	if ((error = aac_check_firmware(sc)) != 0)
235 		return(error);
236 
237 	/* Init the sync fib lock */
238 	AAC_LOCK_INIT(&sc->aac_sync_lock, "AAC sync FIB lock");
239 
240 	/*
241 	 * Initialise the adapter.
242 	 */
243 	if ((error = aac_init(sc)) != 0)
244 		return(error);
245 
246 	/*
247 	 * Print a little information about the controller.
248 	 */
249 	aac_describe_controller(sc);
250 
251 	/*
252 	 * Initialize locks
253 	 */
254 	AAC_LOCK_INIT(&sc->aac_aifq_lock, "AAC AIF lock");
255 	TAILQ_INIT(&sc->aac_container_tqh);
256 	AAC_LOCK_INIT(&sc->aac_container_lock, "AAC container lock");
257 	AAC_LOCK_INIT(&sc->aac_io_lock, "AAC I/O lock");
258 
259 	/*
260 	 * Register to probe our containers later.
261 	 */
262 	sc->aac_ich.ich_func = aac_startup;
263 	sc->aac_ich.ich_arg = sc;
264 	if (config_intrhook_establish(&sc->aac_ich) != 0) {
265 		device_printf(sc->aac_dev,
266 			      "can't establish configuration hook\n");
267 		return(ENXIO);
268 	}
269 
270 	/*
271 	 * Make the control device.
272 	 */
273 	unit = device_get_unit(sc->aac_dev);
274 	sc->aac_dev_t = make_dev(&aac_cdevsw, unit, UID_ROOT, GID_OPERATOR,
275 				 0640, "aac%d", unit);
276 	(void)make_dev_alias(sc->aac_dev_t, "afa%d", unit);
277 	(void)make_dev_alias(sc->aac_dev_t, "hpn%d", unit);
278 	sc->aac_dev_t->si_drv1 = sc;
279 
280 	/* Create the AIF thread */
281 	if (kthread_create((void(*)(void *))aac_command_thread, sc,
282 			   &sc->aifthread, 0, 0, "aac%daif", unit))
283 		panic("Could not create AIF thread\n");
284 
285 	/* Register the shutdown method to only be called post-dump */
286 	if ((sc->eh = EVENTHANDLER_REGISTER(shutdown_final, aac_shutdown,
287 	    sc->aac_dev, SHUTDOWN_PRI_DEFAULT)) == NULL)
288 		device_printf(sc->aac_dev,
289 			      "shutdown event registration failed\n");
290 
291 	/* Register with CAM for the non-DASD devices */
292 	if (!(sc->quirks & AAC_QUIRK_NOCAM)) {
293 		TAILQ_INIT(&sc->aac_sim_tqh);
294 		aac_get_bus_info(sc);
295 	}
296 
297 	return(0);
298 }
299 
300 /*
301  * Probe for containers, create disks.
302  */
303 static void
304 aac_startup(void *arg)
305 {
306 	struct aac_softc *sc;
307 	struct aac_fib *fib;
308 	struct aac_mntinfo *mi;
309 	struct aac_mntinforesp *mir = NULL;
310 	int i = 0;
311 
312 	debug_called(1);
313 
314 	sc = (struct aac_softc *)arg;
315 
316 	/* disconnect ourselves from the intrhook chain */
317 	config_intrhook_disestablish(&sc->aac_ich);
318 
319 	aac_alloc_sync_fib(sc, &fib, 0);
320 	mi = (struct aac_mntinfo *)&fib->data[0];
321 
322 	/* loop over possible containers */
323 	do {
324 		/* request information on this container */
325 		bzero(mi, sizeof(struct aac_mntinfo));
326 		mi->Command = VM_NameServe;
327 		mi->MntType = FT_FILESYS;
328 		mi->MntCount = i;
329 		if (aac_sync_fib(sc, ContainerCommand, 0, fib,
330 				 sizeof(struct aac_mntinfo))) {
331 			debug(2, "error probing container %d", i);
332 			continue;
333 		}
334 
335 		mir = (struct aac_mntinforesp *)&fib->data[0];
336 		aac_add_container(sc, mir, 0);
337 		i++;
338 	} while ((i < mir->MntRespCount) && (i < AAC_MAX_CONTAINERS));
339 
340 	aac_release_sync_fib(sc);
341 
342 	/* poke the bus to actually attach the child devices */
343 	if (bus_generic_attach(sc->aac_dev))
344 		device_printf(sc->aac_dev, "bus_generic_attach failed\n");
345 
346 	/* mark the controller up */
347 	sc->aac_state &= ~AAC_STATE_SUSPEND;
348 
349 	/* enable interrupts now */
350 	AAC_UNMASK_INTERRUPTS(sc);
351 }
352 
353 /*
354  * Create a device to respresent a new container
355  */
356 static void
357 aac_add_container(struct aac_softc *sc, struct aac_mntinforesp *mir, int f)
358 {
359 	struct aac_container *co;
360 	device_t child;
361 
362 	/*
363 	 * Check container volume type for validity.  Note that many of
364 	 * the possible types may never show up.
365 	 */
366 	if ((mir->Status == ST_OK) && (mir->MntTable[0].VolType != CT_NONE)) {
367 		co = (struct aac_container *)malloc(sizeof *co, M_AACBUF,
368 		       M_NOWAIT | M_ZERO);
369 		if (co == NULL)
370 			panic("Out of memory?!\n");
371 		debug(1, "id %x  name '%.16s'  size %u  type %d",
372 		      mir->MntTable[0].ObjectId,
373 		      mir->MntTable[0].FileSystemName,
374 		      mir->MntTable[0].Capacity, mir->MntTable[0].VolType);
375 
376 		if ((child = device_add_child(sc->aac_dev, "aacd", -1)) == NULL)
377 			device_printf(sc->aac_dev, "device_add_child failed\n");
378 		else
379 			device_set_ivars(child, co);
380 		device_set_desc(child, aac_describe_code(aac_container_types,
381 				mir->MntTable[0].VolType));
382 		co->co_disk = child;
383 		co->co_found = f;
384 		bcopy(&mir->MntTable[0], &co->co_mntobj,
385 		      sizeof(struct aac_mntobj));
386 		AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
387 		TAILQ_INSERT_TAIL(&sc->aac_container_tqh, co, co_link);
388 		AAC_LOCK_RELEASE(&sc->aac_container_lock);
389 	}
390 }
391 
392 /*
393  * Free all of the resources associated with (sc)
394  *
395  * Should not be called if the controller is active.
396  */
397 void
398 aac_free(struct aac_softc *sc)
399 {
400 
401 	debug_called(1);
402 
403 	/* remove the control device */
404 	if (sc->aac_dev_t != NULL)
405 		destroy_dev(sc->aac_dev_t);
406 
407 	/* throw away any FIB buffers, discard the FIB DMA tag */
408 	aac_free_commands(sc);
409 	if (sc->aac_fib_dmat)
410 		bus_dma_tag_destroy(sc->aac_fib_dmat);
411 
412 	free(sc->aac_commands, M_AACBUF);
413 
414 	/* destroy the common area */
415 	if (sc->aac_common) {
416 		bus_dmamap_unload(sc->aac_common_dmat, sc->aac_common_dmamap);
417 		bus_dmamem_free(sc->aac_common_dmat, sc->aac_common,
418 				sc->aac_common_dmamap);
419 	}
420 	if (sc->aac_common_dmat)
421 		bus_dma_tag_destroy(sc->aac_common_dmat);
422 
423 	/* disconnect the interrupt handler */
424 	if (sc->aac_intr)
425 		bus_teardown_intr(sc->aac_dev, sc->aac_irq, sc->aac_intr);
426 	if (sc->aac_irq != NULL)
427 		bus_release_resource(sc->aac_dev, SYS_RES_IRQ, sc->aac_irq_rid,
428 				     sc->aac_irq);
429 
430 	/* destroy data-transfer DMA tag */
431 	if (sc->aac_buffer_dmat)
432 		bus_dma_tag_destroy(sc->aac_buffer_dmat);
433 
434 	/* destroy the parent DMA tag */
435 	if (sc->aac_parent_dmat)
436 		bus_dma_tag_destroy(sc->aac_parent_dmat);
437 
438 	/* release the register window mapping */
439 	if (sc->aac_regs_resource != NULL)
440 		bus_release_resource(sc->aac_dev, SYS_RES_MEMORY,
441 				     sc->aac_regs_rid, sc->aac_regs_resource);
442 }
443 
444 /*
445  * Disconnect from the controller completely, in preparation for unload.
446  */
447 int
448 aac_detach(device_t dev)
449 {
450 	struct aac_softc *sc;
451 	struct aac_container *co;
452 	struct aac_sim	*sim;
453 	int error;
454 
455 	debug_called(1);
456 
457 	sc = device_get_softc(dev);
458 
459 	if (sc->aac_state & AAC_STATE_OPEN)
460 		return(EBUSY);
461 
462 	/* Remove the child containers */
463 	while ((co = TAILQ_FIRST(&sc->aac_container_tqh)) != NULL) {
464 		error = device_delete_child(dev, co->co_disk);
465 		if (error)
466 			return (error);
467 		TAILQ_REMOVE(&sc->aac_container_tqh, co, co_link);
468 		free(co, M_AACBUF);
469 	}
470 
471 	/* Remove the CAM SIMs */
472 	while ((sim = TAILQ_FIRST(&sc->aac_sim_tqh)) != NULL) {
473 		TAILQ_REMOVE(&sc->aac_sim_tqh, sim, sim_link);
474 		error = device_delete_child(dev, sim->sim_dev);
475 		if (error)
476 			return (error);
477 		free(sim, M_AACBUF);
478 	}
479 
480 	if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
481 		sc->aifflags |= AAC_AIFFLAGS_EXIT;
482 		wakeup(sc->aifthread);
483 		tsleep(sc->aac_dev, PUSER | PCATCH, "aacdch", 30 * hz);
484 	}
485 
486 	if (sc->aifflags & AAC_AIFFLAGS_RUNNING)
487 		panic("Cannot shutdown AIF thread\n");
488 
489 	if ((error = aac_shutdown(dev)))
490 		return(error);
491 
492 	EVENTHANDLER_DEREGISTER(shutdown_final, sc->eh);
493 
494 	aac_free(sc);
495 
496 	return(0);
497 }
498 
499 /*
500  * Bring the controller down to a dormant state and detach all child devices.
501  *
502  * This function is called before detach or system shutdown.
503  *
504  * Note that we can assume that the bioq on the controller is empty, as we won't
505  * allow shutdown if any device is open.
506  */
507 int
508 aac_shutdown(device_t dev)
509 {
510 	struct aac_softc *sc;
511 	struct aac_fib *fib;
512 	struct aac_close_command *cc;
513 
514 	debug_called(1);
515 
516 	sc = device_get_softc(dev);
517 
518 	sc->aac_state |= AAC_STATE_SUSPEND;
519 
520 	/*
521 	 * Send a Container shutdown followed by a HostShutdown FIB to the
522 	 * controller to convince it that we don't want to talk to it anymore.
523 	 * We've been closed and all I/O completed already
524 	 */
525 	device_printf(sc->aac_dev, "shutting down controller...");
526 
527 	aac_alloc_sync_fib(sc, &fib, AAC_SYNC_LOCK_FORCE);
528 	cc = (struct aac_close_command *)&fib->data[0];
529 
530 	bzero(cc, sizeof(struct aac_close_command));
531 	cc->Command = VM_CloseAll;
532 	cc->ContainerId = 0xffffffff;
533 	if (aac_sync_fib(sc, ContainerCommand, 0, fib,
534 	    sizeof(struct aac_close_command)))
535 		printf("FAILED.\n");
536 	else
537 		printf("done\n");
538 #if 0
539 	else {
540 		fib->data[0] = 0;
541 		/*
542 		 * XXX Issuing this command to the controller makes it shut down
543 		 * but also keeps it from coming back up without a reset of the
544 		 * PCI bus.  This is not desirable if you are just unloading the
545 		 * driver module with the intent to reload it later.
546 		 */
547 		if (aac_sync_fib(sc, FsaHostShutdown, AAC_FIBSTATE_SHUTDOWN,
548 		    fib, 1)) {
549 			printf("FAILED.\n");
550 		} else {
551 			printf("done.\n");
552 		}
553 	}
554 #endif
555 
556 	AAC_MASK_INTERRUPTS(sc);
557 
558 	return(0);
559 }
560 
561 /*
562  * Bring the controller to a quiescent state, ready for system suspend.
563  */
564 int
565 aac_suspend(device_t dev)
566 {
567 	struct aac_softc *sc;
568 
569 	debug_called(1);
570 
571 	sc = device_get_softc(dev);
572 
573 	sc->aac_state |= AAC_STATE_SUSPEND;
574 
575 	AAC_MASK_INTERRUPTS(sc);
576 	return(0);
577 }
578 
579 /*
580  * Bring the controller back to a state ready for operation.
581  */
582 int
583 aac_resume(device_t dev)
584 {
585 	struct aac_softc *sc;
586 
587 	debug_called(1);
588 
589 	sc = device_get_softc(dev);
590 
591 	sc->aac_state &= ~AAC_STATE_SUSPEND;
592 	AAC_UNMASK_INTERRUPTS(sc);
593 	return(0);
594 }
595 
596 /*
597  * Take an interrupt.
598  */
599 void
600 aac_intr(void *arg)
601 {
602 	struct aac_softc *sc;
603 	u_int32_t *resp_queue;
604 	u_int16_t reason;
605 
606 	debug_called(2);
607 
608 	sc = (struct aac_softc *)arg;
609 
610 	/*
611 	 * Optimize the common case of adapter response interrupts.
612 	 * We must read from the card prior to processing the responses
613 	 * to ensure the clear is flushed prior to accessing the queues.
614 	 * Reading the queues from local memory might save us a PCI read.
615 	 */
616 	resp_queue = sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE];
617 	if (resp_queue[AAC_PRODUCER_INDEX] != resp_queue[AAC_CONSUMER_INDEX])
618 		reason = AAC_DB_RESPONSE_READY;
619 	else
620 		reason = AAC_GET_ISTATUS(sc);
621 	AAC_CLEAR_ISTATUS(sc, reason);
622 	(void)AAC_GET_ISTATUS(sc);
623 
624 	/* It's not ok to return here because of races with the previous step */
625 	if (reason & AAC_DB_RESPONSE_READY)
626 		/* handle completion processing */
627 		taskqueue_enqueue(taskqueue_swi, &sc->aac_task_complete);
628 
629 	/* controller wants to talk to the log */
630 	if (reason & AAC_DB_PRINTF) {
631 		if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
632 			sc->aifflags |= AAC_AIFFLAGS_PRINTF;
633 		} else
634 			aac_print_printf(sc);
635 	}
636 
637 	/* controller has a message for us? */
638 	if (reason & AAC_DB_COMMAND_READY) {
639 		if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
640 			sc->aifflags |= AAC_AIFFLAGS_AIF;
641 		} else {
642 			/*
643 			 * XXX If the kthread is dead and we're at this point,
644 			 * there are bigger problems than just figuring out
645 			 * what to do with an AIF.
646 			 */
647 		}
648 
649 	}
650 
651 	if ((sc->aifflags & AAC_AIFFLAGS_PENDING) != 0)
652 		/* XXX Should this be done with cv_signal? */
653 		wakeup(sc->aifthread);
654 }
655 
656 /*
657  * Command Processing
658  */
659 
660 /*
661  * Start as much queued I/O as possible on the controller
662  */
663 void
664 aac_startio(struct aac_softc *sc)
665 {
666 	struct aac_command *cm;
667 
668 	debug_called(2);
669 
670 	for (;;) {
671 		/*
672 		 * Try to get a command that's been put off for lack of
673 		 * resources
674 		 */
675 		cm = aac_dequeue_ready(sc);
676 
677 		/*
678 		 * Try to build a command off the bio queue (ignore error
679 		 * return)
680 		 */
681 		if (cm == NULL)
682 			aac_bio_command(sc, &cm);
683 
684 		/* nothing to do? */
685 		if (cm == NULL)
686 			break;
687 
688 		/* try to give the command to the controller */
689 		if (aac_start(cm) == EBUSY) {
690 			/* put it on the ready queue for later */
691 			aac_requeue_ready(cm);
692 			break;
693 		}
694 	}
695 }
696 
697 /*
698  * Deliver a command to the controller; allocate controller resources at the
699  * last moment when possible.
700  */
701 static int
702 aac_start(struct aac_command *cm)
703 {
704 	struct aac_softc *sc;
705 	int error;
706 
707 	debug_called(2);
708 
709 	sc = cm->cm_sc;
710 
711 	/* get the command mapped */
712 	aac_map_command(cm);
713 
714 	/* fix up the address values in the FIB */
715 	cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
716 	cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys;
717 
718 	/* save a pointer to the command for speedy reverse-lookup */
719 	cm->cm_fib->Header.SenderData = cm->cm_index;
720 	/* put the FIB on the outbound queue */
721 	error = aac_enqueue_fib(sc, cm->cm_queue, cm);
722 	return(error);
723 }
724 
725 /*
726  * Handle notification of one or more FIBs coming from the controller.
727  */
728 static void
729 aac_command_thread(struct aac_softc *sc)
730 {
731 	struct aac_fib *fib;
732 	u_int32_t fib_size;
733 	int size;
734 
735 	debug_called(2);
736 
737 	sc->aifflags |= AAC_AIFFLAGS_RUNNING;
738 
739 	while (!(sc->aifflags & AAC_AIFFLAGS_EXIT)) {
740 		if ((sc->aifflags & AAC_AIFFLAGS_PENDING) == 0)
741 			tsleep(sc->aifthread, PRIBIO, "aifthd",
742 			       AAC_PERIODIC_INTERVAL * hz);
743 
744 		if ((sc->aifflags & AAC_AIFFLAGS_PENDING) == 0)
745 			aac_timeout(sc);
746 
747 		/* Check the hardware printf message buffer */
748 		if ((sc->aifflags & AAC_AIFFLAGS_PRINTF) != 0) {
749 			sc->aifflags &= ~AAC_AIFFLAGS_PRINTF;
750 			aac_print_printf(sc);
751 		}
752 
753 		/* See if any FIBs need to be allocated */
754 		if ((sc->aifflags & AAC_AIFFLAGS_ALLOCFIBS) != 0) {
755 			mtx_lock(&Giant);
756 			AAC_LOCK_ACQUIRE(&sc->aac_io_lock);
757 			aac_alloc_commands(sc);
758 			sc->aifflags &= ~AAC_AIFFLAGS_ALLOCFIBS;
759 			AAC_LOCK_RELEASE(&sc->aac_io_lock);
760 			mtx_unlock(&Giant);
761 		}
762 
763 		/* While we're here, check to see if any commands are stuck */
764 		while (sc->aifflags & AAC_AIFFLAGS_AIF) {
765 			if (aac_dequeue_fib(sc, AAC_HOST_NORM_CMD_QUEUE,
766 					    &fib_size, &fib)) {
767 				sc->aifflags &= ~AAC_AIFFLAGS_AIF;
768 				break;	/* nothing to do */
769 			}
770 
771 			AAC_PRINT_FIB(sc, fib);
772 
773 			switch (fib->Header.Command) {
774 			case AifRequest:
775 				aac_handle_aif(sc, fib);
776 				break;
777 			default:
778 				device_printf(sc->aac_dev, "unknown command "
779 					      "from controller\n");
780 				break;
781 			}
782 
783 			if ((fib->Header.XferState == 0) ||
784 			    (fib->Header.StructType != AAC_FIBTYPE_TFIB))
785 				break;
786 
787 			/* Return the AIF to the controller. */
788 			if (fib->Header.XferState & AAC_FIBSTATE_FROMADAP) {
789 				fib->Header.XferState |= AAC_FIBSTATE_DONEHOST;
790 				*(AAC_FSAStatus*)fib->data = ST_OK;
791 
792 				/* XXX Compute the Size field? */
793 				size = fib->Header.Size;
794 				if (size > sizeof(struct aac_fib)) {
795 					size = sizeof(struct aac_fib);
796 					fib->Header.Size = size;
797 				}
798 				/*
799 				 * Since we did not generate this command, it
800 				 * cannot go through the normal
801 				 * enqueue->startio chain.
802 				 */
803 				aac_enqueue_response(sc,
804 						     AAC_ADAP_NORM_RESP_QUEUE,
805 						     fib);
806 			}
807 		}
808 	}
809 	sc->aifflags &= ~AAC_AIFFLAGS_RUNNING;
810 	wakeup(sc->aac_dev);
811 
812 	mtx_lock(&Giant);
813 	kthread_exit(0);
814 }
815 
816 /*
817  * Process completed commands.
818  */
819 static void
820 aac_complete(void *context, int pending)
821 {
822 	struct aac_softc *sc;
823 	struct aac_command *cm;
824 	struct aac_fib *fib;
825 	u_int32_t fib_size;
826 
827 	debug_called(2);
828 
829 	sc = (struct aac_softc *)context;
830 
831 	AAC_LOCK_ACQUIRE(&sc->aac_io_lock);
832 
833 	/* pull completed commands off the queue */
834 	for (;;) {
835 		/* look for completed FIBs on our queue */
836 		if (aac_dequeue_fib(sc, AAC_HOST_NORM_RESP_QUEUE, &fib_size,
837 				    &fib))
838 			break;	/* nothing to do */
839 
840 		/* get the command, unmap and queue for later processing */
841 		cm = sc->aac_commands + fib->Header.SenderData;
842 		if (cm == NULL) {
843 			AAC_PRINT_FIB(sc, fib);
844 			break;
845 		}
846 
847 		aac_remove_busy(cm);
848 		aac_unmap_command(cm);		/* XXX defer? */
849 		cm->cm_flags |= AAC_CMD_COMPLETED;
850 
851 		/* is there a completion handler? */
852 		if (cm->cm_complete != NULL) {
853 			cm->cm_complete(cm);
854 		} else {
855 			/* assume that someone is sleeping on this command */
856 			wakeup(cm);
857 		}
858 	}
859 
860 	/* see if we can start some more I/O */
861 	aac_startio(sc);
862 
863 	AAC_LOCK_RELEASE(&sc->aac_io_lock);
864 }
865 
866 /*
867  * Handle a bio submitted from a disk device.
868  */
869 void
870 aac_submit_bio(struct bio *bp)
871 {
872 	struct aac_disk *ad;
873 	struct aac_softc *sc;
874 
875 	debug_called(2);
876 
877 	ad = (struct aac_disk *)bp->bio_disk->d_drv1;
878 	sc = ad->ad_controller;
879 
880 	/* queue the BIO and try to get some work done */
881 	aac_enqueue_bio(sc, bp);
882 	aac_startio(sc);
883 }
884 
885 /*
886  * Get a bio and build a command to go with it.
887  */
888 static int
889 aac_bio_command(struct aac_softc *sc, struct aac_command **cmp)
890 {
891 	struct aac_command *cm;
892 	struct aac_fib *fib;
893 	struct aac_blockread *br;
894 	struct aac_blockwrite *bw;
895 	struct aac_disk *ad;
896 	struct bio *bp;
897 
898 	debug_called(2);
899 
900 	/* get the resources we will need */
901 	cm = NULL;
902 	if ((bp = aac_dequeue_bio(sc)) == NULL)
903 		goto fail;
904 	if (aac_alloc_command(sc, &cm))	/* get a command */
905 		goto fail;
906 
907 	/* fill out the command */
908 	cm->cm_data = (void *)bp->bio_data;
909 	cm->cm_datalen = bp->bio_bcount;
910 	cm->cm_complete = aac_bio_complete;
911 	cm->cm_private = bp;
912 	cm->cm_timestamp = time_second;
913 	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
914 
915 	/* build the FIB */
916 	fib = cm->cm_fib;
917 	fib->Header.XferState =
918 		AAC_FIBSTATE_HOSTOWNED   |
919 		AAC_FIBSTATE_INITIALISED |
920 		AAC_FIBSTATE_EMPTY	 |
921 		AAC_FIBSTATE_FROMHOST	 |
922 		AAC_FIBSTATE_REXPECTED   |
923 		AAC_FIBSTATE_NORM	 |
924 		AAC_FIBSTATE_ASYNC	 |
925 		AAC_FIBSTATE_FAST_RESPONSE;
926 	fib->Header.Command = ContainerCommand;
927 	fib->Header.Size = sizeof(struct aac_fib_header);
928 
929 	/* build the read/write request */
930 	ad = (struct aac_disk *)bp->bio_disk->d_drv1;
931 	if (bp->bio_cmd == BIO_READ) {
932 		br = (struct aac_blockread *)&fib->data[0];
933 		br->Command = VM_CtBlockRead;
934 		br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
935 		br->BlockNumber = bp->bio_pblkno;
936 		br->ByteCount = bp->bio_bcount;
937 		fib->Header.Size += sizeof(struct aac_blockread);
938 		cm->cm_sgtable = &br->SgMap;
939 		cm->cm_flags |= AAC_CMD_DATAIN;
940 	} else {
941 		bw = (struct aac_blockwrite *)&fib->data[0];
942 		bw->Command = VM_CtBlockWrite;
943 		bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
944 		bw->BlockNumber = bp->bio_pblkno;
945 		bw->ByteCount = bp->bio_bcount;
946 		bw->Stable = CUNSTABLE;	/* XXX what's appropriate here? */
947 		fib->Header.Size += sizeof(struct aac_blockwrite);
948 		cm->cm_flags |= AAC_CMD_DATAOUT;
949 		cm->cm_sgtable = &bw->SgMap;
950 	}
951 
952 	*cmp = cm;
953 	return(0);
954 
955 fail:
956 	if (bp != NULL)
957 		aac_enqueue_bio(sc, bp);
958 	if (cm != NULL)
959 		aac_release_command(cm);
960 	return(ENOMEM);
961 }
962 
963 /*
964  * Handle a bio-instigated command that has been completed.
965  */
966 static void
967 aac_bio_complete(struct aac_command *cm)
968 {
969 	struct aac_blockread_response *brr;
970 	struct aac_blockwrite_response *bwr;
971 	struct bio *bp;
972 	AAC_FSAStatus status;
973 
974 	/* fetch relevant status and then release the command */
975 	bp = (struct bio *)cm->cm_private;
976 	if (bp->bio_cmd == BIO_READ) {
977 		brr = (struct aac_blockread_response *)&cm->cm_fib->data[0];
978 		status = brr->Status;
979 	} else {
980 		bwr = (struct aac_blockwrite_response *)&cm->cm_fib->data[0];
981 		status = bwr->Status;
982 	}
983 	aac_release_command(cm);
984 
985 	/* fix up the bio based on status */
986 	if (status == ST_OK) {
987 		bp->bio_resid = 0;
988 	} else {
989 		bp->bio_error = EIO;
990 		bp->bio_flags |= BIO_ERROR;
991 		/* pass an error string out to the disk layer */
992 		bp->bio_driver1 = aac_describe_code(aac_command_status_table,
993 						    status);
994 	}
995 	aac_biodone(bp);
996 }
997 
998 /*
999  * Submit a command to the controller, return when it completes.
1000  * XXX This is very dangerous!  If the card has gone out to lunch, we could
1001  *     be stuck here forever.  At the same time, signals are not caught
1002  *     because there is a risk that a signal could wakeup the tsleep before
1003  *     the card has a chance to complete the command.  The passed in timeout
1004  *     is ignored for the same reason.  Since there is no way to cancel a
1005  *     command in progress, we should probably create a 'dead' queue where
1006  *     commands go that have been interrupted/timed-out/etc, that keeps them
1007  *     out of the free pool.  That way, if the card is just slow, it won't
1008  *     spam the memory of a command that has been recycled.
1009  */
1010 static int
1011 aac_wait_command(struct aac_command *cm, int timeout)
1012 {
1013 	struct aac_softc *sc;
1014 	int error = 0;
1015 
1016 	debug_called(2);
1017 
1018 	sc = cm->cm_sc;
1019 
1020 	/* Put the command on the ready queue and get things going */
1021 	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1022 	aac_enqueue_ready(cm);
1023 	aac_startio(sc);
1024 	while (!(cm->cm_flags & AAC_CMD_COMPLETED) && (error != EWOULDBLOCK)) {
1025 		error = msleep(cm, &sc->aac_io_lock, PRIBIO, "aacwait", 0);
1026 	}
1027 	return(error);
1028 }
1029 
1030 /*
1031  *Command Buffer Management
1032  */
1033 
1034 /*
1035  * Allocate a command.
1036  */
1037 int
1038 aac_alloc_command(struct aac_softc *sc, struct aac_command **cmp)
1039 {
1040 	struct aac_command *cm;
1041 
1042 	debug_called(3);
1043 
1044 	if ((cm = aac_dequeue_free(sc)) == NULL) {
1045 		sc->aifflags |= AAC_AIFFLAGS_ALLOCFIBS;
1046 		wakeup(sc->aifthread);
1047 		return (EBUSY);
1048 	}
1049 
1050 	*cmp = cm;
1051 	return(0);
1052 }
1053 
1054 /*
1055  * Release a command back to the freelist.
1056  */
1057 void
1058 aac_release_command(struct aac_command *cm)
1059 {
1060 	debug_called(3);
1061 
1062 	/* (re)initialise the command/FIB */
1063 	cm->cm_sgtable = NULL;
1064 	cm->cm_flags = 0;
1065 	cm->cm_complete = NULL;
1066 	cm->cm_private = NULL;
1067 	cm->cm_fib->Header.XferState = AAC_FIBSTATE_EMPTY;
1068 	cm->cm_fib->Header.StructType = AAC_FIBTYPE_TFIB;
1069 	cm->cm_fib->Header.Flags = 0;
1070 	cm->cm_fib->Header.SenderSize = sizeof(struct aac_fib);
1071 
1072 	/*
1073 	 * These are duplicated in aac_start to cover the case where an
1074 	 * intermediate stage may have destroyed them.  They're left
1075 	 * initialised here for debugging purposes only.
1076 	 */
1077 	cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
1078 	cm->cm_fib->Header.ReceiverFibAddress = (u_int32_t)cm->cm_fibphys;
1079 	cm->cm_fib->Header.SenderData = 0;
1080 
1081 	aac_enqueue_free(cm);
1082 }
1083 
1084 /*
1085  * Map helper for command/FIB allocation.
1086  */
1087 static void
1088 aac_map_command_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1089 {
1090 	uint32_t	*fibphys;
1091 
1092 	fibphys = (uint32_t *)arg;
1093 
1094 	debug_called(3);
1095 
1096 	*fibphys = segs[0].ds_addr;
1097 }
1098 
1099 /*
1100  * Allocate and initialise commands/FIBs for this adapter.
1101  */
1102 static int
1103 aac_alloc_commands(struct aac_softc *sc)
1104 {
1105 	struct aac_command *cm;
1106 	struct aac_fibmap *fm;
1107 	uint32_t fibphys;
1108 	int i, error;
1109 
1110 	debug_called(1);
1111 
1112 	if (sc->total_fibs + AAC_FIB_COUNT > AAC_MAX_FIBS)
1113 		return (ENOMEM);
1114 
1115 	fm = malloc(sizeof(struct aac_fibmap), M_AACBUF, M_NOWAIT|M_ZERO);
1116 
1117 	/* allocate the FIBs in DMAable memory and load them */
1118 	if (bus_dmamem_alloc(sc->aac_fib_dmat, (void **)&fm->aac_fibs,
1119 			     BUS_DMA_NOWAIT, &fm->aac_fibmap)) {
1120 		device_printf(sc->aac_dev,
1121 			      "Not enough contiguous memory available.\n");
1122 		free(fm, M_AACBUF);
1123 		return (ENOMEM);
1124 	}
1125 
1126 	bus_dmamap_load(sc->aac_fib_dmat, fm->aac_fibmap, fm->aac_fibs,
1127 			AAC_FIB_COUNT * sizeof(struct aac_fib),
1128 			aac_map_command_helper, &fibphys, 0);
1129 
1130 	/* initialise constant fields in the command structure */
1131 	bzero(fm->aac_fibs, AAC_FIB_COUNT * sizeof(struct aac_fib));
1132 	for (i = 0; i < AAC_FIB_COUNT; i++) {
1133 		cm = sc->aac_commands + sc->total_fibs;
1134 		fm->aac_commands = cm;
1135 		cm->cm_sc = sc;
1136 		cm->cm_fib = fm->aac_fibs + i;
1137 		cm->cm_fibphys = fibphys + (i * sizeof(struct aac_fib));
1138 		cm->cm_index = sc->total_fibs;
1139 
1140 		if ((error = bus_dmamap_create(sc->aac_buffer_dmat, 0,
1141 					       &cm->cm_datamap)) == 0)
1142 			aac_release_command(cm);
1143 		else
1144 			break;
1145 		sc->total_fibs++;
1146 	}
1147 
1148 	if (i > 0) {
1149 		TAILQ_INSERT_TAIL(&sc->aac_fibmap_tqh, fm, fm_link);
1150 		return (0);
1151 	}
1152 
1153 	bus_dmamap_unload(sc->aac_fib_dmat, fm->aac_fibmap);
1154 	bus_dmamem_free(sc->aac_fib_dmat, fm->aac_fibs, fm->aac_fibmap);
1155 	free(fm, M_AACBUF);
1156 	return (ENOMEM);
1157 }
1158 
1159 /*
1160  * Free FIBs owned by this adapter.
1161  */
1162 static void
1163 aac_free_commands(struct aac_softc *sc)
1164 {
1165 	struct aac_fibmap *fm;
1166 	struct aac_command *cm;
1167 	int i;
1168 
1169 	debug_called(1);
1170 
1171 	while ((fm = TAILQ_FIRST(&sc->aac_fibmap_tqh)) != NULL) {
1172 
1173 		TAILQ_REMOVE(&sc->aac_fibmap_tqh, fm, fm_link);
1174 		/*
1175 		 * We check against total_fibs to handle partially
1176 		 * allocated blocks.
1177 		 */
1178 		for (i = 0; i < AAC_FIB_COUNT && sc->total_fibs--; i++) {
1179 			cm = fm->aac_commands + i;
1180 			bus_dmamap_destroy(sc->aac_buffer_dmat, cm->cm_datamap);
1181 		}
1182 		bus_dmamap_unload(sc->aac_fib_dmat, fm->aac_fibmap);
1183 		bus_dmamem_free(sc->aac_fib_dmat, fm->aac_fibs, fm->aac_fibmap);
1184 		free(fm, M_AACBUF);
1185 	}
1186 }
1187 
1188 /*
1189  * Command-mapping helper function - populate this command's s/g table.
1190  */
1191 static void
1192 aac_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1193 {
1194 	struct aac_command *cm;
1195 	struct aac_fib *fib;
1196 	struct aac_sg_table *sg;
1197 	int i;
1198 
1199 	debug_called(3);
1200 
1201 	cm = (struct aac_command *)arg;
1202 	fib = cm->cm_fib;
1203 
1204 	/* find the s/g table */
1205 	sg = cm->cm_sgtable;
1206 
1207 	/* copy into the FIB */
1208 	if (sg != NULL) {
1209 		sg->SgCount = nseg;
1210 		for (i = 0; i < nseg; i++) {
1211 			sg->SgEntry[i].SgAddress = segs[i].ds_addr;
1212 			sg->SgEntry[i].SgByteCount = segs[i].ds_len;
1213 		}
1214 		/* update the FIB size for the s/g count */
1215 		fib->Header.Size += nseg * sizeof(struct aac_sg_entry);
1216 	}
1217 
1218 }
1219 
1220 /*
1221  * Map a command into controller-visible space.
1222  */
1223 static void
1224 aac_map_command(struct aac_command *cm)
1225 {
1226 	struct aac_softc *sc;
1227 
1228 	debug_called(2);
1229 
1230 	sc = cm->cm_sc;
1231 
1232 	/* don't map more than once */
1233 	if (cm->cm_flags & AAC_CMD_MAPPED)
1234 		return;
1235 
1236 	if (cm->cm_datalen != 0) {
1237 		bus_dmamap_load(sc->aac_buffer_dmat, cm->cm_datamap,
1238 				cm->cm_data, cm->cm_datalen,
1239 				aac_map_command_sg, cm, 0);
1240 
1241 		if (cm->cm_flags & AAC_CMD_DATAIN)
1242 			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1243 					BUS_DMASYNC_PREREAD);
1244 		if (cm->cm_flags & AAC_CMD_DATAOUT)
1245 			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1246 					BUS_DMASYNC_PREWRITE);
1247 	}
1248 	cm->cm_flags |= AAC_CMD_MAPPED;
1249 }
1250 
1251 /*
1252  * Unmap a command from controller-visible space.
1253  */
1254 static void
1255 aac_unmap_command(struct aac_command *cm)
1256 {
1257 	struct aac_softc *sc;
1258 
1259 	debug_called(2);
1260 
1261 	sc = cm->cm_sc;
1262 
1263 	if (!(cm->cm_flags & AAC_CMD_MAPPED))
1264 		return;
1265 
1266 	if (cm->cm_datalen != 0) {
1267 		if (cm->cm_flags & AAC_CMD_DATAIN)
1268 			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1269 					BUS_DMASYNC_POSTREAD);
1270 		if (cm->cm_flags & AAC_CMD_DATAOUT)
1271 			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1272 					BUS_DMASYNC_POSTWRITE);
1273 
1274 		bus_dmamap_unload(sc->aac_buffer_dmat, cm->cm_datamap);
1275 	}
1276 	cm->cm_flags &= ~AAC_CMD_MAPPED;
1277 }
1278 
1279 /*
1280  * Hardware Interface
1281  */
1282 
1283 /*
1284  * Initialise the adapter.
1285  */
1286 static void
1287 aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1288 {
1289 	struct aac_softc *sc;
1290 
1291 	debug_called(1);
1292 
1293 	sc = (struct aac_softc *)arg;
1294 
1295 	sc->aac_common_busaddr = segs[0].ds_addr;
1296 }
1297 
1298 /*
1299  * Retrieve the firmware version numbers.  Dell PERC2/QC cards with
1300  * firmware version 1.x are not compatible with this driver.
1301  */
1302 static int
1303 aac_check_firmware(struct aac_softc *sc)
1304 {
1305 	u_int32_t major, minor;
1306 
1307 	debug_called(1);
1308 
1309 	if (sc->quirks & AAC_QUIRK_PERC2QC) {
1310 		if (aac_sync_command(sc, AAC_MONKER_GETKERNVER, 0, 0, 0, 0,
1311 				     NULL)) {
1312 			device_printf(sc->aac_dev,
1313 				      "Error reading firmware version\n");
1314 			return (EIO);
1315 		}
1316 
1317 		/* These numbers are stored as ASCII! */
1318 		major = (AAC_GETREG4(sc, AAC_SA_MAILBOX + 4) & 0xff) - 0x30;
1319 		minor = (AAC_GETREG4(sc, AAC_SA_MAILBOX + 8) & 0xff) - 0x30;
1320 		if (major == 1) {
1321 			device_printf(sc->aac_dev,
1322 			    "Firmware version %d.%d is not supported.\n",
1323 			    major, minor);
1324 			return (EINVAL);
1325 		}
1326 	}
1327 
1328 	return (0);
1329 }
1330 
1331 static int
1332 aac_init(struct aac_softc *sc)
1333 {
1334 	struct aac_adapter_init	*ip;
1335 	time_t then;
1336 	u_int32_t code;
1337 	u_int8_t *qaddr;
1338 
1339 	debug_called(1);
1340 
1341 	/*
1342 	 * First wait for the adapter to come ready.
1343 	 */
1344 	then = time_second;
1345 	do {
1346 		code = AAC_GET_FWSTATUS(sc);
1347 		if (code & AAC_SELF_TEST_FAILED) {
1348 			device_printf(sc->aac_dev, "FATAL: selftest failed\n");
1349 			return(ENXIO);
1350 		}
1351 		if (code & AAC_KERNEL_PANIC) {
1352 			device_printf(sc->aac_dev,
1353 				      "FATAL: controller kernel panic\n");
1354 			return(ENXIO);
1355 		}
1356 		if (time_second > (then + AAC_BOOT_TIMEOUT)) {
1357 			device_printf(sc->aac_dev,
1358 				      "FATAL: controller not coming ready, "
1359 					   "status %x\n", code);
1360 			return(ENXIO);
1361 		}
1362 	} while (!(code & AAC_UP_AND_RUNNING));
1363 
1364 	/*
1365 	 * Create DMA tag for the common structure and allocate it.
1366 	 */
1367 	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1368 			       1, 0,			/* algnmnt, boundary */
1369 			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1370 			       BUS_SPACE_MAXADDR, 	/* highaddr */
1371 			       NULL, NULL, 		/* filter, filterarg */
1372 			       8192 + sizeof(struct aac_common), /* maxsize */
1373 			       1,			/* nsegments */
1374 			       BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1375 			       0,			/* flags */
1376 			       &sc->aac_common_dmat)) {
1377 		device_printf(sc->aac_dev,
1378 			      "can't allocate common structure DMA tag\n");
1379 		return(ENOMEM);
1380 	}
1381 	if (bus_dmamem_alloc(sc->aac_common_dmat, (void **)&sc->aac_common,
1382 			     BUS_DMA_NOWAIT, &sc->aac_common_dmamap)) {
1383 		device_printf(sc->aac_dev, "can't allocate common structure\n");
1384 		return(ENOMEM);
1385 	}
1386 
1387 	/*
1388 	 * Work around a bug in the 2120 and 2200 that cannot DMA commands
1389 	 * below address 8192 in physical memory.
1390 	 * XXX If the padding is not needed, can it be put to use instead
1391 	 * of ignored?
1392 	 */
1393 	bus_dmamap_load(sc->aac_common_dmat, sc->aac_common_dmamap,
1394 			sc->aac_common, 8192 + sizeof(*sc->aac_common),
1395 			aac_common_map, sc, 0);
1396 
1397 	if (sc->aac_common_busaddr < 8192) {
1398 		(uint8_t *)sc->aac_common += 8192;
1399 		sc->aac_common_busaddr += 8192;
1400 	}
1401 	bzero(sc->aac_common, sizeof(*sc->aac_common));
1402 
1403 	/* Allocate some FIBs and associated command structs */
1404 	TAILQ_INIT(&sc->aac_fibmap_tqh);
1405 	sc->aac_commands = malloc(AAC_MAX_FIBS * sizeof(struct aac_command),
1406 				  M_AACBUF, M_WAITOK|M_ZERO);
1407 	while (sc->total_fibs < AAC_PREALLOCATE_FIBS) {
1408 		if (aac_alloc_commands(sc) != 0)
1409 			break;
1410 	}
1411 	if (sc->total_fibs == 0)
1412 		return (ENOMEM);
1413 
1414 	/*
1415 	 * Fill in the init structure.  This tells the adapter about the
1416 	 * physical location of various important shared data structures.
1417 	 */
1418 	ip = &sc->aac_common->ac_init;
1419 	ip->InitStructRevision = AAC_INIT_STRUCT_REVISION;
1420 	ip->MiniPortRevision = AAC_INIT_STRUCT_MINIPORT_REVISION;
1421 
1422 	ip->AdapterFibsPhysicalAddress = sc->aac_common_busaddr +
1423 					 offsetof(struct aac_common, ac_fibs);
1424 	ip->AdapterFibsVirtualAddress = (u_int32_t)&sc->aac_common->ac_fibs[0];
1425 	ip->AdapterFibsSize = AAC_ADAPTER_FIBS * sizeof(struct aac_fib);
1426 	ip->AdapterFibAlign = sizeof(struct aac_fib);
1427 
1428 	ip->PrintfBufferAddress = sc->aac_common_busaddr +
1429 				  offsetof(struct aac_common, ac_printf);
1430 	ip->PrintfBufferSize = AAC_PRINTF_BUFSIZE;
1431 
1432 	/* The adapter assumes that pages are 4K in size */
1433 	ip->HostPhysMemPages = ctob(physmem) / AAC_PAGE_SIZE;
1434 	ip->HostElapsedSeconds = time_second;	/* reset later if invalid */
1435 
1436 	/*
1437 	 * Initialise FIB queues.  Note that it appears that the layout of the
1438 	 * indexes and the segmentation of the entries may be mandated by the
1439 	 * adapter, which is only told about the base of the queue index fields.
1440 	 *
1441 	 * The initial values of the indices are assumed to inform the adapter
1442 	 * of the sizes of the respective queues, and theoretically it could
1443 	 * work out the entire layout of the queue structures from this.  We
1444 	 * take the easy route and just lay this area out like everyone else
1445 	 * does.
1446 	 *
1447 	 * The Linux driver uses a much more complex scheme whereby several
1448 	 * header records are kept for each queue.  We use a couple of generic
1449 	 * list manipulation functions which 'know' the size of each list by
1450 	 * virtue of a table.
1451 	 */
1452 	qaddr = &sc->aac_common->ac_qbuf[0] + AAC_QUEUE_ALIGN;
1453 	qaddr -= (u_int32_t)qaddr % AAC_QUEUE_ALIGN;
1454 	sc->aac_queues = (struct aac_queue_table *)qaddr;
1455 	ip->CommHeaderAddress = sc->aac_common_busaddr +
1456 				((u_int32_t)sc->aac_queues -
1457 				(u_int32_t)sc->aac_common);
1458 
1459 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1460 		AAC_HOST_NORM_CMD_ENTRIES;
1461 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1462 		AAC_HOST_NORM_CMD_ENTRIES;
1463 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1464 		AAC_HOST_HIGH_CMD_ENTRIES;
1465 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1466 		AAC_HOST_HIGH_CMD_ENTRIES;
1467 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1468 		AAC_ADAP_NORM_CMD_ENTRIES;
1469 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1470 		AAC_ADAP_NORM_CMD_ENTRIES;
1471 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1472 		AAC_ADAP_HIGH_CMD_ENTRIES;
1473 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1474 		AAC_ADAP_HIGH_CMD_ENTRIES;
1475 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1476 		AAC_HOST_NORM_RESP_ENTRIES;
1477 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1478 		AAC_HOST_NORM_RESP_ENTRIES;
1479 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1480 		AAC_HOST_HIGH_RESP_ENTRIES;
1481 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1482 		AAC_HOST_HIGH_RESP_ENTRIES;
1483 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1484 		AAC_ADAP_NORM_RESP_ENTRIES;
1485 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1486 		AAC_ADAP_NORM_RESP_ENTRIES;
1487 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1488 		AAC_ADAP_HIGH_RESP_ENTRIES;
1489 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1490 		AAC_ADAP_HIGH_RESP_ENTRIES;
1491 	sc->aac_qentries[AAC_HOST_NORM_CMD_QUEUE] =
1492 		&sc->aac_queues->qt_HostNormCmdQueue[0];
1493 	sc->aac_qentries[AAC_HOST_HIGH_CMD_QUEUE] =
1494 		&sc->aac_queues->qt_HostHighCmdQueue[0];
1495 	sc->aac_qentries[AAC_ADAP_NORM_CMD_QUEUE] =
1496 		&sc->aac_queues->qt_AdapNormCmdQueue[0];
1497 	sc->aac_qentries[AAC_ADAP_HIGH_CMD_QUEUE] =
1498 		&sc->aac_queues->qt_AdapHighCmdQueue[0];
1499 	sc->aac_qentries[AAC_HOST_NORM_RESP_QUEUE] =
1500 		&sc->aac_queues->qt_HostNormRespQueue[0];
1501 	sc->aac_qentries[AAC_HOST_HIGH_RESP_QUEUE] =
1502 		&sc->aac_queues->qt_HostHighRespQueue[0];
1503 	sc->aac_qentries[AAC_ADAP_NORM_RESP_QUEUE] =
1504 		&sc->aac_queues->qt_AdapNormRespQueue[0];
1505 	sc->aac_qentries[AAC_ADAP_HIGH_RESP_QUEUE] =
1506 		&sc->aac_queues->qt_AdapHighRespQueue[0];
1507 
1508 	/*
1509 	 * Do controller-type-specific initialisation
1510 	 */
1511 	switch (sc->aac_hwif) {
1512 	case AAC_HWIF_I960RX:
1513 		AAC_SETREG4(sc, AAC_RX_ODBR, ~0);
1514 		break;
1515 	}
1516 
1517 	/*
1518 	 * Give the init structure to the controller.
1519 	 */
1520 	if (aac_sync_command(sc, AAC_MONKER_INITSTRUCT,
1521 			     sc->aac_common_busaddr +
1522 			     offsetof(struct aac_common, ac_init), 0, 0, 0,
1523 			     NULL)) {
1524 		device_printf(sc->aac_dev,
1525 			      "error establishing init structure\n");
1526 		return(EIO);
1527 	}
1528 
1529 	return(0);
1530 }
1531 
1532 /*
1533  * Send a synchronous command to the controller and wait for a result.
1534  */
1535 static int
1536 aac_sync_command(struct aac_softc *sc, u_int32_t command,
1537 		 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3,
1538 		 u_int32_t *sp)
1539 {
1540 	time_t then;
1541 	u_int32_t status;
1542 
1543 	debug_called(3);
1544 
1545 	/* populate the mailbox */
1546 	AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3);
1547 
1548 	/* ensure the sync command doorbell flag is cleared */
1549 	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1550 
1551 	/* then set it to signal the adapter */
1552 	AAC_QNOTIFY(sc, AAC_DB_SYNC_COMMAND);
1553 
1554 	/* spin waiting for the command to complete */
1555 	then = time_second;
1556 	do {
1557 		if (time_second > (then + AAC_IMMEDIATE_TIMEOUT)) {
1558 			debug(2, "timed out");
1559 			return(EIO);
1560 		}
1561 	} while (!(AAC_GET_ISTATUS(sc) & AAC_DB_SYNC_COMMAND));
1562 
1563 	/* clear the completion flag */
1564 	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1565 
1566 	/* get the command status */
1567 	status = AAC_GET_MAILBOXSTATUS(sc);
1568 	if (sp != NULL)
1569 		*sp = status;
1570 	return(0);
1571 }
1572 
1573 /*
1574  * Grab the sync fib area.
1575  */
1576 int
1577 aac_alloc_sync_fib(struct aac_softc *sc, struct aac_fib **fib, int flags)
1578 {
1579 
1580 	/*
1581 	 * If the force flag is set, the system is shutting down, or in
1582 	 * trouble.  Ignore the mutex.
1583 	 */
1584 	if (!(flags & AAC_SYNC_LOCK_FORCE))
1585 		AAC_LOCK_ACQUIRE(&sc->aac_sync_lock);
1586 
1587 	*fib = &sc->aac_common->ac_sync_fib;
1588 
1589 	return (1);
1590 }
1591 
1592 /*
1593  * Release the sync fib area.
1594  */
1595 void
1596 aac_release_sync_fib(struct aac_softc *sc)
1597 {
1598 
1599 	AAC_LOCK_RELEASE(&sc->aac_sync_lock);
1600 }
1601 
1602 /*
1603  * Send a synchronous FIB to the controller and wait for a result.
1604  */
1605 int
1606 aac_sync_fib(struct aac_softc *sc, u_int32_t command, u_int32_t xferstate,
1607 		 struct aac_fib *fib, u_int16_t datasize)
1608 {
1609 	debug_called(3);
1610 
1611 	if (datasize > AAC_FIB_DATASIZE)
1612 		return(EINVAL);
1613 
1614 	/*
1615 	 * Set up the sync FIB
1616 	 */
1617 	fib->Header.XferState = AAC_FIBSTATE_HOSTOWNED |
1618 				AAC_FIBSTATE_INITIALISED |
1619 				AAC_FIBSTATE_EMPTY;
1620 	fib->Header.XferState |= xferstate;
1621 	fib->Header.Command = command;
1622 	fib->Header.StructType = AAC_FIBTYPE_TFIB;
1623 	fib->Header.Size = sizeof(struct aac_fib) + datasize;
1624 	fib->Header.SenderSize = sizeof(struct aac_fib);
1625 	fib->Header.SenderFibAddress = (u_int32_t)fib;
1626 	fib->Header.ReceiverFibAddress = sc->aac_common_busaddr +
1627 					 offsetof(struct aac_common,
1628 						  ac_sync_fib);
1629 
1630 	/*
1631 	 * Give the FIB to the controller, wait for a response.
1632 	 */
1633 	if (aac_sync_command(sc, AAC_MONKER_SYNCFIB,
1634 			     fib->Header.ReceiverFibAddress, 0, 0, 0, NULL)) {
1635 		debug(2, "IO error");
1636 		return(EIO);
1637 	}
1638 
1639 	return (0);
1640 }
1641 
1642 /*
1643  * Adapter-space FIB queue manipulation
1644  *
1645  * Note that the queue implementation here is a little funky; neither the PI or
1646  * CI will ever be zero.  This behaviour is a controller feature.
1647  */
1648 static struct {
1649 	int		size;
1650 	int		notify;
1651 } aac_qinfo[] = {
1652 	{AAC_HOST_NORM_CMD_ENTRIES, AAC_DB_COMMAND_NOT_FULL},
1653 	{AAC_HOST_HIGH_CMD_ENTRIES, 0},
1654 	{AAC_ADAP_NORM_CMD_ENTRIES, AAC_DB_COMMAND_READY},
1655 	{AAC_ADAP_HIGH_CMD_ENTRIES, 0},
1656 	{AAC_HOST_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_NOT_FULL},
1657 	{AAC_HOST_HIGH_RESP_ENTRIES, 0},
1658 	{AAC_ADAP_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_READY},
1659 	{AAC_ADAP_HIGH_RESP_ENTRIES, 0}
1660 };
1661 
1662 /*
1663  * Atomically insert an entry into the nominated queue, returns 0 on success or
1664  * EBUSY if the queue is full.
1665  *
1666  * Note: it would be more efficient to defer notifying the controller in
1667  *	 the case where we may be inserting several entries in rapid succession,
1668  *	 but implementing this usefully may be difficult (it would involve a
1669  *	 separate queue/notify interface).
1670  */
1671 static int
1672 aac_enqueue_fib(struct aac_softc *sc, int queue, struct aac_command *cm)
1673 {
1674 	u_int32_t pi, ci;
1675 	int error;
1676 	u_int32_t fib_size;
1677 	u_int32_t fib_addr;
1678 
1679 	debug_called(3);
1680 
1681 	fib_size = cm->cm_fib->Header.Size;
1682 	fib_addr = cm->cm_fib->Header.ReceiverFibAddress;
1683 
1684 	/* get the producer/consumer indices */
1685 	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1686 	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1687 
1688 	/* wrap the queue? */
1689 	if (pi >= aac_qinfo[queue].size)
1690 		pi = 0;
1691 
1692 	/* check for queue full */
1693 	if ((pi + 1) == ci) {
1694 		error = EBUSY;
1695 		goto out;
1696 	}
1697 
1698 	/* populate queue entry */
1699 	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1700 	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1701 
1702 	/* update producer index */
1703 	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1704 
1705 	/*
1706 	 * To avoid a race with its completion interrupt, place this command on
1707 	 * the busy queue prior to advertising it to the controller.
1708 	 */
1709 	aac_enqueue_busy(cm);
1710 
1711 	/* notify the adapter if we know how */
1712 	if (aac_qinfo[queue].notify != 0)
1713 		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1714 
1715 	error = 0;
1716 
1717 out:
1718 	return(error);
1719 }
1720 
1721 /*
1722  * Atomically remove one entry from the nominated queue, returns 0 on
1723  * success or ENOENT if the queue is empty.
1724  */
1725 static int
1726 aac_dequeue_fib(struct aac_softc *sc, int queue, u_int32_t *fib_size,
1727 		struct aac_fib **fib_addr)
1728 {
1729 	u_int32_t pi, ci;
1730 	int error;
1731 	int notify;
1732 
1733 	debug_called(3);
1734 
1735 	/* get the producer/consumer indices */
1736 	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1737 	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1738 
1739 	/* check for queue empty */
1740 	if (ci == pi) {
1741 		error = ENOENT;
1742 		goto out;
1743 	}
1744 
1745 	notify = 0;
1746 	if (ci == pi + 1)
1747 		notify++;
1748 
1749 	/* wrap the queue? */
1750 	if (ci >= aac_qinfo[queue].size)
1751 		ci = 0;
1752 
1753 	/* fetch the entry */
1754 	*fib_size = (sc->aac_qentries[queue] + ci)->aq_fib_size;
1755 	*fib_addr = (struct aac_fib *)(sc->aac_qentries[queue] +
1756 				       ci)->aq_fib_addr;
1757 
1758 	/*
1759 	 * Is this a fast response? If it is, update the fib fields in
1760 	 * local memory so the whole fib doesn't have to be DMA'd back up.
1761 	 */
1762 	if (*(uintptr_t *)fib_addr & 0x01) {
1763 		*(uintptr_t *)fib_addr &= ~0x01;
1764 		(*fib_addr)->Header.XferState |= AAC_FIBSTATE_DONEADAP;
1765 		*((u_int32_t*)((*fib_addr)->data)) = AAC_ERROR_NORMAL;
1766 	}
1767 	/* update consumer index */
1768 	sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX] = ci + 1;
1769 
1770 	/* if we have made the queue un-full, notify the adapter */
1771 	if (notify && (aac_qinfo[queue].notify != 0))
1772 		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1773 	error = 0;
1774 
1775 out:
1776 	return(error);
1777 }
1778 
1779 /*
1780  * Put our response to an Adapter Initialed Fib on the response queue
1781  */
1782 static int
1783 aac_enqueue_response(struct aac_softc *sc, int queue, struct aac_fib *fib)
1784 {
1785 	u_int32_t pi, ci;
1786 	int error;
1787 	u_int32_t fib_size;
1788 	u_int32_t fib_addr;
1789 
1790 	debug_called(1);
1791 
1792 	/* Tell the adapter where the FIB is */
1793 	fib_size = fib->Header.Size;
1794 	fib_addr = fib->Header.SenderFibAddress;
1795 	fib->Header.ReceiverFibAddress = fib_addr;
1796 
1797 	/* get the producer/consumer indices */
1798 	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1799 	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1800 
1801 	/* wrap the queue? */
1802 	if (pi >= aac_qinfo[queue].size)
1803 		pi = 0;
1804 
1805 	/* check for queue full */
1806 	if ((pi + 1) == ci) {
1807 		error = EBUSY;
1808 		goto out;
1809 	}
1810 
1811 	/* populate queue entry */
1812 	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1813 	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1814 
1815 	/* update producer index */
1816 	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1817 
1818 	/* notify the adapter if we know how */
1819 	if (aac_qinfo[queue].notify != 0)
1820 		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1821 
1822 	error = 0;
1823 
1824 out:
1825 	return(error);
1826 }
1827 
1828 /*
1829  * Check for commands that have been outstanding for a suspiciously long time,
1830  * and complain about them.
1831  */
1832 static void
1833 aac_timeout(struct aac_softc *sc)
1834 {
1835 	struct aac_command *cm;
1836 	time_t deadline;
1837 
1838 	/*
1839 	 * Traverse the busy command list, bitch about late commands once
1840 	 * only.
1841 	 */
1842 	deadline = time_second - AAC_CMD_TIMEOUT;
1843 	TAILQ_FOREACH(cm, &sc->aac_busy, cm_link) {
1844 		if ((cm->cm_timestamp  < deadline)
1845 			/* && !(cm->cm_flags & AAC_CMD_TIMEDOUT) */) {
1846 			cm->cm_flags |= AAC_CMD_TIMEDOUT;
1847 			device_printf(sc->aac_dev,
1848 				      "COMMAND %p TIMEOUT AFTER %d SECONDS\n",
1849 				      cm, (int)(time_second-cm->cm_timestamp));
1850 			AAC_PRINT_FIB(sc, cm->cm_fib);
1851 		}
1852 	}
1853 
1854 	return;
1855 }
1856 
1857 /*
1858  * Interface Function Vectors
1859  */
1860 
1861 /*
1862  * Read the current firmware status word.
1863  */
1864 static int
1865 aac_sa_get_fwstatus(struct aac_softc *sc)
1866 {
1867 	debug_called(3);
1868 
1869 	return(AAC_GETREG4(sc, AAC_SA_FWSTATUS));
1870 }
1871 
1872 static int
1873 aac_rx_get_fwstatus(struct aac_softc *sc)
1874 {
1875 	debug_called(3);
1876 
1877 	return(AAC_GETREG4(sc, AAC_RX_FWSTATUS));
1878 }
1879 
1880 static int
1881 aac_fa_get_fwstatus(struct aac_softc *sc)
1882 {
1883 	int val;
1884 
1885 	debug_called(3);
1886 
1887 	val = AAC_GETREG4(sc, AAC_FA_FWSTATUS);
1888 	return (val);
1889 }
1890 
1891 /*
1892  * Notify the controller of a change in a given queue
1893  */
1894 
1895 static void
1896 aac_sa_qnotify(struct aac_softc *sc, int qbit)
1897 {
1898 	debug_called(3);
1899 
1900 	AAC_SETREG2(sc, AAC_SA_DOORBELL1_SET, qbit);
1901 }
1902 
1903 static void
1904 aac_rx_qnotify(struct aac_softc *sc, int qbit)
1905 {
1906 	debug_called(3);
1907 
1908 	AAC_SETREG4(sc, AAC_RX_IDBR, qbit);
1909 }
1910 
1911 static void
1912 aac_fa_qnotify(struct aac_softc *sc, int qbit)
1913 {
1914 	debug_called(3);
1915 
1916 	AAC_SETREG2(sc, AAC_FA_DOORBELL1, qbit);
1917 	AAC_FA_HACK(sc);
1918 }
1919 
1920 /*
1921  * Get the interrupt reason bits
1922  */
1923 static int
1924 aac_sa_get_istatus(struct aac_softc *sc)
1925 {
1926 	debug_called(3);
1927 
1928 	return(AAC_GETREG2(sc, AAC_SA_DOORBELL0));
1929 }
1930 
1931 static int
1932 aac_rx_get_istatus(struct aac_softc *sc)
1933 {
1934 	debug_called(3);
1935 
1936 	return(AAC_GETREG4(sc, AAC_RX_ODBR));
1937 }
1938 
1939 static int
1940 aac_fa_get_istatus(struct aac_softc *sc)
1941 {
1942 	int val;
1943 
1944 	debug_called(3);
1945 
1946 	val = AAC_GETREG2(sc, AAC_FA_DOORBELL0);
1947 	return (val);
1948 }
1949 
1950 /*
1951  * Clear some interrupt reason bits
1952  */
1953 static void
1954 aac_sa_clear_istatus(struct aac_softc *sc, int mask)
1955 {
1956 	debug_called(3);
1957 
1958 	AAC_SETREG2(sc, AAC_SA_DOORBELL0_CLEAR, mask);
1959 }
1960 
1961 static void
1962 aac_rx_clear_istatus(struct aac_softc *sc, int mask)
1963 {
1964 	debug_called(3);
1965 
1966 	AAC_SETREG4(sc, AAC_RX_ODBR, mask);
1967 }
1968 
1969 static void
1970 aac_fa_clear_istatus(struct aac_softc *sc, int mask)
1971 {
1972 	debug_called(3);
1973 
1974 	AAC_SETREG2(sc, AAC_FA_DOORBELL0_CLEAR, mask);
1975 	AAC_FA_HACK(sc);
1976 }
1977 
1978 /*
1979  * Populate the mailbox and set the command word
1980  */
1981 static void
1982 aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
1983 		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
1984 {
1985 	debug_called(4);
1986 
1987 	AAC_SETREG4(sc, AAC_SA_MAILBOX, command);
1988 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 4, arg0);
1989 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 8, arg1);
1990 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 12, arg2);
1991 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 16, arg3);
1992 }
1993 
1994 static void
1995 aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
1996 		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
1997 {
1998 	debug_called(4);
1999 
2000 	AAC_SETREG4(sc, AAC_RX_MAILBOX, command);
2001 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 4, arg0);
2002 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 8, arg1);
2003 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 12, arg2);
2004 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 16, arg3);
2005 }
2006 
2007 static void
2008 aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2009 		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2010 {
2011 	debug_called(4);
2012 
2013 	AAC_SETREG4(sc, AAC_FA_MAILBOX, command);
2014 	AAC_FA_HACK(sc);
2015 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 4, arg0);
2016 	AAC_FA_HACK(sc);
2017 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 8, arg1);
2018 	AAC_FA_HACK(sc);
2019 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 12, arg2);
2020 	AAC_FA_HACK(sc);
2021 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 16, arg3);
2022 	AAC_FA_HACK(sc);
2023 }
2024 
2025 /*
2026  * Fetch the immediate command status word
2027  */
2028 static int
2029 aac_sa_get_mailboxstatus(struct aac_softc *sc)
2030 {
2031 	debug_called(4);
2032 
2033 	return(AAC_GETREG4(sc, AAC_SA_MAILBOX));
2034 }
2035 
2036 static int
2037 aac_rx_get_mailboxstatus(struct aac_softc *sc)
2038 {
2039 	debug_called(4);
2040 
2041 	return(AAC_GETREG4(sc, AAC_RX_MAILBOX));
2042 }
2043 
2044 static int
2045 aac_fa_get_mailboxstatus(struct aac_softc *sc)
2046 {
2047 	int val;
2048 
2049 	debug_called(4);
2050 
2051 	val = AAC_GETREG4(sc, AAC_FA_MAILBOX);
2052 	return (val);
2053 }
2054 
2055 /*
2056  * Set/clear interrupt masks
2057  */
2058 static void
2059 aac_sa_set_interrupts(struct aac_softc *sc, int enable)
2060 {
2061 	debug(2, "%sable interrupts", enable ? "en" : "dis");
2062 
2063 	if (enable) {
2064 		AAC_SETREG2((sc), AAC_SA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2065 	} else {
2066 		AAC_SETREG2((sc), AAC_SA_MASK0_SET, ~0);
2067 	}
2068 }
2069 
2070 static void
2071 aac_rx_set_interrupts(struct aac_softc *sc, int enable)
2072 {
2073 	debug(2, "%sable interrupts", enable ? "en" : "dis");
2074 
2075 	if (enable) {
2076 		AAC_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INTERRUPTS);
2077 	} else {
2078 		AAC_SETREG4(sc, AAC_RX_OIMR, ~0);
2079 	}
2080 }
2081 
2082 static void
2083 aac_fa_set_interrupts(struct aac_softc *sc, int enable)
2084 {
2085 	debug(2, "%sable interrupts", enable ? "en" : "dis");
2086 
2087 	if (enable) {
2088 		AAC_SETREG2((sc), AAC_FA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2089 		AAC_FA_HACK(sc);
2090 	} else {
2091 		AAC_SETREG2((sc), AAC_FA_MASK0, ~0);
2092 		AAC_FA_HACK(sc);
2093 	}
2094 }
2095 
2096 /*
2097  * Debugging and Diagnostics
2098  */
2099 
2100 /*
2101  * Print some information about the controller.
2102  */
2103 static void
2104 aac_describe_controller(struct aac_softc *sc)
2105 {
2106 	struct aac_fib *fib;
2107 	struct aac_adapter_info	*info;
2108 
2109 	debug_called(2);
2110 
2111 	aac_alloc_sync_fib(sc, &fib, 0);
2112 
2113 	fib->data[0] = 0;
2114 	if (aac_sync_fib(sc, RequestAdapterInfo, 0, fib, 1)) {
2115 		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
2116 		aac_release_sync_fib(sc);
2117 		return;
2118 	}
2119 	info = (struct aac_adapter_info *)&fib->data[0];
2120 
2121 	device_printf(sc->aac_dev, "%s %dMHz, %dMB cache memory, %s\n",
2122 		      aac_describe_code(aac_cpu_variant, info->CpuVariant),
2123 		      info->ClockSpeed, info->BufferMem / (1024 * 1024),
2124 		      aac_describe_code(aac_battery_platform,
2125 					info->batteryPlatform));
2126 
2127 	/* save the kernel revision structure for later use */
2128 	sc->aac_revision = info->KernelRevision;
2129 	device_printf(sc->aac_dev, "Kernel %d.%d-%d, Build %d, S/N %6X\n",
2130 		      info->KernelRevision.external.comp.major,
2131 		      info->KernelRevision.external.comp.minor,
2132 		      info->KernelRevision.external.comp.dash,
2133 		      info->KernelRevision.buildNumber,
2134 		      (u_int32_t)(info->SerialNumber & 0xffffff));
2135 
2136 	aac_release_sync_fib(sc);
2137 }
2138 
2139 /*
2140  * Look up a text description of a numeric error code and return a pointer to
2141  * same.
2142  */
2143 static char *
2144 aac_describe_code(struct aac_code_lookup *table, u_int32_t code)
2145 {
2146 	int i;
2147 
2148 	for (i = 0; table[i].string != NULL; i++)
2149 		if (table[i].code == code)
2150 			return(table[i].string);
2151 	return(table[i + 1].string);
2152 }
2153 
2154 /*
2155  * Management Interface
2156  */
2157 
2158 static int
2159 aac_open(dev_t dev, int flags, int fmt, d_thread_t *td)
2160 {
2161 	struct aac_softc *sc;
2162 
2163 	debug_called(2);
2164 
2165 	sc = dev->si_drv1;
2166 
2167 	/* Check to make sure the device isn't already open */
2168 	if (sc->aac_state & AAC_STATE_OPEN) {
2169 		return EBUSY;
2170 	}
2171 	sc->aac_state |= AAC_STATE_OPEN;
2172 
2173 	return 0;
2174 }
2175 
2176 static int
2177 aac_close(dev_t dev, int flags, int fmt, d_thread_t *td)
2178 {
2179 	struct aac_softc *sc;
2180 
2181 	debug_called(2);
2182 
2183 	sc = dev->si_drv1;
2184 
2185 	/* Mark this unit as no longer open  */
2186 	sc->aac_state &= ~AAC_STATE_OPEN;
2187 
2188 	return 0;
2189 }
2190 
2191 static int
2192 aac_ioctl(dev_t dev, u_long cmd, caddr_t arg, int flag, d_thread_t *td)
2193 {
2194 	union aac_statrequest *as;
2195 	struct aac_softc *sc;
2196 	int error = 0;
2197 	int i;
2198 
2199 	debug_called(2);
2200 
2201 	as = (union aac_statrequest *)arg;
2202 	sc = dev->si_drv1;
2203 
2204 	switch (cmd) {
2205 	case AACIO_STATS:
2206 		switch (as->as_item) {
2207 		case AACQ_FREE:
2208 		case AACQ_BIO:
2209 		case AACQ_READY:
2210 		case AACQ_BUSY:
2211 		case AACQ_COMPLETE:
2212 			bcopy(&sc->aac_qstat[as->as_item], &as->as_qstat,
2213 			      sizeof(struct aac_qstat));
2214 			break;
2215 		default:
2216 			error = ENOENT;
2217 			break;
2218 		}
2219 	break;
2220 
2221 	case FSACTL_SENDFIB:
2222 		arg = *(caddr_t*)arg;
2223 	case FSACTL_LNX_SENDFIB:
2224 		debug(1, "FSACTL_SENDFIB");
2225 		error = aac_ioctl_sendfib(sc, arg);
2226 		break;
2227 	case FSACTL_AIF_THREAD:
2228 	case FSACTL_LNX_AIF_THREAD:
2229 		debug(1, "FSACTL_AIF_THREAD");
2230 		error = EINVAL;
2231 		break;
2232 	case FSACTL_OPEN_GET_ADAPTER_FIB:
2233 		arg = *(caddr_t*)arg;
2234 	case FSACTL_LNX_OPEN_GET_ADAPTER_FIB:
2235 		debug(1, "FSACTL_OPEN_GET_ADAPTER_FIB");
2236 		/*
2237 		 * Pass the caller out an AdapterFibContext.
2238 		 *
2239 		 * Note that because we only support one opener, we
2240 		 * basically ignore this.  Set the caller's context to a magic
2241 		 * number just in case.
2242 		 *
2243 		 * The Linux code hands the driver a pointer into kernel space,
2244 		 * and then trusts it when the caller hands it back.  Aiee!
2245 		 * Here, we give it the proc pointer of the per-adapter aif
2246 		 * thread. It's only used as a sanity check in other calls.
2247 		 */
2248 		i = (int)sc->aifthread;
2249 		error = copyout(&i, arg, sizeof(i));
2250 		break;
2251 	case FSACTL_GET_NEXT_ADAPTER_FIB:
2252 		arg = *(caddr_t*)arg;
2253 	case FSACTL_LNX_GET_NEXT_ADAPTER_FIB:
2254 		debug(1, "FSACTL_GET_NEXT_ADAPTER_FIB");
2255 		error = aac_getnext_aif(sc, arg);
2256 		break;
2257 	case FSACTL_CLOSE_GET_ADAPTER_FIB:
2258 	case FSACTL_LNX_CLOSE_GET_ADAPTER_FIB:
2259 		debug(1, "FSACTL_CLOSE_GET_ADAPTER_FIB");
2260 		/* don't do anything here */
2261 		break;
2262 	case FSACTL_MINIPORT_REV_CHECK:
2263 		arg = *(caddr_t*)arg;
2264 	case FSACTL_LNX_MINIPORT_REV_CHECK:
2265 		debug(1, "FSACTL_MINIPORT_REV_CHECK");
2266 		error = aac_rev_check(sc, arg);
2267 		break;
2268 	case FSACTL_QUERY_DISK:
2269 		arg = *(caddr_t*)arg;
2270 	case FSACTL_LNX_QUERY_DISK:
2271 		debug(1, "FSACTL_QUERY_DISK");
2272 		error = aac_query_disk(sc, arg);
2273 			break;
2274 	case FSACTL_DELETE_DISK:
2275 	case FSACTL_LNX_DELETE_DISK:
2276 		/*
2277 		 * We don't trust the underland to tell us when to delete a
2278 		 * container, rather we rely on an AIF coming from the
2279 		 * controller
2280 		 */
2281 		error = 0;
2282 		break;
2283 	default:
2284 		debug(1, "unsupported cmd 0x%lx\n", cmd);
2285 		error = EINVAL;
2286 		break;
2287 	}
2288 	return(error);
2289 }
2290 
2291 static int
2292 aac_poll(dev_t dev, int poll_events, d_thread_t *td)
2293 {
2294 	struct aac_softc *sc;
2295 	int revents;
2296 
2297 	sc = dev->si_drv1;
2298 	revents = 0;
2299 
2300 	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2301 	if ((poll_events & (POLLRDNORM | POLLIN)) != 0) {
2302 		if (sc->aac_aifq_tail != sc->aac_aifq_head)
2303 			revents |= poll_events & (POLLIN | POLLRDNORM);
2304 	}
2305 	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2306 
2307 	if (revents == 0) {
2308 		if (poll_events & (POLLIN | POLLRDNORM))
2309 			selrecord(td, &sc->rcv_select);
2310 	}
2311 
2312 	return (revents);
2313 }
2314 
2315 /*
2316  * Send a FIB supplied from userspace
2317  */
2318 static int
2319 aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib)
2320 {
2321 	struct aac_command *cm;
2322 	int size, error;
2323 
2324 	debug_called(2);
2325 
2326 	cm = NULL;
2327 
2328 	/*
2329 	 * Get a command
2330 	 */
2331 	AAC_LOCK_ACQUIRE(&sc->aac_io_lock);
2332 	if (aac_alloc_command(sc, &cm)) {
2333 		error = EBUSY;
2334 		goto out;
2335 	}
2336 
2337 	/*
2338 	 * Fetch the FIB header, then re-copy to get data as well.
2339 	 */
2340 	if ((error = copyin(ufib, cm->cm_fib,
2341 			    sizeof(struct aac_fib_header))) != 0)
2342 		goto out;
2343 	size = cm->cm_fib->Header.Size + sizeof(struct aac_fib_header);
2344 	if (size > sizeof(struct aac_fib)) {
2345 		device_printf(sc->aac_dev, "incoming FIB oversized (%d > %d)\n",
2346 			      size, sizeof(struct aac_fib));
2347 		size = sizeof(struct aac_fib);
2348 	}
2349 	if ((error = copyin(ufib, cm->cm_fib, size)) != 0)
2350 		goto out;
2351 	cm->cm_fib->Header.Size = size;
2352 	cm->cm_timestamp = time_second;
2353 
2354 	/*
2355 	 * Pass the FIB to the controller, wait for it to complete.
2356 	 */
2357 	if ((error = aac_wait_command(cm, 30)) != 0) {	/* XXX user timeout? */
2358 		device_printf(sc->aac_dev,
2359 			      "aac_wait_command return %d\n", error);
2360 		goto out;
2361 	}
2362 
2363 	/*
2364 	 * Copy the FIB and data back out to the caller.
2365 	 */
2366 	size = cm->cm_fib->Header.Size;
2367 	if (size > sizeof(struct aac_fib)) {
2368 		device_printf(sc->aac_dev, "outbound FIB oversized (%d > %d)\n",
2369 			      size, sizeof(struct aac_fib));
2370 		size = sizeof(struct aac_fib);
2371 	}
2372 	error = copyout(cm->cm_fib, ufib, size);
2373 
2374 out:
2375 	if (cm != NULL) {
2376 		aac_release_command(cm);
2377 	}
2378 
2379 	AAC_LOCK_RELEASE(&sc->aac_io_lock);
2380 	return(error);
2381 }
2382 
2383 /*
2384  * Handle an AIF sent to us by the controller; queue it for later reference.
2385  * If the queue fills up, then drop the older entries.
2386  */
2387 static void
2388 aac_handle_aif(struct aac_softc *sc, struct aac_fib *fib)
2389 {
2390 	struct aac_aif_command *aif;
2391 	struct aac_container *co, *co_next;
2392 	struct aac_mntinfo *mi;
2393 	struct aac_mntinforesp *mir = NULL;
2394 	u_int16_t rsize;
2395 	int next, found;
2396 	int added = 0, i = 0;
2397 
2398 	debug_called(2);
2399 
2400 	aif = (struct aac_aif_command*)&fib->data[0];
2401 	aac_print_aif(sc, aif);
2402 
2403 	/* Is it an event that we should care about? */
2404 	switch (aif->command) {
2405 	case AifCmdEventNotify:
2406 		switch (aif->data.EN.type) {
2407 		case AifEnAddContainer:
2408 		case AifEnDeleteContainer:
2409 			/*
2410 			 * A container was added or deleted, but the message
2411 			 * doesn't tell us anything else!  Re-enumerate the
2412 			 * containers and sort things out.
2413 			 */
2414 			aac_alloc_sync_fib(sc, &fib, 0);
2415 			mi = (struct aac_mntinfo *)&fib->data[0];
2416 			do {
2417 				/*
2418 				 * Ask the controller for its containers one at
2419 				 * a time.
2420 				 * XXX What if the controller's list changes
2421 				 * midway through this enumaration?
2422 				 * XXX This should be done async.
2423 				 */
2424 				bzero(mi, sizeof(struct aac_mntinfo));
2425 				mi->Command = VM_NameServe;
2426 				mi->MntType = FT_FILESYS;
2427 				mi->MntCount = i;
2428 				rsize = sizeof(mir);
2429 				if (aac_sync_fib(sc, ContainerCommand, 0, fib,
2430 						 sizeof(struct aac_mntinfo))) {
2431 					debug(2, "Error probing container %d\n",
2432 					      i);
2433 					continue;
2434 				}
2435 				mir = (struct aac_mntinforesp *)&fib->data[0];
2436 				/*
2437 				 * Check the container against our list.
2438 				 * co->co_found was already set to 0 in a
2439 				 * previous run.
2440 				 */
2441 				if ((mir->Status == ST_OK) &&
2442 				    (mir->MntTable[0].VolType != CT_NONE)) {
2443 					found = 0;
2444 					TAILQ_FOREACH(co,
2445 						      &sc->aac_container_tqh,
2446 						      co_link) {
2447 						if (co->co_mntobj.ObjectId ==
2448 						    mir->MntTable[0].ObjectId) {
2449 							co->co_found = 1;
2450 							found = 1;
2451 							break;
2452 						}
2453 					}
2454 					/*
2455 					 * If the container matched, continue
2456 					 * in the list.
2457 					 */
2458 					if (found) {
2459 						i++;
2460 						continue;
2461 					}
2462 
2463 					/*
2464 					 * This is a new container.  Do all the
2465 					 * appropriate things to set it up.
2466 					 */
2467 					aac_add_container(sc, mir, 1);
2468 					added = 1;
2469 				}
2470 				i++;
2471 			} while ((i < mir->MntRespCount) &&
2472 				 (i < AAC_MAX_CONTAINERS));
2473 			aac_release_sync_fib(sc);
2474 
2475 			/*
2476 			 * Go through our list of containers and see which ones
2477 			 * were not marked 'found'.  Since the controller didn't
2478 			 * list them they must have been deleted.  Do the
2479 			 * appropriate steps to destroy the device.  Also reset
2480 			 * the co->co_found field.
2481 			 */
2482 			co = TAILQ_FIRST(&sc->aac_container_tqh);
2483 			while (co != NULL) {
2484 				if (co->co_found == 0) {
2485 					device_delete_child(sc->aac_dev,
2486 							    co->co_disk);
2487 					co_next = TAILQ_NEXT(co, co_link);
2488 					AAC_LOCK_ACQUIRE(&sc->
2489 							aac_container_lock);
2490 					TAILQ_REMOVE(&sc->aac_container_tqh, co,
2491 						     co_link);
2492 					AAC_LOCK_RELEASE(&sc->
2493 							 aac_container_lock);
2494 					FREE(co, M_AACBUF);
2495 					co = co_next;
2496 				} else {
2497 					co->co_found = 0;
2498 					co = TAILQ_NEXT(co, co_link);
2499 				}
2500 			}
2501 
2502 			/* Attach the newly created containers */
2503 			if (added)
2504 				bus_generic_attach(sc->aac_dev);
2505 
2506 			break;
2507 
2508 		default:
2509 			break;
2510 		}
2511 
2512 	default:
2513 		break;
2514 	}
2515 
2516 	/* Copy the AIF data to the AIF queue for ioctl retrieval */
2517 	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2518 	next = (sc->aac_aifq_head + 1) % AAC_AIFQ_LENGTH;
2519 	if (next != sc->aac_aifq_tail) {
2520 		bcopy(aif, &sc->aac_aifq[next], sizeof(struct aac_aif_command));
2521 		sc->aac_aifq_head = next;
2522 
2523 		/* On the off chance that someone is sleeping for an aif... */
2524 		if (sc->aac_state & AAC_STATE_AIF_SLEEPER)
2525 			wakeup(sc->aac_aifq);
2526 		/* Wakeup any poll()ers */
2527 		selwakeup(&sc->rcv_select);
2528 	}
2529 	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2530 
2531 	return;
2532 }
2533 
2534 /*
2535  * Return the Revision of the driver to userspace and check to see if the
2536  * userspace app is possibly compatible.  This is extremely bogus since
2537  * our driver doesn't follow Adaptec's versioning system.  Cheat by just
2538  * returning what the card reported.
2539  */
2540 static int
2541 aac_rev_check(struct aac_softc *sc, caddr_t udata)
2542 {
2543 	struct aac_rev_check rev_check;
2544 	struct aac_rev_check_resp rev_check_resp;
2545 	int error = 0;
2546 
2547 	debug_called(2);
2548 
2549 	/*
2550 	 * Copyin the revision struct from userspace
2551 	 */
2552 	if ((error = copyin(udata, (caddr_t)&rev_check,
2553 			sizeof(struct aac_rev_check))) != 0) {
2554 		return error;
2555 	}
2556 
2557 	debug(2, "Userland revision= %d\n",
2558 	      rev_check.callingRevision.buildNumber);
2559 
2560 	/*
2561 	 * Doctor up the response struct.
2562 	 */
2563 	rev_check_resp.possiblyCompatible = 1;
2564 	rev_check_resp.adapterSWRevision.external.ul =
2565 	    sc->aac_revision.external.ul;
2566 	rev_check_resp.adapterSWRevision.buildNumber =
2567 	    sc->aac_revision.buildNumber;
2568 
2569 	return(copyout((caddr_t)&rev_check_resp, udata,
2570 			sizeof(struct aac_rev_check_resp)));
2571 }
2572 
2573 /*
2574  * Pass the caller the next AIF in their queue
2575  */
2576 static int
2577 aac_getnext_aif(struct aac_softc *sc, caddr_t arg)
2578 {
2579 	struct get_adapter_fib_ioctl agf;
2580 	int error;
2581 
2582 	debug_called(2);
2583 
2584 	if ((error = copyin(arg, &agf, sizeof(agf))) == 0) {
2585 
2586 		/*
2587 		 * Check the magic number that we gave the caller.
2588 		 */
2589 		if (agf.AdapterFibContext != (int)sc->aifthread) {
2590 			error = EFAULT;
2591 		} else {
2592 			error = aac_return_aif(sc, agf.AifFib);
2593 			if ((error == EAGAIN) && (agf.Wait)) {
2594 				sc->aac_state |= AAC_STATE_AIF_SLEEPER;
2595 				while (error == EAGAIN) {
2596 					error = tsleep(sc->aac_aifq, PRIBIO |
2597 						       PCATCH, "aacaif", 0);
2598 					if (error == 0)
2599 						error = aac_return_aif(sc,
2600 						    agf.AifFib);
2601 				}
2602 				sc->aac_state &= ~AAC_STATE_AIF_SLEEPER;
2603 			}
2604 		}
2605 	}
2606 	return(error);
2607 }
2608 
2609 /*
2610  * Hand the next AIF off the top of the queue out to userspace.
2611  */
2612 static int
2613 aac_return_aif(struct aac_softc *sc, caddr_t uptr)
2614 {
2615 	int error;
2616 
2617 	debug_called(2);
2618 
2619 	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2620 	if (sc->aac_aifq_tail == sc->aac_aifq_head) {
2621 		error = EAGAIN;
2622 	} else {
2623 		error = copyout(&sc->aac_aifq[sc->aac_aifq_tail], uptr,
2624 				sizeof(struct aac_aif_command));
2625 		if (error)
2626 			device_printf(sc->aac_dev,
2627 			    "aac_return_aif: copyout returned %d\n", error);
2628 		if (!error)
2629 			sc->aac_aifq_tail = (sc->aac_aifq_tail + 1) %
2630 					    AAC_AIFQ_LENGTH;
2631 	}
2632 	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2633 	return(error);
2634 }
2635 
2636 /*
2637  * Give the userland some information about the container.  The AAC arch
2638  * expects the driver to be a SCSI passthrough type driver, so it expects
2639  * the containers to have b:t:l numbers.  Fake it.
2640  */
2641 static int
2642 aac_query_disk(struct aac_softc *sc, caddr_t uptr)
2643 {
2644 	struct aac_query_disk query_disk;
2645 	struct aac_container *co;
2646 	struct aac_disk	*disk;
2647 	int error, id;
2648 
2649 	debug_called(2);
2650 
2651 	disk = NULL;
2652 
2653 	error = copyin(uptr, (caddr_t)&query_disk,
2654 		       sizeof(struct aac_query_disk));
2655 	if (error)
2656 		return (error);
2657 
2658 	id = query_disk.ContainerNumber;
2659 	if (id == -1)
2660 		return (EINVAL);
2661 
2662 	AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
2663 	TAILQ_FOREACH(co, &sc->aac_container_tqh, co_link) {
2664 		if (co->co_mntobj.ObjectId == id)
2665 			break;
2666 		}
2667 
2668 	if (co == NULL) {
2669 			query_disk.Valid = 0;
2670 			query_disk.Locked = 0;
2671 			query_disk.Deleted = 1;		/* XXX is this right? */
2672 	} else {
2673 		disk = device_get_softc(co->co_disk);
2674 		query_disk.Valid = 1;
2675 		query_disk.Locked =
2676 		    (disk->ad_flags & AAC_DISK_OPEN) ? 1 : 0;
2677 		query_disk.Deleted = 0;
2678 		query_disk.Bus = device_get_unit(sc->aac_dev);
2679 		query_disk.Target = disk->unit;
2680 		query_disk.Lun = 0;
2681 		query_disk.UnMapped = 0;
2682 		sprintf(&query_disk.diskDeviceName[0], "%s%d",
2683 		        disk->ad_disk.d_name, disk->ad_disk.d_unit);
2684 	}
2685 	AAC_LOCK_RELEASE(&sc->aac_container_lock);
2686 
2687 	error = copyout((caddr_t)&query_disk, uptr,
2688 			sizeof(struct aac_query_disk));
2689 
2690 	return (error);
2691 }
2692 
2693 static void
2694 aac_get_bus_info(struct aac_softc *sc)
2695 {
2696 	struct aac_fib *fib;
2697 	struct aac_ctcfg *c_cmd;
2698 	struct aac_ctcfg_resp *c_resp;
2699 	struct aac_vmioctl *vmi;
2700 	struct aac_vmi_businf_resp *vmi_resp;
2701 	struct aac_getbusinf businfo;
2702 	struct aac_sim *caminf;
2703 	device_t child;
2704 	int i, found, error;
2705 
2706 	aac_alloc_sync_fib(sc, &fib, 0);
2707 	c_cmd = (struct aac_ctcfg *)&fib->data[0];
2708 	bzero(c_cmd, sizeof(struct aac_ctcfg));
2709 
2710 	c_cmd->Command = VM_ContainerConfig;
2711 	c_cmd->cmd = CT_GET_SCSI_METHOD;
2712 	c_cmd->param = 0;
2713 
2714 	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2715 	    sizeof(struct aac_ctcfg));
2716 	if (error) {
2717 		device_printf(sc->aac_dev, "Error %d sending "
2718 		    "VM_ContainerConfig command\n", error);
2719 		aac_release_sync_fib(sc);
2720 		return;
2721 	}
2722 
2723 	c_resp = (struct aac_ctcfg_resp *)&fib->data[0];
2724 	if (c_resp->Status != ST_OK) {
2725 		device_printf(sc->aac_dev, "VM_ContainerConfig returned 0x%x\n",
2726 		    c_resp->Status);
2727 		aac_release_sync_fib(sc);
2728 		return;
2729 	}
2730 
2731 	sc->scsi_method_id = c_resp->param;
2732 
2733 	vmi = (struct aac_vmioctl *)&fib->data[0];
2734 	bzero(vmi, sizeof(struct aac_vmioctl));
2735 
2736 	vmi->Command = VM_Ioctl;
2737 	vmi->ObjType = FT_DRIVE;
2738 	vmi->MethId = sc->scsi_method_id;
2739 	vmi->ObjId = 0;
2740 	vmi->IoctlCmd = GetBusInfo;
2741 
2742 	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2743 	    sizeof(struct aac_vmioctl));
2744 	if (error) {
2745 		device_printf(sc->aac_dev, "Error %d sending VMIoctl command\n",
2746 		    error);
2747 		aac_release_sync_fib(sc);
2748 		return;
2749 	}
2750 
2751 	vmi_resp = (struct aac_vmi_businf_resp *)&fib->data[0];
2752 	if (vmi_resp->Status != ST_OK) {
2753 		device_printf(sc->aac_dev, "VM_Ioctl returned %d\n",
2754 		    vmi_resp->Status);
2755 		aac_release_sync_fib(sc);
2756 		return;
2757 	}
2758 
2759 	bcopy(&vmi_resp->BusInf, &businfo, sizeof(struct aac_getbusinf));
2760 	aac_release_sync_fib(sc);
2761 
2762 	found = 0;
2763 	for (i = 0; i < businfo.BusCount; i++) {
2764 		if (businfo.BusValid[i] != AAC_BUS_VALID)
2765 			continue;
2766 
2767 		caminf = (struct aac_sim *)malloc( sizeof(struct aac_sim),
2768 		    M_AACBUF, M_NOWAIT | M_ZERO);
2769 		if (caminf == NULL)
2770 			continue;
2771 
2772 		child = device_add_child(sc->aac_dev, "aacp", -1);
2773 		if (child == NULL) {
2774 			device_printf(sc->aac_dev, "device_add_child failed\n");
2775 			continue;
2776 		}
2777 
2778 		caminf->TargetsPerBus = businfo.TargetsPerBus;
2779 		caminf->BusNumber = i;
2780 		caminf->InitiatorBusId = businfo.InitiatorBusId[i];
2781 		caminf->aac_sc = sc;
2782 		caminf->sim_dev = child;
2783 
2784 		device_set_ivars(child, caminf);
2785 		device_set_desc(child, "SCSI Passthrough Bus");
2786 		TAILQ_INSERT_TAIL(&sc->aac_sim_tqh, caminf, sim_link);
2787 
2788 		found = 1;
2789 	}
2790 
2791 	if (found)
2792 		bus_generic_attach(sc->aac_dev);
2793 
2794 	return;
2795 }
2796