xref: /freebsd/sys/dev/aac/aac.c (revision e45bef2aa9559b3197273a62fda3d30805ad2184)
1 /*-
2  * Copyright (c) 2000 Michael Smith
3  * Copyright (c) 2001 Scott Long
4  * Copyright (c) 2000 BSDi
5  * Copyright (c) 2001 Adaptec, Inc.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	$FreeBSD$
30  */
31 
32 /*
33  * Driver for the Adaptec 'FSA' family of PCI/SCSI RAID adapters.
34  */
35 
36 #include "opt_aac.h"
37 
38 /* #include <stddef.h> */
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/malloc.h>
42 #include <sys/kernel.h>
43 #include <sys/kthread.h>
44 #include <sys/sysctl.h>
45 #include <sys/poll.h>
46 #if __FreeBSD_version >= 500005
47 #include <sys/selinfo.h>
48 #else
49 #include <sys/select.h>
50 #endif
51 
52 #include <dev/aac/aac_compat.h>
53 
54 #include <sys/bus.h>
55 #include <sys/conf.h>
56 #include <sys/devicestat.h>
57 #include <sys/disk.h>
58 #include <sys/file.h>
59 #include <sys/signalvar.h>
60 #include <sys/time.h>
61 #include <sys/eventhandler.h>
62 
63 #include <machine/bus_memio.h>
64 #include <machine/bus.h>
65 #include <machine/resource.h>
66 
67 #include <dev/aac/aacreg.h>
68 #include <dev/aac/aac_ioctl.h>
69 #include <dev/aac/aacvar.h>
70 #include <dev/aac/aac_tables.h>
71 
72 static void	aac_startup(void *arg);
73 static void	aac_add_container(struct aac_softc *sc,
74 				  struct aac_mntinforesponse *mir, int f);
75 
76 /* Command Processing */
77 static void	aac_startio(struct aac_softc *sc);
78 static void	aac_timeout(struct aac_softc *sc);
79 static int	aac_start(struct aac_command *cm);
80 static void	aac_complete(void *context, int pending);
81 static int	aac_bio_command(struct aac_softc *sc, struct aac_command **cmp);
82 static void	aac_bio_complete(struct aac_command *cm);
83 static int	aac_wait_command(struct aac_command *cm, int timeout);
84 static void	aac_host_command(struct aac_softc *sc);
85 static void	aac_host_response(struct aac_softc *sc);
86 
87 /* Command Buffer Management */
88 static int	aac_alloc_command(struct aac_softc *sc,
89 				  struct aac_command **cmp);
90 static void	aac_release_command(struct aac_command *cm);
91 static void	aac_map_command_helper(void *arg, bus_dma_segment_t *segs,
92 				       int nseg, int error);
93 static int	aac_alloc_commands(struct aac_softc *sc);
94 static void	aac_free_commands(struct aac_softc *sc);
95 static void	aac_map_command(struct aac_command *cm);
96 static void	aac_unmap_command(struct aac_command *cm);
97 
98 /* Hardware Interface */
99 static void	aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg,
100 			       int error);
101 static int	aac_init(struct aac_softc *sc);
102 static int	aac_sync_command(struct aac_softc *sc, u_int32_t command,
103 				 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2,
104 				 u_int32_t arg3, u_int32_t *sp);
105 static int	aac_sync_fib(struct aac_softc *sc, u_int32_t command,
106 			     u_int32_t xferstate, void *data,
107 			     u_int16_t datasize, void *result,
108 			     u_int16_t *resultsize);
109 static int	aac_enqueue_fib(struct aac_softc *sc, int queue,
110 				struct aac_command *cm);
111 static int	aac_dequeue_fib(struct aac_softc *sc, int queue,
112 				u_int32_t *fib_size, struct aac_fib **fib_addr);
113 static int	aac_enqueue_response(struct aac_softc *sc, int queue,
114 				     struct aac_fib *fib);
115 
116 /* Falcon/PPC interface */
117 static int	aac_fa_get_fwstatus(struct aac_softc *sc);
118 static void	aac_fa_qnotify(struct aac_softc *sc, int qbit);
119 static int	aac_fa_get_istatus(struct aac_softc *sc);
120 static void	aac_fa_clear_istatus(struct aac_softc *sc, int mask);
121 static void	aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
122 				   u_int32_t arg0, u_int32_t arg1,
123 				   u_int32_t arg2, u_int32_t arg3);
124 static int	aac_fa_get_mailboxstatus(struct aac_softc *sc);
125 static void	aac_fa_set_interrupts(struct aac_softc *sc, int enable);
126 
127 struct aac_interface aac_fa_interface = {
128 	aac_fa_get_fwstatus,
129 	aac_fa_qnotify,
130 	aac_fa_get_istatus,
131 	aac_fa_clear_istatus,
132 	aac_fa_set_mailbox,
133 	aac_fa_get_mailboxstatus,
134 	aac_fa_set_interrupts
135 };
136 
137 /* StrongARM interface */
138 static int	aac_sa_get_fwstatus(struct aac_softc *sc);
139 static void	aac_sa_qnotify(struct aac_softc *sc, int qbit);
140 static int	aac_sa_get_istatus(struct aac_softc *sc);
141 static void	aac_sa_clear_istatus(struct aac_softc *sc, int mask);
142 static void	aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
143 				   u_int32_t arg0, u_int32_t arg1,
144 				   u_int32_t arg2, u_int32_t arg3);
145 static int	aac_sa_get_mailboxstatus(struct aac_softc *sc);
146 static void	aac_sa_set_interrupts(struct aac_softc *sc, int enable);
147 
148 struct aac_interface aac_sa_interface = {
149 	aac_sa_get_fwstatus,
150 	aac_sa_qnotify,
151 	aac_sa_get_istatus,
152 	aac_sa_clear_istatus,
153 	aac_sa_set_mailbox,
154 	aac_sa_get_mailboxstatus,
155 	aac_sa_set_interrupts
156 };
157 
158 /* i960Rx interface */
159 static int	aac_rx_get_fwstatus(struct aac_softc *sc);
160 static void	aac_rx_qnotify(struct aac_softc *sc, int qbit);
161 static int	aac_rx_get_istatus(struct aac_softc *sc);
162 static void	aac_rx_clear_istatus(struct aac_softc *sc, int mask);
163 static void	aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
164 				   u_int32_t arg0, u_int32_t arg1,
165 				   u_int32_t arg2, u_int32_t arg3);
166 static int	aac_rx_get_mailboxstatus(struct aac_softc *sc);
167 static void	aac_rx_set_interrupts(struct aac_softc *sc, int enable);
168 
169 struct aac_interface aac_rx_interface = {
170 	aac_rx_get_fwstatus,
171 	aac_rx_qnotify,
172 	aac_rx_get_istatus,
173 	aac_rx_clear_istatus,
174 	aac_rx_set_mailbox,
175 	aac_rx_get_mailboxstatus,
176 	aac_rx_set_interrupts
177 };
178 
179 /* Debugging and Diagnostics */
180 static void	aac_describe_controller(struct aac_softc *sc);
181 static char	*aac_describe_code(struct aac_code_lookup *table,
182 				   u_int32_t code);
183 
184 /* Management Interface */
185 static d_open_t		aac_open;
186 static d_close_t	aac_close;
187 static d_ioctl_t	aac_ioctl;
188 static d_poll_t		aac_poll;
189 static int		aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib);
190 static void		aac_handle_aif(struct aac_softc *sc,
191 					   struct aac_fib *fib);
192 static int		aac_rev_check(struct aac_softc *sc, caddr_t udata);
193 static int		aac_getnext_aif(struct aac_softc *sc, caddr_t arg);
194 static int		aac_return_aif(struct aac_softc *sc, caddr_t uptr);
195 static int		aac_query_disk(struct aac_softc *sc, caddr_t uptr);
196 
197 #define AAC_CDEV_MAJOR	150
198 
199 static struct cdevsw aac_cdevsw = {
200 	aac_open,		/* open */
201 	aac_close,		/* close */
202 	noread,			/* read */
203 	nowrite,		/* write */
204 	aac_ioctl,		/* ioctl */
205 	aac_poll,		/* poll */
206 	nommap,			/* mmap */
207 	nostrategy,		/* strategy */
208 	"aac",			/* name */
209 	AAC_CDEV_MAJOR,		/* major */
210 	nodump,			/* dump */
211 	nopsize,		/* psize */
212 	0,			/* flags */
213 #if __FreeBSD_version < 500005
214 	-1,			/* bmaj */
215 #endif
216 };
217 
218 MALLOC_DEFINE(M_AACBUF, "aacbuf", "Buffers for the AAC driver");
219 
220 /* sysctl node */
221 SYSCTL_NODE(_hw, OID_AUTO, aac, CTLFLAG_RD, 0, "AAC driver parameters");
222 
223 /*
224  * Device Interface
225  */
226 
227 /*
228  * Initialise the controller and softc
229  */
230 int
231 aac_attach(struct aac_softc *sc)
232 {
233 	int error, unit;
234 
235 	debug_called(1);
236 
237 	/*
238 	 * Initialise per-controller queues.
239 	 */
240 	aac_initq_free(sc);
241 	aac_initq_ready(sc);
242 	aac_initq_busy(sc);
243 	aac_initq_complete(sc);
244 	aac_initq_bio(sc);
245 
246 #if __FreeBSD_version >= 500005
247 	/*
248 	 * Initialise command-completion task.
249 	 */
250 	TASK_INIT(&sc->aac_task_complete, 0, aac_complete, sc);
251 #endif
252 
253 	/* disable interrupts before we enable anything */
254 	AAC_MASK_INTERRUPTS(sc);
255 
256 	/* mark controller as suspended until we get ourselves organised */
257 	sc->aac_state |= AAC_STATE_SUSPEND;
258 
259 	/*
260 	 * Allocate command structures.
261 	 */
262 	if ((error = aac_alloc_commands(sc)) != 0)
263 		return(error);
264 
265 	/*
266 	 * Initialise the adapter.
267 	 */
268 	if ((error = aac_init(sc)) != 0)
269 		return(error);
270 
271 	/*
272 	 * Print a little information about the controller.
273 	 */
274 	aac_describe_controller(sc);
275 
276 	/*
277 	 * Register to probe our containers later.
278 	 */
279 	TAILQ_INIT(&sc->aac_container_tqh);
280 	AAC_LOCK_INIT(&sc->aac_container_lock, "AAC container lock");
281 
282 	/*
283 	 * Lock for the AIF queue
284 	 */
285 	AAC_LOCK_INIT(&sc->aac_aifq_lock, "AAC AIF lock");
286 
287 	sc->aac_ich.ich_func = aac_startup;
288 	sc->aac_ich.ich_arg = sc;
289 	if (config_intrhook_establish(&sc->aac_ich) != 0) {
290 		device_printf(sc->aac_dev,
291 			      "can't establish configuration hook\n");
292 		return(ENXIO);
293 	}
294 
295 	/*
296 	 * Make the control device.
297 	 */
298 	unit = device_get_unit(sc->aac_dev);
299 	sc->aac_dev_t = make_dev(&aac_cdevsw, unit, UID_ROOT, GID_WHEEL, 0644,
300 				 "aac%d", unit);
301 #if __FreeBSD_version > 500005
302 	(void)make_dev_alias(sc->aac_dev_t, "afa%d", unit);
303 	(void)make_dev_alias(sc->aac_dev_t, "hpn%d", unit);
304 #endif
305 	sc->aac_dev_t->si_drv1 = sc;
306 
307 	/* Create the AIF thread */
308 #if __FreeBSD_version > 500005
309 	if (kthread_create((void(*)(void *))aac_host_command, sc,
310 			   &sc->aifthread, 0, "aac%daif", unit))
311 #else
312 	if (kthread_create((void(*)(void *))aac_host_command, sc,
313 			   &sc->aifthread, "aac%daif", unit))
314 #endif
315 		panic("Could not create AIF thread\n");
316 
317 	/* Register the shutdown method to only be called post-dump */
318 	if ((EVENTHANDLER_REGISTER(shutdown_final, aac_shutdown, sc->aac_dev,
319 				   SHUTDOWN_PRI_DEFAULT)) == NULL)
320 	device_printf(sc->aac_dev, "shutdown event registration failed\n");
321 
322 	return(0);
323 }
324 
325 /*
326  * Probe for containers, create disks.
327  */
328 static void
329 aac_startup(void *arg)
330 {
331 	struct aac_softc *sc;
332 	struct aac_mntinfo mi;
333 	struct aac_mntinforesponse mir;
334 	u_int16_t rsize;
335 	int i = 0;
336 
337 	debug_called(1);
338 
339 	sc = (struct aac_softc *)arg;
340 
341 	/* disconnect ourselves from the intrhook chain */
342 	config_intrhook_disestablish(&sc->aac_ich);
343 
344 	/* loop over possible containers */
345 	mi.Command = VM_NameServe;
346 	mi.MntType = FT_FILESYS;
347 	do {
348 		/* request information on this container */
349 		mi.MntCount = i;
350 		rsize = sizeof(mir);
351 		if (aac_sync_fib(sc, ContainerCommand, 0, &mi,
352 				 sizeof(struct aac_mntinfo), &mir, &rsize)) {
353 			debug(2, "error probing container %d", i);
354 			continue;
355 		}
356 		/* check response size */
357 		if (rsize != sizeof(mir)) {
358 			debug(2, "container info response wrong size "
359 			      "(%d should be %d)", rsize, sizeof(mir));
360 			continue;
361 		}
362 
363 		aac_add_container(sc, &mir, 0);
364 		i++;
365 	} while ((i < mir.MntRespCount) && (i < AAC_MAX_CONTAINERS));
366 
367 	/* poke the bus to actually attach the child devices */
368 	if (bus_generic_attach(sc->aac_dev))
369 		device_printf(sc->aac_dev, "bus_generic_attach failed\n");
370 
371 	/* mark the controller up */
372 	sc->aac_state &= ~AAC_STATE_SUSPEND;
373 
374 	/* enable interrupts now */
375 	AAC_UNMASK_INTERRUPTS(sc);
376 
377 	/* enable the timeout watchdog */
378 	timeout((timeout_t*)aac_timeout, sc, AAC_PERIODIC_INTERVAL * hz);
379 }
380 
381 /*
382  * Create a device to respresent a new container
383  */
384 static void
385 aac_add_container(struct aac_softc *sc, struct aac_mntinforesponse *mir, int f)
386 {
387 	struct aac_container *co;
388 	device_t child;
389 
390 	/*
391 	 * Check container volume type for validity.  Note that many of
392 	 * the possible types may never show up.
393 	 */
394 	if ((mir->Status == ST_OK) && (mir->MntTable[0].VolType != CT_NONE)) {
395 		MALLOC(co, struct aac_container *, sizeof *co, M_AACBUF,
396 		       M_NOWAIT);
397 		if (co == NULL)
398 			panic("Out of memory?!\n");
399 		debug(1, "id %x  name '%.16s'  size %u  type %d",
400 		      mir->MntTable[0].ObjectId,
401 		      mir->MntTable[0].FileSystemName,
402 		      mir->MntTable[0].Capacity, mir->MntTable[0].VolType);
403 
404 		if ((child = device_add_child(sc->aac_dev, NULL, -1)) == NULL)
405 			device_printf(sc->aac_dev, "device_add_child failed\n");
406 		else
407 			device_set_ivars(child, co);
408 		device_set_desc(child, aac_describe_code(aac_container_types,
409 				mir->MntTable[0].VolType));
410 		co->co_disk = child;
411 		co->co_found = f;
412 		bcopy(&mir->MntTable[0], &co->co_mntobj,
413 		      sizeof(struct aac_mntobj));
414 		AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
415 		TAILQ_INSERT_TAIL(&sc->aac_container_tqh, co, co_link);
416 		AAC_LOCK_RELEASE(&sc->aac_container_lock);
417 	}
418 }
419 
420 /*
421  * Free all of the resources associated with (sc)
422  *
423  * Should not be called if the controller is active.
424  */
425 void
426 aac_free(struct aac_softc *sc)
427 {
428 	debug_called(1);
429 
430 	/* remove the control device */
431 	if (sc->aac_dev_t != NULL)
432 		destroy_dev(sc->aac_dev_t);
433 
434 	/* throw away any FIB buffers, discard the FIB DMA tag */
435 	if (sc->aac_fibs != NULL)
436 		aac_free_commands(sc);
437 	if (sc->aac_fib_dmat)
438 		bus_dma_tag_destroy(sc->aac_fib_dmat);
439 
440 	/* destroy the common area */
441 	if (sc->aac_common) {
442 		bus_dmamap_unload(sc->aac_common_dmat, sc->aac_common_dmamap);
443 		bus_dmamem_free(sc->aac_common_dmat, sc->aac_common,
444 				sc->aac_common_dmamap);
445 	}
446 	if (sc->aac_common_dmat)
447 		bus_dma_tag_destroy(sc->aac_common_dmat);
448 
449 	/* disconnect the interrupt handler */
450 	if (sc->aac_intr)
451 		bus_teardown_intr(sc->aac_dev, sc->aac_irq, sc->aac_intr);
452 	if (sc->aac_irq != NULL)
453 		bus_release_resource(sc->aac_dev, SYS_RES_IRQ, sc->aac_irq_rid,
454 				     sc->aac_irq);
455 
456 	/* destroy data-transfer DMA tag */
457 	if (sc->aac_buffer_dmat)
458 		bus_dma_tag_destroy(sc->aac_buffer_dmat);
459 
460 	/* destroy the parent DMA tag */
461 	if (sc->aac_parent_dmat)
462 		bus_dma_tag_destroy(sc->aac_parent_dmat);
463 
464 	/* release the register window mapping */
465 	if (sc->aac_regs_resource != NULL)
466 		bus_release_resource(sc->aac_dev, SYS_RES_MEMORY,
467 				     sc->aac_regs_rid, sc->aac_regs_resource);
468 }
469 
470 /*
471  * Disconnect from the controller completely, in preparation for unload.
472  */
473 int
474 aac_detach(device_t dev)
475 {
476 	struct aac_softc *sc;
477 #if AAC_BROKEN
478 	int error;
479 #endif
480 
481 	debug_called(1);
482 
483 	sc = device_get_softc(dev);
484 
485 	if (sc->aac_state & AAC_STATE_OPEN)
486 	return(EBUSY);
487 
488 #if AAC_BROKEN
489 	if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
490 		sc->aifflags |= AAC_AIFFLAGS_EXIT;
491 		wakeup(sc->aifthread);
492 		tsleep(sc->aac_dev, PUSER | PCATCH, "aacdch", 30 * hz);
493 	}
494 
495 	if (sc->aifflags & AAC_AIFFLAGS_RUNNING)
496 		panic("Cannot shutdown AIF thread\n");
497 
498 	if ((error = aac_shutdown(dev)))
499 		return(error);
500 
501 	aac_free(sc);
502 
503 	return(0);
504 #else
505 	return (EBUSY);
506 #endif
507 }
508 
509 /*
510  * Bring the controller down to a dormant state and detach all child devices.
511  *
512  * This function is called before detach or system shutdown.
513  *
514  * Note that we can assume that the bioq on the controller is empty, as we won't
515  * allow shutdown if any device is open.
516  */
517 int
518 aac_shutdown(device_t dev)
519 {
520 	struct aac_softc *sc;
521 	struct aac_close_command cc;
522 	int s, i;
523 
524 	debug_called(1);
525 
526 	sc = device_get_softc(dev);
527 
528 	s = splbio();
529 
530 	sc->aac_state |= AAC_STATE_SUSPEND;
531 
532 	/*
533 	 * Send a Container shutdown followed by a HostShutdown FIB to the
534 	 * controller to convince it that we don't want to talk to it anymore.
535 	 * We've been closed and all I/O completed already
536 	 */
537 	device_printf(sc->aac_dev, "shutting down controller...");
538 
539 	cc.Command = VM_CloseAll;
540 	cc.ContainerId = 0xffffffff;
541 	if (aac_sync_fib(sc, ContainerCommand, 0, &cc, sizeof(cc), NULL, NULL))
542 		printf("FAILED.\n");
543 	else {
544 		i = 0;
545 		/*
546 		 * XXX Issuing this command to the controller makes it shut down
547 		 * but also keeps it from coming back up without a reset of the
548 		 * PCI bus.  This is not desirable if you are just unloading the
549 		 * driver module with the intent to reload it later.
550 		 */
551 		if (aac_sync_fib(sc, FsaHostShutdown, AAC_FIBSTATE_SHUTDOWN, &i,
552 				 sizeof(i), NULL, NULL)) {
553 			printf("FAILED.\n");
554 		} else {
555 			printf("done.\n");
556 		}
557 	}
558 
559 	AAC_MASK_INTERRUPTS(sc);
560 
561 	splx(s);
562 	return(0);
563 }
564 
565 /*
566  * Bring the controller to a quiescent state, ready for system suspend.
567  */
568 int
569 aac_suspend(device_t dev)
570 {
571 	struct aac_softc *sc;
572 	int s;
573 
574 	debug_called(1);
575 
576 	sc = device_get_softc(dev);
577 
578 	s = splbio();
579 
580 	sc->aac_state |= AAC_STATE_SUSPEND;
581 
582 	AAC_MASK_INTERRUPTS(sc);
583 	splx(s);
584 	return(0);
585 }
586 
587 /*
588  * Bring the controller back to a state ready for operation.
589  */
590 int
591 aac_resume(device_t dev)
592 {
593 	struct aac_softc *sc;
594 
595 	debug_called(1);
596 
597 	sc = device_get_softc(dev);
598 
599 	sc->aac_state &= ~AAC_STATE_SUSPEND;
600 	AAC_UNMASK_INTERRUPTS(sc);
601 	return(0);
602 }
603 
604 /*
605  * Take an interrupt.
606  */
607 void
608 aac_intr(void *arg)
609 {
610 	struct aac_softc *sc;
611 	u_int16_t reason;
612 
613 	debug_called(2);
614 
615 	sc = (struct aac_softc *)arg;
616 
617 	reason = AAC_GET_ISTATUS(sc);
618 
619 	/* controller wants to talk to the log */
620 	if (reason & AAC_DB_PRINTF) {
621 		AAC_CLEAR_ISTATUS(sc, AAC_DB_PRINTF);
622 		aac_print_printf(sc);
623 	}
624 
625 	/* controller has a message for us? */
626 	if (reason & AAC_DB_COMMAND_READY) {
627 		AAC_CLEAR_ISTATUS(sc, AAC_DB_COMMAND_READY);
628 		/* XXX What happens if the thread is already awake? */
629 		if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
630 			sc->aifflags |= AAC_AIFFLAGS_PENDING;
631 			wakeup(sc->aifthread);
632 		}
633 	}
634 
635 	/* controller has a response for us? */
636 	if (reason & AAC_DB_RESPONSE_READY) {
637 		AAC_CLEAR_ISTATUS(sc, AAC_DB_RESPONSE_READY);
638 		aac_host_response(sc);
639 	}
640 
641 	/*
642 	 * spurious interrupts that we don't use - reset the mask and clear the
643 	 * interrupts
644 	 */
645 	if (reason & (AAC_DB_COMMAND_NOT_FULL | AAC_DB_RESPONSE_NOT_FULL)) {
646 		AAC_UNMASK_INTERRUPTS(sc);
647 		AAC_CLEAR_ISTATUS(sc, AAC_DB_COMMAND_NOT_FULL |
648 				  AAC_DB_RESPONSE_NOT_FULL);
649 	}
650 };
651 
652 /*
653  * Command Processing
654  */
655 
656 /*
657  * Start as much queued I/O as possible on the controller
658  */
659 static void
660 aac_startio(struct aac_softc *sc)
661 {
662 	struct aac_command *cm;
663 
664 	debug_called(2);
665 
666 	for (;;) {
667 		/*
668 		 * Try to get a command that's been put off for lack of
669 		 * resources
670 		 */
671 		cm = aac_dequeue_ready(sc);
672 
673 		/*
674 		 * Try to build a command off the bio queue (ignore error
675 		 * return)
676 		 */
677 		if (cm == NULL)
678 			aac_bio_command(sc, &cm);
679 
680 		/* nothing to do? */
681 		if (cm == NULL)
682 			break;
683 
684 		/* try to give the command to the controller */
685 		if (aac_start(cm) == EBUSY) {
686 			/* put it on the ready queue for later */
687 			aac_requeue_ready(cm);
688 			break;
689 		}
690 	}
691 }
692 
693 /*
694  * Deliver a command to the controller; allocate controller resources at the
695  * last moment when possible.
696  */
697 static int
698 aac_start(struct aac_command *cm)
699 {
700 	struct aac_softc *sc;
701 	int error;
702 
703 	debug_called(2);
704 
705 	sc = cm->cm_sc;
706 
707 	/* get the command mapped */
708 	aac_map_command(cm);
709 
710 	/* fix up the address values in the FIB */
711 	cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
712 	cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys;
713 
714 	/* save a pointer to the command for speedy reverse-lookup */
715 	cm->cm_fib->Header.SenderData = (u_int32_t)cm;	/* XXX 64-bit physical
716 							 * address issue */
717 
718 	/* put the FIB on the outbound queue */
719 	error = aac_enqueue_fib(sc, cm->cm_queue, cm);
720 	return(error);
721 }
722 
723 /*
724  * Handle notification of one or more FIBs coming from the controller.
725  */
726 static void
727 aac_host_command(struct aac_softc *sc)
728 {
729 	struct aac_fib *fib;
730 	u_int32_t fib_size;
731 	int size;
732 
733 	debug_called(2);
734 
735 	sc->aifflags |= AAC_AIFFLAGS_RUNNING;
736 
737 	while (!(sc->aifflags & AAC_AIFFLAGS_EXIT)) {
738 		if (!(sc->aifflags & AAC_AIFFLAGS_PENDING))
739 			tsleep(sc->aifthread, PRIBIO, "aifthd", 15 * hz);
740 
741 		sc->aifflags &= ~AAC_AIFFLAGS_PENDING;
742 		for (;;) {
743 			if (aac_dequeue_fib(sc, AAC_HOST_NORM_CMD_QUEUE,
744 					    &fib_size, &fib))
745 				break;	/* nothing to do */
746 
747 			AAC_PRINT_FIB(sc, fib);
748 
749 			switch (fib->Header.Command) {
750 			case AifRequest:
751 				aac_handle_aif(sc, fib);
752 				break;
753 			default:
754 				device_printf(sc->aac_dev, "unknown command "
755 					      "from controller\n");
756 				break;
757 			}
758 
759 			/* Return the AIF to the controller. */
760 			if ((fib->Header.XferState == 0) ||
761 			    (fib->Header.StructType != AAC_FIBTYPE_TFIB))
762 				break;
763 
764 			if (fib->Header.XferState & AAC_FIBSTATE_FROMADAP) {
765 				fib->Header.XferState |= AAC_FIBSTATE_DONEHOST;
766 				*(AAC_FSAStatus*)fib->data = ST_OK;
767 
768 				/* XXX Compute the Size field? */
769 				size = fib->Header.Size;
770 				if (size > sizeof(struct aac_fib)) {
771 	 				size = sizeof(struct aac_fib);
772 					fib->Header.Size = size;
773 				}
774 				/*
775 				 * Since we did not generate this command, it
776 				 * cannot go through the normal
777 				 * enqueue->startio chain.
778 				 */
779 				aac_enqueue_response(sc,
780 						     AAC_ADAP_NORM_RESP_QUEUE,
781 						     fib);
782 			}
783 		}
784 	}
785 	sc->aifflags &= ~AAC_AIFFLAGS_RUNNING;
786 	wakeup(sc->aac_dev);
787 
788 #if __FreeBSD_version > 500005
789 	mtx_lock(&Giant);
790 #endif
791 	kthread_exit(0);
792 }
793 
794 /*
795  * Handle notification of one or more FIBs completed by the controller
796  */
797 static void
798 aac_host_response(struct aac_softc *sc)
799 {
800 	struct aac_command *cm;
801 	struct aac_fib *fib;
802 	u_int32_t fib_size;
803 
804 	debug_called(2);
805 
806 	for (;;) {
807 		/* look for completed FIBs on our queue */
808 		if (aac_dequeue_fib(sc, AAC_HOST_NORM_RESP_QUEUE, &fib_size,
809 				    &fib))
810 			break;	/* nothing to do */
811 
812 		/* get the command, unmap and queue for later processing */
813 		cm = (struct aac_command *)fib->Header.SenderData;
814 		if (cm == NULL) {
815 			AAC_PRINT_FIB(sc, fib);
816 		} else {
817 			aac_remove_busy(cm);
818 			aac_unmap_command(cm);		/* XXX defer? */
819 			aac_enqueue_complete(cm);
820 		}
821 	}
822 
823 	/* handle completion processing */
824 #if __FreeBSD_version >= 500005
825 	taskqueue_enqueue(taskqueue_swi, &sc->aac_task_complete);
826 #else
827 	aac_complete(sc, 0);
828 #endif
829 }
830 
831 /*
832  * Process completed commands.
833  */
834 static void
835 aac_complete(void *context, int pending)
836 {
837 	struct aac_softc *sc;
838 	struct aac_command *cm;
839 
840 	debug_called(2);
841 
842 	sc = (struct aac_softc *)context;
843 
844 	/* pull completed commands off the queue */
845 	for (;;) {
846 		cm = aac_dequeue_complete(sc);
847 		if (cm == NULL)
848 			break;
849 		cm->cm_flags |= AAC_CMD_COMPLETED;
850 
851 		/* is there a completion handler? */
852 		if (cm->cm_complete != NULL) {
853 			cm->cm_complete(cm);
854 		} else {
855 			/* assume that someone is sleeping on this command */
856 			wakeup(cm);
857 		}
858 	}
859 
860 	/* see if we can start some more I/O */
861 	aac_startio(sc);
862 }
863 
864 /*
865  * Handle a bio submitted from a disk device.
866  */
867 void
868 aac_submit_bio(struct bio *bp)
869 {
870 	struct aac_disk *ad;
871 	struct aac_softc *sc;
872 
873 	debug_called(2);
874 
875 	ad = (struct aac_disk *)bp->bio_dev->si_drv1;
876 	sc = ad->ad_controller;
877 
878 	/* queue the BIO and try to get some work done */
879 	aac_enqueue_bio(sc, bp);
880 	aac_startio(sc);
881 }
882 
883 /*
884  * Get a bio and build a command to go with it.
885  */
886 static int
887 aac_bio_command(struct aac_softc *sc, struct aac_command **cmp)
888 {
889 	struct aac_command *cm;
890 	struct aac_fib *fib;
891 	struct aac_blockread *br;
892 	struct aac_blockwrite *bw;
893 	struct aac_disk *ad;
894 	struct bio *bp;
895 
896 	debug_called(2);
897 
898 	/* get the resources we will need */
899 	cm = NULL;
900 	if ((bp = aac_dequeue_bio(sc)) == NULL)
901 		goto fail;
902 	if (aac_alloc_command(sc, &cm))	/* get a command */
903 		goto fail;
904 
905 	/* fill out the command */
906 	cm->cm_data = (void *)bp->bio_data;
907 	cm->cm_datalen = bp->bio_bcount;
908 	cm->cm_complete = aac_bio_complete;
909 	cm->cm_private = bp;
910 	cm->cm_timestamp = time_second;
911 	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
912 
913 	/* build the FIB */
914 	fib = cm->cm_fib;
915 	fib->Header.XferState =
916 	AAC_FIBSTATE_HOSTOWNED   |
917 	AAC_FIBSTATE_INITIALISED |
918 	AAC_FIBSTATE_FROMHOST	 |
919 	AAC_FIBSTATE_REXPECTED   |
920 	AAC_FIBSTATE_NORM;
921 	fib->Header.Command = ContainerCommand;
922 	fib->Header.Size = sizeof(struct aac_fib_header);
923 
924 	/* build the read/write request */
925 	ad = (struct aac_disk *)bp->bio_dev->si_drv1;
926 	if (BIO_IS_READ(bp)) {
927 		br = (struct aac_blockread *)&fib->data[0];
928 		br->Command = VM_CtBlockRead;
929 		br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
930 		br->BlockNumber = bp->bio_pblkno;
931 		br->ByteCount = bp->bio_bcount;
932 		fib->Header.Size += sizeof(struct aac_blockread);
933 		cm->cm_sgtable = &br->SgMap;
934 		cm->cm_flags |= AAC_CMD_DATAIN;
935 	} else {
936 		bw = (struct aac_blockwrite *)&fib->data[0];
937 		bw->Command = VM_CtBlockWrite;
938 		bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
939 		bw->BlockNumber = bp->bio_pblkno;
940 		bw->ByteCount = bp->bio_bcount;
941 		bw->Stable = CUNSTABLE;	/* XXX what's appropriate here? */
942 		fib->Header.Size += sizeof(struct aac_blockwrite);
943 		cm->cm_flags |= AAC_CMD_DATAOUT;
944 		cm->cm_sgtable = &bw->SgMap;
945 	}
946 
947 	*cmp = cm;
948 	return(0);
949 
950 fail:
951 	if (bp != NULL)
952 		aac_enqueue_bio(sc, bp);
953 	if (cm != NULL)
954 		aac_release_command(cm);
955 	return(ENOMEM);
956 }
957 
958 /*
959  * Handle a bio-instigated command that has been completed.
960  */
961 static void
962 aac_bio_complete(struct aac_command *cm)
963 {
964 	struct aac_blockread_response *brr;
965 	struct aac_blockwrite_response *bwr;
966 	struct bio *bp;
967 	AAC_FSAStatus status;
968 
969 	/* fetch relevant status and then release the command */
970 	bp = (struct bio *)cm->cm_private;
971 	if (BIO_IS_READ(bp)) {
972 		brr = (struct aac_blockread_response *)&cm->cm_fib->data[0];
973 		status = brr->Status;
974 	} else {
975 		bwr = (struct aac_blockwrite_response *)&cm->cm_fib->data[0];
976 		status = bwr->Status;
977 	}
978 	aac_release_command(cm);
979 
980 	/* fix up the bio based on status */
981 	if (status == ST_OK) {
982 		bp->bio_resid = 0;
983 	} else {
984 		bp->bio_error = EIO;
985 		bp->bio_flags |= BIO_ERROR;
986 		/* pass an error string out to the disk layer */
987 		bp->bio_driver1 = aac_describe_code(aac_command_status_table,
988 						    status);
989 	}
990 	aac_biodone(bp);
991 }
992 
993 /*
994  * Dump a block of data to the controller.  If the queue is full, tell the
995  * caller to hold off and wait for the queue to drain.
996  */
997 int
998 aac_dump_enqueue(struct aac_disk *ad, u_int32_t lba, void *data, int dumppages)
999 {
1000 	struct aac_softc *sc;
1001 	struct aac_command *cm;
1002 	struct aac_fib *fib;
1003 	struct aac_blockwrite *bw;
1004 
1005 	sc = ad->ad_controller;
1006 	cm = NULL;
1007 
1008 	if (aac_alloc_command(sc, &cm))
1009 		return (EBUSY);
1010 
1011 	/* fill out the command */
1012 	cm->cm_data = data;
1013 	cm->cm_datalen = dumppages * PAGE_SIZE;
1014 	cm->cm_complete = NULL;
1015 	cm->cm_private = NULL;
1016 	cm->cm_timestamp = time_second;
1017 	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1018 
1019 	/* build the FIB */
1020 	fib = cm->cm_fib;
1021 	fib->Header.XferState =
1022 	AAC_FIBSTATE_HOSTOWNED   |
1023 	AAC_FIBSTATE_INITIALISED |
1024 	AAC_FIBSTATE_FROMHOST	 |
1025 	AAC_FIBSTATE_REXPECTED   |
1026 	AAC_FIBSTATE_NORM;
1027 	fib->Header.Command = ContainerCommand;
1028 	fib->Header.Size = sizeof(struct aac_fib_header);
1029 
1030 	bw = (struct aac_blockwrite *)&fib->data[0];
1031 	bw->Command = VM_CtBlockWrite;
1032 	bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
1033 	bw->BlockNumber = lba;
1034 	bw->ByteCount = dumppages * PAGE_SIZE;
1035 	bw->Stable = CUNSTABLE;		/* XXX what's appropriate here? */
1036 	fib->Header.Size += sizeof(struct aac_blockwrite);
1037 	cm->cm_flags |= AAC_CMD_DATAOUT;
1038 	cm->cm_sgtable = &bw->SgMap;
1039 
1040 	return (aac_start(cm));
1041 }
1042 
1043 /*
1044  * Wait for the card's queue to drain when dumping.  Also check for monitor
1045  * printf's
1046  */
1047 void
1048 aac_dump_complete(struct aac_softc *sc)
1049 {
1050 	struct aac_fib *fib;
1051 	struct aac_command *cm;
1052 	u_int16_t reason;
1053 	u_int32_t pi, ci, fib_size;
1054 
1055 	do {
1056 		reason = AAC_GET_ISTATUS(sc);
1057 		if (reason & AAC_DB_RESPONSE_READY) {
1058 			AAC_CLEAR_ISTATUS(sc, AAC_DB_RESPONSE_READY);
1059 			for (;;) {
1060 				if (aac_dequeue_fib(sc,
1061 						    AAC_HOST_NORM_RESP_QUEUE,
1062 						    &fib_size, &fib))
1063 					break;
1064 				cm = (struct aac_command *)
1065 					fib->Header.SenderData;
1066 				if (cm == NULL)
1067 					AAC_PRINT_FIB(sc, fib);
1068 				else {
1069 					aac_remove_busy(cm);
1070 					aac_unmap_command(cm);
1071 					aac_enqueue_complete(cm);
1072 					aac_release_command(cm);
1073 				}
1074 			}
1075 		}
1076 		if (reason & AAC_DB_PRINTF) {
1077 			AAC_CLEAR_ISTATUS(sc, AAC_DB_PRINTF);
1078 			aac_print_printf(sc);
1079 		}
1080 		pi = sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][
1081 			AAC_PRODUCER_INDEX];
1082 		ci = sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][
1083 			AAC_CONSUMER_INDEX];
1084 	} while (ci != pi);
1085 
1086 	return;
1087 }
1088 
1089 /*
1090  * Submit a command to the controller, return when it completes.
1091  * XXX This is very dangerous!  If the card has gone out to lunch, we could
1092  *     be stuck here forever.  At the same time, signals are not caught
1093  *     because there is a risk that a signal could wakeup the tsleep before
1094  *     the card has a chance to complete the command.  The passed in timeout
1095  *     is ignored for the same reason.  Since there is no way to cancel a
1096  *     command in progress, we should probably create a 'dead' queue where
1097  *     commands go that have been interrupted/timed-out/etc, that keeps them
1098  *     out of the free pool.  That way, if the card is just slow, it won't
1099  *     spam the memory of a command that has been recycled.
1100  */
1101 static int
1102 aac_wait_command(struct aac_command *cm, int timeout)
1103 {
1104 	int s, error = 0;
1105 
1106 	debug_called(2);
1107 
1108 	/* Put the command on the ready queue and get things going */
1109 	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1110 	aac_enqueue_ready(cm);
1111 	aac_startio(cm->cm_sc);
1112 	s = splbio();
1113 	while (!(cm->cm_flags & AAC_CMD_COMPLETED) && (error != EWOULDBLOCK)) {
1114 		error = tsleep(cm, PRIBIO, "aacwait", 0);
1115 	}
1116 	splx(s);
1117 	return(error);
1118 }
1119 
1120 /*
1121  *Command Buffer Management
1122  */
1123 
1124 /*
1125  * Allocate a command.
1126  */
1127 static int
1128 aac_alloc_command(struct aac_softc *sc, struct aac_command **cmp)
1129 {
1130 	struct aac_command *cm;
1131 
1132 	debug_called(3);
1133 
1134 	if ((cm = aac_dequeue_free(sc)) == NULL)
1135 		return(ENOMEM);
1136 
1137 	*cmp = cm;
1138 	return(0);
1139 }
1140 
1141 /*
1142  * Release a command back to the freelist.
1143  */
1144 static void
1145 aac_release_command(struct aac_command *cm)
1146 {
1147 	debug_called(3);
1148 
1149 	/* (re)initialise the command/FIB */
1150 	cm->cm_sgtable = NULL;
1151 	cm->cm_flags = 0;
1152 	cm->cm_complete = NULL;
1153 	cm->cm_private = NULL;
1154 	cm->cm_fib->Header.XferState = AAC_FIBSTATE_EMPTY;
1155 	cm->cm_fib->Header.StructType = AAC_FIBTYPE_TFIB;
1156 	cm->cm_fib->Header.Flags = 0;
1157 	cm->cm_fib->Header.SenderSize = sizeof(struct aac_fib);
1158 
1159 	/*
1160 	 * These are duplicated in aac_start to cover the case where an
1161 	 * intermediate stage may have destroyed them.  They're left
1162 	 * initialised here for debugging purposes only.
1163 	 */
1164 	cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
1165 	cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys;
1166 
1167 	aac_enqueue_free(cm);
1168 }
1169 
1170 /*
1171  * Map helper for command/FIB allocation.
1172  */
1173 static void
1174 aac_map_command_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1175 {
1176 	struct aac_softc *sc;
1177 
1178 	sc = (struct aac_softc *)arg;
1179 
1180 	debug_called(3);
1181 
1182 	sc->aac_fibphys = segs[0].ds_addr;
1183 }
1184 
1185 /*
1186  * Allocate and initialise commands/FIBs for this adapter.
1187  */
1188 static int
1189 aac_alloc_commands(struct aac_softc *sc)
1190 {
1191 	struct aac_command *cm;
1192 	int i;
1193 
1194 	debug_called(1);
1195 
1196 	/* allocate the FIBs in DMAable memory and load them */
1197 	if (bus_dmamem_alloc(sc->aac_fib_dmat, (void **)&sc->aac_fibs,
1198 			 BUS_DMA_NOWAIT, &sc->aac_fibmap)) {
1199 		return(ENOMEM);
1200 	}
1201 	bus_dmamap_load(sc->aac_fib_dmat, sc->aac_fibmap, sc->aac_fibs,
1202 			AAC_FIB_COUNT * sizeof(struct aac_fib),
1203 			aac_map_command_helper, sc, 0);
1204 
1205 	/* initialise constant fields in the command structure */
1206 	for (i = 0; i < AAC_FIB_COUNT; i++) {
1207 		cm = &sc->aac_command[i];
1208 		cm->cm_sc = sc;
1209 		cm->cm_fib = sc->aac_fibs + i;
1210 		cm->cm_fibphys = sc->aac_fibphys + (i * sizeof(struct aac_fib));
1211 
1212 		if (!bus_dmamap_create(sc->aac_buffer_dmat, 0, &cm->cm_datamap))
1213 			aac_release_command(cm);
1214 	}
1215 	return(0);
1216 }
1217 
1218 /*
1219  * Free FIBs owned by this adapter.
1220  */
1221 static void
1222 aac_free_commands(struct aac_softc *sc)
1223 {
1224 	int i;
1225 
1226 	debug_called(1);
1227 
1228 	for (i = 0; i < AAC_FIB_COUNT; i++)
1229 		bus_dmamap_destroy(sc->aac_buffer_dmat,
1230 				   sc->aac_command[i].cm_datamap);
1231 
1232 	bus_dmamap_unload(sc->aac_fib_dmat, sc->aac_fibmap);
1233 	bus_dmamem_free(sc->aac_fib_dmat, sc->aac_fibs, sc->aac_fibmap);
1234 }
1235 
1236 /*
1237  * Command-mapping helper function - populate this command's s/g table.
1238  */
1239 static void
1240 aac_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1241 {
1242 	struct aac_command *cm;
1243 	struct aac_fib *fib;
1244 	struct aac_sg_table *sg;
1245 	int i;
1246 
1247 	debug_called(3);
1248 
1249 	cm = (struct aac_command *)arg;
1250 	fib = cm->cm_fib;
1251 
1252 	/* find the s/g table */
1253 	sg = cm->cm_sgtable;
1254 
1255 	/* copy into the FIB */
1256 	if (sg != NULL) {
1257 		sg->SgCount = nseg;
1258 		for (i = 0; i < nseg; i++) {
1259 			sg->SgEntry[i].SgAddress = segs[i].ds_addr;
1260 			sg->SgEntry[i].SgByteCount = segs[i].ds_len;
1261 		}
1262 		/* update the FIB size for the s/g count */
1263 		fib->Header.Size += nseg * sizeof(struct aac_sg_entry);
1264 	}
1265 
1266 }
1267 
1268 /*
1269  * Map a command into controller-visible space.
1270  */
1271 static void
1272 aac_map_command(struct aac_command *cm)
1273 {
1274 	struct aac_softc *sc;
1275 
1276 	debug_called(2);
1277 
1278 	sc = cm->cm_sc;
1279 
1280 	/* don't map more than once */
1281 	if (cm->cm_flags & AAC_CMD_MAPPED)
1282 		return;
1283 
1284 	if (cm->cm_datalen != 0) {
1285 		bus_dmamap_load(sc->aac_buffer_dmat, cm->cm_datamap,
1286 				cm->cm_data, cm->cm_datalen,
1287 				aac_map_command_sg, cm, 0);
1288 
1289 	if (cm->cm_flags & AAC_CMD_DATAIN)
1290 		bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1291 				BUS_DMASYNC_PREREAD);
1292 	if (cm->cm_flags & AAC_CMD_DATAOUT)
1293 		bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1294 				BUS_DMASYNC_PREWRITE);
1295 	}
1296 	cm->cm_flags |= AAC_CMD_MAPPED;
1297 }
1298 
1299 /*
1300  * Unmap a command from controller-visible space.
1301  */
1302 static void
1303 aac_unmap_command(struct aac_command *cm)
1304 {
1305 	struct aac_softc *sc;
1306 
1307 	debug_called(2);
1308 
1309 	sc = cm->cm_sc;
1310 
1311 	if (!(cm->cm_flags & AAC_CMD_MAPPED))
1312 		return;
1313 
1314 	if (cm->cm_datalen != 0) {
1315 		if (cm->cm_flags & AAC_CMD_DATAIN)
1316 			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1317 					BUS_DMASYNC_POSTREAD);
1318 		if (cm->cm_flags & AAC_CMD_DATAOUT)
1319 			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1320 					BUS_DMASYNC_POSTWRITE);
1321 
1322 		bus_dmamap_unload(sc->aac_buffer_dmat, cm->cm_datamap);
1323 	}
1324 	cm->cm_flags &= ~AAC_CMD_MAPPED;
1325 }
1326 
1327 /*
1328  * Hardware Interface
1329  */
1330 
1331 /*
1332  * Initialise the adapter.
1333  */
1334 static void
1335 aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1336 {
1337 	struct aac_softc *sc;
1338 
1339 	debug_called(1);
1340 
1341 	sc = (struct aac_softc *)arg;
1342 
1343 	sc->aac_common_busaddr = segs[0].ds_addr;
1344 }
1345 
1346 static int
1347 aac_init(struct aac_softc *sc)
1348 {
1349 	struct aac_adapter_init	*ip;
1350 	time_t then;
1351 	u_int32_t code;
1352 	u_int8_t *qaddr;
1353 
1354 	debug_called(1);
1355 
1356 	/*
1357 	 * First wait for the adapter to come ready.
1358 	 */
1359 	then = time_second;
1360 	do {
1361 		code = AAC_GET_FWSTATUS(sc);
1362 		if (code & AAC_SELF_TEST_FAILED) {
1363 			device_printf(sc->aac_dev, "FATAL: selftest failed\n");
1364 			return(ENXIO);
1365 		}
1366 		if (code & AAC_KERNEL_PANIC) {
1367 			device_printf(sc->aac_dev,
1368 				      "FATAL: controller kernel panic\n");
1369 			return(ENXIO);
1370 		}
1371 		if (time_second > (then + AAC_BOOT_TIMEOUT)) {
1372 			device_printf(sc->aac_dev,
1373 				      "FATAL: controller not coming ready, "
1374 					   "status %x\n", code);
1375 			return(ENXIO);
1376 		}
1377 	} while (!(code & AAC_UP_AND_RUNNING));
1378 
1379 	/*
1380 	 * Create DMA tag for the common structure and allocate it.
1381 	 */
1382 	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1383 			       1, 0, 			/* algnmnt, boundary */
1384 			       BUS_SPACE_MAXADDR,	/* lowaddr */
1385 			       BUS_SPACE_MAXADDR, 	/* highaddr */
1386 			       NULL, NULL, 		/* filter, filterarg */
1387 			       sizeof(struct aac_common), /* maxsize */
1388 			       1,			/* nsegments */
1389 			       BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1390 			       0,			/* flags */
1391 			       &sc->aac_common_dmat)) {
1392 		device_printf(sc->aac_dev,
1393 			      "can't allocate common structure DMA tag\n");
1394 		return(ENOMEM);
1395 	}
1396 	if (bus_dmamem_alloc(sc->aac_common_dmat, (void **)&sc->aac_common,
1397 			     BUS_DMA_NOWAIT, &sc->aac_common_dmamap)) {
1398 		device_printf(sc->aac_dev, "can't allocate common structure\n");
1399 		return(ENOMEM);
1400 	}
1401 	bus_dmamap_load(sc->aac_common_dmat, sc->aac_common_dmamap,
1402 			sc->aac_common, sizeof(*sc->aac_common), aac_common_map,
1403 		        sc, 0);
1404 	bzero(sc->aac_common, sizeof(*sc->aac_common));
1405 
1406 	/*
1407 	 * Fill in the init structure.  This tells the adapter about the
1408 	 * physical location of various important shared data structures.
1409 	 */
1410 	ip = &sc->aac_common->ac_init;
1411 	ip->InitStructRevision = AAC_INIT_STRUCT_REVISION;
1412 
1413 	ip->AdapterFibsPhysicalAddress = sc->aac_common_busaddr +
1414 					 offsetof(struct aac_common, ac_fibs);
1415 	ip->AdapterFibsVirtualAddress = &sc->aac_common->ac_fibs[0];
1416 	ip->AdapterFibsSize = AAC_ADAPTER_FIBS * sizeof(struct aac_fib);
1417 	ip->AdapterFibAlign = sizeof(struct aac_fib);
1418 
1419 	ip->PrintfBufferAddress = sc->aac_common_busaddr +
1420 				  offsetof(struct aac_common, ac_printf);
1421 	ip->PrintfBufferSize = AAC_PRINTF_BUFSIZE;
1422 
1423 	ip->HostPhysMemPages = 0;		/* not used? */
1424 	ip->HostElapsedSeconds = time_second;	/* reset later if invalid */
1425 
1426 	/*
1427 	 * Initialise FIB queues.  Note that it appears that the layout of the
1428 	 * indexes and the segmentation of the entries may be mandated by the
1429 	 * adapter, which is only told about the base of the queue index fields.
1430 	 *
1431 	 * The initial values of the indices are assumed to inform the adapter
1432 	 * of the sizes of the respective queues, and theoretically it could
1433 	 * work out the entire layout of the queue structures from this.  We
1434 	 * take the easy route and just lay this area out like everyone else
1435 	 * does.
1436 	 *
1437 	 * The Linux driver uses a much more complex scheme whereby several
1438 	 * header records are kept for each queue.  We use a couple of generic
1439 	 * list manipulation functions which 'know' the size of each list by
1440 	 * virtue of a table.
1441 	 */
1442 	qaddr = &sc->aac_common->ac_qbuf[0] + AAC_QUEUE_ALIGN;
1443 	qaddr -= (u_int32_t)qaddr % AAC_QUEUE_ALIGN;
1444 	sc->aac_queues = (struct aac_queue_table *)qaddr;
1445 	ip->CommHeaderAddress = sc->aac_common_busaddr +
1446 				((u_int32_t)sc->aac_queues -
1447 				(u_int32_t)sc->aac_common);
1448 	bzero(sc->aac_queues, sizeof(struct aac_queue_table));
1449 
1450 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1451 		AAC_HOST_NORM_CMD_ENTRIES;
1452 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1453 		AAC_HOST_NORM_CMD_ENTRIES;
1454 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1455 		AAC_HOST_HIGH_CMD_ENTRIES;
1456 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1457 		AAC_HOST_HIGH_CMD_ENTRIES;
1458 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1459 		AAC_ADAP_NORM_CMD_ENTRIES;
1460 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1461 		AAC_ADAP_NORM_CMD_ENTRIES;
1462 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1463 		AAC_ADAP_HIGH_CMD_ENTRIES;
1464 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1465 		AAC_ADAP_HIGH_CMD_ENTRIES;
1466 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1467 		AAC_HOST_NORM_RESP_ENTRIES;
1468 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1469 		AAC_HOST_NORM_RESP_ENTRIES;
1470 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1471 		AAC_HOST_HIGH_RESP_ENTRIES;
1472 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1473 		AAC_HOST_HIGH_RESP_ENTRIES;
1474 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1475 		AAC_ADAP_NORM_RESP_ENTRIES;
1476 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1477 		AAC_ADAP_NORM_RESP_ENTRIES;
1478 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1479 		AAC_ADAP_HIGH_RESP_ENTRIES;
1480 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1481 		AAC_ADAP_HIGH_RESP_ENTRIES;
1482 	sc->aac_qentries[AAC_HOST_NORM_CMD_QUEUE] =
1483 		&sc->aac_queues->qt_HostNormCmdQueue[0];
1484 	sc->aac_qentries[AAC_HOST_HIGH_CMD_QUEUE] =
1485 		&sc->aac_queues->qt_HostHighCmdQueue[0];
1486 	sc->aac_qentries[AAC_ADAP_NORM_CMD_QUEUE] =
1487 		&sc->aac_queues->qt_AdapNormCmdQueue[0];
1488 	sc->aac_qentries[AAC_ADAP_HIGH_CMD_QUEUE] =
1489 		&sc->aac_queues->qt_AdapHighCmdQueue[0];
1490 	sc->aac_qentries[AAC_HOST_NORM_RESP_QUEUE] =
1491 		&sc->aac_queues->qt_HostNormRespQueue[0];
1492 	sc->aac_qentries[AAC_HOST_HIGH_RESP_QUEUE] =
1493 		&sc->aac_queues->qt_HostHighRespQueue[0];
1494 	sc->aac_qentries[AAC_ADAP_NORM_RESP_QUEUE] =
1495 		&sc->aac_queues->qt_AdapNormRespQueue[0];
1496 	sc->aac_qentries[AAC_ADAP_HIGH_RESP_QUEUE] =
1497 		&sc->aac_queues->qt_AdapHighRespQueue[0];
1498 
1499 	/*
1500 	 * Do controller-type-specific initialisation
1501 	 */
1502 	switch (sc->aac_hwif) {
1503 	case AAC_HWIF_I960RX:
1504 		AAC_SETREG4(sc, AAC_RX_ODBR, ~0);
1505 		break;
1506 	}
1507 
1508 	/*
1509 	 * Give the init structure to the controller.
1510 	 */
1511 	if (aac_sync_command(sc, AAC_MONKER_INITSTRUCT,
1512 			     sc->aac_common_busaddr +
1513 			     offsetof(struct aac_common, ac_init), 0, 0, 0,
1514 			     NULL)) {
1515 		device_printf(sc->aac_dev,
1516 			      "error establishing init structure\n");
1517 		return(EIO);
1518 	}
1519 
1520 	return(0);
1521 }
1522 
1523 /*
1524  * Send a synchronous command to the controller and wait for a result.
1525  */
1526 static int
1527 aac_sync_command(struct aac_softc *sc, u_int32_t command,
1528 		 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3,
1529 		 u_int32_t *sp)
1530 {
1531 	time_t then;
1532 	u_int32_t status;
1533 
1534 	debug_called(3);
1535 
1536 	/* populate the mailbox */
1537 	AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3);
1538 
1539 	/* ensure the sync command doorbell flag is cleared */
1540 	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1541 
1542 	/* then set it to signal the adapter */
1543 	AAC_QNOTIFY(sc, AAC_DB_SYNC_COMMAND);
1544 
1545 	/* spin waiting for the command to complete */
1546 	then = time_second;
1547 	do {
1548 		if (time_second > (then + AAC_IMMEDIATE_TIMEOUT)) {
1549 			debug(2, "timed out");
1550 			return(EIO);
1551 		}
1552 	} while (!(AAC_GET_ISTATUS(sc) & AAC_DB_SYNC_COMMAND));
1553 
1554 	/* clear the completion flag */
1555 	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1556 
1557 	/* get the command status */
1558 	status = AAC_GET_MAILBOXSTATUS(sc);
1559 	if (sp != NULL)
1560 		*sp = status;
1561 	return(0);
1562 }
1563 
1564 /*
1565  * Send a synchronous FIB to the controller and wait for a result.
1566  */
1567 static int
1568 aac_sync_fib(struct aac_softc *sc, u_int32_t command, u_int32_t xferstate,
1569 		 void *data, u_int16_t datasize,
1570 		 void *result, u_int16_t *resultsize)
1571 {
1572 	struct aac_fib *fib;
1573 
1574 	debug_called(3);
1575 
1576 	fib = &sc->aac_common->ac_sync_fib;
1577 
1578 	if (datasize > AAC_FIB_DATASIZE)
1579 		return(EINVAL);
1580 
1581 	/*
1582 	 * Set up the sync FIB
1583 	 */
1584 	fib->Header.XferState = AAC_FIBSTATE_HOSTOWNED |
1585 				AAC_FIBSTATE_INITIALISED |
1586 				AAC_FIBSTATE_EMPTY;
1587 	fib->Header.XferState |= xferstate;
1588 	fib->Header.Command = command;
1589 	fib->Header.StructType = AAC_FIBTYPE_TFIB;
1590 	fib->Header.Size = sizeof(struct aac_fib) + datasize;
1591 	fib->Header.SenderSize = sizeof(struct aac_fib);
1592 	fib->Header.SenderFibAddress = (u_int32_t)fib;
1593 	fib->Header.ReceiverFibAddress = sc->aac_common_busaddr +
1594 					 offsetof(struct aac_common,
1595 						  ac_sync_fib);
1596 
1597 	/*
1598 	 * Copy in data.
1599 	 */
1600 	if (data != NULL) {
1601 		KASSERT(datasize <= sizeof(fib->data),
1602 			("aac_sync_fib: datasize to large"));
1603 		bcopy(data, fib->data, datasize);
1604 		fib->Header.XferState |= AAC_FIBSTATE_FROMHOST |
1605 					 AAC_FIBSTATE_NORM;
1606 	}
1607 
1608 	/*
1609 	 * Give the FIB to the controller, wait for a response.
1610 	 */
1611 	if (aac_sync_command(sc, AAC_MONKER_SYNCFIB,
1612 			     fib->Header.ReceiverFibAddress, 0, 0, 0, NULL)) {
1613 		debug(2, "IO error");
1614 		return(EIO);
1615 	}
1616 
1617 	/*
1618 	 * Copy out the result
1619 	 */
1620 	if (result != NULL) {
1621 		u_int copysize;
1622 
1623 		copysize = fib->Header.Size - sizeof(struct aac_fib_header);
1624 		if (copysize > *resultsize)
1625 			copysize = *resultsize;
1626 		*resultsize = fib->Header.Size - sizeof(struct aac_fib_header);
1627 		bcopy(fib->data, result, copysize);
1628 	}
1629 	return(0);
1630 }
1631 
1632 /*
1633  * Adapter-space FIB queue manipulation
1634  *
1635  * Note that the queue implementation here is a little funky; neither the PI or
1636  * CI will ever be zero.  This behaviour is a controller feature.
1637  */
1638 static struct {
1639 	int		size;
1640 	int		notify;
1641 } aac_qinfo[] = {
1642 	{AAC_HOST_NORM_CMD_ENTRIES, AAC_DB_COMMAND_NOT_FULL},
1643 	{AAC_HOST_HIGH_CMD_ENTRIES, 0},
1644 	{AAC_ADAP_NORM_CMD_ENTRIES, AAC_DB_COMMAND_READY},
1645 	{AAC_ADAP_HIGH_CMD_ENTRIES, 0},
1646 	{AAC_HOST_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_NOT_FULL},
1647 	{AAC_HOST_HIGH_RESP_ENTRIES, 0},
1648 	{AAC_ADAP_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_READY},
1649 	{AAC_ADAP_HIGH_RESP_ENTRIES, 0}
1650 };
1651 
1652 /*
1653  * Atomically insert an entry into the nominated queue, returns 0 on success or
1654  * EBUSY if the queue is full.
1655  *
1656  * Note: it would be more efficient to defer notifying the controller in
1657  *	 the case where we may be inserting several entries in rapid succession,
1658  *	 but implementing this usefully may be difficult (it would involve a
1659  *	 separate queue/notify interface).
1660  */
1661 static int
1662 aac_enqueue_fib(struct aac_softc *sc, int queue, struct aac_command *cm)
1663 {
1664 	u_int32_t pi, ci;
1665 	int s, error;
1666 	u_int32_t fib_size;
1667 	u_int32_t fib_addr;
1668 
1669 	debug_called(3);
1670 
1671 	fib_size = cm->cm_fib->Header.Size;
1672 	fib_addr = cm->cm_fib->Header.ReceiverFibAddress;
1673 
1674 	s = splbio();
1675 
1676 	/* get the producer/consumer indices */
1677 	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1678 	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1679 
1680 	/* wrap the queue? */
1681 	if (pi >= aac_qinfo[queue].size)
1682 		pi = 0;
1683 
1684 	/* check for queue full */
1685 	if ((pi + 1) == ci) {
1686 		error = EBUSY;
1687 		goto out;
1688 	}
1689 
1690 	/* populate queue entry */
1691 	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1692 	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1693 
1694 	/* update producer index */
1695 	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1696 
1697 	/*
1698 	 * To avoid a race with its completion interrupt, place this command on
1699 	 * the busy queue prior to advertising it to the controller.
1700 	 */
1701 	aac_enqueue_busy(cm);
1702 
1703 	/* notify the adapter if we know how */
1704 	if (aac_qinfo[queue].notify != 0)
1705 		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1706 
1707 	error = 0;
1708 
1709 out:
1710 	splx(s);
1711 	return(error);
1712 }
1713 
1714 /*
1715  * Atomically remove one entry from the nominated queue, returns 0 on
1716  * success or ENOENT if the queue is empty.
1717  */
1718 static int
1719 aac_dequeue_fib(struct aac_softc *sc, int queue, u_int32_t *fib_size,
1720 		struct aac_fib **fib_addr)
1721 {
1722 	u_int32_t pi, ci;
1723 	int s, error;
1724 	int notify;
1725 
1726 	debug_called(3);
1727 
1728 	s = splbio();
1729 
1730 	/* get the producer/consumer indices */
1731 	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1732 	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1733 
1734 	/* check for queue empty */
1735 	if (ci == pi) {
1736 		error = ENOENT;
1737 		goto out;
1738 	}
1739 
1740 	notify = 0;
1741 	if (ci == pi + 1)
1742 		notify++;
1743 
1744 	/* wrap the queue? */
1745 	if (ci >= aac_qinfo[queue].size)
1746 		ci = 0;
1747 
1748 	/* fetch the entry */
1749 	*fib_size = (sc->aac_qentries[queue] + ci)->aq_fib_size;
1750 	*fib_addr = (struct aac_fib *)(sc->aac_qentries[queue] +
1751 				       ci)->aq_fib_addr;
1752 
1753 	/* update consumer index */
1754 	sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX] = ci + 1;
1755 
1756 	/* if we have made the queue un-full, notify the adapter */
1757 	if (notify && (aac_qinfo[queue].notify != 0))
1758 		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1759 	error = 0;
1760 
1761 out:
1762 	splx(s);
1763 	return(error);
1764 }
1765 
1766 /*
1767  * Put our response to an Adapter Initialed Fib on the response queue
1768  */
1769 static int
1770 aac_enqueue_response(struct aac_softc *sc, int queue, struct aac_fib *fib)
1771 {
1772 	u_int32_t pi, ci;
1773 	int s, error;
1774 	u_int32_t fib_size;
1775 	u_int32_t fib_addr;
1776 
1777 	debug_called(1);
1778 
1779 	/* Tell the adapter where the FIB is */
1780 	fib_size = fib->Header.Size;
1781 	fib_addr = fib->Header.SenderFibAddress;
1782 	fib->Header.ReceiverFibAddress = fib_addr;
1783 
1784 	s = splbio();
1785 
1786 	/* get the producer/consumer indices */
1787 	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1788 	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1789 
1790 	/* wrap the queue? */
1791 	if (pi >= aac_qinfo[queue].size)
1792 		pi = 0;
1793 
1794 	/* check for queue full */
1795 	if ((pi + 1) == ci) {
1796 		error = EBUSY;
1797 		goto out;
1798 	}
1799 
1800 	/* populate queue entry */
1801 	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1802 	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1803 
1804 	/* update producer index */
1805 	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1806 
1807 	/* notify the adapter if we know how */
1808 	if (aac_qinfo[queue].notify != 0)
1809 		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1810 
1811 	error = 0;
1812 
1813 out:
1814 	splx(s);
1815 	return(error);
1816 }
1817 
1818 /*
1819  * Check for commands that have been outstanding for a suspiciously long time,
1820  * and complain about them.
1821  */
1822 static void
1823 aac_timeout(struct aac_softc *sc)
1824 {
1825 	int s;
1826 	struct aac_command *cm;
1827 	time_t deadline;
1828 
1829 #if 0
1830 	/* simulate an interrupt to handle possibly-missed interrupts */
1831 	/*
1832 	 * XXX This was done to work around another bug which has since been
1833 	 * fixed.  It is dangerous anyways because you don't want multiple
1834 	 * threads in the interrupt handler at the same time!  If calling
1835 	 * is deamed neccesary in the future, proper mutexes must be used.
1836 	 */
1837 	s = splbio();
1838 	aac_intr(sc);
1839 	splx(s);
1840 
1841 	/* kick the I/O queue to restart it in the case of deadlock */
1842 	aac_startio(sc);
1843 #endif
1844 
1845 	/*
1846 	 * traverse the busy command list, bitch about late commands once
1847 	 * only.
1848 	 */
1849 	deadline = time_second - AAC_CMD_TIMEOUT;
1850 	s = splbio();
1851 	TAILQ_FOREACH(cm, &sc->aac_busy, cm_link) {
1852 		if ((cm->cm_timestamp  < deadline)
1853 			/* && !(cm->cm_flags & AAC_CMD_TIMEDOUT) */) {
1854 			cm->cm_flags |= AAC_CMD_TIMEDOUT;
1855 			device_printf(sc->aac_dev,
1856 				      "COMMAND %p TIMEOUT AFTER %d SECONDS\n",
1857 				      cm, (int)(time_second-cm->cm_timestamp));
1858 			AAC_PRINT_FIB(sc, cm->cm_fib);
1859 		}
1860 	}
1861 	splx(s);
1862 
1863 	/* reset the timer for next time */
1864 	timeout((timeout_t*)aac_timeout, sc, AAC_PERIODIC_INTERVAL * hz);
1865 	return;
1866 }
1867 
1868 /*
1869  * Interface Function Vectors
1870  */
1871 
1872 /*
1873  * Read the current firmware status word.
1874  */
1875 static int
1876 aac_sa_get_fwstatus(struct aac_softc *sc)
1877 {
1878 	debug_called(3);
1879 
1880 	return(AAC_GETREG4(sc, AAC_SA_FWSTATUS));
1881 }
1882 
1883 static int
1884 aac_rx_get_fwstatus(struct aac_softc *sc)
1885 {
1886 	debug_called(3);
1887 
1888 	return(AAC_GETREG4(sc, AAC_RX_FWSTATUS));
1889 }
1890 
1891 static int
1892 aac_fa_get_fwstatus(struct aac_softc *sc)
1893 {
1894 	int val;
1895 
1896 	debug_called(3);
1897 
1898 	val = AAC_GETREG4(sc, AAC_FA_FWSTATUS);
1899 	return (val);
1900 }
1901 
1902 /*
1903  * Notify the controller of a change in a given queue
1904  */
1905 
1906 static void
1907 aac_sa_qnotify(struct aac_softc *sc, int qbit)
1908 {
1909 	debug_called(3);
1910 
1911 	AAC_SETREG2(sc, AAC_SA_DOORBELL1_SET, qbit);
1912 }
1913 
1914 static void
1915 aac_rx_qnotify(struct aac_softc *sc, int qbit)
1916 {
1917 	debug_called(3);
1918 
1919 	AAC_SETREG4(sc, AAC_RX_IDBR, qbit);
1920 }
1921 
1922 static void
1923 aac_fa_qnotify(struct aac_softc *sc, int qbit)
1924 {
1925 	debug_called(3);
1926 
1927 	AAC_SETREG2(sc, AAC_FA_DOORBELL1, qbit);
1928 	AAC_FA_HACK(sc);
1929 }
1930 
1931 /*
1932  * Get the interrupt reason bits
1933  */
1934 static int
1935 aac_sa_get_istatus(struct aac_softc *sc)
1936 {
1937 	debug_called(3);
1938 
1939 	return(AAC_GETREG2(sc, AAC_SA_DOORBELL0));
1940 }
1941 
1942 static int
1943 aac_rx_get_istatus(struct aac_softc *sc)
1944 {
1945 	debug_called(3);
1946 
1947 	return(AAC_GETREG4(sc, AAC_RX_ODBR));
1948 }
1949 
1950 static int
1951 aac_fa_get_istatus(struct aac_softc *sc)
1952 {
1953 	int val;
1954 
1955 	debug_called(3);
1956 
1957 	val = AAC_GETREG2(sc, AAC_FA_DOORBELL0);
1958 	return (val);
1959 }
1960 
1961 /*
1962  * Clear some interrupt reason bits
1963  */
1964 static void
1965 aac_sa_clear_istatus(struct aac_softc *sc, int mask)
1966 {
1967 	debug_called(3);
1968 
1969 	AAC_SETREG2(sc, AAC_SA_DOORBELL0_CLEAR, mask);
1970 }
1971 
1972 static void
1973 aac_rx_clear_istatus(struct aac_softc *sc, int mask)
1974 {
1975 	debug_called(3);
1976 
1977 	AAC_SETREG4(sc, AAC_RX_ODBR, mask);
1978 }
1979 
1980 static void
1981 aac_fa_clear_istatus(struct aac_softc *sc, int mask)
1982 {
1983 	debug_called(3);
1984 
1985 	AAC_SETREG2(sc, AAC_FA_DOORBELL0_CLEAR, mask);
1986 	AAC_FA_HACK(sc);
1987 }
1988 
1989 /*
1990  * Populate the mailbox and set the command word
1991  */
1992 static void
1993 aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
1994 		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
1995 {
1996 	debug_called(4);
1997 
1998 	AAC_SETREG4(sc, AAC_SA_MAILBOX, command);
1999 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 4, arg0);
2000 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 8, arg1);
2001 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 12, arg2);
2002 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 16, arg3);
2003 }
2004 
2005 static void
2006 aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
2007 		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2008 {
2009 	debug_called(4);
2010 
2011 	AAC_SETREG4(sc, AAC_RX_MAILBOX, command);
2012 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 4, arg0);
2013 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 8, arg1);
2014 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 12, arg2);
2015 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 16, arg3);
2016 }
2017 
2018 static void
2019 aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2020 		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2021 {
2022 	debug_called(4);
2023 
2024 	AAC_SETREG4(sc, AAC_FA_MAILBOX, command);
2025 	AAC_FA_HACK(sc);
2026 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 4, arg0);
2027 	AAC_FA_HACK(sc);
2028 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 8, arg1);
2029 	AAC_FA_HACK(sc);
2030 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 12, arg2);
2031 	AAC_FA_HACK(sc);
2032 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 16, arg3);
2033 	AAC_FA_HACK(sc);
2034 }
2035 
2036 /*
2037  * Fetch the immediate command status word
2038  */
2039 static int
2040 aac_sa_get_mailboxstatus(struct aac_softc *sc)
2041 {
2042 	debug_called(4);
2043 
2044 	return(AAC_GETREG4(sc, AAC_SA_MAILBOX));
2045 }
2046 
2047 static int
2048 aac_rx_get_mailboxstatus(struct aac_softc *sc)
2049 {
2050 	debug_called(4);
2051 
2052 	return(AAC_GETREG4(sc, AAC_RX_MAILBOX));
2053 }
2054 
2055 static int
2056 aac_fa_get_mailboxstatus(struct aac_softc *sc)
2057 {
2058 	int val;
2059 
2060 	debug_called(4);
2061 
2062 	val = AAC_GETREG4(sc, AAC_FA_MAILBOX);
2063 	return (val);
2064 }
2065 
2066 /*
2067  * Set/clear interrupt masks
2068  */
2069 static void
2070 aac_sa_set_interrupts(struct aac_softc *sc, int enable)
2071 {
2072 	debug(2, "%sable interrupts", enable ? "en" : "dis");
2073 
2074 	if (enable) {
2075 		AAC_SETREG2((sc), AAC_SA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2076 	} else {
2077 		AAC_SETREG2((sc), AAC_SA_MASK0_SET, ~0);
2078 	}
2079 }
2080 
2081 static void
2082 aac_rx_set_interrupts(struct aac_softc *sc, int enable)
2083 {
2084 	debug(2, "%sable interrupts", enable ? "en" : "dis");
2085 
2086 	if (enable) {
2087 		AAC_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INTERRUPTS);
2088 	} else {
2089 		AAC_SETREG4(sc, AAC_RX_OIMR, ~0);
2090 	}
2091 }
2092 
2093 static void
2094 aac_fa_set_interrupts(struct aac_softc *sc, int enable)
2095 {
2096 	debug(2, "%sable interrupts", enable ? "en" : "dis");
2097 
2098 	if (enable) {
2099 		AAC_SETREG2((sc), AAC_FA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2100 		AAC_FA_HACK(sc);
2101 	} else {
2102 		AAC_SETREG2((sc), AAC_FA_MASK0, ~0);
2103 		AAC_FA_HACK(sc);
2104 	}
2105 }
2106 
2107 /*
2108  * Debugging and Diagnostics
2109  */
2110 
2111 /*
2112  * Print some information about the controller.
2113  */
2114 static void
2115 aac_describe_controller(struct aac_softc *sc)
2116 {
2117 	u_int8_t buf[AAC_FIB_DATASIZE];	/* XXX really a bit big
2118 					 * for the stack */
2119 	u_int16_t bufsize;
2120 	struct aac_adapter_info	*info;
2121 	u_int8_t arg;
2122 
2123 	debug_called(2);
2124 
2125 	arg = 0;
2126 	bufsize = sizeof(buf);
2127 	if (aac_sync_fib(sc, RequestAdapterInfo, 0, &arg, sizeof(arg), &buf,
2128 			 &bufsize)) {
2129 		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
2130 		return;
2131 	}
2132 	if (bufsize != sizeof(*info)) {
2133 		device_printf(sc->aac_dev,
2134 			      "RequestAdapterInfo returned wrong data size "
2135 			      "(%d != %d)\n", bufsize, sizeof(*info));
2136 		/*return;*/
2137 	}
2138 	info = (struct aac_adapter_info *)&buf[0];
2139 
2140 	device_printf(sc->aac_dev, "%s %dMHz, %dMB cache memory, %s\n",
2141 		      aac_describe_code(aac_cpu_variant, info->CpuVariant),
2142 		      info->ClockSpeed, info->BufferMem / (1024 * 1024),
2143 		      aac_describe_code(aac_battery_platform,
2144 					info->batteryPlatform));
2145 
2146 	/* save the kernel revision structure for later use */
2147 	sc->aac_revision = info->KernelRevision;
2148 	device_printf(sc->aac_dev, "Kernel %d.%d-%d, Build %d, S/N %6X\n",
2149 		      info->KernelRevision.external.comp.major,
2150 		      info->KernelRevision.external.comp.minor,
2151 		      info->KernelRevision.external.comp.dash,
2152 		      info->KernelRevision.buildNumber,
2153 		      (u_int32_t)(info->SerialNumber & 0xffffff));
2154 }
2155 
2156 /*
2157  * Look up a text description of a numeric error code and return a pointer to
2158  * same.
2159  */
2160 static char *
2161 aac_describe_code(struct aac_code_lookup *table, u_int32_t code)
2162 {
2163 	int i;
2164 
2165 	for (i = 0; table[i].string != NULL; i++)
2166 		if (table[i].code == code)
2167 			return(table[i].string);
2168 	return(table[i + 1].string);
2169 }
2170 
2171 /*
2172  * Management Interface
2173  */
2174 
2175 static int
2176 aac_open(dev_t dev, int flags, int fmt, d_thread_t *td)
2177 {
2178 	struct aac_softc *sc;
2179 
2180 	debug_called(2);
2181 
2182 	sc = dev->si_drv1;
2183 
2184 	/* Check to make sure the device isn't already open */
2185 	if (sc->aac_state & AAC_STATE_OPEN) {
2186 		return EBUSY;
2187 	}
2188 	sc->aac_state |= AAC_STATE_OPEN;
2189 
2190 	return 0;
2191 }
2192 
2193 static int
2194 aac_close(dev_t dev, int flags, int fmt, d_thread_t *td)
2195 {
2196 	struct aac_softc *sc;
2197 
2198 	debug_called(2);
2199 
2200 	sc = dev->si_drv1;
2201 
2202 	/* Mark this unit as no longer open  */
2203 	sc->aac_state &= ~AAC_STATE_OPEN;
2204 
2205 	return 0;
2206 }
2207 
2208 static int
2209 aac_ioctl(dev_t dev, u_long cmd, caddr_t arg, int flag, d_thread_t *td)
2210 {
2211 	union aac_statrequest *as;
2212 	struct aac_softc *sc;
2213 	int error = 0;
2214 	int i;
2215 
2216 	debug_called(2);
2217 
2218 	as = (union aac_statrequest *)arg;
2219 	sc = dev->si_drv1;
2220 
2221 	switch (cmd) {
2222 	case AACIO_STATS:
2223 		switch (as->as_item) {
2224 		case AACQ_FREE:
2225 		case AACQ_BIO:
2226 		case AACQ_READY:
2227 		case AACQ_BUSY:
2228 		case AACQ_COMPLETE:
2229 			bcopy(&sc->aac_qstat[as->as_item], &as->as_qstat,
2230 			      sizeof(struct aac_qstat));
2231 			break;
2232 		default:
2233 			error = ENOENT;
2234 			break;
2235 		}
2236 	break;
2237 
2238 	case FSACTL_SENDFIB:
2239 		arg = *(caddr_t*)arg;
2240 	case FSACTL_LNX_SENDFIB:
2241 		debug(1, "FSACTL_SENDFIB");
2242 		error = aac_ioctl_sendfib(sc, arg);
2243 		break;
2244 	case FSACTL_AIF_THREAD:
2245 	case FSACTL_LNX_AIF_THREAD:
2246 		debug(1, "FSACTL_AIF_THREAD");
2247 		error = EINVAL;
2248 		break;
2249 	case FSACTL_OPEN_GET_ADAPTER_FIB:
2250 		arg = *(caddr_t*)arg;
2251 	case FSACTL_LNX_OPEN_GET_ADAPTER_FIB:
2252 		debug(1, "FSACTL_OPEN_GET_ADAPTER_FIB");
2253 		/*
2254 		 * Pass the caller out an AdapterFibContext.
2255 		 *
2256 		 * Note that because we only support one opener, we
2257 		 * basically ignore this.  Set the caller's context to a magic
2258 		 * number just in case.
2259 		 *
2260 		 * The Linux code hands the driver a pointer into kernel space,
2261 		 * and then trusts it when the caller hands it back.  Aiee!
2262 		 * Here, we give it the proc pointer of the per-adapter aif
2263 		 * thread. It's only used as a sanity check in other calls.
2264 		 */
2265 		i = (int)sc->aifthread;
2266 		error = copyout(&i, arg, sizeof(i));
2267 		break;
2268 	case FSACTL_GET_NEXT_ADAPTER_FIB:
2269 		arg = *(caddr_t*)arg;
2270 	case FSACTL_LNX_GET_NEXT_ADAPTER_FIB:
2271 		debug(1, "FSACTL_GET_NEXT_ADAPTER_FIB");
2272 		error = aac_getnext_aif(sc, arg);
2273 		break;
2274 	case FSACTL_CLOSE_GET_ADAPTER_FIB:
2275 	case FSACTL_LNX_CLOSE_GET_ADAPTER_FIB:
2276 		debug(1, "FSACTL_CLOSE_GET_ADAPTER_FIB");
2277 		/* don't do anything here */
2278 		break;
2279 	case FSACTL_MINIPORT_REV_CHECK:
2280 		arg = *(caddr_t*)arg;
2281 	case FSACTL_LNX_MINIPORT_REV_CHECK:
2282 		debug(1, "FSACTL_MINIPORT_REV_CHECK");
2283 		error = aac_rev_check(sc, arg);
2284 		break;
2285 	case FSACTL_QUERY_DISK:
2286 		arg = *(caddr_t*)arg;
2287 	case FSACTL_LNX_QUERY_DISK:
2288 		debug(1, "FSACTL_QUERY_DISK");
2289 		error = aac_query_disk(sc, arg);
2290 			break;
2291 	case FSACTL_DELETE_DISK:
2292 	case FSACTL_LNX_DELETE_DISK:
2293 		/*
2294 		 * We don't trust the underland to tell us when to delete a
2295 		 * container, rather we rely on an AIF coming from the
2296 		 * controller
2297 		 */
2298 		error = 0;
2299 		break;
2300 	default:
2301 		debug(1, "unsupported cmd 0x%lx\n", cmd);
2302 		error = EINVAL;
2303 		break;
2304 	}
2305 	return(error);
2306 }
2307 
2308 static int
2309 aac_poll(dev_t dev, int poll_events, d_thread_t *td)
2310 {
2311 	struct aac_softc *sc;
2312 	int revents;
2313 
2314 	sc = dev->si_drv1;
2315 	revents = 0;
2316 
2317 	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2318 	if ((poll_events & (POLLRDNORM | POLLIN)) != 0) {
2319 		if (sc->aac_aifq_tail != sc->aac_aifq_head)
2320 			revents |= poll_events & (POLLIN | POLLRDNORM);
2321 	}
2322 	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2323 
2324 	if (revents == 0) {
2325 		if (poll_events & (POLLIN | POLLRDNORM))
2326 			selrecord(td, &sc->rcv_select);
2327 	}
2328 
2329 	return (revents);
2330 }
2331 
2332 /*
2333  * Send a FIB supplied from userspace
2334  */
2335 static int
2336 aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib)
2337 {
2338 	struct aac_command *cm;
2339 	int size, error;
2340 
2341 	debug_called(2);
2342 
2343 	cm = NULL;
2344 
2345 	/*
2346 	 * Get a command
2347 	 */
2348 	if (aac_alloc_command(sc, &cm)) {
2349 		error = EBUSY;
2350 		goto out;
2351 	}
2352 
2353 	/*
2354 	 * Fetch the FIB header, then re-copy to get data as well.
2355 	 */
2356 	if ((error = copyin(ufib, cm->cm_fib,
2357 			    sizeof(struct aac_fib_header))) != 0)
2358 		goto out;
2359 	size = cm->cm_fib->Header.Size + sizeof(struct aac_fib_header);
2360 	if (size > sizeof(struct aac_fib)) {
2361 		device_printf(sc->aac_dev, "incoming FIB oversized (%d > %d)\n",
2362 			      size, sizeof(struct aac_fib));
2363 		size = sizeof(struct aac_fib);
2364 	}
2365 	if ((error = copyin(ufib, cm->cm_fib, size)) != 0)
2366 		goto out;
2367 	cm->cm_fib->Header.Size = size;
2368 	cm->cm_timestamp = time_second;
2369 
2370 	/*
2371 	 * Pass the FIB to the controller, wait for it to complete.
2372 	 */
2373 	if ((error = aac_wait_command(cm, 30)) != 0) {	/* XXX user timeout? */
2374 		printf("aac_wait_command return %d\n", error);
2375 		goto out;
2376 	}
2377 
2378 	/*
2379 	 * Copy the FIB and data back out to the caller.
2380 	 */
2381 	size = cm->cm_fib->Header.Size;
2382 	if (size > sizeof(struct aac_fib)) {
2383 		device_printf(sc->aac_dev, "outbound FIB oversized (%d > %d)\n",
2384 			      size, sizeof(struct aac_fib));
2385 		size = sizeof(struct aac_fib);
2386 	}
2387 	error = copyout(cm->cm_fib, ufib, size);
2388 
2389 out:
2390 	if (cm != NULL) {
2391 		aac_release_command(cm);
2392 	}
2393 	return(error);
2394 }
2395 
2396 /*
2397  * Handle an AIF sent to us by the controller; queue it for later reference.
2398  * If the queue fills up, then drop the older entries.
2399  */
2400 static void
2401 aac_handle_aif(struct aac_softc *sc, struct aac_fib *fib)
2402 {
2403 	struct aac_aif_command *aif;
2404 	struct aac_container *co, *co_next;
2405 	struct aac_mntinfo mi;
2406 	struct aac_mntinforesponse mir;
2407 	u_int16_t rsize;
2408 	int next, found;
2409 	int added = 0, i = 0;
2410 
2411 	debug_called(2);
2412 
2413 	aif = (struct aac_aif_command*)&fib->data[0];
2414 	aac_print_aif(sc, aif);
2415 
2416 	/* Is it an event that we should care about? */
2417 	switch (aif->command) {
2418 	case AifCmdEventNotify:
2419 		switch (aif->data.EN.type) {
2420 		case AifEnAddContainer:
2421 		case AifEnDeleteContainer:
2422 			/*
2423 			 * A container was added or deleted, but the message
2424 			 * doesn't tell us anything else!  Re-enumerate the
2425 			 * containers and sort things out.
2426 			 */
2427 			mi.Command = VM_NameServe;
2428 			mi.MntType = FT_FILESYS;
2429 			do {
2430 				/*
2431 				 * Ask the controller for its containers one at
2432 				 * a time.
2433 				 * XXX What if the controller's list changes
2434 				 * midway through this enumaration?
2435 				 * XXX This should be done async.
2436 				 */
2437 				mi.MntCount = i;
2438 				rsize = sizeof(mir);
2439 				if (aac_sync_fib(sc, ContainerCommand, 0, &mi,
2440 						 sizeof(mi), &mir, &rsize)) {
2441 					debug(2, "Error probing container %d\n",
2442 					      i);
2443 					continue;
2444 				}
2445 				if (rsize != sizeof(mir)) {
2446 					debug(2, "Container response size too "
2447 						 "large\n");
2448 					continue;
2449 				}
2450 				/*
2451 				 * Check the container against our list.
2452 				 * co->co_found was already set to 0 in a
2453 				 * previous run.
2454 				 */
2455 				if ((mir.Status == ST_OK) &&
2456 				    (mir.MntTable[0].VolType != CT_NONE)) {
2457 					found = 0;
2458 					TAILQ_FOREACH(co,
2459 						      &sc->aac_container_tqh,
2460 						      co_link) {
2461 						if (co->co_mntobj.ObjectId ==
2462 						    mir.MntTable[0].ObjectId) {
2463 							co->co_found = 1;
2464 							found = 1;
2465 							break;
2466 						}
2467 					}
2468 					/*
2469 					 * If the container matched, continue
2470 					 * in the list.
2471 					 */
2472 					if (found) {
2473 						i++;
2474 						continue;
2475 					}
2476 
2477 					/*
2478 					 * This is a new container.  Do all the
2479 					 * appropriate things to set it up.						 */
2480 					aac_add_container(sc, &mir, 1);
2481 					added = 1;
2482 				}
2483 				i++;
2484 			} while ((i < mir.MntRespCount) &&
2485 				 (i < AAC_MAX_CONTAINERS));
2486 
2487 			/*
2488 			 * Go through our list of containers and see which ones
2489 			 * were not marked 'found'.  Since the controller didn't
2490 			 * list them they must have been deleted.  Do the
2491 			 * appropriate steps to destroy the device.  Also reset
2492 			 * the co->co_found field.
2493 			 */
2494 			co = TAILQ_FIRST(&sc->aac_container_tqh);
2495 			while (co != NULL) {
2496 				if (co->co_found == 0) {
2497 					device_delete_child(sc->aac_dev,
2498 							    co->co_disk);
2499 					co_next = TAILQ_NEXT(co, co_link);
2500 					AAC_LOCK_ACQUIRE(&sc->
2501 							aac_container_lock);
2502 					TAILQ_REMOVE(&sc->aac_container_tqh, co,
2503 						     co_link);
2504 					AAC_LOCK_RELEASE(&sc->
2505 							 aac_container_lock);
2506 					FREE(co, M_AACBUF);
2507 					co = co_next;
2508 				} else {
2509 					co->co_found = 0;
2510 					co = TAILQ_NEXT(co, co_link);
2511 				}
2512 			}
2513 
2514 			/* Attach the newly created containers */
2515 			if (added)
2516 				bus_generic_attach(sc->aac_dev);
2517 
2518 				break;
2519 
2520 		default:
2521 			break;
2522 		}
2523 
2524 	default:
2525 		break;
2526 	}
2527 
2528 	/* Copy the AIF data to the AIF queue for ioctl retrieval */
2529 	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2530 	next = (sc->aac_aifq_head + 1) % AAC_AIFQ_LENGTH;
2531 	if (next != sc->aac_aifq_tail) {
2532 		bcopy(aif, &sc->aac_aifq[next], sizeof(struct aac_aif_command));
2533 		sc->aac_aifq_head = next;
2534 
2535 		/* On the off chance that someone is sleeping for an aif... */
2536 		if (sc->aac_state & AAC_STATE_AIF_SLEEPER)
2537 			wakeup(sc->aac_aifq);
2538 		/* Wakeup any poll()ers */
2539 		selwakeup(&sc->rcv_select);
2540 	}
2541 	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2542 
2543 	return;
2544 }
2545 
2546 /*
2547  * Linux Management Interface
2548  * This is soon to be removed!
2549  */
2550 
2551 #ifdef AAC_COMPAT_LINUX
2552 
2553 #include <sys/proc.h>
2554 #include <machine/../linux/linux.h>
2555 #include <machine/../linux/linux_proto.h>
2556 #include <compat/linux/linux_ioctl.h>
2557 
2558 /* There are multiple ioctl number ranges that need to be handled */
2559 #define AAC_LINUX_IOCTL_MIN  0x0000
2560 #define AAC_LINUX_IOCTL_MAX  0x21ff
2561 
2562 static linux_ioctl_function_t aac_linux_ioctl;
2563 static struct linux_ioctl_handler aac_handler = {aac_linux_ioctl,
2564 						 AAC_LINUX_IOCTL_MIN,
2565 						 AAC_LINUX_IOCTL_MAX};
2566 
2567 SYSINIT  (aac_register,   SI_SUB_KLD, SI_ORDER_MIDDLE,
2568 	  linux_ioctl_register_handler, &aac_handler);
2569 SYSUNINIT(aac_unregister, SI_SUB_KLD, SI_ORDER_MIDDLE,
2570 	  linux_ioctl_unregister_handler, &aac_handler);
2571 
2572 MODULE_DEPEND(aac, linux, 1, 1, 1);
2573 
2574 static int
2575 aac_linux_ioctl(struct thread *td, struct linux_ioctl_args *args)
2576 {
2577 	struct file *fp;
2578 	u_long cmd;
2579 
2580 	debug_called(2);
2581 
2582 	fp = td->td_proc->p_fd->fd_ofiles[args->fd];
2583 	cmd = args->cmd;
2584 
2585 	/*
2586 	 * Pass the ioctl off to our standard handler.
2587 	 */
2588 	return(fo_ioctl(fp, cmd, (caddr_t)args->arg, td));
2589 }
2590 
2591 #endif
2592 
2593 /*
2594  * Return the Revision of the driver to userspace and check to see if the
2595  * userspace app is possibly compatible.  This is extremely bogus since
2596  * our driver doesn't follow Adaptec's versioning system.  Cheat by just
2597  * returning what the card reported.
2598  */
2599 static int
2600 aac_rev_check(struct aac_softc *sc, caddr_t udata)
2601 {
2602 	struct aac_rev_check rev_check;
2603 	struct aac_rev_check_resp rev_check_resp;
2604 	int error = 0;
2605 
2606 	debug_called(2);
2607 
2608 	/*
2609 	 * Copyin the revision struct from userspace
2610 	 */
2611 	if ((error = copyin(udata, (caddr_t)&rev_check,
2612 			sizeof(struct aac_rev_check))) != 0) {
2613 		return error;
2614 	}
2615 
2616 	debug(2, "Userland revision= %d\n",
2617 	      rev_check.callingRevision.buildNumber);
2618 
2619 	/*
2620 	 * Doctor up the response struct.
2621 	 */
2622 	rev_check_resp.possiblyCompatible = 1;
2623 	rev_check_resp.adapterSWRevision.external.ul =
2624 	    sc->aac_revision.external.ul;
2625 	rev_check_resp.adapterSWRevision.buildNumber =
2626 	    sc->aac_revision.buildNumber;
2627 
2628 	return(copyout((caddr_t)&rev_check_resp, udata,
2629 			sizeof(struct aac_rev_check_resp)));
2630 }
2631 
2632 /*
2633  * Pass the caller the next AIF in their queue
2634  */
2635 static int
2636 aac_getnext_aif(struct aac_softc *sc, caddr_t arg)
2637 {
2638 	struct get_adapter_fib_ioctl agf;
2639 	int error, s;
2640 
2641 	debug_called(2);
2642 
2643 	if ((error = copyin(arg, &agf, sizeof(agf))) == 0) {
2644 
2645 		/*
2646 		 * Check the magic number that we gave the caller.
2647 		 */
2648 		if (agf.AdapterFibContext != (int)sc->aifthread) {
2649 			error = EFAULT;
2650 		} else {
2651 
2652 			s = splbio();
2653 			error = aac_return_aif(sc, agf.AifFib);
2654 
2655 			if ((error == EAGAIN) && (agf.Wait)) {
2656 				sc->aac_state |= AAC_STATE_AIF_SLEEPER;
2657 				while (error == EAGAIN) {
2658 					error = tsleep(sc->aac_aifq, PRIBIO |
2659 						       PCATCH, "aacaif", 0);
2660 					if (error == 0)
2661 						error = aac_return_aif(sc,
2662 						    agf.AifFib);
2663 				}
2664 				sc->aac_state &= ~AAC_STATE_AIF_SLEEPER;
2665 			}
2666 		splx(s);
2667 		}
2668 	}
2669 	return(error);
2670 }
2671 
2672 /*
2673  * Hand the next AIF off the top of the queue out to userspace.
2674  */
2675 static int
2676 aac_return_aif(struct aac_softc *sc, caddr_t uptr)
2677 {
2678 	int error;
2679 
2680 	debug_called(2);
2681 
2682 	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2683 	if (sc->aac_aifq_tail == sc->aac_aifq_head) {
2684 		error = EAGAIN;
2685 	} else {
2686 		error = copyout(&sc->aac_aifq[sc->aac_aifq_tail], uptr,
2687 				sizeof(struct aac_aif_command));
2688 		if (error)
2689 			printf("aac_return_aif: copyout returned %d\n", error);
2690 		if (!error)
2691 			sc->aac_aifq_tail = (sc->aac_aifq_tail + 1) %
2692 					    AAC_AIFQ_LENGTH;
2693 	}
2694 	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2695 	return(error);
2696 }
2697 
2698 /*
2699  * Give the userland some information about the container.  The AAC arch
2700  * expects the driver to be a SCSI passthrough type driver, so it expects
2701  * the containers to have b:t:l numbers.  Fake it.
2702  */
2703 static int
2704 aac_query_disk(struct aac_softc *sc, caddr_t uptr)
2705 {
2706 	struct aac_query_disk query_disk;
2707 	struct aac_container *co;
2708 	struct aac_disk	*disk;
2709 	int error, id;
2710 
2711 	debug_called(2);
2712 
2713 	disk = NULL;
2714 
2715 	error = copyin(uptr, (caddr_t)&query_disk,
2716 		       sizeof(struct aac_query_disk));
2717 	if (error)
2718 		return (error);
2719 
2720 	id = query_disk.ContainerNumber;
2721 	if (id == -1)
2722 		return (EINVAL);
2723 
2724 	AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
2725 	TAILQ_FOREACH(co, &sc->aac_container_tqh, co_link) {
2726 		if (co->co_mntobj.ObjectId == id)
2727 			break;
2728 		}
2729 
2730 		if (co == NULL) {
2731 			query_disk.Valid = 0;
2732 			query_disk.Locked = 0;
2733 			query_disk.Deleted = 1;		/* XXX is this right? */
2734 		} else {
2735 			disk = device_get_softc(co->co_disk);
2736 			query_disk.Valid = 1;
2737 			query_disk.Locked =
2738 			    (disk->ad_flags & AAC_DISK_OPEN) ? 1 : 0;
2739 			query_disk.Deleted = 0;
2740 			query_disk.Bus = device_get_unit(sc->aac_dev);
2741 			query_disk.Target = disk->unit;
2742 			query_disk.Lun = 0;
2743 			query_disk.UnMapped = 0;
2744 			bcopy(disk->ad_dev_t->si_name,
2745 			      &query_disk.diskDeviceName[0], 10);
2746 		}
2747 	AAC_LOCK_RELEASE(&sc->aac_container_lock);
2748 
2749 	error = copyout((caddr_t)&query_disk, uptr,
2750 			sizeof(struct aac_query_disk));
2751 
2752 	return (error);
2753 }
2754 
2755