xref: /freebsd/sys/dev/aac/aac.c (revision eacee0ff7ec955b32e09515246bd97b6edcd2b0f)
1 /*-
2  * Copyright (c) 2000 Michael Smith
3  * Copyright (c) 2001 Scott Long
4  * Copyright (c) 2000 BSDi
5  * Copyright (c) 2001 Adaptec, Inc.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	$FreeBSD$
30  */
31 
32 /*
33  * Driver for the Adaptec 'FSA' family of PCI/SCSI RAID adapters.
34  */
35 
36 #include "opt_aac.h"
37 
38 /* #include <stddef.h> */
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/malloc.h>
42 #include <sys/kernel.h>
43 #include <sys/kthread.h>
44 #include <sys/lock.h>
45 #include <sys/mutex.h>
46 #include <sys/sysctl.h>
47 #include <sys/poll.h>
48 #if __FreeBSD_version >= 500005
49 #include <sys/selinfo.h>
50 #else
51 #include <sys/select.h>
52 #endif
53 
54 #include <dev/aac/aac_compat.h>
55 
56 #include <sys/bus.h>
57 #include <sys/conf.h>
58 #include <sys/devicestat.h>
59 #include <sys/disk.h>
60 #include <sys/file.h>
61 #include <sys/signalvar.h>
62 #include <sys/time.h>
63 #include <sys/eventhandler.h>
64 
65 #include <machine/bus_memio.h>
66 #include <machine/bus.h>
67 #include <machine/resource.h>
68 
69 #include <dev/aac/aacreg.h>
70 #include <dev/aac/aac_ioctl.h>
71 #include <dev/aac/aacvar.h>
72 #include <dev/aac/aac_tables.h>
73 
74 static void	aac_startup(void *arg);
75 static void	aac_add_container(struct aac_softc *sc,
76 				  struct aac_mntinforesponse *mir, int f);
77 
78 /* Command Processing */
79 static void	aac_startio(struct aac_softc *sc);
80 static void	aac_timeout(struct aac_softc *sc);
81 static int	aac_start(struct aac_command *cm);
82 static void	aac_complete(void *context, int pending);
83 static int	aac_bio_command(struct aac_softc *sc, struct aac_command **cmp);
84 static void	aac_bio_complete(struct aac_command *cm);
85 static int	aac_wait_command(struct aac_command *cm, int timeout);
86 static void	aac_host_command(struct aac_softc *sc);
87 static void	aac_host_response(struct aac_softc *sc);
88 
89 /* Command Buffer Management */
90 static int	aac_alloc_command(struct aac_softc *sc,
91 				  struct aac_command **cmp);
92 static void	aac_release_command(struct aac_command *cm);
93 static void	aac_map_command_helper(void *arg, bus_dma_segment_t *segs,
94 				       int nseg, int error);
95 static int	aac_alloc_commands(struct aac_softc *sc);
96 static void	aac_free_commands(struct aac_softc *sc);
97 static void	aac_map_command(struct aac_command *cm);
98 static void	aac_unmap_command(struct aac_command *cm);
99 
100 /* Hardware Interface */
101 static void	aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg,
102 			       int error);
103 static int	aac_check_firmware(struct aac_softc *sc);
104 static int	aac_init(struct aac_softc *sc);
105 static int	aac_sync_command(struct aac_softc *sc, u_int32_t command,
106 				 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2,
107 				 u_int32_t arg3, u_int32_t *sp);
108 static int	aac_sync_fib(struct aac_softc *sc, u_int32_t command,
109 			     u_int32_t xferstate, void *data,
110 			     u_int16_t datasize, void *result,
111 			     u_int16_t *resultsize);
112 static int	aac_enqueue_fib(struct aac_softc *sc, int queue,
113 				struct aac_command *cm);
114 static int	aac_dequeue_fib(struct aac_softc *sc, int queue,
115 				u_int32_t *fib_size, struct aac_fib **fib_addr);
116 static int	aac_enqueue_response(struct aac_softc *sc, int queue,
117 				     struct aac_fib *fib);
118 
119 /* Falcon/PPC interface */
120 static int	aac_fa_get_fwstatus(struct aac_softc *sc);
121 static void	aac_fa_qnotify(struct aac_softc *sc, int qbit);
122 static int	aac_fa_get_istatus(struct aac_softc *sc);
123 static void	aac_fa_clear_istatus(struct aac_softc *sc, int mask);
124 static void	aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
125 				   u_int32_t arg0, u_int32_t arg1,
126 				   u_int32_t arg2, u_int32_t arg3);
127 static int	aac_fa_get_mailboxstatus(struct aac_softc *sc);
128 static void	aac_fa_set_interrupts(struct aac_softc *sc, int enable);
129 
130 struct aac_interface aac_fa_interface = {
131 	aac_fa_get_fwstatus,
132 	aac_fa_qnotify,
133 	aac_fa_get_istatus,
134 	aac_fa_clear_istatus,
135 	aac_fa_set_mailbox,
136 	aac_fa_get_mailboxstatus,
137 	aac_fa_set_interrupts
138 };
139 
140 /* StrongARM interface */
141 static int	aac_sa_get_fwstatus(struct aac_softc *sc);
142 static void	aac_sa_qnotify(struct aac_softc *sc, int qbit);
143 static int	aac_sa_get_istatus(struct aac_softc *sc);
144 static void	aac_sa_clear_istatus(struct aac_softc *sc, int mask);
145 static void	aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
146 				   u_int32_t arg0, u_int32_t arg1,
147 				   u_int32_t arg2, u_int32_t arg3);
148 static int	aac_sa_get_mailboxstatus(struct aac_softc *sc);
149 static void	aac_sa_set_interrupts(struct aac_softc *sc, int enable);
150 
151 struct aac_interface aac_sa_interface = {
152 	aac_sa_get_fwstatus,
153 	aac_sa_qnotify,
154 	aac_sa_get_istatus,
155 	aac_sa_clear_istatus,
156 	aac_sa_set_mailbox,
157 	aac_sa_get_mailboxstatus,
158 	aac_sa_set_interrupts
159 };
160 
161 /* i960Rx interface */
162 static int	aac_rx_get_fwstatus(struct aac_softc *sc);
163 static void	aac_rx_qnotify(struct aac_softc *sc, int qbit);
164 static int	aac_rx_get_istatus(struct aac_softc *sc);
165 static void	aac_rx_clear_istatus(struct aac_softc *sc, int mask);
166 static void	aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
167 				   u_int32_t arg0, u_int32_t arg1,
168 				   u_int32_t arg2, u_int32_t arg3);
169 static int	aac_rx_get_mailboxstatus(struct aac_softc *sc);
170 static void	aac_rx_set_interrupts(struct aac_softc *sc, int enable);
171 
172 struct aac_interface aac_rx_interface = {
173 	aac_rx_get_fwstatus,
174 	aac_rx_qnotify,
175 	aac_rx_get_istatus,
176 	aac_rx_clear_istatus,
177 	aac_rx_set_mailbox,
178 	aac_rx_get_mailboxstatus,
179 	aac_rx_set_interrupts
180 };
181 
182 /* Debugging and Diagnostics */
183 static void	aac_describe_controller(struct aac_softc *sc);
184 static char	*aac_describe_code(struct aac_code_lookup *table,
185 				   u_int32_t code);
186 
187 /* Management Interface */
188 static d_open_t		aac_open;
189 static d_close_t	aac_close;
190 static d_ioctl_t	aac_ioctl;
191 static d_poll_t		aac_poll;
192 static int		aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib);
193 static void		aac_handle_aif(struct aac_softc *sc,
194 					   struct aac_fib *fib);
195 static int		aac_rev_check(struct aac_softc *sc, caddr_t udata);
196 static int		aac_getnext_aif(struct aac_softc *sc, caddr_t arg);
197 static int		aac_return_aif(struct aac_softc *sc, caddr_t uptr);
198 static int		aac_query_disk(struct aac_softc *sc, caddr_t uptr);
199 
200 #define AAC_CDEV_MAJOR	150
201 
202 static struct cdevsw aac_cdevsw = {
203 	aac_open,		/* open */
204 	aac_close,		/* close */
205 	noread,			/* read */
206 	nowrite,		/* write */
207 	aac_ioctl,		/* ioctl */
208 	aac_poll,		/* poll */
209 	nommap,			/* mmap */
210 	nostrategy,		/* strategy */
211 	"aac",			/* name */
212 	AAC_CDEV_MAJOR,		/* major */
213 	nodump,			/* dump */
214 	nopsize,		/* psize */
215 	0,			/* flags */
216 #if __FreeBSD_version < 500005
217 	-1,			/* bmaj */
218 #endif
219 };
220 
221 MALLOC_DEFINE(M_AACBUF, "aacbuf", "Buffers for the AAC driver");
222 
223 /* sysctl node */
224 SYSCTL_NODE(_hw, OID_AUTO, aac, CTLFLAG_RD, 0, "AAC driver parameters");
225 
226 /*
227  * Device Interface
228  */
229 
230 /*
231  * Initialise the controller and softc
232  */
233 int
234 aac_attach(struct aac_softc *sc)
235 {
236 	int error, unit;
237 
238 	debug_called(1);
239 
240 	/*
241 	 * Initialise per-controller queues.
242 	 */
243 	aac_initq_free(sc);
244 	aac_initq_ready(sc);
245 	aac_initq_busy(sc);
246 	aac_initq_complete(sc);
247 	aac_initq_bio(sc);
248 
249 #if __FreeBSD_version >= 500005
250 	/*
251 	 * Initialise command-completion task.
252 	 */
253 	TASK_INIT(&sc->aac_task_complete, 0, aac_complete, sc);
254 #endif
255 
256 	/* disable interrupts before we enable anything */
257 	AAC_MASK_INTERRUPTS(sc);
258 
259 	/* mark controller as suspended until we get ourselves organised */
260 	sc->aac_state |= AAC_STATE_SUSPEND;
261 
262 	/*
263 	 * Check that the firmware on the card is supported.
264 	 */
265 	if ((error = aac_check_firmware(sc)) != 0)
266 		return(error);
267 
268 	/*
269 	 * Allocate command structures.
270 	 */
271 	if ((error = aac_alloc_commands(sc)) != 0)
272 		return(error);
273 
274 	/*
275 	 * Initialise the adapter.
276 	 */
277 	if ((error = aac_init(sc)) != 0)
278 		return(error);
279 
280 	/*
281 	 * Print a little information about the controller.
282 	 */
283 	aac_describe_controller(sc);
284 
285 	/*
286 	 * Register to probe our containers later.
287 	 */
288 	TAILQ_INIT(&sc->aac_container_tqh);
289 	AAC_LOCK_INIT(&sc->aac_container_lock, "AAC container lock");
290 
291 	/*
292 	 * Lock for the AIF queue
293 	 */
294 	AAC_LOCK_INIT(&sc->aac_aifq_lock, "AAC AIF lock");
295 
296 	sc->aac_ich.ich_func = aac_startup;
297 	sc->aac_ich.ich_arg = sc;
298 	if (config_intrhook_establish(&sc->aac_ich) != 0) {
299 		device_printf(sc->aac_dev,
300 			      "can't establish configuration hook\n");
301 		return(ENXIO);
302 	}
303 
304 	/*
305 	 * Make the control device.
306 	 */
307 	unit = device_get_unit(sc->aac_dev);
308 	sc->aac_dev_t = make_dev(&aac_cdevsw, unit, UID_ROOT, GID_WHEEL, 0644,
309 				 "aac%d", unit);
310 #if __FreeBSD_version > 500005
311 	(void)make_dev_alias(sc->aac_dev_t, "afa%d", unit);
312 	(void)make_dev_alias(sc->aac_dev_t, "hpn%d", unit);
313 #endif
314 	sc->aac_dev_t->si_drv1 = sc;
315 
316 	/* Create the AIF thread */
317 #if __FreeBSD_version > 500005
318 	if (kthread_create((void(*)(void *))aac_host_command, sc,
319 			   &sc->aifthread, 0, "aac%daif", unit))
320 #else
321 	if (kthread_create((void(*)(void *))aac_host_command, sc,
322 			   &sc->aifthread, "aac%daif", unit))
323 #endif
324 		panic("Could not create AIF thread\n");
325 
326 	/* Register the shutdown method to only be called post-dump */
327 	if ((EVENTHANDLER_REGISTER(shutdown_final, aac_shutdown, sc->aac_dev,
328 				   SHUTDOWN_PRI_DEFAULT)) == NULL)
329 	device_printf(sc->aac_dev, "shutdown event registration failed\n");
330 
331 	return(0);
332 }
333 
334 /*
335  * Probe for containers, create disks.
336  */
337 static void
338 aac_startup(void *arg)
339 {
340 	struct aac_softc *sc;
341 	struct aac_mntinfo mi;
342 	struct aac_mntinforesponse mir;
343 	u_int16_t rsize;
344 	int i = 0;
345 
346 	debug_called(1);
347 
348 	sc = (struct aac_softc *)arg;
349 
350 	/* disconnect ourselves from the intrhook chain */
351 	config_intrhook_disestablish(&sc->aac_ich);
352 
353 	/* loop over possible containers */
354 	mi.Command = VM_NameServe;
355 	mi.MntType = FT_FILESYS;
356 	do {
357 		/* request information on this container */
358 		mi.MntCount = i;
359 		rsize = sizeof(mir);
360 		if (aac_sync_fib(sc, ContainerCommand, 0, &mi,
361 				 sizeof(struct aac_mntinfo), &mir, &rsize)) {
362 			debug(2, "error probing container %d", i);
363 			continue;
364 		}
365 		/* check response size */
366 		if (rsize != sizeof(mir)) {
367 			debug(2, "container info response wrong size "
368 			      "(%d should be %d)", rsize, sizeof(mir));
369 			continue;
370 		}
371 
372 		aac_add_container(sc, &mir, 0);
373 		i++;
374 	} while ((i < mir.MntRespCount) && (i < AAC_MAX_CONTAINERS));
375 
376 	/* poke the bus to actually attach the child devices */
377 	if (bus_generic_attach(sc->aac_dev))
378 		device_printf(sc->aac_dev, "bus_generic_attach failed\n");
379 
380 	/* mark the controller up */
381 	sc->aac_state &= ~AAC_STATE_SUSPEND;
382 
383 	/* enable interrupts now */
384 	AAC_UNMASK_INTERRUPTS(sc);
385 
386 	/* enable the timeout watchdog */
387 	timeout((timeout_t*)aac_timeout, sc, AAC_PERIODIC_INTERVAL * hz);
388 }
389 
390 /*
391  * Create a device to respresent a new container
392  */
393 static void
394 aac_add_container(struct aac_softc *sc, struct aac_mntinforesponse *mir, int f)
395 {
396 	struct aac_container *co;
397 	device_t child;
398 
399 	/*
400 	 * Check container volume type for validity.  Note that many of
401 	 * the possible types may never show up.
402 	 */
403 	if ((mir->Status == ST_OK) && (mir->MntTable[0].VolType != CT_NONE)) {
404 		MALLOC(co, struct aac_container *, sizeof *co, M_AACBUF,
405 		       M_NOWAIT);
406 		if (co == NULL)
407 			panic("Out of memory?!\n");
408 		debug(1, "id %x  name '%.16s'  size %u  type %d",
409 		      mir->MntTable[0].ObjectId,
410 		      mir->MntTable[0].FileSystemName,
411 		      mir->MntTable[0].Capacity, mir->MntTable[0].VolType);
412 
413 		if ((child = device_add_child(sc->aac_dev, NULL, -1)) == NULL)
414 			device_printf(sc->aac_dev, "device_add_child failed\n");
415 		else
416 			device_set_ivars(child, co);
417 		device_set_desc(child, aac_describe_code(aac_container_types,
418 				mir->MntTable[0].VolType));
419 		co->co_disk = child;
420 		co->co_found = f;
421 		bcopy(&mir->MntTable[0], &co->co_mntobj,
422 		      sizeof(struct aac_mntobj));
423 		AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
424 		TAILQ_INSERT_TAIL(&sc->aac_container_tqh, co, co_link);
425 		AAC_LOCK_RELEASE(&sc->aac_container_lock);
426 	}
427 }
428 
429 /*
430  * Free all of the resources associated with (sc)
431  *
432  * Should not be called if the controller is active.
433  */
434 void
435 aac_free(struct aac_softc *sc)
436 {
437 	debug_called(1);
438 
439 	/* remove the control device */
440 	if (sc->aac_dev_t != NULL)
441 		destroy_dev(sc->aac_dev_t);
442 
443 	/* throw away any FIB buffers, discard the FIB DMA tag */
444 	if (sc->aac_fibs != NULL)
445 		aac_free_commands(sc);
446 	if (sc->aac_fib_dmat)
447 		bus_dma_tag_destroy(sc->aac_fib_dmat);
448 
449 	/* destroy the common area */
450 	if (sc->aac_common) {
451 		bus_dmamap_unload(sc->aac_common_dmat, sc->aac_common_dmamap);
452 		bus_dmamem_free(sc->aac_common_dmat, sc->aac_common,
453 				sc->aac_common_dmamap);
454 	}
455 	if (sc->aac_common_dmat)
456 		bus_dma_tag_destroy(sc->aac_common_dmat);
457 
458 	/* disconnect the interrupt handler */
459 	if (sc->aac_intr)
460 		bus_teardown_intr(sc->aac_dev, sc->aac_irq, sc->aac_intr);
461 	if (sc->aac_irq != NULL)
462 		bus_release_resource(sc->aac_dev, SYS_RES_IRQ, sc->aac_irq_rid,
463 				     sc->aac_irq);
464 
465 	/* destroy data-transfer DMA tag */
466 	if (sc->aac_buffer_dmat)
467 		bus_dma_tag_destroy(sc->aac_buffer_dmat);
468 
469 	/* destroy the parent DMA tag */
470 	if (sc->aac_parent_dmat)
471 		bus_dma_tag_destroy(sc->aac_parent_dmat);
472 
473 	/* release the register window mapping */
474 	if (sc->aac_regs_resource != NULL)
475 		bus_release_resource(sc->aac_dev, SYS_RES_MEMORY,
476 				     sc->aac_regs_rid, sc->aac_regs_resource);
477 }
478 
479 /*
480  * Disconnect from the controller completely, in preparation for unload.
481  */
482 int
483 aac_detach(device_t dev)
484 {
485 	struct aac_softc *sc;
486 #if AAC_BROKEN
487 	int error;
488 #endif
489 
490 	debug_called(1);
491 
492 	sc = device_get_softc(dev);
493 
494 	if (sc->aac_state & AAC_STATE_OPEN)
495 	return(EBUSY);
496 
497 #if AAC_BROKEN
498 	if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
499 		sc->aifflags |= AAC_AIFFLAGS_EXIT;
500 		wakeup(sc->aifthread);
501 		tsleep(sc->aac_dev, PUSER | PCATCH, "aacdch", 30 * hz);
502 	}
503 
504 	if (sc->aifflags & AAC_AIFFLAGS_RUNNING)
505 		panic("Cannot shutdown AIF thread\n");
506 
507 	if ((error = aac_shutdown(dev)))
508 		return(error);
509 
510 	aac_free(sc);
511 
512 	return(0);
513 #else
514 	return (EBUSY);
515 #endif
516 }
517 
518 /*
519  * Bring the controller down to a dormant state and detach all child devices.
520  *
521  * This function is called before detach or system shutdown.
522  *
523  * Note that we can assume that the bioq on the controller is empty, as we won't
524  * allow shutdown if any device is open.
525  */
526 int
527 aac_shutdown(device_t dev)
528 {
529 	struct aac_softc *sc;
530 	struct aac_close_command cc;
531 	int s, i;
532 
533 	debug_called(1);
534 
535 	sc = device_get_softc(dev);
536 
537 	s = splbio();
538 
539 	sc->aac_state |= AAC_STATE_SUSPEND;
540 
541 	/*
542 	 * Send a Container shutdown followed by a HostShutdown FIB to the
543 	 * controller to convince it that we don't want to talk to it anymore.
544 	 * We've been closed and all I/O completed already
545 	 */
546 	device_printf(sc->aac_dev, "shutting down controller...");
547 
548 	cc.Command = VM_CloseAll;
549 	cc.ContainerId = 0xffffffff;
550 	if (aac_sync_fib(sc, ContainerCommand, 0, &cc, sizeof(cc), NULL, NULL))
551 		printf("FAILED.\n");
552 	else {
553 		i = 0;
554 		/*
555 		 * XXX Issuing this command to the controller makes it shut down
556 		 * but also keeps it from coming back up without a reset of the
557 		 * PCI bus.  This is not desirable if you are just unloading the
558 		 * driver module with the intent to reload it later.
559 		 */
560 		if (aac_sync_fib(sc, FsaHostShutdown, AAC_FIBSTATE_SHUTDOWN, &i,
561 				 sizeof(i), NULL, NULL)) {
562 			printf("FAILED.\n");
563 		} else {
564 			printf("done.\n");
565 		}
566 	}
567 
568 	AAC_MASK_INTERRUPTS(sc);
569 
570 	splx(s);
571 	return(0);
572 }
573 
574 /*
575  * Bring the controller to a quiescent state, ready for system suspend.
576  */
577 int
578 aac_suspend(device_t dev)
579 {
580 	struct aac_softc *sc;
581 	int s;
582 
583 	debug_called(1);
584 
585 	sc = device_get_softc(dev);
586 
587 	s = splbio();
588 
589 	sc->aac_state |= AAC_STATE_SUSPEND;
590 
591 	AAC_MASK_INTERRUPTS(sc);
592 	splx(s);
593 	return(0);
594 }
595 
596 /*
597  * Bring the controller back to a state ready for operation.
598  */
599 int
600 aac_resume(device_t dev)
601 {
602 	struct aac_softc *sc;
603 
604 	debug_called(1);
605 
606 	sc = device_get_softc(dev);
607 
608 	sc->aac_state &= ~AAC_STATE_SUSPEND;
609 	AAC_UNMASK_INTERRUPTS(sc);
610 	return(0);
611 }
612 
613 /*
614  * Take an interrupt.
615  */
616 void
617 aac_intr(void *arg)
618 {
619 	struct aac_softc *sc;
620 	u_int16_t reason;
621 
622 	debug_called(2);
623 
624 	sc = (struct aac_softc *)arg;
625 
626 	reason = AAC_GET_ISTATUS(sc);
627 
628 	/* controller wants to talk to the log */
629 	if (reason & AAC_DB_PRINTF) {
630 		AAC_CLEAR_ISTATUS(sc, AAC_DB_PRINTF);
631 		aac_print_printf(sc);
632 	}
633 
634 	/* controller has a message for us? */
635 	if (reason & AAC_DB_COMMAND_READY) {
636 		AAC_CLEAR_ISTATUS(sc, AAC_DB_COMMAND_READY);
637 		/* XXX What happens if the thread is already awake? */
638 		if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
639 			sc->aifflags |= AAC_AIFFLAGS_PENDING;
640 			wakeup(sc->aifthread);
641 		}
642 	}
643 
644 	/* controller has a response for us? */
645 	if (reason & AAC_DB_RESPONSE_READY) {
646 		AAC_CLEAR_ISTATUS(sc, AAC_DB_RESPONSE_READY);
647 		aac_host_response(sc);
648 	}
649 
650 	/*
651 	 * spurious interrupts that we don't use - reset the mask and clear the
652 	 * interrupts
653 	 */
654 	if (reason & (AAC_DB_COMMAND_NOT_FULL | AAC_DB_RESPONSE_NOT_FULL)) {
655 		AAC_UNMASK_INTERRUPTS(sc);
656 		AAC_CLEAR_ISTATUS(sc, AAC_DB_COMMAND_NOT_FULL |
657 				  AAC_DB_RESPONSE_NOT_FULL);
658 	}
659 };
660 
661 /*
662  * Command Processing
663  */
664 
665 /*
666  * Start as much queued I/O as possible on the controller
667  */
668 static void
669 aac_startio(struct aac_softc *sc)
670 {
671 	struct aac_command *cm;
672 
673 	debug_called(2);
674 
675 	for (;;) {
676 		/*
677 		 * Try to get a command that's been put off for lack of
678 		 * resources
679 		 */
680 		cm = aac_dequeue_ready(sc);
681 
682 		/*
683 		 * Try to build a command off the bio queue (ignore error
684 		 * return)
685 		 */
686 		if (cm == NULL)
687 			aac_bio_command(sc, &cm);
688 
689 		/* nothing to do? */
690 		if (cm == NULL)
691 			break;
692 
693 		/* try to give the command to the controller */
694 		if (aac_start(cm) == EBUSY) {
695 			/* put it on the ready queue for later */
696 			aac_requeue_ready(cm);
697 			break;
698 		}
699 	}
700 }
701 
702 /*
703  * Deliver a command to the controller; allocate controller resources at the
704  * last moment when possible.
705  */
706 static int
707 aac_start(struct aac_command *cm)
708 {
709 	struct aac_softc *sc;
710 	int error;
711 
712 	debug_called(2);
713 
714 	sc = cm->cm_sc;
715 
716 	/* get the command mapped */
717 	aac_map_command(cm);
718 
719 	/* fix up the address values in the FIB */
720 	cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
721 	cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys;
722 
723 	/* save a pointer to the command for speedy reverse-lookup */
724 	cm->cm_fib->Header.SenderData = (u_int32_t)cm;	/* XXX 64-bit physical
725 							 * address issue */
726 
727 	/* put the FIB on the outbound queue */
728 	error = aac_enqueue_fib(sc, cm->cm_queue, cm);
729 	return(error);
730 }
731 
732 /*
733  * Handle notification of one or more FIBs coming from the controller.
734  */
735 static void
736 aac_host_command(struct aac_softc *sc)
737 {
738 	struct aac_fib *fib;
739 	u_int32_t fib_size;
740 	int size;
741 
742 	debug_called(2);
743 
744 	sc->aifflags |= AAC_AIFFLAGS_RUNNING;
745 
746 	while (!(sc->aifflags & AAC_AIFFLAGS_EXIT)) {
747 		if (!(sc->aifflags & AAC_AIFFLAGS_PENDING))
748 			tsleep(sc->aifthread, PRIBIO, "aifthd", 15 * hz);
749 
750 		sc->aifflags &= ~AAC_AIFFLAGS_PENDING;
751 		for (;;) {
752 			if (aac_dequeue_fib(sc, AAC_HOST_NORM_CMD_QUEUE,
753 					    &fib_size, &fib))
754 				break;	/* nothing to do */
755 
756 			AAC_PRINT_FIB(sc, fib);
757 
758 			switch (fib->Header.Command) {
759 			case AifRequest:
760 				aac_handle_aif(sc, fib);
761 				break;
762 			default:
763 				device_printf(sc->aac_dev, "unknown command "
764 					      "from controller\n");
765 				break;
766 			}
767 
768 			/* Return the AIF to the controller. */
769 			if ((fib->Header.XferState == 0) ||
770 			    (fib->Header.StructType != AAC_FIBTYPE_TFIB))
771 				break;
772 
773 			if (fib->Header.XferState & AAC_FIBSTATE_FROMADAP) {
774 				fib->Header.XferState |= AAC_FIBSTATE_DONEHOST;
775 				*(AAC_FSAStatus*)fib->data = ST_OK;
776 
777 				/* XXX Compute the Size field? */
778 				size = fib->Header.Size;
779 				if (size > sizeof(struct aac_fib)) {
780 	 				size = sizeof(struct aac_fib);
781 					fib->Header.Size = size;
782 				}
783 				/*
784 				 * Since we did not generate this command, it
785 				 * cannot go through the normal
786 				 * enqueue->startio chain.
787 				 */
788 				aac_enqueue_response(sc,
789 						     AAC_ADAP_NORM_RESP_QUEUE,
790 						     fib);
791 			}
792 		}
793 	}
794 	sc->aifflags &= ~AAC_AIFFLAGS_RUNNING;
795 	wakeup(sc->aac_dev);
796 
797 #if __FreeBSD_version > 500005
798 	mtx_lock(&Giant);
799 #endif
800 	kthread_exit(0);
801 }
802 
803 /*
804  * Handle notification of one or more FIBs completed by the controller
805  */
806 static void
807 aac_host_response(struct aac_softc *sc)
808 {
809 	struct aac_command *cm;
810 	struct aac_fib *fib;
811 	u_int32_t fib_size;
812 
813 	debug_called(2);
814 
815 	for (;;) {
816 		/* look for completed FIBs on our queue */
817 		if (aac_dequeue_fib(sc, AAC_HOST_NORM_RESP_QUEUE, &fib_size,
818 				    &fib))
819 			break;	/* nothing to do */
820 
821 		/* get the command, unmap and queue for later processing */
822 		cm = (struct aac_command *)fib->Header.SenderData;
823 		if (cm == NULL) {
824 			AAC_PRINT_FIB(sc, fib);
825 		} else {
826 			aac_remove_busy(cm);
827 			aac_unmap_command(cm);		/* XXX defer? */
828 			aac_enqueue_complete(cm);
829 		}
830 	}
831 
832 	/* handle completion processing */
833 #if __FreeBSD_version >= 500005
834 	taskqueue_enqueue(taskqueue_swi, &sc->aac_task_complete);
835 #else
836 	aac_complete(sc, 0);
837 #endif
838 }
839 
840 /*
841  * Process completed commands.
842  */
843 static void
844 aac_complete(void *context, int pending)
845 {
846 	struct aac_softc *sc;
847 	struct aac_command *cm;
848 
849 	debug_called(2);
850 
851 	sc = (struct aac_softc *)context;
852 
853 	/* pull completed commands off the queue */
854 	for (;;) {
855 		cm = aac_dequeue_complete(sc);
856 		if (cm == NULL)
857 			break;
858 		cm->cm_flags |= AAC_CMD_COMPLETED;
859 
860 		/* is there a completion handler? */
861 		if (cm->cm_complete != NULL) {
862 			cm->cm_complete(cm);
863 		} else {
864 			/* assume that someone is sleeping on this command */
865 			wakeup(cm);
866 		}
867 	}
868 
869 	/* see if we can start some more I/O */
870 	aac_startio(sc);
871 }
872 
873 /*
874  * Handle a bio submitted from a disk device.
875  */
876 void
877 aac_submit_bio(struct bio *bp)
878 {
879 	struct aac_disk *ad;
880 	struct aac_softc *sc;
881 
882 	debug_called(2);
883 
884 	ad = (struct aac_disk *)bp->bio_dev->si_drv1;
885 	sc = ad->ad_controller;
886 
887 	/* queue the BIO and try to get some work done */
888 	aac_enqueue_bio(sc, bp);
889 	aac_startio(sc);
890 }
891 
892 /*
893  * Get a bio and build a command to go with it.
894  */
895 static int
896 aac_bio_command(struct aac_softc *sc, struct aac_command **cmp)
897 {
898 	struct aac_command *cm;
899 	struct aac_fib *fib;
900 	struct aac_blockread *br;
901 	struct aac_blockwrite *bw;
902 	struct aac_disk *ad;
903 	struct bio *bp;
904 
905 	debug_called(2);
906 
907 	/* get the resources we will need */
908 	cm = NULL;
909 	if ((bp = aac_dequeue_bio(sc)) == NULL)
910 		goto fail;
911 	if (aac_alloc_command(sc, &cm))	/* get a command */
912 		goto fail;
913 
914 	/* fill out the command */
915 	cm->cm_data = (void *)bp->bio_data;
916 	cm->cm_datalen = bp->bio_bcount;
917 	cm->cm_complete = aac_bio_complete;
918 	cm->cm_private = bp;
919 	cm->cm_timestamp = time_second;
920 	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
921 
922 	/* build the FIB */
923 	fib = cm->cm_fib;
924 	fib->Header.XferState =
925 	AAC_FIBSTATE_HOSTOWNED   |
926 	AAC_FIBSTATE_INITIALISED |
927 	AAC_FIBSTATE_FROMHOST	 |
928 	AAC_FIBSTATE_REXPECTED   |
929 	AAC_FIBSTATE_NORM;
930 	fib->Header.Command = ContainerCommand;
931 	fib->Header.Size = sizeof(struct aac_fib_header);
932 
933 	/* build the read/write request */
934 	ad = (struct aac_disk *)bp->bio_dev->si_drv1;
935 	if (BIO_IS_READ(bp)) {
936 		br = (struct aac_blockread *)&fib->data[0];
937 		br->Command = VM_CtBlockRead;
938 		br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
939 		br->BlockNumber = bp->bio_pblkno;
940 		br->ByteCount = bp->bio_bcount;
941 		fib->Header.Size += sizeof(struct aac_blockread);
942 		cm->cm_sgtable = &br->SgMap;
943 		cm->cm_flags |= AAC_CMD_DATAIN;
944 	} else {
945 		bw = (struct aac_blockwrite *)&fib->data[0];
946 		bw->Command = VM_CtBlockWrite;
947 		bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
948 		bw->BlockNumber = bp->bio_pblkno;
949 		bw->ByteCount = bp->bio_bcount;
950 		bw->Stable = CUNSTABLE;	/* XXX what's appropriate here? */
951 		fib->Header.Size += sizeof(struct aac_blockwrite);
952 		cm->cm_flags |= AAC_CMD_DATAOUT;
953 		cm->cm_sgtable = &bw->SgMap;
954 	}
955 
956 	*cmp = cm;
957 	return(0);
958 
959 fail:
960 	if (bp != NULL)
961 		aac_enqueue_bio(sc, bp);
962 	if (cm != NULL)
963 		aac_release_command(cm);
964 	return(ENOMEM);
965 }
966 
967 /*
968  * Handle a bio-instigated command that has been completed.
969  */
970 static void
971 aac_bio_complete(struct aac_command *cm)
972 {
973 	struct aac_blockread_response *brr;
974 	struct aac_blockwrite_response *bwr;
975 	struct bio *bp;
976 	AAC_FSAStatus status;
977 
978 	/* fetch relevant status and then release the command */
979 	bp = (struct bio *)cm->cm_private;
980 	if (BIO_IS_READ(bp)) {
981 		brr = (struct aac_blockread_response *)&cm->cm_fib->data[0];
982 		status = brr->Status;
983 	} else {
984 		bwr = (struct aac_blockwrite_response *)&cm->cm_fib->data[0];
985 		status = bwr->Status;
986 	}
987 	aac_release_command(cm);
988 
989 	/* fix up the bio based on status */
990 	if (status == ST_OK) {
991 		bp->bio_resid = 0;
992 	} else {
993 		bp->bio_error = EIO;
994 		bp->bio_flags |= BIO_ERROR;
995 		/* pass an error string out to the disk layer */
996 		bp->bio_driver1 = aac_describe_code(aac_command_status_table,
997 						    status);
998 	}
999 	aac_biodone(bp);
1000 }
1001 
1002 /*
1003  * Dump a block of data to the controller.  If the queue is full, tell the
1004  * caller to hold off and wait for the queue to drain.
1005  */
1006 int
1007 aac_dump_enqueue(struct aac_disk *ad, u_int32_t lba, void *data, int dumppages)
1008 {
1009 	struct aac_softc *sc;
1010 	struct aac_command *cm;
1011 	struct aac_fib *fib;
1012 	struct aac_blockwrite *bw;
1013 
1014 	sc = ad->ad_controller;
1015 	cm = NULL;
1016 
1017 	if (aac_alloc_command(sc, &cm))
1018 		return (EBUSY);
1019 
1020 	/* fill out the command */
1021 	cm->cm_data = data;
1022 	cm->cm_datalen = dumppages * PAGE_SIZE;
1023 	cm->cm_complete = NULL;
1024 	cm->cm_private = NULL;
1025 	cm->cm_timestamp = time_second;
1026 	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1027 
1028 	/* build the FIB */
1029 	fib = cm->cm_fib;
1030 	fib->Header.XferState =
1031 	AAC_FIBSTATE_HOSTOWNED   |
1032 	AAC_FIBSTATE_INITIALISED |
1033 	AAC_FIBSTATE_FROMHOST	 |
1034 	AAC_FIBSTATE_REXPECTED   |
1035 	AAC_FIBSTATE_NORM;
1036 	fib->Header.Command = ContainerCommand;
1037 	fib->Header.Size = sizeof(struct aac_fib_header);
1038 
1039 	bw = (struct aac_blockwrite *)&fib->data[0];
1040 	bw->Command = VM_CtBlockWrite;
1041 	bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
1042 	bw->BlockNumber = lba;
1043 	bw->ByteCount = dumppages * PAGE_SIZE;
1044 	bw->Stable = CUNSTABLE;		/* XXX what's appropriate here? */
1045 	fib->Header.Size += sizeof(struct aac_blockwrite);
1046 	cm->cm_flags |= AAC_CMD_DATAOUT;
1047 	cm->cm_sgtable = &bw->SgMap;
1048 
1049 	return (aac_start(cm));
1050 }
1051 
1052 /*
1053  * Wait for the card's queue to drain when dumping.  Also check for monitor
1054  * printf's
1055  */
1056 void
1057 aac_dump_complete(struct aac_softc *sc)
1058 {
1059 	struct aac_fib *fib;
1060 	struct aac_command *cm;
1061 	u_int16_t reason;
1062 	u_int32_t pi, ci, fib_size;
1063 
1064 	do {
1065 		reason = AAC_GET_ISTATUS(sc);
1066 		if (reason & AAC_DB_RESPONSE_READY) {
1067 			AAC_CLEAR_ISTATUS(sc, AAC_DB_RESPONSE_READY);
1068 			for (;;) {
1069 				if (aac_dequeue_fib(sc,
1070 						    AAC_HOST_NORM_RESP_QUEUE,
1071 						    &fib_size, &fib))
1072 					break;
1073 				cm = (struct aac_command *)
1074 					fib->Header.SenderData;
1075 				if (cm == NULL)
1076 					AAC_PRINT_FIB(sc, fib);
1077 				else {
1078 					aac_remove_busy(cm);
1079 					aac_unmap_command(cm);
1080 					aac_enqueue_complete(cm);
1081 					aac_release_command(cm);
1082 				}
1083 			}
1084 		}
1085 		if (reason & AAC_DB_PRINTF) {
1086 			AAC_CLEAR_ISTATUS(sc, AAC_DB_PRINTF);
1087 			aac_print_printf(sc);
1088 		}
1089 		pi = sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][
1090 			AAC_PRODUCER_INDEX];
1091 		ci = sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][
1092 			AAC_CONSUMER_INDEX];
1093 	} while (ci != pi);
1094 
1095 	return;
1096 }
1097 
1098 /*
1099  * Submit a command to the controller, return when it completes.
1100  * XXX This is very dangerous!  If the card has gone out to lunch, we could
1101  *     be stuck here forever.  At the same time, signals are not caught
1102  *     because there is a risk that a signal could wakeup the tsleep before
1103  *     the card has a chance to complete the command.  The passed in timeout
1104  *     is ignored for the same reason.  Since there is no way to cancel a
1105  *     command in progress, we should probably create a 'dead' queue where
1106  *     commands go that have been interrupted/timed-out/etc, that keeps them
1107  *     out of the free pool.  That way, if the card is just slow, it won't
1108  *     spam the memory of a command that has been recycled.
1109  */
1110 static int
1111 aac_wait_command(struct aac_command *cm, int timeout)
1112 {
1113 	int s, error = 0;
1114 
1115 	debug_called(2);
1116 
1117 	/* Put the command on the ready queue and get things going */
1118 	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1119 	aac_enqueue_ready(cm);
1120 	aac_startio(cm->cm_sc);
1121 	s = splbio();
1122 	while (!(cm->cm_flags & AAC_CMD_COMPLETED) && (error != EWOULDBLOCK)) {
1123 		error = tsleep(cm, PRIBIO, "aacwait", 0);
1124 	}
1125 	splx(s);
1126 	return(error);
1127 }
1128 
1129 /*
1130  *Command Buffer Management
1131  */
1132 
1133 /*
1134  * Allocate a command.
1135  */
1136 static int
1137 aac_alloc_command(struct aac_softc *sc, struct aac_command **cmp)
1138 {
1139 	struct aac_command *cm;
1140 
1141 	debug_called(3);
1142 
1143 	if ((cm = aac_dequeue_free(sc)) == NULL)
1144 		return(ENOMEM);
1145 
1146 	*cmp = cm;
1147 	return(0);
1148 }
1149 
1150 /*
1151  * Release a command back to the freelist.
1152  */
1153 static void
1154 aac_release_command(struct aac_command *cm)
1155 {
1156 	debug_called(3);
1157 
1158 	/* (re)initialise the command/FIB */
1159 	cm->cm_sgtable = NULL;
1160 	cm->cm_flags = 0;
1161 	cm->cm_complete = NULL;
1162 	cm->cm_private = NULL;
1163 	cm->cm_fib->Header.XferState = AAC_FIBSTATE_EMPTY;
1164 	cm->cm_fib->Header.StructType = AAC_FIBTYPE_TFIB;
1165 	cm->cm_fib->Header.Flags = 0;
1166 	cm->cm_fib->Header.SenderSize = sizeof(struct aac_fib);
1167 
1168 	/*
1169 	 * These are duplicated in aac_start to cover the case where an
1170 	 * intermediate stage may have destroyed them.  They're left
1171 	 * initialised here for debugging purposes only.
1172 	 */
1173 	cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
1174 	cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys;
1175 
1176 	aac_enqueue_free(cm);
1177 }
1178 
1179 /*
1180  * Map helper for command/FIB allocation.
1181  */
1182 static void
1183 aac_map_command_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1184 {
1185 	struct aac_softc *sc;
1186 
1187 	sc = (struct aac_softc *)arg;
1188 
1189 	debug_called(3);
1190 
1191 	sc->aac_fibphys = segs[0].ds_addr;
1192 }
1193 
1194 /*
1195  * Allocate and initialise commands/FIBs for this adapter.
1196  */
1197 static int
1198 aac_alloc_commands(struct aac_softc *sc)
1199 {
1200 	struct aac_command *cm;
1201 	int i;
1202 
1203 	debug_called(1);
1204 
1205 	/* allocate the FIBs in DMAable memory and load them */
1206 	if (bus_dmamem_alloc(sc->aac_fib_dmat, (void **)&sc->aac_fibs,
1207 			 BUS_DMA_NOWAIT, &sc->aac_fibmap)) {
1208 		return(ENOMEM);
1209 	}
1210 	bus_dmamap_load(sc->aac_fib_dmat, sc->aac_fibmap, sc->aac_fibs,
1211 			AAC_FIB_COUNT * sizeof(struct aac_fib),
1212 			aac_map_command_helper, sc, 0);
1213 
1214 	/* initialise constant fields in the command structure */
1215 	for (i = 0; i < AAC_FIB_COUNT; i++) {
1216 		cm = &sc->aac_command[i];
1217 		cm->cm_sc = sc;
1218 		cm->cm_fib = sc->aac_fibs + i;
1219 		cm->cm_fibphys = sc->aac_fibphys + (i * sizeof(struct aac_fib));
1220 
1221 		if (!bus_dmamap_create(sc->aac_buffer_dmat, 0, &cm->cm_datamap))
1222 			aac_release_command(cm);
1223 	}
1224 	return(0);
1225 }
1226 
1227 /*
1228  * Free FIBs owned by this adapter.
1229  */
1230 static void
1231 aac_free_commands(struct aac_softc *sc)
1232 {
1233 	int i;
1234 
1235 	debug_called(1);
1236 
1237 	for (i = 0; i < AAC_FIB_COUNT; i++)
1238 		bus_dmamap_destroy(sc->aac_buffer_dmat,
1239 				   sc->aac_command[i].cm_datamap);
1240 
1241 	bus_dmamap_unload(sc->aac_fib_dmat, sc->aac_fibmap);
1242 	bus_dmamem_free(sc->aac_fib_dmat, sc->aac_fibs, sc->aac_fibmap);
1243 }
1244 
1245 /*
1246  * Command-mapping helper function - populate this command's s/g table.
1247  */
1248 static void
1249 aac_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1250 {
1251 	struct aac_command *cm;
1252 	struct aac_fib *fib;
1253 	struct aac_sg_table *sg;
1254 	int i;
1255 
1256 	debug_called(3);
1257 
1258 	cm = (struct aac_command *)arg;
1259 	fib = cm->cm_fib;
1260 
1261 	/* find the s/g table */
1262 	sg = cm->cm_sgtable;
1263 
1264 	/* copy into the FIB */
1265 	if (sg != NULL) {
1266 		sg->SgCount = nseg;
1267 		for (i = 0; i < nseg; i++) {
1268 			sg->SgEntry[i].SgAddress = segs[i].ds_addr;
1269 			sg->SgEntry[i].SgByteCount = segs[i].ds_len;
1270 		}
1271 		/* update the FIB size for the s/g count */
1272 		fib->Header.Size += nseg * sizeof(struct aac_sg_entry);
1273 	}
1274 
1275 }
1276 
1277 /*
1278  * Map a command into controller-visible space.
1279  */
1280 static void
1281 aac_map_command(struct aac_command *cm)
1282 {
1283 	struct aac_softc *sc;
1284 
1285 	debug_called(2);
1286 
1287 	sc = cm->cm_sc;
1288 
1289 	/* don't map more than once */
1290 	if (cm->cm_flags & AAC_CMD_MAPPED)
1291 		return;
1292 
1293 	if (cm->cm_datalen != 0) {
1294 		bus_dmamap_load(sc->aac_buffer_dmat, cm->cm_datamap,
1295 				cm->cm_data, cm->cm_datalen,
1296 				aac_map_command_sg, cm, 0);
1297 
1298 	if (cm->cm_flags & AAC_CMD_DATAIN)
1299 		bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1300 				BUS_DMASYNC_PREREAD);
1301 	if (cm->cm_flags & AAC_CMD_DATAOUT)
1302 		bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1303 				BUS_DMASYNC_PREWRITE);
1304 	}
1305 	cm->cm_flags |= AAC_CMD_MAPPED;
1306 }
1307 
1308 /*
1309  * Unmap a command from controller-visible space.
1310  */
1311 static void
1312 aac_unmap_command(struct aac_command *cm)
1313 {
1314 	struct aac_softc *sc;
1315 
1316 	debug_called(2);
1317 
1318 	sc = cm->cm_sc;
1319 
1320 	if (!(cm->cm_flags & AAC_CMD_MAPPED))
1321 		return;
1322 
1323 	if (cm->cm_datalen != 0) {
1324 		if (cm->cm_flags & AAC_CMD_DATAIN)
1325 			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1326 					BUS_DMASYNC_POSTREAD);
1327 		if (cm->cm_flags & AAC_CMD_DATAOUT)
1328 			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1329 					BUS_DMASYNC_POSTWRITE);
1330 
1331 		bus_dmamap_unload(sc->aac_buffer_dmat, cm->cm_datamap);
1332 	}
1333 	cm->cm_flags &= ~AAC_CMD_MAPPED;
1334 }
1335 
1336 /*
1337  * Hardware Interface
1338  */
1339 
1340 /*
1341  * Initialise the adapter.
1342  */
1343 static void
1344 aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1345 {
1346 	struct aac_softc *sc;
1347 
1348 	debug_called(1);
1349 
1350 	sc = (struct aac_softc *)arg;
1351 
1352 	sc->aac_common_busaddr = segs[0].ds_addr;
1353 }
1354 
1355 /*
1356  * Retrieve the firmware version numbers.  Dell PERC2/QC cards with
1357  * firmware version 1.x are not compatible with this driver.
1358  */
1359 static int
1360 aac_check_firmware(struct aac_softc *sc)
1361 {
1362 	u_int32_t major, minor;
1363 
1364 	debug_called(1);
1365 
1366 	if (sc->quirks & AAC_QUIRK_PERC2QC) {
1367 		if (aac_sync_command(sc, AAC_MONKER_GETKERNVER, 0, 0, 0, 0,
1368 				     NULL)) {
1369 			device_printf(sc->aac_dev,
1370 				      "Error reading firmware version\n");
1371 			return (EIO);
1372 		}
1373 
1374 		/* These numbers are stored as ASCII! */
1375 		major = (AAC_GETREG4(sc, AAC_SA_MAILBOX + 4) & 0xff) - 0x30;
1376 		minor = (AAC_GETREG4(sc, AAC_SA_MAILBOX + 8) & 0xff) - 0x30;
1377 		if (major == 1) {
1378 			device_printf(sc->aac_dev,
1379 			    "Firmware version %d.%d is not supported.\n",
1380 			    major, minor);
1381 			return (EINVAL);
1382 		}
1383 	}
1384 
1385 	return (0);
1386 }
1387 
1388 static int
1389 aac_init(struct aac_softc *sc)
1390 {
1391 	struct aac_adapter_init	*ip;
1392 	time_t then;
1393 	u_int32_t code;
1394 	u_int8_t *qaddr;
1395 
1396 	debug_called(1);
1397 
1398 	/*
1399 	 * First wait for the adapter to come ready.
1400 	 */
1401 	then = time_second;
1402 	do {
1403 		code = AAC_GET_FWSTATUS(sc);
1404 		if (code & AAC_SELF_TEST_FAILED) {
1405 			device_printf(sc->aac_dev, "FATAL: selftest failed\n");
1406 			return(ENXIO);
1407 		}
1408 		if (code & AAC_KERNEL_PANIC) {
1409 			device_printf(sc->aac_dev,
1410 				      "FATAL: controller kernel panic\n");
1411 			return(ENXIO);
1412 		}
1413 		if (time_second > (then + AAC_BOOT_TIMEOUT)) {
1414 			device_printf(sc->aac_dev,
1415 				      "FATAL: controller not coming ready, "
1416 					   "status %x\n", code);
1417 			return(ENXIO);
1418 		}
1419 	} while (!(code & AAC_UP_AND_RUNNING));
1420 
1421 	/*
1422 	 * Create DMA tag for the common structure and allocate it.
1423 	 */
1424 	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1425 			       1, 0, 			/* algnmnt, boundary */
1426 			       BUS_SPACE_MAXADDR,	/* lowaddr */
1427 			       BUS_SPACE_MAXADDR, 	/* highaddr */
1428 			       NULL, NULL, 		/* filter, filterarg */
1429 			       sizeof(struct aac_common), /* maxsize */
1430 			       1,			/* nsegments */
1431 			       BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1432 			       0,			/* flags */
1433 			       &sc->aac_common_dmat)) {
1434 		device_printf(sc->aac_dev,
1435 			      "can't allocate common structure DMA tag\n");
1436 		return(ENOMEM);
1437 	}
1438 	if (bus_dmamem_alloc(sc->aac_common_dmat, (void **)&sc->aac_common,
1439 			     BUS_DMA_NOWAIT, &sc->aac_common_dmamap)) {
1440 		device_printf(sc->aac_dev, "can't allocate common structure\n");
1441 		return(ENOMEM);
1442 	}
1443 	bus_dmamap_load(sc->aac_common_dmat, sc->aac_common_dmamap,
1444 			sc->aac_common, sizeof(*sc->aac_common), aac_common_map,
1445 		        sc, 0);
1446 	bzero(sc->aac_common, sizeof(*sc->aac_common));
1447 
1448 	/*
1449 	 * Fill in the init structure.  This tells the adapter about the
1450 	 * physical location of various important shared data structures.
1451 	 */
1452 	ip = &sc->aac_common->ac_init;
1453 	ip->InitStructRevision = AAC_INIT_STRUCT_REVISION;
1454 
1455 	ip->AdapterFibsPhysicalAddress = sc->aac_common_busaddr +
1456 					 offsetof(struct aac_common, ac_fibs);
1457 	ip->AdapterFibsVirtualAddress = &sc->aac_common->ac_fibs[0];
1458 	ip->AdapterFibsSize = AAC_ADAPTER_FIBS * sizeof(struct aac_fib);
1459 	ip->AdapterFibAlign = sizeof(struct aac_fib);
1460 
1461 	ip->PrintfBufferAddress = sc->aac_common_busaddr +
1462 				  offsetof(struct aac_common, ac_printf);
1463 	ip->PrintfBufferSize = AAC_PRINTF_BUFSIZE;
1464 
1465 	ip->HostPhysMemPages = 0;		/* not used? */
1466 	ip->HostElapsedSeconds = time_second;	/* reset later if invalid */
1467 
1468 	/*
1469 	 * Initialise FIB queues.  Note that it appears that the layout of the
1470 	 * indexes and the segmentation of the entries may be mandated by the
1471 	 * adapter, which is only told about the base of the queue index fields.
1472 	 *
1473 	 * The initial values of the indices are assumed to inform the adapter
1474 	 * of the sizes of the respective queues, and theoretically it could
1475 	 * work out the entire layout of the queue structures from this.  We
1476 	 * take the easy route and just lay this area out like everyone else
1477 	 * does.
1478 	 *
1479 	 * The Linux driver uses a much more complex scheme whereby several
1480 	 * header records are kept for each queue.  We use a couple of generic
1481 	 * list manipulation functions which 'know' the size of each list by
1482 	 * virtue of a table.
1483 	 */
1484 	qaddr = &sc->aac_common->ac_qbuf[0] + AAC_QUEUE_ALIGN;
1485 	qaddr -= (u_int32_t)qaddr % AAC_QUEUE_ALIGN;
1486 	sc->aac_queues = (struct aac_queue_table *)qaddr;
1487 	ip->CommHeaderAddress = sc->aac_common_busaddr +
1488 				((u_int32_t)sc->aac_queues -
1489 				(u_int32_t)sc->aac_common);
1490 	bzero(sc->aac_queues, sizeof(struct aac_queue_table));
1491 
1492 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1493 		AAC_HOST_NORM_CMD_ENTRIES;
1494 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1495 		AAC_HOST_NORM_CMD_ENTRIES;
1496 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1497 		AAC_HOST_HIGH_CMD_ENTRIES;
1498 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1499 		AAC_HOST_HIGH_CMD_ENTRIES;
1500 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1501 		AAC_ADAP_NORM_CMD_ENTRIES;
1502 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1503 		AAC_ADAP_NORM_CMD_ENTRIES;
1504 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1505 		AAC_ADAP_HIGH_CMD_ENTRIES;
1506 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1507 		AAC_ADAP_HIGH_CMD_ENTRIES;
1508 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1509 		AAC_HOST_NORM_RESP_ENTRIES;
1510 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1511 		AAC_HOST_NORM_RESP_ENTRIES;
1512 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1513 		AAC_HOST_HIGH_RESP_ENTRIES;
1514 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1515 		AAC_HOST_HIGH_RESP_ENTRIES;
1516 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1517 		AAC_ADAP_NORM_RESP_ENTRIES;
1518 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1519 		AAC_ADAP_NORM_RESP_ENTRIES;
1520 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1521 		AAC_ADAP_HIGH_RESP_ENTRIES;
1522 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1523 		AAC_ADAP_HIGH_RESP_ENTRIES;
1524 	sc->aac_qentries[AAC_HOST_NORM_CMD_QUEUE] =
1525 		&sc->aac_queues->qt_HostNormCmdQueue[0];
1526 	sc->aac_qentries[AAC_HOST_HIGH_CMD_QUEUE] =
1527 		&sc->aac_queues->qt_HostHighCmdQueue[0];
1528 	sc->aac_qentries[AAC_ADAP_NORM_CMD_QUEUE] =
1529 		&sc->aac_queues->qt_AdapNormCmdQueue[0];
1530 	sc->aac_qentries[AAC_ADAP_HIGH_CMD_QUEUE] =
1531 		&sc->aac_queues->qt_AdapHighCmdQueue[0];
1532 	sc->aac_qentries[AAC_HOST_NORM_RESP_QUEUE] =
1533 		&sc->aac_queues->qt_HostNormRespQueue[0];
1534 	sc->aac_qentries[AAC_HOST_HIGH_RESP_QUEUE] =
1535 		&sc->aac_queues->qt_HostHighRespQueue[0];
1536 	sc->aac_qentries[AAC_ADAP_NORM_RESP_QUEUE] =
1537 		&sc->aac_queues->qt_AdapNormRespQueue[0];
1538 	sc->aac_qentries[AAC_ADAP_HIGH_RESP_QUEUE] =
1539 		&sc->aac_queues->qt_AdapHighRespQueue[0];
1540 
1541 	/*
1542 	 * Do controller-type-specific initialisation
1543 	 */
1544 	switch (sc->aac_hwif) {
1545 	case AAC_HWIF_I960RX:
1546 		AAC_SETREG4(sc, AAC_RX_ODBR, ~0);
1547 		break;
1548 	}
1549 
1550 	/*
1551 	 * Give the init structure to the controller.
1552 	 */
1553 	if (aac_sync_command(sc, AAC_MONKER_INITSTRUCT,
1554 			     sc->aac_common_busaddr +
1555 			     offsetof(struct aac_common, ac_init), 0, 0, 0,
1556 			     NULL)) {
1557 		device_printf(sc->aac_dev,
1558 			      "error establishing init structure\n");
1559 		return(EIO);
1560 	}
1561 
1562 	return(0);
1563 }
1564 
1565 /*
1566  * Send a synchronous command to the controller and wait for a result.
1567  */
1568 static int
1569 aac_sync_command(struct aac_softc *sc, u_int32_t command,
1570 		 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3,
1571 		 u_int32_t *sp)
1572 {
1573 	time_t then;
1574 	u_int32_t status;
1575 
1576 	debug_called(3);
1577 
1578 	/* populate the mailbox */
1579 	AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3);
1580 
1581 	/* ensure the sync command doorbell flag is cleared */
1582 	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1583 
1584 	/* then set it to signal the adapter */
1585 	AAC_QNOTIFY(sc, AAC_DB_SYNC_COMMAND);
1586 
1587 	/* spin waiting for the command to complete */
1588 	then = time_second;
1589 	do {
1590 		if (time_second > (then + AAC_IMMEDIATE_TIMEOUT)) {
1591 			debug(2, "timed out");
1592 			return(EIO);
1593 		}
1594 	} while (!(AAC_GET_ISTATUS(sc) & AAC_DB_SYNC_COMMAND));
1595 
1596 	/* clear the completion flag */
1597 	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1598 
1599 	/* get the command status */
1600 	status = AAC_GET_MAILBOXSTATUS(sc);
1601 	if (sp != NULL)
1602 		*sp = status;
1603 	return(0);
1604 }
1605 
1606 /*
1607  * Send a synchronous FIB to the controller and wait for a result.
1608  */
1609 static int
1610 aac_sync_fib(struct aac_softc *sc, u_int32_t command, u_int32_t xferstate,
1611 		 void *data, u_int16_t datasize,
1612 		 void *result, u_int16_t *resultsize)
1613 {
1614 	struct aac_fib *fib;
1615 
1616 	debug_called(3);
1617 
1618 	fib = &sc->aac_common->ac_sync_fib;
1619 
1620 	if (datasize > AAC_FIB_DATASIZE)
1621 		return(EINVAL);
1622 
1623 	/*
1624 	 * Set up the sync FIB
1625 	 */
1626 	fib->Header.XferState = AAC_FIBSTATE_HOSTOWNED |
1627 				AAC_FIBSTATE_INITIALISED |
1628 				AAC_FIBSTATE_EMPTY;
1629 	fib->Header.XferState |= xferstate;
1630 	fib->Header.Command = command;
1631 	fib->Header.StructType = AAC_FIBTYPE_TFIB;
1632 	fib->Header.Size = sizeof(struct aac_fib) + datasize;
1633 	fib->Header.SenderSize = sizeof(struct aac_fib);
1634 	fib->Header.SenderFibAddress = (u_int32_t)fib;
1635 	fib->Header.ReceiverFibAddress = sc->aac_common_busaddr +
1636 					 offsetof(struct aac_common,
1637 						  ac_sync_fib);
1638 
1639 	/*
1640 	 * Copy in data.
1641 	 */
1642 	if (data != NULL) {
1643 		KASSERT(datasize <= sizeof(fib->data),
1644 			("aac_sync_fib: datasize to large"));
1645 		bcopy(data, fib->data, datasize);
1646 		fib->Header.XferState |= AAC_FIBSTATE_FROMHOST |
1647 					 AAC_FIBSTATE_NORM;
1648 	}
1649 
1650 	/*
1651 	 * Give the FIB to the controller, wait for a response.
1652 	 */
1653 	if (aac_sync_command(sc, AAC_MONKER_SYNCFIB,
1654 			     fib->Header.ReceiverFibAddress, 0, 0, 0, NULL)) {
1655 		debug(2, "IO error");
1656 		return(EIO);
1657 	}
1658 
1659 	/*
1660 	 * Copy out the result
1661 	 */
1662 	if (result != NULL) {
1663 		u_int copysize;
1664 
1665 		copysize = fib->Header.Size - sizeof(struct aac_fib_header);
1666 		if (copysize > *resultsize)
1667 			copysize = *resultsize;
1668 		*resultsize = fib->Header.Size - sizeof(struct aac_fib_header);
1669 		bcopy(fib->data, result, copysize);
1670 	}
1671 	return(0);
1672 }
1673 
1674 /*
1675  * Adapter-space FIB queue manipulation
1676  *
1677  * Note that the queue implementation here is a little funky; neither the PI or
1678  * CI will ever be zero.  This behaviour is a controller feature.
1679  */
1680 static struct {
1681 	int		size;
1682 	int		notify;
1683 } aac_qinfo[] = {
1684 	{AAC_HOST_NORM_CMD_ENTRIES, AAC_DB_COMMAND_NOT_FULL},
1685 	{AAC_HOST_HIGH_CMD_ENTRIES, 0},
1686 	{AAC_ADAP_NORM_CMD_ENTRIES, AAC_DB_COMMAND_READY},
1687 	{AAC_ADAP_HIGH_CMD_ENTRIES, 0},
1688 	{AAC_HOST_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_NOT_FULL},
1689 	{AAC_HOST_HIGH_RESP_ENTRIES, 0},
1690 	{AAC_ADAP_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_READY},
1691 	{AAC_ADAP_HIGH_RESP_ENTRIES, 0}
1692 };
1693 
1694 /*
1695  * Atomically insert an entry into the nominated queue, returns 0 on success or
1696  * EBUSY if the queue is full.
1697  *
1698  * Note: it would be more efficient to defer notifying the controller in
1699  *	 the case where we may be inserting several entries in rapid succession,
1700  *	 but implementing this usefully may be difficult (it would involve a
1701  *	 separate queue/notify interface).
1702  */
1703 static int
1704 aac_enqueue_fib(struct aac_softc *sc, int queue, struct aac_command *cm)
1705 {
1706 	u_int32_t pi, ci;
1707 	int s, error;
1708 	u_int32_t fib_size;
1709 	u_int32_t fib_addr;
1710 
1711 	debug_called(3);
1712 
1713 	fib_size = cm->cm_fib->Header.Size;
1714 	fib_addr = cm->cm_fib->Header.ReceiverFibAddress;
1715 
1716 	s = splbio();
1717 
1718 	/* get the producer/consumer indices */
1719 	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1720 	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1721 
1722 	/* wrap the queue? */
1723 	if (pi >= aac_qinfo[queue].size)
1724 		pi = 0;
1725 
1726 	/* check for queue full */
1727 	if ((pi + 1) == ci) {
1728 		error = EBUSY;
1729 		goto out;
1730 	}
1731 
1732 	/* populate queue entry */
1733 	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1734 	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1735 
1736 	/* update producer index */
1737 	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1738 
1739 	/*
1740 	 * To avoid a race with its completion interrupt, place this command on
1741 	 * the busy queue prior to advertising it to the controller.
1742 	 */
1743 	aac_enqueue_busy(cm);
1744 
1745 	/* notify the adapter if we know how */
1746 	if (aac_qinfo[queue].notify != 0)
1747 		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1748 
1749 	error = 0;
1750 
1751 out:
1752 	splx(s);
1753 	return(error);
1754 }
1755 
1756 /*
1757  * Atomically remove one entry from the nominated queue, returns 0 on
1758  * success or ENOENT if the queue is empty.
1759  */
1760 static int
1761 aac_dequeue_fib(struct aac_softc *sc, int queue, u_int32_t *fib_size,
1762 		struct aac_fib **fib_addr)
1763 {
1764 	u_int32_t pi, ci;
1765 	int s, error;
1766 	int notify;
1767 
1768 	debug_called(3);
1769 
1770 	s = splbio();
1771 
1772 	/* get the producer/consumer indices */
1773 	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1774 	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1775 
1776 	/* check for queue empty */
1777 	if (ci == pi) {
1778 		error = ENOENT;
1779 		goto out;
1780 	}
1781 
1782 	notify = 0;
1783 	if (ci == pi + 1)
1784 		notify++;
1785 
1786 	/* wrap the queue? */
1787 	if (ci >= aac_qinfo[queue].size)
1788 		ci = 0;
1789 
1790 	/* fetch the entry */
1791 	*fib_size = (sc->aac_qentries[queue] + ci)->aq_fib_size;
1792 	*fib_addr = (struct aac_fib *)(sc->aac_qentries[queue] +
1793 				       ci)->aq_fib_addr;
1794 
1795 	/* update consumer index */
1796 	sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX] = ci + 1;
1797 
1798 	/* if we have made the queue un-full, notify the adapter */
1799 	if (notify && (aac_qinfo[queue].notify != 0))
1800 		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1801 	error = 0;
1802 
1803 out:
1804 	splx(s);
1805 	return(error);
1806 }
1807 
1808 /*
1809  * Put our response to an Adapter Initialed Fib on the response queue
1810  */
1811 static int
1812 aac_enqueue_response(struct aac_softc *sc, int queue, struct aac_fib *fib)
1813 {
1814 	u_int32_t pi, ci;
1815 	int s, error;
1816 	u_int32_t fib_size;
1817 	u_int32_t fib_addr;
1818 
1819 	debug_called(1);
1820 
1821 	/* Tell the adapter where the FIB is */
1822 	fib_size = fib->Header.Size;
1823 	fib_addr = fib->Header.SenderFibAddress;
1824 	fib->Header.ReceiverFibAddress = fib_addr;
1825 
1826 	s = splbio();
1827 
1828 	/* get the producer/consumer indices */
1829 	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1830 	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1831 
1832 	/* wrap the queue? */
1833 	if (pi >= aac_qinfo[queue].size)
1834 		pi = 0;
1835 
1836 	/* check for queue full */
1837 	if ((pi + 1) == ci) {
1838 		error = EBUSY;
1839 		goto out;
1840 	}
1841 
1842 	/* populate queue entry */
1843 	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1844 	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1845 
1846 	/* update producer index */
1847 	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1848 
1849 	/* notify the adapter if we know how */
1850 	if (aac_qinfo[queue].notify != 0)
1851 		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1852 
1853 	error = 0;
1854 
1855 out:
1856 	splx(s);
1857 	return(error);
1858 }
1859 
1860 /*
1861  * Check for commands that have been outstanding for a suspiciously long time,
1862  * and complain about them.
1863  */
1864 static void
1865 aac_timeout(struct aac_softc *sc)
1866 {
1867 	int s;
1868 	struct aac_command *cm;
1869 	time_t deadline;
1870 
1871 #if 0
1872 	/* simulate an interrupt to handle possibly-missed interrupts */
1873 	/*
1874 	 * XXX This was done to work around another bug which has since been
1875 	 * fixed.  It is dangerous anyways because you don't want multiple
1876 	 * threads in the interrupt handler at the same time!  If calling
1877 	 * is deamed neccesary in the future, proper mutexes must be used.
1878 	 */
1879 	s = splbio();
1880 	aac_intr(sc);
1881 	splx(s);
1882 
1883 	/* kick the I/O queue to restart it in the case of deadlock */
1884 	aac_startio(sc);
1885 #endif
1886 
1887 	/*
1888 	 * traverse the busy command list, bitch about late commands once
1889 	 * only.
1890 	 */
1891 	deadline = time_second - AAC_CMD_TIMEOUT;
1892 	s = splbio();
1893 	TAILQ_FOREACH(cm, &sc->aac_busy, cm_link) {
1894 		if ((cm->cm_timestamp  < deadline)
1895 			/* && !(cm->cm_flags & AAC_CMD_TIMEDOUT) */) {
1896 			cm->cm_flags |= AAC_CMD_TIMEDOUT;
1897 			device_printf(sc->aac_dev,
1898 				      "COMMAND %p TIMEOUT AFTER %d SECONDS\n",
1899 				      cm, (int)(time_second-cm->cm_timestamp));
1900 			AAC_PRINT_FIB(sc, cm->cm_fib);
1901 		}
1902 	}
1903 	splx(s);
1904 
1905 	/* reset the timer for next time */
1906 	timeout((timeout_t*)aac_timeout, sc, AAC_PERIODIC_INTERVAL * hz);
1907 	return;
1908 }
1909 
1910 /*
1911  * Interface Function Vectors
1912  */
1913 
1914 /*
1915  * Read the current firmware status word.
1916  */
1917 static int
1918 aac_sa_get_fwstatus(struct aac_softc *sc)
1919 {
1920 	debug_called(3);
1921 
1922 	return(AAC_GETREG4(sc, AAC_SA_FWSTATUS));
1923 }
1924 
1925 static int
1926 aac_rx_get_fwstatus(struct aac_softc *sc)
1927 {
1928 	debug_called(3);
1929 
1930 	return(AAC_GETREG4(sc, AAC_RX_FWSTATUS));
1931 }
1932 
1933 static int
1934 aac_fa_get_fwstatus(struct aac_softc *sc)
1935 {
1936 	int val;
1937 
1938 	debug_called(3);
1939 
1940 	val = AAC_GETREG4(sc, AAC_FA_FWSTATUS);
1941 	return (val);
1942 }
1943 
1944 /*
1945  * Notify the controller of a change in a given queue
1946  */
1947 
1948 static void
1949 aac_sa_qnotify(struct aac_softc *sc, int qbit)
1950 {
1951 	debug_called(3);
1952 
1953 	AAC_SETREG2(sc, AAC_SA_DOORBELL1_SET, qbit);
1954 }
1955 
1956 static void
1957 aac_rx_qnotify(struct aac_softc *sc, int qbit)
1958 {
1959 	debug_called(3);
1960 
1961 	AAC_SETREG4(sc, AAC_RX_IDBR, qbit);
1962 }
1963 
1964 static void
1965 aac_fa_qnotify(struct aac_softc *sc, int qbit)
1966 {
1967 	debug_called(3);
1968 
1969 	AAC_SETREG2(sc, AAC_FA_DOORBELL1, qbit);
1970 	AAC_FA_HACK(sc);
1971 }
1972 
1973 /*
1974  * Get the interrupt reason bits
1975  */
1976 static int
1977 aac_sa_get_istatus(struct aac_softc *sc)
1978 {
1979 	debug_called(3);
1980 
1981 	return(AAC_GETREG2(sc, AAC_SA_DOORBELL0));
1982 }
1983 
1984 static int
1985 aac_rx_get_istatus(struct aac_softc *sc)
1986 {
1987 	debug_called(3);
1988 
1989 	return(AAC_GETREG4(sc, AAC_RX_ODBR));
1990 }
1991 
1992 static int
1993 aac_fa_get_istatus(struct aac_softc *sc)
1994 {
1995 	int val;
1996 
1997 	debug_called(3);
1998 
1999 	val = AAC_GETREG2(sc, AAC_FA_DOORBELL0);
2000 	return (val);
2001 }
2002 
2003 /*
2004  * Clear some interrupt reason bits
2005  */
2006 static void
2007 aac_sa_clear_istatus(struct aac_softc *sc, int mask)
2008 {
2009 	debug_called(3);
2010 
2011 	AAC_SETREG2(sc, AAC_SA_DOORBELL0_CLEAR, mask);
2012 }
2013 
2014 static void
2015 aac_rx_clear_istatus(struct aac_softc *sc, int mask)
2016 {
2017 	debug_called(3);
2018 
2019 	AAC_SETREG4(sc, AAC_RX_ODBR, mask);
2020 }
2021 
2022 static void
2023 aac_fa_clear_istatus(struct aac_softc *sc, int mask)
2024 {
2025 	debug_called(3);
2026 
2027 	AAC_SETREG2(sc, AAC_FA_DOORBELL0_CLEAR, mask);
2028 	AAC_FA_HACK(sc);
2029 }
2030 
2031 /*
2032  * Populate the mailbox and set the command word
2033  */
2034 static void
2035 aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2036 		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2037 {
2038 	debug_called(4);
2039 
2040 	AAC_SETREG4(sc, AAC_SA_MAILBOX, command);
2041 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 4, arg0);
2042 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 8, arg1);
2043 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 12, arg2);
2044 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 16, arg3);
2045 }
2046 
2047 static void
2048 aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
2049 		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2050 {
2051 	debug_called(4);
2052 
2053 	AAC_SETREG4(sc, AAC_RX_MAILBOX, command);
2054 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 4, arg0);
2055 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 8, arg1);
2056 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 12, arg2);
2057 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 16, arg3);
2058 }
2059 
2060 static void
2061 aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2062 		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2063 {
2064 	debug_called(4);
2065 
2066 	AAC_SETREG4(sc, AAC_FA_MAILBOX, command);
2067 	AAC_FA_HACK(sc);
2068 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 4, arg0);
2069 	AAC_FA_HACK(sc);
2070 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 8, arg1);
2071 	AAC_FA_HACK(sc);
2072 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 12, arg2);
2073 	AAC_FA_HACK(sc);
2074 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 16, arg3);
2075 	AAC_FA_HACK(sc);
2076 }
2077 
2078 /*
2079  * Fetch the immediate command status word
2080  */
2081 static int
2082 aac_sa_get_mailboxstatus(struct aac_softc *sc)
2083 {
2084 	debug_called(4);
2085 
2086 	return(AAC_GETREG4(sc, AAC_SA_MAILBOX));
2087 }
2088 
2089 static int
2090 aac_rx_get_mailboxstatus(struct aac_softc *sc)
2091 {
2092 	debug_called(4);
2093 
2094 	return(AAC_GETREG4(sc, AAC_RX_MAILBOX));
2095 }
2096 
2097 static int
2098 aac_fa_get_mailboxstatus(struct aac_softc *sc)
2099 {
2100 	int val;
2101 
2102 	debug_called(4);
2103 
2104 	val = AAC_GETREG4(sc, AAC_FA_MAILBOX);
2105 	return (val);
2106 }
2107 
2108 /*
2109  * Set/clear interrupt masks
2110  */
2111 static void
2112 aac_sa_set_interrupts(struct aac_softc *sc, int enable)
2113 {
2114 	debug(2, "%sable interrupts", enable ? "en" : "dis");
2115 
2116 	if (enable) {
2117 		AAC_SETREG2((sc), AAC_SA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2118 	} else {
2119 		AAC_SETREG2((sc), AAC_SA_MASK0_SET, ~0);
2120 	}
2121 }
2122 
2123 static void
2124 aac_rx_set_interrupts(struct aac_softc *sc, int enable)
2125 {
2126 	debug(2, "%sable interrupts", enable ? "en" : "dis");
2127 
2128 	if (enable) {
2129 		AAC_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INTERRUPTS);
2130 	} else {
2131 		AAC_SETREG4(sc, AAC_RX_OIMR, ~0);
2132 	}
2133 }
2134 
2135 static void
2136 aac_fa_set_interrupts(struct aac_softc *sc, int enable)
2137 {
2138 	debug(2, "%sable interrupts", enable ? "en" : "dis");
2139 
2140 	if (enable) {
2141 		AAC_SETREG2((sc), AAC_FA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2142 		AAC_FA_HACK(sc);
2143 	} else {
2144 		AAC_SETREG2((sc), AAC_FA_MASK0, ~0);
2145 		AAC_FA_HACK(sc);
2146 	}
2147 }
2148 
2149 /*
2150  * Debugging and Diagnostics
2151  */
2152 
2153 /*
2154  * Print some information about the controller.
2155  */
2156 static void
2157 aac_describe_controller(struct aac_softc *sc)
2158 {
2159 	u_int8_t buf[AAC_FIB_DATASIZE];	/* XXX really a bit big
2160 					 * for the stack */
2161 	u_int16_t bufsize;
2162 	struct aac_adapter_info	*info;
2163 	u_int8_t arg;
2164 
2165 	debug_called(2);
2166 
2167 	arg = 0;
2168 	bufsize = sizeof(buf);
2169 	if (aac_sync_fib(sc, RequestAdapterInfo, 0, &arg, sizeof(arg), &buf,
2170 			 &bufsize)) {
2171 		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
2172 		return;
2173 	}
2174 	if (bufsize != sizeof(*info)) {
2175 		device_printf(sc->aac_dev,
2176 			      "RequestAdapterInfo returned wrong data size "
2177 			      "(%d != %d)\n", bufsize, sizeof(*info));
2178 		/*return;*/
2179 	}
2180 	info = (struct aac_adapter_info *)&buf[0];
2181 
2182 	device_printf(sc->aac_dev, "%s %dMHz, %dMB cache memory, %s\n",
2183 		      aac_describe_code(aac_cpu_variant, info->CpuVariant),
2184 		      info->ClockSpeed, info->BufferMem / (1024 * 1024),
2185 		      aac_describe_code(aac_battery_platform,
2186 					info->batteryPlatform));
2187 
2188 	/* save the kernel revision structure for later use */
2189 	sc->aac_revision = info->KernelRevision;
2190 	device_printf(sc->aac_dev, "Kernel %d.%d-%d, Build %d, S/N %6X\n",
2191 		      info->KernelRevision.external.comp.major,
2192 		      info->KernelRevision.external.comp.minor,
2193 		      info->KernelRevision.external.comp.dash,
2194 		      info->KernelRevision.buildNumber,
2195 		      (u_int32_t)(info->SerialNumber & 0xffffff));
2196 }
2197 
2198 /*
2199  * Look up a text description of a numeric error code and return a pointer to
2200  * same.
2201  */
2202 static char *
2203 aac_describe_code(struct aac_code_lookup *table, u_int32_t code)
2204 {
2205 	int i;
2206 
2207 	for (i = 0; table[i].string != NULL; i++)
2208 		if (table[i].code == code)
2209 			return(table[i].string);
2210 	return(table[i + 1].string);
2211 }
2212 
2213 /*
2214  * Management Interface
2215  */
2216 
2217 static int
2218 aac_open(dev_t dev, int flags, int fmt, d_thread_t *td)
2219 {
2220 	struct aac_softc *sc;
2221 
2222 	debug_called(2);
2223 
2224 	sc = dev->si_drv1;
2225 
2226 	/* Check to make sure the device isn't already open */
2227 	if (sc->aac_state & AAC_STATE_OPEN) {
2228 		return EBUSY;
2229 	}
2230 	sc->aac_state |= AAC_STATE_OPEN;
2231 
2232 	return 0;
2233 }
2234 
2235 static int
2236 aac_close(dev_t dev, int flags, int fmt, d_thread_t *td)
2237 {
2238 	struct aac_softc *sc;
2239 
2240 	debug_called(2);
2241 
2242 	sc = dev->si_drv1;
2243 
2244 	/* Mark this unit as no longer open  */
2245 	sc->aac_state &= ~AAC_STATE_OPEN;
2246 
2247 	return 0;
2248 }
2249 
2250 static int
2251 aac_ioctl(dev_t dev, u_long cmd, caddr_t arg, int flag, d_thread_t *td)
2252 {
2253 	union aac_statrequest *as;
2254 	struct aac_softc *sc;
2255 	int error = 0;
2256 	int i;
2257 
2258 	debug_called(2);
2259 
2260 	as = (union aac_statrequest *)arg;
2261 	sc = dev->si_drv1;
2262 
2263 	switch (cmd) {
2264 	case AACIO_STATS:
2265 		switch (as->as_item) {
2266 		case AACQ_FREE:
2267 		case AACQ_BIO:
2268 		case AACQ_READY:
2269 		case AACQ_BUSY:
2270 		case AACQ_COMPLETE:
2271 			bcopy(&sc->aac_qstat[as->as_item], &as->as_qstat,
2272 			      sizeof(struct aac_qstat));
2273 			break;
2274 		default:
2275 			error = ENOENT;
2276 			break;
2277 		}
2278 	break;
2279 
2280 	case FSACTL_SENDFIB:
2281 		arg = *(caddr_t*)arg;
2282 	case FSACTL_LNX_SENDFIB:
2283 		debug(1, "FSACTL_SENDFIB");
2284 		error = aac_ioctl_sendfib(sc, arg);
2285 		break;
2286 	case FSACTL_AIF_THREAD:
2287 	case FSACTL_LNX_AIF_THREAD:
2288 		debug(1, "FSACTL_AIF_THREAD");
2289 		error = EINVAL;
2290 		break;
2291 	case FSACTL_OPEN_GET_ADAPTER_FIB:
2292 		arg = *(caddr_t*)arg;
2293 	case FSACTL_LNX_OPEN_GET_ADAPTER_FIB:
2294 		debug(1, "FSACTL_OPEN_GET_ADAPTER_FIB");
2295 		/*
2296 		 * Pass the caller out an AdapterFibContext.
2297 		 *
2298 		 * Note that because we only support one opener, we
2299 		 * basically ignore this.  Set the caller's context to a magic
2300 		 * number just in case.
2301 		 *
2302 		 * The Linux code hands the driver a pointer into kernel space,
2303 		 * and then trusts it when the caller hands it back.  Aiee!
2304 		 * Here, we give it the proc pointer of the per-adapter aif
2305 		 * thread. It's only used as a sanity check in other calls.
2306 		 */
2307 		i = (int)sc->aifthread;
2308 		error = copyout(&i, arg, sizeof(i));
2309 		break;
2310 	case FSACTL_GET_NEXT_ADAPTER_FIB:
2311 		arg = *(caddr_t*)arg;
2312 	case FSACTL_LNX_GET_NEXT_ADAPTER_FIB:
2313 		debug(1, "FSACTL_GET_NEXT_ADAPTER_FIB");
2314 		error = aac_getnext_aif(sc, arg);
2315 		break;
2316 	case FSACTL_CLOSE_GET_ADAPTER_FIB:
2317 	case FSACTL_LNX_CLOSE_GET_ADAPTER_FIB:
2318 		debug(1, "FSACTL_CLOSE_GET_ADAPTER_FIB");
2319 		/* don't do anything here */
2320 		break;
2321 	case FSACTL_MINIPORT_REV_CHECK:
2322 		arg = *(caddr_t*)arg;
2323 	case FSACTL_LNX_MINIPORT_REV_CHECK:
2324 		debug(1, "FSACTL_MINIPORT_REV_CHECK");
2325 		error = aac_rev_check(sc, arg);
2326 		break;
2327 	case FSACTL_QUERY_DISK:
2328 		arg = *(caddr_t*)arg;
2329 	case FSACTL_LNX_QUERY_DISK:
2330 		debug(1, "FSACTL_QUERY_DISK");
2331 		error = aac_query_disk(sc, arg);
2332 			break;
2333 	case FSACTL_DELETE_DISK:
2334 	case FSACTL_LNX_DELETE_DISK:
2335 		/*
2336 		 * We don't trust the underland to tell us when to delete a
2337 		 * container, rather we rely on an AIF coming from the
2338 		 * controller
2339 		 */
2340 		error = 0;
2341 		break;
2342 	default:
2343 		debug(1, "unsupported cmd 0x%lx\n", cmd);
2344 		error = EINVAL;
2345 		break;
2346 	}
2347 	return(error);
2348 }
2349 
2350 static int
2351 aac_poll(dev_t dev, int poll_events, d_thread_t *td)
2352 {
2353 	struct aac_softc *sc;
2354 	int revents;
2355 
2356 	sc = dev->si_drv1;
2357 	revents = 0;
2358 
2359 	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2360 	if ((poll_events & (POLLRDNORM | POLLIN)) != 0) {
2361 		if (sc->aac_aifq_tail != sc->aac_aifq_head)
2362 			revents |= poll_events & (POLLIN | POLLRDNORM);
2363 	}
2364 	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2365 
2366 	if (revents == 0) {
2367 		if (poll_events & (POLLIN | POLLRDNORM))
2368 			selrecord(td, &sc->rcv_select);
2369 	}
2370 
2371 	return (revents);
2372 }
2373 
2374 /*
2375  * Send a FIB supplied from userspace
2376  */
2377 static int
2378 aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib)
2379 {
2380 	struct aac_command *cm;
2381 	int size, error;
2382 
2383 	debug_called(2);
2384 
2385 	cm = NULL;
2386 
2387 	/*
2388 	 * Get a command
2389 	 */
2390 	if (aac_alloc_command(sc, &cm)) {
2391 		error = EBUSY;
2392 		goto out;
2393 	}
2394 
2395 	/*
2396 	 * Fetch the FIB header, then re-copy to get data as well.
2397 	 */
2398 	if ((error = copyin(ufib, cm->cm_fib,
2399 			    sizeof(struct aac_fib_header))) != 0)
2400 		goto out;
2401 	size = cm->cm_fib->Header.Size + sizeof(struct aac_fib_header);
2402 	if (size > sizeof(struct aac_fib)) {
2403 		device_printf(sc->aac_dev, "incoming FIB oversized (%d > %d)\n",
2404 			      size, sizeof(struct aac_fib));
2405 		size = sizeof(struct aac_fib);
2406 	}
2407 	if ((error = copyin(ufib, cm->cm_fib, size)) != 0)
2408 		goto out;
2409 	cm->cm_fib->Header.Size = size;
2410 	cm->cm_timestamp = time_second;
2411 
2412 	/*
2413 	 * Pass the FIB to the controller, wait for it to complete.
2414 	 */
2415 	if ((error = aac_wait_command(cm, 30)) != 0) {	/* XXX user timeout? */
2416 		printf("aac_wait_command return %d\n", error);
2417 		goto out;
2418 	}
2419 
2420 	/*
2421 	 * Copy the FIB and data back out to the caller.
2422 	 */
2423 	size = cm->cm_fib->Header.Size;
2424 	if (size > sizeof(struct aac_fib)) {
2425 		device_printf(sc->aac_dev, "outbound FIB oversized (%d > %d)\n",
2426 			      size, sizeof(struct aac_fib));
2427 		size = sizeof(struct aac_fib);
2428 	}
2429 	error = copyout(cm->cm_fib, ufib, size);
2430 
2431 out:
2432 	if (cm != NULL) {
2433 		aac_release_command(cm);
2434 	}
2435 	return(error);
2436 }
2437 
2438 /*
2439  * Handle an AIF sent to us by the controller; queue it for later reference.
2440  * If the queue fills up, then drop the older entries.
2441  */
2442 static void
2443 aac_handle_aif(struct aac_softc *sc, struct aac_fib *fib)
2444 {
2445 	struct aac_aif_command *aif;
2446 	struct aac_container *co, *co_next;
2447 	struct aac_mntinfo mi;
2448 	struct aac_mntinforesponse mir;
2449 	u_int16_t rsize;
2450 	int next, found;
2451 	int added = 0, i = 0;
2452 
2453 	debug_called(2);
2454 
2455 	aif = (struct aac_aif_command*)&fib->data[0];
2456 	aac_print_aif(sc, aif);
2457 
2458 	/* Is it an event that we should care about? */
2459 	switch (aif->command) {
2460 	case AifCmdEventNotify:
2461 		switch (aif->data.EN.type) {
2462 		case AifEnAddContainer:
2463 		case AifEnDeleteContainer:
2464 			/*
2465 			 * A container was added or deleted, but the message
2466 			 * doesn't tell us anything else!  Re-enumerate the
2467 			 * containers and sort things out.
2468 			 */
2469 			mi.Command = VM_NameServe;
2470 			mi.MntType = FT_FILESYS;
2471 			do {
2472 				/*
2473 				 * Ask the controller for its containers one at
2474 				 * a time.
2475 				 * XXX What if the controller's list changes
2476 				 * midway through this enumaration?
2477 				 * XXX This should be done async.
2478 				 */
2479 				mi.MntCount = i;
2480 				rsize = sizeof(mir);
2481 				if (aac_sync_fib(sc, ContainerCommand, 0, &mi,
2482 						 sizeof(mi), &mir, &rsize)) {
2483 					debug(2, "Error probing container %d\n",
2484 					      i);
2485 					continue;
2486 				}
2487 				if (rsize != sizeof(mir)) {
2488 					debug(2, "Container response size too "
2489 						 "large\n");
2490 					continue;
2491 				}
2492 				/*
2493 				 * Check the container against our list.
2494 				 * co->co_found was already set to 0 in a
2495 				 * previous run.
2496 				 */
2497 				if ((mir.Status == ST_OK) &&
2498 				    (mir.MntTable[0].VolType != CT_NONE)) {
2499 					found = 0;
2500 					TAILQ_FOREACH(co,
2501 						      &sc->aac_container_tqh,
2502 						      co_link) {
2503 						if (co->co_mntobj.ObjectId ==
2504 						    mir.MntTable[0].ObjectId) {
2505 							co->co_found = 1;
2506 							found = 1;
2507 							break;
2508 						}
2509 					}
2510 					/*
2511 					 * If the container matched, continue
2512 					 * in the list.
2513 					 */
2514 					if (found) {
2515 						i++;
2516 						continue;
2517 					}
2518 
2519 					/*
2520 					 * This is a new container.  Do all the
2521 					 * appropriate things to set it up.						 */
2522 					aac_add_container(sc, &mir, 1);
2523 					added = 1;
2524 				}
2525 				i++;
2526 			} while ((i < mir.MntRespCount) &&
2527 				 (i < AAC_MAX_CONTAINERS));
2528 
2529 			/*
2530 			 * Go through our list of containers and see which ones
2531 			 * were not marked 'found'.  Since the controller didn't
2532 			 * list them they must have been deleted.  Do the
2533 			 * appropriate steps to destroy the device.  Also reset
2534 			 * the co->co_found field.
2535 			 */
2536 			co = TAILQ_FIRST(&sc->aac_container_tqh);
2537 			while (co != NULL) {
2538 				if (co->co_found == 0) {
2539 					device_delete_child(sc->aac_dev,
2540 							    co->co_disk);
2541 					co_next = TAILQ_NEXT(co, co_link);
2542 					AAC_LOCK_ACQUIRE(&sc->
2543 							aac_container_lock);
2544 					TAILQ_REMOVE(&sc->aac_container_tqh, co,
2545 						     co_link);
2546 					AAC_LOCK_RELEASE(&sc->
2547 							 aac_container_lock);
2548 					FREE(co, M_AACBUF);
2549 					co = co_next;
2550 				} else {
2551 					co->co_found = 0;
2552 					co = TAILQ_NEXT(co, co_link);
2553 				}
2554 			}
2555 
2556 			/* Attach the newly created containers */
2557 			if (added)
2558 				bus_generic_attach(sc->aac_dev);
2559 
2560 				break;
2561 
2562 		default:
2563 			break;
2564 		}
2565 
2566 	default:
2567 		break;
2568 	}
2569 
2570 	/* Copy the AIF data to the AIF queue for ioctl retrieval */
2571 	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2572 	next = (sc->aac_aifq_head + 1) % AAC_AIFQ_LENGTH;
2573 	if (next != sc->aac_aifq_tail) {
2574 		bcopy(aif, &sc->aac_aifq[next], sizeof(struct aac_aif_command));
2575 		sc->aac_aifq_head = next;
2576 
2577 		/* On the off chance that someone is sleeping for an aif... */
2578 		if (sc->aac_state & AAC_STATE_AIF_SLEEPER)
2579 			wakeup(sc->aac_aifq);
2580 		/* Wakeup any poll()ers */
2581 		selwakeup(&sc->rcv_select);
2582 	}
2583 	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2584 
2585 	return;
2586 }
2587 
2588 /*
2589  * Linux Management Interface
2590  * This is soon to be removed!
2591  */
2592 
2593 #ifdef AAC_COMPAT_LINUX
2594 
2595 #include <sys/proc.h>
2596 #include <machine/../linux/linux.h>
2597 #include <machine/../linux/linux_proto.h>
2598 #include <compat/linux/linux_ioctl.h>
2599 
2600 /* There are multiple ioctl number ranges that need to be handled */
2601 #define AAC_LINUX_IOCTL_MIN  0x0000
2602 #define AAC_LINUX_IOCTL_MAX  0x21ff
2603 
2604 static linux_ioctl_function_t aac_linux_ioctl;
2605 static struct linux_ioctl_handler aac_handler = {aac_linux_ioctl,
2606 						 AAC_LINUX_IOCTL_MIN,
2607 						 AAC_LINUX_IOCTL_MAX};
2608 
2609 SYSINIT  (aac_register,   SI_SUB_KLD, SI_ORDER_MIDDLE,
2610 	  linux_ioctl_register_handler, &aac_handler);
2611 SYSUNINIT(aac_unregister, SI_SUB_KLD, SI_ORDER_MIDDLE,
2612 	  linux_ioctl_unregister_handler, &aac_handler);
2613 
2614 MODULE_DEPEND(aac, linux, 1, 1, 1);
2615 
2616 static int
2617 aac_linux_ioctl(struct thread *td, struct linux_ioctl_args *args)
2618 {
2619 	struct file *fp;
2620 	u_long cmd;
2621 	int error;
2622 
2623 	debug_called(2);
2624 
2625 	if ((error = fget(td, args->fd, &fp)) != 0)
2626 		return (error);
2627 	cmd = args->cmd;
2628 
2629 	/*
2630 	 * Pass the ioctl off to our standard handler.
2631 	 */
2632 	error = (fo_ioctl(fp, cmd, (caddr_t)args->arg, td));
2633 	fdrop(fp, td);
2634 	return (error);
2635 }
2636 
2637 #endif
2638 
2639 /*
2640  * Return the Revision of the driver to userspace and check to see if the
2641  * userspace app is possibly compatible.  This is extremely bogus since
2642  * our driver doesn't follow Adaptec's versioning system.  Cheat by just
2643  * returning what the card reported.
2644  */
2645 static int
2646 aac_rev_check(struct aac_softc *sc, caddr_t udata)
2647 {
2648 	struct aac_rev_check rev_check;
2649 	struct aac_rev_check_resp rev_check_resp;
2650 	int error = 0;
2651 
2652 	debug_called(2);
2653 
2654 	/*
2655 	 * Copyin the revision struct from userspace
2656 	 */
2657 	if ((error = copyin(udata, (caddr_t)&rev_check,
2658 			sizeof(struct aac_rev_check))) != 0) {
2659 		return error;
2660 	}
2661 
2662 	debug(2, "Userland revision= %d\n",
2663 	      rev_check.callingRevision.buildNumber);
2664 
2665 	/*
2666 	 * Doctor up the response struct.
2667 	 */
2668 	rev_check_resp.possiblyCompatible = 1;
2669 	rev_check_resp.adapterSWRevision.external.ul =
2670 	    sc->aac_revision.external.ul;
2671 	rev_check_resp.adapterSWRevision.buildNumber =
2672 	    sc->aac_revision.buildNumber;
2673 
2674 	return(copyout((caddr_t)&rev_check_resp, udata,
2675 			sizeof(struct aac_rev_check_resp)));
2676 }
2677 
2678 /*
2679  * Pass the caller the next AIF in their queue
2680  */
2681 static int
2682 aac_getnext_aif(struct aac_softc *sc, caddr_t arg)
2683 {
2684 	struct get_adapter_fib_ioctl agf;
2685 	int error, s;
2686 
2687 	debug_called(2);
2688 
2689 	if ((error = copyin(arg, &agf, sizeof(agf))) == 0) {
2690 
2691 		/*
2692 		 * Check the magic number that we gave the caller.
2693 		 */
2694 		if (agf.AdapterFibContext != (int)sc->aifthread) {
2695 			error = EFAULT;
2696 		} else {
2697 
2698 			s = splbio();
2699 			error = aac_return_aif(sc, agf.AifFib);
2700 
2701 			if ((error == EAGAIN) && (agf.Wait)) {
2702 				sc->aac_state |= AAC_STATE_AIF_SLEEPER;
2703 				while (error == EAGAIN) {
2704 					error = tsleep(sc->aac_aifq, PRIBIO |
2705 						       PCATCH, "aacaif", 0);
2706 					if (error == 0)
2707 						error = aac_return_aif(sc,
2708 						    agf.AifFib);
2709 				}
2710 				sc->aac_state &= ~AAC_STATE_AIF_SLEEPER;
2711 			}
2712 		splx(s);
2713 		}
2714 	}
2715 	return(error);
2716 }
2717 
2718 /*
2719  * Hand the next AIF off the top of the queue out to userspace.
2720  */
2721 static int
2722 aac_return_aif(struct aac_softc *sc, caddr_t uptr)
2723 {
2724 	int error;
2725 
2726 	debug_called(2);
2727 
2728 	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2729 	if (sc->aac_aifq_tail == sc->aac_aifq_head) {
2730 		error = EAGAIN;
2731 	} else {
2732 		error = copyout(&sc->aac_aifq[sc->aac_aifq_tail], uptr,
2733 				sizeof(struct aac_aif_command));
2734 		if (error)
2735 			printf("aac_return_aif: copyout returned %d\n", error);
2736 		if (!error)
2737 			sc->aac_aifq_tail = (sc->aac_aifq_tail + 1) %
2738 					    AAC_AIFQ_LENGTH;
2739 	}
2740 	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2741 	return(error);
2742 }
2743 
2744 /*
2745  * Give the userland some information about the container.  The AAC arch
2746  * expects the driver to be a SCSI passthrough type driver, so it expects
2747  * the containers to have b:t:l numbers.  Fake it.
2748  */
2749 static int
2750 aac_query_disk(struct aac_softc *sc, caddr_t uptr)
2751 {
2752 	struct aac_query_disk query_disk;
2753 	struct aac_container *co;
2754 	struct aac_disk	*disk;
2755 	int error, id;
2756 
2757 	debug_called(2);
2758 
2759 	disk = NULL;
2760 
2761 	error = copyin(uptr, (caddr_t)&query_disk,
2762 		       sizeof(struct aac_query_disk));
2763 	if (error)
2764 		return (error);
2765 
2766 	id = query_disk.ContainerNumber;
2767 	if (id == -1)
2768 		return (EINVAL);
2769 
2770 	AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
2771 	TAILQ_FOREACH(co, &sc->aac_container_tqh, co_link) {
2772 		if (co->co_mntobj.ObjectId == id)
2773 			break;
2774 		}
2775 
2776 		if (co == NULL) {
2777 			query_disk.Valid = 0;
2778 			query_disk.Locked = 0;
2779 			query_disk.Deleted = 1;		/* XXX is this right? */
2780 		} else {
2781 			disk = device_get_softc(co->co_disk);
2782 			query_disk.Valid = 1;
2783 			query_disk.Locked =
2784 			    (disk->ad_flags & AAC_DISK_OPEN) ? 1 : 0;
2785 			query_disk.Deleted = 0;
2786 			query_disk.Bus = device_get_unit(sc->aac_dev);
2787 			query_disk.Target = disk->unit;
2788 			query_disk.Lun = 0;
2789 			query_disk.UnMapped = 0;
2790 			bcopy(disk->ad_dev_t->si_name,
2791 			      &query_disk.diskDeviceName[0], 10);
2792 		}
2793 	AAC_LOCK_RELEASE(&sc->aac_container_lock);
2794 
2795 	error = copyout((caddr_t)&query_disk, uptr,
2796 			sizeof(struct aac_query_disk));
2797 
2798 	return (error);
2799 }
2800 
2801