xref: /freebsd/sys/dev/aac/aac.c (revision e0c27215058b5786c78fcfb3963eebe61a989511)
1 /*-
2  * Copyright (c) 2000 Michael Smith
3  * Copyright (c) 2001 Scott Long
4  * Copyright (c) 2000 BSDi
5  * Copyright (c) 2001 Adaptec, Inc.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	$FreeBSD$
30  */
31 
32 /*
33  * Driver for the Adaptec 'FSA' family of PCI/SCSI RAID adapters.
34  */
35 
36 #include "opt_aac.h"
37 
38 /* #include <stddef.h> */
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/malloc.h>
42 #include <sys/kernel.h>
43 #include <sys/kthread.h>
44 #include <sys/sysctl.h>
45 #include <sys/poll.h>
46 #include <sys/ioccom.h>
47 
48 #include <sys/bus.h>
49 #include <sys/conf.h>
50 #include <sys/signalvar.h>
51 #include <sys/time.h>
52 #include <sys/eventhandler.h>
53 
54 #include <machine/bus_memio.h>
55 #include <machine/bus.h>
56 #include <machine/resource.h>
57 
58 #include <dev/aac/aacreg.h>
59 #include <dev/aac/aac_ioctl.h>
60 #include <dev/aac/aacvar.h>
61 #include <dev/aac/aac_tables.h>
62 
63 static void	aac_startup(void *arg);
64 static void	aac_add_container(struct aac_softc *sc,
65 				  struct aac_mntinforesp *mir, int f);
66 static void	aac_get_bus_info(struct aac_softc *sc);
67 
68 /* Command Processing */
69 static void	aac_timeout(struct aac_softc *sc);
70 static int	aac_map_command(struct aac_command *cm);
71 static void	aac_complete(void *context, int pending);
72 static int	aac_bio_command(struct aac_softc *sc, struct aac_command **cmp);
73 static void	aac_bio_complete(struct aac_command *cm);
74 static int	aac_wait_command(struct aac_command *cm, int timeout);
75 static void	aac_command_thread(struct aac_softc *sc);
76 
77 /* Command Buffer Management */
78 static void	aac_map_command_sg(void *arg, bus_dma_segment_t *segs,
79 				   int nseg, int error);
80 static void	aac_map_command_helper(void *arg, bus_dma_segment_t *segs,
81 				       int nseg, int error);
82 static int	aac_alloc_commands(struct aac_softc *sc);
83 static void	aac_free_commands(struct aac_softc *sc);
84 static void	aac_unmap_command(struct aac_command *cm);
85 
86 /* Hardware Interface */
87 static void	aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg,
88 			       int error);
89 static int	aac_check_firmware(struct aac_softc *sc);
90 static int	aac_init(struct aac_softc *sc);
91 static int	aac_sync_command(struct aac_softc *sc, u_int32_t command,
92 				 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2,
93 				 u_int32_t arg3, u_int32_t *sp);
94 static int	aac_enqueue_fib(struct aac_softc *sc, int queue,
95 				struct aac_command *cm);
96 static int	aac_dequeue_fib(struct aac_softc *sc, int queue,
97 				u_int32_t *fib_size, struct aac_fib **fib_addr);
98 static int	aac_enqueue_response(struct aac_softc *sc, int queue,
99 				     struct aac_fib *fib);
100 
101 /* Falcon/PPC interface */
102 static int	aac_fa_get_fwstatus(struct aac_softc *sc);
103 static void	aac_fa_qnotify(struct aac_softc *sc, int qbit);
104 static int	aac_fa_get_istatus(struct aac_softc *sc);
105 static void	aac_fa_clear_istatus(struct aac_softc *sc, int mask);
106 static void	aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
107 				   u_int32_t arg0, u_int32_t arg1,
108 				   u_int32_t arg2, u_int32_t arg3);
109 static int	aac_fa_get_mailbox(struct aac_softc *sc, int mb);
110 static void	aac_fa_set_interrupts(struct aac_softc *sc, int enable);
111 
112 struct aac_interface aac_fa_interface = {
113 	aac_fa_get_fwstatus,
114 	aac_fa_qnotify,
115 	aac_fa_get_istatus,
116 	aac_fa_clear_istatus,
117 	aac_fa_set_mailbox,
118 	aac_fa_get_mailbox,
119 	aac_fa_set_interrupts
120 };
121 
122 /* StrongARM interface */
123 static int	aac_sa_get_fwstatus(struct aac_softc *sc);
124 static void	aac_sa_qnotify(struct aac_softc *sc, int qbit);
125 static int	aac_sa_get_istatus(struct aac_softc *sc);
126 static void	aac_sa_clear_istatus(struct aac_softc *sc, int mask);
127 static void	aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
128 				   u_int32_t arg0, u_int32_t arg1,
129 				   u_int32_t arg2, u_int32_t arg3);
130 static int	aac_sa_get_mailbox(struct aac_softc *sc, int mb);
131 static void	aac_sa_set_interrupts(struct aac_softc *sc, int enable);
132 
133 struct aac_interface aac_sa_interface = {
134 	aac_sa_get_fwstatus,
135 	aac_sa_qnotify,
136 	aac_sa_get_istatus,
137 	aac_sa_clear_istatus,
138 	aac_sa_set_mailbox,
139 	aac_sa_get_mailbox,
140 	aac_sa_set_interrupts
141 };
142 
143 /* i960Rx interface */
144 static int	aac_rx_get_fwstatus(struct aac_softc *sc);
145 static void	aac_rx_qnotify(struct aac_softc *sc, int qbit);
146 static int	aac_rx_get_istatus(struct aac_softc *sc);
147 static void	aac_rx_clear_istatus(struct aac_softc *sc, int mask);
148 static void	aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
149 				   u_int32_t arg0, u_int32_t arg1,
150 				   u_int32_t arg2, u_int32_t arg3);
151 static int	aac_rx_get_mailbox(struct aac_softc *sc, int mb);
152 static void	aac_rx_set_interrupts(struct aac_softc *sc, int enable);
153 
154 struct aac_interface aac_rx_interface = {
155 	aac_rx_get_fwstatus,
156 	aac_rx_qnotify,
157 	aac_rx_get_istatus,
158 	aac_rx_clear_istatus,
159 	aac_rx_set_mailbox,
160 	aac_rx_get_mailbox,
161 	aac_rx_set_interrupts
162 };
163 
164 /* Debugging and Diagnostics */
165 static void	aac_describe_controller(struct aac_softc *sc);
166 static char	*aac_describe_code(struct aac_code_lookup *table,
167 				   u_int32_t code);
168 
169 /* Management Interface */
170 static d_open_t		aac_open;
171 static d_close_t	aac_close;
172 static d_ioctl_t	aac_ioctl;
173 static d_poll_t		aac_poll;
174 static int		aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib);
175 static void		aac_handle_aif(struct aac_softc *sc,
176 					   struct aac_fib *fib);
177 static int		aac_rev_check(struct aac_softc *sc, caddr_t udata);
178 static int		aac_getnext_aif(struct aac_softc *sc, caddr_t arg);
179 static int		aac_return_aif(struct aac_softc *sc, caddr_t uptr);
180 static int		aac_query_disk(struct aac_softc *sc, caddr_t uptr);
181 
182 #define AAC_CDEV_MAJOR	150
183 
184 static struct cdevsw aac_cdevsw = {
185 	.d_open =	aac_open,
186 	.d_close =	aac_close,
187 	.d_ioctl =	aac_ioctl,
188 	.d_poll =	aac_poll,
189 	.d_name =	"aac",
190 	.d_maj =	AAC_CDEV_MAJOR,
191 };
192 
193 MALLOC_DEFINE(M_AACBUF, "aacbuf", "Buffers for the AAC driver");
194 
195 /* sysctl node */
196 SYSCTL_NODE(_hw, OID_AUTO, aac, CTLFLAG_RD, 0, "AAC driver parameters");
197 
198 /*
199  * Device Interface
200  */
201 
202 /*
203  * Initialise the controller and softc
204  */
205 int
206 aac_attach(struct aac_softc *sc)
207 {
208 	int error, unit;
209 
210 	debug_called(1);
211 
212 	/*
213 	 * Initialise per-controller queues.
214 	 */
215 	aac_initq_free(sc);
216 	aac_initq_ready(sc);
217 	aac_initq_busy(sc);
218 	aac_initq_bio(sc);
219 
220 	/*
221 	 * Initialise command-completion task.
222 	 */
223 	TASK_INIT(&sc->aac_task_complete, 0, aac_complete, sc);
224 
225 	/* disable interrupts before we enable anything */
226 	AAC_MASK_INTERRUPTS(sc);
227 
228 	/* mark controller as suspended until we get ourselves organised */
229 	sc->aac_state |= AAC_STATE_SUSPEND;
230 
231 	/*
232 	 * Check that the firmware on the card is supported.
233 	 */
234 	if ((error = aac_check_firmware(sc)) != 0)
235 		return(error);
236 
237 	/*
238 	 * Initialize locks
239 	 */
240 	AAC_LOCK_INIT(&sc->aac_sync_lock, "AAC sync FIB lock");
241 	AAC_LOCK_INIT(&sc->aac_aifq_lock, "AAC AIF lock");
242 	AAC_LOCK_INIT(&sc->aac_io_lock, "AAC I/O lock");
243 	AAC_LOCK_INIT(&sc->aac_container_lock, "AAC container lock");
244 	TAILQ_INIT(&sc->aac_container_tqh);
245 
246 
247 	/*
248 	 * Initialise the adapter.
249 	 */
250 	if ((error = aac_init(sc)) != 0)
251 		return(error);
252 
253 	/*
254 	 * Print a little information about the controller.
255 	 */
256 	aac_describe_controller(sc);
257 
258 	/*
259 	 * Register to probe our containers later.
260 	 */
261 	sc->aac_ich.ich_func = aac_startup;
262 	sc->aac_ich.ich_arg = sc;
263 	if (config_intrhook_establish(&sc->aac_ich) != 0) {
264 		device_printf(sc->aac_dev,
265 			      "can't establish configuration hook\n");
266 		return(ENXIO);
267 	}
268 
269 	/*
270 	 * Make the control device.
271 	 */
272 	unit = device_get_unit(sc->aac_dev);
273 	sc->aac_dev_t = make_dev(&aac_cdevsw, unit, UID_ROOT, GID_OPERATOR,
274 				 0640, "aac%d", unit);
275 	(void)make_dev_alias(sc->aac_dev_t, "afa%d", unit);
276 	(void)make_dev_alias(sc->aac_dev_t, "hpn%d", unit);
277 	sc->aac_dev_t->si_drv1 = sc;
278 
279 	/* Create the AIF thread */
280 	if (kthread_create((void(*)(void *))aac_command_thread, sc,
281 			   &sc->aifthread, 0, 0, "aac%daif", unit))
282 		panic("Could not create AIF thread\n");
283 
284 	/* Register the shutdown method to only be called post-dump */
285 	if ((sc->eh = EVENTHANDLER_REGISTER(shutdown_final, aac_shutdown,
286 	    sc->aac_dev, SHUTDOWN_PRI_DEFAULT)) == NULL)
287 		device_printf(sc->aac_dev,
288 			      "shutdown event registration failed\n");
289 
290 	/* Register with CAM for the non-DASD devices */
291 	if ((sc->flags & AAC_FLAGS_ENABLE_CAM) != 0) {
292 		TAILQ_INIT(&sc->aac_sim_tqh);
293 		aac_get_bus_info(sc);
294 	}
295 
296 	return(0);
297 }
298 
299 /*
300  * Probe for containers, create disks.
301  */
302 static void
303 aac_startup(void *arg)
304 {
305 	struct aac_softc *sc;
306 	struct aac_fib *fib;
307 	struct aac_mntinfo *mi;
308 	struct aac_mntinforesp *mir = NULL;
309 	int count = 0, i = 0;
310 
311 	debug_called(1);
312 
313 	sc = (struct aac_softc *)arg;
314 
315 	/* disconnect ourselves from the intrhook chain */
316 	config_intrhook_disestablish(&sc->aac_ich);
317 
318 	aac_alloc_sync_fib(sc, &fib, 0);
319 	mi = (struct aac_mntinfo *)&fib->data[0];
320 
321 	/* loop over possible containers */
322 	do {
323 		/* request information on this container */
324 		bzero(mi, sizeof(struct aac_mntinfo));
325 		mi->Command = VM_NameServe;
326 		mi->MntType = FT_FILESYS;
327 		mi->MntCount = i;
328 		if (aac_sync_fib(sc, ContainerCommand, 0, fib,
329 				 sizeof(struct aac_mntinfo))) {
330 			printf("error probing container %d", i);
331 			continue;
332 		}
333 
334 		mir = (struct aac_mntinforesp *)&fib->data[0];
335 		/* XXX Need to check if count changed */
336 		count = mir->MntRespCount;
337 		aac_add_container(sc, mir, 0);
338 		i++;
339 	} while ((i < count) && (i < AAC_MAX_CONTAINERS));
340 
341 	aac_release_sync_fib(sc);
342 
343 	/* poke the bus to actually attach the child devices */
344 	if (bus_generic_attach(sc->aac_dev))
345 		device_printf(sc->aac_dev, "bus_generic_attach failed\n");
346 
347 	/* mark the controller up */
348 	sc->aac_state &= ~AAC_STATE_SUSPEND;
349 
350 	/* enable interrupts now */
351 	AAC_UNMASK_INTERRUPTS(sc);
352 }
353 
354 /*
355  * Create a device to respresent a new container
356  */
357 static void
358 aac_add_container(struct aac_softc *sc, struct aac_mntinforesp *mir, int f)
359 {
360 	struct aac_container *co;
361 	device_t child;
362 
363 	/*
364 	 * Check container volume type for validity.  Note that many of
365 	 * the possible types may never show up.
366 	 */
367 	if ((mir->Status == ST_OK) && (mir->MntTable[0].VolType != CT_NONE)) {
368 		co = (struct aac_container *)malloc(sizeof *co, M_AACBUF,
369 		       M_NOWAIT | M_ZERO);
370 		if (co == NULL)
371 			panic("Out of memory?!\n");
372 		debug(1, "id %x  name '%.16s'  size %u  type %d",
373 		      mir->MntTable[0].ObjectId,
374 		      mir->MntTable[0].FileSystemName,
375 		      mir->MntTable[0].Capacity, mir->MntTable[0].VolType);
376 
377 		if ((child = device_add_child(sc->aac_dev, "aacd", -1)) == NULL)
378 			device_printf(sc->aac_dev, "device_add_child failed\n");
379 		else
380 			device_set_ivars(child, co);
381 		device_set_desc(child, aac_describe_code(aac_container_types,
382 				mir->MntTable[0].VolType));
383 		co->co_disk = child;
384 		co->co_found = f;
385 		bcopy(&mir->MntTable[0], &co->co_mntobj,
386 		      sizeof(struct aac_mntobj));
387 		AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
388 		TAILQ_INSERT_TAIL(&sc->aac_container_tqh, co, co_link);
389 		AAC_LOCK_RELEASE(&sc->aac_container_lock);
390 	}
391 }
392 
393 /*
394  * Free all of the resources associated with (sc)
395  *
396  * Should not be called if the controller is active.
397  */
398 void
399 aac_free(struct aac_softc *sc)
400 {
401 
402 	debug_called(1);
403 
404 	/* remove the control device */
405 	if (sc->aac_dev_t != NULL)
406 		destroy_dev(sc->aac_dev_t);
407 
408 	/* throw away any FIB buffers, discard the FIB DMA tag */
409 	aac_free_commands(sc);
410 	if (sc->aac_fib_dmat)
411 		bus_dma_tag_destroy(sc->aac_fib_dmat);
412 
413 	free(sc->aac_commands, M_AACBUF);
414 
415 	/* destroy the common area */
416 	if (sc->aac_common) {
417 		bus_dmamap_unload(sc->aac_common_dmat, sc->aac_common_dmamap);
418 		bus_dmamem_free(sc->aac_common_dmat, sc->aac_common,
419 				sc->aac_common_dmamap);
420 	}
421 	if (sc->aac_common_dmat)
422 		bus_dma_tag_destroy(sc->aac_common_dmat);
423 
424 	/* disconnect the interrupt handler */
425 	if (sc->aac_intr)
426 		bus_teardown_intr(sc->aac_dev, sc->aac_irq, sc->aac_intr);
427 	if (sc->aac_irq != NULL)
428 		bus_release_resource(sc->aac_dev, SYS_RES_IRQ, sc->aac_irq_rid,
429 				     sc->aac_irq);
430 
431 	/* destroy data-transfer DMA tag */
432 	if (sc->aac_buffer_dmat)
433 		bus_dma_tag_destroy(sc->aac_buffer_dmat);
434 
435 	/* destroy the parent DMA tag */
436 	if (sc->aac_parent_dmat)
437 		bus_dma_tag_destroy(sc->aac_parent_dmat);
438 
439 	/* release the register window mapping */
440 	if (sc->aac_regs_resource != NULL)
441 		bus_release_resource(sc->aac_dev, SYS_RES_MEMORY,
442 				     sc->aac_regs_rid, sc->aac_regs_resource);
443 }
444 
445 /*
446  * Disconnect from the controller completely, in preparation for unload.
447  */
448 int
449 aac_detach(device_t dev)
450 {
451 	struct aac_softc *sc;
452 	struct aac_container *co;
453 	struct aac_sim	*sim;
454 	int error;
455 
456 	debug_called(1);
457 
458 	sc = device_get_softc(dev);
459 
460 	if (sc->aac_state & AAC_STATE_OPEN)
461 		return(EBUSY);
462 
463 	/* Remove the child containers */
464 	while ((co = TAILQ_FIRST(&sc->aac_container_tqh)) != NULL) {
465 		error = device_delete_child(dev, co->co_disk);
466 		if (error)
467 			return (error);
468 		TAILQ_REMOVE(&sc->aac_container_tqh, co, co_link);
469 		free(co, M_AACBUF);
470 	}
471 
472 	/* Remove the CAM SIMs */
473 	while ((sim = TAILQ_FIRST(&sc->aac_sim_tqh)) != NULL) {
474 		TAILQ_REMOVE(&sc->aac_sim_tqh, sim, sim_link);
475 		error = device_delete_child(dev, sim->sim_dev);
476 		if (error)
477 			return (error);
478 		free(sim, M_AACBUF);
479 	}
480 
481 	if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
482 		sc->aifflags |= AAC_AIFFLAGS_EXIT;
483 		wakeup(sc->aifthread);
484 		tsleep(sc->aac_dev, PUSER | PCATCH, "aacdch", 30 * hz);
485 	}
486 
487 	if (sc->aifflags & AAC_AIFFLAGS_RUNNING)
488 		panic("Cannot shutdown AIF thread\n");
489 
490 	if ((error = aac_shutdown(dev)))
491 		return(error);
492 
493 	EVENTHANDLER_DEREGISTER(shutdown_final, sc->eh);
494 
495 	aac_free(sc);
496 
497 	return(0);
498 }
499 
500 /*
501  * Bring the controller down to a dormant state and detach all child devices.
502  *
503  * This function is called before detach or system shutdown.
504  *
505  * Note that we can assume that the bioq on the controller is empty, as we won't
506  * allow shutdown if any device is open.
507  */
508 int
509 aac_shutdown(device_t dev)
510 {
511 	struct aac_softc *sc;
512 	struct aac_fib *fib;
513 	struct aac_close_command *cc;
514 
515 	debug_called(1);
516 
517 	sc = device_get_softc(dev);
518 
519 	sc->aac_state |= AAC_STATE_SUSPEND;
520 
521 	/*
522 	 * Send a Container shutdown followed by a HostShutdown FIB to the
523 	 * controller to convince it that we don't want to talk to it anymore.
524 	 * We've been closed and all I/O completed already
525 	 */
526 	device_printf(sc->aac_dev, "shutting down controller...");
527 
528 	aac_alloc_sync_fib(sc, &fib, AAC_SYNC_LOCK_FORCE);
529 	cc = (struct aac_close_command *)&fib->data[0];
530 
531 	bzero(cc, sizeof(struct aac_close_command));
532 	cc->Command = VM_CloseAll;
533 	cc->ContainerId = 0xffffffff;
534 	if (aac_sync_fib(sc, ContainerCommand, 0, fib,
535 	    sizeof(struct aac_close_command)))
536 		printf("FAILED.\n");
537 	else
538 		printf("done\n");
539 #if 0
540 	else {
541 		fib->data[0] = 0;
542 		/*
543 		 * XXX Issuing this command to the controller makes it shut down
544 		 * but also keeps it from coming back up without a reset of the
545 		 * PCI bus.  This is not desirable if you are just unloading the
546 		 * driver module with the intent to reload it later.
547 		 */
548 		if (aac_sync_fib(sc, FsaHostShutdown, AAC_FIBSTATE_SHUTDOWN,
549 		    fib, 1)) {
550 			printf("FAILED.\n");
551 		} else {
552 			printf("done.\n");
553 		}
554 	}
555 #endif
556 
557 	AAC_MASK_INTERRUPTS(sc);
558 
559 	return(0);
560 }
561 
562 /*
563  * Bring the controller to a quiescent state, ready for system suspend.
564  */
565 int
566 aac_suspend(device_t dev)
567 {
568 	struct aac_softc *sc;
569 
570 	debug_called(1);
571 
572 	sc = device_get_softc(dev);
573 
574 	sc->aac_state |= AAC_STATE_SUSPEND;
575 
576 	AAC_MASK_INTERRUPTS(sc);
577 	return(0);
578 }
579 
580 /*
581  * Bring the controller back to a state ready for operation.
582  */
583 int
584 aac_resume(device_t dev)
585 {
586 	struct aac_softc *sc;
587 
588 	debug_called(1);
589 
590 	sc = device_get_softc(dev);
591 
592 	sc->aac_state &= ~AAC_STATE_SUSPEND;
593 	AAC_UNMASK_INTERRUPTS(sc);
594 	return(0);
595 }
596 
597 /*
598  * Take an interrupt.
599  */
600 void
601 aac_intr(void *arg)
602 {
603 	struct aac_softc *sc;
604 	u_int32_t *resp_queue;
605 	u_int16_t reason;
606 
607 	debug_called(2);
608 
609 	sc = (struct aac_softc *)arg;
610 
611 	/*
612 	 * Optimize the common case of adapter response interrupts.
613 	 * We must read from the card prior to processing the responses
614 	 * to ensure the clear is flushed prior to accessing the queues.
615 	 * Reading the queues from local memory might save us a PCI read.
616 	 */
617 	resp_queue = sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE];
618 	if (resp_queue[AAC_PRODUCER_INDEX] != resp_queue[AAC_CONSUMER_INDEX])
619 		reason = AAC_DB_RESPONSE_READY;
620 	else
621 		reason = AAC_GET_ISTATUS(sc);
622 	AAC_CLEAR_ISTATUS(sc, reason);
623 	(void)AAC_GET_ISTATUS(sc);
624 
625 	/* It's not ok to return here because of races with the previous step */
626 	if (reason & AAC_DB_RESPONSE_READY)
627 		/* handle completion processing */
628 		taskqueue_enqueue(taskqueue_swi, &sc->aac_task_complete);
629 
630 	/* controller wants to talk to the log */
631 	if (reason & AAC_DB_PRINTF) {
632 		if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
633 			sc->aifflags |= AAC_AIFFLAGS_PRINTF;
634 		} else
635 			aac_print_printf(sc);
636 	}
637 
638 	/* controller has a message for us? */
639 	if (reason & AAC_DB_COMMAND_READY) {
640 		if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
641 			sc->aifflags |= AAC_AIFFLAGS_AIF;
642 		} else {
643 			/*
644 			 * XXX If the kthread is dead and we're at this point,
645 			 * there are bigger problems than just figuring out
646 			 * what to do with an AIF.
647 			 */
648 		}
649 
650 	}
651 
652 	if ((sc->aifflags & AAC_AIFFLAGS_PENDING) != 0)
653 		/* XXX Should this be done with cv_signal? */
654 		wakeup(sc->aifthread);
655 }
656 
657 /*
658  * Command Processing
659  */
660 
661 /*
662  * Start as much queued I/O as possible on the controller
663  */
664 void
665 aac_startio(struct aac_softc *sc)
666 {
667 	struct aac_command *cm;
668 
669 	debug_called(2);
670 
671 	if (sc->flags & AAC_QUEUE_FRZN)
672 		return;
673 
674 	for (;;) {
675 		/*
676 		 * Try to get a command that's been put off for lack of
677 		 * resources
678 		 */
679 		cm = aac_dequeue_ready(sc);
680 
681 		/*
682 		 * Try to build a command off the bio queue (ignore error
683 		 * return)
684 		 */
685 		if (cm == NULL)
686 			aac_bio_command(sc, &cm);
687 
688 		/* nothing to do? */
689 		if (cm == NULL)
690 			break;
691 
692 		/* try to give the command to the controller */
693 		if (aac_map_command(cm) == EBUSY) {
694 			/* put it on the ready queue for later */
695 			aac_requeue_ready(cm);
696 			break;
697 		}
698 	}
699 }
700 
701 /*
702  * Deliver a command to the controller; allocate controller resources at the
703  * last moment when possible.
704  */
705 static int
706 aac_map_command(struct aac_command *cm)
707 {
708 	struct aac_softc *sc;
709 	int error;
710 
711 	debug_called(2);
712 
713 	sc = cm->cm_sc;
714 	error = 0;
715 
716 	/* don't map more than once */
717 	if (cm->cm_flags & AAC_CMD_MAPPED)
718 		return (0);
719 
720 	if (cm->cm_datalen != 0) {
721 		error = bus_dmamap_load(sc->aac_buffer_dmat, cm->cm_datamap,
722 					cm->cm_data, cm->cm_datalen,
723 					aac_map_command_sg, cm, 0);
724 		if (error == EINPROGRESS) {
725 			debug(1, "freezing queue\n");
726 			sc->flags |= AAC_QUEUE_FRZN;
727 			error = 0;
728 		}
729 	}
730 	return (error);
731 }
732 
733 /*
734  * Handle notification of one or more FIBs coming from the controller.
735  */
736 static void
737 aac_command_thread(struct aac_softc *sc)
738 {
739 	struct aac_fib *fib;
740 	u_int32_t fib_size;
741 	int size;
742 
743 	debug_called(2);
744 
745 	sc->aifflags |= AAC_AIFFLAGS_RUNNING;
746 
747 	while (!(sc->aifflags & AAC_AIFFLAGS_EXIT)) {
748 		if ((sc->aifflags & AAC_AIFFLAGS_PENDING) == 0)
749 			tsleep(sc->aifthread, PRIBIO, "aifthd",
750 			       AAC_PERIODIC_INTERVAL * hz);
751 
752 		if ((sc->aifflags & AAC_AIFFLAGS_PENDING) == 0)
753 			aac_timeout(sc);
754 
755 		/* Check the hardware printf message buffer */
756 		if ((sc->aifflags & AAC_AIFFLAGS_PRINTF) != 0) {
757 			sc->aifflags &= ~AAC_AIFFLAGS_PRINTF;
758 			aac_print_printf(sc);
759 		}
760 
761 		/* See if any FIBs need to be allocated */
762 		if ((sc->aifflags & AAC_AIFFLAGS_ALLOCFIBS) != 0) {
763 			AAC_LOCK_ACQUIRE(&sc->aac_io_lock);
764 			aac_alloc_commands(sc);
765 			sc->aifflags &= ~AAC_AIFFLAGS_ALLOCFIBS;
766 			AAC_LOCK_RELEASE(&sc->aac_io_lock);
767 		}
768 
769 		/* While we're here, check to see if any commands are stuck */
770 		while (sc->aifflags & AAC_AIFFLAGS_AIF) {
771 			if (aac_dequeue_fib(sc, AAC_HOST_NORM_CMD_QUEUE,
772 					    &fib_size, &fib)) {
773 				sc->aifflags &= ~AAC_AIFFLAGS_AIF;
774 				break;	/* nothing to do */
775 			}
776 
777 			AAC_PRINT_FIB(sc, fib);
778 
779 			switch (fib->Header.Command) {
780 			case AifRequest:
781 				aac_handle_aif(sc, fib);
782 				break;
783 			default:
784 				device_printf(sc->aac_dev, "unknown command "
785 					      "from controller\n");
786 				break;
787 			}
788 
789 			if ((fib->Header.XferState == 0) ||
790 			    (fib->Header.StructType != AAC_FIBTYPE_TFIB))
791 				break;
792 
793 			/* Return the AIF to the controller. */
794 			if (fib->Header.XferState & AAC_FIBSTATE_FROMADAP) {
795 				fib->Header.XferState |= AAC_FIBSTATE_DONEHOST;
796 				*(AAC_FSAStatus*)fib->data = ST_OK;
797 
798 				/* XXX Compute the Size field? */
799 				size = fib->Header.Size;
800 				if (size > sizeof(struct aac_fib)) {
801 					size = sizeof(struct aac_fib);
802 					fib->Header.Size = size;
803 				}
804 				/*
805 				 * Since we did not generate this command, it
806 				 * cannot go through the normal
807 				 * enqueue->startio chain.
808 				 */
809 				aac_enqueue_response(sc,
810 						     AAC_ADAP_NORM_RESP_QUEUE,
811 						     fib);
812 			}
813 		}
814 	}
815 	sc->aifflags &= ~AAC_AIFFLAGS_RUNNING;
816 	wakeup(sc->aac_dev);
817 
818 	mtx_lock(&Giant);
819 	kthread_exit(0);
820 }
821 
822 /*
823  * Process completed commands.
824  */
825 static void
826 aac_complete(void *context, int pending)
827 {
828 	struct aac_softc *sc;
829 	struct aac_command *cm;
830 	struct aac_fib *fib;
831 	u_int32_t fib_size;
832 
833 	debug_called(2);
834 
835 	sc = (struct aac_softc *)context;
836 
837 	AAC_LOCK_ACQUIRE(&sc->aac_io_lock);
838 
839 	/* pull completed commands off the queue */
840 	for (;;) {
841 		/* look for completed FIBs on our queue */
842 		if (aac_dequeue_fib(sc, AAC_HOST_NORM_RESP_QUEUE, &fib_size,
843 				    &fib))
844 			break;	/* nothing to do */
845 
846 		/* get the command, unmap and queue for later processing */
847 		cm = sc->aac_commands + fib->Header.SenderData;
848 		if (cm == NULL) {
849 			AAC_PRINT_FIB(sc, fib);
850 			break;
851 		}
852 
853 		aac_remove_busy(cm);
854 		aac_unmap_command(cm);		/* XXX defer? */
855 		cm->cm_flags |= AAC_CMD_COMPLETED;
856 
857 		/* is there a completion handler? */
858 		if (cm->cm_complete != NULL) {
859 			cm->cm_complete(cm);
860 		} else {
861 			/* assume that someone is sleeping on this command */
862 			wakeup(cm);
863 		}
864 	}
865 
866 	/* see if we can start some more I/O */
867 	sc->flags &= ~AAC_QUEUE_FRZN;
868 	aac_startio(sc);
869 
870 	AAC_LOCK_RELEASE(&sc->aac_io_lock);
871 }
872 
873 /*
874  * Handle a bio submitted from a disk device.
875  */
876 void
877 aac_submit_bio(struct bio *bp)
878 {
879 	struct aac_disk *ad;
880 	struct aac_softc *sc;
881 
882 	debug_called(2);
883 
884 	ad = (struct aac_disk *)bp->bio_disk->d_drv1;
885 	sc = ad->ad_controller;
886 
887 	/* queue the BIO and try to get some work done */
888 	aac_enqueue_bio(sc, bp);
889 	aac_startio(sc);
890 }
891 
892 /*
893  * Get a bio and build a command to go with it.
894  */
895 static int
896 aac_bio_command(struct aac_softc *sc, struct aac_command **cmp)
897 {
898 	struct aac_command *cm;
899 	struct aac_fib *fib;
900 	struct aac_disk *ad;
901 	struct bio *bp;
902 
903 	debug_called(2);
904 
905 	/* get the resources we will need */
906 	cm = NULL;
907 	if ((bp = aac_dequeue_bio(sc)) == NULL)
908 		goto fail;
909 	if (aac_alloc_command(sc, &cm))	/* get a command */
910 		goto fail;
911 
912 	/* fill out the command */
913 	cm->cm_data = (void *)bp->bio_data;
914 	cm->cm_datalen = bp->bio_bcount;
915 	cm->cm_complete = aac_bio_complete;
916 	cm->cm_private = bp;
917 	cm->cm_timestamp = time_second;
918 	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
919 
920 	/* build the FIB */
921 	fib = cm->cm_fib;
922 	fib->Header.Size = sizeof(struct aac_fib_header);
923 	fib->Header.XferState =
924 		AAC_FIBSTATE_HOSTOWNED   |
925 		AAC_FIBSTATE_INITIALISED |
926 		AAC_FIBSTATE_EMPTY	 |
927 		AAC_FIBSTATE_FROMHOST	 |
928 		AAC_FIBSTATE_REXPECTED   |
929 		AAC_FIBSTATE_NORM	 |
930 		AAC_FIBSTATE_ASYNC	 |
931 		AAC_FIBSTATE_FAST_RESPONSE;
932 
933 	/* build the read/write request */
934 	ad = (struct aac_disk *)bp->bio_disk->d_drv1;
935 
936 	if ((sc->flags & AAC_FLAGS_SG_64BIT) == 0) {
937 		fib->Header.Command = ContainerCommand;
938 		if (bp->bio_cmd == BIO_READ) {
939 			struct aac_blockread *br;
940 			br = (struct aac_blockread *)&fib->data[0];
941 			br->Command = VM_CtBlockRead;
942 			br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
943 			br->BlockNumber = bp->bio_pblkno;
944 			br->ByteCount = bp->bio_bcount;
945 			fib->Header.Size += sizeof(struct aac_blockread);
946 			cm->cm_sgtable = &br->SgMap;
947 			cm->cm_flags |= AAC_CMD_DATAIN;
948 		} else {
949 			struct aac_blockwrite *bw;
950 			bw = (struct aac_blockwrite *)&fib->data[0];
951 			bw->Command = VM_CtBlockWrite;
952 			bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
953 			bw->BlockNumber = bp->bio_pblkno;
954 			bw->ByteCount = bp->bio_bcount;
955 			bw->Stable = CUNSTABLE;
956 			fib->Header.Size += sizeof(struct aac_blockwrite);
957 			cm->cm_flags |= AAC_CMD_DATAOUT;
958 			cm->cm_sgtable = &bw->SgMap;
959 		}
960 	} else {
961 		fib->Header.Command = ContainerCommand64;
962 		if (bp->bio_cmd == BIO_READ) {
963 			struct aac_blockread64 *br;
964 			br = (struct aac_blockread64 *)&fib->data[0];
965 			br->Command = VM_CtHostRead64;
966 			br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
967 			br->SectorCount = bp->bio_bcount / AAC_BLOCK_SIZE;
968 			br->BlockNumber = bp->bio_pblkno;
969 			br->Pad = 0;
970 			br->Flags = 0;
971 			fib->Header.Size += sizeof(struct aac_blockread64);
972 			cm->cm_flags |= AAC_CMD_DATAOUT;
973 			(struct aac_sg_table64 *)cm->cm_sgtable = &br->SgMap64;
974 		} else {
975 			struct aac_blockwrite64 *bw;
976 			bw = (struct aac_blockwrite64 *)&fib->data[0];
977 			bw->Command = VM_CtHostWrite64;
978 			bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
979 			bw->SectorCount = bp->bio_bcount / AAC_BLOCK_SIZE;
980 			bw->BlockNumber = bp->bio_pblkno;
981 			bw->Pad = 0;
982 			bw->Flags = 0;
983 			fib->Header.Size += sizeof(struct aac_blockwrite64);
984 			cm->cm_flags |= AAC_CMD_DATAIN;
985 			(struct aac_sg_table64 *)cm->cm_sgtable = &bw->SgMap64;
986 		}
987 	}
988 
989 	*cmp = cm;
990 	return(0);
991 
992 fail:
993 	if (bp != NULL)
994 		aac_enqueue_bio(sc, bp);
995 	if (cm != NULL)
996 		aac_release_command(cm);
997 	return(ENOMEM);
998 }
999 
1000 /*
1001  * Handle a bio-instigated command that has been completed.
1002  */
1003 static void
1004 aac_bio_complete(struct aac_command *cm)
1005 {
1006 	struct aac_blockread_response *brr;
1007 	struct aac_blockwrite_response *bwr;
1008 	struct bio *bp;
1009 	AAC_FSAStatus status;
1010 
1011 	/* fetch relevant status and then release the command */
1012 	bp = (struct bio *)cm->cm_private;
1013 	if (bp->bio_cmd == BIO_READ) {
1014 		brr = (struct aac_blockread_response *)&cm->cm_fib->data[0];
1015 		status = brr->Status;
1016 	} else {
1017 		bwr = (struct aac_blockwrite_response *)&cm->cm_fib->data[0];
1018 		status = bwr->Status;
1019 	}
1020 	aac_release_command(cm);
1021 
1022 	/* fix up the bio based on status */
1023 	if (status == ST_OK) {
1024 		bp->bio_resid = 0;
1025 	} else {
1026 		bp->bio_error = EIO;
1027 		bp->bio_flags |= BIO_ERROR;
1028 		/* pass an error string out to the disk layer */
1029 		bp->bio_driver1 = aac_describe_code(aac_command_status_table,
1030 						    status);
1031 	}
1032 	aac_biodone(bp);
1033 }
1034 
1035 /*
1036  * Submit a command to the controller, return when it completes.
1037  * XXX This is very dangerous!  If the card has gone out to lunch, we could
1038  *     be stuck here forever.  At the same time, signals are not caught
1039  *     because there is a risk that a signal could wakeup the tsleep before
1040  *     the card has a chance to complete the command.  The passed in timeout
1041  *     is ignored for the same reason.  Since there is no way to cancel a
1042  *     command in progress, we should probably create a 'dead' queue where
1043  *     commands go that have been interrupted/timed-out/etc, that keeps them
1044  *     out of the free pool.  That way, if the card is just slow, it won't
1045  *     spam the memory of a command that has been recycled.
1046  */
1047 static int
1048 aac_wait_command(struct aac_command *cm, int timeout)
1049 {
1050 	struct aac_softc *sc;
1051 	int error = 0;
1052 
1053 	debug_called(2);
1054 
1055 	sc = cm->cm_sc;
1056 
1057 	/* Put the command on the ready queue and get things going */
1058 	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1059 	aac_enqueue_ready(cm);
1060 	aac_startio(sc);
1061 	while (!(cm->cm_flags & AAC_CMD_COMPLETED) && (error != EWOULDBLOCK)) {
1062 		error = msleep(cm, &sc->aac_io_lock, PRIBIO, "aacwait", 0);
1063 	}
1064 	return(error);
1065 }
1066 
1067 /*
1068  *Command Buffer Management
1069  */
1070 
1071 /*
1072  * Allocate a command.
1073  */
1074 int
1075 aac_alloc_command(struct aac_softc *sc, struct aac_command **cmp)
1076 {
1077 	struct aac_command *cm;
1078 
1079 	debug_called(3);
1080 
1081 	if ((cm = aac_dequeue_free(sc)) == NULL) {
1082 		if (sc->total_fibs < sc->aac_max_fibs) {
1083 			sc->aifflags |= AAC_AIFFLAGS_ALLOCFIBS;
1084 			wakeup(sc->aifthread);
1085 		}
1086 		return (EBUSY);
1087 	}
1088 
1089 	*cmp = cm;
1090 	return(0);
1091 }
1092 
1093 /*
1094  * Release a command back to the freelist.
1095  */
1096 void
1097 aac_release_command(struct aac_command *cm)
1098 {
1099 	debug_called(3);
1100 
1101 	/* (re)initialise the command/FIB */
1102 	cm->cm_sgtable = NULL;
1103 	cm->cm_flags = 0;
1104 	cm->cm_complete = NULL;
1105 	cm->cm_private = NULL;
1106 	cm->cm_fib->Header.XferState = AAC_FIBSTATE_EMPTY;
1107 	cm->cm_fib->Header.StructType = AAC_FIBTYPE_TFIB;
1108 	cm->cm_fib->Header.Flags = 0;
1109 	cm->cm_fib->Header.SenderSize = sizeof(struct aac_fib);
1110 
1111 	/*
1112 	 * These are duplicated in aac_start to cover the case where an
1113 	 * intermediate stage may have destroyed them.  They're left
1114 	 * initialised here for debugging purposes only.
1115 	 */
1116 	cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
1117 	cm->cm_fib->Header.ReceiverFibAddress = (u_int32_t)cm->cm_fibphys;
1118 	cm->cm_fib->Header.SenderData = 0;
1119 
1120 	aac_enqueue_free(cm);
1121 }
1122 
1123 /*
1124  * Map helper for command/FIB allocation.
1125  */
1126 static void
1127 aac_map_command_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1128 {
1129 	uint32_t	*fibphys;
1130 
1131 	fibphys = (uint32_t *)arg;
1132 
1133 	debug_called(3);
1134 
1135 	*fibphys = segs[0].ds_addr;
1136 }
1137 
1138 /*
1139  * Allocate and initialise commands/FIBs for this adapter.
1140  */
1141 static int
1142 aac_alloc_commands(struct aac_softc *sc)
1143 {
1144 	struct aac_command *cm;
1145 	struct aac_fibmap *fm;
1146 	uint32_t fibphys;
1147 	int i, error;
1148 
1149 	debug_called(2);
1150 
1151 	if (sc->total_fibs + AAC_FIB_COUNT > sc->aac_max_fibs)
1152 		return (ENOMEM);
1153 
1154 	fm = malloc(sizeof(struct aac_fibmap), M_AACBUF, M_NOWAIT|M_ZERO);
1155 	if (fm == NULL)
1156 		return (ENOMEM);
1157 
1158 	/* allocate the FIBs in DMAable memory and load them */
1159 	if (bus_dmamem_alloc(sc->aac_fib_dmat, (void **)&fm->aac_fibs,
1160 			     BUS_DMA_NOWAIT, &fm->aac_fibmap)) {
1161 		device_printf(sc->aac_dev,
1162 			      "Not enough contiguous memory available.\n");
1163 		free(fm, M_AACBUF);
1164 		return (ENOMEM);
1165 	}
1166 
1167 	/* Ignore errors since this doesn't bounce */
1168 	(void)bus_dmamap_load(sc->aac_fib_dmat, fm->aac_fibmap, fm->aac_fibs,
1169 			      AAC_FIB_COUNT * sizeof(struct aac_fib),
1170 			      aac_map_command_helper, &fibphys, 0);
1171 
1172 	/* initialise constant fields in the command structure */
1173 	bzero(fm->aac_fibs, AAC_FIB_COUNT * sizeof(struct aac_fib));
1174 	for (i = 0; i < AAC_FIB_COUNT; i++) {
1175 		cm = sc->aac_commands + sc->total_fibs;
1176 		fm->aac_commands = cm;
1177 		cm->cm_sc = sc;
1178 		cm->cm_fib = fm->aac_fibs + i;
1179 		cm->cm_fibphys = fibphys + (i * sizeof(struct aac_fib));
1180 		cm->cm_index = sc->total_fibs;
1181 
1182 		if ((error = bus_dmamap_create(sc->aac_buffer_dmat, 0,
1183 					       &cm->cm_datamap)) == 0)
1184 			aac_release_command(cm);
1185 		else
1186 			break;
1187 		sc->total_fibs++;
1188 	}
1189 
1190 	if (i > 0) {
1191 		TAILQ_INSERT_TAIL(&sc->aac_fibmap_tqh, fm, fm_link);
1192 		debug(1, "total_fibs= %d\n", sc->total_fibs);
1193 		return (0);
1194 	}
1195 
1196 	bus_dmamap_unload(sc->aac_fib_dmat, fm->aac_fibmap);
1197 	bus_dmamem_free(sc->aac_fib_dmat, fm->aac_fibs, fm->aac_fibmap);
1198 	free(fm, M_AACBUF);
1199 	return (ENOMEM);
1200 }
1201 
1202 /*
1203  * Free FIBs owned by this adapter.
1204  */
1205 static void
1206 aac_free_commands(struct aac_softc *sc)
1207 {
1208 	struct aac_fibmap *fm;
1209 	struct aac_command *cm;
1210 	int i;
1211 
1212 	debug_called(1);
1213 
1214 	while ((fm = TAILQ_FIRST(&sc->aac_fibmap_tqh)) != NULL) {
1215 
1216 		TAILQ_REMOVE(&sc->aac_fibmap_tqh, fm, fm_link);
1217 		/*
1218 		 * We check against total_fibs to handle partially
1219 		 * allocated blocks.
1220 		 */
1221 		for (i = 0; i < AAC_FIB_COUNT && sc->total_fibs--; i++) {
1222 			cm = fm->aac_commands + i;
1223 			bus_dmamap_destroy(sc->aac_buffer_dmat, cm->cm_datamap);
1224 		}
1225 		bus_dmamap_unload(sc->aac_fib_dmat, fm->aac_fibmap);
1226 		bus_dmamem_free(sc->aac_fib_dmat, fm->aac_fibs, fm->aac_fibmap);
1227 		free(fm, M_AACBUF);
1228 	}
1229 }
1230 
1231 /*
1232  * Command-mapping helper function - populate this command's s/g table.
1233  */
1234 static void
1235 aac_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1236 {
1237 	struct aac_softc *sc;
1238 	struct aac_command *cm;
1239 	struct aac_fib *fib;
1240 	int i;
1241 
1242 	debug_called(3);
1243 
1244 	cm = (struct aac_command *)arg;
1245 	sc = cm->cm_sc;
1246 	fib = cm->cm_fib;
1247 
1248 	/* copy into the FIB */
1249 	if (cm->cm_sgtable != NULL) {
1250 		if ((cm->cm_sc->flags & AAC_FLAGS_SG_64BIT) == 0) {
1251 			struct aac_sg_table *sg;
1252 			sg = cm->cm_sgtable;
1253 			sg->SgCount = nseg;
1254 			for (i = 0; i < nseg; i++) {
1255 				sg->SgEntry[i].SgAddress = segs[i].ds_addr;
1256 				sg->SgEntry[i].SgByteCount = segs[i].ds_len;
1257 			}
1258 			/* update the FIB size for the s/g count */
1259 			fib->Header.Size += nseg * sizeof(struct aac_sg_entry);
1260 		} else {
1261 			struct aac_sg_table64 *sg;
1262 			sg = (struct aac_sg_table64 *)cm->cm_sgtable;
1263 			sg->SgCount = nseg;
1264 			for (i = 0; i < nseg; i++) {
1265 				sg->SgEntry64[i].SgAddress = segs[i].ds_addr;
1266 				sg->SgEntry64[i].SgByteCount = segs[i].ds_len;
1267 			}
1268 			/* update the FIB size for the s/g count */
1269 			fib->Header.Size += nseg*sizeof(struct aac_sg_entry64);
1270 		}
1271 	}
1272 
1273 	/* Fix up the address values in the FIB.  Use the command array index
1274 	 * instead of a pointer since these fields are only 32 bits.  Shift
1275 	 * the SenderFibAddress over to make room for the fast response bit.
1276 	 */
1277 	cm->cm_fib->Header.SenderFibAddress = (cm->cm_index << 1);
1278 	cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys;
1279 
1280 	/* save a pointer to the command for speedy reverse-lookup */
1281 	cm->cm_fib->Header.SenderData = cm->cm_index;
1282 
1283 	if (cm->cm_flags & AAC_CMD_DATAIN)
1284 		bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1285 				BUS_DMASYNC_PREREAD);
1286 	if (cm->cm_flags & AAC_CMD_DATAOUT)
1287 		bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1288 				BUS_DMASYNC_PREWRITE);
1289 	cm->cm_flags |= AAC_CMD_MAPPED;
1290 
1291 	/* put the FIB on the outbound queue */
1292 	if (aac_enqueue_fib(sc, cm->cm_queue, cm) == EBUSY)
1293 		aac_requeue_ready(cm);
1294 
1295 	return;
1296 }
1297 
1298 /*
1299  * Unmap a command from controller-visible space.
1300  */
1301 static void
1302 aac_unmap_command(struct aac_command *cm)
1303 {
1304 	struct aac_softc *sc;
1305 
1306 	debug_called(2);
1307 
1308 	sc = cm->cm_sc;
1309 
1310 	if (!(cm->cm_flags & AAC_CMD_MAPPED))
1311 		return;
1312 
1313 	if (cm->cm_datalen != 0) {
1314 		if (cm->cm_flags & AAC_CMD_DATAIN)
1315 			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1316 					BUS_DMASYNC_POSTREAD);
1317 		if (cm->cm_flags & AAC_CMD_DATAOUT)
1318 			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1319 					BUS_DMASYNC_POSTWRITE);
1320 
1321 		bus_dmamap_unload(sc->aac_buffer_dmat, cm->cm_datamap);
1322 	}
1323 	cm->cm_flags &= ~AAC_CMD_MAPPED;
1324 }
1325 
1326 /*
1327  * Hardware Interface
1328  */
1329 
1330 /*
1331  * Initialise the adapter.
1332  */
1333 static void
1334 aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1335 {
1336 	struct aac_softc *sc;
1337 
1338 	debug_called(1);
1339 
1340 	sc = (struct aac_softc *)arg;
1341 
1342 	sc->aac_common_busaddr = segs[0].ds_addr;
1343 }
1344 
1345 static int
1346 aac_check_firmware(struct aac_softc *sc)
1347 {
1348 	u_int32_t major, minor, options;
1349 
1350 	debug_called(1);
1351 
1352 	/*
1353 	 * Retrieve the firmware version numbers.  Dell PERC2/QC cards with
1354 	 * firmware version 1.x are not compatible with this driver.
1355 	 */
1356 	if (sc->flags & AAC_FLAGS_PERC2QC) {
1357 		if (aac_sync_command(sc, AAC_MONKER_GETKERNVER, 0, 0, 0, 0,
1358 				     NULL)) {
1359 			device_printf(sc->aac_dev,
1360 				      "Error reading firmware version\n");
1361 			return (EIO);
1362 		}
1363 
1364 		/* These numbers are stored as ASCII! */
1365 		major = (AAC_GET_MAILBOX(sc, 1) & 0xff) - 0x30;
1366 		minor = (AAC_GET_MAILBOX(sc, 2) & 0xff) - 0x30;
1367 		if (major == 1) {
1368 			device_printf(sc->aac_dev,
1369 			    "Firmware version %d.%d is not supported.\n",
1370 			    major, minor);
1371 			return (EINVAL);
1372 		}
1373 	}
1374 
1375 	/*
1376 	 * Retrieve the capabilities/supported options word so we know what
1377 	 * work-arounds to enable.
1378 	 */
1379 	if (aac_sync_command(sc, AAC_MONKER_GETINFO, 0, 0, 0, 0, NULL)) {
1380 		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
1381 		return (EIO);
1382 	}
1383 	options = AAC_GET_MAILBOX(sc, 1);
1384 	sc->supported_options = options;
1385 
1386 	if ((options & AAC_SUPPORTED_4GB_WINDOW) != 0 &&
1387 	    (sc->flags & AAC_FLAGS_NO4GB) == 0)
1388 		sc->flags |= AAC_FLAGS_4GB_WINDOW;
1389 	if (options & AAC_SUPPORTED_NONDASD)
1390 		sc->flags |= AAC_FLAGS_ENABLE_CAM;
1391 	if ((options & AAC_SUPPORTED_SGMAP_HOST64) != 0
1392 	     && (sizeof(bus_addr_t) > 4)) {
1393 		device_printf(sc->aac_dev, "Enabling 64-bit address support\n");
1394 		sc->flags |= AAC_FLAGS_SG_64BIT;
1395 	}
1396 
1397 	/* Check for broken hardware that does a lower number of commands */
1398 	if ((sc->flags & AAC_FLAGS_256FIBS) == 0)
1399 		sc->aac_max_fibs = AAC_MAX_FIBS;
1400 	else
1401 		sc->aac_max_fibs = 256;
1402 
1403 	return (0);
1404 }
1405 
1406 static int
1407 aac_init(struct aac_softc *sc)
1408 {
1409 	struct aac_adapter_init	*ip;
1410 	time_t then;
1411 	u_int32_t code;
1412 	u_int8_t *qaddr;
1413 	int error;
1414 
1415 	debug_called(1);
1416 
1417 	/*
1418 	 * First wait for the adapter to come ready.
1419 	 */
1420 	then = time_second;
1421 	do {
1422 		code = AAC_GET_FWSTATUS(sc);
1423 		if (code & AAC_SELF_TEST_FAILED) {
1424 			device_printf(sc->aac_dev, "FATAL: selftest failed\n");
1425 			return(ENXIO);
1426 		}
1427 		if (code & AAC_KERNEL_PANIC) {
1428 			device_printf(sc->aac_dev,
1429 				      "FATAL: controller kernel panic\n");
1430 			return(ENXIO);
1431 		}
1432 		if (time_second > (then + AAC_BOOT_TIMEOUT)) {
1433 			device_printf(sc->aac_dev,
1434 				      "FATAL: controller not coming ready, "
1435 					   "status %x\n", code);
1436 			return(ENXIO);
1437 		}
1438 	} while (!(code & AAC_UP_AND_RUNNING));
1439 
1440 	error = ENOMEM;
1441 	/*
1442 	 * Create DMA tag for mapping buffers into controller-addressable space.
1443 	 */
1444 	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1445 			       1, 0, 			/* algnmnt, boundary */
1446 			       (sc->flags & AAC_FLAGS_SG_64BIT) ?
1447 			       BUS_SPACE_MAXADDR :
1448 			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1449 			       BUS_SPACE_MAXADDR, 	/* highaddr */
1450 			       NULL, NULL, 		/* filter, filterarg */
1451 			       MAXBSIZE,		/* maxsize */
1452 			       AAC_MAXSGENTRIES,	/* nsegments */
1453 			       MAXBSIZE,		/* maxsegsize */
1454 			       BUS_DMA_ALLOCNOW,	/* flags */
1455 			       busdma_lock_mutex,	/* lockfunc */
1456 			       &sc->aac_io_lock,	/* lockfuncarg */
1457 			       &sc->aac_buffer_dmat)) {
1458 		device_printf(sc->aac_dev, "can't allocate buffer DMA tag\n");
1459 		goto out;
1460 	}
1461 
1462 	/*
1463 	 * Create DMA tag for mapping FIBs into controller-addressable space..
1464 	 */
1465 	if (bus_dma_tag_create(sc->aac_parent_dmat,	/* parent */
1466 			       1, 0, 			/* algnmnt, boundary */
1467 			       (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1468 			       BUS_SPACE_MAXADDR_32BIT :
1469 			       0x7fffffff,		/* lowaddr */
1470 			       BUS_SPACE_MAXADDR, 	/* highaddr */
1471 			       NULL, NULL, 		/* filter, filterarg */
1472 			       AAC_FIB_COUNT *
1473 			       sizeof(struct aac_fib),  /* maxsize */
1474 			       1,			/* nsegments */
1475 			       AAC_FIB_COUNT *
1476 			       sizeof(struct aac_fib),	/* maxsegsize */
1477 			       BUS_DMA_ALLOCNOW,	/* flags */
1478 			       NULL, NULL,		/* No locking needed */
1479 			       &sc->aac_fib_dmat)) {
1480 		device_printf(sc->aac_dev, "can't allocate FIB DMA tag\n");;
1481 		goto out;
1482 	}
1483 
1484 	/*
1485 	 * Create DMA tag for the common structure and allocate it.
1486 	 */
1487 	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1488 			       1, 0,			/* algnmnt, boundary */
1489 			       (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1490 			       BUS_SPACE_MAXADDR_32BIT :
1491 			       0x7fffffff,		/* lowaddr */
1492 			       BUS_SPACE_MAXADDR, 	/* highaddr */
1493 			       NULL, NULL, 		/* filter, filterarg */
1494 			       8192 + sizeof(struct aac_common), /* maxsize */
1495 			       1,			/* nsegments */
1496 			       BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1497 			       BUS_DMA_ALLOCNOW,	/* flags */
1498 			       NULL, NULL,		/* No locking needed */
1499 			       &sc->aac_common_dmat)) {
1500 		device_printf(sc->aac_dev,
1501 			      "can't allocate common structure DMA tag\n");
1502 		goto out;
1503 	}
1504 	if (bus_dmamem_alloc(sc->aac_common_dmat, (void **)&sc->aac_common,
1505 			     BUS_DMA_NOWAIT, &sc->aac_common_dmamap)) {
1506 		device_printf(sc->aac_dev, "can't allocate common structure\n");
1507 		goto out;
1508 	}
1509 
1510 	/*
1511 	 * Work around a bug in the 2120 and 2200 that cannot DMA commands
1512 	 * below address 8192 in physical memory.
1513 	 * XXX If the padding is not needed, can it be put to use instead
1514 	 * of ignored?
1515 	 */
1516 	(void)bus_dmamap_load(sc->aac_common_dmat, sc->aac_common_dmamap,
1517 			sc->aac_common, 8192 + sizeof(*sc->aac_common),
1518 			aac_common_map, sc, 0);
1519 
1520 	if (sc->aac_common_busaddr < 8192) {
1521 		(uint8_t *)sc->aac_common += 8192;
1522 		sc->aac_common_busaddr += 8192;
1523 	}
1524 	bzero(sc->aac_common, sizeof(*sc->aac_common));
1525 
1526 	/* Allocate some FIBs and associated command structs */
1527 	TAILQ_INIT(&sc->aac_fibmap_tqh);
1528 	sc->aac_commands = malloc(AAC_MAX_FIBS * sizeof(struct aac_command),
1529 				  M_AACBUF, M_WAITOK|M_ZERO);
1530 	while (sc->total_fibs < AAC_PREALLOCATE_FIBS) {
1531 		if (aac_alloc_commands(sc) != 0)
1532 			break;
1533 	}
1534 	if (sc->total_fibs == 0)
1535 		goto out;
1536 
1537 	/*
1538 	 * Fill in the init structure.  This tells the adapter about the
1539 	 * physical location of various important shared data structures.
1540 	 */
1541 	ip = &sc->aac_common->ac_init;
1542 	ip->InitStructRevision = AAC_INIT_STRUCT_REVISION;
1543 	ip->MiniPortRevision = AAC_INIT_STRUCT_MINIPORT_REVISION;
1544 
1545 	ip->AdapterFibsPhysicalAddress = sc->aac_common_busaddr +
1546 					 offsetof(struct aac_common, ac_fibs);
1547 	ip->AdapterFibsVirtualAddress = 0;
1548 	ip->AdapterFibsSize = AAC_ADAPTER_FIBS * sizeof(struct aac_fib);
1549 	ip->AdapterFibAlign = sizeof(struct aac_fib);
1550 
1551 	ip->PrintfBufferAddress = sc->aac_common_busaddr +
1552 				  offsetof(struct aac_common, ac_printf);
1553 	ip->PrintfBufferSize = AAC_PRINTF_BUFSIZE;
1554 
1555 	/*
1556 	 * The adapter assumes that pages are 4K in size, except on some
1557  	 * broken firmware versions that do the page->byte conversion twice,
1558 	 * therefore 'assuming' that this value is in 16MB units (2^24).
1559 	 * Round up since the granularity is so high.
1560 	 */
1561 	ip->HostPhysMemPages = ctob(physmem) / AAC_PAGE_SIZE;
1562 	if (sc->flags & AAC_FLAGS_BROKEN_MEMMAP) {
1563 		ip->HostPhysMemPages =
1564 		    (ip->HostPhysMemPages + AAC_PAGE_SIZE) / AAC_PAGE_SIZE;
1565 	}
1566 	ip->HostElapsedSeconds = time_second;	/* reset later if invalid */
1567 
1568 	/*
1569 	 * Initialise FIB queues.  Note that it appears that the layout of the
1570 	 * indexes and the segmentation of the entries may be mandated by the
1571 	 * adapter, which is only told about the base of the queue index fields.
1572 	 *
1573 	 * The initial values of the indices are assumed to inform the adapter
1574 	 * of the sizes of the respective queues, and theoretically it could
1575 	 * work out the entire layout of the queue structures from this.  We
1576 	 * take the easy route and just lay this area out like everyone else
1577 	 * does.
1578 	 *
1579 	 * The Linux driver uses a much more complex scheme whereby several
1580 	 * header records are kept for each queue.  We use a couple of generic
1581 	 * list manipulation functions which 'know' the size of each list by
1582 	 * virtue of a table.
1583 	 */
1584 	qaddr = &sc->aac_common->ac_qbuf[0] + AAC_QUEUE_ALIGN;
1585 	qaddr -= (u_int32_t)qaddr % AAC_QUEUE_ALIGN;
1586 	sc->aac_queues = (struct aac_queue_table *)qaddr;
1587 	ip->CommHeaderAddress = sc->aac_common_busaddr +
1588 				((u_int32_t)sc->aac_queues -
1589 				(u_int32_t)sc->aac_common);
1590 
1591 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1592 		AAC_HOST_NORM_CMD_ENTRIES;
1593 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1594 		AAC_HOST_NORM_CMD_ENTRIES;
1595 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1596 		AAC_HOST_HIGH_CMD_ENTRIES;
1597 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1598 		AAC_HOST_HIGH_CMD_ENTRIES;
1599 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1600 		AAC_ADAP_NORM_CMD_ENTRIES;
1601 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1602 		AAC_ADAP_NORM_CMD_ENTRIES;
1603 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1604 		AAC_ADAP_HIGH_CMD_ENTRIES;
1605 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1606 		AAC_ADAP_HIGH_CMD_ENTRIES;
1607 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1608 		AAC_HOST_NORM_RESP_ENTRIES;
1609 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1610 		AAC_HOST_NORM_RESP_ENTRIES;
1611 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1612 		AAC_HOST_HIGH_RESP_ENTRIES;
1613 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1614 		AAC_HOST_HIGH_RESP_ENTRIES;
1615 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1616 		AAC_ADAP_NORM_RESP_ENTRIES;
1617 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1618 		AAC_ADAP_NORM_RESP_ENTRIES;
1619 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1620 		AAC_ADAP_HIGH_RESP_ENTRIES;
1621 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1622 		AAC_ADAP_HIGH_RESP_ENTRIES;
1623 	sc->aac_qentries[AAC_HOST_NORM_CMD_QUEUE] =
1624 		&sc->aac_queues->qt_HostNormCmdQueue[0];
1625 	sc->aac_qentries[AAC_HOST_HIGH_CMD_QUEUE] =
1626 		&sc->aac_queues->qt_HostHighCmdQueue[0];
1627 	sc->aac_qentries[AAC_ADAP_NORM_CMD_QUEUE] =
1628 		&sc->aac_queues->qt_AdapNormCmdQueue[0];
1629 	sc->aac_qentries[AAC_ADAP_HIGH_CMD_QUEUE] =
1630 		&sc->aac_queues->qt_AdapHighCmdQueue[0];
1631 	sc->aac_qentries[AAC_HOST_NORM_RESP_QUEUE] =
1632 		&sc->aac_queues->qt_HostNormRespQueue[0];
1633 	sc->aac_qentries[AAC_HOST_HIGH_RESP_QUEUE] =
1634 		&sc->aac_queues->qt_HostHighRespQueue[0];
1635 	sc->aac_qentries[AAC_ADAP_NORM_RESP_QUEUE] =
1636 		&sc->aac_queues->qt_AdapNormRespQueue[0];
1637 	sc->aac_qentries[AAC_ADAP_HIGH_RESP_QUEUE] =
1638 		&sc->aac_queues->qt_AdapHighRespQueue[0];
1639 
1640 	/*
1641 	 * Do controller-type-specific initialisation
1642 	 */
1643 	switch (sc->aac_hwif) {
1644 	case AAC_HWIF_I960RX:
1645 		AAC_SETREG4(sc, AAC_RX_ODBR, ~0);
1646 		break;
1647 	}
1648 
1649 	/*
1650 	 * Give the init structure to the controller.
1651 	 */
1652 	if (aac_sync_command(sc, AAC_MONKER_INITSTRUCT,
1653 			     sc->aac_common_busaddr +
1654 			     offsetof(struct aac_common, ac_init), 0, 0, 0,
1655 			     NULL)) {
1656 		device_printf(sc->aac_dev,
1657 			      "error establishing init structure\n");
1658 		error = EIO;
1659 		goto out;
1660 	}
1661 
1662 	error = 0;
1663 out:
1664 	return(error);
1665 }
1666 
1667 /*
1668  * Send a synchronous command to the controller and wait for a result.
1669  */
1670 static int
1671 aac_sync_command(struct aac_softc *sc, u_int32_t command,
1672 		 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3,
1673 		 u_int32_t *sp)
1674 {
1675 	time_t then;
1676 	u_int32_t status;
1677 
1678 	debug_called(3);
1679 
1680 	/* populate the mailbox */
1681 	AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3);
1682 
1683 	/* ensure the sync command doorbell flag is cleared */
1684 	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1685 
1686 	/* then set it to signal the adapter */
1687 	AAC_QNOTIFY(sc, AAC_DB_SYNC_COMMAND);
1688 
1689 	/* spin waiting for the command to complete */
1690 	then = time_second;
1691 	do {
1692 		if (time_second > (then + AAC_IMMEDIATE_TIMEOUT)) {
1693 			debug(1, "timed out");
1694 			return(EIO);
1695 		}
1696 	} while (!(AAC_GET_ISTATUS(sc) & AAC_DB_SYNC_COMMAND));
1697 
1698 	/* clear the completion flag */
1699 	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1700 
1701 	/* get the command status */
1702 	status = AAC_GET_MAILBOX(sc, 0);
1703 	if (sp != NULL)
1704 		*sp = status;
1705 	return(0);
1706 }
1707 
1708 /*
1709  * Grab the sync fib area.
1710  */
1711 int
1712 aac_alloc_sync_fib(struct aac_softc *sc, struct aac_fib **fib, int flags)
1713 {
1714 
1715 	/*
1716 	 * If the force flag is set, the system is shutting down, or in
1717 	 * trouble.  Ignore the mutex.
1718 	 */
1719 	if (!(flags & AAC_SYNC_LOCK_FORCE))
1720 		AAC_LOCK_ACQUIRE(&sc->aac_sync_lock);
1721 
1722 	*fib = &sc->aac_common->ac_sync_fib;
1723 
1724 	return (1);
1725 }
1726 
1727 /*
1728  * Release the sync fib area.
1729  */
1730 void
1731 aac_release_sync_fib(struct aac_softc *sc)
1732 {
1733 
1734 	AAC_LOCK_RELEASE(&sc->aac_sync_lock);
1735 }
1736 
1737 /*
1738  * Send a synchronous FIB to the controller and wait for a result.
1739  */
1740 int
1741 aac_sync_fib(struct aac_softc *sc, u_int32_t command, u_int32_t xferstate,
1742 		 struct aac_fib *fib, u_int16_t datasize)
1743 {
1744 	debug_called(3);
1745 
1746 	if (datasize > AAC_FIB_DATASIZE)
1747 		return(EINVAL);
1748 
1749 	/*
1750 	 * Set up the sync FIB
1751 	 */
1752 	fib->Header.XferState = AAC_FIBSTATE_HOSTOWNED |
1753 				AAC_FIBSTATE_INITIALISED |
1754 				AAC_FIBSTATE_EMPTY;
1755 	fib->Header.XferState |= xferstate;
1756 	fib->Header.Command = command;
1757 	fib->Header.StructType = AAC_FIBTYPE_TFIB;
1758 	fib->Header.Size = sizeof(struct aac_fib) + datasize;
1759 	fib->Header.SenderSize = sizeof(struct aac_fib);
1760 	fib->Header.SenderFibAddress = (u_int32_t)fib;
1761 	fib->Header.ReceiverFibAddress = sc->aac_common_busaddr +
1762 					 offsetof(struct aac_common,
1763 						  ac_sync_fib);
1764 
1765 	/*
1766 	 * Give the FIB to the controller, wait for a response.
1767 	 */
1768 	if (aac_sync_command(sc, AAC_MONKER_SYNCFIB,
1769 			     fib->Header.ReceiverFibAddress, 0, 0, 0, NULL)) {
1770 		debug(2, "IO error");
1771 		return(EIO);
1772 	}
1773 
1774 	return (0);
1775 }
1776 
1777 /*
1778  * Adapter-space FIB queue manipulation
1779  *
1780  * Note that the queue implementation here is a little funky; neither the PI or
1781  * CI will ever be zero.  This behaviour is a controller feature.
1782  */
1783 static struct {
1784 	int		size;
1785 	int		notify;
1786 } aac_qinfo[] = {
1787 	{AAC_HOST_NORM_CMD_ENTRIES, AAC_DB_COMMAND_NOT_FULL},
1788 	{AAC_HOST_HIGH_CMD_ENTRIES, 0},
1789 	{AAC_ADAP_NORM_CMD_ENTRIES, AAC_DB_COMMAND_READY},
1790 	{AAC_ADAP_HIGH_CMD_ENTRIES, 0},
1791 	{AAC_HOST_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_NOT_FULL},
1792 	{AAC_HOST_HIGH_RESP_ENTRIES, 0},
1793 	{AAC_ADAP_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_READY},
1794 	{AAC_ADAP_HIGH_RESP_ENTRIES, 0}
1795 };
1796 
1797 /*
1798  * Atomically insert an entry into the nominated queue, returns 0 on success or
1799  * EBUSY if the queue is full.
1800  *
1801  * Note: it would be more efficient to defer notifying the controller in
1802  *	 the case where we may be inserting several entries in rapid succession,
1803  *	 but implementing this usefully may be difficult (it would involve a
1804  *	 separate queue/notify interface).
1805  */
1806 static int
1807 aac_enqueue_fib(struct aac_softc *sc, int queue, struct aac_command *cm)
1808 {
1809 	u_int32_t pi, ci;
1810 	int error;
1811 	u_int32_t fib_size;
1812 	u_int32_t fib_addr;
1813 
1814 	debug_called(3);
1815 
1816 	fib_size = cm->cm_fib->Header.Size;
1817 	fib_addr = cm->cm_fib->Header.ReceiverFibAddress;
1818 
1819 	/* get the producer/consumer indices */
1820 	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1821 	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1822 
1823 	/* wrap the queue? */
1824 	if (pi >= aac_qinfo[queue].size)
1825 		pi = 0;
1826 
1827 	/* check for queue full */
1828 	if ((pi + 1) == ci) {
1829 		error = EBUSY;
1830 		goto out;
1831 	}
1832 
1833 	/* populate queue entry */
1834 	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1835 	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1836 
1837 	/* update producer index */
1838 	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1839 
1840 	/*
1841 	 * To avoid a race with its completion interrupt, place this command on
1842 	 * the busy queue prior to advertising it to the controller.
1843 	 */
1844 	aac_enqueue_busy(cm);
1845 
1846 	/* notify the adapter if we know how */
1847 	if (aac_qinfo[queue].notify != 0)
1848 		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1849 
1850 	error = 0;
1851 
1852 out:
1853 	return(error);
1854 }
1855 
1856 /*
1857  * Atomically remove one entry from the nominated queue, returns 0 on
1858  * success or ENOENT if the queue is empty.
1859  */
1860 static int
1861 aac_dequeue_fib(struct aac_softc *sc, int queue, u_int32_t *fib_size,
1862 		struct aac_fib **fib_addr)
1863 {
1864 	u_int32_t pi, ci;
1865 	u_int32_t fib_index;
1866 	int error;
1867 	int notify;
1868 
1869 	debug_called(3);
1870 
1871 	/* get the producer/consumer indices */
1872 	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1873 	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1874 
1875 	/* check for queue empty */
1876 	if (ci == pi) {
1877 		error = ENOENT;
1878 		goto out;
1879 	}
1880 
1881 	notify = 0;
1882 	if (ci == pi + 1)
1883 		notify++;
1884 
1885 	/* wrap the queue? */
1886 	if (ci >= aac_qinfo[queue].size)
1887 		ci = 0;
1888 
1889 	/* fetch the entry */
1890 	*fib_size = (sc->aac_qentries[queue] + ci)->aq_fib_size;
1891 
1892 	switch (queue) {
1893 	case AAC_HOST_NORM_CMD_QUEUE:
1894 	case AAC_HOST_HIGH_CMD_QUEUE:
1895 		/*
1896 		 * The aq_fib_addr is only 32 bits wide so it can't be counted
1897 		 * on to hold an address.  For AIF's, the adapter assumes
1898 		 * that it's giving us an address into the array of AIF fibs.
1899 		 * Therefore, we have to convert it to an index.
1900 		 */
1901 		fib_index = (sc->aac_qentries[queue] + ci)->aq_fib_addr /
1902 			sizeof(struct aac_fib);
1903 		*fib_addr = &sc->aac_common->ac_fibs[fib_index];
1904 		break;
1905 
1906 	case AAC_HOST_NORM_RESP_QUEUE:
1907 	case AAC_HOST_HIGH_RESP_QUEUE:
1908 	{
1909 		struct aac_command *cm;
1910 
1911 		/*
1912 		 * As above, an index is used instead of an actual address.
1913 		 * Gotta shift the index to account for the fast response
1914 		 * bit.  No other correction is needed since this value was
1915 		 * originally provided by the driver via the SenderFibAddress
1916 		 * field.
1917 		 */
1918 		fib_index = (sc->aac_qentries[queue] + ci)->aq_fib_addr;
1919 		cm = sc->aac_commands + (fib_index >> 1);
1920 		*fib_addr = cm->cm_fib;
1921 
1922 		/*
1923 		 * Is this a fast response? If it is, update the fib fields in
1924 		 * local memory since the whole fib isn't DMA'd back up.
1925 		 */
1926 		if (fib_index & 0x01) {
1927 			(*fib_addr)->Header.XferState |= AAC_FIBSTATE_DONEADAP;
1928 			*((u_int32_t*)((*fib_addr)->data)) = AAC_ERROR_NORMAL;
1929 		}
1930 		break;
1931 	}
1932 	default:
1933 		panic("Invalid queue in aac_dequeue_fib()");
1934 		break;
1935 	}
1936 
1937 	/* update consumer index */
1938 	sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX] = ci + 1;
1939 
1940 	/* if we have made the queue un-full, notify the adapter */
1941 	if (notify && (aac_qinfo[queue].notify != 0))
1942 		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1943 	error = 0;
1944 
1945 out:
1946 	return(error);
1947 }
1948 
1949 /*
1950  * Put our response to an Adapter Initialed Fib on the response queue
1951  */
1952 static int
1953 aac_enqueue_response(struct aac_softc *sc, int queue, struct aac_fib *fib)
1954 {
1955 	u_int32_t pi, ci;
1956 	int error;
1957 	u_int32_t fib_size;
1958 	u_int32_t fib_addr;
1959 
1960 	debug_called(1);
1961 
1962 	/* Tell the adapter where the FIB is */
1963 	fib_size = fib->Header.Size;
1964 	fib_addr = fib->Header.SenderFibAddress;
1965 	fib->Header.ReceiverFibAddress = fib_addr;
1966 
1967 	/* get the producer/consumer indices */
1968 	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1969 	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1970 
1971 	/* wrap the queue? */
1972 	if (pi >= aac_qinfo[queue].size)
1973 		pi = 0;
1974 
1975 	/* check for queue full */
1976 	if ((pi + 1) == ci) {
1977 		error = EBUSY;
1978 		goto out;
1979 	}
1980 
1981 	/* populate queue entry */
1982 	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1983 	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1984 
1985 	/* update producer index */
1986 	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1987 
1988 	/* notify the adapter if we know how */
1989 	if (aac_qinfo[queue].notify != 0)
1990 		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1991 
1992 	error = 0;
1993 
1994 out:
1995 	return(error);
1996 }
1997 
1998 /*
1999  * Check for commands that have been outstanding for a suspiciously long time,
2000  * and complain about them.
2001  */
2002 static void
2003 aac_timeout(struct aac_softc *sc)
2004 {
2005 	struct aac_command *cm;
2006 	time_t deadline;
2007 
2008 	/*
2009 	 * Traverse the busy command list, bitch about late commands once
2010 	 * only.
2011 	 */
2012 	deadline = time_second - AAC_CMD_TIMEOUT;
2013 	TAILQ_FOREACH(cm, &sc->aac_busy, cm_link) {
2014 		if ((cm->cm_timestamp  < deadline)
2015 			/* && !(cm->cm_flags & AAC_CMD_TIMEDOUT) */) {
2016 			cm->cm_flags |= AAC_CMD_TIMEDOUT;
2017 			device_printf(sc->aac_dev,
2018 				      "COMMAND %p TIMEOUT AFTER %d SECONDS\n",
2019 				      cm, (int)(time_second-cm->cm_timestamp));
2020 			AAC_PRINT_FIB(sc, cm->cm_fib);
2021 		}
2022 	}
2023 
2024 	return;
2025 }
2026 
2027 /*
2028  * Interface Function Vectors
2029  */
2030 
2031 /*
2032  * Read the current firmware status word.
2033  */
2034 static int
2035 aac_sa_get_fwstatus(struct aac_softc *sc)
2036 {
2037 	debug_called(3);
2038 
2039 	return(AAC_GETREG4(sc, AAC_SA_FWSTATUS));
2040 }
2041 
2042 static int
2043 aac_rx_get_fwstatus(struct aac_softc *sc)
2044 {
2045 	debug_called(3);
2046 
2047 	return(AAC_GETREG4(sc, AAC_RX_FWSTATUS));
2048 }
2049 
2050 static int
2051 aac_fa_get_fwstatus(struct aac_softc *sc)
2052 {
2053 	int val;
2054 
2055 	debug_called(3);
2056 
2057 	val = AAC_GETREG4(sc, AAC_FA_FWSTATUS);
2058 	return (val);
2059 }
2060 
2061 /*
2062  * Notify the controller of a change in a given queue
2063  */
2064 
2065 static void
2066 aac_sa_qnotify(struct aac_softc *sc, int qbit)
2067 {
2068 	debug_called(3);
2069 
2070 	AAC_SETREG2(sc, AAC_SA_DOORBELL1_SET, qbit);
2071 }
2072 
2073 static void
2074 aac_rx_qnotify(struct aac_softc *sc, int qbit)
2075 {
2076 	debug_called(3);
2077 
2078 	AAC_SETREG4(sc, AAC_RX_IDBR, qbit);
2079 }
2080 
2081 static void
2082 aac_fa_qnotify(struct aac_softc *sc, int qbit)
2083 {
2084 	debug_called(3);
2085 
2086 	AAC_SETREG2(sc, AAC_FA_DOORBELL1, qbit);
2087 	AAC_FA_HACK(sc);
2088 }
2089 
2090 /*
2091  * Get the interrupt reason bits
2092  */
2093 static int
2094 aac_sa_get_istatus(struct aac_softc *sc)
2095 {
2096 	debug_called(3);
2097 
2098 	return(AAC_GETREG2(sc, AAC_SA_DOORBELL0));
2099 }
2100 
2101 static int
2102 aac_rx_get_istatus(struct aac_softc *sc)
2103 {
2104 	debug_called(3);
2105 
2106 	return(AAC_GETREG4(sc, AAC_RX_ODBR));
2107 }
2108 
2109 static int
2110 aac_fa_get_istatus(struct aac_softc *sc)
2111 {
2112 	int val;
2113 
2114 	debug_called(3);
2115 
2116 	val = AAC_GETREG2(sc, AAC_FA_DOORBELL0);
2117 	return (val);
2118 }
2119 
2120 /*
2121  * Clear some interrupt reason bits
2122  */
2123 static void
2124 aac_sa_clear_istatus(struct aac_softc *sc, int mask)
2125 {
2126 	debug_called(3);
2127 
2128 	AAC_SETREG2(sc, AAC_SA_DOORBELL0_CLEAR, mask);
2129 }
2130 
2131 static void
2132 aac_rx_clear_istatus(struct aac_softc *sc, int mask)
2133 {
2134 	debug_called(3);
2135 
2136 	AAC_SETREG4(sc, AAC_RX_ODBR, mask);
2137 }
2138 
2139 static void
2140 aac_fa_clear_istatus(struct aac_softc *sc, int mask)
2141 {
2142 	debug_called(3);
2143 
2144 	AAC_SETREG2(sc, AAC_FA_DOORBELL0_CLEAR, mask);
2145 	AAC_FA_HACK(sc);
2146 }
2147 
2148 /*
2149  * Populate the mailbox and set the command word
2150  */
2151 static void
2152 aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2153 		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2154 {
2155 	debug_called(4);
2156 
2157 	AAC_SETREG4(sc, AAC_SA_MAILBOX, command);
2158 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 4, arg0);
2159 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 8, arg1);
2160 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 12, arg2);
2161 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 16, arg3);
2162 }
2163 
2164 static void
2165 aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
2166 		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2167 {
2168 	debug_called(4);
2169 
2170 	AAC_SETREG4(sc, AAC_RX_MAILBOX, command);
2171 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 4, arg0);
2172 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 8, arg1);
2173 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 12, arg2);
2174 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 16, arg3);
2175 }
2176 
2177 static void
2178 aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2179 		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2180 {
2181 	debug_called(4);
2182 
2183 	AAC_SETREG4(sc, AAC_FA_MAILBOX, command);
2184 	AAC_FA_HACK(sc);
2185 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 4, arg0);
2186 	AAC_FA_HACK(sc);
2187 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 8, arg1);
2188 	AAC_FA_HACK(sc);
2189 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 12, arg2);
2190 	AAC_FA_HACK(sc);
2191 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 16, arg3);
2192 	AAC_FA_HACK(sc);
2193 }
2194 
2195 /*
2196  * Fetch the immediate command status word
2197  */
2198 static int
2199 aac_sa_get_mailbox(struct aac_softc *sc, int mb)
2200 {
2201 	debug_called(4);
2202 
2203 	return(AAC_GETREG4(sc, AAC_SA_MAILBOX + (mb * 4)));
2204 }
2205 
2206 static int
2207 aac_rx_get_mailbox(struct aac_softc *sc, int mb)
2208 {
2209 	debug_called(4);
2210 
2211 	return(AAC_GETREG4(sc, AAC_RX_MAILBOX + (mb * 4)));
2212 }
2213 
2214 static int
2215 aac_fa_get_mailbox(struct aac_softc *sc, int mb)
2216 {
2217 	int val;
2218 
2219 	debug_called(4);
2220 
2221 	val = AAC_GETREG4(sc, AAC_FA_MAILBOX + (mb * 4));
2222 	return (val);
2223 }
2224 
2225 /*
2226  * Set/clear interrupt masks
2227  */
2228 static void
2229 aac_sa_set_interrupts(struct aac_softc *sc, int enable)
2230 {
2231 	debug(2, "%sable interrupts", enable ? "en" : "dis");
2232 
2233 	if (enable) {
2234 		AAC_SETREG2((sc), AAC_SA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2235 	} else {
2236 		AAC_SETREG2((sc), AAC_SA_MASK0_SET, ~0);
2237 	}
2238 }
2239 
2240 static void
2241 aac_rx_set_interrupts(struct aac_softc *sc, int enable)
2242 {
2243 	debug(2, "%sable interrupts", enable ? "en" : "dis");
2244 
2245 	if (enable) {
2246 		AAC_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INTERRUPTS);
2247 	} else {
2248 		AAC_SETREG4(sc, AAC_RX_OIMR, ~0);
2249 	}
2250 }
2251 
2252 static void
2253 aac_fa_set_interrupts(struct aac_softc *sc, int enable)
2254 {
2255 	debug(2, "%sable interrupts", enable ? "en" : "dis");
2256 
2257 	if (enable) {
2258 		AAC_SETREG2((sc), AAC_FA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2259 		AAC_FA_HACK(sc);
2260 	} else {
2261 		AAC_SETREG2((sc), AAC_FA_MASK0, ~0);
2262 		AAC_FA_HACK(sc);
2263 	}
2264 }
2265 
2266 /*
2267  * Debugging and Diagnostics
2268  */
2269 
2270 /*
2271  * Print some information about the controller.
2272  */
2273 static void
2274 aac_describe_controller(struct aac_softc *sc)
2275 {
2276 	struct aac_fib *fib;
2277 	struct aac_adapter_info	*info;
2278 
2279 	debug_called(2);
2280 
2281 	aac_alloc_sync_fib(sc, &fib, 0);
2282 
2283 	fib->data[0] = 0;
2284 	if (aac_sync_fib(sc, RequestAdapterInfo, 0, fib, 1)) {
2285 		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
2286 		aac_release_sync_fib(sc);
2287 		return;
2288 	}
2289 	info = (struct aac_adapter_info *)&fib->data[0];
2290 
2291 	device_printf(sc->aac_dev, "%s %dMHz, %dMB cache memory, %s\n",
2292 		      aac_describe_code(aac_cpu_variant, info->CpuVariant),
2293 		      info->ClockSpeed, info->BufferMem / (1024 * 1024),
2294 		      aac_describe_code(aac_battery_platform,
2295 					info->batteryPlatform));
2296 
2297 	/* save the kernel revision structure for later use */
2298 	sc->aac_revision = info->KernelRevision;
2299 	device_printf(sc->aac_dev, "Kernel %d.%d-%d, Build %d, S/N %6X\n",
2300 		      info->KernelRevision.external.comp.major,
2301 		      info->KernelRevision.external.comp.minor,
2302 		      info->KernelRevision.external.comp.dash,
2303 		      info->KernelRevision.buildNumber,
2304 		      (u_int32_t)(info->SerialNumber & 0xffffff));
2305 
2306 	aac_release_sync_fib(sc);
2307 
2308 	if (1 || bootverbose) {
2309 		device_printf(sc->aac_dev, "Supported Options=%b\n",
2310 			      sc->supported_options,
2311 			      "\20"
2312 			      "\1SNAPSHOT"
2313 			      "\2CLUSTERS"
2314 			      "\3WCACHE"
2315 			      "\4DATA64"
2316 			      "\5HOSTTIME"
2317 			      "\6RAID50"
2318 			      "\7WINDOW4GB"
2319 			      "\10SCSIUPGD"
2320 			      "\11SOFTERR"
2321 			      "\12NORECOND"
2322 			      "\13SGMAP64"
2323 			      "\14ALARM"
2324 			      "\15NONDASD");
2325 	}
2326 }
2327 
2328 /*
2329  * Look up a text description of a numeric error code and return a pointer to
2330  * same.
2331  */
2332 static char *
2333 aac_describe_code(struct aac_code_lookup *table, u_int32_t code)
2334 {
2335 	int i;
2336 
2337 	for (i = 0; table[i].string != NULL; i++)
2338 		if (table[i].code == code)
2339 			return(table[i].string);
2340 	return(table[i + 1].string);
2341 }
2342 
2343 /*
2344  * Management Interface
2345  */
2346 
2347 static int
2348 aac_open(dev_t dev, int flags, int fmt, d_thread_t *td)
2349 {
2350 	struct aac_softc *sc;
2351 
2352 	debug_called(2);
2353 
2354 	sc = dev->si_drv1;
2355 
2356 	/* Check to make sure the device isn't already open */
2357 	if (sc->aac_state & AAC_STATE_OPEN) {
2358 		return EBUSY;
2359 	}
2360 	sc->aac_state |= AAC_STATE_OPEN;
2361 
2362 	return 0;
2363 }
2364 
2365 static int
2366 aac_close(dev_t dev, int flags, int fmt, d_thread_t *td)
2367 {
2368 	struct aac_softc *sc;
2369 
2370 	debug_called(2);
2371 
2372 	sc = dev->si_drv1;
2373 
2374 	/* Mark this unit as no longer open  */
2375 	sc->aac_state &= ~AAC_STATE_OPEN;
2376 
2377 	return 0;
2378 }
2379 
2380 static int
2381 aac_ioctl(dev_t dev, u_long cmd, caddr_t arg, int flag, d_thread_t *td)
2382 {
2383 	union aac_statrequest *as;
2384 	struct aac_softc *sc;
2385 	int error = 0;
2386 	int i;
2387 
2388 	debug_called(2);
2389 
2390 	as = (union aac_statrequest *)arg;
2391 	sc = dev->si_drv1;
2392 
2393 	switch (cmd) {
2394 	case AACIO_STATS:
2395 		switch (as->as_item) {
2396 		case AACQ_FREE:
2397 		case AACQ_BIO:
2398 		case AACQ_READY:
2399 		case AACQ_BUSY:
2400 		case AACQ_COMPLETE:
2401 			bcopy(&sc->aac_qstat[as->as_item], &as->as_qstat,
2402 			      sizeof(struct aac_qstat));
2403 			break;
2404 		default:
2405 			error = ENOENT;
2406 			break;
2407 		}
2408 	break;
2409 
2410 	case FSACTL_SENDFIB:
2411 		arg = *(caddr_t*)arg;
2412 	case FSACTL_LNX_SENDFIB:
2413 		debug(1, "FSACTL_SENDFIB");
2414 		error = aac_ioctl_sendfib(sc, arg);
2415 		break;
2416 	case FSACTL_AIF_THREAD:
2417 	case FSACTL_LNX_AIF_THREAD:
2418 		debug(1, "FSACTL_AIF_THREAD");
2419 		error = EINVAL;
2420 		break;
2421 	case FSACTL_OPEN_GET_ADAPTER_FIB:
2422 		arg = *(caddr_t*)arg;
2423 	case FSACTL_LNX_OPEN_GET_ADAPTER_FIB:
2424 		debug(1, "FSACTL_OPEN_GET_ADAPTER_FIB");
2425 		/*
2426 		 * Pass the caller out an AdapterFibContext.
2427 		 *
2428 		 * Note that because we only support one opener, we
2429 		 * basically ignore this.  Set the caller's context to a magic
2430 		 * number just in case.
2431 		 *
2432 		 * The Linux code hands the driver a pointer into kernel space,
2433 		 * and then trusts it when the caller hands it back.  Aiee!
2434 		 * Here, we give it the proc pointer of the per-adapter aif
2435 		 * thread. It's only used as a sanity check in other calls.
2436 		 */
2437 		i = (int)sc->aifthread;
2438 		error = copyout(&i, arg, sizeof(i));
2439 		break;
2440 	case FSACTL_GET_NEXT_ADAPTER_FIB:
2441 		arg = *(caddr_t*)arg;
2442 	case FSACTL_LNX_GET_NEXT_ADAPTER_FIB:
2443 		debug(1, "FSACTL_GET_NEXT_ADAPTER_FIB");
2444 		error = aac_getnext_aif(sc, arg);
2445 		break;
2446 	case FSACTL_CLOSE_GET_ADAPTER_FIB:
2447 	case FSACTL_LNX_CLOSE_GET_ADAPTER_FIB:
2448 		debug(1, "FSACTL_CLOSE_GET_ADAPTER_FIB");
2449 		/* don't do anything here */
2450 		break;
2451 	case FSACTL_MINIPORT_REV_CHECK:
2452 		arg = *(caddr_t*)arg;
2453 	case FSACTL_LNX_MINIPORT_REV_CHECK:
2454 		debug(1, "FSACTL_MINIPORT_REV_CHECK");
2455 		error = aac_rev_check(sc, arg);
2456 		break;
2457 	case FSACTL_QUERY_DISK:
2458 		arg = *(caddr_t*)arg;
2459 	case FSACTL_LNX_QUERY_DISK:
2460 		debug(1, "FSACTL_QUERY_DISK");
2461 		error = aac_query_disk(sc, arg);
2462 			break;
2463 	case FSACTL_DELETE_DISK:
2464 	case FSACTL_LNX_DELETE_DISK:
2465 		/*
2466 		 * We don't trust the underland to tell us when to delete a
2467 		 * container, rather we rely on an AIF coming from the
2468 		 * controller
2469 		 */
2470 		error = 0;
2471 		break;
2472 	default:
2473 		debug(1, "unsupported cmd 0x%lx\n", cmd);
2474 		error = EINVAL;
2475 		break;
2476 	}
2477 	return(error);
2478 }
2479 
2480 static int
2481 aac_poll(dev_t dev, int poll_events, d_thread_t *td)
2482 {
2483 	struct aac_softc *sc;
2484 	int revents;
2485 
2486 	sc = dev->si_drv1;
2487 	revents = 0;
2488 
2489 	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2490 	if ((poll_events & (POLLRDNORM | POLLIN)) != 0) {
2491 		if (sc->aac_aifq_tail != sc->aac_aifq_head)
2492 			revents |= poll_events & (POLLIN | POLLRDNORM);
2493 	}
2494 	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2495 
2496 	if (revents == 0) {
2497 		if (poll_events & (POLLIN | POLLRDNORM))
2498 			selrecord(td, &sc->rcv_select);
2499 	}
2500 
2501 	return (revents);
2502 }
2503 
2504 /*
2505  * Send a FIB supplied from userspace
2506  */
2507 static int
2508 aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib)
2509 {
2510 	struct aac_command *cm;
2511 	int size, error;
2512 
2513 	debug_called(2);
2514 
2515 	cm = NULL;
2516 
2517 	/*
2518 	 * Get a command
2519 	 */
2520 	AAC_LOCK_ACQUIRE(&sc->aac_io_lock);
2521 	if (aac_alloc_command(sc, &cm)) {
2522 		error = EBUSY;
2523 		goto out;
2524 	}
2525 
2526 	/*
2527 	 * Fetch the FIB header, then re-copy to get data as well.
2528 	 */
2529 	if ((error = copyin(ufib, cm->cm_fib,
2530 			    sizeof(struct aac_fib_header))) != 0)
2531 		goto out;
2532 	size = cm->cm_fib->Header.Size + sizeof(struct aac_fib_header);
2533 	if (size > sizeof(struct aac_fib)) {
2534 		device_printf(sc->aac_dev, "incoming FIB oversized (%d > %d)\n",
2535 			      size, sizeof(struct aac_fib));
2536 		size = sizeof(struct aac_fib);
2537 	}
2538 	if ((error = copyin(ufib, cm->cm_fib, size)) != 0)
2539 		goto out;
2540 	cm->cm_fib->Header.Size = size;
2541 	cm->cm_timestamp = time_second;
2542 
2543 	/*
2544 	 * Pass the FIB to the controller, wait for it to complete.
2545 	 */
2546 	if ((error = aac_wait_command(cm, 30)) != 0) {	/* XXX user timeout? */
2547 		device_printf(sc->aac_dev,
2548 			      "aac_wait_command return %d\n", error);
2549 		goto out;
2550 	}
2551 
2552 	/*
2553 	 * Copy the FIB and data back out to the caller.
2554 	 */
2555 	size = cm->cm_fib->Header.Size;
2556 	if (size > sizeof(struct aac_fib)) {
2557 		device_printf(sc->aac_dev, "outbound FIB oversized (%d > %d)\n",
2558 			      size, sizeof(struct aac_fib));
2559 		size = sizeof(struct aac_fib);
2560 	}
2561 	error = copyout(cm->cm_fib, ufib, size);
2562 
2563 out:
2564 	if (cm != NULL) {
2565 		aac_release_command(cm);
2566 	}
2567 
2568 	AAC_LOCK_RELEASE(&sc->aac_io_lock);
2569 	return(error);
2570 }
2571 
2572 /*
2573  * Handle an AIF sent to us by the controller; queue it for later reference.
2574  * If the queue fills up, then drop the older entries.
2575  */
2576 static void
2577 aac_handle_aif(struct aac_softc *sc, struct aac_fib *fib)
2578 {
2579 	struct aac_aif_command *aif;
2580 	struct aac_container *co, *co_next;
2581 	struct aac_mntinfo *mi;
2582 	struct aac_mntinforesp *mir = NULL;
2583 	u_int16_t rsize;
2584 	int next, found;
2585 	int count = 0, added = 0, i = 0;
2586 
2587 	debug_called(2);
2588 
2589 	aif = (struct aac_aif_command*)&fib->data[0];
2590 	aac_print_aif(sc, aif);
2591 
2592 	/* Is it an event that we should care about? */
2593 	switch (aif->command) {
2594 	case AifCmdEventNotify:
2595 		switch (aif->data.EN.type) {
2596 		case AifEnAddContainer:
2597 		case AifEnDeleteContainer:
2598 			/*
2599 			 * A container was added or deleted, but the message
2600 			 * doesn't tell us anything else!  Re-enumerate the
2601 			 * containers and sort things out.
2602 			 */
2603 			aac_alloc_sync_fib(sc, &fib, 0);
2604 			mi = (struct aac_mntinfo *)&fib->data[0];
2605 			do {
2606 				/*
2607 				 * Ask the controller for its containers one at
2608 				 * a time.
2609 				 * XXX What if the controller's list changes
2610 				 * midway through this enumaration?
2611 				 * XXX This should be done async.
2612 				 */
2613 				bzero(mi, sizeof(struct aac_mntinfo));
2614 				mi->Command = VM_NameServe;
2615 				mi->MntType = FT_FILESYS;
2616 				mi->MntCount = i;
2617 				rsize = sizeof(mir);
2618 				if (aac_sync_fib(sc, ContainerCommand, 0, fib,
2619 						 sizeof(struct aac_mntinfo))) {
2620 					printf("Error probing container %d\n",
2621 					      i);
2622 					continue;
2623 				}
2624 				mir = (struct aac_mntinforesp *)&fib->data[0];
2625 				/* XXX Need to check if count changed */
2626 				count = mir->MntRespCount;
2627 				/*
2628 				 * Check the container against our list.
2629 				 * co->co_found was already set to 0 in a
2630 				 * previous run.
2631 				 */
2632 				if ((mir->Status == ST_OK) &&
2633 				    (mir->MntTable[0].VolType != CT_NONE)) {
2634 					found = 0;
2635 					TAILQ_FOREACH(co,
2636 						      &sc->aac_container_tqh,
2637 						      co_link) {
2638 						if (co->co_mntobj.ObjectId ==
2639 						    mir->MntTable[0].ObjectId) {
2640 							co->co_found = 1;
2641 							found = 1;
2642 							break;
2643 						}
2644 					}
2645 					/*
2646 					 * If the container matched, continue
2647 					 * in the list.
2648 					 */
2649 					if (found) {
2650 						i++;
2651 						continue;
2652 					}
2653 
2654 					/*
2655 					 * This is a new container.  Do all the
2656 					 * appropriate things to set it up.
2657 					 */
2658 					aac_add_container(sc, mir, 1);
2659 					added = 1;
2660 				}
2661 				i++;
2662 			} while ((i < count) && (i < AAC_MAX_CONTAINERS));
2663 			aac_release_sync_fib(sc);
2664 
2665 			/*
2666 			 * Go through our list of containers and see which ones
2667 			 * were not marked 'found'.  Since the controller didn't
2668 			 * list them they must have been deleted.  Do the
2669 			 * appropriate steps to destroy the device.  Also reset
2670 			 * the co->co_found field.
2671 			 */
2672 			co = TAILQ_FIRST(&sc->aac_container_tqh);
2673 			while (co != NULL) {
2674 				if (co->co_found == 0) {
2675 					device_delete_child(sc->aac_dev,
2676 							    co->co_disk);
2677 					co_next = TAILQ_NEXT(co, co_link);
2678 					AAC_LOCK_ACQUIRE(&sc->
2679 							aac_container_lock);
2680 					TAILQ_REMOVE(&sc->aac_container_tqh, co,
2681 						     co_link);
2682 					AAC_LOCK_RELEASE(&sc->
2683 							 aac_container_lock);
2684 					FREE(co, M_AACBUF);
2685 					co = co_next;
2686 				} else {
2687 					co->co_found = 0;
2688 					co = TAILQ_NEXT(co, co_link);
2689 				}
2690 			}
2691 
2692 			/* Attach the newly created containers */
2693 			if (added)
2694 				bus_generic_attach(sc->aac_dev);
2695 
2696 			break;
2697 
2698 		default:
2699 			break;
2700 		}
2701 
2702 	default:
2703 		break;
2704 	}
2705 
2706 	/* Copy the AIF data to the AIF queue for ioctl retrieval */
2707 	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2708 	next = (sc->aac_aifq_head + 1) % AAC_AIFQ_LENGTH;
2709 	if (next != sc->aac_aifq_tail) {
2710 		bcopy(aif, &sc->aac_aifq[next], sizeof(struct aac_aif_command));
2711 		sc->aac_aifq_head = next;
2712 
2713 		/* On the off chance that someone is sleeping for an aif... */
2714 		if (sc->aac_state & AAC_STATE_AIF_SLEEPER)
2715 			wakeup(sc->aac_aifq);
2716 		/* Wakeup any poll()ers */
2717 		selwakeup(&sc->rcv_select);
2718 	}
2719 	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2720 
2721 	return;
2722 }
2723 
2724 /*
2725  * Return the Revision of the driver to userspace and check to see if the
2726  * userspace app is possibly compatible.  This is extremely bogus since
2727  * our driver doesn't follow Adaptec's versioning system.  Cheat by just
2728  * returning what the card reported.
2729  */
2730 static int
2731 aac_rev_check(struct aac_softc *sc, caddr_t udata)
2732 {
2733 	struct aac_rev_check rev_check;
2734 	struct aac_rev_check_resp rev_check_resp;
2735 	int error = 0;
2736 
2737 	debug_called(2);
2738 
2739 	/*
2740 	 * Copyin the revision struct from userspace
2741 	 */
2742 	if ((error = copyin(udata, (caddr_t)&rev_check,
2743 			sizeof(struct aac_rev_check))) != 0) {
2744 		return error;
2745 	}
2746 
2747 	debug(2, "Userland revision= %d\n",
2748 	      rev_check.callingRevision.buildNumber);
2749 
2750 	/*
2751 	 * Doctor up the response struct.
2752 	 */
2753 	rev_check_resp.possiblyCompatible = 1;
2754 	rev_check_resp.adapterSWRevision.external.ul =
2755 	    sc->aac_revision.external.ul;
2756 	rev_check_resp.adapterSWRevision.buildNumber =
2757 	    sc->aac_revision.buildNumber;
2758 
2759 	return(copyout((caddr_t)&rev_check_resp, udata,
2760 			sizeof(struct aac_rev_check_resp)));
2761 }
2762 
2763 /*
2764  * Pass the caller the next AIF in their queue
2765  */
2766 static int
2767 aac_getnext_aif(struct aac_softc *sc, caddr_t arg)
2768 {
2769 	struct get_adapter_fib_ioctl agf;
2770 	int error;
2771 
2772 	debug_called(2);
2773 
2774 	if ((error = copyin(arg, &agf, sizeof(agf))) == 0) {
2775 
2776 		/*
2777 		 * Check the magic number that we gave the caller.
2778 		 */
2779 		if (agf.AdapterFibContext != (int)sc->aifthread) {
2780 			error = EFAULT;
2781 		} else {
2782 			error = aac_return_aif(sc, agf.AifFib);
2783 			if ((error == EAGAIN) && (agf.Wait)) {
2784 				sc->aac_state |= AAC_STATE_AIF_SLEEPER;
2785 				while (error == EAGAIN) {
2786 					error = tsleep(sc->aac_aifq, PRIBIO |
2787 						       PCATCH, "aacaif", 0);
2788 					if (error == 0)
2789 						error = aac_return_aif(sc,
2790 						    agf.AifFib);
2791 				}
2792 				sc->aac_state &= ~AAC_STATE_AIF_SLEEPER;
2793 			}
2794 		}
2795 	}
2796 	return(error);
2797 }
2798 
2799 /*
2800  * Hand the next AIF off the top of the queue out to userspace.
2801  */
2802 static int
2803 aac_return_aif(struct aac_softc *sc, caddr_t uptr)
2804 {
2805 	int error;
2806 
2807 	debug_called(2);
2808 
2809 	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2810 	if (sc->aac_aifq_tail == sc->aac_aifq_head) {
2811 		error = EAGAIN;
2812 	} else {
2813 		error = copyout(&sc->aac_aifq[sc->aac_aifq_tail], uptr,
2814 				sizeof(struct aac_aif_command));
2815 		if (error)
2816 			device_printf(sc->aac_dev,
2817 			    "aac_return_aif: copyout returned %d\n", error);
2818 		if (!error)
2819 			sc->aac_aifq_tail = (sc->aac_aifq_tail + 1) %
2820 					    AAC_AIFQ_LENGTH;
2821 	}
2822 	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2823 	return(error);
2824 }
2825 
2826 /*
2827  * Give the userland some information about the container.  The AAC arch
2828  * expects the driver to be a SCSI passthrough type driver, so it expects
2829  * the containers to have b:t:l numbers.  Fake it.
2830  */
2831 static int
2832 aac_query_disk(struct aac_softc *sc, caddr_t uptr)
2833 {
2834 	struct aac_query_disk query_disk;
2835 	struct aac_container *co;
2836 	struct aac_disk	*disk;
2837 	int error, id;
2838 
2839 	debug_called(2);
2840 
2841 	disk = NULL;
2842 
2843 	error = copyin(uptr, (caddr_t)&query_disk,
2844 		       sizeof(struct aac_query_disk));
2845 	if (error)
2846 		return (error);
2847 
2848 	id = query_disk.ContainerNumber;
2849 	if (id == -1)
2850 		return (EINVAL);
2851 
2852 	AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
2853 	TAILQ_FOREACH(co, &sc->aac_container_tqh, co_link) {
2854 		if (co->co_mntobj.ObjectId == id)
2855 			break;
2856 		}
2857 
2858 	if (co == NULL) {
2859 			query_disk.Valid = 0;
2860 			query_disk.Locked = 0;
2861 			query_disk.Deleted = 1;		/* XXX is this right? */
2862 	} else {
2863 		disk = device_get_softc(co->co_disk);
2864 		query_disk.Valid = 1;
2865 		query_disk.Locked =
2866 		    (disk->ad_flags & AAC_DISK_OPEN) ? 1 : 0;
2867 		query_disk.Deleted = 0;
2868 		query_disk.Bus = device_get_unit(sc->aac_dev);
2869 		query_disk.Target = disk->unit;
2870 		query_disk.Lun = 0;
2871 		query_disk.UnMapped = 0;
2872 		sprintf(&query_disk.diskDeviceName[0], "%s%d",
2873 		        disk->ad_disk.d_name, disk->ad_disk.d_unit);
2874 	}
2875 	AAC_LOCK_RELEASE(&sc->aac_container_lock);
2876 
2877 	error = copyout((caddr_t)&query_disk, uptr,
2878 			sizeof(struct aac_query_disk));
2879 
2880 	return (error);
2881 }
2882 
2883 static void
2884 aac_get_bus_info(struct aac_softc *sc)
2885 {
2886 	struct aac_fib *fib;
2887 	struct aac_ctcfg *c_cmd;
2888 	struct aac_ctcfg_resp *c_resp;
2889 	struct aac_vmioctl *vmi;
2890 	struct aac_vmi_businf_resp *vmi_resp;
2891 	struct aac_getbusinf businfo;
2892 	struct aac_sim *caminf;
2893 	device_t child;
2894 	int i, found, error;
2895 
2896 	aac_alloc_sync_fib(sc, &fib, 0);
2897 	c_cmd = (struct aac_ctcfg *)&fib->data[0];
2898 	bzero(c_cmd, sizeof(struct aac_ctcfg));
2899 
2900 	c_cmd->Command = VM_ContainerConfig;
2901 	c_cmd->cmd = CT_GET_SCSI_METHOD;
2902 	c_cmd->param = 0;
2903 
2904 	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2905 	    sizeof(struct aac_ctcfg));
2906 	if (error) {
2907 		device_printf(sc->aac_dev, "Error %d sending "
2908 		    "VM_ContainerConfig command\n", error);
2909 		aac_release_sync_fib(sc);
2910 		return;
2911 	}
2912 
2913 	c_resp = (struct aac_ctcfg_resp *)&fib->data[0];
2914 	if (c_resp->Status != ST_OK) {
2915 		device_printf(sc->aac_dev, "VM_ContainerConfig returned 0x%x\n",
2916 		    c_resp->Status);
2917 		aac_release_sync_fib(sc);
2918 		return;
2919 	}
2920 
2921 	sc->scsi_method_id = c_resp->param;
2922 
2923 	vmi = (struct aac_vmioctl *)&fib->data[0];
2924 	bzero(vmi, sizeof(struct aac_vmioctl));
2925 
2926 	vmi->Command = VM_Ioctl;
2927 	vmi->ObjType = FT_DRIVE;
2928 	vmi->MethId = sc->scsi_method_id;
2929 	vmi->ObjId = 0;
2930 	vmi->IoctlCmd = GetBusInfo;
2931 
2932 	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2933 	    sizeof(struct aac_vmioctl));
2934 	if (error) {
2935 		device_printf(sc->aac_dev, "Error %d sending VMIoctl command\n",
2936 		    error);
2937 		aac_release_sync_fib(sc);
2938 		return;
2939 	}
2940 
2941 	vmi_resp = (struct aac_vmi_businf_resp *)&fib->data[0];
2942 	if (vmi_resp->Status != ST_OK) {
2943 		device_printf(sc->aac_dev, "VM_Ioctl returned %d\n",
2944 		    vmi_resp->Status);
2945 		aac_release_sync_fib(sc);
2946 		return;
2947 	}
2948 
2949 	bcopy(&vmi_resp->BusInf, &businfo, sizeof(struct aac_getbusinf));
2950 	aac_release_sync_fib(sc);
2951 
2952 	found = 0;
2953 	for (i = 0; i < businfo.BusCount; i++) {
2954 		if (businfo.BusValid[i] != AAC_BUS_VALID)
2955 			continue;
2956 
2957 		caminf = (struct aac_sim *)malloc( sizeof(struct aac_sim),
2958 		    M_AACBUF, M_NOWAIT | M_ZERO);
2959 		if (caminf == NULL)
2960 			continue;
2961 
2962 		child = device_add_child(sc->aac_dev, "aacp", -1);
2963 		if (child == NULL) {
2964 			device_printf(sc->aac_dev, "device_add_child failed\n");
2965 			continue;
2966 		}
2967 
2968 		caminf->TargetsPerBus = businfo.TargetsPerBus;
2969 		caminf->BusNumber = i;
2970 		caminf->InitiatorBusId = businfo.InitiatorBusId[i];
2971 		caminf->aac_sc = sc;
2972 		caminf->sim_dev = child;
2973 
2974 		device_set_ivars(child, caminf);
2975 		device_set_desc(child, "SCSI Passthrough Bus");
2976 		TAILQ_INSERT_TAIL(&sc->aac_sim_tqh, caminf, sim_link);
2977 
2978 		found = 1;
2979 	}
2980 
2981 	if (found)
2982 		bus_generic_attach(sc->aac_dev);
2983 
2984 	return;
2985 }
2986